545 research outputs found

    Multiattribute group decision-making approach with linguistic Pythagorean fuzzy information

    Get PDF

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    Underground Mining Method Selection With the Hesitant Fuzzy Linguistic Gained and Lost Dominance Score Method

    Get PDF
    Underground mining method selection is a critical decision problem for available underground ore deposits in exploitation design. As many comprehensive factors, such as physical parameters, economic benefits, and environmental effects, are claimed to be established and a group of experts are involved in the issue, the underground mining method selection is deemed as a multiple experts multiple criteria decision making problem. Classical mining method assessment exists some gaps due to the way of representing opinions. To address this matter, a hesitant fuzzy linguistic gained and lost dominance score method is investigated in this paper. To enhance the flexibility and gain more information, mining planning engineers are allowed to convey their knowledge using hesitant fuzzy linguistic term sets in the underground mining method selection process. A novel score function of hesitant fuzzy linguistic term set is introduced to compare any hesitant fuzzy linguistic term sets. Then, based on the score function, a weight determining function is proposed to calculate the weights of criteria, which can magnify the ‘‘importance’’ and ‘‘unimportance’’ of criteria. To select the mining method, the hesitant fuzzy linguistic gained and dominance score method is developed. A case study concerning selecting a extraction method for a real mine in Yunnan province of China is presented to illustrate the applicability of the proposed method. The effectiveness of the proposed method is finally verified by comparing with other ranking methodsNational Natural Science Foundation of China under Grant 71501135 and Grant 717711562019 Sichuan Planning Project of Social Science under Grant SC18A0072018 Key Project of the Key Research Institute of Humanities and Social Sciences in Sichuan Province under Grant Xq18A01 and Grant LYC18-02Electronic Commerce and Modern Logistics Research Center Program, Key Research Base of Humanities and Social Science, Sichuan Provincial Education Department, under Grant DSWL18-2Spark Project of Innovation, Sichuan University, under Grant 2018hhs-43Scientific Research Foundation for Excellent Young Scholars, Sichuan University, under Grant 2016SCU04A23

    Information Volume of Fuzzy Membership Function

    Get PDF
    Fuzzy membership function plays an important role in fuzzy set theory. However, how to measure the information volume of fuzzy membership function is still an open issue. The existing methods to determine the uncertainty of fuzzy membership function only measure the first-order information volume, but do not take higher-order information volume into consideration. To address this issue, a new information volume of fuzzy membership function is presented in this paper, which includes the first-order and the higher-order information volume. By continuously separating the hesitancy degree until convergence, the information volume of the fuzzy membership function can be calculated. In addition, when the hesitancy degree of a fuzzy membership function equals to zero, the information volume of this special fuzzy membership function is identical to Shannon entropy. Two typical fuzzy sets, namely classic fuzzy sets and intuitiontistic fuzzy sets, are studied. Several examples are illustrated to show the efficiency of the proposed information volume of fuzzy membership function

    Probabilistic double hierarchy linguistic alternative queuing method for real economy development evaluation under the perspective of economic financialization

    Get PDF
    With the development of science and technology, the new road of scientific economic and financial development has played a decisive role in supporting the financial undertaking. To accelerate the economic development, it is very important to increase the guiding role of financial undertaking in the real economy. Therefore, it is necessary to promote the development of the real economy under the perspective of economic financialization based on some actions. To judge the implementation effect of these actions, this paper develops a multiple criteria decisionmaking (MCDM) method to evaluate them. First, the decisionmaking matrices are established with the probabilistic double hierarchy linguistic term set in which the probabilities are added to all double hierarchy linguistic terms. Additionally, a weightdetermining method is developed to obtain the weight vector of criteria, and we develop a MCDM method named the probabilistic double hierarchy linguistic alternative queuing method (PDHLAQM), where the decision-making result is intuitive by a directed graph or a 0–1 precedence relationship matrix. Furthermore, we apply the PDHL-AQM to solve a practical MCDM problem involving the real economy development evaluation under the perspective of economic financialization. Finally, some comparative analyses are made to show the advantages and reasonableness of the PDHL-AQM

    Information Volume of Mass Function

    Get PDF
    Given a probability distribution, its corresponding information volume is Shannon entropy. However, how to determine the information volume of a given mass function is still an open issue. Based on Deng entropy, the information volume of mass function is presented in this paper. Given a mass function, the corresponding information volume is larger than its uncertainty measured by Deng entropy. In addition, when the cardinal of the frame of discernment is identical, both the total uncertainty case and the BPA distribution of the maximum Deng entropy have the same information volume. Some numerical examples are illustrated to show the efficiency of the proposed information volume of mass function

    RISK PRIORITY EVALUATION OF POWER TRANSFORMER PARTS BASED ON HYBRID FMEA FRAMEWORK UNDER HESITANT FUZZY ENVIRONMENT

    Get PDF
    The power transformer is one of the most critical facilities in the power system, and its running status directly impacts the power system's security. It is essential to research the risk priority evaluation of the power transformer parts. Failure mode and effects analysis (FMEA) is a methodology for analyzing the potential failure modes (FMs) within a system in various industrial devices. This study puts forward a hybrid FMEA framework integrating novel hesitant fuzzy aggregation tools and CRITIC (Criteria Importance Through Inter-criteria Correlation) method. In this framework, the hesitant fuzzy sets (HFSs) are used to depict the uncertainty in risk evaluation. Then, an improved HFWA (hesitant fuzzy weighted averaging) operator is adopted to fuse risk evaluation for FMEA experts. This aggregation manner can consider different lengths of HFSs and the support degrees among the FMEA experts. Next, the novel HFWGA (hesitant fuzzy weighted geometric averaging) operator with CRITIC weights is developed to determine the risk priority of each FM. This method can satisfy the multiplicative characteristic of the RPN (risk priority number) method of the conventional FMEA model and reflect the correlations between risk indicators. Finally, a real example of the risk priority evaluation of power transformer parts is given to show the applicability and feasibility of the proposed hybrid FMEA framework. Comparison and sensitivity studies are also offered to verify the effectiveness of the improved risk assessment approach
    corecore