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ABSTRACT The purpose of this study is to construct the multi-attribute group decision making (MAGDM)
approach with linguistic Pythagorean fuzzy information (LPFI) based on generalized linguistic Pythagorean
fuzzy aggregation operators (GLPFA). To begin with, we define the generalized indeterminacy degree-
preference distance of linguistic Pythagorean fuzzy numbers (LPFNs), on the basis of it, we build a new
approach for ranking the alternatives after analysing the existed comparison rule. In addition, we introduce
the new version of t-norms (TNs) and t-conorms (TCs) named linguistic Pythagorean t-norms (LPTNs)
and linguistic Pythagorean t-conorms (LPTCs), which can be used to handle the LPFI; some special
cases for LPTNs and LPTCs are obtained and they can deal with Pythagorean fuzzy information (PFI).
Thirdly, we introduce the generalized linguistic Pythagorean fuzzy average aggregation operator (GLPFAA)
based on LPTN and LPTC along with their properties are also investigated, whilst, some special cases of
GLPAA are obtained when LPTN and LPTC take some special TNs and TCs. Finally, a MAGDM approach
based on some LPTNs and LPTCs is constructed to deal with some MAGDM problems with unknown
attributes’weights and experts’ weights, before building the MAGDM approach, we define new cross-
entropy to fix the experts’s weights and use the maximizing deviation to calculate the attributes’ weights
based on the proposed indeterminacy degree-preference distance. Consequently, an illustrative example is
provided in order to show the effectiveness and advantages of the proposed method and some comparisons
are also carried out.

INDEX TERMS Linguistic Pythagorean fuzzy set (LPFS), Linguistic Pythagorean t-norms (LPTNs),
Linguistic Pythagorean t-conorms (LPTCs), Generalized linguistic Pythagorean aggregation operators,
Generalized indeterminacy degree-preference distance, Generalized linguistic Pythagorean cross-entropy.

I. INTRODUCTION

THe theories and methods of multi-attribute decision
making (MADM) are widely used in different fields

such as economy, management and engineering. MADM
uses decision information to rank all limited projects and
select the best ones through certain ways. Because of the
complexity and uncertainty of objective things and people’s
fuzzy thinking, it is often difficult for people to give precise
figures in the decision-making process, and attribute values
appear in the form of fuzzy information. Among these fuzzy
information, intuitionistic fuzzy set (IFS) [1] is considered

to be more appropriate to represent and process imprecise,
uncertain and vague information in some decision making
problems (DMPs). Since IFS’ appearance, the theories and
applications on IFS are all comprehensively studied. An im-
portant application field is fuzzy decision making, although
IFS has been successfully applied in some multi-attribute
decision making (MADM), the sum of membership degree
(MD) and non-membership degree (NMD) may be greater
than 1 in some special real decision problems, this situation
could not be described by IFS. In order to address some
DMPs, Pythagorean fuzzy set (PFS), an important extension
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of IFS, proposed by Yager [2]. PFS is also characterized by
MD and NMD and the square sum of MD and NMD is also
less than 1, but sum of them may be more than 1. Since PFS’s
appearance, theory of PFS and its applications have been
studied in depth, for example some information measures
[3]–[5], improved score function [6]–[9], new operational
laws [10], [11], aggregation operators [12]–[16] and many
decision-making approaches [17], [18]. These studies are
limited to deal with some uncertain information in quanti-
tative environments. However, in some real decision-making
environments, the optimal expression of imprecise informa-
tion and uncertainty naturally presents the form of linguistic
terms owing to the complexity of the problem and the in-
herent fuzziness of human preferences. However, sometimes
in real life, DMP is presented by expressing the qualitative
aspects of uncertainties and inaccurate information. In this
case, decision makers often use linguistic variables [19], [49]
to give their opinions on alternatives. In order to describe it,
Xu [20], [21] proposed the linguistic term set (LTS) and con-
tinuous linguistic term set (CLTS) and also investigated the
linguistic aggregation operators. Since the LTS’s appearance,
some extended linguistic fuzzy sets have been established
and applied to some DMPs, the extended LTSs are mainly
focus on the following three aspects: (1) Linguistic hesitant
fuzzy set (LHFS): Rodriguez [22] introduced the hesitant
linguistic terms set (HLTSs) and built a linguistic decision-
making model in which experts give their opinions by elicit-
ing linguistic expressions. Liao [23] built qualitative decision
making approach with correlation coefficients of HLTSs; Wei
[24] defined some uncertain measures in hesitant linguistic
environment and applied to MADM; Gou [25], [26] estab-
lished the related information measures of HLTSs and relat-
ed decision making approaches based on these information
measures; Liu [27] defined the distance measures for HLTSs
and applied them to MADM; Zhou [28] established MCDM
approaches based on distance measures for LHFSs; Yang
[29] introduced cross-entropy measures under the linguistic
hesitant intuitionistic environment; Farhadinia [30] defined
some information measures under hesitant linguistic environ-
ment and MADM approach. (2) Linguistic neutrosophic sets:
Li [31] introduced linguistic neutrosophic sets (LNSs)and
MCDM approach is also built based on two aggregation
operators under linguistic neutrosophic environments; Li [32]
developed MCGDM approach with EDAs method based on
LNNSs. (3) Linguistic intuitionistic fuzzy sets (LIFS): Zhang
[33] defined the LIFS by combing linguistic approach and
IFS in which decision maker expressed the MD and NMD
by the linguistic terms. Chen [34] established an approach
to MADM based on LINSs; Garg [35] introduced some
aggregation operators for LIFS by using the set pair analysis
theory; Liu [36], [37] defined scaled prioritized operators
and power Bonferroni operators based on LIFNs and applied
them to MADM; Liu [38] proposed a new approach to
MADM With LI Information based on Dempster-Shafer evi-
dence theory; Zhang [57] established the outranking method
for MCDM with LIFNs. (4) Linguistic Pythagorean fuzzy

sets(LPFSs): rencently, Garg [40] introduced the concept of
LPFSs based on LIFSs, some aggregation operators are also
defined and MAGDM approach with linguistic Pythagorean
fuzzy information (LPFI) is built based on the proposed
aggregation operators.

The research motivations of the present work can be sum-
marized as following: aggregation operator as a useful tool
to aggregate relevant information has been focused and also
used in many DMPs. There are many kinds of aggregation
operators [11]–[15], [35]–[37], [41], [42], [59]–[61] to deal
with IFNs, PFNs or LPFNs. Of course, the most important
aspect of aggregation operators is to build operational laws
which is on the basis of t-norms (TNs) and t-conorms (TCs).
Obviously, the above mentioned aggregation operators are
only obtained by the algebraic TN and TCs, which are just
a kind of TNs and TCs. The Archimedean TNs and TCs
are the generalization of various TNs and TCs, respectively,
which provide some very useful special cases of opera-
tions, such as Algebraic operations, Einstein operations and
Hamacher operations, Frank operations, Dombi operations
[43] and so on. Some aggregation operators based on these
generalized operational laws under some fuzzy environments
are studied, for instance, Zhang [44] introduced interval-
valued intuitionistic fuzzy Frank aggregation operators and
applied to MADM; Jana [45] introduced picture fuzzy Dombi
aggregation operators and applied to MADM. However, it is
a pity that the Archimedean TNs and TCs are restricted to[0,
1], they are suitable for dealing with IFNs, but they cannot be
used to aggregate the some linguistic information. Tao [46]
extended TNs and TCs from [0, 1] to [0, t] for aggregating
interval linguistic labels; Liu [47] also extended TNs and TCs
from [0, 1] to [0, t] to deal with intuitionistic 2-tuple linguistic
information (I2LI). However, these (extended) TNs and TCs
can not be used in aggregating LPFI.

This paper focuses on developing MAGDM approach
based on LPFI with unknown experts weights and attributes
weights. The goals and contributions of this work are:

(1) to give new approach to rank LPFNs with the help of
academical thoughts of [48].

(2) to extend the range [0, 1] of the Archimedean TNs and
TCs into [0, t] (t > 0)and propose the new version of TNs
and TCs which defined in [0, t] to deal with the LPI, specially,
namely, linguistic Pythagorean TNs (LPTNs) and linguistic
Pythagorean TCs (LPFCs) which can handle Pythagorean
fuzzy information.

(3) to propose some new general operational laws for the
LPFI and to propose the generalized linguistic Pythagorean
aggregation (GLPFWA) operator for the LPFI.

(4) to propose generalized indeterminacy degree-
preference distance and generalized linguistic Pythagorean
fuzzy cross-entropy to fix the expert’s weights and attribute
weights, respectively.

(5) to construct a novel MAGDM approach with the LPFI
based on the proposed GLPFWA under the expert’s weights
and attribute weights are unknown.

2 VOLUME 4, 2016



Y.Liu et al.: Multiattribute group decision-making approach with linguistic Pythagorean fuzzy information

For the sake of the above objectives, the organizational
structure of this paper is as follows. We firstly review some
definitions on linguistic term set (LTS), linguistic Pythagore-
an fuzzy sets (LPFSs) in Section 2. Section 3 is devoted to the
new approach for ranking the alternatives based on general-
ized hesitant degree-preference distance under LPFI. Section
4 is focused on new version of TNs and TCs named linguistic
Pythagorean TNs (LPTNs) and linguistic Pythagorean TCs
(LPTCs), respectively, which can handle the LPFI, and some
special cases for LPTNs and LPTCs are obtained and they
can deal with PFI. In Section 5, we introduce the GLPFWA
based on LPTN and LPTC along with their properties are
also investigated. In Section 6, we analyse the GLPFWA and
some special cases are obtained when LPTN and LPTC take
some special TNs and TCs, respectively, and some parame-
ters changed. Section 7 is devoted to construct a MAGDM
approach based on some LPTNs and LPTCs, before building
the MAGDM approach, we define new cross-entropy to fix
the experts’s weights and use the maximizing deviation to
calculate the attributes’ weights based on the generalized in-
determinacy degree-preference distance proposed in Section
3. Consequently, a practical example is provided in Section 8
to reveal the effectiveness and advantages of the proposed
method and some conclusions of this study are made in
Section 9.

II. PRELIMINARIES
Some basic concepts of PFSs and LPFSs will be reviewed in
this part, which are the basis of the present work.

A. LINGUISTIC FUZZY SET
Let L = {si|i = 0, 1, · · · , g} be a LTS with odd cardinality,
for any label si, which stands for a possible value for a
linguistic variable and satisfies the following condition [49]:

(1)si > sj ⇔ i > j;
(2) when si ≥ sj , then max (si, sj) = si;
(3) when si ≥ sj , then min (si, sj) = sj ;
(4) Neg (si) = sj , where j = g − i.
Later, Xu [20] defined a continuous linguistic term set

(CLTS) S̄ = {sa|s0 ≤ sa ≤ sg, a ∈ [0, g]} by adding the
virtual term. If sa /∈ S̄, then sa is called the virtual term,
otherwise, it is called original term.

Garg [40] introduced the concept of LPFS. We will review
the PFS before review the LPFS.

B. PYTHAGOREAN FUZZY SET AND LINGUISTIC
PYTHAGOREAN FUZZY SET
Definition 1: [2] Let X = {Ψ1,Ψ2, · · · ,Ψn} be a finite
universe of discourse, an Pythagorean fuzzy set (PFS) A in
X is defined as

A = {〈x, (µA (x) , νA (x))〉|x ∈ X}.

where µA : X → [0, 1] and νA : X → [0, 1] with the
condition 0 ≤ µ2

A (x) + ν2
A (x) ≤ 1, µA, νA are called mem-

bership function, and non-membership function, respectively.
πA (x) =

√
1− µ2

A (x)− ν2
A (x) represents the degree of

indeterminacy of x toA and called the indeterminacy degree.
For simplicity, called (µA (x) , νA (x)) is an Pythagorean
fuzzy number (PFN) and denoted by (µA, νA).
Definition 2: [40] Let X = {Ψ1,Ψ2, · · · ,Ψn} be a finite
universe of discourse and S̄ = {sα|s0 ≤ sα ≤ st, α ∈
[0, t]}, be a CLTS. A LPFS A is defined as follows:

A = {(su (x) , sv (x)) |x ∈ X}

where xu (x) , sv (x) ∈ S̄ with the condition u2 + v2 ≤ t2

and they are called linguistic membership degree (LMD) and
linguistic nonmembership degree (LNMD) of x toA, respec-
tively. πA (x) = s√t2−u2−v2 is called the degree of linguis-
tic indeterminacy. For simplicity, denote (su (x) , sv (x)) as
A = (su, sv) and called as linguistic Pythagorean fuzzy
number (LPFN).

For any LPFN A = (su1 , sv1), the complement of A is
Ac = (sv1 , su1

).

III. COMPARISON METHOD OF LPFNS
Given a finite set of alternatives, a linguistic Pythagorean
fuzzy MADM problem is a kind of problem in which the
evaluation of each alternative w. r. t. a set of attributes is
expressed by LPFNs, and the most desirable alternative is
selected based on the degree of suitability to which each
alternative meets the the requirements of decision-makers.
However, the size relations or the inclusion relations does not
exist in LPFS under ambient conditions, some comparison
technologies of LPFNs have been developed to determine the
order relations of LPFNs. As an important tool to compare
LPFNs in order to get the desirable one in DMPs, score
function is needed to convert LPFNs into real numbers in
order to become easier to compare with each other in the
process of decision making.
• Comparison Rule I

Definition 3: [40] Let A = (sui , svi) be a LPFN with
sui , svi ∈ S̄. The score function of A is given as following

S (A) = s√
(t2+u2

i−v2i )/2
(1)

and the accuracy function is defined as

H (A) = s√
(u2
i+v

2
i )/2

(2)

The comparison rule is also defined as follows by Garg [40]
based on Eq.(1) and Eq.(2):

(1) If S (A) > S (B), then A � B;
(2) If S (A) = S (B) and

(2.1)H (A) = H (B), then A = B;
(2.2)H (A) > H (B), then A � B.

However, there are obvious neglectable shortcomings in
the above-mentioned LPFN comparison methods. The scor-
ing function or accuracy function can not be used separately
to obtain the final order of alternatives. On the contrary,
it needs to combine S(A) and H(A) to compare different
LPFNs, which leads to a loss of consistency to some extent.
In addition, the above-mentioned comparison method can
not consider the object influence of indeterminacy degree for
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some special LPFNs, nor can it produce reasonable ranking.
Now we show this point by taking an example from Garg
[40].
Example 1: Let A = (s3, s1) , B = (s5, s3) , C =
(s4, s4) , D = (s2, s0) be four LPFNs which are from
S̄ = {sa|s0 ≤ sa ≤ s6|a ∈ [0, 6]}, by above comparison
rule, it follows that
S (A) = s4.69,S (B) = s5.10,S (C) = s4.24,S (D) =

s4.47.
Therefore, B � A � D � C.
• Comparison Rule II
The above comparison rule obtained that D � C. Al-

though D � C, the complete information contained in
C � D. Therefore, it is unreasonable to draw a conclusion
thatD � C. Hence, a more suitable comparison rule needs to
be studied to compare two LPFNs. Szmidt et al [48] proposed
an effective sorting method for IFNs by comprehensively
accounting for hesitancy degree of IFNs and the distance
between the IFN and the positive ideal solution (PIS). With
the help of the academic thoughts of [48], an effective com-
parison method will be developed for compare two LPFNs,
and above listed drawbacks will be overcame. In order to
introduce the new ranking method, the distance measure of
two LPFNs will be proposed.

However, in practice, decision makers usually have differ-
ent preferences for different distance measurements. There-
fore, the distance measure with preference information be-
tween any two LPFNs can be defined. For any two LPFN-
s, the generalized indeterminacy degree-preference distance
can be defined as:
Definition 4: Let A = (su1

, sv1) and B = (su2
, sv2) be

two LPFNs, which are derived from S̄ = {sa|s0 ≤ sa ≤
st, a ∈ [0, t]}. Then the generalized indeterminacy degree-
preference distance of A and B is defined as:

d (A,B)

=

{
(1− p)

[∣∣∣∣(u1

t

)2
−
(u2

t

)2∣∣∣∣λ +

∣∣∣∣(v1t )2 − (v2t )2
∣∣∣∣λ]

+p

∣∣∣∣
(√

t2 − u2
1 − v21

t

)2

−

(√
t2 − u2

2 − v22
t

)2∣∣∣∣λ} 1
λ

, (3)

where λ > 0 and p ∈ [0, 1].
We will obtain some different distance measures when

parameters λ, p take different values.
Case 1. When λ = 1, the generalized indetermina-

cy degree-preference distance will reduce to Hamming-
indeterminacy degree-preference distance

d (A,B) =
1− p

2

[∣∣∣∣(u1

t

)2

−
(u2

t

)2
∣∣∣∣+

∣∣∣∣(v1

t

)2

−
(v2

t

)2
∣∣∣∣]

+p

∣∣∣∣
(√

t2 − u2
1 − v2

1

t

)2

−

(√
t2 − u2

2 − v2
2

t

)2∣∣∣∣.
In Case 1, if p = 0, which means the influence of indeter-

minacy degree was not taken into account. The generalized

indeterminacy degree-preference distance reduce to metric
distance

d (A,B) =
1

2

[∣∣∣∣(u1

t

)2

−
(u2

t

)2
∣∣∣∣+

∣∣∣∣(v1

t

)2

−
(v2

t

)2
∣∣∣∣].

Case 2. When λ = 2, the generalized indetermina-
cy degree-preference distance will reduce to Euclidean-
indeterminacy degree-preference distance

d (A,B) =

{
(1− p)

[∣∣∣∣(u1

t

)2
−
(u2

t

)2∣∣∣∣2 + ∣∣∣∣(v1t )2 − (v2t )2
∣∣∣∣2]

+p

∣∣∣∣
(√

t2 − u2
1 − v21

t

)2

−

(√
t2 − u2

2 − v22
t

)2∣∣∣∣2} 1
2

.

In Case 2, If p = 0, the generalized indeterminacy degree-
preference distance will reduce to Euclidean distance

d (A,B) =

{
1

2

[∣∣∣∣(u1

t

)2

−
(u2

t

)2
∣∣∣∣2 +

∣∣∣∣(v1

t

)2

−
(v2

t

)2
∣∣∣∣2]} 1

2

.

Let A,B be two LPFNs. It is easy to verify that general-
ized indeterminacy degree-preference distance d satisfies the
following properties:

(1) d (A,B) ≥ 0;
(2) d (A,B) = d (B,A);
(3) d (A,B) = 0⇔ A = B.
Now, we introduce a new comparison method based on

above mentioned distance.
Definition 5: Let A = (su, sv) be a LPFN, which is derived
from S̄ = {sa|s0 ≤ sa ≤ st, a ∈ [0, t]}. P = (st, s0) is
the positive ideal point. Then, the ordering index R of A is
defined as:

R (A) =
1

2

(
1 +

√
t2 − u2 − v2

t

)
d (A,P ) . (4)

Where d (A,P ) is the generalized indeterminacy degree-
preference distance.

It is obvious that the lower the value of R (A) in Eq.(4),
the better the alternative A from the view of point that the
amount of positive information include, and reliability of
information.
Example 2: Let A = (s5, s2) , B = (s3, s4) , C =
(s6, s1) , D = (s4, s3) be four LPFNs which are from
S̄ = {sa|s0 ≤ sa ≤ s8|a ∈ [0, 8]}, then,

(1) According to comparison rule I, we have S (A) =
s6.5192,S (B) = s5.3385,S (C) = s7.0356,S (D) = s5.9582,
therefore C � A � D � B.

(2) When p = 0.5,Ψ = 1 in the Eq.(3), according to
comparison rule II, we have R (A) = 0.6165, R (B) =
0.8885, R (C) = 0.3715, R (D) = 0.8013, therefore C �
A � D � B.
Example 3: Let A = (s3, s1) , B = (s5, s3) , C =
(s4, s4) , D = (s2, s0) be four LPFNs which are from
S̄ = {sa|s0 ≤ sa ≤ s6|a ∈ [0, 6]}, by above comparison, it
follows that
R (A) = 0.6342, R (B) = 0.1488, R (C) =

0.2829, R (D) = 0.8395.
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Therefore, B � C � A � D, which is more reasonable
than the result of Example 1.

It follows from Definition 5 that the new ordering function
focuses not only on the information we really have, but also
on the lack of information, because the two aspects both
influence the ranking of alternatives.

IV. LINGUISTIC PYTHAGOREAN TN AND LINGUISTIC
PYTHAGOREAN TC
TN and TC are widely used in the aggregation operators.
However, the domain and the range of TN and TC must be in
[0, 1]. If the LMD and LNMD of a LPFN can be converted
into [0, t], where t > 0, then all operations can be done
in [0, t]. Therefore, in order to investigate I2LI, Liu [47]
introduced the concepts of extended TN and extended TC:
Definition 6: [47] An extended TN is a function TN :
[0, t]2 → [0, t] which satisfies the conditions: for any
a, b, c, a1, b1 ∈ [0, t],

(1) TN (a, 0) = 0, TN (a, t) = a;
(2) TN (a, b) = TN (b, a);
(3) TN (a, TN (b, c)) = TN (TN (a, b) , c);
(4) if a ≤ a1, b ≤ b1, then TN (a, b) ≤ TN (a1, b1)
The extended TN TN has the following properties:
(1) TN (a, b) is continuous,
(2) TN (a, b) ≤ min{a, b}.

Definition 7: [47] An extended TC is a function TC :
[0, t]2 → [0, t] which satisfies the conditions: for any
a, b, c, a1, b1 ∈ [0, t],

(1) TC (a, 0) = a, TC (a, t) = t;
(2) TC (a, b) = TC (b, a);
(3)TC (a, TC (b, c)) = TC (TC (a, b) , c);
(4)if a ≤ a1, b ≤ b1, then TC (a, b) ≤ TC (a1, b1)
The extended TC TC has the following properties:
(1) TC (a, b) is continuous,
(2) TC (a, b) ≥ max{a, b}.
With the help of extended TN and TC, we will investigate

some linguistic Pythagorean TNs (LPTNs) and linguistic
Pythagorean TCs (LPTCs) which can deal with LPFI and
PFI.

Liu [47] pointed out that the following condition should be
satisfied for their generators:

As far as the extended TN is concerned, a monotonically
decreasing function ξ called a generator of extended TN, if
it satisfies ξ : [0, t] → R+ and ξ−1 : R+ → [0, t] with
lima→∞ξ

−1 (a) = 0 and ξ−1 (0) = t, where a ∈ [0, t].
According to Dombi [43], the extended TN TN (a, b) =
ξ−1 (ξ (a) + ξ (b)).

As far as the extended TC is concerned, a monotonically
increasing function ζ called a generator of extended TC, if
it satisfies ζ : [0, t] → R+ and ζ−1 : R+ → [0, t] with
lima→∞ζ

−1 (a) = t and ζ−1 (0) = 0, where a ∈ [0, t].
According to Dombi [43], the extended TC S (a, b) =
ζ−1 (ζ (a) + ζ (b)). For the relation of generator of LPTNs
and LPTCs can be given as the following equation:

ζ (a) = ξ
(√

t2 − a2
)
.

Now, according to the generators, we introduce LPTNs and
LPTCs which can deal with LPFI.
• Let generator of the linguistic Pythagorean algebraic TN
T AN be ξ (a) = −ln

(
a
t

)2
, where ξ−1 (a) = te−

1
2a and the

generator of the linguistic Pythagorean algebraic TC T AC be
ζ (a) = −ln t

2−a2
t2 , where ζ−1 (a) =

(
t2 − t2e−a

) 1
2 .

According to the generators of the T AN and T AN , we have
Theorem 1: For any a, b ∈ [0, t], the T AN and T AN can be
described by

T AN (a, b) =
ab

t
,

T AC (a, b) =

√
(a2 + b2)− a2b2

t2
.

Proof As ξ (a) + ξ (b) = −ln
((

a
t

)2 ( b
t

)2)
= −lna

2b2

t4 , so
we have

T AN (a, b) = ξ−1 (ξ (a) + ξ (b)) = t
(
e−(ξ(a)+ξ(b))

) 1
2

= t
(
eln

a2b2

t4

) 1
2

= t

(
a2b2

t4

) 1
2

=
ab

t
.

Similarly, as ζ (a) + ζ (b) = −ln
((

t2−a2
t2

)(
t2−b2
t2

))
−

ln
(t2−a2)(t2−b2)

t4 , so we have

T AC (a, b) = ζ−1 (ζ (a) + ζ (b))

= t
(

1− e−(ζ(a)+ζ(b))
) 1

2

= t

(
1− eln

(t2−a2)(t2−b2)
t4

) 1
2

= t

(
1−

(
t2 − a2

) (
t2 − b2

)
t4

) 1
2

=

(
t2 −

(
t2 − a2

) (
t2 − b2

)
t2

) 1
2

=

((
a2 + b2

)
− a2b2

t2

) 1
2

.

In Theorem 1, if t = 1, then the TN T AN (a, b) and
TC T AC (a, b) under the linguistic Pythagorean fuzzy en-
vironment will reduce to Pythagorean t-norm T (a, b) and
Pythagorean t-conorm S (a, b)

T (a, b) = ab, S (a, b) =
√

(a2 + b2)− a2b2.

• Let generator of the linguistic Pythagorean Einstein TN T EN
be ξ (a) = ln

(
2t2−a2
a2

)
, where ξ−1 (a) =

√
2t√

1+ea
and the

generator of the linguistic Pythagorean Einstein TC T EC be
ζ (a) = ln t

2+a2

t2−a2 , where ζ−1 (a) = t
√

ea−1
ea+1 .

According to the generators of the T EN and T EC , we have
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Theorem 2: For any a, b ∈ [0, t], the T EN and T EC can be
described by

T EN (a, b) =

√
2tab√

a2b2 + (2t2 − a2) (2t2 − b2)
,

T EC (a, b) = t2
√

a2 + b2

t4 + a2b2
.

Proof As ξ (a) + ξ (b) = ln
(

2t2−a2
a2 · 2t2−b2

b2

)
=

ln
(2t2−a2)(2t2−b2)

a2b2 , so we have

T EN (a, b) = ξ−1 (ξ (a) + ξ (b))

=

√
2t√

1 + eξ(a)+ξ(b)

=

√
2t√

1 + (2t2−a2)(2t2−b2)
a2b2

=

√
2tab√

a2b2 + (2t2 − a2) (2t2 − b2)
.

Similarly, as ζ (a) + ζ (b) = ln
(
t2+a2

t2−a2

)(
t2+b2

t2−b2

)
=

ln
(t2+a2)(t2+b2)
(t2−a2)(t2−b2) , so we have

T EC (a, b) = ζ−1 (ζ (a) + ζ (b))

= t

√
eζ(a)+ζ(b) − 1

eζ(a)+ζ(b) + 1

= t

√√√√√e
ln

(t2+a2)(t2+a2)
(t2−a2)(t2−b2) − 1

e
ln

(t2+a2)(t2+b2)
(t2−a2)(t2−b2) + 1

= t

√√√√ (t2+a2)(t2+b2)
(t2−a2)(t2−b2) − 1

(t2+a2)(t2+b2)
(t2−a2)(t2−b2) + 1

= t2
√

a2 + b2

t4 + a2b2
.

In Theorem 2, if t = 1, then the T EN and T EC will reduce
to t-norm Tε and t-conorm Sε under the Pythagorean fuzzy
environment

Tε (a, b) =
ab√

1 + (1− a2) (1− b2)
, Sε (a, b) =

√
a2 + b2

1 + a2b2
.

• Let generator of the linguistic Pythagorean Hamacher
TN T HN be ξ (a) = ln

(
γt2+(1−γ)a2

a2

)
, where ξ−1 (a) =

√
γt√

ea+γ−1
and the generator of the linguistic Pythagorean

Hamacher TC T HC be ζ (a) = ln
γt2+(1−γ)(t2−a2)

t2−a2 , where

ζ−1 (a) = t
√

ea−1
ea+γ−1 , where γ > 0.

According to the generators of the T HN and T HC , similar to
proof of Theorem 2, we have
Theorem 3: For any a, b ∈ [0, t], the the T HN and T HC can be
described by Eq. (5) and Eq. (6).

In Theorem 3, if t = 1, then T HN and T HC will reduce to t-
norm TH (x, y) and t-conorm SH (a, b) under the Pythagore-
an fuzzy environment

TH (a, b) =

√
γab√

(γ − 1) a2b2 + (γ − (1− γ) a2) (γ − (1− γ) b2)

SH (a, b) =

√
(a2 + b2) + (γ − 2) a2b2

1 + (γ − 1) a2b2
.

If γ = 1 in Theorem 3, T HN and T HC will be reduced to T AN
and T AC , respectively. If γ = 2 in Theorem 3, T HN and T HC
will reduce to T EN and T EC , respectively.
• Let generator of the linguistic Pythagorean Frank

TN T FN be ξ (a) = ln

(
γ−1

γ
a2

t2 −1

)
, where ξ−1 (a) =

t

√
logγ

(
ea+(γ−1)

ea

)
and the generator of the linguistic

Pythagorean Frank t-conorm T FC be ζ (a) = ln

(
γ−1

γ
1− a2

t2 −1

)
,

where ζ−1 (a) = t

√
logγ

(
γea

ea+γ−1

)
, where γ > 1.

According to the generators of T FN and T FC , similar to
proof of Theorem 2, we have
Theorem 4: For any a, b ∈ [0, t], the T FN and T FC can be
described by

T FN (a, b) = t

√√√√
logγ

(γ − 1) +
(
γ
a2

t2 − 1
)(

γ
b2

t2 − 1
)

γ − 1
,

T FC (a, b) = t

√√√√logγ
γ (γ − 1)

(γ − 1) +
(
γ1− a2

t2 − 1
)(

γ1− b2
t2 − 1

) .

In Theorem 4, if t = 1, then the T FN and T FC will reduce to
t-norm TF,ϕ and t-conorm SF,ϕ under the Pythagorean fuzzy
environment

TF,ϕ (a, b) =

√
logγ

(γ − 1) +
(
γa2 − 1

) (
γb2 − 1

)
γ − 1

,

SF,ϕ (a, b) =

√
logγ

γ (γ − 1)

(γ − 1) +
(
γ1−a2 − 1

) (
γ1−b2 − 1

) .
• Let generator of the linguistic Pythagorean Dombi TN
T DN be ξ (a) =

(
t2

a2 − 1
)γ

, where ξ−1 (a) = t√
1+xa

1
γ

and

the generator of the linguistic Pythagorean Dombi TC T DC
be ζ (a) =

(
t2

a2 − 1
)−γ

, where ξ−1 (a) = t√
1+a

− 1
γ

, where

γ ≥ 1.
According to the generators of T DN and T DC , similar to

proof of Theorem 2, we have
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T HN (a, b) =

√
γtab√

(γ − 1) a2b2 + (γt2 − (1− γ) a2) (γt2 − (1− γ) a2)

T HC (a, b) = t

√
t2 (a2 + b2) + (γ − 2) a2b2

t4 + (γ − 1) a2b2
.

Theorem 5: For any a, b ∈ [0, t], the T DN and T DC can be
described by

T DN (a, b) =
t√

1 +
((

t2

a2 − 1
)γ

+
(
t2

b2 − 1
)γ) 1

γ

,

T DC (a, b) =
t√

1 +
((

t2

a2 − 1
)−γ

+
(
t2

b2 − 1
)−γ)− 1

γ

.

In Theorem 5, if t = 1, then the T DN and T DC will reduce to
t-norm TD,γ and t-conorm SD,γ under the Pythagorean fuzzy
environment

TD,γ (a, b) =
1√

1 +
((

1
a2 − 1

)γ
+
(

1
b2 − 1

)γ) 1
γ

,

SD,γ (a, b) =
1√

1 +
((

1
a2 − 1

)−γ
+
(

1
b2 − 1

)−γ)− 1
γ

.

In the following section, if there is no specific, T and S
are above mentioned five types LPTNs and LPTCs, ξ and ζ
are the above mentioned generators of LPTNs and LPTCs,
respectively.

V. LINGUISTIC PYTHAGOREAN FUZZY AVERAGING
OPERATORS BASED ON LPTNS AND LPTCS
In this part, we will give the unified form of some linguistic
Pythagorean aggregation operators based the LPTNs and
LPTCs introduced in Section 4. Before the unified form
given, the operational law should be given firstly.

A. OPERATIONAL LAWS BASED ON LPTNS AND LPTCS
Definition 8: Let A = (su1

, sv1) and B = (su1
, sv1) be two

LPFNs, the operational laws of LPFN based on LPTN T and
LPTC S are defined as follows:

(1) A⊕B =
(
sS(u1,u2), sT (v1,v2)

)
=
(
sζ−1(ζ(u1)+ζ(u2)), sξ−1(ξ(v1)+ξ(v2))

)
;

(2) A⊗B =
(
sT (u1,u2), sS(v1,v2)

)
=
(
sξ−1(ξ(u1)+ξ(u2)), sζ−1(ζ(v1)+ζ(v2))

)
;

(3) λA =
(
sζ−1(Ψζ(u1)), sξ−1(λξ(v1))

)
;

(4) Aλ =
(
sξ−1(λξ(u1)), sζ−1(λζ(v1))

)
.

According to above definition, we have the following
operational law hold.

Theorem 6: Let A,B,C be three LPFNs, a, b, c ∈ R and
a, b, c > 0, then we have

(1) A⊕B = B ⊕A;

(2) (A⊕B)⊕ C = A⊕ (B ⊕ C) ;

(3) aA⊕ bA = (a+ b)A;

(4) c (aA⊕ bB) = acA⊕ bcB;

(5) a (bA) = (ab)A;

(6) A⊗B = B ⊗A;

(7) (A⊗B)⊗ C = A⊗ (B ⊗ C) .

Theorem 7: Let A = (su1 , sv1) and B = (su2 , sv2) be two
LPFNs, then for any λ > 0, A ⊕ B, A ⊗ B, ΨA, Aλ are all
LPFNs.

Proof. For convenience, the LMD and LNMD of A ⊗ B,
λA, Aλ are denoted as su, sv , respectively. In order to prove
A ⊗ B, λA, Aλ are LPFNs, the following two aspects must
be proven:

(1) s0 ≤ su, sv ≤ st;
(2) 0 ≤ u2 + v2 ≤ t2.
Now, firstly, we prove A ⊕ B satisfies the above t-

wo conditions. Assume that A ⊕ B = (su, sv) =(
sS(u1,u2), sT (v1,v2)

)
=
(
sζ−1(ζ(u1)+ζ(u2)), sξ−1(ξ(v1)+ξ(v2))

)
.

As A = (su1 , sv1) and B = (su2 , sv2) are LPFNs,
it follows that s0 ≤ su1 , su2 ≤ st. Since ζ (x) , ζ−1 (x)
are monotonically increasing function, u = S (u1, u2) =
ζ−1 (ζ (u1) + ζ (u2)) and u1, u2 ∈ [0, t], it follows that
ζ (u1) , ζ (u2) ∈ R+ and ζ−1 (ζ (u1) + ζ (u2)) ∈ [0, t], that
is, s0 ≤ su ≤ st. Similarly, we can prove s0 ≤ sv ≤ st.
Therefore, su, sv satisfy condition (1).

Because A = (su1
, sv1) and B = (su2

, sv2) are LPFNs,
so we have 0 ≤ u2

1 + v2
1 ≤ t2, 0 ≤ u2

2 + v2
2 ≤ t2. According

the definitions, we have

u2 + v2 = (S (u1, u2))
2

+ (T (v1, v2))
2

=
(
ζ−1 (ζ (u1) + ζ (u2))

)2
+
(
ξ−1 (ξ (v1) + ξ (v2))

)2
Because ζ (a) = ξ

(√
t2 − a2

)
, and so

(
ζ−1 (a)

)2
= t2 −(

ξ−1 (a)
)2

, thus

u2 =
(
ζ−1 (ζ (u1) + ζ (u2))

)2
= t2 −

(
ξ−1 (ζ (u1) + ζ (u2))

)2
= t2 −

(
ξ−1

(
ξ

(√
t2 − u2

1

)
+ ξ

(√
t2 − u2

2

)))2

As u2
1 + v2

1 ≤ t2, u2
2 + v2

2 ≤ t2, so v1 ≤√
t2 − u2

1, v2 ≤
√
t2 − u2

2. Because ξ (x) and ξ−1 (x) are
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monotonically decreasing functions, so we have ξ (v1) ≥
ξ
(√

t2 − u2
1

)
, ξ (v2) ≥ ξ

(√
t2 − u2

2

)
. Therefore,

ξ (v1) + ξ (v2) ≥ ξ
(√

t2 − u2
1

)
+ ξ

(√
t2 − u2

2

)
.

Furthermore,

ξ−1 (ξ (v1) + ξ (v2)) ≤

ξ−1

(
ξ

(√
t2 − u2

1

)
+ ξ

(√
t2 − u2

2

))
.

and (
ξ−1 (ξ (v1) + ξ (v2))

)2 ≤(
ξ−1

(
ξ

(√
t2 − u2

1

)
+ ξ

(√
t2 − u2

2

)))2

.

That is,

v2 ≤
(
ξ−1

(
ξ

(√
t2 − u2

1

)
+ ξ

(√
t2 − u2

2

)))2

= t2 − u2.

Therefore, u2 +v2 ≤ t2. That is,A⊕B is a LPFN. Similarly,
we can prove A ⊗ B, λA,Aλ are LPFNs, so the details are
omitted.

B. LINGUISTIC PYTHAGOREAN FUZZY AVERAGING
OPERATORS BASED ON LPTNS AND LPTCS
In this subpart, the Linguistic Pythagorean fuzzy averaging
operators based on LPTNs and LPTCs will be given.
Definition 9: Let A = {Ai = (sui , svi) |i = 1, 2, · · · , n} be
a collection of LPFNs and ωi be the weight of Ai with
wi > 0 (i = 1, 2, · · · , n) and

∑n
i=1 ωi = 1. The linguistic

Pythagorean fuzzy weighted averaging operator (LPFWA) is
defined as follows:

LPFWA (A1, A2, · · · , An) = ω1A1 ⊕ ω2A2 ⊕ · · · ⊕ ωnAn.

Theorem 8: Let A = {Ai = (sui , svi) |i = 1, 2, · · · , n} be a
collection of LPFNs and ωi be the weight of Ai with wi > 0
(i = 1, 2, · · · , n) and

∑n
i=1 ωi = 1. Then

LPFWA (A1, A2, · · · , An)

=
(
sζ−1(

∑n
i=1(ωiζ(ui))), sξ−1(

∑n
i=1(ωiξ(vi)))

)
. (5)

Proof. Theorem 8 can be proved by the mathematical
induction method.

(1) When n = 1, Theorem 8 is held.
(2) Assume that theorem 8 is held when n = k, that is,

LPFWA (A1, A2, · · · , Ak) =(
sζ−1(

∑k
i=1(ωiζ(ui))), sξ−1(

∑k
i=1(ωiξ(vi)))

)
.

Then, when n = k + 1, it follows from induction hypothesis
that

LPFWA (A1, A2, · · · , Ak+1)

=
(
sζ−1(

∑k
i=1(ωiζ(ui))), sξ−1(

∑k
i=1(ωiξ(vi)))

)
⊕
(
sζ−1(ωk+1ζ(uk+1)), sξ−1(ωk+1ξ(vk+1))

)
=
(
sζ−1(ζ(ζ−1(

∑k
i=1(ωiζ(ui))))+ζ(ζ−1(ωk+1ζ(uk+1)))),

sξ−1(ξ(ξ−1(
∑k
i=1(ωiξ(vi))))+ξ(ξ−1(ωk+1ξ(vk+1))))

=
(
sζ−1(

∑k+1
i=1 (ωiζ(ui))), sξ−1(

∑k+1
i=1 (ωiξ(vi)))

)
.

Thus, theorem 8 holds for all positive integer n.
Theorem 9: Let A = {Ai = (sui , svi) |i = 1, 2, · · · , n}
be a collection of LPFNs and ωi be the weight of Ai with
wi > 0 (i = 1, 2, · · · , n) and

∑n
i=1 ωi = 1. The the

following properties hold:
(1)(Idempotency) If Ai = A = (su, sv) for i =

1, 2, · · · , n, then

LPFWA (A1, A2, · · · , An) = A = (su, sv) .

(2) (Monotonicity) Let B = {Bi =
(
su′i

, sv′i

)
|i =

1, 2, · · · , n} be another collection of LPFNs such that sui ≤
su′i

and svi ≥ sv′i for all i, then

LPFWA (A1, A2, · · · , An) ≤ LPFWA (B1, B2, · · · , Bn) .

(3)(Boudedness)

(mini (sui) ,maxi (svi)) ≤ LPFWA (A1, A2, · · · , An)

≤ (maxi (sui) ,mini (svi)) .

Proof. (1) If Ai = A = (su, sv) for i = 1, 2, · · · , n, then

LPFWA (A1, A2, · · · , An)

=
(
sζ−1(

∑n
i=1(ωiζ(ui))), sξ−1(

∑n
i=1(ωiξ(vi)))

)
=

(
sζ−1(

∑n
i=1(ωiζ(u))), sξ−1(

∑n
i=1(ωiξ(v)))

)
=

(
sζ−1(ζ(u)), sξ−1(ξ(v))

)
=

(
sζ−1(ζ(u)), sξ−1(ξ(v))

)
= (su, sv) .

(2) since sui ≤ su′i
and svi ≥ sv′i

, it follows that
ui ≤ u

′

i and vi ≥ v
′

i. Because ζ (x) and ζ−1 (x) are
monotonicity increasing function, we have ζ (ui) ≤ ζ

(
u
′

i

)
,

furthermore,
∑n
i (ωiζ (ui)) ≤

∑n
i

(
ωiζ

(
u
′

i

))
. And so

ζ−1 (
∑n
i (ωiζ (ui))) ≤ ζ−1

(∑n
i

(
ωiζ

(
u
′

i

)))
.

Since ξ (x) and ξ−1 (x) are monotonicity decreas-
ing function, we have ξ (vi) ≥ ξ

(
v
′

i

)
, further-

more,
∑n
i (ωiξ (vi)) ≥

∑n
i

(
ωiξ

(
v
′

i

))
. And so

ξ−1 (
∑n
i (ωiξ (vi))) ≤ ξ−1

(∑n
i

(
ωiξ

(
v
′

i

)))
. Therefore,(

sζ−1(
∑n
i (ωiζ(ui))), sξ−1(

∑n
i (ωiξ(vi)))

)
≤
(
sζ−1(

∑n
i (ωiζ(u′i)))

, sξ−1(
∑n
i (ωiξ(v′i)))

)
,
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that is,

LPFWA (A1, A2, · · · , An) ≤ LPFWA (B1, B2, · · · , Bn) .

(3)This property is obvious from idempotency and mono-
tonicity, so the detail of the proof is omitted.

C. GENERALIZED LINGUISTIC PYTHAGOREAN FUZZY
AVERAGING OPERATORS BASED ON LPTNS AND
LPTCS
In this subpart, we will introduce the generalized linguistic
Pythagorean fuzzy weighted averaging operators (GLPFWA)
based on the LPTNs and LPTCs.
Definition 10: Let A = {Ai = (sui , svi) |i = 1, 2, · · · , n}
be a collection of LPFNs and ωi be the weight of Ai with
wi > 0 (i = 1, 2, · · · , n) and

∑n
i=1 ωi = 1. The GLPFWA

is defined as follows:

GLPFWA (A1, A2, · · · , An)

=
(
ω1A

λ
1 ⊕ ω2A

λ
2 ⊕ · · · ⊕ ωnAλn

) 1
λ . (6)

where λ > 0.
Theorem 10: Let A = {Ai = (sui , svi) |i = 1, 2, · · · , n}
be a collection of LPFNs and ωi be the weight of Ai with
wi > 0 (i = 1, 2, · · · , n) and

∑n
i=1 ωi = 1. Then

GLPFWA (A1, A2, · · · , An) = (su, sv) ,

where

u = ξ−1

(
1

λ
ξ

(
ζ−1

(
n∑
i=1

(
ωiζ

(
ξ−1 (λξ (ui))

)))))
,

v = ζ−1

(
1

λ
ζ

(
ξ−1

(
n∑
i=1

(
ωiξ

(
ζ−1 (λζ (vi))

)))))
.

Proof. Since Aλi =
(
sξ−1(λξ(ui)), sζ−1(λζ(vi))

)
, it follows

from Theorem 8 that

ω1A
λ
1 ⊕ ω2A

λ
2 ⊕ · · · ⊕ ωnAλn = (su, sv) ,

where

u = ζ−1

(
n∑
i=1

(
ωiζ

(
ξ−1 (λξ (ui))

)))
,

v = ξ−1

(
n∑
i=1

(
ωiξ

(
ζ−1 (λζ (vi))

)))
.

Therefore,(
ω1A

λ
1 ⊕ ω2A

λ
2 ⊕ · · · ⊕ ωnAλn

) 1
λ = (su, sv) ,

where

u = ξ−1

(
1

λ
ξ

(
ζ−1

(
n∑
i=1

(
ωiζ

(
ξ−1 (λξ (ui))

)))))
,

v = ζ−1

(
1

λ
ζ

(
ξ−1

(
n∑
i=1

(
ωiξ

(
ζ−1 (λζ (vi))

)))))
That is,

GLPFWA (A1, A2, · · · , An) = (su, sv) ,

where

u = ξ−1

(
1

λ
ξ

(
ζ−1

(
n∑
i=1

(
ωiζ

(
ξ−1 (λξ (ui))

)))))
,

v = ζ−1

(
1

λ
ζ

(
ξ−1

(
n∑
i=1

(
ωiξ

(
ζ−1 (λζ (vi))

)))))

Similarly, we give some properties of GLPFWA, the de-
tails of the proofs of these properties are omitted.
Theorem 11: Let A = {Ai = (sui , svi) |i = 1, 2, · · · , n}
be a collection of LPFNs and ωi be the weight of Ai with
wi > 0 (i = 1, 2, · · · , n) and

∑n
i=1 ωi = 1. The the

following properties hold:
(1) (Idempotency) If Ai = A = (su, sv) for i =

1, 2, · · · , n, then

GLPFWA (A1, A2, · · · , An) = A = (su, sv) .

(2) (Monotonicity) Let B = {Bi =
(
su′i

, sv′i

)
|i =

1, 2, · · · , n} be another collection of LPFNs such that sui ≤
su′i

and svi ≥ sv′i for all i, then

GLPFWA (A1, A2, · · · , An) ≤ GLPFWA (B1, B2, · · · , Bn) .

(3)(Boudedness)

(mini (sui) ,maxi (svi)) ≤ GLPFWA (A1, A2, · · · , An)

≤ (maxi (sui) ,mini (svi)) .

D. ANALYSES OF GLPFWA
In this subpart, we consider different types of GLPFWA by
considering parameter λ and different types of LPTNs and
LPTCs.

1) Analyzes of Parameter λ
•When λ = 1, GLPFWA will reduce to the following:

LPFWA (A1, A2, · · · , An)

=
(
sζ−1(

∑n
i=1(ωiζ(ui))), sξ−1(

∑n
i=1(ωiξ(vi)))

)
,

which is called linguistic Pythagorean fuzzy weighted aver-
aging (LPFWA) operator based on LPTNs and LPTCs. In this
situation, if w =

(
1
n ,

1
n , · · · ,

1
n

)
, then LPFWA operator will

reduce to the following:

LPFA (A1, A2, · · · , An)

=
(
sζ−1( 1

n

∑n
i=1 ζ(ui))

, sξ−1( 1
n

∑n
i=1 ξ(vi))

)
,

which is called linguistic Pythagorean fuzzy averaging (LP-
FA) operator.
• When λ = 2, GLPFWA will reduce to linguis-

tic Pythagorean fuzzy quadratic averaging aggregation
(LPFQWA) operator

LPFWA (A1, A2, · · · , An) = (su, sv) .
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where

u = ξ−1

(
1

2
ξ

(
ζ−1

(
n∑
i=1

(
ωiζ

(
ξ−1 (2ξ (ui))

)))))
,

v = ζ−1

(
1

2
ζ

(
ξ−1

(
n∑
i=1

(
ωiξ

(
ζ−1 (2ζ (vi))

)))))
.

•When λ→ 0, GLPFWA will reduce to the following:

LPFWG (A1, A2, · · · , An)

=
(
sξ−1(

∑n
i=1(ωiξ(ui))), sζ−1(

∑n
i=1(ωiζ(vi)))

)
,

which is called linguistic Pythagorean fuzzy weighted geo-
metric (LPFWG)operator based on LPTNs and LPTCs. In
Eq.(22), if w =

(
1
n ,

1
n , · · · ,

1
n

)
based on LPTNs and LPTCs,

then LPFWG operator will reduce to the following:

LPFG (A1, A2, · · · , An)

=
(
sξ−1( 1

n

∑n
i=1 ξ(ui))

, sζ−1( 1
n

∑n
i=1 ζ(vi))

)
,

which is called linguistic Pythagorean fuzzy geometric
(LPFG) operator.

2) Analyzes of PLFWA operators based on different LPTNs
and LPTCs
We will obtain some different aggregation operators by dif-
ferent LPTNs and extended LPTCs given in Section 3.

Case I: When T = T AN and S = T AC , that is, ξ (a) =

−ln
(
a
t

)2
and ζ (a) = −ln t

2−a2
t2 , then the GLPFWA will be

generalized linguistic Pythagorean fuzzy weighted averaging
aggregation (GLPFWA) operator:

GLPFWA (A1, A2, · · · , An) = (su, sv) . (7)

where

u = t

√√√√√(1−
n∏
i=1

(
1−

(
u2
i

t2

)λ)ωi) 1
λ

,

v = t

√√√√√1−

(
1−

n∏
i=1

(
1−

(
1− v2

i

t2

)λ)ωi) 1
λ

.

In this case, if λ = 1, the GLPFWA will be linguistic
Pythagorean fuzzy weighted averaging aggregation operator
[40]

LPFWA (A1, A2, · · · , An)

=

s√
t2−t2

∏n
i=1

(
t2−u2

i
t2

)ωi , st∏n
i=1(

vi
t )

ωi

 .

when λ→ 0, the GLPFWA will be linguistic Pythagorean
fuzzy weighted geometric (LPFGA) operator [40]

LPFGA (A1, A2, · · · , An)

=

st∏n
i=1(

vi
t )

ωi , s√
t2−t2

∏n
i=1

(
t2−u2

i
t2

)ωi
 .

Case II: When T = T EN and S = T EC , that is, ξ (a) =

ln
(

2t2−a2
a2

)
and ζ (a) = ln t

2+a2

t2−a2 , the GLPFWA will be
generalized linguistic Pythagorean fuzzy Einstein averaging
aggregation (GELPFEWA) operator

GLPFEWA (A1, A2, · · · , An)

=

s √
2t√

1+( a+3b
a−b )

1
λ

, s
t

√
(c+3d)

1
λ −(c−d)

1
λ

(c+3d)
1
λ +(c−d)

1
λ

 , (8)

where

a =

n∏
i=1

((
2t2 − u2

i

)λ
+ 3

(
u2
i

)λ)ωi
,

b =

n∏
i=1

((
2t2 − u2

i

)λ − (u2
i

)λ)ωi
,

c =

n∏
i=1

((
t2 + v2

i

)λ
+ 3

(
t2 − v2

i

)λ)ωi
,

d =

n∏
i=1

((
t2 + v2

i

)λ − (t2 − v2
i

)λ)ωi
.

In this case, when λ = 1, the GLPFWA will be linguistic
Pythagorean fuzzy Einstein weighted averaging (PLFEWA)
operator

LPFEWA (A1, A2, · · · , An) = (su, sv) .

where

u = t

√∏n
i=1 (t2 + u2

i )
ωi −

∏n
i=1 (t2 − u2

i )
ωi∏n

i=1 (t2 + u2
i )
ωi +

∏n
i=1 (t2 − u2

i )
ωi ,

v =

√
2t
∏n
i=1 v

ωi
i√∏n

i=1 (v2
i )
ωi +

∏n
i=1 (2t2 − v2

i )
ωi
.

When λ→ 0, the GLPFWA will be linguistic Pythagorean
fuzzy Einstein weighted geometric (LPFEWG) operator

LPFEWG (A1, A2, · · · , An) = (su, sv) (9)

where

u =

√
2t
∏n
i=1 v

ωi
i√∏n

i=1 (v2
i )
ωi +

∏n
i=1 (2t2 − v2

i )
ωi
,

v = t

√∏n
i=1 (t2 + u2

i )
ωi −

∏n
i=1 (t2 − u2

i )
ωi∏n

i=1 (t2 + u2
i )
ωi +

∏n
i=1 (t2 − u2

i )
ωi .

Case III: When T = T HN and S = T HC , that is, ξ (a) =

ln
(
γt2+(1−γ)a2

x2

)
and ζ (a) = ln

γt2+(1−γ)(t2−a2)
t2−a2 , the

GLPFWA operator will be generalized linguistic Pythagore-
an fuzzy Hamacher averaging aggregation operator (GLPFH-
WA)

GLPFHWA (A1, A2, · · · , An) = (su, sv), (10)
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where

u = t

√
γ (a− b)

1
λ√

(a− b)
1
λ + (a+ (γ2 − 1) b)

1
λ

,

v = t

√√√√ (c+ (γ2 − 1) d)
1
λ − (c− d)

1
λ

(c+ (γ2 − 1) d)
1
λ − (γ − 1) (c− d)

1
λ

and

a =

n∏
i=1

((
γt2 + (1− γ)u2

i

)Ψ
+
(
γ2 − 1

) (
u2
i

)λ)ωi
,

b =

n∏
i=1

((
γt2 + (1− γ)u2

i

)λ − (u2
i

)λ)ωi
,

c =

n∏
i=1

((
t2 + (γ − 1) v2

i

)λ
+
(
γ2 − 1

) (
t2 − v2

i

)λ)ωi
,

d =

n∏
i=1

((
t2 + (γ − 1) v2

i

)λ − (t2 − v2
i

)λ)ωi
.

In this case, when λ = 1, the GLPFHWA will be linguistic
Pythagorean fuzzy Hamacher weighted averaging (LPFH-
WA) operator

LPFHWA (A1, A2, · · · , An) = (su, sv) , (11)

where

u = t

√√√√√ ∏n
i=1

(
γt2 + (1 − γ)

(
t2 − u2

i

))ωi − ∏n
i=1

(
t2 − u2

i

)ωi∏n
i=1

(
γt2 + (1 − γ)

(
t2 − u2

i

))ωi + (γ − 1)
∏n
i=1

(
t2 − u2

i

)ωi
v =

√
γt
∏n
i=1 v

ωi
i√∏n

i=1

(
v2
i

)ωi +
∏n
i=1

(
γt2 + (1 − γ) v2

i

)ωi .

when λ→ 0, the GLPFHWA will be linguistic Pythagore-
an fuzzy Hamacher weighted geometric (LPFHWG) operator

LPFHWG (A1, A2, · · · , An) = (su, sv) , (12)

where

u =

√
γt
∏n
i=1 v

ωi
i√∏n

i=1

(
v2
i

)ωi +
∏n
i=1

(
γt2 + (1 − γ) v2

i

)ωi ,

v = t

√√√√√ ∏n
i=1

(
γt2 + (1 − γ)

(
t2 − u2

i

))ωi − ∏n
i=1

(
t2 − u2

i

)ωi∏n
i=1

(
γt2 + (1 − γ)

(
t2 − u2

i

))ωi + (γ − 1)
∏n
i=1

(
t2 − u2

i

)ωi .

Case IV: When T = T FN and S = T FC , that is,

ξ (a) = ln

(
γ−1

γ
a2

t2 −1

)
and ζ (a) = ln

(
γ−1

γ
1− a2

t2 −1

)
, the

GLPFWA will be generalized linguistic Pythagorean fuzzy
Frank averaging aggregation (GLPFFWA) operator

GLPFFWA (A1, A2, · · · , An) = (su, sv) (13)

where

u = t

√√√√√√√logγ
1 + (γ − 1)

 ∏n
i=1

aωi − 1∏n
i=1

aωi + (γ − 1)

 1
λ

,

v = t

√√√√√√√logγ γ
(∏n
i=1

bωi + (γ − 1)
) 1
λ(∏n

i=1
bωi + (γ − 1)

) 1
λ + (γ − 1)

(∏n
i=1

bωi − 1
) 1
λ

.

and

a =

(γ − 1)
λ

+ (γ − 1)

(
γ
u2i
t2 − 1

)λ
(γ − 1)

λ −
(
γ
u2
i
t2 − 1

)λ ,

b =

(γ − 1)
λ

+ (γ − 1)

(
γ1−u

2
i
t2 − 1

)λ
(γ − 1)

λ −
(
γ1−

u2
i
t2 − 1

)λ .

In this case, when λ = 1, the GLPFFWA will be linguistic
Pythagorean fuzzy Frank weighted averaging (LPFFWA)
operator

LPFFWA (A1, A2, · · · , An) = (su, sv) , (14)

where

u = t

√√√√1− logγ

(
1 +

n∏
i=1

(
γ1−

u2
i
t2 − 1

)ωi)
,

v = t

√√√√logγ

(
1 +

n∏
i=1

(
γ
v2
i
t2 − 1

)ωi)
.

when λ→ 0, the GLPFFWA will be linguistic Pythagore-
an fuzzy Frank weighted geometric (LPFFWG) operator

LPFFWG (A1, A2, · · · , An) = (su, sv) , (15)

where

u = t

√√√√logγ

(
1 +

n∏
i=1

(
γ
v2
i
t2 − 1

))ωi
,

v = t

√√√√1− logγ

(
1 +

n∏
i=1

(
γ1−

u2
i
t2 − 1

))ωi
.

Here, we can prove that when γ → 1, LPFFWA will re-
duce to the linguistic Pythagorean fuzzy weighted averaging
aggregation operator [40]

LPFWA (A1, A2, · · · , An) = (su, sv) . (16)

where

u =

√√√√t2 − t2
n∏
i=1

(
t2 − u2

i

t2

)ωi
, v = t

n∏
i=1

(vi
t

)ωi
.

Case V: When T = T DN and S = T DC , that is, ξ (a) =(
t2

a2 − 1
) 1
γ

and ζ (a) =
(
t2

a2 − 1
)−γ

, the GLPFWA will be
generalized linguistic Pythagorean fuzzy Dombi averaging
aggregation (GLPFDWA) operator

GLPFDWA (A1, A2, · · · , An) = (su, sv) , (17)
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where

u = t

√√√√
1 +

(
n∑
i=1

wi

(
t2

u2
i

− 1

)−γ)− 1
γ

,

v = t

√√√√
1 +

(
n∑
i=1

wi

(
t2

u2
i

− 1

)γ) 1
γ

.

Remark 5. GLPFWA provides a parameterized family for
linguistic Pythagorean fuzzy aggregation operators. Accord-
ing to different LPTNs, LPTCs and parameter Ψ, we can
obtain a wide range of linguistic Pythagorean fuzzy aggre-
gation operators, such as GLPFWA, GLPFEWA, GLPFH-
WA, GLPFFWA, GLPFDWA. The main advantage of these
operators is that it includes a wide range of specific cases
that enables us to consider many different decision making
situations and select the one that best fits with our interests.

VI. APPROACH FOR LINGUISTIC PYTHAGOREAN
MAGDM

In this part, we will give a approach for linguistic Pythagore-
an MAGDM (LPMAGDM) with unknown expert weights
and attribute weights. To do so, the linguistic Pythagore-
an cross-entropy is first introduced and the approach for
fixing the expert weights based on the proposed linguistic
Pythagorean cross-entropy is built; Secondly, and also the
method for calculating the attribute weight based on the
proposed distance measures in Section 3; Finally, the the
LPMAGDM method is also established.

A. FORMAL REPRESENTATION OF LINGUISTIC
PYTHAGOREAN MAGDM

Generally speaking, MAGDM is always used to find the best
one from a finite set of alternatives w. r. t. predefined at-
tributes. LPMAGDM method aims at handling the MAGDM
problems with LPFI, especially the MAGDM problems are
related to subjective information and attitudinal character-
istics of decision makers. A LPMAGDM problem can be
formally described as follows:

(1) Ξ = {Ψ1,Ψ2, · · · ,Ψm} a collection ofm alternatives;

(2) A = {a1, a2, · · · , an} a collection of n attributes
whose weight vector is w = (w1, · · · , wn) with wi > 0 and∑n
i=1 wi = 1;

(3)E = (e1, e2, · · · , eq) a collection of q experts w =
(λ1, · · · , λq) with λi > 0 and

∑q
i=1 λi = 1;

(4)The kth decision maker provides the attribute values
of alternative Ψi ∈ Ξ (i = 1, 2, · · · ,m) w. r. t. attribute
aj (j = 1, 2, · · · , n) and construct the linguistic Pythagorean

fuzzy decision making matric

R(k) =
(
α

(k)
ij

)
m×n

=



(
s

(k)
u11 , s

(k)
v11

) (
s

(k)
u12 , s

(k)
v12

)
· · ·

(
s

(k)
u1n , s

(k)
v1n

)(
s

(k)
u21 , s

(k)
v21

) (
s

(k)
u22 , s

(k)
v22

)
· · ·

(
s

(k)
u2n , s

(k)
v2n

)
...

...
...

...(
s

(k)
um1 , s

(k)
vm1

) (
s

(k)
um2 , s

(k)
vm2

)
· · ·

(
s

(k)
umn , s

(k)
vmn

)


where suij , svij ∈ S̄ is a LPFN, suij is the LMD in

which alternative Ψi should satisfy the attribute aj , svij is the
LNMD in which alternative Ψi should not satisfy the attribute
aj , and s0 ≤ suij , svij ≤ st, 0 ≤ u2

ij + v2
ij ≤ t2.

B. DETERMINATION OF EXPERTS’ WEIGHTS BASED
ON LINGUISTIC PYTHAGOREAN CROSS-ENTROPY
There is such a decision problems in which the information
about attribute weights is incompletely known or complete-
ly unknown due to time pressure, lack of knowledge and
the expert’s limited expertise about the problem domain.
Therefore, it is necessary to investigate this issue. There
are some approaches [50]–[53], [53], [53]–[55] for MADM
(MAGDM) problems with the experts or (and) attributes
weights are incompletely known or completely unknown.

To establish the approach for dealing with LPMAGDM
problem with unknown experts’ weights, so it is necessary
to determine the experts’ weights before introducing the
process of LPMAGDM. To derive the experts’ weights, we
first define the concept linguistic Pythagorean cross entropy.
In real decision problem, the hesitation degree of information
should be considered for supporting membership and non-
menbership functions. So DM’s preference supports should
be considered when giving the definition of cross entropy.
Definition 11: Let A = {(sui , svi) |i = 1, 2, · · · , n} and
B = {

(
su′i

, sv′i

)
|i = 1, 2, · · · , n} be two sets of lin-

guistic Pythagorean numbers with sui , svi , su′i , sv
′
i
∈ S̄ =

{sα|s0 ≤ sα ≤ st|α ∈ [0, t]}. The linguistic Pythagorean
cross entropy EC (A,B) of A and B is defined as

where sπi = s√
t2−u2

i−v2i
, sπ′i

= s√
t2−(u′i)

2−(v′i)
2 are

the linguistic indeterminacy degree and q > 0.
It follows easily from Shannon inequality that the follow-

ing properties hold.
(1) EC (A,B) ≥ 0;
(2) EC (A,B) = 0⇔ A = B and
(3) EC (A,B) = EC (B,A).
The proposed linguistic Pythagorean cross-entropy is a

useful tool to measure the degree of discrimination of indi-
vidual decision matrices (IDMs) from positive or negative
ideal decision matrix. Qi [56] devise relative discrimination
measure to represent the credibility of an IDM under IVIF
environment. With the help of this thought, we establish
a new model based on the linguistic Pythagorean cross-
entropy for fixing the experts weights if the experts weights
information are unknown completely.
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EC (A,B) = 1

2t2

n∑
i=1

{[(
t2 + qu2

i

)
ln

(
t2 + qu2

i

t2

)
+

(
t2 + q

(
u
′
i

)2)
ln

 t2 + q
(
u
′
i

)2
t2


-
(
2t2 + q

(
u2
i +

(
u
′
i

)2))
ln

(
2t2+q

(
u2
i+
(
u
′
i

)2)
2t2

)]
+
[(
t2 + qv2i

)
ln
(
t2+qv2i
t2

)
+

(
t2 + q

(
v
′
i

)2)
ln

(
t2+q

(
v
′
i

)2
t2

)
−
(
2t2 + q

(
v2i +

(
v
′
i

)2))
ln

(
2t2+q

(
v2i+

(
v
′
i

)2)
2t2

)]
+
[(
t2 + qπ2

i

)
ln
(
t2+qπ2

i
t2

)
+

(
t2 + q

(
π
′
i

)2)
ln

(
t2+q

(
π
′
i

)2
t2

)
−
(
2t2 + q

(
π2
i +

(
π
′
i

)2))
ln

(
2t2+q

(
π2
i+
(
π
′
i

)2)
2t2

)]}
.

Assume that (λ1, λ2, · · · , λq) = (λk)1×q is the expert
weights vector. It follows from the comparison of two LPFNs
that (st, s0) and (s0, st) are the largest and the smallest
LPFN, respectively. Therefore, we can define the positive
decision matrix

(
α+
ij

)
= (st, s0)n×m and negative decision

matrix
(
α−ij
)

= (s0, st)n×m. According to Qi [56], a certain
LPFN has more reliability when it has a larger discrimination
from

(
α+
ij

)
= (st, s0)n×m or

(
α−ij
)

= (s0, st)n×m, this
discrimination measure can be expressed

m∑
i=1

n∑
j=1

∣∣∣∣EC (α(k)
ij , α

−
ij

)
− EC

(
α

(k)
ij , α

+
ij

)∣∣∣∣
to depict the reliability of an IDM. As far as the expert
weights are concerned, if the expert gives IDM with larger
reliability, the weight should be much bigger. In order to
determine the experts weights under relative weights infor-
mation of experts is unknown completely, the optimal model
can be constructed as follows:

maxWE (λk)

=
1

mn

q∑
k=1

λk

(
m∑
i=1

n∑
j=1

∣∣∣∣EC (α(k)
ij , α

−
ij

)
− EC

(
α
(k)
ij , α

+
ij

)∣∣∣∣
)

s.t

{∑p
k=1 (λk)

2 = 1,

λk ≥ 0, k = 1, 2, · · · , q.

We can obtain expert weights λ∗k as follows by using
Lagrange multiplier method:

λ
∗
k =

1
mn

∑m
i=1

∑n
j=1

∣∣∣∣EC (
α
(k)
ij

, α
−
ij

)
− EC

(
α
(k)
ij

, α
+
ij

)∣∣∣∣√
1
mn

∑q
k=1

(∑m
i=1

∑n
j=1

∣∣∣∣EC (
α
(k)
ij

, α
−
ij

)
− EC

(
α
(k)
ij

, α
+
ij

)∣∣∣∣)
,

(k = 1, 2, · · · , q)

We can obtain the expert weights λk by normalizing
λ∗k (k = 1, 2, · · · , q)

λk =

∑m
i=1

∑n
j=1

∣∣∣∣EC (α(k)
ij , α

−
ij

)
− EC

(
α
(k)
ij , α

+
ij

)∣∣∣∣∑q
k=1

(∑m
i=1

∑n
j=1

∣∣∣∣EC (α(k)
ij , α

−
ij

)
− EC

(
α
(k)
ij , α

+
ij

)∣∣∣∣) .
(16)

C. DETERMINATION OF ATTRIBUTES’ WEIGHTS BASED
ON MAXIMIZING DEVIATIONS METHOD
MADM usually ranks and compares the comprehensive at-
tribute values of alternatives. The smaller the difference of
attribute values of all schemes under a certain attribute, the
smaller the effect of the attribute on the decision-making
ranking of alternatives; the greater the difference of attribute
values of all alternatives under a certain attribute, the greater
the effect of the attribute on the decision-making ranking
of alternatives. Therefore, from the point of view of rank-
ing alternatives, the more deviations of attribute values of
alternative , the larger the weight should be given to the
attributes. For the kth Decision maker ek and attribute aj ,
the deviation of alternative Ψi to all the other alternatives can
be represented as D(k)

ij (w):

D
(k)
ij (w) =

m∑
l=1

d
(
α
(k)
ij , α

(k)
lj

)
wj ,

where i = 1, 2, · · · ,m and j = 1, 2, · · · , n.
For the kth decision maker ek and attribute aj , the overall

deviation between all alternatives and other alternatives can
be expressed as

D
(k)
j (w) =

m∑
i=1

D
(k)
ij (w)

=
m∑
i=1

m∑
l=1

d
(
α
(k)
ij , α

(k)
lj

)
wj , (j = 1, 2, · · · , n).

Therefore, the weights of attributes can be obtained by the
following optimal model:

maxD (w) =

q∑
k=1

λk

n∑
j=1

m∑
i=1

m∑
l=1

d
(
α
(k)
ij , α

(k)
lj

)
wj .

s.t

{∑n
j=1 (wj)

2 = 1,

wj ≥ 0, j = 1, 2, · · · , n.

We can obtain attribute weights w∗j by applying Lagrange
multiplier method:

w∗
j =

∑q
k=1 λk

∑m
i=1

∑m
l=1 d

(
α
(k)
ij , α

(k)
lj

)
√∑n

j=1

(∑q
k=1 λk

∑m
i=1

∑m
l=1 d

(
α
(k)
ij , α

(k)
lj

))2 ,
( j = 1, 2, · · · , n).
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We can obtain the attribute weights by normalizing
w∗j (j = 1, 2, · · · ,m)

wj =

∑q
k=1 λk

∑m
i=1

∑m
l=1 d

(
α

(k)
ij , α

(k)
lj

)
∑n
j=1

(∑q
k=1 λk

∑m
i=1

∑m
l=1 d

(
α

(k)
ij , α

(k)
lj

)) (17)

D. AN APPROACH TO LPMAGDM WITH LPI
Based on the discussed above, an approach to LPMAGDM
under LPI with unknown expert weights and attribute weights
will be devised in this subsection and is described as follows:

Step 1. Normalizing the original DM according to the
following ways:

α̃
(k)
ij =

(
s̃(k)uij , s̃

(k)
vij

)
=

α
(k)
ij =

(
s
(k)
uij , s

(k)
vij

)
, cj is benefit type(

α
(k)
ij

)c
=
(
s
(k)
vij , s

(k)
uij

)
, cj is cost type.

(18)

The kth decision maker provides the attribute val-
ues of alternative Ψi (i = 1, 2, · · · ,m) w. r. t. attribute
aj (j = 1, 2, · · · , n) and construct the normalized decision
matrices R̃(k) =

(
α̃

(k)
ij

)
m×n

.
Step 2. Determining the experts weights according to the

Eq.(16).
Step 3. Determining the attributes weights according to the

Eq.(17).
Step 4. Aggregating individual LPF decision matrix

R̃(k) =
(
α̃

(k)
ij

)
m×n

into a collective individual LPF decision

matrix R̃(k) =
(
α̃

(k)
i

)
m×1

by Eq.(5).
Step 5. Aggregating all collective LPF decision matrix

R̃(k) =
(
α̃

(k)
i

)
m×1

into the overall LPF decision matrix

R̃ =
(
α̃

(k)
i

)
m×1

by Eq. (5).
Step 6. Calculating the ordering index by using Eq.(4).
Step 7. Ranking the alternatives according to the compari-

son principle, and obtaining the desirable alternative.
Step 8. End.

VII. CASE STUDY
In this section, an illustrative example which was adopt
illustrative example from Garg [40] for a venture capital
company plans to renewable energy projects. Assume that
there are four possible projects Ψ1,Ψ2,Ψ3,Ψ4 which are
assessed by three experts E1, E2, E3 under following four
attributes:
a1: Technical performance, that is, technical proficiency

on which the project relies;
a2: Market potential, that is, the significance of the eco-

nomic and social benefits expected by the Project;
a3: Policy environment, that is, consistency between

projects and current national policies;
a4: Investment risk, that is, uncertainty of project invest-

ment.
The experts use linguistic term collection S = {s0 =

extremely poor, s1 = very poor, s2 = poor, s3 =

slightly poor, s4 = fair, s5 = slightly good, s6 = good, s7 =
very good, s8 = extremely good} to evaluated potential
project. Three decision matrices are given by three experts
E1, E2, E3 and shown in Table 1, respectively,

experts a1 a2 a3 a4

Ψ1 (s6, s3) (s3, s1) (s3, s3) (s3, s6)
Ψ2 (s7, s2) (s6, s2) (s4, s1) (s2, s4)

E(1) Ψ3 (s6, s2) (s5, s3) (s7, s1) (s3, s4)
Ψ4 (s5, s3) (s7, s2) (s4, s3) (s1, s6)
Ψ1 (s6, s1) (s4, s5) (s5, s2) (s3, s5)
Ψ2 (s7, s2) (s5, s1) (s7, s2) (s4, s3)

E(2) Ψ3 (s5, s3) (s6, s3) (s6, s3) (s4, s4)
Ψ4 (s5, s2) (s4, s3) (s5, s1) (s5, s3)
Ψ1 (s5, s3) (s4, s4) (s7, s2) (s4, s2)
Ψ2 (s7, s1) (s7, s1) (s6, s3) (s1, s4)

E(3) Ψ3 (s5, s2) (s4, s3) (s5, s2) (s3, s6)
Ψ4 (s6, s3) (s5, s3) (s5, s4) (s2, s5)

TABLE 1. Individual linguistic Pythagorean DMs given by E(k)(k = 1, 2, 3)

A. DECISION-MAKING PROCESS FOR SELECTING THE
BEST PROJECT

Step 1. Normalizing the original DM. Because the attribute
a4 is cost-type, so we need to normalize the attribute values
of a4 by using Eq.(43), and the normalized decision matrices
listed as follows (Table 2):

experts a1 a2 a3 a4

Ψ1 (s6, s3) (s3, s1) (s3, s3) (s6, s3)
Ψ2 (s7, s2) (s6, s2) (s4, s1) (s4, s2)

E(1) Ψ3 (s6, s2) (s5, s3) (s7, s1) (s4, s3)
Ψ4 (s5, s3) (s7, s2) (s4, s3) (s6, s1)
Ψ1 (s6, s1) (s4, s5) (s5, s2) (s5, s3)
Ψ2 (s7, s2) (s5, s1) (s7, s2) (s3, s4)

E(2) Ψ3 (s5, s3) (s6, s3) (s6, s3) (s4, s4)
Ψ4 (s5, s2) (s4, s3) (s5, s1) (s3, s5)
Ψ1 (s5, s3) (s4, s4) (s7, s2) (s2, s4)
Ψ2 (s7, s1) (s7, s1) (s6, s3) (s4, s1)

E(3) Ψ3 (s5, s2) (s4, s3) (s5, s2) (s6, s3)
Ψ4 (s6, s3) (s5, s3) (s5, s4) (s5, s2)

TABLE 2. Normalized Individual linguistic Pythagorean DMs given by
E(k)(k = 1, 2, 3)

Step 2. Determining the experts weights. According to the
Eq.(16), taking q = 0.5 in cross-entropy, we obtain the expert
weight vector is (0.3465, 0.3179, 0.3356).

Step 3. Determining the attributes weights. According to
the Eq.(17), taking p = 0.5 in Eq.(3), we obtain the attribute
weight vector is (0.2086, 0.2493, 0.2670, 0.2301).
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experts Ψ1 Ψ2 Ψ3 Ψ4

E(1) (s4.806, s2.171) (s5.645, s1.662) (s5.867, s2.056) (s5.93, s2.068)
E(2) (s5.031, s2.488) (s6.1, s2.244) (s5.48, s3.205) (s4.582, s2.312)
E(3) (s5.341, s3.131) (s6.391, s1.341) (s5.058, s2.474) (s5.254, s2.951)

TABLE 3. Collective individual LPF DMs of E(k)(k = 1, 2, 3)

Step 4. Aggregating individual LPF DM R̃(k) =

(α̃
(k)
ij )m×n into a collective individual LPF DM R̃(k) =

(α̃
(k)
i )m×1 by Eq.(5).
Step 5. Aggregating all collective LPF DM R̃(k) =

(α̃
(k)
i )m×1 into the overall LPF DM R̃ = (α̃

(k)
i )m×1 by

Eq.(5).
Step 6. Calculating the ordering index by using Eq.(4),
R(Ψ1) = 0.4147, R(Ψ2) = 0.2785, R(Ψ3) =

0.3465, R(Ψ4) = 0.3756.
Step 7. Ranking the alternatives according to the compari-

son principle, the rank of alternatives is Ψ2Ψ3Ψ4Ψ1, and so
Ψ2 is the best alternative.

B. DISCUSSIONS ON PARAMETERS
In this section, we will discuss the effect of parameter
changes on the results.

(1) Effect of parameter changes in cross-entropy on the
results under p = 0.5 in generalized indeterminacy degree-
preference distance measure and λ = 1.

Although the values of cross-entropy will increases as
q(q > 0) increases, the experts’ weights determined by cross-
entropy almost unchanged, which lead to the same rank under
different parameter q. This point will be showed from above
Table that the ranking of alternatives will remain unchanged.

(2) Effect of parameter changes in generalized indetermi-
nacy degree-preference distance on the results under q = 1
in cross-entropy.

Although the values of cross-entropy will increases as
q(q > 0) increases, the experts’ weights determined by cross-
entropy almost unchanged, which lead to the same rank under
different parameter q. This point will be showed from above
Table that the ranking of alternatives will remain unchanged.

(3)Effect of parameter Ψ changes on the results under
q = 0.5 in cross-entropy and p = 0.5 in generalized
indeterminacy degree-preference distance.

C. COMPARISONS AND ANALYSES
In what following, the analyses of proposed method will be
carried out and comparisons with other existed method also
be conducted.

Firstly, we use some special cased from the proposed five
operators to rank alternatives when λ = 1, p = q = 0.5,
which are shown as Table 8.

It is seen from Table 8 that the ranking order of alternatives
are the same.

Secondly, we use our proposed methods to solve the
MAGDM problem [40] under the experts weight completely

known and the attribute weights is (0.3, 0.2, 0.1, 0.4). The
ranking order of alternatives are shown as Table 9.

• (1) Garg [40] introduced the LPFNs and also given some
operational laws of LPFNs. In present work, we firstly ex-
tended TN and TC, and then give five special cases of TN and
TC. On the basis of them, the general forms of operational
laws are also given. The operational law introduced by Garg
[40] is only the special case when the extended TN and TC
are TA and SA.

• (2) As far as the aggregation operators are concerned.
Garg [40] introduced the LPFWA operator and LPFWG
operator to deal with LPFI. In present work, GLPFWA was
proposed based on extended TN and TC, some different types
aggregation operators are obtained with different parameters,
extended TN and extended TC. However, some existing
operators such as LPFWA and LPFWG are the special cases
of GLPFWA. The details have been investigated in detail in
Section 7.

• (3) As far as decision methods are concerned. Garg’s
MAGDM method [40] is based on the LPFWA and LPFW-
GA by considering the experts’ weights are unknown, but
the attribute weights are also known. Although the proposed
MAGDM method is also based on GLPFWA, there are two
significant differences between them: on the one hand, the
proposed MAGDM method is more general than Garg [40]
because the proposed approach uses the some parameters
and extended TN and extended TC; on the other hand, the
proposed approach addressed the decision problems in which
the experts weights and attribute weights are all unknown.

Thirdly, although some linguistic decision making ap-
proaches have been developed, such as LIFDM approach
[34], MAGDM approach based on I2LI [47], they only
addressing the some decision making problems with LIFI,
the proposed MAGDM approach not only solve intuitionistic
fuzzy decision making problem, but also solve some decision
making problems with LPFI which is not addressed by some
existed MAGDM approaches.

Finally, as far as the LPTNs and LPTCs are concerned,
although Liu [27] extended archimedean TN and TC from
[0, 1] to [0, t], which can deal with some decision making
problems with LIFI and it really doesn’t work for some
problems with LPFI. In this work, we proposed more general
extended TN and extended TC which can deal with LPFI by
some new additive generators.
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Ψ1 Ψ2 Ψ3 Ψ4

(s5.0687, s2.5635) (s6.0685, s1.9129) (s5.5007, s2.5193) (s5.3477, s2.4142)

TABLE 4. Overall LPF Decision matrix

Parameter Ordering index of Ψi(i = 1, 2, 3, 4) Ranking order
q = 1 R(Ψ1) = 0.4147, R(Ψ2) = 0.2806, R(Ψ3) = 0.3465, R(Ψ4) = 0.3756 Ψ2Ψ3Ψ4Ψ1

q = 2 R(Ψ1) = 0.4146, R(Ψ2) = 0.2785, R(Ψ3) = 0.3465, R(Ψ4) = 0.3757 Ψ2Ψ3Ψ4Ψ1

q = 5 R(Ψ1) = 0.4146, R(Ψ2) = 0.2784, R(Ψ3) = 0.3465, R(Ψ4) = 0.3759 Ψ2Ψ3Ψ4Ψ1

q = 10 R(Ψ1) = 0.4147, R(Ψ2) = 0.2784, R(Ψ3) = 0.3465, R(Ψ4) = 0.3759 Ψ2Ψ3Ψ4Ψ1

q = 100 R(Ψ1) = 0.4147, R(Ψ2) = 0.2785, R(Ψ3) = 0.3464, R(Ψ4) = 0.3759 Ψ2Ψ3Ψ4Ψ1

TABLE 5. Overall LPF DM

Parameter Ordering index of Ψi(i = 1, 2, 3, 4) Ranking order
p = 0 R(Ψ1) = 0.4551, R(Ψ2) = 0.2957, R(Ψ3) = 0.3843, R(Ψ4) = 0.4094 Ψ2Ψ3Ψ4Ψ1

p = 0.1 R(Ψ1) = 0.4473, R(Ψ2) = 0.2928, R(Ψ3) = 0.3771, R(Ψ4) = 0.4029 Ψ2Ψ3Ψ4Ψ1

p = 0.3 R(Ψ1) = 0.4313, R(Ψ2) = 0.2869, R(Ψ3) = 0.3612, R(Ψ4) = 0.3895 Ψ2Ψ3Ψ4Ψ1

p = 0.5 R(Ψ1) = 0.4147, R(Ψ2) = 0.2806, R(Ψ3) = 0.3465, R(Ψ4) = 0.3756 Ψ2Ψ3Ψ4Ψ1

p = 0.7 R(Ψ1) = 0.3973, R(Ψ2) = 0.2740, R(Ψ3) = 0.3302, R(Ψ4) = 0.3613 Ψ2Ψ3Ψ4Ψ1

p = 0.9 R(Ψ1) = 0.3790, R(Ψ2) = 0.2665, R(Ψ3) = 0.3131, R(Ψ4) = 0.3464 Ψ2Ψ3Ψ4Ψ1

TABLE 6. Overall LPF DM

Parameter Ordering index of Ψi(i = 1, 2, 3, 4) Ranking order
λ = 0.05 R(Ψ1) = 0.4533, R(Ψ2) = 0.3068, R(Ψ3) = 0.3613, R(Ψ4) = 0.4018 Ψ2Ψ3Ψ4Ψ1

λ = 0.5 R(Ψ1) = 0.352, R(Ψ2) = 0.2942, R(Ψ3) = 0.3546, R(Ψ4) = 0.3933 Ψ2Ψ3Ψ4Ψ1

λ = 1 R(Ψ1) = 0.4147, R(Ψ2) = 0.2807, R(Ψ3) = 0.3465, R(Ψ4) = 0.3829 Ψ2Ψ3Ψ4Ψ1

λ = 5 R(Ψ1) = 0.2982, R(Ψ2) = 0.2110, R(Ψ3) = 0.2806, R(Ψ4) = 0.2974 Ψ2Ψ3Ψ4Ψ1

λ = 10 R(Ψ1) = 0.2334, R(Ψ2) = 0.1754, R(Ψ3) = 0.2268, R(Ψ4) = 0.2311 Ψ2Ψ3Ψ4Ψ1

λ = 50 R(Ψ1) = 0.1540, R(Ψ2) = 0.1440, R(Ψ3) = 0.1506, R(Ψ4) = 0.1527 Ψ2Ψ3Ψ4Ψ1

λ = 100 R(Ψ1) = 0.1516, R(Ψ2) = 0.1406, R(Ψ3) = 0.1432, R(Ψ4) = 0.1446 Ψ2Ψ3Ψ4Ψ1

TABLE 7. Overall LPF DM

Operators Ordering index of Ψi(i = 1, 2, 3, 4) Ranking order
LPFWA R(Ψ1) = 0.4147, R(Ψ2) = 0.2785, R(Ψ3) = 0.3465, R(Ψ4) = 0.3756 Ψ2Ψ3Ψ4Ψ1

LPFEWA R(Ψ1) = 0.4092, R(Ψ2) = 0.2964, R(Ψ3) = 0.3426, R(Ψ4) = 0.3833 Ψ2Ψ3Ψ4Ψ1

LPFHWA R(Ψ1) = 0.1956, R(Ψ2) = 0.1147, R(Ψ3) = 0.1515, R(Ψ4) = 0.1794 Ψ2Ψ3Ψ4Ψ1

LPFFWA R(Ψ1) = 0.4217, R(Ψ2) = 0.2874, R(Ψ3) = 0.3501, R(Ψ4) = 0.3860 Ψ2Ψ3Ψ4Ψ1

LPFDWA R(Ψ1) = 0.3315, R(Ψ2) = 0.2029, R(Ψ3) = 0.2994, R(Ψ4) = 0.4904 Ψ2Ψ3Ψ4Ψ1

TABLE 8. Ranking orders from different operators
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Methods Ordering index of Ψi(i = 1, 2, 3, 4) Ranking order
GLPFWA R(Ψ1) = 0.6043, R(Ψ2) = 0.6909, R(Ψ3) = 0.6036, R(Ψ4) = 0.3607 Ψ4Ψ3Ψ1Ψ2

GLPFEWA R(Ψ1) = 0.6183, R(Ψ2) = 0.6918, R(Ψ3) = 0.6276, R(Ψ4) = 0.3669 Ψ4Ψ3Ψ1Ψ2

GLPFHWA R(Ψ1) = 0.4151, R(Ψ2) = 0.5225, R(Ψ3) = 0.3685, R(Ψ4) = 0.1644 Ψ4Ψ3Ψ1Ψ2

GLPFFWA R(Ψ1) = 0.6343, R(Ψ2) = 0.7031, R(Ψ3) = 0.5957, R(Ψ4) = 0.3546 Ψ4Ψ3Ψ1Ψ2

GLPFDWA R(Ψ1) = 0.5182, R(Ψ2) = 0.7186, R(Ψ3) = 0.4838, R(Ψ4) = 0.3187 Ψ4Ψ3Ψ1Ψ2

Garg’s Method [40] Ψ4Ψ3Ψ1Ψ2

TABLE 9. Ranking orders of our proposed method

VIII. CONCLUSIONS
This work aims to build the new approach for MAGDM with
unknown experts weight and attribute weights. Firstly, the
approach is given to rank the alternatives based on gener-
alized indeterminacy degree-preference distance under LPFI,
the new versions of TNs and TCs named LPTNs and LPTCs
are given to handle the LPFI, and some special cases for
LPTNs and LPTCs are obtained to deal with PFI; Secondly,
we introduce the generalized linguistic Pythagorean fuzzy
average aggregation operator (GPFAA) based on LPTNs and
LPTCs along with their properties are also investigated; Fur-
thermore, we analyse the GPFAA operators and some special
cases are obtained when LPTNs and LPTCs take some spe-
cial TNs and TCs; Finally, a MAGDM approach based on
some LPTNs and LPTCs is established, before building the
MAGDM approach, we define new cross-entropy to deter-
mine the experts’s weights and use the maximizing deviation
to determine the attributes’ weights, consequently, a practical
example is provided to show the validity and advantages of
the proposed method.

The use of several LTSs in fuzzy linguistic modeling is
allowed in multigranular fuzzy linguistic modeling, which
has been frequently used in GDM field due to its capability
of allowing each expert to express his/her preferences using
his/her own LTS. A new linguistic computational model is
defined by Zhang [57] to manage multigranular linguistic
distribution assessments for its application to large-scale
MAGDM problems with linguistic information. In our future
research, by means of academic thought of TODIM method
based on unbalanced HFLTs [58], we will study the TODIM
method for large-scale MAGDM problems with unbalanced
linguistic information or multigranular linguistic informa-
tion.
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[57] Z. Zhang, C. Guo C, Luis Martĺłnez, Managing multigranular linguis-
tic distribution assessments in large-scale multiattribute group decision
making. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
47(11)(2017), 3063-3076.

[58] W. Yu, Z. Zhang, Q. Zhong, L. Sun, Extended TODIM for multi-criteria
group decision making based on unbalanced hesitant fuzzy linguistic term
sets. Computers Industrial Engineering, 114(2017) 316-328.

[59] Deng, Xiumei; Wang, Jie; Wei, Guiwu, Some 2-tuple linguistic Pythagore-
an Heronian mean operators and their application to multiple attribute
decision-making. Journal of Experimental Theoretical Artificial Intelli-
gence, 31(2019)555-574.

[60] Guiwu Wei, 2-tuple intuitionistic fuzzy linguistic aggregation operators in
multiple attribute decision making. Iranian Journal of Fuzzy Systems, 16
(2019)159-174.

[61] Y. Liu, J. Liu, Y. Qin, Dynamic intuitionistic fuzzy multiattribute decision
making based on evidential reasoning and MDIFWG operator. Journal of
Intelligent Fuzzy Systems, 36(2019) 5973-5987.

18 VOLUME 4, 2016



Y.Liu et al.: Multiattribute group decision-making approach with linguistic Pythagorean fuzzy information

YI LIU received the M.S. degrees in Pure Mathe-
matics from Sichuan Normal University, Chengdu,
China, in 2007, and the Ph.D. degree in Computer
Sciences and Technology from Southwest Jiao-
tong University, Chengdu, China, in 2014.

He is currently a Professor with the data recov-
ery key laboratory of Sichuan Province and School
of Mathematics and Information Sciences, Nei-
jiang Normal University, Sichuan, China. He has
authored or coauthored more than 60 publications.

His research interests include aggregation operators, fuzzy decision making,
automated reasoning, and their applications.

YA QIN received the M.S. degrees in Applied
Mathematics from Sichuan Normal University,
Chengdu, China, in 2009.

She is currently a Associated Professor with the
School of Mathematics and Information Sciences,
Neijiang Normal University, Sichuan, China. She
has authored or coauthored more than 15 publi-
cations. Her research interests include aggregation
operators, fuzzy decision making and their appli-
cations.

LEI XU ecieved the PhD degree in Petroleum En-
gineering Computing Technology from Southwest
Petroleum University, Chengdu, China, in 2015.

He is currently a Associated Professor with the
School of Mathematics and Information Sciences,
Neijiang Normal University, Sichuan, China. He
presided over 3 projects, guided students to par-
ticipate in academic competitions, and won 14 in-
ternational awards. He has authored or coauthored
more than 10 publications. His currently research

interests include risk analysis, aggregation operators, fuzzy decision making
and their applications.

HAO-BIN LIU Haobin Liu received the M.S.
degrees in computational Mathematics from
Chongqing University, Chongqing, China, in
2010.

He is currently a Lecture with the School of
Mathematics and Information Sciences, Neijiang
Normal University, Sichuan, China. He presided
over 3 projects, guided students to participate in
academic competitions, and won 14 international
awards. He has authored or coauthored more than

10 publications. His research interests include aggregation operators, fuzzy
decision making and their applications.

JUN LIU received the BSc. and MSc. degrees
in Applied Mathematics, and PhD. degree in on
Information Engineering from Southwest Jiaotong
University, Chengdu, China, in 1993, 1996, and
1999, respectively. He worked as Postdoctoral Re-
search Fellow at Belgian Nuclear Research Centre
(SCK*CEN) (Mar. 2000 -Feb. 2002).

He is currently a Reader in Computer Science,
a full member of Artificial Intelligence Research
Group (AIRG) at Computer Science Research In-

stitute at Ulster University. He has been working in the field of Artificial
Intelligence for many years. His current research is focused on two themes:
1) knowledge-centralized data analytics under uncertainty for sensing deci-
sion making, with applications in management, engineering, and industry
field etc; 2) logic and automated reasoning methods for intelligent systems.
He has over 150 publications in these areas.

He has been a grant holder of several national and international research
projects. He serves as an Area Editor of International Journal of Computa-
tional Intelligence Systems, is also an Editor of Information Fusion Journal,
Journal of Universal Computer Science, and International Journal of Knowl-
edge and Systems Science. He serves as chairs or co-chairs and program
committees of a number of international conferences and workshops.

VOLUME 4, 2016 19


