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Abstract

Given a probability distribution, its corresponding information volume is Shannon entropy.
However, how to determine the information volume of a given mass function is still an open issue.
Based on Deng entropy, the information volume of mass function is presented in this paper. Given
a mass function, the corresponding information volume is larger than its uncertainty measured
by Deng entropy. In addition, when the cardinal of the frame of discernment is identical, both
the total uncertainty case and the BPA distribution of the maximum Deng entropy have the same
information volume. Some numerical examples are illustrated to show the efficiency of the proposed
information volume of mass function.
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1 Introduction
In the past decades, plenty of theories have been developed for expressing and dealing with the

uncertainty in the uncertain environment, for instance, the extended probability theory [26], proba-
bilistic linguistic [11, 28], fuzzy linguistic [21, 22], fuzzy logic [10], fuzzy set theory [67], intuitionistic
fuzzy sets [20, 36, 48], soft sets [1, 12], Dempster-Shafer evidence theory [6, 46], rough sets [15, 44], Z
numbers [23, 25, 35, 59] and D numbers [7, 30, 33]. Because these theories can well handle uncertainty
in many kinds of situations, they have been widely applied in various fields, including decision making
[13, 19, 40, 69], reliability analysis [27, 66], medical diagnosis [2, 14], multi-source information fusion
[29, 55], causal analysis [32], vehicle system [5], and fault detecting [45].

Entropy function is very important in uncertainty modelling[9]. Since firstly derived from thermo-
dynamics, different kinds of entropy have been proposed, such as Shannon entropy [47], Tsallis entropy
[50], nonadditive entropy [51], interval valued entropies [61], and fuzzy entropy [3, 4]. Recently, a new
entropy, called Deng entropy [8], is presented for measuring the uncertainty in evidence theory. Deng
entropy is the generalization of Shannon entropy. Compared with traditional methods, Deng entropy
is more reasonable, and it takes both discord and non-specificity into account [49].
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Given a probability distribution, its corresponding information volume can be measured by Shan-
non entropy. However, how to determine the information volume of mass function in evidence theory
is still an open issue. In this paper, an information volume of mass function based on Deng entropy
is presented. The information volume of mass function is constructed based on the BPA distribution
of the maximum Deng entropy. If the mass function is degenerated into probability distribution, the
proposed information volume is the same as Shannnon entropy. In addition, when the cardinal of the
frame of discernment is constant, both the total uncertainty case and the Deng distribution have the
same information volume.

The rest of this paper is organized as follows. In section 2, some preliminaries are briefly reviewed.
In section 3, based on Deng entropy, the information volume of mass function is proposed. In section
4, numerical examples are expounded to illustrated the proposed definition. In section 5, we have a
brief conclusion.

2 Preliminaries
Several preliminaries are briefly introduced in this section, including Dempster-Shafer evidence

theory, mass function, Shannon entropy, Deng entropy and the maximum Deng entropy.

2.1 Dempster-Shafer evidence theory

Uncertainty modelling is still an open issue [9, 52]. Dempster-Shafer evidence theory[6, 46] can
be used to deal with uncertainty. Besides, evidence theory satisfies the weaker conditions than the
probability theory, which provides it with the ability to express uncertain information directly [39].
Therefore, evidence theory has well studied, including evidence reasoning [38, 64, 65, 68], belief rule
[57, 58], complex mass functions [53, 54], and generalized Dempster–Shafer structures [60, 62], and
it was applied in many areas, such as risk analysis [42, 43], classification [37], data fusion [56], and
heuristic representation learning [16]. Some basic conceptions of evidence theory are given as follows:
Definition 2.1: Frame of discernment and its power set

Let Θ, called the frame of discernment, denote an exhaustive nonempty set of hypotheses, where
the elements are mutually exclusive. Let the set Θ have N elements, which can be expressed as:

Θ = {θ1, θ2, θ3, · · · , θN} (1)

The power set of Θ, denoted as 2Θ, contains all possible subsets of Θ and has 2N elements, and
2Θ is represented by

2Θ = {A1, A2, A3, · · · , A2N }
= { ∅, {θ1}, {θ2}, · · · , {θN}, {θ1, θ2},

{θ1, θ3}, · · · , {θ1, θN}, · · · ,Θ } (2)

where the element Ak is called the focal element of Θ, if Ak is nonempty.
Definition 2.2: Mass function

A mass function is also called Basic probability assignment (BPA), which map m from 2Θ to [0, 1],
and it is defined as follows:

m : 2Θ → [0, 1] (3)

which is constrained by the following conditions:∑
A∈2Θ

m(A) = 1 (4)

m(∅) = 0 (5)

Compared with probability distribution in probability theory, mass function has more efficient
manner to handle uncertainty [63]. In addition, some other extension of mass function in quantum
information has been paid attention recently [17].
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2.2 Shannon entropy

Entropy plays an important role in measure the uncertainty [34, 41]. In the field of classical
probability theory, Shannon entropy [47] is often used to measure the uncertainty of a probability
distribution. Consider a probability distribution P defined on the set Θ = {H1, H2, H3, · · · , HN}.
Definition 2.5: Shannon entropy

Shannon entropy Hs(P ) is defined as follows:

Hs(P ) =
∑
θ∈Θ

P (θ) log( 1
P (θ)). (6)

where
∑
θ∈Θ P (θ) = 1 and P (θ) ∈ [0, 1].

Usually, the base of logarithm is 2, and entropy has the unit of bit. It’s not hard to find that
Hs(P ) is on the scale [0, logN ].

2.3 Deng entropy

In information theory, entropy can be used to measure the uncertainty of a system. Recently, a
novel entropy, named as Deng entropy [8], is proposed to measure the uncertainty in evidence theory.
Definition 2.5: Deng entropy

Deng entropy is defined as:

HDE(m) = −
∑
A∈2Θ

m(A) log( m(A)
2|A| − 1

) (7)

where |A| is the cardinal of a certain focal element A.
Deng entropy is the generalization of Shannon entropy. When every focal element is singleton,

Deng entropy degenerates into Shannon entropy [18].
Through a simple transformation, Eq.(7) can be rewritten as follows:

HDE(m) =
∑
A∈2Θ

log(2|A| − 1)−
∑
A∈2Θ

m(A) logm(A) (8)

where
∑
A∈2Θ log(2|A|−1) and−

∑
A∈2Θ m(A) logm(A) are measurements of nonspecificity and discord,

respectively. As a result, Deng entropy is a composite measurement of nonspecificity and discord,
which means that it is a tool for measuring total uncertainty [31].

2.4 The maximum Deng entropy

Assume A is the focal element of a certain frame of discernment Θ and m(A) is the BPA for A.
According to [24], the analytic solution of the maximum Deng entropy is as follows:
Theorem 2.1: The analytic solution of the maximum Deng Entropy

If and only if m(A) = (2|A|−1)∑
A∈2Θ (2|A|−1) , Deng entropy reaches its maximum value. The analytic

solution of the maximum Deng entropy is

HMDE(m) = log
∑
A∈2Θ

(2|A| − 1) (9)

3 Information volume of mass function
Given a probability distribution, the associated information volume can be measured by Shannon

entropy. However, how to measure the information volume of a given mass function is still an open
issue.

In this section, based on Deng entropy, the information volume of mass function is defined.
Definition 3.1: Information volume of mass function
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Let the frame of discernment be Θ = {θ1, θ2, θ3, · · · , θN}. Use index i to denote the times of this
loop, and use m(Ai) to denote different mass function of different loops. Based on Deng entropy, the
information volume of mass function can be calculated by following steps:

step 1: Input mass function m(A0).

step 2: Continuously separate the mass function of the element whose cardinal is larger than 1 until
convergence. Concretely, repeat the loop from step 2-1 to step 2-3 until Deng entropy is
convergent.

step 2-1: Focus on the element whose cardinal is larger than 1, namely, |Ai|> 1. And then,
separate its mass function based on the proportion of the BPA of the maximum Deng
entropy:

m(Ai) = (2|Ai| − 1)∑
Ai∈2Θ(2|Ai| − 1)

(10)

For example, given a focal element Ai−1 = {θx, θy} and its mass function m(Ai−1),
the separating proportion is that 1

5 : 1
5 : 3

5 . The ith times of separation divides
m(Ai−1) and yields following new mass function: m(Xi), m(Yi), m(Zi), where Xi =
{θx}, Yi = {θy} and Zi = {θx, θy}. In addition, they satisfy these equations:

m(Xi) +m(Yi) +m(Zi) =m(Ai−1) (11)

m(Xi) : m(Yi) : m(Zi) =1
5 : 1

5 : 3
5 (12)

step 2-2: Based on Deng entropy, calculate the uncertainty of all the mass functions except
for those who have been divided. The result is denoted as Hi(m).

step 2-3: Calculate ∆i = Hi(m)−Hi−1(m). When ∆i satisfies following condition, jump out
of this loop.

∆i = Hi(m)−Hi−1(m) < ε (13)

where ε is the allowable error.

step 3: Output HIV−mass(m) = Hi(m), which is the information volume of the mass function.

4 Numerical examples and discussions
In this section, some examples are expounded to better understand the definition for the proposed

information volume of mass function, and the discussion is followed after every example. In the
following examples, the base of the logarithmic function is 2, and the allowable error is 0.001.
Example 4.1:

Consider the focal element be X = {θ1}, Y = {θ2} and Z = {θ3}. Let the mass function be
m0(X) = m0(Y ) = m0(Z) = 1

3 .
Because there is no focal element whose cardinal is larger than 1, the step 2-1 can be skipped for

all the times of the loop. Then, in step 2-2, use Deng entropy to calculate the uncertainty of this mass
function:

Hi(m) = −1
3 log2(1

3)− 1
3 log2(1

3)− 1
3 log2(1

3) = 1.584963 (14)

After going through the loop again, the newHi(m) is also 1.585 since step 2-1 is always skipped. As
a result, we escape from the loop and get the information volume of this mass function HIV−mass(m) =
1.584963.

Actually, this form of mass function is the probability distribution P1 = P2 = P3 = 1
3 . Hence,

when the mass function degenerates into the probability distribution, the value of HIV−mass(m) is
identical to the Shannon entropy.
Example 4.2:
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Consider the frame of discernment be Θ = {θ1, θ2, θ3}. Let the mass function be m0({θ1}) =
m0({θ2}) = m0({θ3}) = m0({θ1, θ2}) = m0({θ1, θ3}) = m0({θ2, θ3}) = m0({θ1, θ2, θ3}) = 1

7 .
The information volume of this mass function can be calculated by Definition 3.1. The conver-

gence procedure of Hi(m) is listed in Table 1.

Table 1: The convergence procedure of Hi(m)
i Hi(m) i Hi(m)

1 3.887675 9 5.178227
2 4.409314 10 5.187146
3 4.724509 11 5.192498
4 4.914440 12 5.195709
5 5.028700 13 5.197636
6 5.097366 14 5.198792
7 5.138606 15 5.199486
8 5.163366

According to Table 1, when i = 15, Hi(m)−Hi−1(m) < 0.001, which means that Hi(m) finally con-
verges to 5.199486. Hence the information volume of this mass function is HIV−mass(m) = 5.199486.

If we use Deng entropy to measure the uncertainty of this mass function, the result is as follows:

HDE(m) = −1
7 log2(

1
7

21 − 1)× 3− 1
7 log2(

1
7

22 − 1)× 3− 1
7 log2(

1
7

23 − 1)

= 3.887675 (15)

Compared HIV−mass(m) with HDE(m) in this example, HIV−mass(m) is larger than HDE(m),
which shows that, given a mass function, the corresponding information volume is larger than its
uncertainty measured by Deng entropy.
Example 4.3:

Consider the frame of discernment be U = {θ1, θ2}, X = {θ1} and Y = {θ2} be singletons. Let
the mass function be m0(X) = m0(Y ) = 1

5 and m0(U) = 3
5 , which is the BPA distribution of the

maximum Deng entropy when the cardinal of the frame of discernment is 2.
The information volume of this mass function can be calculated by Definition 3.1, whose cal-

culating procedure is illustrated in Figure 1. For the convenience of comprehension, the calculating
procedure can be abstracted as a directed acyclic graphical model shown in Figure 2.

Figure 1: The calculating procedure of Example 4.3
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Figure 2: The directed acyclic graphical model of Example 4.3

Table 2: The convergence procedure of Hi(m)
i Hi(m) i Hi(m)

1 2.321928 8 3.396431
2 2.764107 9 3.408809
3 3.029415 10 3.416236
4 3.188600 11 3.420692
5 3.284110 12 3.423366
6 3.341417 13 3.424970
7 3.375801 14 3.425933

Then, the convergence procedure of Hi(m) is listed in Table 2.
According to Table 2, when we continuously separate the BPA of the element whose cardinal is

larger than 1, the ∆i of Deng entropy becomes smaller and smaller. When i = 14, Hi(m)−Hi−1(m) <
0.001, which means that Hi(m) finally converges to 3.425933.

Hence, when the cardinal of the frame of discernment is 2, the information volume of the BPA
distribution of the maximum Deng entropy is HIV−mass(m) = 3.425933.
Example 4.4:

Consider the frame of discernment be Θ = {θ1, θ2}. Let the mass function bem0(Θ) = m0({θ1, θ2}) =
1, which is called the total uncertainty case when the cardinal of the frame of discernment is 2.

The information volume of this total uncertainty case can be calculated by Definition 3.1. The
calculating procedure can be abstracted as a directed acyclic graphical model shown in Figure 3, and
the convergence procedure of Hi(m) is listed in Table 3.

According to Table 3, when i = 15, Hi(m) − Hi−1(m) < 0.001, which means that Hi(m) finally
converges to 3.425933. Hence, when the cardinal of the frame of discernment is 2, the information
volume of the total uncertainty case is HIV−mass(m) = 3.425933.

Compared Example 4.3 with Example 4.4, we can find that, although the directed acyclic
graphical models of each example is not the same, the HIV−mass(m) of them is identical.

It can be concluded that, when the cardinal of the frame of discernment is identical, the BPA
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Figure 3: The directed acyclic graphical model of Example 4.4

Table 3: The convergence procedure of Hi(m)
i Hi(m) i Hi(m)

1 1.584963 9 3.396431
2 2.321928 10 3.408809
3 2.764107 11 3.416236
4 3.029415 12 3.420692
5 3.188600 13 3.423366
6 3.284110 14 3.424970
7 3.341417 15 3.425933
8 3.375801

distribution of the maximum Deng entropy and the total uncertainty case have identical information
volume.

The rest examples will further illustrate this conclusion.
Example 4.5:

Consider the frame of discernment be Θ = {θ1, θ2, θ3}. Let the mass function be m0({θ1}) =
m0({θ2}) = m0({θ3}) = 1

19 , m0({θ1, θ2}) = m0({θ1, θ3}) = m0({θ2, θ3}) = 3
19 , m0({θ1, θ2, θ3}) = 7

19 ,
which is the BPA distribution of the maximum Deng entropy when the cardinal of the frame of
discernment is 3.

The information volume of this mass function can be calculated by Definition 3.1. The conver-
gence procedure of Hi(m) is listed in Table 4.

According to Table 4, when i = 16, Hi(m) − Hi−1(m) < 0.001, which means that Hi(m) finally
converges to 6.469009. Hence, when the cardinal of the frame of discernment is 3, the information
volume of the BPA distribution of the maximum Deng entropy is HIV−mass(m) = 6.469009.
Example 4.6:

Consider the frame of discernment be Θ = {θ1, θ2, θ3}. Let the mass function be m0(Θ) =
m0({θ1, θ2, θ3}) = 1, which is called the total uncertainty case when the cardinal of the frame of
discernment is 3.

The information volume of the total uncertainty case can be calculated by Definition 3.1. The
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Table 4: The convergence procedure of Hi(m)
i Hi(m) i Hi(m)

1 4.247928 9 6.432107
2 5.127754 10 6.447290
3 5.661354 11 6.456402
4 5.983615 12 6.461869
5 6.177746 13 6.465150
6 6.294510 14 6.467119
7 6.364674 15 6.468300
8 6.406810 16 6.469009

convergence procedure of Hi(m) is listed in Table 5.

Table 5: The convergence procedure of Hi(m)
i Hi(m) i Hi(m)

1 2.807355 10 6.432107
2 4.247928 11 6.447290
3 5.127754 12 6.456402
4 5.661354 13 6.461869
5 5.983615 14 6.465150
6 6.177746 15 6.467119
7 6.294510 16 6.468300
8 6.364674 17 6.469009
9 6.406810

According to Table 5, when i = 17, Hi(m) − Hi−1(m) < 0.001, which means that Hi(m) finally
converges to 6.469009. Hence the information volume of this total uncertainty case is HIV−mass(m) =
6.469009.

Example 4.5 and Example 4.6 further illustrate that, when the cardinal of the frame of dis-
cernment is identical, the information volume of the BPA distribution for the maximum Deng entropy
is the same as that of the total uncertainty case. This point is consistent with the intuition.

5 Conclusion
In this paper, we define the information volume of a given mass function based on Deng entropy.

In addition, some examples are shown for better understanding of proposed information volume fo
mass function.

Some concluding remarks can be shown as follows.

1) If the mass function degenerates as probability distribution, the information volume is the same as
Shannon entropy.

2) Given a mass function, the corresponding information volume is larger than its uncertainty mea-
sured by Deng entropy.

3) One interesting point is that, when the cardinal of the frame of discernment is identical, the BPA
distribution for the maximum Deng entropy and the total uncertainty case has the same information
volume. This point is coincide with the intuition.
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