781 research outputs found

    High-Throughput System for the Early Quantification of Major Architectural Traits in Olive Breeding Trials Using UAV Images and OBIA Techniques

    Get PDF
    The need for the olive farm modernization have encouraged the research of more efficient crop management strategies through cross-breeding programs to release new olive cultivars more suitable for mechanization and use in intensive orchards, with high quality production and resistance to biotic and abiotic stresses. The advancement of breeding programs are hampered by the lack of efficient phenotyping methods to quickly and accurately acquire crop traits such as morphological attributes (tree vigor and vegetative growth habits), which are key to identify desirable genotypes as early as possible. In this context, an UAV-based high-throughput system for olive breeding program applications was developed to extract tree traits in large-scale phenotyping studies under field conditions. The system consisted of UAV-flight configurations, in terms of flight altitude and image overlaps, and a novel, automatic, and accurate object-based image analysis (OBIA) algorithm based on point clouds, which was evaluated in two experimental trials in the framework of a table olive breeding program, with the aim to determine the earliest date for suitable quantifying of tree architectural traits. Two training systems (intensive and hedgerow) were evaluated at two very early stages of tree growth: 15 and 27 months after planting. Digital Terrain Models (DTMs) were automatically and accurately generated by the algorithm as well as every olive tree identified, independently of the training system and tree age. The architectural traits, specially tree height and crown area, were estimated with high accuracy in the second flight campaign, i.e. 27 months after planting. Differences in the quality of 3D crown reconstruction were found for the growth patterns derived from each training system. These key phenotyping traits could be used in several olive breeding programs, as well as to address some agronomical goals. In addition, this system is cost and time optimized, so that requested architectural traits could be provided in the same day as UAV flights. This high-throughput system may solve the actual bottleneck of plant phenotyping of "linking genotype and phenotype," considered a major challenge for crop research in the 21st century, and bring forward the crucial time of decision making for breeders

    Microdrone-Based Indoor Mapping with Graph SLAM

    Get PDF
    Unmanned aerial vehicles offer a safe and fast approach to the production of three-dimensional spatial data on the surrounding space. In this article, we present a low-cost SLAM-based drone for creating exploration maps of building interiors. The focus is on emergency response mapping in inaccessible or potentially dangerous places. For this purpose, we used a quadcopter microdrone equipped with six laser rangefinders (1D scanners) and an optical sensor for mapping and positioning. The employed SLAM is designed to map indoor spaces with planar structures through graph optimization. It performs loop-closure detection and correction to recognize previously visited places, and to correct the accumulated drift over time. The proposed methodology was validated for several indoor environments. We investigated the performance of our drone against a multilayer LiDAR-carrying macrodrone, a vision-aided navigation helmet, and ground truth obtained with a terrestrial laser scanner. The experimental results indicate that our SLAM system is capable of creating quality exploration maps of small indoor spaces, and handling the loop-closure problem. The accumulated drift without loop closure was on average 1.1% (0.35 m) over a 31-m-long acquisition trajectory. Moreover, the comparison results demonstrated that our flying microdrone provided a comparable performance to the multilayer LiDAR-based macrodrone, given the low deviation between the point clouds built by both drones. Approximately 85 % of the cloud-to-cloud distances were less than 10 cm

    Vegetation Detection and Classification for Power Line Monitoring

    Get PDF
    Electrical network maintenance inspections must be regularly executed, to provide a continuous distribution of electricity. In forested countries, the electrical network is mostly located within the forest. For this reason, during these inspections, it is also necessary to assure that vegetation growing close to the power line does not potentially endanger it, provoking forest fires or power outages. Several remote sensing techniques have been studied in the last years to replace the labor-intensive and costly traditional approaches, be it field based or airborne surveillance. Besides the previously mentioned disadvantages, these approaches are also prone to error, since they are dependent of a human operator’s interpretation. In recent years, Unmanned Aerial Vehicle (UAV) platform applicability for this purpose has been under debate, due to its flexibility and potential for customisation, as well as the fact it can fly close to the power lines. The present study proposes a vegetation management and power line monitoring method, using a UAV platform. This method starts with the collection of point cloud data in a forest environment composed of power line structures and vegetation growing close to it. Following this process, multiple steps are taken, including: detection of objects in the working environment; classification of said objects into their respective class labels using a feature-based classifier, either vegetation or power line structures; optimisation of the classification results using point cloud filtering or segmentation algorithms. The method is tested using both synthetic and real data of forested areas containing power line structures. The Overall Accuracy of the classification process is about 87% and 97-99% for synthetic and real data, respectively. After the optimisation process, these values were refined to 92% for synthetic data and nearly 100% for real data. A detailed comparison and discussion of results is presented, providing the most important evaluation metrics and a visual representations of the attained results.Manutenções regulares da rede elétrica devem ser realizadas de forma a assegurar uma distribuição contínua de eletricidade. Em países com elevada densidade florestal, a rede elétrica encontra-se localizada maioritariamente no interior das florestas. Por isso, durante estas inspeções, é necessário assegurar também que a vegetação próxima da rede elétrica não a coloca em risco, provocando incêndios ou falhas elétricas. Diversas técnicas de deteção remota foram estudadas nos últimos anos para substituir as tradicionais abordagens dispendiosas com mão-de-obra intensiva, sejam elas através de vigilância terrestre ou aérea. Além das desvantagens mencionadas anteriormente, estas abordagens estão também sujeitas a erros, pois estão dependentes da interpretação de um operador humano. Recentemente, a aplicabilidade de plataformas com Unmanned Aerial Vehicles (UAV) tem sido debatida, devido à sua flexibilidade e potencial personalização, assim como o facto de conseguirem voar mais próximas das linhas elétricas. O presente estudo propõe um método para a gestão da vegetação e monitorização da rede elétrica, utilizando uma plataforma UAV. Este método começa pela recolha de dados point cloud num ambiente florestal composto por estruturas da rede elétrica e vegetação em crescimento próximo da mesma. Em seguida,múltiplos passos são seguidos, incluindo: deteção de objetos no ambiente; classificação destes objetos com as respetivas etiquetas de classe através de um classificador baseado em features, vegetação ou estruturas da rede elétrica; otimização dos resultados da classificação utilizando algoritmos de filtragem ou segmentação de point cloud. Este método é testado usando dados sintéticos e reais de áreas florestais com estruturas elétricas. A exatidão do processo de classificação é cerca de 87% e 97-99% para os dados sintéticos e reais, respetivamente. Após o processo de otimização, estes valores aumentam para 92% para os dados sintéticos e cerca de 100% para os dados reais. Uma comparação e discussão de resultados é apresentada, fornecendo as métricas de avaliação mais importantes e uma representação visual dos resultados obtidos

    Discrete and Distributed Error Assessment of UAS- SfM Point Clouds of Roadways

    Get PDF
    Perishable surveying, mapping, and post-disaster damage data typically require efficient and rapid field collection techniques. Such datasets permit highly detailed site investigation and characterization of civil infrastructure systems. One of the more common methods to collect, preserve, and reconstruct three-dimensional scenes digitally, is the use of an unpiloted aerial system (UAS), commonly known as a drone. Onboard photographic payloads permit scene reconstruction via structure-from-motion (SfM); however, such approaches often require direct site access and survey points for accurate and verified results, which may limit its efficiency. In this paper, the impact of the number and distribution of ground control points within a UAS SfM point cloud is evaluated in terms of error. This study is primarily motivated by the need to understand how the accuracy would vary if site access is not possible or limited. In this paper, the focus is on two remote sensing case studies, including a 0.75 by 0.50-km region of interest that contains a bridge structure, paved and gravel roadways, vegetation with a moderate elevation range of 24 m, and a low-volume gravel road of 1.0 km in length with a modest elevation range of 9 m, which represent two different site geometries. While other studies have focused primarily on the accuracy at discrete locations via checkpoints, this study examines the distributed errors throughout the region of interest via complementary light detection and ranging (lidar) datasets collected at the same time. Moreover, the international roughness index (IRI), a professional roadway surface standard, is quantified to demonstrate the impact of errors on roadway quality parameters. Via quantification and comparison of the differences, guidance is provided on the optimal number of ground control points required for a time-efficient remote UAS survey

    Autonomous Reality Modelling for Cultural Heritage Sites employing cooperative quadrupedal robots and unmanned aerial vehicles

    Full text link
    Nowadays, the use of advanced sensors, such as terrestrial 3D laser scanners, mobile LiDARs and Unmanned Aerial Vehicles (UAV) photogrammetric imaging, has become the prevalent practice for 3D Reality Modeling and digitization of large-scale monuments of Cultural Heritage (CH). In practice, this process is heavily related to the expertise of the surveying team, handling the laborious planning and time-consuming execution of the 3D mapping process that is tailored to the specific requirements and constraints of each site. To minimize human intervention, this paper introduces a novel methodology for autonomous 3D Reality Modeling for CH monuments by employing au-tonomous biomimetic quadrupedal robotic agents and UAVs equipped with the appropriate sensors. These autonomous robotic agents carry out the 3D RM process in a systematic and repeatable ap-proach. The outcomes of this automated process may find applications in digital twin platforms, facilitating secure monitoring and management of cultural heritage sites and spaces, in both indoor and outdoor environments

    Close-Range Sensing and Data Fusion for Built Heritage Inspection and Monitoring - A Review

    Get PDF
    Built cultural heritage is under constant threat due to environmental pressures, anthropogenic damages, and interventions. Understanding the preservation state of monuments and historical structures, and the factors that alter their architectural and structural characteristics through time, is crucial for ensuring their protection. Therefore, inspection and monitoring techniques are essential for heritage preservation, as they enable knowledge about the altering factors that put built cultural heritage at risk, by recording their immediate effects on monuments and historic structures. Nondestructive evaluations with close-range sensing techniques play a crucial role in monitoring. However, data recorded by different sensors are frequently processed separately, which hinders integrated use, visualization, and interpretation. This article’s aim is twofold: i) to present an overview of close-range sensing techniques frequently applied to evaluate built heritage conditions, and ii) to review the progress made regarding the fusion of multi-sensor data recorded by them. Particular emphasis is given to the integration of data from metric surveying and from recording techniques that are traditionally non-metric. The article attempts to shed light on the problems of the individual and integrated use of image-based modeling, laser scanning, thermography, multispectral imaging, ground penetrating radar, and ultrasonic testing, giving heritage practitioners a point of reference for the successful implementation of multidisciplinary approaches for built cultural heritage scientific investigations

    UAVs for the Environmental Sciences

    Get PDF
    This book gives an overview of the usage of UAVs in environmental sciences covering technical basics, data acquisition with different sensors, data processing schemes and illustrating various examples of application
    corecore