513 research outputs found

    A general Framework for Utilizing Metaheuristic Optimization for Sustainable Unrelated Parallel Machine Scheduling: A concise overview

    Full text link
    Sustainable development has emerged as a global priority, and industries are increasingly striving to align their operations with sustainable practices. Parallel machine scheduling (PMS) is a critical aspect of production planning that directly impacts resource utilization and operational efficiency. In this paper, we investigate the application of metaheuristic optimization algorithms to address the unrelated parallel machine scheduling problem (UPMSP) through the lens of sustainable development goals (SDGs). The primary objective of this study is to explore how metaheuristic optimization algorithms can contribute to achieving sustainable development goals in the context of UPMSP. We examine a range of metaheuristic algorithms, including genetic algorithms, particle swarm optimization, ant colony optimization, and more, and assess their effectiveness in optimizing the scheduling problem. The algorithms are evaluated based on their ability to improve resource utilization, minimize energy consumption, reduce environmental impact, and promote socially responsible production practices. To conduct a comprehensive analysis, we consider UPMSP instances that incorporate sustainability-related constraints and objectives

    A statistical comparison of metaheuristics for unrelated parallel machine scheduling problems with setup times

    Get PDF
    Manufacturing scheduling aims to optimize one or more performance measures by allocating a set of resources to a set of jobs or tasks over a given period of time. It is an area that considers a very important decision-making process for manufacturing and production systems. In this paper, the unrelated parallel machine scheduling problem with machine-dependent and job-sequence-dependent setup times is addressed. This problem involves the scheduling of tasks on unrelated machines with setup times in order to minimize the makespan. The genetic algorithm is used to solve small and large instances of this problem when processing and setup times are balanced (Balanced problems), when processing times are dominant (Dominant P problems), and when setup times are dominant (Dominant S problems). For small instances, most of the values achieved the optimal makespan value, and, when compared to the metaheuristic ant colony optimization (ACOII) algorithm referred to in the literature, it was found that there were no significant differences between the two methods. However, in terms of large instances, there were significant differences between the optimal makespan obtained by the two methods, revealing overall better performance by the genetic algorithm for Dominant S and Dominant P problems.FCT—Fundação para a Ciência e Tecnologia through the R&D Units Project Scope UIDB/00319/2020 and EXPL/EME-SIS/1224/2021 and PhD grant UI/BD/150936/2021

    Heuristic algorithms for the unrelated parallel machine scheduling problem with one scarce additional resource

    Full text link
    [EN] In this paper, we study the unrelated parallel machine scheduling problem with one scarce additional resource to minimise the maximum completion time of the jobs or makespan. Several heuristics are proposed following two strategies: the first one is based on the consideration of the resource constraint during the whole solution construction process. The second one starts from several assignment rules without considering the resource constraint, and repairs the non feasible assignments in order to obtain a feasible solution. Several computation experiments are carried out over an extensive benchmark. A comparative evaluation against previously proposed mathematical models and matheuristics (combination of mathematical models and heuristics) is carried out. From the results, we can conclude that our methods outperform the existing ones, and the second strategy performs better, especially for large instances. (C) 2017 Elsevier Ltd. All rights reserved.The authors are supported by the Spanish Ministry of Economy and Competitiveness, under the projects "SCHEYARD - Optimization of Scheduling Problems in Container Yards" (No. DPI2015-65895-R) and "OPTEMAC - Optimizacion de Procesos en Terminales Maritimas de Contenedores" (No. DPI2014-53665-P), all of them partially financed with FEDER funds. The authors are also partially supported by the EU Horizon 2020 research and innovation programme under grant agreement no. 731932 "Transforming Transport: Big Data Value in Mobility and Logistics". Interested readers can download contents from http://soa.iti.es, like the instances used and a software for generating further instances. Source codes are available upon justified request from the authors.Villa Juliá, MF.; Vallada Regalado, E.; Fanjul Peyró, L. (2018). Heuristic algorithms for the unrelated parallel machine scheduling problem with one scarce additional resource. Expert Systems with Applications. 93:28-38. https://doi.org/10.1016/j.eswa.2017.09.054S28389

    When the decomposition meets the constraint satisfaction problem

    Get PDF
    This paper explores the joint use of decomposition methods and parallel computing for solving constraint satisfaction problems and introduces a framework called Parallel Decomposition for Constraint Satisfaction Problems (PD-CSP). The main idea is that the set of constraints are first clustered using a decomposition algorithm in which highly correlated constraints are grouped together. Next, parallel search of variables is performed on the produced clusters in a way that is friendly for parallel computing. In particular, for the first step, we propose the adaptation of two well-known clustering algorithms ( k -means and DBSCAN). For the second step, we develop a GPU-based approach to efficiently explore the clusters. The results from the extensive experimental evaluation show that the PD-CSP provides competitive results in terms of accuracy and runtime

    Flexible jobshop scheduling problem with resource recovery constraints.

    Get PDF
    Objectives and methods of study: The general objective of this research is to study a scheduling problem found in a local brewery. The main problem can be seen as a parallel machine batch scheduling problem with sequence-dependent setup times, resource constraints, precedence relationships, and capacity constraints. In the first part of this research, the problem is characterized as a Flexible Job-shop Scheduling Problem with Resource Recovery Constraints. A mixed integer linear formulation is proposed and a large set of instances adapted from the literatura of the Flexible Job-shop Scheduling Problem is used to validate the model. A solution procedure based on a General Variable Neighborhood Search metaheuristic is proposed, the performance of the procedure is evaluated by using a set of instances adapted from the literature. In the second part, the real problem is addressed. All the assumptions and constraints faced by the decision maker in the brewery are taken into account. Due to the complexity of the problem, no mathematical formulation is presented, instead, a solution method based on a Greedy Randomize Adaptive Search Procedure is proposed. Several real instances are solved by this algorithm and a comparison is carried out between the solutions reported by our GRASP and the ones found through the procedure followed by the decision maker. The computational results reveal the efficiency of our method, considering both the processing time and the completion time of the scheduling. Our algorithm requires less time to generate the production scheduling (few seconds) while the decision maker takes a full day to do it. Moreover, the completion time of the production scheduling generated by our algorithm is shorter than the one generated through the process followed by the decision maker. This time saving leads to an increase of the production capacity of the company. Contributions: The main contributions of this thesis can be summarized as follows: i) the introduction of a variant of the Flexible Job-shop Scheduling Problem, named as the Flexible Job-shop Scheduling Problem with Resource Recovery Constraints (FRRC); ii) a mixed integer linear formulation and a General Variable Neighborhood Search for the FRRC; and iii) a case study for which a Greedy Randomize Adaptive Search Procedure has been proposed and tested on real and artificial instances. The main scientific products generated by this research are: i) an article already published: Sáenz-Alanís, César A., V. D. Jobish, M. Angélica Salazar-Aguilar, and Vincent Boyer. “A parallel machine batch scheduling problem in a brewing company”. The International Journal of Advanced Manufacturing Technology 87, no. 1-4 (2016): 65-75. ii) another article submitted to the International Journal of Production Research for its possible publication; and iii) Scientific presentations and seminars

    Energy aware hybrid flow shop scheduling

    Get PDF
    Only if humanity acts quickly and resolutely can we limit global warming' conclude more than 25,000 academics with the statement of SCIENTISTS FOR FUTURE. The concern about global warming and the extinction of species has steadily increased in recent years

    Theoretical and Computational Research in Various Scheduling Models

    Get PDF
    Nine manuscripts were published in this Special Issue on “Theoretical and Computational Research in Various Scheduling Models, 2021” of the MDPI Mathematics journal, covering a wide range of topics connected to the theory and applications of various scheduling models and their extensions/generalizations. These topics include a road network maintenance project, cost reduction of the subcontracted resources, a variant of the relocation problem, a network of activities with generally distributed durations through a Markov chain, idea on how to improve the return loading rate problem by integrating the sub-tour reversal approach with the method of the theory of constraints, an extended solution method for optimizing the bi-objective no-idle permutation flowshop scheduling problem, the burn-in (B/I) procedure, the Pareto-scheduling problem with two competing agents, and three preemptive Pareto-scheduling problems with two competing agents, among others. We hope that the book will be of interest to those working in the area of various scheduling problems and provide a bridge to facilitate the interaction between researchers and practitioners in scheduling questions. Although discrete mathematics is a common method to solve scheduling problems, the further development of this method is limited due to the lack of general principles, which poses a major challenge in this research field

    Energy Efficient Policies, Scheduling, and Design for Sustainable Manufacturing Systems

    Get PDF
    Climate mitigation, more stringent regulations, rising energy costs, and sustainable manufacturing are pushing researchers to focus on energy efficiency, energy flexibility, and implementation of renewable energy sources in manufacturing systems. This thesis aims to analyze the main works proposed regarding these hot topics, and to fill the gaps in the literature. First, a detailed literature review is proposed. Works regarding energy efficiency in different manufacturing levels, in the assembly line, energy saving policies, and the implementation of renewable energy sources are analyzed. Then, trying to fill the gaps in the literature, different topics are analyzed more in depth. In the single machine context, a mathematical model aiming to align the manufacturing power required to a renewable energy supply in order to obtain the maximum profit is developed. The model is applied to a single work center powered by the electric grid and by a photovoltaic system; afterwards, energy storage is also added to the power system. Analyzing the job shop context, switch off policies implementing workload approach and scheduling considering variable speed of the machines and power constraints are proposed. The direct and indirect workloads of the machines are considered to support the switch on/off decisions. A simulation model is developed to test the proposed policies compared to others presented in the literature. Regarding the job shop scheduling, a fixed and variable power constraints are considered, assuming the minimization of the makespan as the objective function. Studying the factory level, a mathematical model to design a flow line considering the possibility of using switch-off policies is developed. The design model for production lines includes a targeted imbalance among the workstations to allow for defined idle time. Finally, the main findings, results, and the future directions and challenges are presented

    Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

    Get PDF
    More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms
    corecore