5,873 research outputs found

    Metalogical Contributions to the Nonmonotonic Theory of Abstract Argumentation

    Get PDF
    The study of nonmonotonic logics is one mayor field of Artificial Intelligence (AI). The reason why such kind of formalisms are so attractive to model human reasoning is that they allow to withdraw former conclusion. At the end of the 1980s the novel idea of using argumentation to model nonmonotonic reasoning emerged in AI. Nowadays argumentation theory is a vibrant research area in AI, covering aspects of knowledge representation, multi-agent systems, and also philosophical questions. Phan Minh Dung’s abstract argumentation frameworks (AFs) play a dominant role in the field of argumentation. In AFs arguments and attacks between them are treated as primitives, i.e. the internal structure of arguments is not considered. The major focus is on resolving conflicts. To this end a variety of semantics have been defined, each of them specifying acceptable sets of arguments, so-called extensions, in a particular way. Although, Dung-style AFs are among the simplest argumentation systems one can think of, this approach is still powerful. It can be seen as a general theory capturing several nonmonotonic formalisms as well as a tool for solving well-known problems as the stable-marriage problem. This thesis is mainly concerned with the investigation of metalogical properties of Dung’s abstract theory. In particular, we provide cardinality, monotonicity and splitting results as well as characterization theorems for equivalence notions. The established results have theoretical and practical gains. On the one hand, they yield deeper theoretical insights into how this nonmonotonic theory works, and on the other the obtained results can be used to refine existing algorithms or even give rise to new computational procedures. A further main part is the study of problems regarding dynamic aspects of abstract argumentation. Most noteworthy we solve the so-called enforcing and the more general minimal change problem for a huge number of semantics

    On the Existence of Characterization Logics and Fundamental Properties of Argumentation Semantics

    Get PDF
    Given the large variety of existing logical formalisms it is of utmost importance to select the most adequate one for a specific purpose, e.g. for representing the knowledge relevant for a particular application or for using the formalism as a modeling tool for problem solving. Awareness of the nature of a logical formalism, in other words, of its fundamental intrinsic properties, is indispensable and provides the basis of an informed choice. One such intrinsic property of logic-based knowledge representation languages is the context-dependency of pieces of knowledge. In classical propositional logic, for example, there is no such context-dependence: whenever two sets of formulas are equivalent in the sense of having the same models (ordinary equivalence), then they are mutually replaceable in arbitrary contexts (strong equivalence). However, a large number of commonly used formalisms are not like classical logic which leads to a series of interesting developments. It turned out that sometimes, to characterize strong equivalence in formalism L, we can use ordinary equivalence in formalism L0: for example, strong equivalence in normal logic programs under stable models can be characterized by the standard semantics of the logic of here-and-there. Such results about the existence of characterizing logics has rightly been recognized as important for the study of concrete knowledge representation formalisms and raise a fundamental question: Does every formalism have one? In this thesis, we answer this question with a qualified “yes”. More precisely, we show that the important case of considering only finite knowledge bases guarantees the existence of a canonical characterizing formalism. Furthermore, we argue that those characterizing formalisms can be seen as classical, monotonic logics which are uniquely determined (up to isomorphism) regarding their model theory. The other main part of this thesis is devoted to argumentation semantics which play the flagship role in Dung’s abstract argumentation theory. Almost all of them are motivated by an easily understandable intuition of what should be acceptable in the light of conflicts. However, although these intuitions equip us with short and comprehensible formal definitions it turned out that their intrinsic properties such as existence and uniqueness, expressibility, replaceability and verifiability are not that easily accessible. We review the mentioned properties for almost all semantics available in the literature. In doing so we include two main axes: namely first, the distinction between extension-based and labelling-based versions and secondly, the distinction of different kind of argumentation frameworks such as finite or unrestricted ones

    Equivalence in Logic-Based Argumentation

    Get PDF
    International audienceThis paper investigates when two abstract logic-based argumentation systems are equivalent. It defines various equivalence criteria, investigates the links between them, and identifies cases where two systems are equivalent with respect to each of the proposed criteria. In particular, it shows that under some reasonable conditions on the logic underlying an argumentation system, the latter has an equivalent finite subsystem, called core. This core constitutes a threshold under which arguments of the system have not yet attained their final status and consequently adding a new argument may result in status change. From that threshold, the statuses of all arguments become stable

    Abduction and Dialogical Proof in Argumentation and Logic Programming

    Full text link
    We develop a model of abduction in abstract argumentation, where changes to an argumentation framework act as hypotheses to explain the support of an observation. We present dialogical proof theories for the main decision problems (i.e., finding hypothe- ses that explain skeptical/credulous support) and we show that our model can be instantiated on the basis of abductive logic programs.Comment: Appears in the Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014

    On the input/output behavior of argumentation frameworks

    Get PDF
    This paper tackles the fundamental questions arising when looking at argumentation frameworks as interacting components, characterized by an Input/Output behavior, rather than as isolated monolithical entities. This modeling stance arises naturally in some application contexts, like multi-agent systems, but, more importantly, has a crucial impact on several general application-independent issues, like argumentation dynamics, argument summarization and explanation, incremental computation, and inter-formalism translation. Pursuing this research direction, the paper introduces a general modeling approach and provides a comprehensive set of theoretical results putting the intuitive notion of Input/Output behavior of argumentation frameworks on a solid formal ground. This is achieved by combining three main ingredients. First, several novel notions are introduced at the representation level, notably those of argumentation framework with input, of argumentation multipole, and of replacement of multipoles within a traditional argumentation framework. Second, several relevant features of argumentation semantics are identified and formally characterized. In particular, the canonical local function provides an input-aware semantics characterization and a suite of decomposability properties are introduced, concerning the correspondences between semantics outcomes at global and local level. The third ingredient glues the former ones, as it consists of the investigation of some semantics-dependent properties of the newly introduced entities, namely S-equivalence of multipoles, S-legitimacy and S-safeness of replacements, and transparency of a semantics with respect to replacements. Altogether they provide the basis and draw the limits of sound interchangeability of multipoles within traditional frameworks. The paper develops an extensive analysis of all the concepts listed above, covering seven well-known literature semantics and taking into account various, more or less constrained, ways of partitioning an argumentation framework. Diverse examples, taken from the literature, are used to illustrate the application of the results obtained and, finally, an extensive discussion of the related literature is provided

    SCF2 - an Argumentation Semantics for Rational Human Judgments on Argument Acceptability

    Get PDF
    In abstract argumentation theory, many argumentation semantics have been proposed for evaluating argumentation frameworks. This paper is based on the following research question: Which semantics corresponds well to what humans consider a rational judgment on the acceptability of arguments? There are two systematic ways to approach this research question: A normative perspective is provided by the principle-based approach, in which semantics are evaluated based on their satisfaction of various normatively desirable principles. A descriptive perspective is provided by the empirical approach, in which cognitive studies are conducted to determine which semantics best predicts human judgments about arguments. In this paper, we combine both approaches to motivate a new argumentation semantics called SCF2. For this purpose, we introduce and motivate two new principles and show that no semantics from the literature satisfies both of them. We define SCF2 and prove that it satisfies both new principles. Furthermore, we discuss findings of a recent empirical cognitive study that provide additional support to SCF2
    • 

    corecore