1,420 research outputs found

    Link Prediction via Generalized Coupled Tensor Factorisation

    Full text link
    This study deals with the missing link prediction problem: the problem of predicting the existence of missing connections between entities of interest. We address link prediction using coupled analysis of relational datasets represented as heterogeneous data, i.e., datasets in the form of matrices and higher-order tensors. We propose to use an approach based on probabilistic interpretation of tensor factorisation models, i.e., Generalised Coupled Tensor Factorisation, which can simultaneously fit a large class of tensor models to higher-order tensors/matrices with com- mon latent factors using different loss functions. Numerical experiments demonstrate that joint analysis of data from multiple sources via coupled factorisation improves the link prediction performance and the selection of right loss function and tensor model is crucial for accurately predicting missing links

    A regularized nonnegative canonical polyadic decomposition algorithm with preprocessing for 3D fluorescence spectroscopy

    No full text
    International audienceWe consider blind source separation in chemical analysis focussing on the 3D fluorescence spectroscopy framework. We present an alternative method to process the Fluorescence Excitation-Emission Matrices (FEEM): first, a preprocessing is applied to eliminate the Raman and Rayleigh scattering peaks that clutter the FEEM. To improve its robustness versus possible improper settings, we suggest to associate the classical Zepp's method with a morphological image filtering technique. Then, in a second stage, the Canonical Polyadic (CP or Cande-comp/Parafac) decomposition of a nonnegative 3-way array has to be computed. In the fluorescence spectroscopy context, the constituent vectors of the loading matrices should be nonnegative (since standing for spectra and concentrations). Thus, we suggest a new NonNegative third order CP decomposition algorithm (NNCP) based on a non linear conjugate gradient optimisation algorithm with regularization terms and periodic restarts. Computer simulations performed on real experimental data are provided to enlighten the effectiveness and robustness of the whole processing chain and to validate the approach
    corecore