331 research outputs found

    Inferring the function of genes from synthetic lethal mutations

    Get PDF
    Techniques for detecting synthetic lethal mutations in double gene deletion experiments are emerging as powerful tool for analysing genes in parallel or overlapping pathways with a shared function. This paper introduces a logic-based approach that uses synthetic lethal mutations for mapping genes of unknown function to enzymes in a known metabolic network. We show how such mappings can be automatically computed by a logical learning system called eXtended Hybrid Abductive Inductive Learning (XHAIL)

    Logic Programming for Describing and Solving Planning Problems

    Full text link
    A logic programming paradigm which expresses solutions to problems as stable models has recently been promoted as a declarative approach to solving various combinatorial and search problems, including planning problems. In this paradigm, all program rules are considered as constraints and solutions are stable models of the rule set. This is a rather radical departure from the standard paradigm of logic programming. In this paper we revisit abductive logic programming and argue that it allows a programming style which is as declarative as programming based on stable models. However, within abductive logic programming, one has two kinds of rules. On the one hand predicate definitions (which may depend on the abducibles) which are nothing else than standard logic programs (with their non-monotonic semantics when containing with negation); on the other hand rules which constrain the models for the abducibles. In this sense abductive logic programming is a smooth extension of the standard paradigm of logic programming, not a radical departure.Comment: 8 pages, no figures, Eighth International Workshop on Nonmonotonic Reasoning, special track on Representing Actions and Plannin

    Nonmonotonic Learning in Large Biological Networks

    Get PDF

    Automated Error-Detection and Repair for Compositional Software Specifications

    Get PDF

    Inductive Logic Programming as Abductive Search

    Get PDF
    We present a novel approach to non-monotonic ILP and its implementation called TAL (Top-directed Abductive Learning). TAL overcomes some of the completeness problems of ILP systems based on Inverse Entailment and is the first top-down ILP system that allows background theories and hypotheses to be normal logic programs. The approach relies on mapping an ILP problem into an equivalent ALP one. This enables the use of established ALP proof procedures and the specification of richer language bias with integrity constraints. The mapping provides a principled search space for an ILP problem, over which an abductive search is used to compute inductive solutions
    corecore