
Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 54–63
http://www.floc-conference.org/ICLP-home.html

INDUCTIVE LOGIC PROGRAMMING AS ABDUCTIVE SEARCH

DOMENICO CORAPI 1 AND ALESSANDRA RUSSO 1 AND EMIL LUPU 1

1 Department of Computing
Imperial College London
180 Queen’s Gate, SW7 2AZ
London, UK
E-mail address: {d.corapi,a.russo,e.c.lupu}@ic.ac.uk

Abstract. We present a novel approach to non-monotonic ILP and its implementation
called tal (Top-directed Abductive Learning). tal overcomes some of the completeness
problems of ILP systems based on Inverse Entailment and is the first top-down ILP sys-
tem that allows background theories and hypotheses to be normal logic programs. The
approach relies on mapping an ILP problem into an equivalent ALP one. This enables the
use of established ALP proof procedures and the specification of richer language bias with
integrity constraints. The mapping provides a principled search space for an ILP problem,
over which an abductive search is used to compute inductive solutions.

Introduction

Inductive Logic Programming (ILP) [Lav94] is a machine learning technique concerned
with the induction of logic theories from positive and negative examples and has been
successfully applied to a wide range of problems [D0̆0]. Its main virtue, the highly expressive
representation language, is also the cause of its high computational complexity. Some ILP
systems attempt to efficiently find a less then perfect hypothesis by using heuristics to
navigate the search space effectively [Qui96], [Ric95]. Others focus on completeness and aim
for perfect accuracy with respect to the examples, searching the space thoroughly for an
optimal solution. Among these xhail [Ray09a] has identified Abductive Logic Programming
(ALP) [Kak92] as a means to deal with incomplete theories and provide semantics for
negation as failure (NAF) [Cla77]. xhail, like other inverse entailment (IE) based systems,
abductively derives a lower bound for the search space that is then generalised. In contrast,
Top-down ILP systems like [Mug08, Bra99, Bos94] construct the hypothesis by specialising
an overly general theory without a lower bound. However existing top-down systems limit
the expressiveness of the language and the possible outcome of the learning (e.g. concepts
learned must be observed in the training data, recursion is not allowed and the use of
negation is limited).

Abductive proof procedures have been extensively employed as part of ILP systems (e.g.
[Esp00]) or extended for inductive reasoning (e.g. [Adé95]). In contrast to these existing ap-
proaches, we propose a novel mechanism that maps an ILP problem into an equivalent ALP

Key words and phrases: Inductive Logic Programming, Abductive Logic Programming, Non-monotonic
Reasoning.

c© D. Corapi, A. Russo, and E. Lupu
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.54

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ILP AS ABDUCTIVE SEARCH 55

instance. An ILP task is thus translated into an ALP problem whose solution is translated
back into a solution of the original problem. The resulting top-down ILP system, called tal
(Top-directed Abductive Learning), offers several advantages over existing techniques. tal
is able to handle negation within the learning process and is able to learn non-monotonic
hypotheses, relying on the semantics of the underlying abductive proof procedure employed;
allows expressive language bias specifications that subsume mode declarations and can be
combined with integrity constraints; performs non-observational [Moy03] and multiple pred-
icate learning [Mal98]; and makes use of constraint solving techniques. Non-monotonic ILP
has been successfully applied to bioinformatics [Ray08] and requirement engineering [Alr09]
and as showed in [Cor09] and [Ray09b] can also be employed to perform theory revision.

In the particular case of definite theories, the tal search space includes hypotheses that
are not found by established Inverse Entailment based systems like progol [Mug95] or
alecto [Moy03] and provides a more effective solution to learning interdependent concepts
compared to the state of art ILP systems, e.g. [Kim09, Ray09a]. Though not explored in
depth here, the principled search space characterised by ALP includes abductive solutions
that represent partial inductive solutions, which can be measured in terms of some scoring
function (e.g. accuracy on the given set of examples) thereby enabling the use of heuristic
based search strategies.

The paper is organised as follows. First, we introduce the notation and relevant back-
ground concepts. We then describe the representation underlying the learning system and
discuss the learning mechanism. Then, we present through examples some of the main fea-
tures of the system, and discuss related work. We conclude with final remarks and directions
for future work.

1. Abductive and Inductive Logic Programming

ALP and ILP are extensions of logic programming. They both search for a hypothesis
that is able to account for some given evidence. ALP constructs hypotheses in the form
of ground facts. ILP systems generate rules that are able to discriminate between positive
and negative examples that represent the training data. In general, ILP is regarded as a
machine learning technique and used when a certain knowledge base must be enriched with
rules that are also able to classify new examples. We assume in the following that the reader
is familiar with first-order logic and logic programming [Llo87]. Following Prolog [Sha94]
conventions, predicates, terms and functions are represented with an initial lower case letter
and variables are represented with an initial capital letter.

Definition 1.1. An ALP task is defined as 〈g, T,A, I〉 where T is a normal logic program,
A is a set of abducible facts, I is a set of integrity constraints and g is a ground goal.
∆ ∈ ALP 〈g, T,A, I〉 is an abductive solution for the ALP task 〈g, T,A, I〉, if ∆ ⊆ A, T ∪∆
is consistent, T ∪∆ |= g and T ∪∆ |= I. ALP 〈g, T,A, I〉 denotes the set of all abductive
solutions for the given ALP task.

Note that the abductive task, as defined, deals with ground goals, thus being a specific
case of the setting in [Kak92]. The notion of entailment is not fixed since, as discussed later,
the approach proposed in this paper is not committed to a particular semantics.

Definition 1.2. An ILP task is defined as 〈E,B, S〉 where E is a set of ground positive or
negative literals, called examples, B is a background theory and S is a set of clauses called
language bias. The theory H ∈ ILP 〈E,B, S〉, called hypothesis, is an inductive solution

56 D. CORAPI, A. RUSSO, AND E. LUPU

for the task 〈E,B, S〉, if H ⊆ S, H is consistent with B and B ∪ H |= E. ILP 〈E,B, S〉
denotes the set of all inductive solutions for the given task.

We consider the case where B and H are normal logic programs and E is a set of
ground literals (with positive and negative ground literals representing positive and negative
examples, respectively).

The space of possible solutions is inherently large for all meaningful applications so dif-
ferent levels of constraints are imposed to restrict the search for hypotheses.When possible,
besides the background knowledge about the modelled world, some a priori knowledge on
the structure of the hypothesis can be employed to impose an instance-specific language
bias S. Mode declarations are a common tool to specify a language bias.

Definition 1.3. A mode declaration is either a head or body declaration, respectively
modeh(s) and modeb(s) where s is called a schema. A schema s is a ground literal containing
placemarkers. A placemarker is either ’+type’ (input), ’−type’ (output), ’#type’ (ground)
where type is a constant.

Given a schema s, s∗ is the literal obtained from s by replacing all placemarkers with
different variables X1, ..., Xn; type(s∗) denotes the conjunction of literals t1(X1), ..., tn(Xn)
such that ti is the type of the placemarker replaced by the variable Xi; ground(s∗) is the list
of the variables that replace the ground placemarkers in s, listed in order of appearance left
to right. Similarly inputs(s∗) and outputs(s∗) are, respectively, the lists of the variables
replacing input and output placemarkers in s. For example, for mode declaration m3 in
Sec. 3, s = even(+nat), s∗ = even(X), type(s∗) = nat(X), outputs(s∗) = ground(s∗) = [],
inputs(s∗) = [X].

A rule r is compatible with a set M of mode declarations iff (a) there is a mapping from
each head/body literal l in r to a corresponding head/body declaration m ∈M with schema
s and l is subsumed by s∗; (b) each output placemarker is bound to an output variable; (c)
each input placemarker is bound to an output variable appearing in the body before or
to a variable in the head; (d) each ground placemarker is bound to a ground term; (e) all
variables and terms are of the corresponding type. The use of head variables in output
mode declarations is not discussed here for space constraints.

In the next sections the language bias S is specified in terms of a set M of mode
declarations, and denoted as s(M). Each mode declaration m ∈ M is uniquely identified
by a label idm, called mode declaration identifier.

2. TAL

An ILP problem can be seen as a search for a hypothesis where we choose how many
rules to use and for each rule which predicates to use in the head and in each of the
body conditions and how many body conditions are used. Additionally, different choices
are possible on how arguments are unified or grounded. In this section, we present the
mapping of a set M of mode declarations into a top theory > that constrains the search by
imposing a generality upper bound on the inductive solution. An abductive proof procedure
is instantiated on this top theory together with the background theory. The abductive
derivation identifies the heads of the rules (of a hypothesis solution) and the conditions
needed to cover positive examples and exclude negative examples, ensuring consistency.
The abductive solution is guaranteed to have a corresponding inductive hypothesis H that
is a solution with respect to the examples.

ILP AS ABDUCTIVE SEARCH 57

2.1. Hypothesis representation

We use a list-based representation to encode an inductive solution, as a set of rules,
into a set of facts by mapping each literal in the clauses into instances of its corresponding
mode declaration. This allows the representation of rules as abducible facts. An inductive
hypothesis H ⊆ s(M) is composed of a set of rules {r1, ..., rn}. Each rule r is associated with
an output list, i.e. an ordered list of the variables in r that replace output placemarkers in
body literals or input placemarkers in the head. The output identifier associated with each
of these variables is the position of the variable in the output list. Given a set M of mode
declarations, each rule r of the form l1 ← l2, ..., ln, compatible with M , can be represented
as an ordered list l = [l1, l2, ..., ln] where each li is a tuple (idm, [c1, ..., cp], [o1, ..., oq]); idm
is the identifier of the mode declaration in M that li maps to; each cj is a ground term
replacing a ground placemarker in the mode declaration identified by idm; each ok is an
output identifier and encodes the fact that the kth input variable in li (in order of appearance
left to right) unifies with the variable indicated by ok. We refer to this transformation of a
rule r into a list l as the function l = tM (r).

Example 2.1. Given the following three mode declarations M = {m1 : modeh(p(+any)),
m2 : modeb(q(+any,#any)), m3 : modeb(q(+any,−any))} the rule r = p(X) ←
q(X,Y), q(Y, a), compatible with M , is associated to the output list [X,Y] where X re-
places the input placemarker in m1 and Y replaces the output placemarker in m3. The
output identifier of X is the integer 1 and the output identifier of Y is 2. r is represented as
the list l = [(m1, [], []), (m3, [], [1]), (m2, [a], [2])] = tM (r). The first element of the list asso-
ciates the head p(X) to mode declaration m1. The second element associates the condition
q(X,Y) to mode declaration m3 and links the first and only input variable to X. The third
element of the list associates the condition q(Y, a) to mode declaration m2, links the input
variable to Y and instantiates the second argument to a.

It is easy to see that every possible rule within s(M) can be encoded according to this
representation. Also, it is always possible to derive a unique rule r from a well-formed list
l. We refer to this transformation as r = tM

−1(l).
Rules in a final inductive hypothesis theory H, are associated with a unique rule identi-

fier rid, an integer from 1 to the maximum number, MNR, of rules allowed in H. The abduc-
tive representation ∆ = TM (H) of an hypothesis theory H, is the set of facts rule(rid, l) ∈ ∆,
one for each rule r ∈ H, such that (a) rid is the rule identifier of r; and (b) l = tM (r). The
inverse transformation H = TM

−1(∆) is similarly defined.

2.2. Mapping mode declarations into an abductive top theory

The first computational step in tal is the generation of a top theory > from a set M
of mode declarations, as defined below, where prule and rule are abducible predicates.

Definition 2.2. Given a set M of mode declarations, > = f(M) is constructed as follows:

• For each head declaration modeh(s), with unique identifier idm, the following clause
is in >

s∗ ← type(s∗), prule(RId, [idm, ground(s∗), []]), rule id(RId),
body(RId, inputs(s∗), [idm, ground(s∗), []])

(2.1)

• The following clause is in >
body(RId, , Rule)← rule(RId,Rule) (2.2)

58 D. CORAPI, A. RUSSO, AND E. LUPU

• For each body declaration modeb(s), with identifier idm the following clause is in >
body(RId, Inputs,Rule)← append(Rule, [(idm, ground(s∗), Links)], NRule),

prule(RId,NRule), link variables(inputs(s∗), Inputs, Links), s∗,
type(s∗), append(Inputs, outputs(s∗), Outputs), body(RId,Outputs,NRule)

(2.3)

As previously defined, s∗ contains newly defined variables instead of placemarkers in
the schema s. Since the abductive derivation is instantiated on B ∪ >, for all predicates
appearing in head mode declarations the procedure can both use the partial definition in B
or learn a new clause, unifying the current goal with s∗. s∗ can also be a negative condition
corresponding to a body mode declaration whose schema is a negative literal. rule id(RId)
is true whenever 1 ≤ RId ≤MNR.

body(r, i, c) keeps track of the rules that are built and provides the choice of ex-
tending a partial rule (rule (2.3)) or delivering a rule as final (rule (2.2)). The
first argument is the rule identifier; the second is the list of the outputs collected
from the literals already added to the rule; the third is the list representing a par-
tial rule. link variables([a1, ..., am], [b1, ..., bn], [o1, ..., om]) succeeds if for each element
in the first list ai, there exist an element in the second list bj such that ai uni-
fies with bj and oi = j. append(l1, l2, l3) has the standard Prolog definition [Sha94].
The abducible prule is used to control the search through integrity constraints. For
example, if we are not interested in searching for rules in which two mode declara-
tions i and j appear together in the body, then an integrity constraint of the type
← prule(, R1),member((i, ,), R1),member((j, ,), R1) can be added to I to prune such
solutions in the abductive search.

In order to maintain the well-formedness of our rule’s encoding and avoid trivial states
of the search, a set of fixed integrity constraints If (omitted for brevity) is used in the
abductive search.

2.3. Learning

Definition 2.3. Given an ILP task 〈E,B,M〉, H = TM
−1(∆) is an inductive solution

derived by tal iff ∆ ∈ ALP 〈g,B∪>, I, A〉 where > = f(M), g is the negated conjunction of
the literals in E, I is a set of integrity constraints that includes If and A = {rule/2, prule/2}

Procedurally, an initial translation produces the ALP task introducing the new the-
ory >. An abductive proof procedure derives the abductive hypothesis ∆ that is then
transformed into the final inductive solution.

Theorem 2.4. Let us consider a theory B, a set M of mode declarations, a conjunction of
(possibly negated) literals E, and a set H of rules, such that H ⊆ s(M). Then B∪H `SLDNF

E iff B ∪ > ∪∆ `SLDNF E, where > = f(M) and ∆ = TM (H)

As corollaries of Theorem (2.4), it is possible to establish soundness and completeness
of our tal system based on the properties of the underlying abductive system and on the
soundness and completeness of SLDNF w.r.t. the semantics.

3. Example

The following is a modified version of the well-known example proposed in [Yam97],
where even and odd numbers are both target concepts and learnt from three examples of
odd numbers. The even predicate is partially defined, i.e. base case even(0).

ILP AS ABDUCTIVE SEARCH 59

even(X)← prule(RId, [(m1, [], []]),
nat(X), rule id(RId),
body(RId, [X], [(m1, [], []])

odd(X)← prule(RId, [(m2, [], []]),
nat(X), rule id(RId),
body(RId, [X], [(m2, [], []])

body(RId, , Rule)← rule(RId,Rule)

body(RId, Inputs,Rule)←
append(Rule, [(m3, [], Links)], NRule),
prule(RId,NRule),
link variables(X, Inputs, Links),
even(X), nat(X), body(RId, Inputs,NRule)

body(RId, Inputs,Rule)←
append(Rule, [(m4, [], Links)], NRule),
prule(RId,NRule),
link variables(X, Inputs, Links),
odd(X), nat(X), body(RId, Inputs,NRule)

body(RId, Inputs,Rule)←
append(Rule, [(m5, [], Links)], NRule),
prule(RId,NRule),
link variables(X, Inputs, Links), X = s(Y),
nat(X), nat(Y), append(Inputs, [Y], Outputs),
body(RId,Outputs,NRule)

Figure 1: Top theory > for the even-odd example.

B =

even(0)
nat(0)
nat(s(X))←nat(X)

M =

m1 : modeh(even(+nat))
m2 : modeh(odd(+nat))
m3 : modeb(even(+nat))
m4 : modeb(odd(+nat))
m5 : modeb(+nat = s(−nat))

E =

odd(s(s(s(s(s(0))))))
not odd(s(s(0)))
not odd(s(s(s(s(0)))))

We assume the set I ′ of integrity constraints to restrict the language bias, which es-
tablishes that rules whose head is even(X) or odd(X) cannot have in the body even(X)
or odd(X) literals. The final I is the union of I ′ and If . The set M of mode declarations
is transformed into the top theory > given in Figure 1. The instantiated abductive task
〈E,B∪>, I, {rule/2, prule/2}〉 accepts then as a possible solution the set ∆ translated into
the inductive hypothesis H as follows:1

∆ =

{
rule(1, [(m2, [], []), (m5, [], [1]), (m3, [], [2])])
rule(2, [(m1, [], []), (m5, [], [1]), (m4, [], [2])])

H =

{
odd(X)← X = s(Y), even(Y)
even(X)← X = s(Y), odd(Y)

In the abductive search, the standard Prolog selection rule is adopted that selects clauses
in order of appearance in the program. Since no head of clause in B unifies with the
positive examples, the derivation uses one of the rules defined in >. The selection of the
body literal from the rule results in four derivation branches in the search tree, one for each
of the four “body” clauses whose head unifies with it. A partial abductive hypothesis is
generated, equivalent to the rule odd(X)← X = s(Y), even(Y). At this point, the condition
even(s(s(s(s(0))))), part of the current goal, is not entailed by B so one of the rules in >
is used. It can be seen as an “artificial” example conditional to the partial hypothesis. The
derivation results in the creation of an additional rule in the final hypothesis that defines
the predicate even. The computation continues, thus excluding inconsistent hypotheses and
those that entail also negative examples resulting in the final ∆. Partial rules are derived
and used throughout the search so they can be referenced to define concepts that depend
on them. It is also interesting to observe that the search is guided by the examples and
thus only significant solutions are explored. The inductive solution H for this inductive
problem is either not found by other ILP systems like progol, or derived after a “blind”

1prule abducibles are omitted for brevity.

60 D. CORAPI, A. RUSSO, AND E. LUPU

search as discussed in Sec. 5. The learning is non-observational (i.e. the even predicate is
not observed in the examples). TAL is also able to learn the base case of the recursion. If
the fact even(0) is deleted from B and the mode declaration modeh(even(#nat)) is added
to M , TAL returns three solutions with the same set of examples: the first has the same
definition of odd as in H and defines even(s(s(s(s(0))))) as base case, the second and the
third are the same as in H with even(s(s(0))) and even(0) respectively as base cases.

4. A case study

We employ a case study to compare tal with the only other system capable of solving
the same class of ILP problems xhail2. The following case study, taken from [Ray09a],
represents a simple model of metabolic regulation for the bacterium E. coli and includes a
formulation of the Event Calculus [Sha99] formalism. The target predicate happens is used
to characterise the bacterium feeding mechanism based on the availability of sugar. See
[Ray09a] for a more extensive explanation of the example.

B =

[Type definitions and Event Calculus axioms]
initiates(add(G), available(G), T)←sugar(G), timex(T)
terminates(use(G), available(G), T)←sugar(G), timex(T)
happens(add(lactose), 0)
happens(add(glucose), 0)

I =

{
← happens(use(G), T),
not holdsAt(available(G), T)

E =

holdsAt(available(lactose), 1)
holdsAt(available(lactose), 2)
not holdsAt(available(lactose), 3)

M =

m1 : modeh(happens(use(#sugar),+timex))
m2 : modeb(holdsAt(#fluent,+timex))
m3 : modeb(not holdsAt(#fluent,+timex))

The transformations in Definition 2.2 are applied to the given ILP instance. The ab-
ductive solution for the corresponding ALP problem is:

∆ =

{
rule(1, [(m1, [glucose], []), (m2, [available(glucose)], [1])])
rule(2, [(m1, [lactose], []), (m2, [available(lactose)], [1]), (m3, [available(glucose)], [1])])

equivalent to the inductive hypothesis:

H =

{
happens(use(glucose), T)← holdsAt(available(glucose), T)
happens(use(lactose), T)← holdsAt(available(lactose), T), not holdsAt(available(glucose), T)

As discussed in [Ray09a], xhail generates Kernel Sets that serve as lower bound for
the final hypothesis, through iterations of increasing in size abductive explanations until a
satisfactory solution is found. Intuitively, a Kernel Set is computed in two phases. A first
abductive phase finds the set ∆ of the head of the rules in the Kernel Set and a second
deductive phase constructs the body of the rules by computing all the ground instantiations
of the body mode declarations that are implied by B ∪ ∆. Kernel Sets are generalised in
a final inductive phase. Instead, tal explores candidate solutions in a top-down manner,
backtracking whenever the current solution leads to failure in the abductive derivation. The

2Relying on the results reported in [Ray09a], the computation time for this study appears to differ by
one order of magnitude. [Ray09a] reports that a prototype xhail implementation took a couple of seconds
to compute H on a 1.66 GHz Centrino Duo Laptop PC with 1 GB of RAM, while tal took 30 ms to find
H and 180 ms to explore the whole space of hypotheses limited to two clauses with at most two conditions
on a 2.8 GHz Intel Core 2 Duo iMac with 2 GB of RAM. Unfortunately, xhail is not publicly available so
we are not able to perform an empirical comparison of the performance of the two systems.

ILP AS ABDUCTIVE SEARCH 61

partial hypotheses are already in their final form and are implicitly tested for correctness
whenever a new example is selected in the abductive derivation.

5. Discussion and related work

We have implemented tal in YAP Prolog [Cos08] using a customised implementation
of the asystem [Kak01] that integrates the sldnfa proof procedure with constraint solving
techniques. tal has been tested on various non-monotonic ILP problems like the examples
proposed in [Kim09], [Alr09] and [Ray07]. It has also been used to perform Theory Revision
[Wro96], i.e. to change, according to some notion of minimality, an existing theory [Cor09].
This work is is motivated by the project [Ban08] that seeks to exploit the proposed approach
in the context of learning privacy policies from usage logs. We performed preliminary
experiments in this direction applying an extended version of tal to the Reality Mining
dataset [Eag06] where examples of refused calls were used to learn general rules. A score
based on accuracy and complexity of the rules was employed to prune the search space.

The idea of a top theory as bias for the learning has been initially introduced in toplog
[Mug08], which performs deductive reasoning on the background knowledge extended with
the top theory. Candidate hypotheses are derived from single positive examples and then
the best ones are selected after a hill climbing search. spectre [Bos94] also requires a
user-provided overly general theory that is specialised by unfolding clauses until no neg-
ative examples are covered. hyper [Bra99], specialises an overly general theory, deriving
rules that are subsumed by those in the theory. Thus the number of rules in the final hy-
potheses cannot increase. foil and related approaches like [Coh94] perform an informed hill
climbing search. These systems are not fully non-monotonic since they disallow negation
in the background knowledge or in the hypotheses. In contrast to toplog, tal generates
candidate hypotheses also considering negative examples, excluding a priori solutions that
entail some of the negative examples. In general, we regard tal a generalisation of other
top-down ILP systems. Constraining it to consider only positive examples, the background
theory and mode declarations being definite, would result in the same rule generation mech-
anism as toplog. Different search strategies can be easily implemented by modifying the
abductive procedure. Partial solutions can be associated with a score with respect to the
examples (e.g. the sum of entailed examples over the total). This would enable the use of
informed search techniques and strategies like, for instance, hill climbing or beam search
that can be used to prune the space, exploring the most promising solutions. Similarly to
toplog [Mug08], our approach can also be applied directly to a grammar based language
bias specification, instead of generating the top theory from mode declarations. Systems
based on Inverse Entailment (IE), compute a bottom clause, or set of clauses (e.g. the
Kernel Set) that constrains the search space from the bottom of the generality lattice.
For problems dealing with definite theories our system manages to solve a wider class of
problems than progol, since one single example can generate more than one rule in H.
imparo [Kim09] solves a class of problems whose solutions are not found by other IE based
systems, namely connected theories where body conditions are abductively proved from the
background theory. These problems, that are solved in Imparo by applying Induction on
Failure (IoF), can also be solved by tal, as shown in the example given in this paper. The
IoF mechanism is in our system embedded in the abductive search that always includes in
the search space the generation of a new rule whenever a condition is not entailed by the
current theory. xhail can find hypotheses computed under IoF by exploring non-minimal

62 D. CORAPI, A. RUSSO, AND E. LUPU

abductive explanations but the search is not guided by the background theory and a partial
hypothesis3. This highlights another advantage of tal: the computation of clause heads
in the hypothesis is naturally interleaved with the generation of the body and it does not
take place in a separate phase as in Imparo and xhail. Moreover, all rules are constructed
concurrently and their partial definitions can be used. [Kak00] propose a system for induc-
tive learning of logic programs that compared to tal is limited to observational predicate
learning. Finally, [Adé95] introduces induction in the abductive sldnfa procedure, defining
an extended proof procedure called sldnfai. In contrast, tal defines a general method-
ology and does not commit to a particular proof procedure. Moreover sldnfai does not
allow a fine specification of the language bias, makes no use of constraints on the generated
hypotheses and is limited to function-free definite clauses.

6. Conclusions and further work

We have presented a novel approach to non-monotonic ILP that relies on the trans-
formation of an ILP task into an equivalent ALP task. We showed through an example
how the approach is able to perform non-observational and multi-predicate learning of nor-
mal logic programs by means of a top-down search guided by the examples and abductive
integrity constraints where a partial hypothesis is used in the derivation of new rules. In
contrast, techniques based on IE perform a blind search or are not able to derive a solu-
tion. The mapping into ALP offers several advantages. Soundness and completeness can
be established on the basis of the abductive proof procedure employed. Constraint solving
techniques and optimised ALP implementations can be used and abductive integrity con-
straints on the structure of the rule can be employed. Furthermore, the search space makes
use of partial hypotheses that allows the use of informed search techniques, thus providing
a general framework that can scale to learning problems with large datasets and theories.
We obtained promising result in this direction and we are currently evaluating the use of
heuristics and informed search techniques. We plan to investigate the properties of the
mapping and the relationships with the search space of other ILP techniques.

Acknowledgements

The authors are grateful to Krysia Broda, Robert Craven, Tim Kimber, Jiefei Ma,
Oliver Ray and Daniel Sykes for their useful discussions. This work is funded by the UK
EPSRC (EP/F023294/1) and supported by IBM Research as part of their Open Collabo-
rative Research (OCR) initiative.

References

[Adé95] Hilde Adé and Marc Denecker. Ailp: Abductive inductive logic programming. In IJCAI, pp. 1201–
1209. 1995.

[Alr09] Dalal Alrajeh, Jeff Kramer, Alessandra Russo, and Sebastián Uchitel. Learning operational re-
quirements from goal models. In ICSE, pp. 265–275. 2009.

[Ban08] A. K. Bandara, B. A. Nuseibeh, and B. A. Price et al. Privacy rights management for mobile
applications. In 4th Int. Symp. on Usable Privacy and Security. Pittsburgh, 2008.

3In the “odd/even” example the only way for xhail to find the correct solution is to extend the minimal
abductive solution odd(s(s(s(s(s(0))))) with even(s(s(s(s(0)))) and even(s(s(s(s(s(s(0)))))) that have to be
somehow chosen from a set of infinite candidates.

ILP AS ABDUCTIVE SEARCH 63

[Bos94] H. Boström and P. Idestam-Almquist. Specialization of logic programs by pruning SLD-trees.
GMD-Studien, vol. 237. Gesellschaft für Mathematik und Datenverarbeitung MBH, 1994.

[Bra99] Ivan Bratko. Refining complete hypotheses in ILP. In ILP ’99: 9th Workshop on Inductive Logic
Programming, pp. 44–55. Springer-Verlag, London, UK, 1999.

[Cla77] Keith L. Clark. Negation as failure. In Logic and Data Bases, pp. 293–322. 1977.
[Coh94] William W. Cohen. Grammatically biased learning: Learning logic programs using an explicit

antecedent description language. Artif. Intell., 68(2):303–366, 1994.
[Cor09] D. Corapi, O. Ray, A. Russo, A.K. Bandara, and E.C. Lupu. Learning rules from user behaviour.

In 5th Artif. Intell. Applications and Innovations (AIAI 2009). Thessaloniki, Greece, 2009.
[Cos08] Vı́tor Santos Costa, Lúıs Damas, Rogério Reis, and Rúben Azevedo. Yap user’s manual, 2008.

[D0̆0] Sas̆o Dz̆roski. Relational data mining applications: an overview. pp. 339–360, 2000.
[Eag06] Nathan Eagle and Alex Pentland. Reality mining: sensing complex social systems. Personal and

Ubiquitous Computing, 10(4):255–268, 2006.
[Esp00] Floriana Esposito, Giovanni Semeraro, Nicola Fanizzi, and Stefano Ferilli. Multistrategy theory

revision: Induction and Abduction in INTHELEX. Mach. Learn., 38(1-2):133–156, 2000.
[Kak92] Antonis C. Kakas, Robert A. Kowalski, and Francesca Toni. Abductive logic programming. J. Log.

Comput., 2(6):719–770, 1992.
[Kak00] Antonis C. Kakas and Fabrizio Riguzzi. Abductive concept learning. New Generation Comput.,

18(3):243–, 2000.
[Kak01] C. Kakas, Antonis, Bert Van Nuffelen, and Marc Denecker. A-system : Problem solving through

abduction. In 17th International Joint Conference on Artif. Intell., vol. 1, pp. 591–596. IJCAI, inc
and AAAI, Morgan Kaufmann Publishers, Inc, 2001.

[Kim09] Tim Kimber, Krysia Broda, and Alessandra Russo. Induction on failure: Learning connected horn
theories. In LPNMR, pp. 169–181. 2009.

[Lav94] N. Lavrač and S. Džeroski. Inductive Logic Programming: Techniques and Applications. 1994.
[Llo87] John W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer, 1987.
[Mal98] D. Malerba, F. Esposito, and F. A. Lisi. Learning recursive theories with ATRE. In H. Prade (ed.),

Proc. of the 13th European Conference on Artif. Intell., pp. 435–439. John Wiley & Sons, 1998.
[Moy03] S Moyle. An investigation into theory completion techniques in inductive logic. Ph.D. thesis, Uni-

versity of Oxford, 2003.
[Mug95] S. Muggleton. Inverse entailment and Progol. New Generation Computing J., 13:245–286, 1995.
[Mug08] Stephen Muggleton, José Carlos Almeida Santos, and Alireza Tamaddoni-Nezhad. Toplog: Ilp

using a logic program declarative bias. In Maria Garcia de la Banda and Enrico Pontelli (eds.),
ICLP, LCNS, vol. 5366, pp. 687–692. Springer, 2008.

[Qui96] J. Ross Quinlan. Learning first-order definitions of functions. J. Artif. Intell. Res. (JAIR), 5:139–
161, 1996.

[Ray07] Oliver Ray. Inferring process models from temporal data with abduction and induction. In 1st
Workshop on the Induction of Process Models. 2007.

[Ray08] Oliver Ray and Chris Bryant. Inferring the function of genes from synthetic lethal mutations.
In 2nd Int. Conf. on Complex, Intelligent and Software Intensive Systems, pp. 667–671. IEEE
Computer Society, 2008.

[Ray09a] Oliver Ray. Nonmonotonic abductive inductive learning. In Journal of Applied Logic, vol. 7, pp.
329–340. 2009.

[Ray09b] Oliver Ray, Ken Whelan, and Ross King. A nonmonotonic logical approach for modelling and
revising metabolic networks. In 3rd Int. Conf. on Complex, Intelligent and Software Intensive
Systems. IEEE Computer Society, 2009.

[Ric95] Bradley L. Richards and Raymond J. Mooney. Automated refinement of first-order horn-clause
domain theories. Machine Learning, 19(2):95–131, 1995.

[Sha94] Leon Shapiro and Ehud Y. Sterling. The Art of PROLOG: Advanced Programming Techniques.
The MIT Press, 1994.

[Sha99] Murray Shanahan. The event calculus explained. LNCS, 1600, 1999.
[Wro96] Stefan Wrobel. First order theory refinement. In Luc De Raedt (ed.), Advances in Inductive Logic

Programming, pp. 14 – 33. IOS Press, 1996.
[Yam97] Akihiro Yamamoto. Which hypotheses can be found with inverse entailment? In ILP, pp. 296–308.

1997.

