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Abstract. This paper introduces a new open-source implementation of
a nonmonotonic learning method called XHAIL and shows how it can be
used for abductive and inductive inference on metabolic networks that
are many times larger than could be handled by the preceding proto-
type. We summarise several implementation improvements that increase
its efficiency and we introduce an extended form of language bias that
further increases its usability. We investigate the system’s scalability in
a case study involving real data previously collected by a Robot Scientist
and show how it led to the discovery of an error in a whole-organism
model of yeast metabolism.
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1 Introduction

The task of extending metabolic models to make them consistent with observed
data is an important application of ILP which has been tackled in projects such as
the Robot Scientist [7, 6]. The task of revising (as opposed to merely extending)
such models is a nonmonotonic ILP problem addressed by methods like eXtended
Hybrid Abductive Inductive Learning (XHAIL) [15, 16, 14]. To date, ILP has been
applied to relatively small pathways, such as the AAA pathway used in the early
Robot Scientist work [7], while numerical methods have been applied to much
larger models, like the ABER model used in the subsequent work [6]. While a
previous XHAIL prototype was able to successfully revise the pathway-specific
AAA model in a variety of ways [16, 14], scalability limitations have prevented
its application to the whole-organism ABER model until now.

This paper introduces a new implementation of XHAIL which scales from
AAA to ABER. Our main contributions are to overhaul the implementation (from
a single-threaded Prolog program to a multi-threaded Java application), to
upgrade the inference engine (from the outdated Smodels system to the state-
-of-the-art Clasp solver), to support an extended language bias (which allows
the weighting of both examples and mode declarations), to revise the logical
encoding of metabolism (to better handle cellular compartments), to explore
the scalability of the system (with respect to the number of examples, reactions
and constraints), to make the new system open-source 1 (under GPLv3), and to
use our system to find an error in ABER (and in its influential precursor).

1 https://github.com/cathexis-bris-ac-uk/XHAIL
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2 Metabolic Network Modelling

Metabolic networks are collections of interconnected biochemical reactions that
mediate the synthesis and breakdown of essential compounds within the cell [8].
These reactions are catalysed by specific enzymes whose amino acid sequences
are specified in regions of the host genome called Open Reading Frames (ORFs).
Particular pathways within a network are controlled by regulating the expression
of those genes on which the associated ORFs are located.

Much effort has been invested in the modelling of metabolic networks, leading
to numerous qualitative reaction databases (such as the Kyoto Encyclopaedia
of Genes and Genomes – KEGG [12]) and quantitative in-silico models (such as
iFF708 [1]). Such resources fall into two classes: highly detailed pathway-specific
models of small reaction sequences called pathways (often curated by hand);
and less detailed whole-organism models that synthesise information about all
known reactions (typically by computerised data mining of the literature).

These complementary trends are exemplified by a project known as the Robot
Scientist [7, 6] which integrates laboratory robotics and AI to automate high
throughput growth experiments with the yeast S. cerevisiæ. The first phase of
this project [7] used a pathway-specific model called AAA (of Aromatic Amino
Acid bio-synthesis) while the second phase [6] used a whole-organism model
called ABER (made at Aberystwyth University), as described below.

2.1 The AAA network

The AAA model is shown in Fig. 1. Nodes in the graph denote metabolites
involved in the conversion of the start compound Glycerate-2-phosphate to the
amino acids Tyrosine, Phenylalanine, and Tryptophan. Arrows denote chemical
reactions from substrates to products. For convenience, nodes are annotated
with their Kyoto Encyclopaedia of Genes and Genomes (KEGG) identifiers (in
red); and arrows are labelled with 4-part Enzyme Commission (EC) numbers
(in blue) and a set of ORF identifiers (in green).

ORFs appearing above each other denote iso-enzymes which all independently
catalyse the same reaction (e.g., YHR137W and YGL202W), while ORFs appearing
side by side denote enzyme-complexes built from several gene products that must
be present simultaneously (e.g., YER090W and YKL211C). The dashed brown line
shows the inhibition of an enzyme (YBR249C) by a metabolite (C00082). All
reactions take place in the cell cytosol using nutrients imported from the growth
medium; and they proceed at a standard rate, except for the import of two
underlined compounds (C01179 and C00166), which take longer.

Although this model is based on data in KEGG, its authors manually included
extra information from the literature relevant to growth experiments performed
by the Robot Scientist. As well as modelling slow metabolite imports, enzyme-
-inhibitions and enzyme-complexes, it includes more details than KEGG about
the role of Indole as an intermediate compound in the final step of Tryptophan
synthesis and it ensures all reactions are charge-balanced through the addition
of protons denoted by the (non-KEGG) identifier C00000.
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Fig. 1. Pathway-specific metabolic network represented by the AAA model.
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Fig. 2. Whole-organism metabolic map of yeast S. cerevisiæ with AAA pathway in
black (adapted from an image at http://www.genome.jp c© Kanehisa Laboratories).
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2.2 The ABER network

The AAA pathway is just a tiny part of yeast’s metabolism. Fig. 2 shows how
the AAA pathway (of about 20 reactions) fits into the overall metabolic map
(of about 1000 reactions). This shows the extent of the ABER model, which its
authors obtained by augmenting the reactions from an earlier genome-wide flux
balance model, called iFF708, with reactions from KEGG in order to provide a
model with enough detail to allow the presence of essential metabolites to be
logically inferred from the starting compounds.

Although ABER is much larger, it lacks some of the finer details of AAA, such
as slow metabolite imports, enzyme inhibitions, enzyme complexes and some
intermediate reaction steps (as shown in Fig. 5). By contrast, ABER distinguishes
reactions occurring in a separate mitochondrial compartment from those in the
cytosol (along with membrane reactions that interface between them and the
external growth medium). The ABER model also comes with a clearly defined
set of ubiquitous and essential compounds.

2.3 A declarative model of metabolism

To reason about the above networks we translated each graph into a set of
ground facts in a common ASP representation with a unique identifier for every
metabolite, ORF, reaction, compartment and enzyme complex. Facts of the form
component(orf,cplx) and catalyst(rctn,cplx) state that an ORF orf is part of a
complex cplx which catalyses the reaction rctn; while substrate(mtbl,cmpt,rctn)

or product(mtbl,cmpt,rctn) state that a metabolite mtbl (located in a particular
compartment cmpt) is a substrate or product of the reaction rctn.

To account for the fact that some reactions are more certain than others,
our representation allows reactions to be flagged as assertable (i.e. initially out
of the model, but can be included) or retractable (i.e. initially in the model,
but can be excluded). This is done by declaring a set of facts of the form
assertable_reaction(rctn) or retractable_reaction(rctn) which allow us to
consider likely reactions from known reference pathways for inclusion within
or exclusion from a revised network for a specific organism.

Facts of the form inhibitor(cplx,mtbl,cmpt) state that (when available in
high concentrations as an additional nutrient) the presence of metabolite mtbl

in a compartment cmpt inhibits an enzyme complex cplx. Facts of the form
start_compound(mtbl,cmpt) and ubiquitous_compound(mtbl,cmpt) indicate that
mtbl is always present in cmpt; while essential_compound(mtbl,cmpt) states that
the presence of mtbl in cmpt is essential for cell growth.

We also encode the experimental results which indicate how yeast strains
from which certain ORFs have been knocked out proliferate over a period of
two days in growth media to which particular nutrients have been added. Each
such experiment is given a unique identifier expt and the conditions are recorded
by (zero or more) facts of the form additional_nutrient(expt,mtbl,cmpt) and
knockout(expt,orf). The outcome on some day day is given by a literal of the
form predicted_growth(expt,day) or not predicted_growth(expt,day).



5

At the heart of our approach is a set of rules for deciding which metabolites
are in which compartments on which days in which experiments. These were
taken from [16, 14] subject to a few changes: we used predicate predicted_growth

in our examples instead of using another predicate observed_growth forced to
have the same extent by integrity constraints with classical negation; we made
a distinction between ubiquitous_compound and start_compound; we added an
extra argument into additional_nutrient, essential_compound and inhibitor to
localise them all to a given compartment; we added an extra argument into
inhibited to localise its effect to a given day 2; and we modelled slow imports
by inhibiting the relevant import reactions on the first day of each experiment.
As these changes are small, we refer the reader to [16, 14] for more details.

In brief, predicting the outcome of a given experiment amounts to checking
if all essential metabolites are present in their required compartments. Apart
from start compounds, ubiquitous compounds and additional nutrients, the only
way a metabolite can be in a compartment is if it gets there as the product of
an active reaction – whose substrates are all in their respective compartments,
which has not been excluded (if it is retractable) or has been included (if it is
assertable), and which is catalysed by a complex which is not inhibited on the
day in question, and which has not been deleted (by having any of its component
ORFs knocked out). This is represented by a set of ground rules like the following
(which is one of two rules produced for reaction 2.5.1.19, assuming it has been
given the identifier 31 and a retractable status):

1 in compartment(Expt,"C01269",cytosol,Day) :-

2 in compartment(Expt,"C00074",cytosol,Day),

3 in compartment(Expt,"C03175",cytosol,Day),

4 catalyst(31,Cplx),

5 not inhibited(Expt,Cplx,Day),

6 not deleted(Expt,Cplx),

7 not exclude(31).

3 Metabolic Network Revision

The fact that all the models we have mentioned so far (ABER, AAA, KEGG and
iFF708) differ in the details of even just the tiny pathway shown above, and the
fact that none of them fully agrees with experimental data, suggests that they
are all approximations which are incomplete and/or incorrect. This raises the
question of how such networks can be usefully revised (as was done manually
in the creation of ABER and AAA). Prior work has shown that ILP can help to
automate this process. In particular, the systems Progol5 and XHAIL have been
used to complete and revise the AAA model, as described below.

2 In fact this change was already present in the model used in [16] but the description
in the paper incorrectly reproduced an earlier version of the rule from [14].
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3.1 ILP

This paper assumes a familiarity with Inductive Logic Programming (ILP) [11].
An atom a is a predicate p applied to a collection of terms (t1, . . . , tn). A literal l
is an atom a (positive literal) or the negation of an atom not a (negative literal).
A clause C is an expression of the form a : − l1, . . . , lm where a is an atom
(head atom) and the li are literals (body literals). A clause with no body literals
is called a fact and a clause with no head atom is called a constraint. A logic
program P is a set of clauses. In this paper, the meaning of a logic program is
given by the Answer Set or Stable Model semantics [3]. A program P entails
a set of ground literals L, denoted P |= L, if there is an answer set of P that
satisfies all of the literals l in L. A logic program H entails a set of ground literals
E with respect to a logic program B if B ∪H |= E.

The task of ILP is to find a hypothesis H that entails some examples E with
respect to a background theory B and also satisfies some form of language and
search bias. The search bias typically used is that of minimising compression [9]
of the hypothesis with respect to the examples (where compression is the num-
ber of literals in the hypothesis minus the number of examples covered). The
language bias typically used is that of specifying a set of mode declarations [9]
that allow the user to impose various constraints on which literals may appear
in the heads and bodies of hypothesis clauses (as illustrated later).

3.2 Progol5

Progol5 [9, 10] is a popular ILP system which was used in the first phase of
the Robot Scientist work to extend the AAA model with missing ORF-enzyme
mappings [7]. It uses a greedy covering approach that explains one example at a
time by constructing and generalising a ground clause called a Bottom Set (BS)
that efficiently bounds the search space. First the head of the BS is computed by
a contrapositive method, then the body of the BS is computed by a saturation
method, and finally the BS is generalised by a subsumption search.

While Progol5 has been used to monotonically extend AAA with missing
information, its limited ability to reason abductively or inductively through
negation means it is not well-suited for tackling revision problems – which are
inherently nonmonotonic. Its greedy covering approach assumes the addition of
a future hypothesis cannot undermine the truth of an earlier example and, even
in this limited setting, it is (semantically and procedurally) incomplete [13].

3.3 XHAIL

eXtended Hybrid Abductive Inductive Learning (XHAIL) [15] overcomes the in-
completeness of Progol5 (at the expense of solving a harder problem). For
soundness it does not process examples one-by-one, but solves them all at once.
For completeness it does not generalise a single BS, but a set of such clauses, K,
known as a Kernel Set (KS). For efficiency it uses iterative deepening to consider
progressively larger Kernel Sets.
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method solve: 
Dialler d = Dialler.get(problem) 
d.invoke(Gringo) 
d.invoke(Clasp) 
Result r = Acquirer.read(TMP) 
for (Solution s : r.retrieve()) 
    new Grounding(s).solve(a) 
return a 

method solve: 
Dialler d = Dialler.get(problem) 
d.invoke(Gringo) 
d.invoke(Clasp) 
Result r = Acquirer.read(TMP) 
for (Solution s : r.retrieve()) 
    a.accept(new Hypothesis(s)) 
return a 
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Fig. 3. Architectural overview of our new XHAIL implementation.

Existing Prototype While its semantics is defined using the Generalised Stable
Model (GSM) notion from Abductive Logic Programming (ALP) [5], the existing
XHAIL prototype uses Answer Set Programming (ASP) [3] to perform the three
key phases of the algorithm. Firstly, the head atoms of K are computed abduc-
tively to give a set of ground atoms ∆ that entail E with respect to B. Then,
the body atoms of K are computed deductively to give a set of ground atoms
Γ entailed by B ∪∆. Finally, K is generalised inductively to give a compressive
hypothesis H subsuming K.

As described in [16] the existing prototype, which used Smodels as the ASP

system [17], was able to successfully revise AAA to make it consistent with the
Robot Scientist data from [7] including a number of results known to contradict
the final AAA model (as noted in Section 3 of the supplementary material for [7]).
Unfortunately, scalability limitations meant the existing prototype could not be
used on the ABER. Hence, in this paper one of our key aims was to develop a
new implementation of XHAIL that can be applied to ABER.

New Architecture To make our new system portable, extensible and efficient,
we wrote it from scratch in Java 8 using a modular architecture that exploits
multi-threading and has been made open-source under GNU General Public
License v3.0 (GPLv3). We also upgraded the ASP engine from the (now un-
supported) Smodels to the (current ASP competition winner) Clasp [2] and, to
make the system more usable and noise-tolerant, we also introduced an extended
language bias that allows mode declarations and examples to be weighted.
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Fig. 4. Syntax diagrams for the new XHAIL’s extended language bias.

An overview of the system is given in Figure 3. The Application class acts
as the user interface. When invoked, it generates an instance of a Problem and
activates a bespoke Parser (which can recognise both Clasp and XHAIL-specific
statements) to load the desired knowledge base.

The solve method in Problem triggers the procedure by invoking a Dialler

on an instance of the Problem. The Dialler calls Clasp and collects the results
in a temporary file (interpreted by a specialised parser Acquirer) to return the
set of solutions as a Result. The Problem and Clasp are loosely-coupled so they
can be invoked as separate threads to achieve more parallelism. Now, at the end
of the (abductive) stage, the Result contains the head atoms ∆ of the KS K.

An instance of Grounding is then used to deductively derive the body atoms
Γ of K. Its solve method is called to activate the Dialler on the current
Grounding to perform induction. The Result read at this point from the tem-
porary file is used to generate as many Hypotheses as needed, each representing
an H. Each Hypothesis found in this fashion is converted into an Answer and
appended to the set of Answers. If any weights have been applied to examples
or mode declarations, each Answer will have a score, and any non-optimal ones
will be discarded. Finally, the Application presents the Answers to the user.

New Language Bias As shown in Fig. 4 we have extended the new XHAIL’s
language bias to allow integer weights and priorities (familiar concepts in ASP) to
be associated with individual examples and mode declarations. Adding a weight
to an example has the effect of making that example defeasible (so the example
can remain uncovered at the expense of paying a penalty set by the weight).
Adding a weight to a mode declaration has the effect of incurring a penalty set
by the weight every time the mode declaration is used.

The overall effect of these weights is to give preference to certain hypotheses
over others; and the task of the new XHAIL is to find hypotheses that incur the
smallest penalty. We believe this offers the user a finer level of control than the
default compression metric. Of course, the standard bounds on the maximum
and minimum number of times a mode declaration can be used are still available.
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4 Case Study

To validate the approach, we applied our new XHAIL system to our logical
encoding of the ABER model. This was done in two stages. The first stage was
to revise the ABER model to incorporate the extra information in the more
detailed AAA model. The second stage was to learn some additional hypotheses
(originally found in [16]) to make the model consistent with real Robot Scientist
data. In both cases, we studied how the approach scaled to progressively bigger
fragments of the model with increasingly large sets of observations. We began
with the fragment shown in Fig. 5, where the purple highlights show the four
pieces of information we wanted to learn in the first validation phase (to make
this sub-network of ABER functionally equivalent to AAA).

4.1 Making ABER consistent with AAA

To revise ABER with the information from AAA that it lacks, we created suitable
examples and mode declarations for the four tasks described below. The XHAIL

code for these is shown in Listing 1 (Tasks A-D). We also added a further
task (Task E ) to illustrate how our system can handle noise. In addition to
considering these tasks individually, we also considered various combinations of
them in order to show the utility of our (optional) extended language bias.
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Fig. 5. Fragment of ABER corresponding to AAA pathway with missing information in
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Task A (lines 1 − 6) consists of two experiments that allow XHAIL to infer
that YER090W is required in all enzyme complexes catalysing reaction 4.1.3.27.
Experiment 1 simply knocks out YER090W. In this case the AAA model predicts
no growth since all enzymes producing Anthranilate are blocked and Tryptophan
cannot be produced. By contrast, ABER predicts growth as it has that YKL211C
can catalyse 4.1.3.27 alone. XHAIL proposes several minimal hypotheses which
restore consistency by complexing YER090W with various enzymes, but the intro-
duction of experiment 2, which simply adds the additional nutrient Anthranilate
to this knockout restricts the possibilities to just one, YKL211C.

Task B (lines 7 − 12) consists of two experiments that allow XHAIL to infer
that Tyrosine, when used as an additional nutrient, inhibits the enzyme YBR249C
catalysing reaction 2.5.1.54. Experiment 3 simply knocks out the other enzyme
YDR035W catalysing this reaction and adds the nutrient Tyrosine. While AAA

predicts no growth since the only available enzyme for 2.5.1.54 is inhibited,
ABER predicts growth as it has no information about inhibition. XHAIL again
proposes several hypotheses which restore consistency by inhibiting various en-
zymes, but the addition of experiment 4, which simply adds Tyrosine to the wild
type restricts the possibilities to just the intended one, YBR249C.

� �
1 % Task A: YER090W as enzyme complex in 4.1.3.27
2 knockout(1,"YER090W").

3 #example not predicted_growth(1,1) =4 .

4 knockout(2,"YER090W").additional_nutrient(2,"C00108",medium).

5 #example predicted_growth(2,1) =4 .

6 #modeh component(#orf,#enzymeID) :1 =3 .

7 % Task B: C00082 inhibits YBR249C in 2.5.1.54
8 knockout(3,"YDR035W").additional_nutrient(3,"C00082",medium).

9 #example not predicted_growth(3,1) =4 .

10 additional_nutrient(4,"C00082",medium).

11 #example predicted_growth(4,1) =4 .

12 #modeh inhibitor(#enzymeID,#metabolite,cytosol) :1 =2 .

13 % Task C: C00463 contamination in 4.2.1.20
14 knockout(5,"YKL211C").additional_nutrient(5,"C00463",medium).

15 #example predicted_growth(5,1) =4 .

16 knockout(6,"YGL026C").additional_nutrient(6,"C00463",medium).

17 #example not predicted_growth(6,1) =4 .

18 knockout(7,"YKL211C").

19 #example not predicted_growth(7,1) =4 .

20 #modeh include(#assertable_reaction) :1 =2 .

21 #modeh catalyst(#assertable_reaction,#enzymeID) :1 =1 .

22 % Task D: slow import of C00166 and C01179
23 knockout(8,"YBR166C").additional_nutrient(8,"C01179",medium).

24 #example not predicted_growth(8,1) =4 .

25 knockout(9,"YNL316C").additional_nutrient(9,"C00166",medium).

26 #example not predicted_growth(9,1) =4 .

27 #example predicted_growth(10,1) =4 .

28 #modeh inhibited(+experiment,#enzymeID,#day) :2 =1 .

29 % Task E: defeasible example

30 #example not predicted_growth(11,1) =4 .� �
Listing 1. Tasks A-E with optional weights and constraints highlighted.
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Tasks A and B (lines 1− 12) can both be given to XHAIL at the same time.
In this case it successfully learns the union of the two individual hypotheses,
but it also learns several other hypotheses resulting from the interaction of the
two tasks. The additional hypotheses all introduce two enzyme complexes, as
opposed to one enzyme complex and one inhibitor. Instead of adding further
examples to eliminate the unwanted hypotheses, we can exploit the ability of
our new system to specify weights on mode declarations. By giving a lower cost
( =2 ) to the mode declaration for inhibitors (line 12) than the cost ( =3 ) for the
mode declaration for complex components (line 6), we ensure only the intended
hypothesis has minimal cost and is returned by XHAIL. Alternatively we can set
the number of times each mode declaration is used to exactly once ( :1 ). As
shown below, such biases reduce the search space and the execution time.

Tasks C and D (lines 13-28) are similarly designed to rediscover a missing
reaction for C00463 along with the slow import of C00166 and C01179.

Task E was also added as an obviously incorrect example (as it simply asserts
that the wild type does not grow under normal conditions – which is false).
Ordinarily, this would result in logical inconsistency, but by exploiting the ability
of XHAIL to give defeasible weights to examples, we can still learn all the intended
changes when running tasks E by paying a simple cost ( =4 ) associated with this
last example. Although the inconsistent example is discarded, XHAIL finds it is
cheaper to construct hypotheses that explain all the other examples (as opposed
to paying the penalty for discarding them).

Table 1 shows the time taken to run these tasks on various fragments of the
ABER model. The x -axis shows the 5 tasks A-E. The y-axis shows the increasing
sizes of model we used, starting with the initial network in Fig. 5 (which has
52 reactions including imports) all the way up to the whole model (with 1, 106
reactions). Experiments were run on a MacBook Pro featuring a 2.3 GHz Intel
Core i7 with 4 cores and 16 GB DDR3 RAM.

Size Task A Task B Task C Task D Task E
52 0.3 (1) 0.4 (1) 0.3 (1) 7.2 (1) 0.166 (0)
87 0.5 (1) 0.7 (1) 0.7 (1) 10.5 (1) 0.214 (0)

127 0.8 (1) 1.9 (1) 1.5 (1) 18.7 (1) 0.294 (0)
207 1.8 (1) 3.9 (1) 2.3 (1) 39.7 (1) 0.449 (0)
367 4.8 (1) 6.0 (1) 3.9 (1) 76.3 (1) 0.814 (0)
687 14.1 (1) 15.6 (1) 9.5 (1) 186.0 (1) 1.802 (0)

1106 38.3 (1) 59.7 (1) 17.6 (1) 339.1 (0) 3.898 (0)
52 0.3 (1) 0.3 (1) 0.3 (1) 7.5 (1) 0.169 (1)
87 0.5 (1) 0.5 (1) 0.4 (1) 11.0 (1) 0.22 (1)

127 0.8 (1) 1.0 (1) 0.6 (1) 19.4 (1) 0.295 (1)
207 1.8 (1) 2.0 (1) 1.1 (1) 39.9 (1) 0.44 (1)
367 5.2 (1) 5.7 (1) 2.5 (1) 72.5 (1) 0.793 (1)
687 14.2 (1) 13.7 (1) 5.8 (1) 180.4 (1) 1.726 (1)

1106 38.4 (1) 29.4 (1) 14.7 (1) 342.8 (181) 3.827 (1)
Table 1. Execution time (and number of hypotheses) vs. number of tasks and reactions as optional
language bias is excluded (top half, shaded blue) or included (bottom half, shaded green).
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The top half of the table refers to experiments using simple mode declara-
tions without number constraints or weights, while the bottom half refers to
experiments using our enhanced mode declarations with number constraints and
weights. Each cell contains the execution time in seconds together with the num-
ber of answers returned (in parentheses). These tests show that the experiments
become more computationally intensive as the number of reactions and tasks
increases; and they also show that the language bias effectively helps to narrow
down the number of answers and to reduce the execution times.

Fig. 6 describes what happens during the first 2 minutes of execution when
XHAIL tackles a problem, specifically all the tasks A–D simultaneously run on
the ABER fragment in Fig. 5. XHAIL still finds the expected hypotheses, but also
several others resulting from the interaction between the tasks, making it a much
harder problem to solve. In order to eliminate the unwanted hypotheses and show
the utility of our extended language bias, we have introduced further constraints
and weights on the mode declarations of the problem (as highlighted in yellow

in Listing 1). This graph compares the optimality score and the elapsed time
of each answer found when the optional language bias is excluded (in red) or
included (in green) with respect to the score expected for the optimal solution (in
blue). The triangles indicate when the parsing and generation of the abductive
phase problem terminates and Gringo’s grounding starts. Similarly, the squares
show when the grounding is over and Clasp takes over. Finally the circles show
plot the improvement in the score of the current best solution (y-axis) against
time (x-axis). The lines preceding the first answers are dashed because at that
point is not possible to know in advance the first optimality value but it is
convenient to show where triangles and squares sit. Notice how the extended
language bias results in higher quality answers being found in less time.
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Fig. 6. Elapsed times vs. scores of answers found during resolution with language bias
excluded (in red) or included (in green) with respect to the optimal (in blue).
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4.2 Making ABER consistent with Robot Scientist data

We used the revised ABER model to run 40 additional experiments for which
growth data had been previously obtained by a Robot Scientist. We set the mode
declarations as follows (where the highlighted expressions :min-max denote
optional bias which constrains how many times each mode declaration is used):

1 #modeh inhibited(+experiment,#modifiable_enzyme,#day) :0-2 .

2 #modeh additional_nutrient(+experiment,#metabolite,medium) :0-1 .

3 #modeb additional_nutrient(+experiment,#metabolite,medium) :0-1 .

This allows XHAIL to learn the hypothesis from [16] consisting of the clause
“additional_nutrient(E,"C00078",medium) :- additional_nutrient(E, "C00463",
medium)” – which suggests the contamination of Indole with Tryptophan (as
the latter becomes an additional nutrient whenever the former is) – and a fact
“inhibited(E,10,1)” – which suggests the slow import of Anthranilate (as the
hypothetical enzyme catalysing its import is inhibited on the first day of each
experiment). The time taken to run more and more experiments on larger and
larger networks is shown in Table 2, which is formatted like Table 1 with the
shading of each cell increasing with execution time.

It is interesting to note that the number of solutions drops from 1 to 0 when
experiments 1− 8 are run on the fragment of ABER with 687 reactions (without
the optional bias). We suspected one of the additional reactions was interfering
with the initial AAA fragment so we added an extra mode declaration to allow
XHAIL to exclude zero or more reactions. This led to a hypothesis which excluded
one reaction with EC 1.3.1.12 and ORF U52 which, although it is shown in
Fig. 5, was in fact accidentally left out of the initial fragment because we did
not notice it when carrying out our initial analysis by hand.

Since we could not find any hypothesis in which that reaction was not ex-
cluded, we examined the literature support for this reaction and found that,
while it does exist in the KEGG reference pathway, it does not exist in any of
the pathways specific to yeast. We then determined that it was imported into
ABER from iFF708. In this way, we suggest our method has led to the discovery
of a mistake in both ABER and iFF708.

Size Ex 1-4 Ex 1-8 Ex 1-16 Ex 1-32 Ex 1-40
52 0.2 (1) 0.8 (1) 3.6 (1) 19.1 (1) 65.8 (10)
87 0.5 (1) 3.5 (1) 18.3 (1) 110.2 (1) ≥600 (≥1)

127 0.8 (1) 7.1 (1) 64.5 (1) 510.3 (1) ≥600 (≥1)
207 1.8 (1) 12.5 (1) 80.0 (1) ≥600 (≥1) ≥600 (≥1)
367 3.5 (1) 26.3 (1) 265.0 (1) ≥600 (≥1) ≥600 (≥1)
687 8.1 (1) 101.9 (0) ≥600 (≥1) ≥600 (≥1) ≥600 (≥1)

1106 14.5 (1) 262.0 (0) ≥600 (≥1) ≥600 (≥1) ≥600 (≥1)
52 0.2 (1) 0.6 (1) 1.5 (1) 5.8 (1) 11.4 (10)
87 0.5 (1) 1.6 (1) 5.4 (1) 14.5 (1) 40.0 (10)

127 0.8 (1) 3.5 (1) 12.9 (1) 43.4 (1) 202.4 (10)
207 1.8 (1) 8.7 (1) 42.0 (1) 234.4 (1) 440.1 (10)
367 3.9 (1) 19.5 (1) ≥600 (≥1) ≥600 (≥1) ≥600 (≥1)
687 8.3 (1) 110.1 (24) 531.8 (4) ≥600 (≥1) ≥600 (≥1)

1106 15.6 (1) 300.5 (24) ≥600 (≥1) ≥600 (≥1) ≥600 (≥1)
Table 2. Execution time (and number of hypotheses) vs. number of experiments and reactions as
optional language bias is excluded (top half, shaded blue) or included (bottom half, shaded green).
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5 Comparison with Progol5

It is interesting to see why the Progol5 system used in the early Robot Scientist
work, cannot be used on tasks like those solved in Section 4. For this purpose,
it suffices to consider the following Progol5 input file which simplifies the task
of including and excluding reactions to its absolute bare principles:

1 % Background Knowledge
2 product(m,ass).
3 product(n,ret).
4 present(MN) :- product(MN,ass), include(ass).
5 present(MN) :- product(MN,ret), not exclude(ret).
6 % Examples
7 :- observable(present/1)?
8 present(m).
9 :- present(n).

10 % Language Bias
11 :- modeh(1,include(ass))?
12 :- modeh(1,exclude(ret))?

The background theory declares a metabolite m as the product of an assertable
reaction ass and a metabolite n as the product of a retractable reaction ret. It
then states the product of an assertable reaction will be present if the reaction
is included; while the product of a retractable will be present if the reaction is
not excluded. The bias allows Progol5 to include an assertable reaction and/or
to exclude a retractable reaction.

While XHAIL easily learns the hypothesis include(ass) and exclude(ret)

from these inputs, Progol5 simply states that this input is inconsistent and it
fails to learn anything. This is because the example atom present(m) depends
negatively upon the intended hypothesis exclude(ret), which is therefore not
amenable to Progol5’s limited form reasoning with negation.

It might seem Progol5 can be made to find the answer by transforming this
nonmonotonic problem into a monotonic one by reifying the literals include(ass)
and not exclude(ret) to the atoms include(ass,true) and exclude(ret,false)

– while adding the following constraints to avoid meaningless solutions where a
reaction is both included and not included at the same time (which is the very
approach taken in another Progol5 application called Metalog [18]):

1 :- include(R,true),include(R,false).
2 :- exclude(R,true),exclude(R,false).

Although Progol5 can now learn one of the hypotheses include(ass,true),
this has the semantically problematic result of requiring the exclusion of the
retractable reaction to be neither true nor false. And this is unavoidable as
adding the following complementary constraints to force the issue merely re-
establishes the logical inconsistency that the reification was introduced to avoid:

1 :- not include(R,true), not include(R,false).
2 :- not exclude(R,true), not exclude(R,false).

It can be shown that any semantically meaningful solution to this problem will
require explicitly formalising the rules to determine when a compound is not in
a compartment – which is much harder than formalising when a compound is in
a compartment and is not practical in more realistic versions of this task.
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6 Conclusions

This paper introduced a new implementation of XHAIL that is able to usefully
revise a whole-organism model of yeast metabolism. It summarised some of the
key implementation improvements and investigated their scalability with respect
to the number of examples and the size of the network. It also introduced some
new language bias extensions and analysed their impact on execution times and
the number of hypotheses returned. The new system is much faster than the old
prototype and can be applied to much larger networks.

To the best of our knowledge, this is the first application of ILP to a whole-
organism model of metabolism; and it has led to the discovery of a reaction that
we believe is incorrectly included in both ABER and its influential precursor
iFF708 (which is the forerunner of most whole-organism flux-balance models of
yeast developed to this day). These preliminary results suggest that XHAIL is
a useful method for biological network revision (and probably for other non-
monotonic ILP tasks as well). Both the system and all of the input files used in
this work have been made fully open-source under GPLv3.

In future work we plan to investigate in more detail how our execution times
are distributed across the different phases (adductive, deductive and inductive)
of XHAIL and to exploit a parallel implementation of Clasp to help further
speed up execution of our system. We also need to test the system in harder
case studies where the required language bias is not set in advance and see if
we can apply our method to more recent models of yeast metabolism, such as
Yeast5 [4], which are not designed to be logically executable.
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