A logic programming paradigm which expresses solutions to problems as stable
models has recently been promoted as a declarative approach to solving various
combinatorial and search problems, including planning problems. In this
paradigm, all program rules are considered as constraints and solutions are
stable models of the rule set. This is a rather radical departure from the
standard paradigm of logic programming. In this paper we revisit abductive
logic programming and argue that it allows a programming style which is as
declarative as programming based on stable models. However, within abductive
logic programming, one has two kinds of rules. On the one hand predicate
definitions (which may depend on the abducibles) which are nothing else than
standard logic programs (with their non-monotonic semantics when containing
with negation); on the other hand rules which constrain the models for the
abducibles. In this sense abductive logic programming is a smooth extension of
the standard paradigm of logic programming, not a radical departure.Comment: 8 pages, no figures, Eighth International Workshop on Nonmonotonic
Reasoning, special track on Representing Actions and Plannin