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Abstract. The complexity of error diagnosis in requirements specifications, al-
ready high, is increased when requirements refer to various system components,
on whose interaction the system’s aims depend. Further, finding causes of error,
and ways of overcoming them, cannot easily be achieved without a systematic
methodology. This has led researchers to explore the combined use of verifi-
cation and machine-learning to support automated software analysis and repair.
However, existing approaches have been limited by using formalisms in which
modularity and compositionality cannot be explicitly expressed. In this paper
we overcome this limitation. We define a translation from a representative pro-
cess algebra, Finite State Processes, into the action language C+. This enables
forms of verification not supported by previous methods. We then use a logic-
programming equivalent of C+, to which we apply inductive logic programming
for learning repairs to system components while ensuring no new errors are intro-
duced and interactions with other components are maintained. These two phases
are iterated until a correct specification is reached, enabling rigorous and scalable
support for automated analysis and repair of component-based specifications.

1 Introduction

Research into formal specification, verification and error diagnosis has played a signif-
icant role in improving software safety and reliability. Such methods rely on specifying
the system in a formal language (e.g., temporal logic, process algebras) and using au-
tomated verification techniques such as model checking and theorem proving to check
that the specified system satisfies some given property. Though such methods are useful
for detecting errors in software specifications (e.g., [14]), identifying the exact causes
of error and resolving them is a very difficult task that is mostly performed manually—
defeating the aim of automation, and increasing the likelihood of error.
In recent years researchers in software engineering have responded to this by deploy-
ing a combination of verification and machine learning techniques to improve software
specifications. For example, in [1] the authors describe a method for incrementally re-
fining a consistent specification, expressed in first-order temporal logic, with respect
to some given property using an integration of model checking and Inductive Logic
Programming (ILP). In [2], the authors give a method for revising temporal specifica-
tions that may be incorrect or inconsistent using model checking and artificial neural
networks. Such advances overcome some of the difficulties of generating alternative
candidate repairs to detected errors, ensuring consistency of the computed solutions



with the available specification and property. However, a very significant drawback of
such approaches is that verification and specification improvement are at system level
only: they do not relate the specification to the individual system components, nor do
they support compositional analysis. With this drawback come the familiar problems of
modularity, scalability and realizability. (Realizability means that suggested repairs can
be assigned to and achieved by individual components.) Furthermore, these approaches
either require the engineer to specify an action thought to have produced the error in
the output violation run; or require the engineer to simplify the diagnosis procedure by
assuming that the last action in the run is the cause.

In this paper we propose a new approach for incrementally detecting errors in and
repairing compositional software specifications using verification and ILP. Our frame-
work: (i) supports error-diagnosis and repair at component level rather than system
level; (ii) diagnoses multiple errors in a single iteration; (iii) can hypothesize faults at
any point in a violation run, and fix them wherever they are; (iv) finds all minimal re-
pairs with respect to a given input language; (v) guarantees deadlock-free repairs to
components consistent with the original specification; and (vi) is fully automated.

Our systems specifications are given in Finite State Processes (FSPs), a well-studied
process algebra [20]. FSPs enable a user to represent the behaviour at the architectural
level, specifying the system in a modular manner as a composition of processes exe-
cuted concurrently and interacting with each other through shared actions. FSPs con-
tain operations common to most algebraic languages and are supported by the model
checker LTSA [20]. We show how FSP descriptions can be formulated in the action
language C+ [12] (from non-monotonic reasoning in A.I.) and its corresponding logic
programming representation, EC+ [6] which are the languages used by the verification
and learning tasks respectively. C+ is a natural choice: similarly to FSPs, it has a se-
mantics of LTSs and allows concise representation of domains. It also supports many
forms of reasoning, including the computation of all runs of a given length that satisfy a
given description, and the construction complex queries over runs, states and transition
of processes. We describe a systematic translation of C+ into logic programs, where the
resulting logic programs allows us to deploy ILP in the discovery of repairs.

The paper is structured at follows. §1 gives background, and §2 our running exam-
ple. In §3 we describe verification using C+. §4 presents the use of EC+ and ILP to
correct FSP descriptions. Related work and a conclusion follow in §5.

sectionBackground

Labelled Transition Systems (LTSs)

LTSs [15] are behaviour models representing the changing states of a system, in re-
sponse to actions occurring within or outside the system. Both FSPs and C+ use LTSs
in their semantics. An LTS L is a structure (S,A,∆, S0), where S is a finite set of
states, A is a finite set of action labels (also known as the alphabet), ∆ ⊆ S × A × S
is the transition relation, and S0 is a set of initial states. An LTS is deterministic iff
for each s ∈ S and each action label a ∈ A, there is at most one state s′ for which
(s, a, s′) ∈ ∆. It is called deadlock-free if for each s ∈ S reachable from an initial
state in S0, there is at least one state s′ for which (s, a, s′) ∈ ∆. We use s a−→ s′ as
a shorthand for (s, a, s′) ∈ ∆. A run of length n through an LTS (S,A,∆, S0) is a



sequence (s0, a0, s1, . . . , an−1, sn) such that s0 ∈ S0 and for all i with 0 6 i < n,
(si, ai, si+1) ∈ ∆. We often write such runs as expressions (s0

a0−→ · · · an−1−−−→ sn).
Where several LTSs represent the individual components of a larger system, the in-

dividual LTSs can be composed together by synchronising the actions common to their
alphabets and interleaving the remaining actions. To denote the composed behaviour of
two LTSs P = (SP , AP , ∆P , SP,0) and Q = (SQ, AQ, ∆Q, SQ,0) we use the com-
mutative and associative binary parallel composition operator, ‖. The LTS (P ‖ Q) is
the structure (SP × SQ, AP ∪ AQ, ∆, SP,0 × SQ,0) such that (sp, sq)

a−→ (s′p, s
′
q) iff

either: (i) a ∈ AP \ AQ and sp
a−→ s′p and sq = s′q; (ii) a ∈ AQ \ AP and sq

a−→ s′q
and sp = s′p; or (iii) a ∈ AP ∩ AQ and sp

a−→ s′p and sq
a−→ s′q . (i) and (ii) represent

independent execution of P and Q; (iii) gives joint execution of a shared action.

Finite State Processes (FSPs)

FSPs [20] are process algebras, based on CSP [13] and CCS [22], for describing the
behaviour of components of concurrent systems. Each component is represented as a
primitive process, comprising a number of local processes, which can be thought of
as phases of the component’s operation. The scope of a local process is the primitive
process in which it is defined. A composite process represents the composition of a set
of primitive processes. The signature of a primitive process includes a process name,
names of its local processes and a set of action labelsA, the alphabet. Primitive process
operators include ‘→’ for action prefixing (showing which actions can be performed to
lead to another local process) and ‘|’ for choice (more than one possible action).

The language also allows for definitions of constants, integer ranges, sets of action
labels. In the current paper we focus on the basic syntax for FSPs. We refer to it here as
fundamental FSPs and define it in §3. Each ‘full’ FSP has an equivalent formulation in
terms of fundamental FSPs—so there is no loss of expressivity [20].

A composite process represents the composition of a number of primitive processes.
Similarly to LTSs, the operator ‖ is used to denote the composed behaviour of two pro-
cesses. The expression P ‖ Q means that the P and Q may execute actions indepen-
dently but must synchronise actions common to their alphabets. A composite process
is identified by a process name preceded by the symbol “||”. In §3 we will describe the
precise syntax and semantics of the restricted form of FSPs we work with.

C+ and EC+

Action languages [11] are logical formalisms for representing the way systems change
as a consequence of actions and events occurring in them.

The language of C+ is built over a multi-valued propositional signature σ, with
fluent constants σf—describing states—and the action constants σa—describing actions
and events. An atom c=v has c ∈ σ and v ∈ dom(c)—the non-empty domain of c’s
values. An interpretation I maps constants to values; we write I |= c=v iff I(c) =
v. I(σ) is the set of interpretations of the signature σ. A fluent formula is built from
Boolean connectives using fluent atoms (c=v where c ∈ σf) and ⊥ and > (for logical
truth); an action formula is made from atoms containing only action constants, with



>, and must contain at least one action constant. The LTSs (S,A,∆, S0) used in the
semantics of C+ have S ⊆ I(σf) and A = I(σa); S0 is S, and ∆ ⊆ S ×A× S.

Causal laws determine the states S and transition relation ∆. A static law has the
form F if G, where F and G are fluent formulas: if a state satisfies G, it must also
satisfy F . A fluent dynamic law has the form F if G after ψ, where F andG are fluent
formulas, and ψ is any formula with signature σf ∪ σa. This means: for any transition
(s, a, s′), if s ∪ a |= ψ and s′ |= G, then s′ |= F . (If G is >, then we abbreviate the
rule as F after ψ.) Finally, an action dynamic law is an expression α if ψ, where α is
an action formula and ψ is as above. These mean: if s ∪ a |= ψ, then a |= α.

An action description is a set of causal laws; each defines an LTS (S,A,∆, S0). A
law inertial c means the value of fluent constant f persists by default; exogenous a
means (roughly) that a can be executed, or not executed, in every state. In later sections
we will use the further abbreviation of default α if β for the action dynamic law
α if α∧β and nonexecutable α if β for the fluent dynamic law⊥ if > after α∧β.
The default law represents that, where β is true, then α is true by default, whilst the
nonexecutable is understood as false is derivable from a state where α ∧ β is true.

Current implementations of C+, such as iCCalc, 1 are based on SAT solvers.
Queries specify partial information about the values of fluent and action constants in
the states and transitions of a run through the transition system, and answers take the
form of the complete set of runs consistent with that specification.

In [6] it is shown that a subclass of action descriptions of C+ (those without cir-
cular dependencies in causal laws) can be represented as normal logic programs (See
Appendix) whose form is closely related to that of the Event Calculus [16]. We have
adapted the form of those logic programs to suit our C+ action descriptions for FSPs.
The EC+ formulation includes a translation of the specific causal theory, as well as core,
domain-independent clauses to enable reasoning and ensure the semantics is respected.
Domain specific facts include those of the predicate domain/2 (giving the domain of a
fluent constant) and causes/5—where a fact causes(C2,V2,Act,C1,V1) cor-
responds to the presence of a fluent dynamic law C2=V 2 if > after Act=t ∧C1=V1.

In conjunction with information about what is initially true in a given run (facts of
init/2) and what actions occur at different times (facts of happens/2), the sets of
clauses of an EC+ logic program have stable models that are in one-to-one correspon-
dence with runs through the LTS defined by the action descriptions [6].

Inductive Logic programming

ILP [23] is a symbolic machine-learning technique for computing a hypothesis H from
a background theory B (a logic program) and examples (E = E− ∪ E+) such that: (i)
B ∪H |= e+ for each e+ ∈ E+; (ii) B ∪H 6|= e− for each e− ∈ E−. For shorthand
we write (i) and (ii) as B ∪ H |= E+ and B ∪ H 6|= E−. A hypothesis space is the
set of all hypotheses {Hi} that satisfies the conditions set above. To restrict the size
of the hypothesis space, some ILP methods make use of mode declarations (MD), a
form of language bias that specifies the syntactic form of the hypotheses to be learned.
It contains both head and body declarations that describe predicates that may appear,

1 See http://www.doc.ic.ac.uk/∼rac101/iccalc/.



the desired input and output behaviour and number of instantiations. We use s(MD) to
denote the set of all hypotheses satisfying MD.

Typically, B is assumed partial but correct. The ILP task is to generate a hypothesis
H that extends B to explain the examples. ILP is applicable to problems in which
B is partially incorrect and must be revised. Parts of the background suspected to be
responsible are removed from B and put in the revisable theory T . The revision of a
theory T involves applying a transformation to T to obtain a new theory H , denoted
r(T,H), by deleting rules, adding facts, adding conditions to rules or deleting conditions
from rules. A repair is called minimal if the number of revision operations required to
transform one theory into another (the sum of all deletions and additions) is minimal.

Definition 1. An inductive task is a tuple 〈B, T,E,MD〉. B is the background theory,
T is a revisable theory s.t. T ⊆ s(MD), E = E+ ∪ E− is the examples and MD is
the mode declaration. The logic program H , where H ⊆ s(MD) and r(T,H), is an
inductive solution to the task 〈B, T,E,MD〉 iff B ∪H |= E+ and B ∪H 6|= E−.

2 Running Example

Our running example is based on the production cell system [7]. It comprises two con-
veyor belts (feed belt and deposit belt), two products (a and b), a robot arm and two
tools (drill and oven). The feed belt conveys raw products for the robot arm to pick up
and process; the deposit belt conveys the processed products out of the cell. We define
FSPs ARM, TOOL and RAW PRODUCT (process names are in small capitals; actions
are in italic), with the sets PRODUCTTYPES = {a, b} and TOOLSET = {oven, drill}:

ARM = IDLE,

IDLE = ([p : PRODUCTTYPES].getFeedbelt→ PICKED UP[p]),

PICKED UP[p : PRODUCTTYPES] = (put[t : TOOLSET][p]→ PROCESSING[t][p]

| [p].putDepositbelt→ IDLE | [p].getFeedbelt→ PICKED UP[p]),

PROCESSING[t : TOOLSET][p : PRODUCTTYPES] = (get[t][p]→ PICKED UP[p]).

TOOL(T = ‘any) = (put[T ][p : PRODUCTTYPES]→ get[T ][p]→ TOOL).

RAW PRODUCT(P = ‘any) = ([P ].available→ [P ].getFeedbelt→ TOOL AVAILABLE

| [P ].unavailable→ RAW PRODUCT),

TOOL AVAILABLE = (put[t : TOOLSET][P ]→ get[t][P ]→ TOOL AVAILABLE

| [P ].putDepositbelt→ RAW PRODUCT).

where ‘any means any constant value assigned in the composed system. ARM, TOOL
and RAW PRODUCT are primitive process names. ARM has three local processes: IDLE,
PICKED UP and PROCESSING. It is initially idle. When it is idle it can pick up a product
from the feed belt [p : PRODUCTTYPES].getFeedbelt (in which case it progresses to the
PICKED UP process). Once it has picked up a product p, it can either put the product in
a tool t (put[t][p]) and move to the PROCESSING phase or, from the same state, place it
in the deposit belt [p].putDepositbelt and return to the IDLE phase, or it can get another
product from the feed belt and continue in the same phase. If it puts in the tool for
processing then it can remove the product from the tool and return to the PICKED UP



local process and continue from there. Note that in FSP, indices may appear either
before or after action labels. The composite system is defined as below.

||TOOLS = (TOOL(oven) ‖ TOOL(drill)).
||RAW PRODUCTS = (RAW PRODUCT(a) ‖ RAW PRODUCT(b)).
||PRODUCTIONCELL = (ARM ‖ TOOLS ‖ RAW PRODUCTS).

Consider the property “The robot arm should not process products a and b at the same
time”. We are interested in checking if this situation is permissible in our composite
system PRODUCTIONCELL. In the following sections we show how to detect automat-
ically violations to such properties and repair the specification if any violations exist.

3 Compositional Verification in C+

This section presents a new approach to verification for component-based systems rep-
resented as FSPs. It considers a fundamental FSP description as input and automatically
translates it into the C+ language. iCCalc is then used to verify that a property speci-
fied in C+ holds in every run of the system. Our focus is on a class of properties (called
safety properties [18]) which express the notion that no ‘bad’ state will be reached and
that are expressible in Linear Temporal Logic (LTL) [21]. In what follows we give de-
tails of the FSP translation and verification using iCCalc.

Specifying FSPs in C+

Translation from FSPs into C+ starts from fundamental FSPs.

Definition 2. Let A be a finite set of action labels, and Q a finite set of state labels,
called Q-labels, of the form Qi. Then a fundamental FSP definition has the form:

PROC = Q0,

Q0 = (a1,1 → Q1,1 | · · · | a1,l1 → Q1,m1),

. . . , Qn = (an,1 → Qn,1 | · · · | an,ln → Qn,mn).

where the ai,j are in A and the Qi, Qi,j are in Q. (It is clear that a fundamental FSP
definition is also a full FSP.) We also use a representation of a fundamental FSP PROC
as 4-tuple of the form (Q, A, trans,Q∗), where Q and A are as above, Q∗ ⊆ Q is
the set of initial local processes, and trans ⊆ Q × A × Q (the transition relation)
represents the effect of the actions on the FSP as above: (Qi, aj,k, Ql,m) ∈ trans iff
Qi = (· · · | aj,k → Ql,m | · · · ) forms part of the fundamental FSP definition. We will
refer to fundamental FSPs just as ‘FSPs’ where this causes no confusion. Note that Q0

always represents the initial local state of a process. For a fundamental FSP PROC, we
useQPROC, APROC, transPROC andQ∗PROC to refer to elements of the tuple representation.

Any full FSP can be translated into a fundamental FSP representation behaviourally
equivalent (allowing the same sequences of actions to be performed) to the original. The
main features of fundamental FSPs compared to the original FSPs are: (i) definitions
of sequences of action prefixes are split by creating new local processes for each action
prefix, (ii) each range-indexed local process is replaced with a set of local processes,
one for each value in the specified range, and (iii) each range-indexed action prefix is
replaced with a choice of action prefix for each value in the range.



We work with the tuple-based representation of fundamental FSPs. The semantics
is an LTS; an FSP (Q, A, trans,Q∗) defines the LTS (Q, A, {(Q, a,Q′) | trans(Q, a) =
Q′},Q∗). Composition of the LTSs defined by fundamental FSPs is then given using
the definitions in §1. (The LTS defined by a ‘full’ FSP is equivalent to that defined
by its fundamental equivalent.) To illustrate, consider the (full) FSP definition ARM in
our running example. The equivalent fundamental FSP is shown below, where we have
marked the identity of states according to their Q-values. 2

ARM = Q0,

Q0 = (b.getFeedbelt→ Q1| a.getFeedbelt→ Q4),

Q1 = (b.putDepositbelt→ Q0 | b.getFeedbelt→ Q1 | put.drill.b→ Q2

| put.oven.b→ Q3 | a.getFeedbelt→ Q4),

Q2 = (get.drill.b→ Q1), Q3 = (get.oven.b→ Q1),

Q4 = (a.putDepositbelt→ Q0 | b.getFeedbelt→ Q1 | a.getFeedbelt→ Q4

| put.drill.a→ Q5 | put.oven.a→ Q6),

Q5 = (get.drill.a→ Q4), Q6 = (get.oven.a→ Q4).

When translating into C+, we work with sets of fundamental FSPs. The fluent constants
will be their names; we use the fact that signatures of C+ are multi-valued by setting the
domain of each such fluent constant to be theQ-values (the states of the local processes)
for the corresponding FSP. The only action constant is ACT, with domain the union of
the sets of all action labels for each fundamental FSP. The causal laws of the translation
encode the particular behaviour of the FSP. Consider again the ARM process. The C+
translation has causal laws including:

ARM=Q1 after ARM=Q0 ∧ ACT=b.getFeedbelt inertial ARM

ARM=Q4 after ARM=Q0 ∧ ACT=a.getFeedbelt default ACT=a.getFeedbelt

nonexecutable ACT=a.getFeedbelt if ARM=Q2

nonexecutable ACT=a.getFeedbelt if ARM=Q3

The caused laws encode the response to actions; the inertial law ensures that the
local state of ARM continues in its current state unless it is caused to be otherwise;
the default laws ensure that actions can occur by default; and the nonexecutable
laws specify the conditions under which actions cannot occur. Further: σf = {ARM},
dom(ARM) = {Q0, Q1, Q2, Q3, Q4, Q5, Q6}, σa = {ACT}, dom(ACT)={put.drill.X,
put.oven.X, get.drill.X, get.oven.X, X.getFeedbelt, X.putDepositbelt}, for X ∈ {a, b}.

Definition 3. Let F be a set of fundamental FSPs, named {PROC1, . . . , PROCn}. The
C+ translation of F is FC+, where σf = {PROC1, . . . , PROCn} and σa = {ACT}, with:

dom(PROCi) = {Q | PROCi ∈ F, Q ∈ QPROCi} dom(ACT) =
⋃
{APROC | PROC ∈ F}

and where the laws of FC+ are:
{PROC=Q′ after PROC=Q ∧ ACT=a | ∃PROC ∈ F, (Q, a,Q′) ∈ transPROC}
∪ {inertial PROC | PROC ∈ F} ∪ {default ACT=a | a ∈ dom(ACT)}
∪ {nonexecutable ACT=a if PROC=Q | a ∈ APROC,¬∃Q′((Q, a,Q′) ∈ transPROC}

2 The complete FSP description is available at
http://www.doc.ic.ac.uk/∼da04/sefm14/production cell.fsp.



As with our illustration using the ARM process, the first set of laws encodes the response
to actions; and the second set ensures that local states of processes persist unless caused
to change. The third set of laws ensure that synchronisation is correctly modelled: where
a is in the alphabet of the processes PROC1, . . . , PROCn, then a can occur only when
each of those processes is in an appropriate local state. Our first theorem shows that any
transition in an LTS defined by a fundamental FSP is matched by a transition in the LTS
defined by the corresponding C+ action description.

Theorem 1. Let F be a set of fundamental FSPs, F = {PROC1, . . . , PROCn}, such that
(S,A,∆, S0) is the LTS defined by the composition ||F = (PROC1 ‖ · · · ‖ PROCn)
(where no PROCi itself contains a composition). Let FC+ be the corresponding C+
action description, with LTS (S′, A′, ∆′, S′0). Then there is a mapping λ : S → S′ such
that for any (s1, a, s2) ∈ ∆, (λ(s1), {ACT=a}, λ(s2)) ∈ ∆′.

Proof. (See the Appendix.) ut

This result allows us to prove that runs through the LTS defined by the FSP starting
at the initial state are in 1-1 correspondence with runs through the LTS defined by the
C+ encoding, starting at its initial state.

Theorem 2. Let F be a set of fundamental FSPs, F = {PROC1, . . . , PROCn}, such
that (S,A,∆, S0) is the LTS defined by the composition ||F = (F1 ‖ · · · ‖ Fn). Let
FC+ be the corresponding C+ action description and (S′, A′, ∆′, S′0) its LTS, where s′0
is {PROCi=Qi | Qi ∈ s0}. Then there is a run (s0, a0, s1, a1, . . . , an−1, sn) through
(S,A,∆, S0) iff there is a run (s′0, a

′
0, s
′
1, a
′
1, . . . , a

′
n−1, s

′
n) through (S′, A′, ∆′, S′0),

with (i) a′i = {ACT=ai} and (ii) s′i = {PROCk=Qk | Qk ∈ si}.

Proof. Left to right is a trivial inductive consequence of Theorem 1. Right to left is a
simple inductive proof on the length of runs (details omitted owing to space limits). ut

As a result of Theorem 2, fundamental FSPs—and therefore also all FSPs—have a
C+ equivalent, in the sense that runs through the transition systems defined encode the
same information. Tools developed for C+ which allow different kinds of analysis can
therefore be brought to bear in reasoning about properties of FSPs, which is the aim for
the rest of this section. As the translation preserves the compositionality of the origi-
nal FSP specification, one may remove and add the parts of the C+ action description
corresponding to different processes without harm, to streamline verification. It may be
possible to make use of theorems in [27], which show when causal laws in an action de-
scription are redundant, in order to reduce the size of the translation. This would make
the representation of the action description smaller, without affecting the state space.

Detecting Errors in iCCalc

We use iCCalc for verification. It takes as input a C+ action description and a query
as a partial specification of a run. Part of that query involves a specification of the initial
state, which is extracted from the FSP specification (for each primitive process).



Verification involves checking runs of the system satisfy desirable properties, ex-
pressed in iCCalc as propositional formulas of time-stamped fluent and action con-
stants t:C=V, where constant C must have the value V at t (the tth state or transition in
the run). In this paper, we suppose properties are given in the iCCalc language. In [6]
it is shown how bounded model checking over LTL can be expressed and performed in
iCCalc using these constraints. The length of runs may be adjusted and incrementally
increased as needed. The minimum length of runs needed to ensure completeness of the
verification process can be calculated using methods such as those in [4].

To prove a property for a system composed of several FSP processes, we check the
LTS defined by the corresponding C+ action description satisfies the negation of that
property. If a run satisfying its negation is found then the original property is violated
and any run produced represents a counterexample. The constraint in the third argument
of the query is expressed with the constant C being either ACT, the name of a primitive
process or a fluent constant, and V representing the name of some action, a local state
of a process or a fluent value (⊥ or>). For instance, consider the property mention in §2
“The robot arm should not process two different product types at the same time”. This
is violated if there is a run leading to a state where the robot is processing product a
and b concurrently. To check if this is possible in our model, we extend our production
cell description in C+ to include the fluent constants: {processing.a, processing.b}
where processing.a becomes true once the action a.getFeedbelt happens, and becomes
false once a.putDepositbelt occurs and defined as false in the initial state. A similar
definition is given to processing.b. In C+:

processing.a after ACT = a.getFeedbelt ¬processing.a after ACT = a.putDepositbelt

default ¬processing.a
We include predefined queries to our input files for iCCalc, using a predicate rinit

in which the third parameter captures each process’s initial local state (see Appendix).
To check whether there is a run from the initial state leading to a state where a the
robot’s arm is processing two products a and b at the same time we prompt iCCalc
with the query query rinit(1..m, [max : processing.a,max : processing.b]) where
m is an upper-bound on the length of the runs we interested in (in this example m was
set to 100). In our running example, iCCalc finds all six solutions in the composed
system of length four showing a case where the robot’s arm gets product b from the feed
belt while its processing product a and vice versa—we show three of the six here (the
rest in the Appendix):

r1 = (s0
a.available−−−−−−→ s1

b.available−−−−−−→ s2
a.getFeedbelt−−−−−−−→ s3

b.getFeedbelt−−−−−−−→ s4)

r2 = (s0
a.available−−−−−−→ s1

a.getFeedbelt−−−−−−−→ s2
b.available−−−−−−→ s3

b.getFeedbelt−−−−−−−→ s4)

r3 = (s0
b.available−−−−−−→ s1

a.available−−−−−−→ s2
a.getFeedbelt−−−−−−−→ s3

b.getFeedbelt−−−−−−−→ s4)
iCCalc produces runs representing all shortest (distinct) counterexamples to the orig-
inal property from the initial state of the composed system. This is an advantage over
other approaches as it allows the learning procedure (§4) to diagnose problematic runs
simultaneously and hence suggest minimal repairs for all of them in a single iteration.

Because the underlying technology for the verification is propositional SAT-solving,
verification is in general NP-complete w.r.t. the clausal representation iCCalc uses. In
practice we have found the time iCCalc takes appears to be sensitive to the structure
of the action descriptions; we leave the further investigation of this for future work.



4 Repairing Compositional Specifications

The detection of violation runs in the verification phase shows the composition of the
processes violates the original property. However, the location of the errors and their
exact causes may be unclear. Errors may occur in the composition of all or some of the
processes, or be caused by a single component within the composite system. They may
be caused by an over-constrained, under-specified or incorrect specification. Hence any
repair must take all these considerations into account and ensure that any fix would not
introduce further errors. In this section we use ILP to address these problems.

Encoding Process Descriptions

To enable the use of ILP, we first translate the C+ theory for a set of fundamental FSPs,
from §4, into an EC+ logic program FEC+ using a variant of the C+ to EC+ translation
detailed in [6]. The mapping for caused and nonexecutable clauses follows that
described in [6]. For each fluent constant f and action constant a the EC+ program
contains a fact fc(f) and av(a); if a value v ∈ dom(c), there is a fact domain(c,v).
Further, for every member v of the domain of a fluent constant, there is a fact fv(v).
Thus, the Q-values for a process are recorded. For instance, the program obtained from
encoding the extract of causal laws in §3 is:3

causes(arm, q1, b_getFeedbelt, arm, q0).
causes(arm, q4, a_getFeedbelt, arm, q0).
inertial FC :- fc(FC).
nonexecutable(a_getFeedbelt, arm, q2).
nonexecutable(a_getFeedbelt, arm, q3).
fc(arm). av(b_getFeedbelt). av(b_getFeedbelt). fv(q0). fv(q1).
fv(q2). fv(q3). fv(q4). domain(arm, q0). domain (arm, q1).
domain(arm, q3). domain(arm, q4).
domain(act, b_getFeedbelt). domain(act, a_getFeedbelt).

Interpretations of FEC+ are given with respect to an initial state, encoded using
the predicate init/2, e.g., init(arm, q0), and runs expressed as a conjunction of
happens literals. To capture multiple runs in our EC+ description, we enrich the signa-
ture of EC+ programs to include run constants σr and extend EC+ predicates happens,
caused and broken with an additional argument for runs, e.g., happens(a,t,r) means
action a happens at time t in run r. The domain-independent axioms in EC+ pro-
grams, Axioms, are updated accordingly. They fall into four parts, so that Axioms =
Ax1 ∪ Ax2 ∪ Ax3 ∪ Ax4. The first component, Ax1, are inspired by the event calculus,
and were given in [6]; they are described in the Appendix.

We introduce the predicate alphabet(c, a), which says that action a is in the al-
phabet of process c. The C+ to EC+ translation is extended to generate these for each
action in the alphabet of every process in the C+ theory. To ensure the semantics of FSP
descriptions are preserved when learning repairs, we further include a set of constraints
in the Axioms. Thus, Ax2 is:

3 The full program is available at http://www.doc.ic.ac.uk/∼da04/sefm14/production cell.lp.



:- causes(C, V1, A, C, V),
causes(C, V2, A, C, V),
V1 != V2.

:- causes(C, V, AV, C, V0),
not domain(C,V).

:- causes(C, V1, A, C, V),
not alphabet(C, A).

:- causes(C, V1, A, C, V),
nonexecutable(A, C, V).

:- causes(C, V, A, C, V0),
not domain(C,V0).

:- nonexecutable(A, C, V),
not alphabet(C, A).

The top-left constraint ensures determinism: a process may not be caused to be in two
different local states. The middle-left states that a process cannot be caused to be in a
Q state outside its domain. The bottom-left specifies that only actions in the alphabet of
a process may cause it to transit to a new state. The constraints on the right say that (i)
an action cannot cause a system to evolve to a new state by executing a nonexecutable
action, (ii) a process cannot be caused to transit to or from a state not within its domain
and (iii) a process can only restrict the occurrence of actions within its alphabet.

In addition, it is necessary to ensure any changes to the existing process description
result in a component specification that is deadlock-free. To do this, we include the
following in Axioms which state collectively that a process must at least be able to
evolve to one other state from every state in its domain. Our Ax3 contains:
exists_nextQstate(Process, From):-

causes(Process, To, A, Process, From).
:- not exists_nextQstate(Process, From).

Note that although the above ensures that in any model of the EC+ program, each
process is deadlock-free, it does not guarantee this for the composite system. For the
latter, the program must also include definitions of composite states reachable from
the initial composite state, and a constraint similar to the above but with respect to
composite states. We do not include these for lack of space.

To represent runs, we augment the language with the predicate attempt(a, t, r),
meaning there is an attempt to execute the action a at time t in run r. Consequently,
a run is encoded in EC+ as two sets: (i) a set of attempt facts, and (ii) a rule with
happens literals in the body as defined below.

Definition 4. Let r = (s0
a0−→ · · · an−1−−−→ sn) be a run. Its EC+ translation is rEC+ =

rExt ∪ rHap where rExt = {attempt(a0,0,r) . . . attempt(at−1,t−1,r)}, and rHap is
the clause run:-happens(a0,0,r), . . ., happens(at−1,t−1,r) with run is a predicate
uniquely to run r. For simplicity, we use αrHap to denote the head of clause rHap.

Finally, we further extend the set Axioms with Ax4, below. The predicate nonexecuta-
ble expresses that an action is cannot be performed at a time point within a run.
happens(A, T, R):-

attempt(A, T, R),
not nonexcutable(A,T, R).

nonexcutable(A,T, R):-
caused(C, V, T, R),
nonexecutable(A, C, V).

:- attempt(A1, T, R),
attempt(A2, T, R),
A1 != A2.

The first rule means that an action happens if it has been attempted at a time in which it
may occur. The second rule says that an action is not executable at a time t in a run r if
it the system has evolved to a state from which it cannot occur. The constraint ensures
that actions may not occur concurrently. This completes our EC+ encoding.



Learning repairs

Our proposed repair method locates the cause of the violation run detected during ver-
ification and revises the FSP descriptions to prevent these from occurring, whilst guar-
anteeing the modifications are consistent with the composite specification and do not
introduce deadlock. To achieve this using ILP, the revision task 〈B, T,E,MD〉 is set by
assigning specific elements of the FEC+ program to B, T and E and defining MD.

When learning repairs for process descriptions, the revision task may be explicitly
guided to explore the repair of specific components or all components within a given
description. The ability to specify this is particularly useful if the specification con-
tains process descriptions that are known to be correct or cannot be modified (as is the
case in legacy systems). Hence when applying the revision task to a set of FSP de-
scriptions, their EC+ encoding is split into two sets: those for which revisions may be
explored are added to T and those which are unmodifiable are included in B. Recall
that a component specification in EC+ is represented as a collection of caused and
nonexecutable clauses in which its process label appears. The background B also
includes Axioms and the EC+ encoding of the runs obtained from Def. 4.

As mentioned in §3, iCCalc generates the shortest runs the composed system may
execute to reach an undesirable state. The purpose of the repair is to identify neces-
sary changes to the FSP descriptions so that these sequences are no longer permissible.
Therefore for each violation run r, the constant appearing in the head of its rHap rule is
included in the negative examples E−.

As we are only interested in hypotheses that influence the set of runs permissible
in the LTS of a composite system, we define the mode declaration to include rules that
contain a causes and nonexceutable atom in the head. (Modification to the domain and
alphabet of processes is discussed in the §5.) The repair task is defined as follows.

Definition 5. Let F = F1, ...,Fm−1,Fm, ...,Fn be a set of fundamental FSPs and R a
set of violation runs such that each run in R exists in the LTS defined by F1||...||Fn . F*
is said to be a repaired specification of F with respect to R if H is an inductive solution
to the inductive task 〈B, T,E,MD〉 such that:
B = F1

EC+ ∪ ... ∪ Fm−1
EC+ ∪ Axioms ∪

⋃
1<i

{r i
EC+|ri ∈ R}; T = Fm

EC+ ∪ ... ∪ Fn
EC+;

E− =
⋃
1<i

αr i
Hap

for all ri ∈ R; and F*EC+ = F1
EC+, ...,F

m−1
EC+ ∪H .

Thus far we have only discussed the use of violation runs within the proposed ap-
proach. Although not required, it is possible to integrate information about runs that
satisfy the property being verified and should be preserved by the repair task. This is
done by applying the translation in Def. 4 to each desirable run rj and including the
constant appearing in the head of its rjHap in the set of positive examples E+. It is im-
portant to note that F* is not unique. The approach will produce all possible sets of
minimal repairs from which the engineer may select which one to use.

To compute the necessary repairs, we use the non-monotonic ILP tool ASPAL [5].
The ASPAL learning algorithm maps an ILP task into Answer Set Programming (ASP)
[10] and uses an ASP solver to abduce ground literals from which a hypothesis H is
constructed. For our running example, we include TOOLSEC+, RAW PRODUCTSEC+



and (r1EC+ ∪ ... ∪ r6EC+) in the background theory, ARMEC+ as the revisable theory and
(αr1Hap

∪ . . . ∪ αr6Hap
) as the negative examples. ASPAL returns a revised theory where

causes(arm, q4, a getFeedbelt, arm, q4),
causes(arm, q1, b getFeedbelt, arm, q4)

are deleted, and the facts
nonexecutable(b getFeedbelt, arm, q4),
nonexecutable(b getFeedbelt, arm, q4)

are added. Although ASPAL is based on ASP which is NP-complete, we have noted
that the repair computation time increases with the number of rules that need grounding
by the ASP solver, and the number of revisions required. Heuristics for optimising the
repair procedure require further study. As a result of the above, the LTS model of the
C+ equivalent of F*EC+ is no longer consistent with the violations runs r1, ..., r6 [6].

Theorem 3. Let F be a set of fundamental FSPs and R a set of violation runs such that
each run in R exists in the LTS defined by F. Let F* be the repaired specification of F
with respect to R. Then each run r ∈ R no longer exists in the LTS defined by F*.

Proof. Induction on run length, and using the fact that there is a unique stable model.

Although the theorem above proves the repair procedure eliminates the violation
runs detected, the repair process does not guarantee longer violation runs are prohib-
ited. Therefore, the verification and learning processes are iterated to detect any addi-
tional violation runs and repair the description accordingly. Violation runs from previ-
ous iterations are accumulated in E− to ensure they are not made permissible by later
revisions. The convergence of this process is guaranteed once no further violation runs
up to the completeness bound discussed in §3 are detected. Since the repair is with re-
spect to sets of violation runs, the approach takes fewer iterations than other approaches
that integrate verification and learning. Once the cycle terminates, the final description
is translated back into fundamental FSPs. In our running example, checking the C+
equivalent of (FEC+ ∪H) against the same property in iCCalc shows that no further
violations exist and thus the approach converges in a single iteration. Consequently, the
revised theory is mapped back into FSP through an inverse application of the transla-
tion in Def. 3 (space limitations prevent our providing the full translation). The final
outcome is a repaired specification in which the only process modified is Arm:4

ARM = Q0,

Q0 = (b.getFeedbelt→ Q1 | a.getFeedbelt→ Q4),

Q1 = (b.putDepositbelt→ Q0 | b.getFeedbelt→ Q1 | put.drill.b→ Q2

| put.oven.b→ Q3),

Q2 = (get.drill.b→ Q1), Q3 = (get.oven.b→ Q1),

Q4 = (a.putDepositbelt→ Q0 | a.getFeedbelt→ Q4 | put.drill.a→ Q5

| put.oven.a→ Q6),

Q5 = (get.drill.a→ Q4), Q6 = (get.oven.a→ Q4).

4 Full FSP available at: http://www.doc.ic.ac.uk/ da04/sefm14/production cell revised.lts



5 Conclusion and Related and Future Work

In this paper we have shown how to repair compositional specifications described in
FSP, following a phase of automatic verification. We showed how an action language
widely studied in A.I. (C+) and ILP may be used to detect violations in properties
expressible in LTL, and compute minimal repairs to individual components while con-
sistency with the rest of the specification is maintained. This also involved defining a
translation from FSPs into C+, and thence into its logic-programming equivalent, EC+;
the correctness of our translations was proved. Although the paper focuses on revising
FSP descriptions, we see the work presented here as holding exciting potential for solv-
ing a wide range of problems in component-based software engineering.

To the best of our knowledge, the translation from process algebras into logic pro-
grams has not been explored before. Several authors have proposed using logic pro-
gramming to reason about software behaviour described in other formalisms [1, 2, 25].
[1] provides a translation for specifications expressed in LTL to event calculus logic
programs. However, both that work and [2] only generate a single violation run at a
time and hence require users to provide additional positive and negative example runs
to ensure computed solutions are not over-generalised and to speed up the convergence
of the approach. This limitation is overcome in our work by the generation of multiple
violation runs in a single verification step. Further, the formalism and semantics used
here allow the modelling of concurrency without the need to introduce special actions
explicitly in the language (e.g., ‘tick’ actions in [19]), removing one threat to scalability.
The work in [25] for generating Event Calculus logic programs from descriptions ex-
pressed in a tabular specification language and applying abductive logic programming
to discover violations to a restricted class of invariants, namely ‘single-state’ invariants.
That work finds a restricted class of violations, and cannot repair specifications.

[24] also use learning, to compute assumptions representing LTSs which, when
composed with given components, guarantee a property’s satisfaction. The learning
method is L*, which finds a regular language over a given alphabet and produces a
deterministic finite-state machine that accepts the language. L* requires access to an
oracle that iteratively accepts and rejects a generated string, and updates a table con-
taining state information accordingly. ILP, by contrast, uses an expressive logic-based
formalism capable of capturing state information among many other constructs such as
constraints over the types of computable changes; this is not possible in L*.

Our approach is somewhat related to work on controller synthesis, e.g., [7]. For in-
stance, techniques such as [7] automatically generate controllers that, together with a
given model of the environment, satisfy a given property. Although these have shown
good results,such techniques find at most one solution, even if many exist. Which con-
troller is produced is chosen at random. Although our approach has only been demon-
strated to learn revisions for existing process descriptions, we believe it may be adapted
to compute all minimal process descriptions for a given alphabet.

In future work, we will investigate the use of our method to check liveness prop-
erties. We will modify the approach to handle revisions to the alphabet and extend the
translation to embrace non-determinism and complex features such as abstractions and
priorities. We will apply the work to model distribution problems [26], compositional
specification synthesis from scenarios [17] and self-adaptive software [8].
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Appendix

Theorem 1. Let F be a set of fundamental FSPs, F = {PROC1, . . . , PROCn}, such that
(S,A,∆, S0) is the LTS defined by the composition ||F = (PROC1 ‖ · · · ‖ PROCn)
(where no PROCi itself contains a composition). Let FC+ be the corresponding C+
action description, with LTS (S′, A′, ∆′, S′0). Then there is a mapping λ : S → S′ such
that for any (s1, a, s2) ∈ ∆, (λ(s1), {ACT=a}, λ(s2)) ∈ ∆′.

Proof. Members s ∈ S have the form (Q1, . . . , Qn) (§1). Let λ be s.t. λ(Q1, . . . , Qn)
is {PROC1=Q1, . . . , PROCn=Qn}. {PROC1=Q1, . . . , PROCn=Qn} is clearly a state
of the LTS defined by FC+. Assume (s1, a, s2) ∈ ∆, and let s1 = (Q1, . . . , Qn) and
s2 = (Q′1, . . . , Q

′
n). We must show (λ(s1), {ACT=a}, λ(s2)) is in ∆′. Let Fa be those

members of F whose alphabets include a, i.e., Fa = {PROC ∈ F | a ∈ APROC}. Then
for all i such that 1 6 i 6 n, if PROCi ∈ Fa we have that transPROC(Qi, a) = Q′i, by
definition of the transition systems defined by FSPs, and thus a law

PROC=Q′i after PROCi=Qi ∧ ACT=a

in FC+. (Note also that if PROCi 6∈ Fa then transi(Qi, a) is undefined.) Also using
Definition 3 there must be a law

default ACT=a if PROC∗1=Q
∗
1 ∧ · · · ∧ PROC∗m=Q∗m

in FC+, where PROC∗1, . . . , PROC∗m are the members of Fa and the Q∗1, . . . , Q
∗
m the

corresponding values in s1. The presence (and absence) of these causal laws, together
with the inertial laws, means that there is a transition

({PROC1=Q1, . . . , PROCn=Qn}, {ACT=a}, {PROC1=Q
′
1, . . . , PROCn=Q

′
n})

in ∆′, which is precisely (λ(s1), {ACT=a}, λ(s2)) given our definition of λ. ut

Logic programs

A normal logic program is a set of rules of the form

L : −L1, . . . , Lm, not N1, . . . , not Nn (1)

where the L, Li and Ni are atoms and 0 6 m, 0 6 n. L is called the head of the rule
whilst L1, . . . , Lm, not N1, . . . , not Nn is referred to as the rule’s body. A literal is an
atom possibly preceded by not, where not is the negation as failure operator [3]. When
a program does not contain not in its rules, it is called a definite logic program.

A (Herbrand) modelM of a logic program P , is a set of ground atoms such that, for
each ground instanceC of a rule in P ,M satisfies the head ofC whenever it satisfies the
body of C. A program is consistent if it has at least one model. A model M is minimal
if it does not strictly include any other model. Definite programs always have a unique
minimal model. Normal programs may have one, none, or several minimal models.
When there is no unique minimal model, alternative semantics are often provided to
single out specific models as the intended model.



Let P be a normal logic program and M be a set of atoms; then the reduct [9] of P
with respect to M , written PM , is

{L : −L1, . . . , Lm | (1) ∈ P ∧ ∀i 6 n (Ni ∈M)}

The reduct of any normal logic program is a definite logic program, and therefore has
a unique minimal model. If I is the minimal Herbrand model of PM then M is said to
be a stable model of P .

Core Axioms

We present the domain-independent axioms for our translation to EC+ in §4. The first,
event-calculus inspired component, Ax1, are:
caused(C, V, 0, R) :-
domain(C, V),
init(C, V).

caused(C, V, T1, R) :-
domain(C, V),
0 < T1,
T is T1 - 1,
happens(A, T, R),
domain(C, V0),
caused(C, V0, T, R),
causes(C, V, A, C, V0).

caused(C, V, T1, R) :-
domain(C, V),
0 < T1, T is T1 - 1,
caused(C, V, T, R),
not broken(C, V, T, T1, R).

broken(C, V, T1, T2, R) :-
domain(C, V),
0 =< T1, T1 < T2,
domain(C, V1), V1 != V,
happens(A, T1, R),
causes(C, V1, A, C, V),
caused(C, V, T1, R).

The top-left axiom states that anything known true initially is caused to be true. The
bottom-left axiom states that if there is a fluent dynamic law (causes/5) of the right
form, and its conditions on the previous state and action performed hold, then the rel-
evant fluent atom holds. The top-right axiom states that the values of fluent constants
persist inertially by default; and the bottom-right, broken/5 axiom gives the circum-
stances overriding that default.

iCCalc Query

query(rinit(N), N,
[0:arm=q0, 0:raw productˆ[a]=q0, 0:raw productˆ[b]=q0,
0:toolˆ[drill]=q0, 0:toolˆ[oven]=q0,
-(0:being processedˆ[a]),
-(0:being processedˆ[b])]).

Remaining Violation Runs from §4

r4 = (s0
b.available−−−−−−→ s1

b.getFeedbelt−−−−−−−→ s2
a.available−−−−−−→ s3

a.getFeedbelt−−−−−−−→ s4)

r5 = (s0
a.available−−−−−−→ s1

b.available−−−−−−→ s2
b.getFeedbelt−−−−−−−→ s3

a.getFeedbelt−−−−−−−→ s4)

r6 = (s0
b.available−−−−−−→ s1

a.available−−−−−−→ s2
b.getFeedbelt−−−−−−−→ s3

a.getFeedbelt−−−−−−−→ s4)


