20 research outputs found

    Nonparametric nonlinear model predictive control

    Get PDF
    Model Predictive Control (MPC) has recently found wide acceptance in industrial applications, but its potential has been much impeded by linear models due to the lack of a similarly accepted nonlinear modeling or databased technique. Aimed at solving this problem, the paper addresses three issues: (i) extending second-order Volterra nonlinear MPC (NMPC) to higher-order for improved prediction and control; (ii) formulating NMPC directly with plant data without needing for parametric modeling, which has hindered the progress of NMPC; and (iii) incorporating an error estimator directly in the formulation and hence eliminating the need for a nonlinear state observer. Following analysis of NMPC objectives and existing solutions, nonparametric NMPC is derived in discrete-time using multidimensional convolution between plant data and Volterra kernel measurements. This approach is validated against the benchmark van de Vusse nonlinear process control problem and is applied to an industrial polymerization process by using Volterra kernels of up to the third order. Results show that the nonparametric approach is very efficient and effective and considerably outperforms existing methods, while retaining the original data-based spirit and characteristics of linear MPC

    Modified Volterra model-based non-linear model predictive control of IC engines with real-time simulations

    Get PDF
    Modelling of non-linear dynamics of an air manifold and fuel injection in an internal combustion (IC) engine is investigated in this paper using the Volterra series model. Volterra model-based non-linear model predictive control (NMPC) is then developed to regulate the air–fuel ratio (AFR) at the stoichiometric value. Due to the significant difference between the time constants of the air manifold dynamics and fuel injection dynamics, the traditional Volterra model is unable to achieve a proper compromise between model accuracy and complexity. A novel method is therefore developed in this paper by using different sampling periods, to reduce the input terms significantly while maintaining the accuracy of the model. The developed NMPC system is applied to a widely used IC engine benchmark, the mean value engine model. The performance of the controlled engine under real-time simulation in the environment of dSPACE was evaluated. The simulation results show a significant improvement of the controlled performance compared with a feed-forward plus PI feedback control

    Optimization and control of a continuous polymerization reactor

    Get PDF
    This work studies the optimization and control of a styrene polymerization reactor. The proposed strategy deals with the case where, because of market conditions and equipment deterioration, the optimal operating point of the continuous reactor is modified significantly along the operation time and the control system has to search for this optimum point, besides keeping the reactor system stable at any possible point. The approach considered here consists of three layers: the Real Time Optimization (RTO), the Model Predictive Control (MPC) and a Target Calculation (TC) that coordinates the communication between the two other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for process control. The complete optimization structure for the styrene process including disturbances rejection is developed. The simulation results show the robustness of the proposed strategy and the capability to deal with disturbances while the economic objective is optimized

    Adaptive Controller Design Directly from Plant Data

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Internal model control design using Just-In-Time learning technique

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Framework for operability assessment of production facilities: an application to a primary unit of a crude oil refinery

    Get PDF
    This work focuses on the development of a methodology for the optimization, control and operability of both existing and new production facilities through an integrated environment of different technologies like process simulation, optimization and control systems. Such an integrated environment not only creates opportunities for op¬erational decision making but also serves as training tool for the novice engineers. It enables them to apply engineering expertise to solve challenges unique to the process industries in a safe and virtual environment and also assist them to get familiarize with the existing control systems and to understand the fundamentals of the plant operation. The model-based methodology proposed in this work, starts with the implementation of first principle models for the process units on consideration. The process model is the core of the methodology. The state of art simulation technologies have been used to model the plant for both steady state and dynamic state conditions. The models are validated against the plant operating data to evaluate the reliability of the models. Then it is followed by rigorously posing a multi-optimization problem. In addition to the basic economic variables such as raw materials and operating costs, the so-called “triple-bottom-line” variables related with sustainable and environmental costs are incorporated into the objective function. The methodologies of Life Cycle Assessment (LCA) and Environmental Damage Assessment (EDA) are applied within the optimization problem. Subsequently the controllability of the plant for the optimum state of conditions is evaluated using the dynamic state simulations. Advanced supervisory control strategies like the Model Predictive Control (MPC) are also implemented above the basic regulatory control. Finally, the methodology is extended further to develop training simulator by integrating the simulation case study to the existing Distributed Control System (DCS). To demonstrate the effectiveness of the proposed methodology, an industrial case study of the primary unit of the crude oil refinery and a laboratory scale packed distillation unit is thoroughly investigated. The presented methodology is a promising approach for the operability study and optimization of production facilities and can be extended further for an intelligent and fully-supportable decision making

    Aspectos computacionales de algunos métodos de ajuste paramétrico de modelos aplicados a ciertos procesos de polimerización

    Get PDF
    En los últimos años se ha producido un cambio dramático en la industria de los procesos químicos. Los procesos industriales están ahora altamente integrados con respecto a los flujos de materia y energía, limitados aún mas fuertemente por altas calidades en las especificaciones de los productos y sujetos a estrictas medidas de seguridad y a la regulación de emisiones ambientales. Estas severas condiciones de operación a menudo colocan nuevas restricciones en la flexibilidad en la operación de los procesos. Todos estos factores producen grandes incentivos económicos para el mejoramiento y buen desempeño en los sistemas de control de las plantas industriales modernas [26]. Estas plantas requieren de sofisticados sistemas de cómputo para la implementación de estrategias de control. Es así que la mayoría de las nuevas plantas en las industrias químicas, del petróleo, papel, acero y otras están diseñadas y construidas con redes de microcomputadores para la adquisición de datos y control del proceso

    Data-based methods for modeling, control and monitoring of chemical processes

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Analysis and design of nonlinear systems in the frequency domain

    Get PDF
    Nonlinear system analyses have been widely applied in engineering practice, where the frequency domain approaches have been developed to satisfy the requirement of the analysis and design of nonlinear systems. However, there exist many problems with current techniques including the challenges with the nonlinear system representation using physically meaningful models, and difficulties with the evaluation of the frequency properties of nonlinear systems. In the present work, some new approaches, that have potential to be used to systematically address these problems, are developed based on the NDE (Nonlinear Differential Equation) model and the NARX (Nonlinear Auto Regressive with eXegenous input) model of nonlinear systems. In this thesis, the background of the frequency domain analysis and design of nonlinear systems is introduced in Chapter 1, and the existing approaches are reviewed in Chapter 2. In general, the frequency analysis of nonlinear systems is conducted based on the Volterra series representation of nonlinear systems, and as basic issues, the evaluation of the Volterra series representation and its convergence are discussed in Chapters 3 and 4, respectively. An extension of the existing frequency analysis and design techniques is discussed in Chapter 5 to facilitate the analysis of the effects of both linear and nonlinear characteristic parameters on the output frequency responses of nonlinear systems. An experimental study is conducted in Chapter 6 to show how a nonlinear component can benefit the engineering system, such to emphasis the significance of developing the analysis and design approaches of nonlinear systems. The main contributions are summarized as below. (1) The GALEs is proposed that can accurately evaluate the system Volterra series representation. By using the GALEs, the solution to the NDE model or the NARX model of nonlinear systems can be obtained by simply dealing with a series of linear differential or difference equations, which can facilitate a wide range of nonlinear system analyses and associated practical applications. (2) A new criterion is derived to determine the convergence of the Volterra series representation of nonlinear systems described by a NARX model. The analysis is performed based on a new function known as Generalized Output Bound Characteristic Function (GOBCF), which is defined in terms of the input, output and parameters of the NARX model of nonlinear systems. Compared to the existing results, the new criterion provides a much more rigorous and effective approach to the analysis of the convergence conditions and properties of the Volterra series representation of nonlinear systems. (3) The Output Frequency Response Function (OFRF) in terms of physical parameters of concern is introduced for the NARX Model with parameters of interest for Design (NARX-M-for-D). Moreover, a new concept known as the Associated Output Frequency Response Function (AOFRF) is introduced to facilitate the analysis of the effects of both linear and nonlinear characteristic parameters on the output frequency responses of nonlinear systems. (4) Nonlinear damping can achieve desired isolation performance of a system over both low and high frequency regions and the optimal nonlinear damping force can be realized by closed loop controlled semi-active dampers. Both simulation and laboratory experiments are studied, demonstrating the advantages of the proposed nonlinear damping technologies over both traditional linear damping and more advanced Linear-Quadratic Gaussian (LQG) feedback control which have been used in practice to address building isolation system design and implementation problems
    corecore