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SUMMARY 

 In this study, two novel IMC design methods using JITL technique, which are 

capable of controlling dynamic systems that operate over a wide range of operating 

regimes, are presented. In the first approach, a nonlinear IMC design based on 

partitioned model inverse is proposed for a class of nonlinear SISO and MIMO 

systems. Partitioned model consists of a linear model, which is obtained around an 

operating point, and a nonlinear model, which is identified by JITL algorithm. It is 

also shown that JITL model in the proposed control strategy can be made adaptive on-

line readily by simply adding the new process data to the database. Simulation results 

confirm that the resultant IMC design is indeed superior to the conventional IMC 

scheme.  

 In other approach, a memory-based IMC design approach is proposed for 

nonlinear systems. The proposed method employs JITL not only to update model 

parameters but also to adjust the parameters of IMC controller. At each sampling 

instant, the initial IMC filter parameter is obtained using a controller database. In 

addition, parameter updating algorithm is developed by employing the steepest 

descent gradient rule and is used to adjust the initial filter parameter on-line. 

Simulation results confirm that the performance of proposed memory-based IMC 

scheme shows a marked improvement over that achieved by the conventional PI/PID 

controller.  
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CHAPTER 
1 

 

Introduction 

 

1.1 Motivations 

 It is well known that virtually all processes of practical importance exhibit 

some degree of nonlinear behaviour. Nevertheless, the vast majority of controller 

design techniques used for chemical processes are based on well-established results in 

linear control theory. For nonlinear systems, in particular, the predominant approach 

is linearization around an operating point followed by one of the controller design 

techniques developed for linear systems (e.g., linear optimal control, pole placement, 

characteristic loci, etc). For chemical processes which exhibit only mildly nonlinear 

dynamic behavior, the errors incurred by local linearization are small enough so that 

their effects on stability and performance can be satisfactorily handled by building 

sufficient robustness into the linear controllers. More recently, increasingly stringent 

requirements on product quality and energy utilization, as well as on safety and 

environmental responsibility, demand that a growing number of industrial processes 

operate in a range of operating points. Under this situation, the process dynamics is 

forced away from its nominal design condition, which exacerbates the effect of the 

inherent nonlinear nature of the process. As a result, it can create difficult stability and 

performance problems and therefore render the linear controllers unacceptable. There 
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is therefore increased industrial and academic interest in the development and 

implementation of controllers that will be effective when process nonlinearities 

cannot be ignored without serious consequences (Calvet and Arkun, 1988; Ogunnaike 

and Wright, 1996). 

 To alleviate aforementioned problems, a variety of controller design 

techniques for nonlinear system have recently been proposed. Among these, IMC is a 

convenient and powerful controller design strategy for the open-loop stable dynamic 

systems. The IMC is significant because the stability and robustness properties of the 

structure can be analyzed and manipulated in a transparent manner, even for nonlinear 

systems. Thus IMC provides a general framework for nonlinear systems control. Such 

generality is not apparent in alternative approaches to nonlinear control (Hunt and 

Sbarbaro, 1991).   

 In literature, several nonlinear IMC (NLIMC) schemes that incorporate 

concepts from linear IMC have been developed recently. The initial approaches were 

using fundamental nonlinear model or nonlinear state-space model as a process model 

in IMC scheme (Economou et al., 1986a; Calvet and Arkun, 1988; Henson and 

Seborg, 1991). However, it is generally difficult to get accurate fundamental models 

of the processes and most of the times are not readily available in industrial practice 

because of a chronic lack of detailed and extensive knowledge required for their 

development.  

 The ability of multilayer feedforward neural networks (NN) to model almost 

any nonlinear function without a priori knowledge suggests that they may provide a 

promising approach for modeling nonlinear processes and utilizing them in IMC 

structure (Nahas et al., 1992). However, when dealing with large sets of data, this 

approach becomes less attractive because of the difficulties in specifying model 
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structure and the complexity of the associated optimization problem, which is usually 

highly non-convex. In addition, the problem of inverting a NN model is encountered. 

Several methods have been utilized for this inversion. One method involves training a 

separate NN model (i.e. a NN IMC controller) directly to learn the inverse dynamics. 

Although successful in some cases, this approach can often lead to steady-state offset 

because the product of the gains of the NN model and the NN controller does not 

necessarily yield unity (Nahas et al., 1992). 

 The above NLIMC control schemes that employ more realistic and often more 

complex nonlinear process descriptions typically sacrifice the simplicity associated 

with linear techniques in order to achieve improved performance. This is mainly due 

to the use of computationally demanding analytical or numerical methods and neural 

networks to learn the inverse process dynamics for the necessary construction of 

nonlinear operator inverses. 

 To overcome these difficulties, a promising NLIMC approach has recently 

been proposed to yield a flexible nonlinear model inversion (Doyle et al., 1995). This 

controller synthesis scheme based on partitioned model inverse retains the original 

spirit and characteristics of conventional (linear) IMC while extending its capabilities 

to nonlinear systems. In this control scheme, the nonlinear IMC controller consists of 

a standard linear IMC controller augmented by an auxiliary loop of nonlinear 

‘corrections’. Harris and Palazoglu (1998) investigated the use of Functional 

Expansion models in the aforementioned NLIMC scheme. However, expansion 

models such as Volterra model and Functional Expansion model are limited to fading 

memory systems and the radius of convergence is not guaranteed for all input 

magnitudes. In addition, these models share a common drawback in that they can 
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describe only a specific class of nonlinearity. This limitation restricts the 

implementation of these models in practice (Xiong and Jutan, 2002). 

 The problem of modeling a process from observed data has been the object of 

several disciplines from nonlinear regression to machine learning and system 

identification. Recent rapid developments of computer technologies enable us to 

memorize, fast retrieve and read out a large number of data. By effectively utilizing 

these advantages, Just-In-Time Learning (JITL) was recently developed as an 

attractive alternative for modeling the nonlinear systems (Cybenko, 1996; Aha et al., 

1991; Atkeson et al., 1997; Bontempi et al., 1999, 2001; Cheng and Chiu, 2004).  

1.2 Contributions 

 Inspired by the previous work done in the development of IMC strategy for 

nonlinear processes and modeling of this type of processes, two IMC design methods 

capable of controlling dynamic systems that operate over a wide range of operating 

regimes are developed. The main contributions of this thesis are as follows. 

 Firstly, a nonlinear IMC design based on partitioned model inverse is 

proposed for a class of nonlinear single-input and single-output (SISO) and multi-

input and multi-output (MIMO) systems. This partitioned model consists of a linear 

model, which is obtained around an operating point, and a nonlinear model, which is 

identified by JITL algorithm. It is also shown that JITL model in the proposed control 

strategy can be made adaptive on-line readily by simply adding the new process data 

to the database. Simulation results demonstrate that proposed IMC deign gives better 

performance than the conventional IMC scheme.  

 Secondly, a memory-based IMC design approach is proposed. The proposed 

method employs JITL not only to update model parameters but also to adjust the 

parameters of IMC controller. At each sampling instant, the initial IMC filter 
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parameter is obtained using a controller database. In addition, parameter updating 

algorithm is developed by employing the steepest descent gradient method and is used 

to adjust the initial filter parameter on-line. Simulation results show that the proposed 

memory-based IMC scheme gives better performance than the benchmark PI/PID 

controller reported in the literature. 

1.3 Thesis Organization 

 The thesis is organized as follows. Chapter 2 will introduce the basic 

knowledge on internal model control and review the concept of its extension to 

nonlinear systems and the recent developments in modeling of nonlinear processes. 

The detailed JITL algorithm is also presented in Chapter 2. Nonlinear IMC design 

method using both adaptive and non-adaptive JITL for SISO systems is developed in 

Chapter 3, while decentralized nonlinear IMC design method is presented in Chapter 

4. The proposed memory-based IMC design method is developed in Chapter 5. The 

general conclusions are summarized in Chapter 6 along with some recommendations 

for future work in this area. An exhaustive literature is provided at the end of the 

thesis. 
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CHAPTER 
2 

 

Literature Review 

 

 This chapter will give a brief introduction to the research work that has been 

conducted in the control of nonlinear chemical processes using Internal Model 

Control (IMC) strategy. Also, recent developments in modeling of nonlinear 

processes are discussed. Some relevant theoretical background and modeling 

algorithm required for further development of thesis will also be presented.  

2.1 General IMC Structure 

 Internal Model Control (IMC) structure was proposed by Garcia and Morari 

(1982). The general IMC structure is illustrated in Figure 2.1, where P(s) is the 

process to be controlled, M(s) represents the model of the process, and Q(s) is the 

IMC controller. The disturbance signal is omitted since the effect of disturbance and 

plant/model mismatch are indistinguishable in the closed loop (Garcia et al., 1989).  

 The IMC approach has two important advantages: (1) It explicitly takes into 

account model uncertainty, and (2) it allows the designer to trade-off control system 

performance against control system robustness to process changes and modeling 

errors (Seborg et al., 1989). The IMC controller is designed in two steps: 

Step 1: The process model is factored as 

)()()( sMsMsM −+=  (2.1) 
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Figure 2.1 General IMC structure 

where (s) is an all-pass element containing all the non-minimum-phase dynamics, 

and (s) contains a minimum-phase portion. In addition, (s) is specified such 

that its steady state gain is one. 

+M

−M +M

Step 2: The controller is specified as 

)(
)(

1)( sF
sM

sQ L
−

=  (2.2) 

where (s) is a low-pass filter with a steady-state gain of one. LF

 Typically, this filter is given by 

( )
( )rL s

sF
1

1
+

=
α

 (2.3) 

where α  is the desired closed-loop time constant. Parameter r is a positive integer 

that is selected so that Q(s) is either a proper or strictly proper transfer function.    

2.2 Linear IMC 

 The IMC scheme has been under intensive research and development in the 

last two decades due to its simple yet effective framework for system design. The idea 

inherent in the IMC has been floating around in one form or another for several 

decades. The IMC enables the transient response and the robustness to be addressed 

independently. Most of the existing advanced controllers such as linear quadratic 

r Q(s) P(s) 

M(s) 
+ 

- 

y u e + 
- 
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optimal controller, smith predictor and model predictive controller can be 

equivalently put into the general IMC form (Garcia and Morari, 1982; Fisher, 1991). 

The advantages of IMC are exploited in many industrial applications (Morari and 

Zafiriou, 1989). 

 Although many processes exhibit significant nonlinear behavior, most model-

based controller design techniques are based on linear models. The prevalence of 

linear model-based control strategies is primarily due to two reasons. First, there are 

well-established methods for the development of linear models from input-output data 

while practical identification techniques for nonlinear models are still being 

developed. Furthermore, controller design for nonlinear models is considerably more 

difficult than for linear models (Nahas et al., 1992).  

 In available linear model-based control strategies, linear IMC is a convenient 

and powerful controller design strategy for the open-loop stable dynamic systems 

(Morari and Zafiriou, 1989). Linear IMC design is expected to perform satisfactorily 

as long as the plant is operated in the vicinity of the point where the process model is 

obtained. However, many chemical processes exhibit a certain degree of nonlinearity. 

Furthermore, different operating conditions are usually necessitated by the external 

factors such as the persistent load disturbances or the increasingly demand of product 

diversification and cost reduction, e.g. grade changeover in a polymerization reactor. 

Under this situation, the process dynamics is forced away from its nominal design 

condition, which exacerbates the effect of the inherent nonlinear nature of the process. 

As a result, the performance of linear IMC controller will degrade or even become 

unstable. 
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2.3 Nonlinear IMC 

 The development of a general extension of IMC to nonlinear systems poses 

serious difficulties due to the inherent complexity of nonlinear systems. For instance, 

except for very simple SISO systems, the IMC factorization procedure has no well-

defined nonlinear analog (Kravaris and Daoutidis, 1990). Also, very few tools exist 

for the design and analysis of robust nonlinear controllers. Furthermore, linear IMC is 

based on transfer function models, while nonlinear systems are usually described by 

nonlinear state-space models. Despite these difficulties, several nonlinear controller 

design techniques that incorporate concepts from linear IMC have been developed 

recently. These design methods are reviewed below.  

 The nonlinear extension of IMC design was proposed by Economou et al. 

(1986a) for open-loop stable nonlinear systems with stable inverse. Input-output 

operators were used to show that their nonlinear IMC (NLIMC) technique satisfies the 

same stability, perfect control and zero offset properties as linear IMC. The controller 

was based on the inverse of the nonlinear model, and a linear filter was added to 

account for input constraints and modeling errors. Economou et al. (1986a) 

augmented the nonlinear controller with a linear filter because design techniques for 

nonlinear filters that preserve the nominal stability and no offset properties were not 

available. The stability of the model inverse was analyzed using the small gain 

theorem. Because the calculation of the required nonlinear gains is nontrivial 

(Nikolaou and Manousiouthakis, 1989), the stability theorems are difficult to use in 

practice. Although an input-output approach was used for analysis, the only analytical 

technique investigated for construction of the model inverse was the state-space 

approach of Hirschorn (1979). However, the Hirschorn inverse is internally unstable 

due to pole-zero cancellations at the origin (Kravaris and Kantor, 1990a, b). Hence, 
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the model inverse was constructed using numerical procedures based on the 

contraction mapping principle and Newton’s method. The Newton method is reliable 

and efficient, but requires the solution of a linear variational problem. This numerical 

approach to nonlinear IMC is, therefore, computationally intensive. Moreover, 

analysis of the resulting iterative procedure is difficult (Economou and Morari, 1985; 

Li et al., 1990).  

 Calvet and Arkun (1988) used an IMC scheme to implement their state-space 

linearization approach for nonlinear systems in the presence of disturbances. A 

disadvantage of this approach is that an artificial controlled output is introduced in the 

controller design procedure and therefore is difficult to be specified a priori. Another 

disadvantage of this method is that the nonlinear controller requires state feedback. 

 Henson and Seborg (1991) proposed a general extension of linear IMC to 

nonlinear SISO systems by using global input-output linearization technique. Like the 

nonlinear IMC approach of Economou et al. (1986a), this new approach was restricted 

to open-loop stable systems with stable inverses. Also, their method relied on the 

availability of a nonlinear state-space model, which can be time-consuming and costly 

to obtain. 

 The ability of artificial neural networks to model almost any nonlinear 

function without a priori knowledge has lead to the investigation of nonlinear 

dynamic systems modeling using neural networks (NN). Several NLIMC schemes 

using NN have recently been proposed (Bhat and McAvoy, 1990; Hunt and Sbarbaro, 

1991). Commonly, a NN model is trained to learn the inverse dynamics of the process 

and is employed as the nonlinear IMC controller. Because the process is modeled with 

a separate NN model, the NN controller might not invert the steady-state gain of the 

model exactly, resulting in steady-state offset. Moreover, these control schemes do 
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not provide a tuning parameter that can be adjusted to account for plant-model 

mismatch (Nahas et al., 1992). 

 To ensure offset-free performance, Nahas et al. (1992) proposed NLIMC 

strategy that also includes time delay compensation in the form of a Smith predictor. 

The nonlinear controller consists of a model inverse controller and a robustness filter 

with a single tuning parameter. In this control strategy, a numerical inversion of 

neural network process model was proposed instead of training neural networks on 

the process inverse. However, this numerical inversion is not only computationally 

demanding but also does not ensure global existence and uniqueness of a solution. 

 Aoyama et al. (1995) proposed a method using control-affine neural network 

models. Two neural networks were used in this approach: one for the model of the 

bias or drift term, and one for the model of the steady-state gain. As the process is 

approximated by a control-affine model, the inversion of process model is simply 

obtained by algebraically inverting the process model.  

 All of the above nonlinear control strategies sacrifice the simplicity associated 

with linear IMC in order to achieve improved performance. This is mainly due to the 

use of computationally demanding analytical or numerical methods and neural 

networks to learn the inverse process dynamics for the necessary construction of 

nonlinear operator inverses.  

 Recently, a partitioned model inverse has been proposed to yield a flexible 

nonlinear model inversion (Doyle et al., 1995). This controller synthesis scheme 

based on partitioned model inverse retains the original spirit and characteristics of 

conventional (linear) IMC while extending its capabilities to nonlinear systems. When 

implemented as part of the control law, the nonlinear controller consists of a standard 

linear IMC controller augmented by an auxiliary loop of nonlinear ‘corrections’. The 
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designer is free in the choice of the linear controller, and this element can be chosen 

as to address the control of nonminimum-phase dynamics. Furthermore, such a 

scheme has the advantage of providing an extra level in the hierarchical structure 

available to the control loop operator: instead of having ‘manual’ and ‘automatic’ as 

the only options, the operator now has the additional option of switching off only the 

auxiliary nonlinear loop, and downgrade, if necessary, not all the way to manual, but 

first to the basic linear scheme (Doyle et al., 1995). It is this flexibility that gives 

partitioned model inverses great promise in nonlinear control schemes. The fact that 

only a linear inversion is required in the synthesis of this controller is the most 

attractive feature of this scheme. However, Doyle et al. (1995) employs a Volterra 

model derived using local expansion results such as Carleman linearization, which is 

accurate for capturing local nonlinearities around an operating point, but may be 

erroneous in describing global nonlinear behavior (Maner et al., 1996). 

 Shaw et al. (1997) also employed a recurrent dynamic neural network within 

this partitioned model inverse controller synthesis scheme and showed that it provides 

an attractive alternative for NN-based control applications. Further, Maksumov et al. 

(2002) presented the first experimental application of this partitioned model inverse 

controller design strategy using NN as a nonlinear model and a linear ARX model. 

While the accuracy of NN models offers a potentially significant improvement over 

linear models, the process control engineer is faced with the daunting tasks of 

selecting model structure and initializing the optimization routine (Braun et al., 2001). 

Another fundamental limitation of these types of global approaches for modeling is 

that it is difficult for them to be updated on-line when the process dynamics are 

moved away from the nominal operating space. 
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 Harris and Palazoglu (1998) employed a Functional Expansion model in the 

partitioned model inverse based IMC control scheme. However, these models are 

limited to fading memory systems and the radius of convergence is not guaranteed for 

all input magnitudes. Such limitations are typical for expansion models such as 

Volterra model and Functional Expansion model as discussed by Boyd and Chua 

(1985) and Schetzen (1980).  

2.4 Process Identification 

2.4.1 Introduction 

 In the competitive environment of the chemical and refining process 

industries, it is mandatory to maximize profit through optimal process design and 

optimal plant operation. Optimal process design leads to a high level of process 

integration in order to increase the efficiency of process energy and material 

utilization. Optimal plant operation causes frequent changes in feed stocks and 

production specifications, in order to adapt to changing market conditions. Thus, the 

trend towards optimal design and operation will significantly increase the complexity 

of encountered control problems. This development has been realized recently by 

major companies and as a consequence many companies have drastically increased 

the investment in development and implementation of advanced control strategies. 

Practical experience with advanced control, has demonstrated that process 

identification is the single most time consuming task. Once an adequate dynamic 

model has been obtained, 80-90% of the implementation is done. Therefore, there is 

an obvious need for more efficient and reliable methods for industrial process 

identification. 

 Conceptually there are three different approaches for process identification: 

• White box: The identification is performed based on first-principles. 
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• Grey box: Both a priori process knowledge and experimental data are used for 

identification, e.g. only a subset of parameters is estimated from experimental data. 

• Black box: The identification is performed exclusively from experimental data. 

 Just as in the case of control structure selection, proper selection of 

identification concept depends on the specific problem. In general white box 

identification leads to relatively complicated nonlinear models, in which parameter 

values are associated with a significant uncertainty. In the case of chemical processes, 

this one as well as grey box approach may well be infeasible, due to a lack of 

understanding of physical phenomena or due to the complexity of the problem 

(Andersen et al., 1991). On the other hand, black box approach is prepared to describe 

virtually any dynamics (Ljung, 1999). Hence there has been considerable recent 

interest in this area. 

2.4.2 Data-Based approach 

 The problem of modeling a process from observed data has been the object of 

several disciplines from nonlinear regression to machine learning and system 

identification. In the literature dealing with this problem, three main paradigms have 

emerged: global, local and local memory-based. 

 Global modeling method builds a single functional model of the dataset. This 

has traditionally been the approach taken in neural network modeling, NARMAX 

models, fuzzy sets, wavelets and other kinds of nonlinear parametric models (Pearson 

and Ogunnaike, 1997; Su and McAvoy, 1997). These modeling methods compress all 

available information into a compact model. However, when dealing with large sets of 

data, this approach becomes less attractive to deal with because of the difficulties in 

specifying model structure and the complexity of the associated optimization 

problem, which is usually highly non-convex (Braun et al., 2001). Another drawback 
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is that, with the data essentially replaced by the model, there are no good methods to 

update models should new data become available (Cybenko, 1996). 

 Local modeling is a modular approach where the modules are simple models 

which focus on different part of the input space. This is the idea of operating regimes 

which assumes a partitioning of the operating range of the system in order to solve 

modeling and control problems. Fuzzy inference systems, radial basis functions, 

neuro-fuzzy network and hierarchical mixture of experts are well-known examples of 

this approach. It is important to remark that, although these architectures are 

characterized by an augmented readability, they still are a particular type of functional 

approximators. Also most local modeling approaches suffer from the drawback of 

requiring a priori knowledge to determine the partition of operating space (Bontempi 

et al., 2001). 

 Local memory-based models are a hybrid approach, leaning more in the 

direction of local modeling but using the power of global modeling in the local 

neighbourhood. In global modeling, a relatively simple problem (estimation of the 

function value) is solved by first solving a much more difficult intermediate problem 

(function estimation). Memory-based learning, on the other hand, turns out to be a 

single-step approach where the learning problem is seen as value estimation rather 

than a function estimation problem. Memory-based techniques are an old idea in 

classification, regression, and time-series prediction. The idea of memory-based 

approximators as alternative to global models originated in non-parametric statistics 

to be later rediscovered and developed in the machine learning fields (Bontempi et al., 

2001). Aha et al. (1991) developed instance-based learning algorithms for modeling 

the nonlinear systems.  Subsequent to Aha’s work, different variants of instance-base 
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learning are developed, e.g. locally weighted learning (Atkeson et al., 1997) and Just-

In-Time Learning (JITL) (Bontempi et al., 1999, 2001).  

 Comparing to the traditional methods like neural networks, JITL has no 

standard learning phase.  It merely gathers the data and stores in the database and the 

computation is not performed until a query data arrives.  It should be noted that JITL 

is only locally valid for the operating condition characterized by the current query 

data.  In this sense, JITL constructs local approximation of the dynamic systems. 

Therefore a simple model structure can be chosen, e.g. a low order ARX model. 

Another advantage of JITL is its inherently adaptive nature, which is achieved by 

storing the current measured data into the database (Cheng and Chiu, 2004). 

 There are three main steps in JITL to predict the model output corresponding 

to the query data: (1) relevant data samples in the database are searched to match the 

query data by some nearest neighborhood criterion; (2) the data is weighted using a 

kernel or weighting function; (3) a local regression is performed using a linear model 

to build local model. Model output is calculated based on this local model and the 

current query data. The local model is then discarded right after the answer is 

obtained. When the next query data comes, a new local model will be built based on 

the aforementioned procedure. 

 In the literature, distance measures are overwhelmingly used in the JITL to 

evaluate similarity between two data samples. Recently, Cheng and Chiu (2004) 

developed an enhanced JITL methodology by exploring both distance measure and 

the complementary information available from the angular relationship. The detail 

algorithm is given below.  
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2.4.3 Just-In-Time Learning (JITL) algorithm 

 The detailed algorithm of the enhanced JITL methodology is described as 

follows (Cheng and Chiu, 2004). Given a database ( ) Niiiy −=1,x , where the vector  

is formed by the past values of both process inputs and output, the parameters , 

, weight parameter 

ix

nkmi

maxk γ , and a query data  whose elements are identical to those 

defined for : 

qx

ix

Step 1: Compute the distance  between  and each , and the angle between 

 and  (

qx ixid

qxΔ ixΔ 1−−=Δ qqq xxx 1−−=Δ iii xxx and ) 

2iqid xx −= Ni ~1=,  (2.4) 

( )
22

T

.
cos

iq

iq
i xx

xx

ΔΔ

ΔΔ
=θ Ni ~1=,  (2.5) 

( ) 0cos ≥iθ , compute the similarity number  isIf 

( ) ( i
d

i
ies θγγ cos1
2

−+= − )  (2.6) 

( ) 0cos <iθIf , the data  is discarded. ( iiy x, )

minkl =Step 2: Arrange all  in the descending order. For is  to , the relevant data 

set , where  and , are constructed by selecting l most 

relevant data 

maxk

( ll Φy , ) 1×∈ l
l Ry nl

l
×∈RΦ

( )iiy x,  corresponding to the largest  to the l-th largest . Denote 

 a diagonal weight matrix with diagonal elements being the first l largest 

values of , and calculate 

is is

ll
l

×∈RW

is

lll ΦWP =  (2.7) 

lll yWv =  (2.8) 

The local model parameters are then computed by 
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( ) lllll vPPPψ T1T −
=  

where  is calculated by SVD method. Next, the leave-one-out cross 

validation test is conducted and the validation error is calculated by (Myers, 1990) 
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where  is j-th element of ,  and  are the j-th row vectors of  and  

respectively. 

ly jφ jp lΦ lPjy

Step 3: According to the validation errors, the optimal l is determined by 

( )l
l

el minargopt =  (2.10) 

Step 4: Verify the stability of local model built by the optimal model parameters 

. Because JITL constructs the local approximation of the dynamic systems, only 

the stability constraints of first- and second-order models are given as follows: 

optlψ

 First-order model: 

 (2.11) 11 1 <<− ψ

 Second-order model: 
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⎡
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11
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2

1

ψ
ψ

  (2.12) 

 (2.13) 11 2 <<− ψ

If  satisfies the stability constraint, the predicted output for query data is 

computed by 

optlψ

( )
tt

lqlqy
opop

Tˆ ψx=  (2.14) 

Otherwise,  is used as the initial value in the following optimization problem 

subject to the appropriate stability constraint, 

optlψ
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2opopt
min

tll vψP
ψ

−  (2.15) 

With the optimal solution  obtained from Eq. (2.15), the predicted output for 

query data is then calculated as . 

*
optlψ

*T
optlqψx

Step 5: When the next query data comes, go to step 1. 

2.5 Decentralized Control 

 Decentralized control structures have found wide application in the large scale 

chemical process industries. The control of MIMO processes using full multivariable 

centralized control requires too many control loops with increased cost and 

complexity of design, and difficult implementation, tuning and maintenance problems 

(Chiu and Arkun, 1992). Though the full multivariable controllers provide better 

performance, the simpler decentralized controllers are widely used because of the 

following reasons (Skogestad and Morari, 1989): 

• tuning and retuning is simple 

• they are easy to understand 

• they are easy to make failure tolerant. 

 Decentralized control involves using a diagonal or block-diagonal controller 

as shown in Figure 2.2, where ( )sG ( )sC is the plant and  is controller. 

( ) ( ){ scs idiag=C } (2.16) 

 The design of a decentralized control system involves two main steps: 

(1) control structure selection, that is, pairing of process inputs and outputs; and 

(2) design of a SISO controller for each loop. 

 The best way to proceed for each of these steps is still an active area of 

research. The RGA has proven to be an efficient tool for eliminating undesirable 
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pairings in step 1. For step 2, two classes of design procedures have been reported in 

the literature. The first class is independent design where each controller element is 

designed independently of each other (Grosdidier and Morari, 1986; Skogestad and 

Morari, 1989). The main advantage of this approach is that resulting system is failure 

tolerant i.e. nominal stability (of the remaining system) is guaranteed if any loop fails. 

However, this approach is potentially conservative since during the design of a 

particular controller the information on other controllers is not exploited (Skogestad 

and Morari, 1989).   

 The second class is sequential design in which controller design is conducted 

sequentially (Chiu and Arkun, 1989; Viswanadham and Taylor, 1988). Usually the 

controller corresponding to a fast loop is designed first. This loop is then closed 

before the design proceeds with the next controller. This means that the information 

about the “lower-level” controllers is directly used as more loops are closed; 

therefore, the method can be less conservative than independent design. 

 

Figure 2.2 Decentralized control structure 
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CHAPTER 
3 

 

Nonlinear Internal Model Control  

Design for SISO Systems 

 

 Traditionally, model based control strategies for chemical processes are to 

design linear controller based on the linearized model. For open-loop stable dynamic 

systems, IMC is a convenient and powerful controller design strategy. Although most 

of chemical processes are nonlinear in nature, the IMC controller is able to perform 

satisfactorily as long as the plant is operated in the vicinity of the point where the 

linearization is generated. When the plant is to be operated in a wide range of 

operating conditions in consequence of large setpoint changes and/or the presence of 

disturbances, the IMC controller based on nonlinear models can be employed. The 

IMC structure shown in Figure 2.1 is sufficiently general to allow the use of variety of 

process models, such as fundamental nonlinear models, as well as NN and black-box 

models. The difficulty in the use of these models in the IMC strategy arises in the 

design of IMC controller, which is based on the inverse of the model. As a result, a 

reliable and efficient method is required to achieve this inversion (Maksumov et al., 

2002). In the case of fundamental models, this inversion can be done analytically or 

numerically. However, generally it is difficult to get accurate fundamental models of 

the processes and most of the times are not available. In case of black-box model such 
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as the NN, the problem of inverting a model is encountered. Several methods have 

been utilized for this inversion. One method involves training a NN directly to learn 

the inverse dynamics. Although successful in some cases, this approach can often lead 

to offset because the product of the gains of the model NN and the controller NN does 

not necessarily yield unity. In literature, numerical inversion techniques have also 

been employed; however, this approach can be computationally demanding 

(Maksumov et al., 2002). Other methods in literature have proposed the partitioned 

model inverse to yield a flexible nonlinear model inversion for Volterra and 

Functional Expansion models (Doyle et al., 1995; Harris and Palazoglu, 1998). 

However, Volterra model is derived using local expansion results such as Carleman 

linearization, which is accurate for capturing local nonlinearities around an operating 

point, but may be erroneous in describing global nonlinear behavior (Maner et al., 

1996). On the other hand, Functional Expansion models are limited to fading memory 

systems and the radius of convergence is not guaranteed for all input magnitudes. 

Consequently, the resulting controller gives satisfactory performance only for a 

limited range of operation (Harris and Palazoglu, 1998). 

 By utilization of the partitioned model inverse control scheme and Just-In-

Time Learning (JITL) technique described in Chapter 2, a nonlinear IMC (NLIMC) 

design strategy is proposed in this chapter for a class of nonlinear systems that operate 

over a wide range of operating regimes. Two literature examples are used to illustrate 

the proposed control strategy and a comparison with the conventional IMC is made. 

3.1 Proposed Nonlinear IMC Strategy 

 In this work, partitioned model is utilized to yield a flexible nonlinear model 

inversion. Considering a process for which a linear (L) and a nonlinear (N) model are 

available, the models can be combined into a composite model M as 
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( LNLM −+= )  (3.1) 

 Using operator algebra, it is then straightforward to show that the inverse of 

this composite model is given by 

( ) 1111 ][ −−−− −+= LLNLIM  (3.2) 

 Note that only the inverse of the linear model is required. Additionally, this 

inverse can be computed on-line using the feedback loop illustrated in Figure 3.1. In 

the case of nonlinear systems with non-minimum-phase dynamics, Doyle et al. (1995) 

have shown that this partitioned model inverse structure is flexible enough to allow 

for the computation of pseudo inverse, i.e. the inverse of only minimum-phase 

dynamics of the process, meaning that  is replaced by , where  denotes the 

minimum-phase of linear model L and hence above equation can be written as 

1−L 1−
−L −L

( ) 1111 ][ −
−

−−
−

− −+= LLNLIM  (3.3) 

 Here, we use this partitioned model inverse structure in IMC control scheme, 

with linear model L obtained around an operating point and nonlinear model obtained 

by JITL algorithm. The resulting IMC controller, referred to NLIMC henceforth, has 

the structure illustrated in Figure 3.2, where Q is the standard linear IMC controller 

( ) ( ) ( )sFsLsQ L
1−
−=  (3.4) 

where  is a low-pass filter. Typically, this filter is given by LF

( )
( )rL s

sF
1

1
+

=
α

 (3.5) 

1−L  

 

Figure 3.1 Partitioned model inverse 
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Figure 3.2 NLIMC structure with partitioned controller 

where r is the relative degree of the system and α  acts as a tuning parameter. 

 The second filter  is used to provide robustness for the nonlinear IMC in 

the same spirit as linear IMC and this filter is chosen as the inverse of conventional 

robustness filter, 

NF

( ) ( )sFsF LN
1−=  (3.6) 

 However, a more practical choice for this filter is given by (Harris and 

Palazoglu, 1998), 

( ) ( )
( )p

L
N s

sFsF
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+
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β
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where β  and p  are design (tuning) parameters. Typically, αβ <  and p  is chosen 

such that  is proper, i.e. )(sFN rp = . The practical considerations for using this 

 are as follows: ( )sFN

• Selection of  by Eq. (3.6) can lead to non-causal elements in the control loop. 

Use of the modified filter circumvents this problem. 
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• Application of Eq. (3.6) can result in the amplification of noise, while the modified 

filter has tuning parameters to attenuate excessive noise. 

• The modified filter of Eq. (3.7) can be used to stabilize the closed-loop. This is 

required in cases when the inverse does not exist over the range of operation.  

 The tuning of Eq. (3.7) leads to two limiting cases. If 0→β , the full 

nonlinear control is achieved. The second case is for , i. e. 1→NF βα = . Here, the 

behavior of the closed-loop approaches that of the linear IMC scheme (Harris et al., 

2003). 

 As mentioned in Chapter 2, JITL has adaptive nature, which is achieved by 

storing the current measured data into the database. In case of adaptive JITL, initial 

database is constructed using process data collected in the small range of operating 

region and subsequently database is updated on-line at each sampling instant, 

whenever necessary as determined by the following criterion: when the modeling 

error between the process output and the predicted output by JITL algorithm is greater 

than the threshold value, the current process data is considered as ‘new’ data that is 

not adequately represented by the present database and is thus added to the database. 

In contrast, non-adaptive JITL algorithm makes use of process data collected over the 

operating region and this database is kept fixed during on-line application of the 

proposed NLIMC method. The performance of these two algorithms will be evaluated 

for two literature examples in the following simulation study.  Non-adaptive JITL 

algorithm in the proposed control strategy is expected to perform well as long as the 

process is operated in the region for which process data is available to construct 

database.  However, in many chemical processes, different operating conditions are 

usually necessitated by the external factors such as the increasingly demand of 

product diversification and cost reduction, e.g. grade changeover in a polymerization 
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reactor. In this situation, process data required to construct database for this new 

operating region may not be available. As a result, from the on-line application point 

of view, adaptive JITL algorithm in the proposed control strategy is preferred over its 

counterpart. 

 In comparison, online adaptation of NN and neuro-fuzzy models require 

model update from scratch, namely both network structure (e.g. the number of hidden 

neurons in the former case and the number of fuzzy rules in the latter) and model 

parameters may need to be changed simultaneously. Evidently, this process is not 

only time-consuming, but also it will interrupt the plant operation, if these models are 

used for other purposes like model based controller design (Cheng and Chiu, 2004). 

3.2 Examples 

Example 1: The proposed NLIMC strategy is applied to a polymerization reaction 

taking place in a jacketed CSTR. The reaction involves free-radical polymerization of 

methyl methacrylate (MMA) with azo-bis-isobutyronitrile (AIBN) as initiator and 

toluene as solvent (Maner et al., 1996; Doyle et al., 1995; Congalidis et al., 1989; 

Daoutidis et al., 1990). A schematic of the process is shown in Figure 3.3. The 

following simplifying assumptions are made to obtain model for this reactor (Doyle et 

al., 1995): (a) isothermal operation; (b) perfect mixing; (c) constant heat capacity; (d) 

no polymer in the inlet stream; (e) no gel effect; (f) constant reactor volume; (g) 

negligible initiator flow rate (in comparison with monomer flow rate); (h) quasisteady 

state and long-chain hypothesis. Under these assumptions, the six-state model in 

Daoutidis et al. (1990) reduces to the following four-state model: 

( ) ( )
,0 V

CCF
PCkk

dt
dC mm

mfp
m in

m

−
++−=  (3.8) 
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where y denotes the number-average molecular weight (NAMW) and 
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Figure 3.3 Control configuration for polymerization reactor 
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Table 3.1 Parameters for polymerization reactor 

11310 hkmolm103281.1 −−×=
cTk  3m00.1=F  

11311 hkmolm100930.1 −−×=
dTk  3m1.0=V  

11 hl100225.1 −−×=Ik  3mkmol0.8 −=
inIC  

1136 hkmolm104952.2 −−×=Pk  1kmolkg12.100 −=mM  
1133 hkmolm104522.2 −−×=

mfk  3mkmol0.6 −=
inmC  

58.0=∗f   

 

Table 3.2 Nominal operating conditions for polymerization reactor 

3
1 mkmol506774.5 −== mCx   3

14 mkg38182.49 −== Dx  

3
2 mkmol132906.0 −== ICx  13hm016783.0 −== IFu  

3
03 mkmol0019752.0 −== Dx    1kmolkg5.25000 −=y  

  

 The model parameters and nominal operating conditions are given in Tables 

3.1 and 3.2 respectively. The control objective is to manipulate the volumetric flow 

rate of the initiator  in order to regulate the process output y. The operating 

space considered is

( IFu = )

[ ]37500,12500NAMW∈ . For this example, the sampling time is 

0.03 hr and in the following simulation studies, the step change in the process input 

(open-loop test) or setpoint is made at the time equal to 0.15 hr. 

 Introducing the values in Table 3.1 for parameters in the modeling equations 

yields: 

( ) ,4568.2610 2111 xxxx −−=&  (3.13) 

,1022.1080 22 xux −=&  (3.14) 

,10112191.00024121.0 32213 xxxxx −+=&  (3.15) 
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,10978.245 4214 xxxx −=&  (3.16) 

.
3

4

x
xy =   (3.17) 

 From this first-principles reactor model, we now proceed to obtain a linear 

model via Taylor series approximation approach. By defining the normalized 

variables ( ) 00 /~
iiii xxxz −= , ( ) 00 /~ yyyy −=  and ( ) 00 /~ uuuu −= , where ,  and 

 are nominal operating values for the corresponding process variables, we obtain a 

model with state variables that are zero at the nominal operating condition. After 

taking Taylor series approximation of this normalized model up to the first-order 

term, we obtain linear state-space representation of the nonlinear system as follows: 

0ix 0y

0u

u~~~ bzAz +=&  (3.18) 

zc~~ =y  (3.19) 

where [ T
4321 ]~~~~~ zzzz=z  and the matrices in these equations are given by: 

 

,

10000001.510
0107744.845162.2
001022.100
00447837.08957.10

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−

=A  

[ ] ,001022.100 T=b  

[ ].1100 −=c  

Using the matrices given above, the linear reactor model can be described by the 

following Laplace transfer function: 

( ) ( ) ( )( )
( )( )( )2

1

101022.108957.10
7913.1110129643.38
+++

++−
=−= −

sss
ssssL bAIc  (3.20) 

 29



 To proceed with non-adaptive JITL algorithm, first-order ARX model is 

employed as local model, i.e. the regression vector is chosen as 

( ) ( ) ( )[ T1 ]~,1~1 −−=− kukykz . The database is generated by introducing uniformly 

random steps with distribution of [0.0045 0.078] in process input as shown in Figure 

3.4. The JITL algorithm parameters, 20mi =nk , 60max =k , and 95.0=γ , are chosen 

to achieve the smallest mean-squared-error (MSE) in the validation test. To illustrate 

the predictive performance of JITL algorithm, %50±  step changes in  from its 

nominal value of 0.016783  are considered as shown in Figure 3.5, where the 

predicted output of the JITL tracks the actual nonlinear plant output very closely and 

consequently their respective responses are indistinguishable. In comparison, it is 

evident that linear model given in Eq. (3.20) fails to provide accurate prediction of 

reactor dynamics in the aforementioned open-loop tests. 

IF

13 hm −

 To design both IMC controller Q and NLIMC controller, the former is chosen 

as the inverse of linear model ( )sL  given in Eq. (3.20) with augmentation of the 

following filter : ( )sFL

( )
( )212.0

1
+

=
s

sFL  (3.21) 

and NLIMC consists of the identical Q and the second filter ( )sFN  is chosen as 

( ) ( )
( )2

2

107.0
12.0
+
+

=
s

ssFN   (3.22) 

 To evaluate the performance of two IMC designs, step changes of  in 

setpoint from its nominal value of 25000.5  are conducted. In addition, the 

ideal closed-loop transfer function for setpoint change under perfect model 

assumption, i.e. , is used as the reference trajectory, which is the benchmark 

performance for both conventional IMC and the proposed NLIMC controllers (Doyle 

%50±

kmol/kg

LFM +
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et al., 1995). In this example, linear model does not contain non-minimum-phase 

dynamics, and thus reference trajectory is the same as filter response. As can be seen 

from Figure 3.6, the proposed controller effectively cancels the process nonlinearity 

and forces the process to behave like a linear process. If the process nonlinearity can 

be cancelled by the controller entirely, the closed-loop response shown in Figure 3.6 

would be identical to the reference trajectory, i.e. process behaviour would exactly 

match linear model. It is also evident that the NLIMC scheme tracks the reference 

trajectory more closely than the response obtained by linear IMC scheme. The latter 

leads to an overshoot response for the positive step change in setpoint, which may be 

undesirable if product specifications require the molecular weight to be less than 

37500 . While linear IMC could be detuned to yield an overdamped 

response for the positive step change in setpoint, detuning would cause performance 

deterioration for negative step change in setpoint, i.e. a more sluggish response. 

Hence, the nonlinear behavior of this process requires a compromise in the tuning of a 

linear model-based controller. To compare disturbance rejection capability of both 

IMC designs, unmeasured  step disturbances in inlet initiator concentration 

kmol/kg

%25±

( )
inIC  are considered. The resulting closed-loop responses at three different operating 

points are shown in Figures 3.7 and 3.8. In case of operating points other than 

nominal case in these figures, setpoint changes are made to move process towards 

new operating point (is not shown in figure) and then unmeasured disturbances are 

introduced once process reaches steady state. It is evident that the proposed control 

strategy gives a better performance than that obtained by linear IMC. 
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Figure 3.4 Input-ouput data used for constructing the database 

 

Figure 3.5 Open-loop responses for %50±  step changes in . Solid: actual process; 
dashed: linear model; dotted: JITL  

IF
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 Table 3.3 summarizes the mean-squared-error (MSE) between the process 

output and the reference trajectory for both setpoint tracking and disturbance rejection 

performances aforementioned. It is clear that NLIMC scheme reduces the MSE 

significantly, relative to linear IMC scheme, by a margin between 68% and 88%.  

 Next, we will implement NLIMC scheme by using adaptive JITL algorithm. 

In doing so, the initial database is generated by introducing uniformly random steps in 

process input around its nominal value as shown in Figure 3.9. Again, first-order 

ARX model is chosen as local model and the same parameter values of , , 

and 

nkmi maxk

γ  are employed. In addition, linear model and two filters used in NLIMC scheme 

are the same as those chosen for non-adaptive case. The criterion employed to update 

the database at each sampling instant is to check whether the difference between the 

predicted output by JITL algorithm and actual process output is within  of the 

process output. The resulting closed-loop responses for aforementioned setpoint 

changes and disturbance rejection are shown in Figures 3.10 to 3.12. It is clear that 

proposed control strategy with adaptive JITL algorithm outperforms linear IMC, as 

also evidenced by the reduction of MSE as summarized in Table 3.4. Furthermore, the 

symbol “*” in these figures denotes the sampling instants at which database is 

updated and the number of new data points added to the initial database during each 

simulation study are listed in the last column of Table 3.4. It is evident that database is 

updated only in the transient state of the process. Although there is marginal 

difference in tracking error, the closed-loop responses obtained by the proposed 

control strategy with adaptive and non-adaptive JITL are indistinguishable. This 

shows that the performance of proposed control strategy with adaptive and non-

adaptive JITL algorithm is almost similar. But from on-line application point of view, 

control strategy with adaptive JITL algorithm should be preferred because this control 

%5±
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scheme can perform well enough even though process condition moves towards 

completely new operating region necessitated by external factors such as market 

demand of product diversification. 

 Table 3.3 Comparison of closed-loop performances between IMC and non-
adaptive NLIMC 

Tracking error (MSE) 
Step change 

IMC NLIMC 

% Decrease 
in MSE 

r = 25000.5 to 37500 6104.6711×  5105.3854×  88.47 

r = 25000.5 to 12500 6103.8276×  6101.0239×  73.25 

+25% change in  at 15000 
inIC 5103.3353×  5101.0474×  68.60 

+25% change in  at 25000.5 
inIC 5104.5772×  5101.0779×  76.45 

+25% change in  at 35000 
inIC 5102.1414×  4104.9187×  77.03 

-25% change in  at 15000 
inIC 5107.0989×  5102.2291×  68.60 

-25% change in  at 25000.5 
inIC 5105.6498×  5101.4774×  73.85 

-25% change in  at 35000 
inIC 5104.4749×  5101.3046×  70.85 
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Figure 3.6 Closed-loop responses for %50±  step changes in setpoint. Dotted: 
reference trajectory; dashed: IMC; solid: NLIMC 

 

Figure 3.7 Closed-loop responses for %25+  step change in . Dotted: reference 
trajectory; dashed: IMC; solid: NLIMC 

inIC
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Figure 3.8 Closed-loop responses for %25−  step change in . Dotted: reference 
trajectory; dashed: IMC; solid: NLIMC   

inIC

 

Figure 3.9 Input-ouput data used for constructing the initial database 
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Figure 3.10 Closed-loop responses for %50±  step changes in setpoint. Dotted: 
reference trajectory; dashed: IMC; solid: NLIMC; star: database update 

 

Figure 3.11 Closed-loop responses for %25+  step change in . Dotted: reference 
trajectory; dashed: IMC; solid: NLIMC; star: database update 

inIC
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Figure 3.12 Closed-loop responses for %25−  step change in . Dotted: reference 
trajectory; dashed: IMC; solid: NLIMC; star: database update 

inIC

 
Table 3.4 Comparison of closed-loop performances between IMC and adaptive 

NLIMC 

Tracking error (MSE) 
Step change 

IMC NLIMC 

% Decrease 
in MSE 

No. of 
data 

points 
added 

r = 25000.5 to 37500 6104.6711×  5106.2231×  86.68 7 

r = 25000.5 to 12500 6103.8276×  6101.2395×  67.62 11 

+25%  in  at 15000 
inIC 5103.3353×  5101.3860×  58.44 10 

+25%  in  at 25000.5 
inIC 5104.5772×  5101.1789×  74.24 6 

+25%  in  at 35000 
inIC 5102.1414×  4105.5345×  74.15 2 

-25%  in  at 15000 
inIC 5107.0989×  5102.8862×  59.34 10 

-25%  in  at 25000.5 
inIC 5105.6498×  5101.6000×  71.68 10 

-25%  in  at 35000 
inIC 5104.4749×  5101.3109×  70.71 4 
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Example 2: The second example used for the proposed NLIMC strategy is the van de 

Vusse reaction kinetic scheme involving following reactions: 

C,BA
21 kk

→→  

,D2A
3k

→  

which is carried out in an isothermal CSTR. The process is described by the following 

nonlinear differential equations (Doyle et al., 1995): 

( )AAfAAA CC
V
FCkCkC −+−−= 2

31
&  (3.23) 

BBAB C
V
FCkCkC −−= 21

&  (3.24) 

where  and  denote the concentration of components A and B respectively. The 

model parameters and nominal operating conditions used in the simulation are: 

, , , , 

AC BC

1
1 h50 −=k 1

2 h100 −=k 11
3 hmoll10 −−=k 1lmol10 −=AfC L1=V , 

,  and . The control 

problem is to regulate the concentration of component B ( ) by manipulating the 

inlet flow rate (F). This example has been considered by a number of researchers as a 

benchmark problem for nonlinear process control algorithms (van de Vusse, 1964; 

Kantor, 1986). A plot of this reactor’s operating locus as shown in Figure 3.13 reveals 

a salient feature of this system, i.e. a change in sign of steady-state gain at the peak 

conversion level. In addition, this reactor displays non-minimum phase behavior to 

the left and minimum phase behavior to the right for the operation conditions of the 

maximum conversion. The operating space considered here is , which 

exhibits non-minimum phase dynamics. For this example, the sampling time is 0.001 

hr and the step change in the process input (open-loop test) or setpoint is made at the 

time equal to 0.01 hr in the following simulation studies. 

1
1 lmol0.3 −== ACx 1

2 lmol12.1 −== BCx 1hl3.34 −== Fu

BC

[ ]25.1,62.0∈BC
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Figure 3.13 Operating locus of van de Vusse reactor 

  

Figure 3.14 Input-output data used for constructing the database 
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 By defining the normalized variables 3~
1 −= ACz , 12.1~~

2 −== BCzy , and 

3.34~ −= Fu , we obtain a model with state variables that are zero at the nominal 

operating condition. After taking Taylor series approximation of this normalized 

model up to first-order term, we obtain linear state-space representation of the 

nonlinear system in the form of Eqs. (3.18) and (3.19), where the matrices in those 

equations are given by: 

,
3.13450

03.144
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=A  

,
12.1

7
⎥
⎦

⎤
⎢
⎣

⎡
−

=b  

[ ].10=c  

 Therefore, transfer function model can be derived as follows: 

( ) ( )
( )( )3.1443.134

2.16812.1
++

−−
=

ss
ssL  (3.25) 

 For non-adaptive JITL algorithm, second-order ARX model is employed as 

local model i.e. the regression vector is chosen as 

( ) ( ) ( ) ( )[ T1~,2~,1~1 −−−=− kukykykz ] . The database is generated by introducing 

uniformly random steps with distribution of [6 51] in process input as displayed in 

Figure 3.14. The JITL algorithm parameters, 20mi =nk , 70max =k , and 9.0=γ , are 

chosen to result in the minimum MSE in the validation test. The predictive 

performances of JITL algorithm and linear model are compared by introducing step 

changes of +15 and -20 in F from its nominal value as shown in Figure 3.15. 

Although linear model can display the inverse response associated with the non-

minimum phase dynamics and the correct sign of the process gain, its prediction is 

inferior to that obtained by JITL algorithm, whose prediction resembles closely to the 
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actual process output and as a result their respective curves are indistinguishable in 

Figure 3.15. 

 To design two IMC controllers, the IMC controller Q is designed as 

( ) ( )( )
( )( )101.02.16812.1

3.1443.134
++

++
=

ss
sssQ  (3.26) 

 and NLIMC consists of the identical Q and the second filter ( )sFN  is chosen as 

( )
1003.0

101.0
+
+

=
s

ssFN   (3.27) 

 Next, servo performances of two IMC designs are compared for +0.13 and 

 step changes in setpoint as shown in Figure 3.16. It is clear that NLIMC is able 

to follow the reference trajectory more closely than that obtained by the IMC 

controller. Disturbance rejection capability is evaluated by introducing  step 

disturbances in . The closed-loop responses at two different operating points are 

shown in Figures 3.17 and 3.18. It is evident that performance obtained by the 

proposed control strategy is better than that of linear IMC. These closed-loop results 

are also supported by Table 3.5, which gives quantitative summary in terms of MSEs 

between the process output and the reference trajectory. It is evident that NLIMC 

scheme has reduced the MSE significantly, relative to linear IMC scheme, by a 

margin of approximately 36-60%. 

5.0−

%10±

AfC

 Next, NLIMC scheme by using adaptive JITL algorithm is studied. In doing 

so, the initial database is generated by introducing uniformly random steps in process 

input around its nominal value as shown in Figure 3.19. Again, second-order ARX 

model is chosen as local model and the same parameter values of , , and nkmi maxk γ  

are employed. In addition, linear model and two filters used in NLIMC scheme are the 

same as those chosen for non-adaptive case. The criterion employed to update the 
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database at each sampling instant is to check whether the difference between the 

predicted output by JITL algorithm and actual process output is within  of the 

process output. The resulting closed-loop responses are compared in Figures 3.20 to 

3.22. It is clear that proposed control strategy with adaptive JITL algorithm 

outperforms liner IMC, as also evidenced by the reduction of MSE as summarized in 

Table 3.6. Again, the performance of proposed control strategy with adaptive and 

non-adaptive JITL algorithm is almost identical. 

%5±

Table 3.5 Comparison of closed-loop performances between IMC and non-adaptive 
NLIMC 

Tracking error (MSE) 
Step change 

IMC NLIMC 

% Decrease in 
MSE 

r = 1.12 to 1.25 4102.1585 −×  4101.3801 −×  36.06 

r = 1.12 to 0.62 3105.8165 −×  3102.2753 −×  60.88 

+10% change in  at 1.12 AfC 4106.8125 −×  4103.7961 −×  44.28 

+10% change in  at 0.62 AfC 5102.9791 −×  5101.2751 −×  57.20 

-10% change in  at 1.12 AfC 4106.2994 −×  4104.0146 −×  36.27 

-10% change in  at 0.62 AfC 5104.5846 −×  5102.0940 −×  54.33 
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Figure 3.15 Open-loop responses for step changes of +15 (top) and -20 (bottom) in F. 
Solid: actual process; dashed: linear model; dotted: JITL 

 

Figure 3.16 Closed-loop responses for step changes of +0.13 (top) and -0.5 (bottom) 
in setpoint. Dotted: reference trajectory; dashed: IMC; solid: NLIMC 
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Figure 3.17 Closed-loop responses for +10% step change in . Dotted: reference 
trajectory; dashed: IMC; solid: NLIMC 

AfC

 

Figure 3.18 Closed-loop responses for -10% step change in . Dotted: reference 
trajectory; dashed: IMC; solid: NLIMC 

AfC
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Figure 3.19 Input-output data used for constructing the initial database 

    

Figure 3.20 Closed-loop responses for step changes of +0.13 (top) and -0.5 (bottom) 
in setpoint. Dotted: reference; dashed: IMC; solid: NLIMC; star: database update 
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Figure 3.21 Closed-loop responses for %10+  step change in . Dotted: reference 
trajectory; dashed: IMC; solid: NLIMC; star: database update 

AfC

 

Figure 3.22 Closed-loop responses for %10−  step change in . Dotted: reference 
trajectory; dashed: IMC; solid: NLIMC; star: database update 

AfC
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Table 3.6 Comparison of closed-loop performances between IMC and adaptive 
NLIMC 

Tracking error (MSE) 
Step change 

IMC NLIMC 

% Decrease 
in MSE 

No. of 
data 

points 
added 

r = 1.12 to 1.25 4102.1585 −×  4101.4953 −×  30.73 5 

r = 1.12 to 0.62 3105.8165 −×  3102.6110 −×  55.11 14 

+10%  in  at 1.12 AfC 4106.8125 −×  4104.2833 −×  37.13 7 

+10%  in  at 0.62 AfC 5102.9791 −×  5101.4589 −×  51.03 8 

-10%  in  at 1.12 AfC 4106.2994 −×  4104.3535 −×  30.89 9 

-10%  in  at 0.62 AfC 5104.5846 −×  5102.4020 −×  47.61 11 

 

3.3 Conclusions 

 A nonlinear IMC design strategy using JITL technique is proposed for a class 

of nonlinear SISO systems that operate over a wide range of operating regimes. This 

IMC strategy makes use of conventional linear IMC controller augmented by an 

auxiliary loop to account for nonlinearities in the system. Simulation results show that 

proposed control strategy tracks reference trajectory better than its conventional 

counterpart. It is also shown that JITL model in the proposed control strategy can be 

made adaptive on-line readily by simply adding the new process data to the database. 

This adaptive feature of JITL algorithm makes JITL a better candidate than the 

previously proposed Volterra, Functional Expansion and NN models in the partitioned 

model inverse based nonlinear IMC scheme. 
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CHAPTER 
4 

 

Nonlinear Internal Model Control  

Design for MIMO Systems 

 

4.1 Introduction 

 Decentralized control remains popular in the industry despite the recent 

developments of advanced controller synthesis procedures leading to full 

multivariable controllers. The block diagonal structure in decentralized control system 

invariably leads to performance deterioration when compared to the system under 

control by a full controller. This sacrifice has to be weighed against the following two 

factors (Grosdidier and Morari, 1986): 

1. Hardware simplicity: If  and  in Figure 2.2 are physically close but  and 

 are far apart, a full controller could require expensive communication links. 

Also, the controller hardware costs could be high if an implementation through 

analogue circuitry is required. 

iu iy iu

( jiy j ≠ )

( ) ( )jisgij ≠= 02. Design simplicity: If the subsystem  in Figure 2.2, then each 

controller  can be designed for the isolated subsystem ( )sci ( )sgii  without any loss of 

performance. If  is "small", then it should still be possible to design the ( )( )jisgij ≠
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( )sgiicontroller for the essentially independent subsystems  to achieve satisfactory 

performance. The advantage is that fewer controller parameters need to be chosen 

than for the full multivariable control system. This is particularly relevant in process 

control where often many process variables have to be controlled which could lead to 

an enormously complex controller.  

 In literature, PID loops have been used in decentralized control scheme. 

However, as system dimensions increase, the tuning of PID parameters is not trivial 

task because each PID loop has three parameters. To overcome this drawback, an 

alternative design approach is proposed by Economou and Morari (1986) within the 

IMC framework. The resulting decentralized IMC structure is postulated by designing 

the decentralized IMC controller ( )sG~( )sQ  with respect to the process model , which 

is essentially diagonal matrix with entries being the diagonal elements of the process 

. Figure 4.1 is the block diagram representation of this structure for ( )sG nn×  

multivariable systems. 
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Figure 4.1 Decentralized IMC structure 

( )sG~  
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( )
( )sq
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2

1

0
0

 

 

Figure 4.2 Decentralized NLIMC structure 

  

 The IMC controller design for each loop in multiloop environment is similar 

to SISO IMC controller design and is briefly described as follows: Assume that a 

particular control structure has been selected which assigns each system input to one 

output. Furthermore, the inputs and outputs have been renumbered so that the 

corresponding transfer function elements appear on the diagonal of the system 

transfer matrix (Economou and Morari, 1986b). 

 Let  be the transfer function matrix for a ( )sG nn×  multivariable system: 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

sgsgsg

sgsgsg
sgsgsg

s

nnnn

n

n

L

MMMM

L

L

21

22221

11211

G  (4.1) 

 Then the decentralized IMC model is 

( ) ( ) ( ) ( )[ sgsgss nn,,,gdiag ]~
2211 K=G  (4.2) 

r Proces

( )
( )sg

sg

22

11

0
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2
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JITL

 

( )
( )sf

sf

N

N

2

1

0
0
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- - 
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+ 
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u y e 

( )sQ  

( )sNF  
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JITL

 

( )sG~  
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and the decentralized IMC controller is 

( ) ( ) ( ) ( )[ sqsqsqs n,,,diag 21 K=Q ]  (4.3) 

with 

( ) ( ) nisfsgq iLiii ,,2,1,1 K== −
−  (4.4) 

( )sG~( )sGIt is important to note that in the transition from the system  to the model , 

the off-diagonal elements were dropped. As a consequence, an a priori exactly known 

“modeling error” is introduced. The IMC filter ( )sf iL  has to be designed to preserve 

the robust stability in the presence of this modeling error. 

 Economou and Morari (1986b) utilized linear models in their decentralized 

IMC structure, which is able to perform satisfactory in the small neighborhood of the 

operating point where the linear model is obtained. When the plant is to be operated in 

a range of operating conditions in consequence of large setpoint changes and/or the 

presence of disturbances, there is need of decentralized IMC controller designed 

based on nonlinear models. Therefore, the objective of this chapter is to extend the 

nonlinear IMC design strategy developed in Chapter 3 to MIMO systems that operate 

over a range of operating regimes. Like in SISO case, JITL algorithm is used for 

modeling purpose. Two literature examples are used to illustrate the proposed control 

strategy and a comparison with the conventional decentralized linear IMC is made. 

4.2 Decentralized Nonlinear IMC Strategy 

 For convenience sake, the proposed decentralized nonlinear IMC 

(decentralized NLIMC) design for 22×  systems is discussed in this section. Figure 

4.2 illustrates the decentralized NLIMC structure, where ( )sg11  and  are the 

respective linear models of the subsystems (corresponding to the input-output pairing 

chosen) obtained around an operating point, whereas  and  are the 

( )sg 22

1JITL 2JITL
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( )sq1corresponding nonlinear models for the same subsystems. The IMC controllers  

and  are designed according to Eq. (4.4) and filters  and  are 

chosen for each loop in similar way as SISO case to provide robustness. Note that the 

issue of control structure selection, i.e. input-output pairing, is tackled by 

conventional pairing criterion like Relative Gain Array (RGA). 

( )sf N1 ( )sf N 2( )sq2

4.3 Examples 

Example 1: The proposed decentralized NLIMC strategy is applied to the free-radical 

solution polymerization of styrene in a jacketed CSTR. A schematic of this process is 

shown in Figure 4.3. The CSTR has three feed streams - pure styrene monomer, azo-

bis-isobutyronitrile (AIBN) initiator dissolved in benzene and pure benzene as 

solvent. As the control objective, we are interested in controlling the number-average 

molecular weight (NAMW) as well as the reactor temperature (  by manipulating 

both the initiator  and cooling water flow rates 

)T

( )iQ ( )cQ . The six-state nonlinear 

model for this reactor can be written as follows (Maner et al., 1996): 

[ ] [ ],][][
Ik

V
IQIQ

dt
Id

d
tfi −

−
=  (4.5) 

[ ] [ ] [ ][ ],][
PMk

V
MQMQ

dt
Md

p
tfm −

−
=  (4.6) 

( ) ( ) [ ][ ] ( ,c
p

p
p

rft TT
VC

hAPMk
C
H

V
TTQ

dt
dT

−−
Δ−

+
−

=
ρρ

)  (4.7) 

( ) ( ,c
cpccc

ccfcc TT
VC

hA
V

TTQ
dt

dT
−+ )−

=
ρ

 (4.8) 

[ ] ,5.0 020

V
DQ

Pk
dt

dD t
t −=  (4.9) 

[ ][ ] ,11

V
DQ

PMkM
dt

dD t
pm −=  (4.10) 
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Cooling fluid 

fs TQ

 

Figure 4.3 Control configuration for MIMO polymerization reactor 

 

where 
0

1NAMW
D
D

= , and 

[ ] [ ]
,

2
5.0

⎥
⎦

⎤
⎢
⎣

⎡
=

t

d

k
Ifk

P  

( ) tpdiTEAk iii ,,,/exp =−=  

.msit QQQQ ++=  

 The model parameters and nominal operating conditions for this reactor are 

given in Tables 4.1 and 4.2 respectively. The sampling time for this example is 1 h 

and in the following simulation studies, the step change in the process input (open-

loop test) or setpoint is made at the time equal to 10 h. In addition, we shall denote 

two process outputs as  and NAMW1 =y Ty =2 , while two manipulated variables as 

Controller 

Setpoints 

Cooling fluid 

Effluent 

Initiator 

Solvent 

Monomer 

ffi T][IQ  
ffm T][MQ  

cc TQ  

T[I][M]Q  

cfc TQ  
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iQu =1  and . Also, the following dimensionless variables are introduced:  cQu =2

( ) 00 /~
iiii yyyy −= ( ) 00 /~

iiii uuuu −= and , where  and  are nominal operating 

values for the corresponding process variables. 

0iy 0iu

 polymerization reactor Table 4.1 Model parameters for 22×

11 lK cal3.966 −−=pccCρ6.0=f   

117 hl10142.2 −×=dA 1hl459 −=sQ  

K14897=dE  1hl378 −=mQ  

L3000=V  1112 hmoll105.4 −−×=tA  

K843=tE  4.3312=cV L  

1110 hmoll10816.3 −−×=pA 1lmol5888.0][ −=fI  

K3557=pE  1lmol6981.8][ −=fM  

K330=fT  1molcal16700 −=Δ− rH  

K295=cfT  115 hKcal1052.2 −−×=hA  
11 lKcal360 −−=pCρ  1molg14.104 −=mM  

 

22×  polymerization reactor Table 4.2 Nominal operating conditions for 

[ ] 12 lmol106832.6 −−×=I 1
1 lg110.16 −=D  

[ ] 1lmol3245.3 −=M 1hl108 −=iQ   

K56.323=T  1hl6.471 −=cQ  

K17.305=cT  1
1 molg58481 −=y  

14
0 lmol107547.2 −−×=D K56.3232 =y  
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 Introducing the model parameters in Eqs. (4.5) to (4.10), linear model was 

obtained for normalized variables after taking Taylor series approximation at nominal 

operating point. RGA analysis is conducted using steady-state information of this 

linear model. Based on RGA criteria, NAMW is controlled by  and T is controlled 

by  in the decentralized controller design.  

iQ

cQ

 In the decentralized IMC scheme, IMC model is obtained by: 

( ) ( )
( )⎥⎦
⎤

⎢
⎣

⎡
=

sg
sg

s
22

11

0
0~G  (4.11) 

where 

( )
00057.001278.01146.05318.0358.1818.1

00041.0006.00302.0065.005.0
23456

234

11 ++++++
−−−−−

=
ssssss

sssssg  

( )
00573.00924.05104.0188.1

000111.00007.00011.0
234

2

22 ++++
−−−

=
ssss

sssg  

 To proceed with JITL modeling, the following regression vectors are chosen: 

( ) ( ) ( ) ( )[ ] ,1~,2~,1~1: T
11111 −−−=− kukykyky z  (4.12) 

( ) ( ) ( ) ( ) ( )[ ] .1~,1~,2~,1~1: T
212222 −−−−=− kukukykyky z  (4.13) 

 The databases are generated by introducing uniformly random steps with 

distribution of [32 208] and [304 1090] in process inputs  and  respectively, as 

shown in Figure 4.4. Then two separate databases are constructed using this data for 

JITL algorithm to predict  and . The JITL algorithm parameters used are: 

, , and 

1u 2u

1y 2y

15mi =nk 60max =k 20mi =nk9.0=γ  are chosen to predict , whereas 1y , 

, and 80max =k 85.0=γ  are used to predict . The nonlinear behavior of this reactor 

can be observed from open-loop responses for step changes of 

2y

l/h27±  in  from its 

nominal value of  shown in Figure 4.5. For number-average molecular weight, 

the predicted output of the JITL tracks the actual nonlinear plant output very closely 

iQ

l/h108

 56



and as a result their responses are indistinguishable in both simulations. In 

comparison, it is evident that linear model given in Eq. (4.11) fails to provide accurate 

prediction of reactor dynamics in the aforementioned open-loop tests. Similar 

observation also applies to the second output, temperature. 

( )sQ To design both decentralized IMC controller  and NLIMC controller, the 

former is chosen as the inverse of linear model ( )sG~  given in Eq. (4.11) with 

augmentation of the following filter ( )sLF : 

( ) ( )

( ) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+=

2

2

13
10

0
13

1

s

ssLF  (4.14) 

( )sQand decentralized NLIMC scheme consists of identical  and the second filter in 

auxiliary loop for nonlinear correction is chosen as 

( )

( )
( )

( )
( ) ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+

+
+

=

2

2

2

2

13.1
130

0
13.1

13

s
s

s
s

sNF  (4.15) 

 To evaluate the performance of two decentralized IMC designs, step change in 

the setpoint of NAMW from 58481 to 80000 g/mol  is conducted. It is clear from 

Figure 4.6 that decentralized NLIMC outperforms the decentralized linear IMC 

because the decentralized NLIMC effectively cancels process nonlinearity and tracks 

the reference trajectory more closely. Decentralized linear IMC may be detuned to 

obtain similar response. However, improved performance for positive stepoint 

changes would be achieved at the expense of performance deterioration for negative 

stepoint changes. Closed-loop simulation results for other setpoint changes are shown 

in Figures 4.7 to 4.9. It is evident that similar trends as discussed earlier are achieved. 

To evaluate the disturbance rejection performances of both control schemes, 
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unmeasured disturbances of %20±  step changes in the concentration of initiator in 

feed stream ( )][ fI  are considered. As can be seen from Figures 4.10 and 4.11, the 

decentralized NLIMC is able to reject the disturbances more effectively than linear 

IMC controller. Table 4.3 summarizes the MSE between the process output and the 

reference trajectory for the closed-loop responses considered above. It is evident that, 

decentralized NLIMC scheme has reduced the MSE significantly, relative to 

decentralized linear IMC scheme. 

Table 4.3 Comparison of closed-loop performances between decentralized IMC and 
NLIMC 

Tracking error (MSE) 

Step change Decentralized IMC Decentralized NLIMC 

2y 2y   1y 1y 

1r =58481 to 80000 6101068.1 × 1102130.1 −× 5103385.1 × 2109500.2 −×    

1r =58481 to 50000 5107782.3 × 2104100.3 −× 5102519.1 × 3106000.9 −×    

2r =323.56 to 325 5102385.4 × 4109674.8 −× 5101952.1 × 4103096.1 −×    

2r =323.56 to 320 6103529.1 × 1103650.3 −× 5101268.4 × 1102400.1 −×    

+20% change in  ][ fI 6100931.1 × 3108660.4 −× 5109994.2 × 4104339.7 −×    

-20% change in  ][ fI 6107755.1 × 3106411.5 −× 5105902.4 × 4105870.8 −×    
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Figure 4.4 Input-output data used for constructing the database 

 

Figure 4.5 Open-loop responses for %25±  step changes in  from its nominal 
value. Solid: actual process; dashed: linear model; dotted: JITL 

iQ
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Figure 4.6 Closed-loop responses for setpoint change from 58481 to 80000 in . 
Dotted: reference trajectory; dashed: IMC; solid: NLIMC 

1y

 

Figure 4.7 Closed-loop responses for setpoint change from 58481 to 50000 in . 
Dotted: reference trajectory; dashed: IMC; solid: NLIMC 

1y
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Figure 4.8 Closed-loop responses for setpoint change from 323.56 to 325 in . 
Dotted: reference trajectory; dashed: IMC; solid: NLIMC 

2y

 

Figure 4.9 Closed-loop responses for setpoint change from 323.56 to 320 in . 
Dotted: reference trajectory; dashed: IMC; solid: NLIMC 

2y
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Figure 4.10 Closed-loop responses for %20+  step change in . Dotted: reference 
trajectory; dashed: IMC; solid: NLIMC 

][ fI

 

Figure 4.11 Closed-loop responses for %20−  step change in . Dotted: reference 
trajectory; dashed: IMC; solid: NLIMC 

][ fI
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Example 2: The second application of proposed control strategy focuses on the 

control of a nonisothermal CSTR, with the kinetics governed by the van de Vusse 

reactions, 

C,BA
21 kk

→→  

.D2A
3k

→  

This reaction scheme describes the production of cyclopentenol (B) from 

cyclopentadiene (A) by acid catalyzed electrophilic addition of water in dilute 

solution. The unwanted by-products are dicyclopentadiene (D) and cyclopentanediol 

(C) (Harris and Palazoglu, 1998; Engell and Klatt, 1993). The above reaction takes 

place in a jacket-cooled, perfectly mixed CSTR, where the coolant is introduced by an 

external heat exchanger in which a certain amount of heat is removed. Here the 

control problem focuses on controlling the outlet concentration of B ( as well 

as the reactor temperature (

)

)

Bcy =1

( )Fu =1Ty =2  by manipulating both reactor flow rate  

and heat exchanger duty ( )wQu =2 .  

 The balance equations for the concentrations of cyclopentadiene, , and 

cyclopentenol, , are: 

Ac

Bc

( ) ( ) ( ) 2
310 AAAA

A cTkcTkcc
V
F

dt
dc

−−−=  (4.16)  

( ) ( ) BAB
B cTkcTkc

V
F

dt
dc

21 −+−=  (4.17) 

The energy balance for the reactor and external heat exchanger yields the following 

differential equations: 

( ) ( ) ( )[ ]

( ) ( )TT
VC

Ak
TT

V
F

HcTkHcTkHcTk
Cdt

dT

w
p

ww

ABA
P

−+−+

Δ+Δ+Δ−=

ρ

ρ

0

3
2

32211
1

 (4.18) 
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([ wwww
pww

w TTAkQ
Cmdt

dT
−+=

1 )]  (4.19) 

 In all of the above differential equations, the reaction rate coefficients ,  

and  depend on the reactor temperature via Arrhenius’s equation: 

1k 2k

3k

( ) ⎥⎦
⎤

⎢⎣
⎡=

T
E

kTk i
ii exp0,  (4.20) 

 The complete notation and relevant parameters are given in Table 4.4 and 

nominal operating conditions are in Table 4.5. For this example, the sampling time is 

0.002 h and in the following simulation studies, the step change in the process input 

(open-loop test) or setpoint is made at the time equal to 0.2 h. In addition, the 

following dimensionless variables are defined: ( ) 00 /~
iiii yyyy −=  and 

( ) 00 /~
iiii uuuu −= , where  and  are nominal operating values for the 

corresponding process variables. 

0iy 0iu

 As described in the previous example, linear model was obtained by Taylor 

series approximation and RGA analysis was conducted using steady state information 

of this model. Based on RGA criteria, outlet concentration of B ( ) is 

controlled by the reactor flow rate 

Bcy =1

( )Fu =1  and reactor temperature  is 

controlled by the external heat exchanger duty 

( )Ty =2

( )wQu =2 .  

 In the decentralized IMC scheme, IMC model is given by: 

( ) ( )
( )⎥⎦
⎤

⎢
⎣

⎡
=

sg
sg

s
22

11

0
0~G  (4.21) 

where 

( )
962300093940026220279

1075014302897.009.0
234

23

11 ++++
+++−

=
ssss

ssssg  
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( )
962300093940026220279

184305.479083.3
234

2

22 ++++
++

=
ssss

sssg  

 The following two regression vectors are chosen in JITL algorithm: 

( ) ( ) ( ) ( )[ ] ,1~,2~,1~1: T
11111 −−−=− kukykyky z  (4.22) 

( ) ( ) ( ) ( ) ( )[ ] .1~,1~,2~,1~1: T
212222 −−−−=− kukukykyky z  (4.23) 

Table 4.4 Model parameters for cyclopentenol reactor 

V  Reactor volume 10 L 

0T  Inlet temperature 403.15 K 

pC  Average heat capacity 30.1 kJ/kg/K 

0Ac  Inlet concentration of A 5.1 mol/L 
ρ  Average density 0.9342 kg/L 

wk  Coolant conductivity 4032 kJ/h/m2/K 

pwC  Coolant heat capacity 2.0 kJ/kg/K 

wm  Coolant mass 5.0 kg 

wA  Heat exchange area 0.215 m2

0,1k  112 h10287.1 −×  Arrhenius constant 

0,2k  112 h10287.1 −×  Arrhenius constant 

0,3k  L/mol/h10043.9 9×  Arrhenius constant 
Normalized activation energy -9758.3 K 1E  

2E  Normalized activation energy -9758.3 K 

3E  Normalized activation energy -8560 K 

1HΔ  Heat of reaction 4.3 kJ/mol 

2HΔ  Heat of reaction -11 kJ/mol 

3HΔ  Heat of reaction -41.85 kJ/mol 

 
Table 4.5 Nominal operating conditions for cyclopentenol reactor 

wT  Ac  1.235 mol/L 402.1 K 

Bc  0.900 mol/L 188.3 L/h F  

wQ  -4496 kJ/h 407.3 K T  
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 The input-output data is generated by introducing uniformly random steps 

with distribution of [50 300] and [-3000 -6500] in process inputs  and  

respectively, as shown in Figure 4.12. The input-output data given in Figure 4.12 is 

then used to construct two databases for JITL algorithm to predict  and . The 

JITL algorithm parameters 

1u 2u

1y 2y

15mi =nk , 100max =k 98.0=γ, and  are chosen to predict 

the first output , whereas 10mi =nk1y , 80max =k 95.0=γ, and  are used to predict 

. To compare predictive performances of JITL algorithm and linear model, the 

respective step changes of  and 

2y

l/h100− kJ/h1000−  in  and  from their nominal 

values are considered. As can be seen from Figure 4.13, linear model gives erroneous 

prediction for both transient and steady-state behavior of this reactor in this open-loop 

test. In contrast, JITL is able to predict the reactor dynamics much more accurately. 

1u 2u

( )sQ To design both decentralized IMC controller  and NLIMC controller, the 

former is chosen as the inverse of linear model ( )sG~  given in Eq. (4.21) with 

augmentation of the following filter ( )sLF : 

( )
( ) ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+=
2104.0

10

0
15.0

1

s

ssLF  (4.24) 

and decentralized NLIMC consists of the aforementioned linear IMC controller with 

the second filter in auxiliary loop chosen as 

( ) (
( )

)
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+

+
+

=

2

2

101.0
104.00

0
11.0
15.0

s
s

s
s

sNF  (4.25) 
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Figure 4.12 Input-output data used for constructing the database 

 

Figure 4.13 Open-loop responses for step changes of -100 and -1000 in  and  
respectively. Solid: actual process; dashed: linear model; dotted: JITL 

1u 2u
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 Next, servo performances of two control schemes for different setpoint 

changes in  and  are compared in Figures 4.14 to 4.17. It is evident that 

decentralized NLIMC outperforms the decentralized linear IMC not only because the 

former tracks the trajectory closely (also evidenced by the reduction of MSE between 

85% and 95% as given in Table 4.6), but also it can cope with the process interaction 

more effectively (also evidenced by the reduction of MSE between 74% and 97% as 

given in Table 4.6). Disturbance rejection capability of these two controllers is 

evaluated by introducing step disturbances in the inlet concentration of 

cyclopentadiene ( ) and the corresponding closed-loop responses are shown in 

Figures 4.18 and 4.19. It is clear that decentralized NLIMC has better disturbance 

rejection performance compared to its linear counterpart, as also evidenced by the 

reduction of MSE between 71% and 93% in Table 4.6.  

1y 2y

0Ac

4.4 Conclusions 

 A decentralized nonlinear IMC deign strategy using JITL technique is 

proposed for a class of nonlinear MIMO systems that operate over a range of 

operating conditions. This IMC strategy makes use of conventional decentralized 

IMC controller augmented by an auxiliary loop to account for nonlinearities in the 

system. Simulation results are presented to demonstrate the advantages of proposed 

control scheme over its conventional counterparts.  
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Figure 4.14 Closed-loop responses for setpoint change from 0.9 to 1.0 in . Dotted: 
reference trajectory; dashed: IMC; solid: NLIMC 

1y

 

Figure 4.15 Closed-loop responses for setpoint change from 0.9 to 0.5 in . Dotted: 
reference trajectory; dashed: IMC; solid: NLIMC 

1y
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Figure 4.16 Closed-loop responses for setpoint change from 407.3 to 412.3 in . 
Dotted: reference trajectory; dashed: IMC; solid: NLIMC 

2y

 

Figure 4.17 Closed-loop responses for setpoint change from 407.3 to 397.3 in . 
Dotted: reference trajectory; dashed: IMC; solid: NLIMC 

2y
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Figure 4.18 Closed-loop responses for step change of +1.5 in . Dotted: reference 
trajectory; dashed: IMC; solid: NLIMC 

0Ac

 

Figure 4.19 Closed-loop responses for step change of -0.5 in . Dotted: reference 
trajectory; dashed: IMC; solid: NLIMC 

0Ac
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Table 4.6 Comparison of closed-loop performances between decentralized IMC and 
NLIMC 

Tracking error (MSE) 

Step change Decentralized IMC Decentralized NLIMC 

2y 2y   1y 1y 

1r =0.9 to 1.0 5109568.3 −× 2103118.1 −× 6106038.3 −× 4108081.6 −×    

1r =0.9 to 0.5 3108422.5 −× 1101430.2 −× 4100384.3 −× 3101092.6 −×    

2r =407.3 to 412.3 4106047.9 −× 3107000.2 −× 4108788.1 −× 4102899.3 −×    

2r =407.3 to 397.3 3107508.2 −× 1107960.3 −× 4102226.7 −× 2105400.5 −×    

0Ac =5.1 to 6.6 3109537.2 −× 1104190.4 −× 4103504.8 −× 2107411.2 −×    

0Ac =5.1 to 4.6 4102202.6 −× 2103724.4 −× 4107696.1 −× 3107388.3 −×    
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CHAPTER 
5 

 

Memory-Based Internal Model Control Design 

 

5.1 Introduction 

 The IMC scheme has been under intensive research and development in the 

last two decades due to its simple yet effective framework for system design. The idea 

inherent in the IMC has been floating around in one form or another for several 

decades. There are quite many nonlinear IMC design methods proposed in the 

literature using nonlinear models. The difficulty in the use of these models in the IMC 

design strategy arises in the design of IMC controller, which is based on the inverse of 

the model. Detailed discussions on this issue have been provided in Chapters 2 and 3. 

 One attractive feature of IMC is its ability to address the transient response 

and the robustness issues in a transparent manner.  Typically, an IMC filter is used to 

make a compromise between the robustness and performance requirement. Generally 

this IMC filter parameter is kept fixed. However, since most process systems have 

nonlinearities, it may be difficult to obtain good control performance for such systems 

simply using the fixed filter parameter.  

  The objective of this chapter is to propose a novel memory-based IMC design 

to address the above mentioned two control problems. Recent rapid developments of 
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computer technologies enable us to memorize, fast retrieve and read out a large 

number of data. By effectively utilizing these advantages, Just-In-Time Learning 

(JITL) technique described in Chapter 2 offer an attractive alternative for modeling 

the nonlinear systems. Comparing to the traditional methods, JITL has no standard 

learning phase. It merely gathers the data and stores them in the database and the 

computation is not performed until a query data arrives. It is worth noting that JITL is 

only locally valid for the operating condition characterized by the current query data, 

meaning that JITL constructs local approximation of the dynamic systems. Therefore, 

a simple model structure can be chosen, e.g. a low order ARX model. As a result, it is 

quite easy to obtain inverse of such models. Hence first control problem is a trivial 

task by using JITL algorithm as a process model. 

 The second problem is addressed here by making IMC filter parameter 

adaptive. At each sampling instant, the proposed method initializes IMC filter 

parameter using a controller database. Subsequently, the filter parameter is updated 

on-line in proportion to control error and the resulting filter parameter is stored in the 

controller database. Therefore, the most current filter parameter corresponding to the 

characteristics of the controlled object is newly stored. Finally, the effectiveness of 

the newly proposed control scheme is examined on a polymerization reactor, which 

was discussed in Chapter 3, and a pH neutralization process. The simulation results of 

these two processes demonstrate the ability of the proposed control strategy to 

outperform the benchmark PI/PID controller reported in the literature. 

5.2 Memory-Based IMC Strategy 

 Consider the class of discrete-time nonlinear systems that can be described 

accurately by the JITL technique discussed in Chapter 2, where each local model 
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obtained by JITL is only locally valid around the query data, therefore a low-order 

ARX model can be chosen as local model at each query point, i.e. 

( ) ( ) ( )( ) ( )ψzz 11ˆ~ T −=−== kkfkyky , (5.1)  

where  denotes the system output, ( )ky ( )kŷ  is the predicted output by JITL 

algorithm,  denotes a linear function, ( )⋅f ( )kz  is the regression vector, and  is the 

model parameter vector. The regression vector and model parameter vector are 

defined by the following equations: 

ψ

( ) ( ) ( ) ( ) ( )[ ]T,,1,,,11 uy nkukunkykyk −−−−=− KKz , (5.2) 

T
11 ],,,,,[

uyyy nnnn ++= ψψψψ KKψ , (5.3) 

where  and  are integers related to the model’s order. yn un

 The above mentioned JITL model serves as IMC model in our proposed 

control scheme. For illustration purpose, consider 2=yn  and  in the 

aforementioned JITL model. Then its equivalent transfer function can be expressed as 

follows: 

1=un

( ) ( )
( ) 2

2
1

1

1
3

1
ˆ

−−

−

−−
==

zz
z

zu
zyzGm ψψ

ψ
 (5.4) 

 At each sampling instant, the controller ( )zQ  is obtained by inverting ( )zGm−  

(the invertible part of ) as required in IMC scheme and then multiplying by a 

first-order filter to improve robustness of the controller as well as to ensure physical 

realizability of controller. Thus JITL is employed not only to update model 

parameters but also to adjust the parameters of IMC controller. Following these steps, 

the controller transfer function using model described in Eq. (5.4) can be derived as: 

( )zGm

( ) ( )
( ) ( )zfzz
ze
zuzQ

3

2
2

1
11
ψ

ψψ −− −−
== , (5.5) 
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where  is a first order filter with tuning parameter ( )zf α  and as given by 

( ) 11
1

−−
−

=
z

zf
α
α  (5.6) 

The control law from Eq. (5.5) becomes: 

( ) ( ) ( ) ( ) ( )[ 2111 21
3

−−−− ]−
+−= kekekekuku ψψ

ψ
αα , (5.7) 

where  denotes the controller input defined by ( )ke

( ) ( ) ( ) ( )kykykrke ˆ+−=  (5.8) 

where  denotes the reference signal and ( )kr ( )kŷ  denotes the JITL prediction. As 

mentioned earlier, it is quite difficult to obtain a good control performance due to 

nonlinearities, if filter parameter α  in Eq. (5.7) is fixed. Therefore, here we propose a 

new control scheme, which can adjust this parameter in an on-line manner 

corresponding to characteristics of the system. Thus, instead of Eq. (5.7), the 

following control law with variable filter parameter at each sampling instant is 

employed: 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]2111 21
3

−−−−
−

+−= kekekekkukku ψψ
ψ
αα  (5.9) 

 Now, Eq. (5.9) can be rewritten as the following relations: 

( ) ( )( kgku )φ ′=  (5.10) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ]1,2,1,

,2,1,,[:
−−− )

−−=′

kukykyky
krkrkrkk αφ

 (5.11) 

where  denotes a linear function. By substituting Eq. (5.10) and Eq. (5.11) into 

Eq. (5.1) and Eq. (5.2), the following equation can be derived: 

( )⋅g

( ) ( )( ) ( ) ( ) ( )[ ]( ) ( )( )khkukykyfkfky φ~,1,1 T =−==+ z  (5.12) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ]1,2,1,

,,2,1,[:
)

~

−−−
−−=

kukrkrkr
kkykykyk αφ  (5.13) 
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where  denotes a linear function. Therefore, ( )⋅h ( )kα  is given by the following 

equations: 

( ) ( )( )kFk φα =  (5.14) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )]1,2,1,

,2,1,,1[:
−−−
−−+=

kukrkrkr
kykykykykφ

 (5.15) 

where  denotes a linear function. Since the future output ( )⋅F ( )1+ky  included in Eq. 

(5.15) cannot be obtained at the sampling instant k, ( )1+ky  is replaced by ( )1+kr . 

Therefore, the information vector ( )kφ  included in Eq. (5.15) is rewritten as follows: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ]1,2,1,

,2,1,,1[:
−−−
−−+=
kukykyky

krkrkrkrkφ
)

 (5.16) 

 Based on the on-going analysis, a new memory-based IMC control scheme is 

designed based on JITL technique, and its controller design algorithm is summarized 

step by step as follows: 

Step 1 Generation of initial controller database 

 To generate the initial controller database, closed-loop data around the 

nominal operating point are obtained with a priori designed IMC controller, whose 

filter parameter ( )0α  is kept fixed and tuned to give satisfactory control performance. 

Each element of the initial controller database is then generated as follows: 

( ) ( ) ( ) ( )0,,2,1],,[: Njjjj L==Φ αφ  (5.17) 

where ( )jφ  is given by Eq. (5.16) and ( )0N  denotes the number of information 

vectors stored in the initial controller database. Note that all filter parameters included 

in the initial controller database are identical, i.e. ( ) ( ) ( )( ) 0021 αααα ==== NL .  
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Step 2 Selection of nearest-neighbors 

 At each sampling instant k, distances between the query data ( )kφ  and 

information vectors ( )jφ  are calculated using the following 2-norm measure: 

( ) ( ) ( )kNjjkd j ,,2,1,
2

L=−= φφ  (5.18) 

where  denotes the number of information vectors stored in the current 

controller database at k-th sampling instant. Then similarity number for each 

information vector is calculated as follows: 

( )kN

2
jd

j es −=   (5.19) 

Subsequently, nearest-neighbors are chosen from all of the information vectors with n 

largest similarity numbers. 

Step 3 Construction of IMC filter parameter 

 Using the nearest-neighbors selected in step 2, IMC filter parameter is 

initialized based on the following equation: 

( ) ( )∑
=

=
n

i
i

old iwk
1

αα , (5.20) 

where  denotes the weight corresponding to the i-th information vector iw ( )iφ  in the 

selected nearest-neighbors, and is calculated by: 

∑
=

= n

i
i

i
i

s

s
w

1

 (5.21) 

Step 4 Data adjustment 

 To further refine the filter parameter obtained in step 3, an updating algorithm 

is developed in the sequel to adjust the IMC filter at each sampling instant. In doing 

so, an objective function is defined as 
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( ) ( )21
2
1:1 +=+ kkJ ε  (5.22) 

( ) ( ) ( )1ˆ11 +−+=+ kykrkε . (5.23) 

 By using the steepest descent gradient method, a parameter tuning algorithm is 

derived as follows: 

( ) ( ) ( )
( )k

kJkk oldnew

α
ηαα

∂
+∂

−=
1  (5.24) 

where η  denotes the adaptive learning rate, which is made adaptive by following 

rules: (i) if the increment of J is more than threshold, the learning rate is decreased by 

a factor , i.e. decl ( ) ( )1−= klk decηη ; (ii) if the new error is smaller than old error, the 

learning rate is increased by a factor , i.e. incl ( ) ( )1−= klk incηη ; (iii) otherwise 

learning rate is kept same as previous sampling instant. 

 Moreover, partial derivative in Eq. (5.24) is developed as follows: 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( ) ( )
( )

( )
( )k
ku

ku
kyk

k
ku

ku
ky

ky
k

k
kJ

k
kJ

α
ε

α
ε

εα

∂
∂

∂
+∂

+−=

∂
∂

∂
+∂

+∂
+∂

+∂
+∂

=
∂

+∂

1ˆ
1

1ˆ
1ˆ
1

1
11

 (5.25) 

where ( )
( ) 3

1ˆ
ψ=

∂
+∂
ku

ky  can be readily obtained from the JITL and ( )
( )k
ku

α∂
∂  can be 

obtained from Eq. (5.9). The block diagram of the proposed control scheme is shown 

in Figure 5.1. 

 This new filter parameter obtained by Eq. (5.24) along with the corresponding 

information vector ( )kφ  is stored in the controller database as given in Eq. (5.17) and 

when next query arrives, go to step 2. 
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Figure 5.1 Memory-based IMC control scheme 

5.3 Examples 

Example 1: The first example considered here is polymerization reaction taking place 

in a jacketed CSTR, which was discussed earlier in Chapter 3. Again control objective 

is to manipulate the volumetric flow rate of the initiator ( )IFu =  in order to regulate 

the number-average molecular weight ( )NAMW=y . The operating space and 

sampling time are the same as those chosen in NLIMC scheme. The identical non-

adaptive JITL algorithm including database, regression vector, and algorithm 

parameters, as discussed in Chapter 3 is also used here for modeling purpose.  

 To proceed with proposed memory-based IMC design strategy, initial 

controller database is generated by introducing local setpoint changes in the IMC 

scheme with fixed filter parameter and filter parameter, 84.0=α , is found to give 

satisfactory setpoint performance. Thus, this parameter is included in the initial 

information vectors. Furthermore, the user-specified parameters included in the 

proposed method are determined as shown in Table 5.1. For the comparison purpose, 
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a PI controller with parameters 371.1−=cK  and h225.0=Iτ  (Maner and Doyle, 

1997) is also designed. 

 The control performances of these two controllers for step changes of  

in setpoint from its nominal value of 25000.5  are shown in Figure 5.2. 

Although the closed-loop responses obtained by these two controllers are very close 

for positive step change in the setpoint, memory-based IMC design scheme brings the 

reactor to the new operating point without causing any significant overshoot or 

undershoot. For a negative step change in the setpoint, it can be seen that the proposed 

control scheme brings the process into the new setpoint much faster as compared to PI 

controller. The corresponding trajectory of filter parameter in the memory-based IMC 

design is also illustrated in Figure 5.2. It may be argued that the PI controller could be 

tuned more aggressively so that the 12500 setpoint would be reached more 

quickly. However, this approach would cause poorer control performance for the 

positive setpoint change. In fact, PI controller is already tuned quite aggressively as 

evidenced by the underdamped response and manipulated variable profile for the 

positive setpoint change. Tuning PI controller more aggressively would yield severe 

oscillation to those shown in Figure 5.2. Hence, the nonlinear behaviour of this 

process requires a compromise in the tuning of a linear controller for servo control.  

%50±

kmol/kg

kmol/kg

Table 5.1 User-specified parameters in the  
proposed method (polymerization reactor) 

Initial number of data ( ) 1500 =N  

Number of nearest-neighbors 6=n  

Initial learning rate 8.0=η  
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 Another important measure of control-system performance is the ability to 

reject unmeasured disturbances. To compare disturbance rejection capability of both 

controller designs, unmeasured %25±  step disturbances in inlet initiator 

concentration ( )
inIC  are considered and corresponding closed-loop responses are 

shown in Figure 5.3. It is evident that memory-based IMC design scheme gives 

improved performance for disturbance rejection than that obtained by PI controller. 

Table 5.2 summarizes the MSE for both setpoint tracking and disturbance rejection 

performances aforementioned. It is clear that memory-based IMC design scheme 

reduces the MSE significantly, relative to PI controller, by a margin between 6% and 

54%. 

Table 5.2 Comparison of closed-loop performances between PI and memory-based 
IMC controllers 

Tracking error (MSE) 
Step change 

PI Memory-based IMC 

% Decrease 
in MSE 

r = 25000.5 to 37500 7105445.1 ×  7101.4527×  5.94 

r = 25000.5 to 12500 7109844.1 ×  6102094.9 ×  53.59 

+25% change in  
inIC 5105892.3 ×  5104088.2 ×  32.89 

-25% change in  
inIC 48.63 5106295.4 × 5103784.2 ×  
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Figure 5.2 Closed-loop responses for %50±  step changes in setpoint. Dotted: 
setpoint; dashed: PI; solid: memory-based IMC 

 

Figure 5.3 Closed-loop responses for  (left) and %25+ %25−  (right) step changes in 
. Dotted: setpoint; dashed: PI; solid: memory-based IMC 

inIC
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Example 2: The proposed control strategy is applied to a pH neutralization process. A 

schematic of this process is shown in Figure 5.4. Acid, buffer and base streams are 

mixed in a tank as shown in figure and effluent pH is measured. Three inlet streams 

are: 

Acid stream:          0.003M HNO3

Buffer stream:        0.03M NaHCO3

Base stream:           0.003M NaOH, 0.00005M NaHCO3

 The process model is derived by defining the following reaction invariants 

(Nahas et al., 1992; Aoyama et al., 1995): 

]CO[2]HCO[]OH[]H[ 2
33
−−−+ −−−≡aW  (5.26) 

]CO[]HCO[]COH[ 2
3332
−− ++≡bW  (5.27) 

 

 

Figure 5.4 pH neutralization system 

 

pH 

b2a22 WWq  

b1a11 WWq  b3a33 WWq  

b4a44 WWq  

Controller 
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The first invariant represents a charge balance, while the second represents a balance 

on the carbonate ion. Unlike pH, these reaction invariants are conserved quantities. 

The resulting process model consists of three nonlinear ordinary differential equations 

and a nonlinear output equation for the pH: 

( 5.0
321

1 hCqqq
A

h V−++=& ), (5.28) 

( ) ( ) ([ ]3432421414
1 qWWqWWqWW
Ah

W aaaaaaa −+−+−=& ) , (5.29) 

( ) ( ) ([ ]3432421414
1 qWWqWWqWW
Ah

W bbbbbbb −+−+−=& ) , (5.30) 

010
10101

102110 pH
pKpHpHpK

pKpH

4
14pH

4 21

2

=−
++

×+
++ −

−−

−
−

ba WW , (5.31) 

where h is the liquid level,  and  are the reaction invariants of the effluent 

stream, and ,  and  are the acid, buffer and base flow rate, respectively.  

4aW 4bW

1q 2q 3q

 The model parameters and nominal operating conditions are given in Table 

5.3. The control objective is to manipulate the base flow rate ( ) in order to 

regulate the pH in the tank, i.e. 

3qu =

pH=y . The operating space considered is 

. The process sampling time is chosen as 0.25 min and the step change in 

the process input (open-loop test) or setpoint is made at the time equal to 1 min in the 

following simulation studies. The manipulated input appears linearly in the model 

equations for reaction invariants; however, the relationship between reaction 

invariants and effluent pH is expressed by a highly nonlinear Eq. (5.31). The highly 

nonlinear dynamics can be observed from open-loop responses obtained by 

considering  step changes in  from its nominal value as shown in Figure 5.5. 

It can be seen that the process gain varies by more than 250% for these small input 

changes. 

[ 74pH∈ ]

3q%10±
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 To proceed with non-adaptive JITL algorithm, first-order ARX model is 

employed as local model, i.e. the regression vector is chosen as 

( ) ( ) ( )[ T1 ]~,1~1 −−=− kukykz y~  and u~, where  are the respective normalized process 

output and input as defined by ( ) 00 /~ yyyy −= ( ) 00 /~ uuuu −= and , where  and 

 are nominal operating values for the corresponding process variables. The 

database is generated by introducing uniformly random steps with distribution of [580 

1035] in process input as displayed in Figure 5.6. The JITL algorithm parameters, 

, , and 

0y

0u

30mi =nk 60max =k 95.0=γ , are chosen to achieve the smallest MSE in the 

validation test. 

 In the proposed memory-based IMC design strategy, initial controller database 

is generated by introducing local setpoint changes in the IMC scheme with fixed filter 

parameter 82.0=α , which is found to give satisfactory control performance. Thus, 

this parameter is included in the initial information vectors. Furthermore, the user-

specified parameters included in the proposed method are determined as shown in 

Table 5.4. 

Table 5.3 Model parameters and nominal operating conditions for pH system 

M103 2
2

−×=bW  2cm207=A  
11 mincmml525 −−=VC M105 5

3
−×=bW  

35.6pK1 =  1
1 minml996 −=q  

 25.10pK 2 =
1

2 minml33 −=q  

M103 3
1

−×=aW 1
3 minml936 −=q  

cm0.14=h  M103 2
2

−×−=aW  

0.7pH =  M1005.3 3
3

−×−=aW  

M01 =bW   
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Figure 5.5 Open-loop responses of pH neutralization system for step changes in the 
base flow rate ( ) 3q

 

Figure 5.6 Input-output data used for constructing the database 
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Table 5.4 User-specified parameters in the  
proposed method (pH neutralization system) 

( ) 1000 =N  Initial number of data 

6=n  Number of nearest-neighbors 

9.0=η  Initial learning rate 

 

 Again, the performance of the memory-based IMC is compared to that of a 

PID controller. The parameters of PID controller are tuned to provide a compromise 

for two setpoint changes from 7 to 4 and from 7 to 9, resulting in the values: 

, 1mlmin0.20 −=cK and (Aoyama et al., 1995). min0.1=Iτ min2.0=Dτ

 The two controllers are compared for a step change in the setpoint from 7 to 4 

and from 7 to 9, respectively. The setpoint tracking performance of two controllers 

and trajectory of filter parameter are illustrated in Figure 5.7. The memory-based IMC 

controller yields a fast response for both setpoint changes. In contrast, the PID 

controller is very sluggish. The setpoint tracking performance can be improved by 

increasing , but this leads to an undesirable oscillatory behavior for changes in 

buffer flow rate. In Figure 5.8, these two controllers are compared for unmeasured 

step disturbances of +27  and -33  in the buffer flow rate, 

respectively. It is clear that the proposed control scheme provides faster disturbance 

rejection. A quantitative summary of closed-loop performances for both setpoint 

tracking and disturbance rejection in terms of MSE is given in Table 5.5. It is evident 

that proposed control strategy reduces the MSE significantly, relative to PID 

controller, by a margin between 61% and 88%. 

cK

1minml − 1minml −
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Figure 5.7 Closed-loop responses for step changes in setpoint. Dotted: setpoint; 
dashed: PID; solid: memory-based IMC 

 

Figure 5.8 Closed-loop responses for step changes of +27 (left) and -33 (right) in . 
Dotted: setpoint; dashed: PID; solid: memory-based IMC 

2q
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Table 5.5 Comparison of closed-loop performances between PID and memory-based 
IMC controllers 

Tracking error (MSE) 
Step change 

PID Memory-based IMC 

% Decrease in 
MSE 

r = 7 to 9 0.7226 0.2783 61.49 

r = 7 to 4 3.1731 1.1538 63.64 

-33 step change in  2q 0.1594 0.0187 88.27 

+27 step change in  2q 0.0217 0.0029 86.64 

 

5.4 Conclusions 

 A memory-based IMC design strategy is proposed for a class of nonlinear 

systems that can be modelled accurately by JITL technique. At each sampling instant, 

the initial IMC filter parameter is obtained using a controller database. Furthermore, 

parameter updating algorithm is developed by employing the steepest descent gradient 

method and is used to adjust the initial filter parameter on-line. The proposed control 

strategy is evaluated through simulation studies to show better controller performance 

than the benchmark PI/PID controller reported in the literature. 

 90



CHAPTER 
6 

 

Conclusions 

 

 In this research work, two novel IMC design methods are proposed for a class 

of nonlinear systems that can be modelled accurately by JITL technique. Firstly, a 

nonlinear IMC design method is developed to extend the conventional IMC design to 

a certain class of SISO nonlinear systems that operate over a wide range of operating 

regimes. This IMC strategy makes use of conventional linear IMC controller 

augmented by an auxiliary loop to account for nonlinearities in the system. As a 

result, on-line application of the proposed control strategy requires the computation of 

only auxiliary loop using JITL technique. In addition, the adaptive capability of JITL 

is illustrated. This adaptive feature of JITL algorithm makes JITL a better candidate 

than the previously proposed Volterra, Functional Expansion and NN models in the 

partitioned model inverse based nonlinear IMC scheme. Furthermore, this control 

strategy is extended to MIMO nonlinear systems that operate over a range of 

operating regime. Simulation results confirm that the proposed control strategy tracks 

the reference trajectory, which is the benchmark performance for IMC design, better 

than its conventional counterparts. 

 In other approach, a memory-based IMC design using JITL is proposed for 

SISO nonlinear systems.  Since a simple ARX model can be chosen in JITL, the 

inverse of this model can be easily obtained to get control law as required in IMC 
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design. Hence, JITL is employed to update model parameters as well as control law. 

Furthermore, IMC filter parameter is initialized using the most current controller 

database at each sampling instant, and is subsequently adjusted on-line by using 

steepest descent gradient method and current process information. Simulation results 

illustrate that the proposed memory-based IMC design method has better setpoint 

tracking and disturbance rejection performance than the PI/PID controller reported in 

the literature. 

 The suggested future work includes following points. First, like many previous 

work in IMC design, the proposed IMC control strategies do not take the input 

constraint into account. Therefore, an extension of the current work to model 

predictive control framework may provide a possible solution to this design issue. 

Next, similar to other model-based controller design methods, IMC design involves 

two design steps i.e. identification of a model and controller design based on this 

model. Our methods are no exception since the IMC scheme has been employed, 

despite that our methods are data-based ones. Thus, one research direction that 

warrants further investigation is to exploit model-free data-based controller design 

directly from process input-output data such that the controller design can do without 

the need of identifying a process model and can be performed in one single step.   
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