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SUMMARY 

“Data rich but information poor” is a common problem for most chemical 

processes. Therefore, how to extract useful information from data for the purposes of 

process modeling, control, and monitoring is one of the challenges in chemical 

industries. In this thesis, a new just-in-time learning (JITL) modeling methodology 

has been proposed to deal with this problem and the JITL based design methods for 

controller design and process monitoring have been developed. The main 

contributions of this thesis are as follows. 

First, an enhanced JITL methodology is proposed by using both distance 

measure and angle measure to evaluate the similarity between two data samples, 

which is not exploited in the conventional JITL methods. In addition, parametric 

stability constraints are incorporated into the proposed method to address the stability 

of local models. Furthermore, a new procedure of selecting the relevant data set is 

proposed. Simulation studies illustrate that the proposed method gives marked 

improvement over its conventional counterparts in nonlinear process modeling. It is 

also demonstrated that the proposed method can be made adaptive online readily by 

simply adding the new process data to the database. 

Second, based on the enhanced JITL technique, a robust controller design 

methodology is proposed for processes with moderate nonlinearity. Assuming that 

process nonlinearity is the only source of the model uncertainty, a composite model 

consisting of a nominal ARX model and JITL, where the former is used to capture the 

linear process dynamics and the latter to approximate the process nonlinearity, is 

employed to model the process behaviour in the operating space of interest. The state 

space realization of the resulting model is then reformulated as an uncertain system, 

by which the robust stability analysis of this uncertain system under PID control is 

vi 



developed. Literature examples are employed to illustrate that the proposed 

methodology can be used to obtain the robust stability region in the parameter space 

of a PID controller, which assures the closed-loop stability for controlling the 

nonlinear process in the concerned operating space.  

Next, by incorporating the JITL into the controller design, three data-based 

controller design methods are proposed: adaptive single-neuron (ASN) controller, 

adaptive IMC controller, and auto-tuning PID controller. ASN controller uses a single 

neuron to mimic the traditional PID controller. The ASN controller can control the 

unknown nonlinear dynamic process adaptively through the updating of controller 

parameters by the adaptive learning algorithm developed and the information 

provided from the JITL. Adaptive IMC controller integrates the JITL into the IMC 

framework. The controller parameters are updated not only based on the information 

provided by the JITL, but also its filter parameter is adjusted online by an adaptive 

learning algorithm. In the auto-tuning PID controller, a controller database is 

constructed to store the known PID parameters with their corresponding information 

vectors, while another database is employed for the standard use by JITL technique 

for modeling purpose. The PID parameters are automatically extracted from controller 

database according to the current process dynamics characterized by the information 

vector at every sampling instant. Moreover, the PID parameters thus obtained can be 

further fine-tuned, whenever necessary, and the resulting updated PID parameters 

with their corresponding information vector are stored into the controller database. 

These controller design methods exploit the current process information from JITL to 

realize online tuning controller parameters for nonlinear process control. Because of 

the parsimonious design framework, these adaptive controllers can be implemented 

online without heavy computational burden. Simulation results demonstrate that the 
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proposed controllers give better control performance than their conventional 

counterparts. 

Last, by integrating JITL and principal component analysis (PCA) into a JITL-

PCA monitoring scheme, a new monitoring method is proposed for dynamic 

nonlinear process. JITL serves as the process observer to account for the nonlinear 

dynamic behavior of the process under normal operating conditions. The residuals 

resulting from the difference between JITL’s predicted outputs and process outputs 

are analyzed by PCA to evaluate the status of the current process operating conditions. 

Simulation results show that JITL-PCA gives marked improvement over PCA and 

DPCA in the monitoring of nonlinear static or dynamic systems. 
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NOMENCLATURE 
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Chapter 1 

 
 
 
 

Introduction 

 
1.1 Motivations 

Thanks to the development of advanced control techniques and computer 

technologies, spectacular progresses have been achieved in process control during the 

last two decades. However, with the market competition getting more intense than 

before, growing demands for improving performance of process still stimulate 

researchers to develop more efficient and reliable methods for process modeling, 

control and monitoring.  

In chemical industries, hundreds or even thousands of variables, such as flow 

rate, temperature, pressure, levels and compositions are routinely measured and 

automatically recorded in historical databases for the purposes of process control, 

online optimization or monitoring. Despite that significant potential benefits may be 

gained from the database, it is generally not a trivial task to extract useful information 

and knowledge from the databases. Therefore, most chemical processes face a well-

known problem, i.e., “data rich but information poor”. Thus how to extract relevant 
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Chapter 1 Introduction 

information from data to better understand process behavior becomes a significant 

research topic for chemical industries. On the other hand, an accurate process model 

can improve the performance of many advanced control and monitoring methods. 

However, model development represents 75% of the cost of developing advanced 

process control design (Nelles, 2001). Moreover, for most chemical processes, 

detailed first-principle models are often unavailable or too costly and tedious to build. 

In this respect, data-based methods capable of extracting the information from process 

data for process modeling, control, and monitoring become an attractive alternative.  

During last two decades, several data-based methods are proposed for 

nonlinear system modeling (Pearson, 1999; Nelles, 2001), for example, artificial 

neural network (ANN) and neuro-fuzzy network, Volterra series or other various 

orthogonal series models (Nelles, 2001). However, when dealing with large sets of 

data, these approaches becomes less attractive because of the difficulties in specifying 

model structure and the complexity of the associated optimization problems, which 

are usually highly non-convex. Because of these restrictions, most nonlinear 

controller design methods based on ANNs or neuro-fuzzy networks require 

complicated control structure and heavy computation. To alleviate the aforementioned 

problems, the just-in-time learning (JITL) modeling technique (Cybenko, 1996) was 

recently proposed. It is also known as instance-based learning (Aha et al., 1991), local 

weighted model (Atkeson et al., 1997), lazy learning (Aha, 1997; Botempi et al., 

2001), or model-on-demand (Braun et al., 2001; Hur et al., 2003) in the literature. 

JITL not only needs lesser a priori knowledge to initialize but also is inherently 

adaptive and thus it can be readily updated online. In contrast, ANN and neuro-fuzzy 

network need to be retrained from scratch. This is obviously not desirable if these 

models are to be used in model based controller design or monitoring method. 

2 
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However, the existing JITL algorithms do not exploit the available information of 

angular relationship between two data samples, which may hamper the effectiveness 

of the existing JITL methods. Thus we aim to develop a new similarity criterion by 

incorporating the angle measure to improve the modeling accuracy of the JITL 

method. Furthermore, data-based methods for controller design and process 

monitoring by incorporating JITL are not well exploited in the literature. This 

motivates our research efforts to develop new JITL based design methods for adaptive 

and robust controller designs and process monitoring, which require less 

computational effort and simpler design framework. 

 

1.2 Contributions 

 In this thesis, JITL based methods for process modeling, control and 

monitoring are studied and developed. The main contributions of this thesis are as 

follows. 

First, a new JITL modeling methodology is proposed. In the method, both 

distance measure and angle measure are used to evaluate the similarity between two 

data samples, which is not exploited in the conventional methods. In addition, 

parametric stability constraints are incorporated into the proposed method to address 

the stability of local models. Furthermore, a new procedure of selecting the relevant 

data set is proposed. Simulation results demonstrate that the proposed method has 

better predictive performance than its conventional counterparts. 

Second, a robust controller design methodology is proposed based on a 

composite model that consists of a nominal ARX model and JITL, where the former 

is used to capture the linear process dynamics and the latter to approximate the 

nonlinearity of the processes, which is assumed to be the only source of the model 
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uncertainty. The state space realization of the resulting model is then reformulated as 

an uncertain system, by which the robust stability analysis of this uncertain system 

under PID control is developed by using the structured singular value analysis 

framework.  

Next, by incorporating JITL into the controller design, three data-based 

adaptive controller design methods are proposed. The first design method is an 

adaptive single- neuron (ASN) controller, which uses a single neuron to mimic the 

traditional PID controller. The ASN controller can control the unknown nonlinear 

dynamic process adaptively through the updating of controller parameters by the 

adaptive learning algorithm developed and the information provided from the JITL. 

The next proposed design method is an adaptive IMC controller. By incorporating the 

JITL into IMC framework, the proposed controller parameters are updated not only 

based on the information provided by the JITL, but also its filter parameter is adjusted 

online by an adaptive learning algorithm. Last, an auto-tuning PID controller by 

employing two databases is proposed. A controller database is constructed to contain 

the known PID parameters and their corresponding information vectors for controller 

design purpose, while another database is employed for the standard use by JITL for 

process modeling purpose. During the on-line implementation, the controller database 

is used to extract the relevant information to obtain new PID parameters based on the 

current process dynamics characterized by the current information vector. Moreover, 

the new PID parameters thus obtained can be further updated on-line when the 

predicted control error is greater than a pre-specified threshold and the resulting 

updated PID parameters with their corresponding information vector are stored into 

the controller database. These control design methods exploit the current process 

information from process model database or/and controller database to realize online 
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tuning controller parameters for nonlinear process control. Because of the 

parsimonious design framework, these adaptive controllers can be implemented 

online without heavy computational burden. 

Last, by integrating JITL and principal component analysis (PCA) into a JITL-

PCA monitoring scheme, a new monitoring method is proposed for dynamic 

nonlinear process. JITL serves as the process observer to account for the nonlinear 

dynamic behavior of the process under normal operating conditions. The residuals 

resulting from the difference between the JITL’s predicted outputs and process 

outputs are analyzed by PCA to evaluate the status of the current process operating 

conditions. Simulation results show that JITL-PCA gives marked improvement over 

PCA and dynamic PCA (DPCA) in the monitoring of nonlinear static or dynamic 

systems.  

 

1.3 Thesis Organization 

The thesis is organized as follows. Chapter 2 comprises the literature review 

of data-based methods for process modeling, control and monitoring. The comparison 

between the traditional learning methods and JITL technique is also discussed. In 

Chapter 3, a new JITL methodology augmented with an angle measure is proposed for 

nonlinear process modeling. A new methodology for robust controller design of 

nonlinear processes is developed in Chapter 4. Based on the JITL technique, Chapter 

5 presents the ASN controller for nonlinear process control. By incorporating JITL 

into IMC framework, an adaptive IMC controller for nonlinear process control is 

developed in Chapter 6. The proposed auto-tuning PID controller is presented in 

Chapter 7. By integrating JITL and PCA into the proposed JITL-PCA monitoring 

framework, a new process monitoring methodology is developed in Chapter 8. Finally, 
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the general conclusions from the present work and suggestions for future work are 

given in Chapter 9.  
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Chapter 2 

 
 
 
 

Literature Review 

 
This chapter examines the research work that has been conducted in the field 

of data-based methods for process modeling, control and monitoring. An overview of 

the current progress of data-based methods is presented. A newly developed data-

based method, just-in-time learning (JITL), will be discussed in detail and the possible 

applications of JITL for process modeling, control and monitoring will be discussed 

as well. 

 

2.1 Nonlinear Process Modeling  

Process models are undoubtedly fundamentally important for process control 

and monitoring because the performance of many advanced control and monitoring 

methods is based on the availability of accurate models. However, most chemical 

processes are multivariable and nonlinear in nature, and their dynamics can be time 

varying. Thus, first-principle models are often unavailable due to the lack of complete 
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physicochemical knowledge of chemical processes. An alternative approach is to 

develop data-based methods to extract models from process data measured in 

industrial processes when very little a priori knowledge is available. Recently, various 

data-based methods for nonlinear process modeling have been proposed (Pearson, 

1999; Nelles, 2001). These methods can be classified into two groups. One is 

standard-learning approach, which usually follows the modeling building procedure: 1) 

collect data from process; 2) use different methodologies to determine the model 

structures and initial model parameters; 3) fix the model parameters by optimization 

techniques (Nelles, 2001). Another attractive data-based approach is just-in-time 

learning (JITL) technique, which requires little a priori information and needs 

significantly less effort for online adaptation of the model as compared with standard-

learning methods mentioned above. The following subsections will discuss these two 

approaches for nonlinear process modeling. 

 

2.1.1 Standard-learning methods 

The standard-learning approach includes NARMAX (nonlinear autoregressive 

moving average models with exogenous inputs), Volterra models, Wiener models, 

Hammerstein models, neural networks, neuro-fuzzy networks, and wavelets. Among 

these methods, neural networks and neuro-fuzzy networks are the most popular 

approaches for nonlinear process modeling. Therefore, we will review the other 

methods briefly in the sequel, followed by a discussion of the neural network and 

neuro-fuzzy network in detail. 

NARMAX models are identified from input/output data using a conventional 

least-square fitting procedure, which have proved to be versatile and useful empirical 

models for industrial processes (Pearson, 1999). However, like other empirical 

8 



Chapter 2 Literature review 

models, it is not easy to choose nonlinear model structure and select nonlinear 

function approximation for NARMAX models (Pearson, 1995).  

Volterra model considers the cross terms between the past inputs in the 

manner of convolution models. A large number of coefficients are required for 

modeling purposes. In order to decrease the complexity of Volterra model, Maner et 

al. (1996) suggested the use of an autoregressive plus Volterra based model in the 

model-based control strategies.  

Wiener and Hammerstein models use special types of nonlinear models 

composed of linear and nonlinear blocks cascaded in series. For Hammerstein models, 

the static nonlinear block precedes the linear dynamic element, while Wiener models 

consist of the linear model followed by the nonlinear block. Various methods have 

been proposed to identify the Hammerstein models e.g., the iterative method 

(Narendra and Gallman, 1966), the over-parameterization method (Chang and Luus, 

1971; Bai, 1998), and multivariate statistical method (Lakshminarayanan et al., 1995). 

Identification of Wiener models is more difficult due to the lack of a good 

representation of the output nonlinearity for identification purpose. The main 

approach used for Wiener model identification is the stochastic method (Bilings and 

Fakhouri, 1978; Wigren, 1994). Kalafatis et al. (1997) proposed inverse 

representation method to identify Wiener models. 

Most of the methods mentioned above share the same shortcoming of the 

lacking of a straightforward procedure to select a nonlinear model structure. In 

addition, all the methods are global modeling methods, which are difficult to handle 

large amount of data. (Nelles, 2001) 
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Neural networks (NNs) can provide an excellent framework for modeling the 

nonlinear systems because of their capability of approximating any smooth function 

to an arbitrary degree of accuracy with a certain number of hidden layer neuron 

(Hornik et al., 1989). The NNs as shown in Figure 2.1 are feedforward neural 

networks that consist of neurons arranged in layers, which are connected via weight 

parameters such that the signals at the input are propagated through the network to the 

output.  

 

input output σ

σ

σ

σ

neuron 

weight 

 

Figure 2.1 Structure of a multi-layer feedforward network 

 

Through the weight parameters, the input of each neuron is computed as the 

weighted sum of the outputs from the neurons in the preceding layer. The output of 

each neuron is computed by a transfer function to yield the non-linear behavior of the 

networks. The most popular functions are the sigmoid function xe
x −−
=

1
1)(σ  and 

radial basis function , where x is the input of each neuron. Another 
2

)( xex −=σ
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function is wavelet-basis function )(||)( 5.0
, a

bxaxba
−

= − ψψ , where a  and b  are the 

dilation and translation parameters respectively, that has multi-resolution capabilities 

to enhance the modeling capability of the resulting network (Zhang, 1997).  

During the training of neural network, the weights are adjusted and learned 

from a given set of data aiming to achieve the ‘best’ approximation of the behavior of 

the system. For modeling the dynamic systems, the output of the neural network can 

be represented by:  

))(,),1(),(,),1(()(ˆ dudy nnkunkunkykygky −−−−−−= LL  (2.1)

where  is the output of neural network at the k-th sampling instant, y  is the 

system output, u  is the system input,  and  are integers related to the system’s 

order,  is the time delay, and 

)(ˆ ky

yn un

dn g  is the unknown nonlinear function to be 

approximated by the neural network. 

 

σ

σ

σ

σ

σ

 

)(ˆ ky

)( ud nnku −−

)1( −− dnku

1−q

ynq −

)1(ˆ −ky

)(ˆ ynky −

 

Figure 2.2 Structure of a recurrent neural network 
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Another commonly used neural network is the recurrent neural network as 

depicted in Figure 2.2. The advantage of the recurrent network over the feedforward 

network is its better capability for process long term prediction and thus it is more 

suitable for predictive control application (Su and McAvoy, 1992, 1997). 

Mathematically, the output of recurrent network is described by 

))(,),1(),(ˆ,),1(ˆ()(ˆ dudy nnkunkunkykygky −−−−−−= LL  (2.2)

Chen et al. (1990) first used neural network for nonlinear dynamic modeling. 

For chemical engineering, Bhat and McAvoy (1990) employed neural network to 

model pH neutralization processes. Recent works have focused on improving methods 

for selection of initial network parameter, the selection of neural network structure, 

and the stability of the resulting models (Nikravesh, 1997; Shaw, 1997). These 

various methods attempt to avoid random initialization and trial-and-error efforts, 

which are usually adopted in determining the network structure and parameters.  

Fuzzy set theories and neural network technologies are integrated together to 

construct the neuro-fuzzy networks. By using the learning capability of the neural 

networks, neuro-fuzzy networks can identify fuzzy rules and optimize membership 

function of fuzzy model (Lin and Lee, 1991; Jang, 1993; Jang and Sun, 1995). In the 

context of neuro-fuzzy network, the fuzzy model commonly used is the Takagi-

Sugeno (T-S) fuzzy model (Takagi and Sugeno, 1985). In T-S model, the rule 

antecedents describe fuzzy region in the input space and the rule consequents are crisp 

function of the model inputs:  

iR : IF  AND … AND 11 iAx = imm Ax =  THEN ),,,( 21 mii xxxfy L= ,    ri ,,2,1 L=

where  represents the i-th rule,  are the inputs of fuzzy system,  

denotes the fuzzy set used for input  in the i-th rule,  is a crisp function of the 

iR mxx ,,1 L ijA

jx if
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input vector ], and mxx ,,[ 1 L r  is the number of rules. Normally, the consequents 

employ a liner model, i.e., ∑ =
+=

m

j
i

j
i
jiy bxw

1
, where  and  are the model 

parameters.  

i
jw ib

The output of the model is calculated by the center of gravity defuzzification 

as follows:  

i

r

i ii y
y

µ
µ∑ == 1  (2.3)

where iµ  is the membership of the i-th rule antecedent. 

 Applying T-S model to describe dynamic system is equivalent to dividing the 

operating space of a dynamic system into several local operating regions. Within each 

local region, one fuzzy rule  is used to represent the process behavior. To do so, the 

consequent of the fuzzy rule employ a linear dynamic model:  

iR

iR : IF operating condition , THEN i

))(,),1(),(,),1(()( dudyii nnkunkunkykylky −−−−−−= LL  

                                                                                              ri ,,2,1 L=
(2.4)

where  is a linear function. The final model output is obtained by Eq (2.3). il

 In the past decade, neuro-fuzzy networks have been extensively studied. Lin 

and Lee (1991) proposed a three-phase learning algorithm. In the first phase, the self-

organizing map (Kohonen, 1995) is applied to obtain the structure and parameters of 

the fuzzy model. In the second phase, a competitive learning technique is employed to 

find the rules. Lastly, backpropagation algorithm is used to fine-tune the model 

parameters. Jang (1993) developed an Adaptive-Network-Based Fuzzy Inference 

System (ANFIS) that can construct an input-output mapping based on both human 

knowledge and input-output data. Zhang and Morris (1999) proposed a recurrent 
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neuro-fuzzy network by the external feedback of the network’s outputs, whereas 

Mastorocostas and Theocharis (2002) introduced internal feedback to build a 

recurrent neuro-fuzzy network.  

It is noted that neural network and neuro-fuzzy methods suffer from the 

drawbacks of requiring a priori knowledge to determine the model structures and 

complicated training strategy to determine the optimal parameters of the models. In 

addition, both methods are difficult to be updated online when the process dynamics 

are moved away from the nominal operating space, where the retraining of neural 

network and neuro-fuzzy network is required. To alleviate these problems, JITL 

provide an attractive alternative approach, which will be introduced in the next 

subsection. 

 

2.1.2 Just-in-time learning 

Just-in-time learning (JITL) (Cybenko, 1996) was developed as an attractive 

alternative for modelling nonlinear systems. It is also known as instance-based 

learning (Aha et al., 1991), local weighted model (Atkeson et al., 1997), lazy learning 

(Aha, 1997; Bontempi et al., 2001; Bontempi and Birattari, 2005), or model-on-

demand (Braun et al., 2001; Hur et al., 2003) in the literature. This approach was 

originally developed from machine learning field. A detailed survey of lazy learning 

is given in Aha (1997).  

JITL assumes that all available observations are stored in a database, and the 

models are built dynamically upon query. Compared with other learning algorithms, 

JITL exhibits three main characteristics. First, the model-building phase is postponed 

until an output for a given query data is requested. Next, the predicted output for the 

query data is computed by exploiting the stored data in the database. Finally, the 
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constructed answer and any intermediate results are discarded after the answer is 

obtained (Atkeson et al., 1997; Bontempi et al., 2001; Nelles, 2001). Figure 2.3 

illustrates the differences between the standard learning and the JITL method. 

Standard learning methods like NNs and neuro-fuzzy networks are typically trained 

offline. Thus, all learning data is processed a priori in a batch-like manner. This can 

become computationally expensive or even impossible for huge amounts of data, and 

therefore data reduction techniques may have to be applied. Additionally, online 

adaptation of NN and neuro-fuzzy network models requires model update from 

scratch, namely both network structure (e.g. the number of hidden layers in the former 

case and the number of the fuzzy rules in the latter) and model parameters may need 

to be changed simultaneously. Evidently, this procedure is not only time consuming 

but also will interrupt the plant operation, if these models are used for other purposes 

like model based controller design. In contrast, JITL has no standard learning phase. It 

merely gathers the data and stores them in the database and the computation is not 

performed until a query data arrives.  

It should be noted that the JITL model is only locally valid for the operating 

condition characterized by the current query data. In this sense, JITL constructs local 

approximation of the dynamic systems. Therefore, a simple model structure can be 

chosen, e.g. a low-order ARX model. Another advantage of JITL is its inherently 

adaptive nature, which is achieved by storing the current measured data into the 

database. It is important to point out that the selection of relevant data is carried out 

individually for each incoming query data. This allows one to change the model 

architecture, model complexity, and the criteria for relevant data selection online 

according to the current situation (Nelles, 2001). Potentially, JITL is an attractive 

data-based approach.  
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Figure 2.3 Comparison of JITL and standard-learning 

 

2.2 Controller Design for Nonlinear Processes 

In chemical and biochemical industries, most processes are inherently 

nonlinear, however most controller design techniques are based on linear control 

techniques. The prevalence of linear control strategies is partly due to the fact that, 

over the normal operating region, many of the processes can be approximated by 

linear models, which can be obtained by the well-established identification methods 

and the available input/output process data. In addition, the theories for the stability 

analysis of linear control systems is quite well developed so that linear control 

techniques are widely accepted. In contrast, controller design for nonlinear models is 

considerably more difficult than that for linear models. However, most chemical 

processes are nonlinear in nature, therefore linear control design methodologies may 

not be adequate to achieve a good control performance for these processes. This has 
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led to an increasing interest in the nonlinear controller design for the nonlinear 

dynamic processes.  

In what follows, three control strategies, i.e. robust control, adaptive control, 

and nonlinear internal model control, capable of providing the improved performance 

for nonlinear systems are reviewed. Specifically, the mathematical tools introduced in 

robust control theory will pave the foundation for the proposed robust controller 

design given in Chapter 4, while three data-based control strategies by incorporating 

the JITL technique will be developed in Chapters 5 to 7 within the adaptive control 

and internal model control design frameworks. 

 

2.2.1 Robust control 

For most chemical processes, the first principle models are usually unavailable 

because of the lack of physicochemical knowledge. Therefore controller design has to 

rely on the models extracted from the process input/output measurements. These 

models generally have varying degrees of accuracy. If the plant/model mismatch is 

not taken into account in the controller design, the control performance may become 

poor and even the closed-loop stability cannot be guaranteed. This robust control 

problem has motivated the researchers to pursue various robust control designs in the 

last two decades (Malan et al., 2004). Robust control methodologies aim to design 

controllers, which maintain closed-loop stability and performance not only for 

nominal model of the process but also for a set of possible process models that 

capture the actual process dynamics. Normally, this set of process models is 

represented by the nominal model and pre-specified uncertainty (or perturbation) 

description equation, which is used to account for the plant/model mismatch or 

modeling error between the nominal model and a given set of process models.  
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The concept of robust control design is briefly given as follows. Without loss 

of generality, the input uncertainty description is assumed to describe the relation 

between the actual process  and the process model  as follows:  )(sG )(sGm

))()(()( sIsGsG mm ∆+=  (2.5)

where  is bounded perturbation at the plant input and is constrained by  )(sm∆

)())(()(
2

ωωσω mmm ljj <∆=∆ , ω∀  (2.6)

where σ  denotes the maximum singular value and )(ωl  is a frequency dependent 

worst-case uncertainty weighting function. The choice of spectral norm is not only it 

describes well the effects of high frequency unmodeled dynamics and nonlinearities, 

but also it leads to mathematically tractable control problem (Toffner-Clausen, 1996). 

Small gain theorem shows that for the perturbation structure (2.5), the stability of the 

closed-loop system is maintained if and only if the feedback system is nominally 

stable and the feedback controller  satisfies the following robust stability 

condition: 

)(sK

)()))()()(()(( 1 ωωωωωσ mmm ljGjKIjGjK ≤+ − , ω∀  (2.7)

However, the above formulation is restricted to the cases when the plant is 

subject to unstructured perturbation. Consequently, it would yield conservative design 

when multiple perturbations occur in the feedback control system or robust 

performance is considered as the design objective. To overcome this problem, a much 

more general design framework based on the structured singular value )(µ  theory 

was developed (Packard and Doyle, 1993). Consider the feedback structure consisting 

of the system M  and structured perturbation ∆  as depicted in Figure 2.4, where the 

perturbation  is generally a norm bounded uncertainty block: ∆

],,,,,[ 111 FSSrSSr IIdiag ++ ∆∆=∆ KK δδ  (2.8)
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where Ci ∈δ , , jj mm
jS C ×

+ ∈∆ Si ≤≤1 , Fj ≤≤1 . Furthermore,  is constrained by ∆

νσ ≤∆)(  (2.9)

In order to take into account the structure of the perturbation , the structured 

singular value 

∆

)(M∆µ  is defined such that  is equal to the smallest )(1 M−
∆µ )(∆σ  

needed to make  singular, i.e. )( ∆− MI

}0)det(|{min)(1 =∆−=−
∆ MIM νµ

ν
  (2.10)

If no ∆  exists such that 0)det( =∆− MI , then 0)( =∆ Mµ . It is important to note that 

)(M∆µ  depends both on the matrix M and on the structure of the perturbation ∆ . 

Based on the on-going discussion, the following theorem gives the robust stability 

condition for the feedback system given in Figure 2.4. 

 

M

∆

 

Figure 2.4 The M-∆ structure 

 

Theorem 2.1: Assume that the nominal system  is stable, then the 

closed-loop system in Figure 2.4 is stable for all perturbations 

)(sM

∆  if and only if  

1))(( −
∆ <νωµ jM , ω∀  (2.11)
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The definition (2.10) is not useful for computing µ  since the optimization 

problem implied by it does not appear to be easily solvable. Fortunately, the 

computation ofµ  can be performed by solving its upper and lower bounds as given in 

the following inequality:  

)(inf)()(max 1−
∆ ≤≤ DMDMMU

DU
σµρ  (2.12)

where U  is the set of all unitary matrices with the same block diagonal structure as ∆  

and  is the set of real positive diagonal matrices with the structure of each block 

opposite to that of the corresponding block in the perturbation ∆ . More detailed 

discussion on the properties and computation of 

D

µ  can be found in Morari and 

Zafiriou (1989) and Packard and Doyle (1993). 

Doyle et al. (1989) used structured singular value approach to design robust 

controller for a CSTR based on the first principle model. In their work, it is assumed 

that the model uncertainty is due to the nonlinearities of the process, which can be 

described by the conic sector. Subsequently, the bounds of the conic sector are treated 

as the uncertainties in the robustness analysis under the structured singular value 

framework. However, the identification of the conic bounds is cumbersome, which 

requires careful observation of the nonlinearities to be bounded (Knapp and Budman, 

2000). In addition, first-principle models are usually unavailable for most chemical 

processes. Knapp and Budman (2000) proposed an alternative methodology for the 

robust analysis for the nonlinear process based on the input and output data. To do so, 

a nonlinear autoregressive moving (NARMA) model is initially identified from the 

input and output data. Next, for the purpose of robustness analysis, a minimal state 

affine model realization of the identified NARMA model is obtained, by which the 

robust stability and performance conditions are derived as the design constraints for 

robust controller design. However, to obtain the state affine model from a NARMA 
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model is not a trivial task because one needs to find a suitable Volterra kernel from a 

given NARMA model so that a behavior matrix can be developed to obtain a state 

affine model.  

To alleviate the aforementioned drawbacks in the state affine model employed 

in the work by Knapp and Budman (2000), robust controller design under JITL 

framework will be investigated in Chapter 4. 

 

2.2.2 Adaptive control 

 

 

 
Figure 2.5 Diagram of adaptive control scheme 

 

Research in adaptive control has a long and rich history. The development of 

adaptive control started in the 1950’s with the aim of developing adaptive flight 

control systems. With the progressing of control theories and computer technology, 

various adaptive control methodologies were proposed for process control in the last 
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three decades. Astrom (1983), Seborg et al. (1986) and Astrom and Wittenmark (1995) 

gave detail reviews of the theories and application of adaptive control. Most adaptive 

methodologies integrate a set of techniques for automatic adjustment of controller 

parameters in real time in order to achieve or to maintain a desired level control 

performance when the dynamic characteristics of the process are unknown or vary in 

time. The diagram of adaptive control concept is depicted in Figure 2.5. 

There are three main technologies for adaptive control: gain scheduling, model 

reference control, and self-tuning regulators. The purpose of these methods is to find a 

convenient way of changing the controller parameters in response to changes in the 

process and environment dynamics.  

Gain scheduling is one of the earliest and most intuitive approaches for 

adaptive control. The idea is to find process variables that correlate well with the 

changes in process dynamics. It is then possible to compensate for process parameter 

variations by changing the parameters of the controller as function of the process 

variables. The advantage of gain scheduling is that the parameters can be changed 

quickly in response to changes in the process dynamics. It is convenient especially if 

the process dynamics in a well-known fashion on a relatively few easily measurable 

variables. Gain scheduling has been successfully applied to nonlinear control design 

for process industry (Astrom and Wittenmark, 1995). One drawback of gain 

scheduling is that it is open-loop compensation without feedback. Another drawback 

of gain scheduling is that the design is time consuming. A further major difficulty is 

that there is no straightforward approach to select the appropriate scheduling variables 

for most chemical processes.  

Model reference control is a class of direct self-tuners since no explicit 

estimate or identification of the process is made. The specifications are given in terms 
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of “reference model” which tells how the process output ideally should respond to the 

command signal. The desired performance of the closed-loop system is specified 

through a reference model, and the adaptive system attempts to make the plant output 

match the reference model output asymptotically.  

The third class of adaptive control is self-tuning controller. The general 

strategy of this controller is to estimate model parameters on-line and then adjust the 

controller settings based on current parameter estimate (Astrom, 1983). In the self-

tuning controller, at each sampling instant the parameters in an assumed dynamic 

model are estimated recursively from input-output data and controller setting is then 

updated. The whole control strategy can be divided into three steps: first, information 

gathering of the present process behavior; second, control performance criterion 

optimization; and last, adjustment of the controller parameters. The first step implies 

the continuous determination of the actual condition of the process to be controlled 

based on measurable process input and output and appropriate approaches selected to 

identify the model parameters. Various types of model identification can be classified 

depending on the information gathered and the method of estimation. The last two 

steps evaluate the control loop performance and the decision as to how the controller 

will be adjusted or adapted. These characteristics make self-tuning controller very 

flexible with respect to its choice of controller design methodology and to the choice 

of process model identification (Seborg et al., 1986).  

In the past two decades, many research efforts have focused on the 

development of intelligent control algorithms that can be applied to complex 

processes whose dynamics are poorly modeled and/or have severe nonlinearities. 

(Stephanopoulos and Han, 1996; Linkens and Nyongesa, 1996). Because neural 

networks have the capacity to approximate any nonlinear function to any arbitrary 
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degree of accuracy, NNs have received much attention in the area of adaptive control. 

Perhaps the most significant work of the application of NNs in adaptive control is that 

of Narendra and Parthasarathy (1990) who investigated adaptive input-output neural 

models in model reference adaptive control structures. Hernandez and Arkun (1992) 

studied control-relevant properties of neural network model of nonlinear systems. Jin 

et al. (1994) used recurrent neural networks to approximate the unknown nonlinear 

input-output relationship. Based on the dynamic neural model, an extension of the 

concept of the input-output linearization of discrete-time nonlinear systems is used to 

synthesize a control technique under model reference control framework. te Braake et 

al. (1998) provided a nonlinear control methodology based on neural network 

combined with feedback linearization technique to transform the nonlinear process 

into an equivalent linear system in order to simplify the controller design problem. 

Recently, some researchers have constructed stable NN for adaptive control based on 

Lyapunov’s stability theory (Lewis et al., 1996; Polycarpou, 1996; Ge et al., 2002). 

One main advantage of these schemes is that the adaptive laws are derived based on 

the Lyapunov synthesis method and therefore guarantee the stability of the control 

systems.  

While neuro-control techniques are suited to control an unknown nonlinear 

dynamic process, it is generally difficult to present the control law in simple analytical 

form. Also, a nonlinear optimization routine is required to determine the control input, 

which may lead to the problems of large computational efforts and poor convergence. 

For chemical process control, control strategy has to be implemented in real time, so it 

is desirable to keep the control algorithm as simple as possible. Therefore, it still 

remains a challenging task to acquire a simple and easy-to-implement adaptive 

control strategy for nonlinear process control. In this research, adaptive control 
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strategies based on the JITL technique will be developed to deal with the problem 

mentioned above.  

 

2.2.3 Nonlinear internal model control (NIMC) 

Internal Model Control (IMC) proposed by Garcia and Morari (1982) is a 

powerful controller design strategy for the open-loop stable dynamic systems (Morari 

and Zafiriou, 1989). This is mainly due to two reasons. First, integral action is 

included implicitly in the controller because of the IMC structure. Moreover, 

plant/model mismatch can be addressed via the design of the robustness filter. IMC 

design is expected to perform satisfactorily as long as the process is operated in the 

vicinity of the point where the linear process model is obtained. However, the 

performance of IMC controller will degrade or even become unstable when it is 

applied to nonlinear processes with a range of operating conditions. 

To extend the IMC design to nonlinear processes, various nonlinear IMC 

schemes have been developed in the literature. For instance, Economou et al. (1986) 

provided a nonlinear extension of IMC by employing contraction mapping principle 

and Newton method. However, this numerical approach to nonlinear IMC design is 

computationally demanding. Calvet and Arkun (1988) used an IMC scheme to 

implement their stat-space linearization approach for nonlinear systems with 

disturbance. A disadvantage of the state-space linearization approach is that an 

artificial controlled output is introduced in the controller design procedure and cannot 

be specified a priori. Another drawback of this method is that the nonlinear controller 

requires state feedback (Henson and Seborg, 1991a). Henson and Seborg (1991b) 

proposed a state-space approach and used nonlinear filter to account for plant/model 

mismatch. However, their method relied on the availability of a nonlinear state-space 
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model, which may be time-consuming and costly to obtain. Doyle et al. (1995) 

proposed a partitioned model inverse controller to obtain the nonlinear model 

inversion. This controller synthesis scheme based on Volterra model retains the 

original spirit and characteristics of conventional IMC while extending its capabilities 

to nonlinear systems. When implemented as part of the control law, the nonlinear 

controller consists of a standard linear IMC controller augmented by an auxiliary loop 

of nonlinear ‘correction’. However, Volterra model derived using local expansion 

results such as Carleman linearization is accurate for capturing local nonlinearities 

around an operating point, but may be erroneous in describing global nonlinear 

behavior (Maner et al., 1995). Another drawback of this method is that parameters of 

second-order Volterra model are not parsimonious to describe the process 

nonlinearities. Harris and Palazoglu (1998) proposed another nonlinear IMC scheme 

based on the functional expansion models instead of Volterra model. However, 

functional expansion models are limited to fading memory systems and consequently, 

the resulting controller gives satisfactory performance only for a limited range of 

operation. 

The ability of artificial neural networks to model almost any nonlinear 

function without a priori knowledge has lead to the investigation of nonlinear IMC 

schemes using neural networks (NN). In the earlier methods given in Bhat and 

McAovy (1990) and Hunt and Sbarbaro (1991), two NN were used in the IMC 

framework, where one NN was trained to represent the nonlinear dynamics of process, 

which was used as the IMC model, while another NN was trained to learn the inverse 

dynamics of the process and was employed as the nonlinear controller. Because IMC 

model and controller were built by separate neural networks, the controller might not 

invert the steady-state gain of the model and thus steady-state offset might not be 
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eliminated (Nahas et al., 1992). Moreover, these control schemes do not provide a 

tuning parameter that can be adjusted to account for plant/model mismatch. Nahas et 

al. (1992) developed another NN based nonlinear IMC strategy, which consists of a 

model inverse controller obtained from a neural network and a filter with a single 

tuning parameter.  

However, the above nonlinear IMC designs sacrifice the simplicity associated 

with linear IMC in order to achieve improved performance. This is mainly due to the 

use of computationally demanding analytical or numerical methods and neural 

networks to learn the inverse of process dynamics for the necessary construction of 

nonlinear process inverses. To overcome these difficulties, Shaw et al. (1997) used 

recurrent neural network (RNN) within the partitioned model inverse controller 

synthesis scheme in IMC framework and showed that this strategy provided an 

attractive alternative for NN-based control application. Maksumov et al. (2002) 

investigated partitioned model structure consisting of a linear ARX model and a NN 

model in the IMC framework. However, one fundamental limitation of these types of 

global approaches for modeling is that it is difficult for them to be updated on-line 

when the process dynamics are moved away from the nominal operating space. In this 

situation, on-line adaptation of these models requires model update from scratch, 

namely both network structure (e.g. the number of hidden neurons) and model 

parameters may need to be changed simultaneously. Evidently, this process is not 

only time-consuming but also it will interrupt the plant operation, if these models are 

used in model based controller design. 

To alleviate the aforementioned problems, the JITL-based adaptive IMC 

design strategy will be investigated in Chapter 6. By taking advantage of simple 

models employed in JITL, the model inverse can be readily obtain for IMC design at 
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each sampling instant. Therefore, the IMC control strategy can be extended to the 

nonlinear processes without scarifying the simplicity of the linear IMC design.  

 

2.3 Process Monitoring 

Process monitoring is an important aspect of process engineering not only 

from plant’s safety viewpoint, but also for the maintenance of yield and quality of 

process product. Therefore, there is strong incentive to have tools for process 

monitoring to ensure the success of the plant operations by recognizing anomalies of 

the process behavior. In the literature, there are two approaches for process 

monitoring: data-based methods and model-based methods. In what follows, the basic 

theories of the two methods will be introduced. 

 

2.3.1 Data-based methods 

Multivariate statistical analysis is a popular data-based technology for process 

monitoring. It employs the normal operation data to build statistical models, which 

represent the nominal process condition. If there is any fault in the process, the 

discrepancy will occur between the current measured process data and nominal 

statistical models. Therefore statistical tools (e.g. parameter estimation, interval 

estimation and hypothesis test) can be used to detect process faults. The most popular 

multivariate statistical methods are principal component analysis (PCA) (Piovoso et 

al., 1992; Nomikos and MacGregor, 1994; Chiang et al., 2001) and partial least 

squares (PLS) (Kresta et al., 1991; Nomikos and MacGregor, 1995). Wise and 

Gallagher (1996) provided a survey on the application of PCA and PLS in process 

monitoring.  
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In PCA analysis, the measured process variables are collected to form a data 

matrix whose covariance matrix is diagonalized in a statistically optimal manner by 

extracting the cross-correlation between the variables in the data matrix to build PCA 

model. If the measured variables are linearly related and contaminated by errors, the 

first few significant principal components capture the relationship among the 

variables, and the remaining principal components reflect only the error. Thus, 

eliminating the lesser important components reduces the contribution of errors in the 

measured data and to represented in a compact manner. Applications of PCA rely on 

its ability to reduce the dimensionality of the data matrix while capturing the 

underlying relationship between the variables. In addition, 2T  and  charts are 

powerful visual tools to help PCA interpret the process trend, which are useful to 

assist the operators and engineers to understand the current status of the plant 

operation. 

Q

It should be noted that, PCA is based on linear correlation analysis, which 

limits its application for nonlinear systems. Xu et al. (1992) indicated that in nonlinear 

problems, PCA’s minor components do not always consist of noise or unimportant 

variance, but they contain important information. To overcome this shortcoming, 

some researchers devoted to study nonlinear PCA. Kramer (1992) developed a 

nonlinear PCA method based on the autoassociative neural network. Dong and 

McAvoy (1996) proposed a nonlinear PCA by combining the principle curves and the 

autoassoicative neural network. Hiden et al. (1999) used genetic programming to 

address the same problem. Although these methods can improve performance of PCA 

to deal with nonlinear and dynamic problems, they sacrifice the simplicity of PCA 

and make the original statistical meaning of PCA somewhat vague. Other related 

research attempts to improve the PCA performance in fault detection include the use 
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of wavelet (Bakshi, 1998; Shao et al., 1999) and independent component analysis 

(Kano et al., 2004).  

In PLS, the data matrices are decomposed into a series of abstract latent 

variables. However, the difference between constructing a PLS model and PCA 

model is that the former involves the decomposition of both input variable 

mnRX ×∈ (  samples of  variables) and output variable n m pnRY ×∈ ( n  samples of p  

variables) data blocks so as to maximize the covariance between input and output data. 

Similar to PCA model, PLS is a linear approach. Therefore various nonlinear PLS 

techniques were developed, e.g. neural network PLS algorithm (Qin and McAvoy, 

1992; Malthouse et al., 1997), and radial basis function network based PLS algorithm 

(Wilson and Irwin, 2000). 

It is important to note that both conventional PCA and PLS are not suited to be 

applied to dynamic systems. To enhance their applicability to such systems, Ku et al. 

(1995) proposed a dynamic PCA by adding past value of each input variable to the 

data matrix. Negiz and Cinar (1997) proposed a state space model based on canonical 

variate analysis, which calculates linear combination of past value of the system 

inputs and/or the outputs that are highly correlated with the linear combination of the 

future values of the outputs of the process.  

 

2.3.2 Model-based methods 

Model based approach essentially refers to the analytical or functional 

redundancy technique (Himmelblau, 1978; Isermann and Belle, 1997; Frank, 1990; 

Frank et al., 2000). Model based methods detect faults by using the dependencies 

between different measurable signals. These dependencies are expressed by analytical 

process model. Based on the measured input and output signals, the monitoring 
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methods generate residuals between current process condition and model’s state 

parameter/output. If there is any discrepancy between them, the residual will be 

relatively large, indicating the occurrence of the abnormal conditions. There is a 

variety of different approaches to the problem of model based fault detection and 

isolation using analytical redundancy. The most popular methods include parity space 

approach, dedicated observer approach and innovation based approach, fault detection 

filter approach, and parameter identification approach. As we discussed before, the 

analytical models are either too costly to obtain or not available. To overcome this 

problem, various neural network models have been proposed, for example Elman 

neural network (Saludes and Fuente, 1999), feedforward neural network (Frank et al., 

2000), and neuro-fuzzy network (Patton et al., 2000). However, neural network and 

neuro-fuzzy networks have limitations when they are employed in on-line application 

as we discussed before.  

Wachs and Lewin (1998) proposed a model-based PCA approach, which was 

applied to the monitoring of an ethylene compressor with good result. In this 

approach, the nonlinearity and dynamics of process are accounted for by using known 

first-principle models, followed by the PCA analysis of the residuals, i.e. the 

difference between the actual process outputs and model’s predicted outputs. 

However, the difficulty with this procedure is that first-principle models may not be 

available or too costly to obtain. To alleviate the aforementioned drawbacks in the 

previous model-based monitoring methods, a model-based monitoring method based 

on the JITL technique will be investigated in Chapter 8.  

31 



 

 

Chapter 3 

 
 
 
 

An Enhanced Just-in-Time 

Learning Technique 

 
Data-based method is an attractive approach to extract information from data 

to build up process model to deal with the data rich but information poor problem in 

chemical processes. In this chapter, we will develop an enhanced just-in-time learning 

technique and apply it to the nonlinear process modeling.  

 

3.1 Introduction 

Traditional treatments of the data-based modeling methods focus on global 

approaches, such as neural networks, fuzzy set, and other kinds of non-linear 

parametric models (Nelles, 2001). However, when dealing with large sets of data, this 

approach becomes less attractive because of the difficulties in specifying model 

structure and the complexity of the associated optimization problem, which is usually 

highly non-convex. Another fundamental limitation of these methods is that it is 
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difficult for them to be updated online when the process dynamics are moved away 

from the nominal operating space. On the other hand, the idea of local modeling is to 

approximate a nonlinear system with a set of relatively simple local models valid in a 

certain operating regimes. The T-S fuzzy model (Takagi and Sugeno, 1985) and 

neuro-fuzzy network (Jang and Sun, 1995; Nelles, 2001) are well-known examples of 

local modeling approach. However, most local modeling approaches suffer from the 

drawback of requiring a priori knowledge to determine the partition of operating 

space and when this information is lacking, complicated training strategy needs to be 

resorted to determine both optimal model structure and parameters of the local models.  

To alleviate the above problems, Just-in-Time Learning (JITL) was recently 

developed as an attractive alternative for modelling the nonlinear systems. As 

mentioned in Chapter 2, JITL has no standard learning phase and it only assumes that 

all available observations are stored in a database and the models are built 

dynamically upon query. Thus, JITL is only locally valid for the operating condition 

characterized by the current query data. In this sense, JITL constructs local 

approximation of the dynamic systems. Therefore, a simple model structure can be 

chosen, e.g. a low-order ARX model. Another advantage of JITL is its inherently 

adaptive nature, which is achieved by storing the current measured data into the 

database (Bontempi et al., 2001). In comparison, online adaptation of neural network 

and neuro-fuzzy models requires model update from scratch, namely both network 

structure (e.g. the number of hidden neurons in the former case and the number of the 

fuzzy rules in the latter) and model parameters may need to be changed 

simultaneously. Evidently, this procedure is not only time-consuming, but also it will 

interrupt the plant operation, if these models are used for other purposes like model 

based controller design. 
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In the previous work, distance measures are overwhelmingly used to evaluate 

the similarity between two data samples (Atkeson et al., 1997; Rhodes and Morari, 

1997; Bontempi et al., 2001; Braun et al., 2001). Complementary information 

available from angular relationship has not been exploited. In addition, the stability of 

local model is not addressed in the previous work, resulting in unstable local models 

even when the process is stable. In this chapter, by incorporating the stability 

constraints, an enhanced JITL methodology based on both angle measure and distance 

measure is proposed. In addition, a new procedure of selecting the relevant data set is 

proposed. Literature examples are used to illustrate the modeling capability of the 

proposed method in nonlinear process modeling.  

 

3.2 Just-in-time Learning 

There are three main steps in JITL to predict the model output corresponding 

to the query data: (1) the relevant data samples in the database are searched to match 

the query data by some nearest neighborhood criterion; (2) a local model is built 

based on the relevant data; (3) model output is calculated based on the local model 

and the current query data. The local model is then discarded right after the answer is 

obtained. When the next query data comes, a new local model will be built based on 

the aforementioned procedure.  

To facilitate the ensuing developments, the JITL algorithm is described next. 

Suppose that a database consisting of N  process data , , , 

is collected. It is worth pointing out that the vector  is formed by the past values of 

both process input and process output in modeling a dynamic system, which will 

become evident in the following discussion. Given a specific query data  

Niiiy ~1),( =x Ryi ∈
n

i R∈x

ix

n
q R∈x
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whose elements are identical to those defined for , the objective of JITL is to 

predict the model output 

ix

)(ˆ qq fy x=  according to the known database . 

In the literature, distance measure , e.g. Euclidean norm 

Niiiy ~1),( =x

),( iqd xx

2||||),( iqiqd xxxx −= , is commonly used to select the relevant data set from the 

database by evaluating the relevance (or similarity) between the query data  and  

in the entire database, i.e. smaller value of distance measure indicates greater 

similarity between  and . In doing so, a weight  is assigned to each data  

and it is calculated by the kernel function, 

qx ix

qx ix iw ix

)/)(( hdKw iqi x,x= , where h  is the 

bandwidth of the kernel function K that normally uses a Gaussian function, 

. If a linear model is employed to calculate the model output , the 

query answer is given by (Atkeson et al., 1997)  

2

)( dedK −= qŷ

vx TTT
qq PPPy 1)(ˆ −=  (3.1)

where Φ=WP , yv W= ,  is a weight matrix with diagonal elements , NNRW ×∈ iw

nNR ×∈Φ  is the matrix with every row corresponding to , and 

. 

T
ix

T
Nyyy ],,,[ 21 L=y

In JITL, PRESS statistic (Myers, 1990) is used to perform leave-one-out cross 

validation to assess the generalization capability of the model (Atkeson et al., 1997). 

For a current query data , the leave-one-out cross validation test determines the 

optimal values of h , , as follows: for a given h , Eq. (3.1) is used to compute the 

predicted outputs as required in the leave-one-out cross validation test and the 

corresponding validation error is calculated. This procedure repeats for a number of  

and  is chosen as the one resulting in the smallest validation error. With  

qx

opth

h

opth opth
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known, the optimal model prediction  is then computed using Eq. (3.1) for the 

current query data .  

qŷ

qx

As mentioned above, each local model obtained by JITL is only locally valid 

around the query data, therefore simple model structure can be chosen as local model 

at each query point. For a dynamic system, ARX model can be chosen as the local 

model for JITL. The ARX model is given as follows:  

Ψ−= )1()(ˆ kky Tz  (3.2)

where  is the model output at the k-th sampling instant,  is the regression 

vector, and  is the model parameter vector as given by: 

)(ˆ ky )1( −kz

Ψ

T
uddy nnkunkunkykyk )](,),1(),(,),1([)1( −−−−−−=− KKz  (3.3)

T
nnnn uyyy

],,,,,[ 11 ++=Ψ ψψψψ KK  (3.4)

where  and  are integers related to the model’s order, and  is the process time 

delay. By comparing Eq. (3.1) and (3.2), it is evident that the local model parameters 

obtained by JITL method is computed as . Furthermore, the vector  in 

the database and query data  have the same input and output variables as those 

defined for . For example, for a first-order model with  and 

, the database  is given by  where 

 and  are the process output and input data collected at the k-th sampling 

instant in the identification test. Similarly, in the prediction phase, the query data  

at the (k-1)-th sampling instant is arranged in the form of  as the 

input to the JITL algorithm, from which the predicted output at the next sampling 

yn un dn

vTT PPP 1)( −
ix

qx

)1( −kz 1== uy nn

0=dn Niiiy ~1),( =x Nkididid kukyky ~1)]1(),1(),([ =−−

)(kyid )(kuid

qx

Tkuky )]1(),1([ −−
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instant  can be computed. Finally, referring from Eq. (3.3), the dimensionality of 

 and  is equal to 

)(ˆ ky

ix qx uy nnn += .  

 

3.3 Enhanced JITL Methodology  

In the preceding section, it is evident that the conventional JITL methods only 

use distance measure to evaluate the similarity between two data samples. However, 

considering data observations as points in space leads to two types of measures: 

distance and angle between two vectors. Some researchers have demonstrated the 

advantage of using additional angle measure in evaluating the similarity/dissimilarity 

between data in principal component analysis (Raich and Cinar, 1997; Yoon and 

MacGregor, 2001; Singhal and Seborg, 2002). In this chapter, to enhance the 

predictive capability of JITL, the following similarity number, , by incorporating 

the angular relationship, is defined. 

is

)cos()1(),(2

i
d

i
iqes θγγ ⋅−+⋅= − xx ,  if 0)cos( ≥iθ  (3.5)

where γ  is a weight parameter and is constrained between 0 and 1, and iθ  is the angle 

between  and , where qx∆ ix∆ 1−−=∆ iii xxx , 1−−=∆ qqq xxx . The value of  is 

bounded between 0 and 1. When  approaches to 1, it indicates that  resembles 

closely to . 

is

is ix

qx

It is important to note that Eq. (3.5) will not be used to compute the similarity 

number  between  and  if is qx ix iθcos  is negative. For simplicity, this point is 

illustrated in the two-dimensional space as shown in Figure 3.1, where  denotes 

the vector perpendicular to . It is clear that a vector 

⊥∆ qx

qx∆ ix∆  lies to the right of  ⊥∆ qx
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(say ) is more similar to 1x∆ qx∆  than a vector to the left of  (say ). To 

discriminate the directionality between 

⊥∆ qx 2x∆

qx∆  and ix∆ , cosine function is employed, 

whose value is positive to the right of  (e.g. ⊥∆ qx 1cosθ ) and negative to the left of 

 (e.g. ⊥∆ qx )cos( 2θπ − ). Therefore, a negative cosine function indicates that two 

vectors  and  are dissimilar and hence,  will be discarded and not involved 

in the subsequent JITL procedure. On the other hand, a positive cosine function 

requires the subsequent calculation of the proposed similarity number  in order to 

further discriminate the similarity between  and .  

qx∆ ix∆ ix

is

qx ix

 

 

 
Figure 3.1 Illustration of angle measure 
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Another shortcoming of the conventional methods is that all the data  in the 

database are employed in the regression, as shown in Eq. (3.1). This may lead to a 

large sparse regression matrix 

ix

nNRP ×∈  that is prone to numerical problems. To 

circumvent this problem, we propose that only a pre-specified number of relevant data 

with greater resemblance to the query data , as determined by the similarity number 

defined in Eq. (3.5), are used in the regression. Specifically, two parameters  and 

 are chosen such that only the relevant data sets formed by the -th relevant 

data to the -th relevant data are used in the regression. Because  and  

are much smaller than the number of data in the entire database, i.e. N , the 

computational burden is significantly reduced compared to the conventional JITL 

methods. 

qx

mink

maxk mink

maxk mink maxk

Last, it is noted that stability of local model is not taken into account in the 

conventional JITL methods. As a result, some local models generated by JITL may be 

unstable even when the database employed and the query points are from stable 

process. This feature is not desirable, especially when these models are to be 

employed in the controller design. Thus, for a stable system, the parameters of each 

ARX model obtained by JITL need to be verified whether they satisfy the stability 

constraint or not. In case the parameters fail to satisfy the stability constraint, a 

constrained optimization problem can be incorporated into JITL to obtain the stable 

model. Similar procedure can be devised to obtain an unstable local model when the 

process of interest is unstable. The parametric stability constraints imposed on  will 

be discussed in the ensuing development. 

Ψ
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The detailed algorithm of the proposed JITL methodology is described below. 

Given a database , the parameters , , and weight parameter Niiiy ~1),( =x mink maxk γ , 

and a query data : qx

Step 1: Compute the distance and angle between  and each data : qx ),( iiy x

                           Nid iqi ~1,
2

=−= xx  (3.6)

                         Ni
iq

i
T
q

i ~1,)cos(
22

=
∆⋅∆

∆∆
=

xx

xx
θ  (3.7)

If 0)cos( ≥iθ , compute the similarity number : is

                         )cos()1(
2

i
d

i
ies θγγ ⋅−+⋅=

−  (3.8)

      If 0)cos( <iθ , the data  is discarded. ),( iiy x

Step 2: Arrange all  in the descending order. For  to , the 

relevant data set ( , 

is minkl = maxk

ly lΦ ), where  and , are 

constructed by selecting  most relevant data  corresponding to 

the largest  to the l-th largest . Denote  a diagonal weight 

matrix with diagonal elements being the first l  largest values of , 

and calculate: 

1×∈ l
l Ry nl

l R ×∈Φ

l ),( iiy x

is is ll
l RW ×∈

is

                        lll WP Φ=  (3.9) 

                        lll W yv = (3.10)

The local model parameters are then computed by: 

                        l
T

ll
T

ll PPP v1)( −=Ψ (3.11)
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where  is calculated by SVD method. Next, the leave-one-out 

cross validation test is conducted and the validation error is calculated 

by (Myers, 1990): 

1)( −
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(3.12)

where  is the j-th element of ,  and  are the  j-th row vector 

of  and , respectively. 

jy ly T
jφ

T
jp

lΦ lP

Step 3: According to the validation errors, the optimal l  is determined by: 

                        )min(arg l
l

opt el = (3.13)

Step 4: Verify the stability of local model built by the optimal model 

parameters . Because JITL constructs the local approximation of 

the dynamic systems, only the stability constraints of first-order and 

second-order models are given as follows: 

optlΨ

First-order model: 

                       11 1 <<− ψ  (3.14)

Second-order model: 

                        ⎥
⎦

⎤
⎢
⎣

⎡
<⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
− 1

1
11
11

2

1

ψ
ψ

(3.15)

                       11 1 <<− ψ  (3.16)

If  satisfies the stability constraint, the predicted output for query 

data is computed as  

optlΨ

                        
optopt l

T
qlqy Ψ= x)ˆ( (3.17)
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Otherwise,  is used as the initial value in the following 

optimization problem subject to appropriate stability constraint, Eq. 

(3.14) or Eqs. (3.15) and (3.16).   

optlΨ

                       2||||min
optopt llP v−Ψ

Ψ
 (3.18)

With the optimal solution  obtained from Eq. (3.18), the predicted 

output for query data is then calculated as . 

*
optlΨ

T
qx *

optlΨ

Step 5: When the next query data comes, go to step 1. 

 

 One remark about the proposed method is the determination of γ . Typically, 

the prediction accuracy of the proposed method improves initially when γ  decreases 

from one to a smaller value of γ , after which the prediction accuracy degrades. 

Owing to the lack of the systematic guideline of determining the optimal value of γ , 

the following procedure is adopted: the proposed method is applied to the validation 

data for a number of γ  values and the corresponding validation error is calculated. 

The optimal γ  is chosen as the one resulting in the smallest validation error.  

Although the aforementioned data-based modeling methodology is developed 

for the single-input single-out systems, it carries straightforwardly over to the 

multivariable systems. This is because the modeling of a multivariable system with  

outputs can be treated as m  multiple-input single-output problems. A chemical 

reactor with two inputs and three outputs will be presented in the next section to 

demonstrate the application of the proposed method for nonlinear modeling of 

multivariable systems.  

m
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3.4 Examples 

Example 1 Consider the van de Vusse reactor with the following reaction 

kinetic scheme: , , which is carried out in an isothermal CSTR. 

The dynamics of the reactor are described by the following equations (Doyle et al., 

1995): 

CBA →→ DA →

)(2
31 AAfAA

A CC
V
FCkCk

dt
dC

−+−−=  (3.19)

BBA
B C

V
FCkCk

dt
dC

−−= 21  (3.20)

where the parameters used are: , , 1
1 50 −= hk 1

2 100 −= hk )hL/(mol103 ⋅=k , 

, and . The nominal operation condition is  

, and . The concentration of component B, , is the 

process output and the flow rate, , is the process input.  

mol/L10=AfC L1=V ,mol/L0.3=AC

mol/L12.1=BC L/h3.34=F BC

F

A salient feature of the above reactor is that the sign of its steady state gain 

may change as the operation condition changes (see Figure 3.2). To apply the 

proposed method, a second-order ARX model is employed as the local model, i.e. the 

regression vector in Eq. (3.3) is chosen as , 

and set  and . the database is generated by introducing uniformly 

random steps with distribution of  and the switching probability of 0.1 at 

every sampling time to the process input F . Two thousand input/output data as 

shown in Figure 3.3 are collected to build the database . 

Because this system is stable in the operating space under consideration, the local 

model needs to satisfy the stability constraints given in Eqs. (3.15) and (3.16). 

T
BB kFkCkCk )]1(),2(),1([)1( −−−=−z

6min =k 60max =k

]150,10[

2000~1)]1(),([ =− kB kkC z

43 



Chapter 3 An enhanced just-in-time learning 

 

0 50 100 150 200
0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

F

C B 

 
Figure 3.2 Steady-state curve of van de Vusse reactor 
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Figure 3.3 Input-output data used for constructing the database (van de Vusse reactor) 
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To determine the optimal value of the weight parameter γ , Table 3.1 lists the 

mean-squared-error (MSE) of the validation test for different values of γ . The input 

signal employed in the validation test is shown in Figure 3.4. As can be seen from 

Table 3.1, the error decreases initially as γ  decreases from 0.98 to 0.95, after which 

the error starts to increase. Therefore, the optimal γ  is chosen to be 0.95. Based on 

the same database, JITL with distance measure alone is also considered for 

comparison purpose. The predictive performances of these two methods are compared 

in Table 3.1 and Figure 3.4. It is evident that the proposed method complemented 

with angle measure and stability constraint outperforms the conventional JITL.  

 
 

Table 3.1 Validation error of the proposed method for various values of γ  
 

Distance 
measure 

98.0=γ  95.0=γ  90.0=γ  85.0=γ  80.0=γ  

-4107.72×  -5108.11×  -5107.80×  -5107.82×  51003.8 −×  51045.9 −×  
 

 

Figure 3.5 demonstrates the prediction capability of the proposed method with 

95.0=γ  when  is subject to step changes of 15 and -20 respectively. The steady-

state errors are  and  respectively. This simulation condition is 

adopted from the work done by Doyle et al. (1995) who constructed a second-order 

Volterra model to predict this reactor’s dynamics. In their paper, the steady state 

prediction errors for positive and negative step changes are estimated to be 0.016 and 

0.056 respectively. Clearly, the proposed method gives much more accurate 

prediction than the Volterra model. To illustrate the capability of the proposed method 

to model reactor’s dynamics when the value of input F  is changed from one side of 

the extreme point to the opposite side (see Figure 3.2), the step changes of F  from 

F

31012.1 −× 41052.1 −×
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34.3 to 55 and 109 are conducted. Note that these two final values of  correspond to 

the identical steady state value of . As illustrated in Figure 3.6, the proposed 

method can predict the actual process very closely, as also evidenced by very small 

steady-state errors of  (top curve) and  (bottom curve). 

F

BC

51066.6 −× 51018.1 −×

To test the robustness of the proposed method, both process output and input 

variables are corrupted by 2% Guassian white noise. Despite that both database and 

validation data contain the corrupted signals, the proposed method maintains good 

prediction accuracy in the presence of process noise, as illustrated in Figure 3.7. 

 

Example 2 The application of the proposed method in modeling multivariable 

systems is illustrated by considering a nonisothermal CSTR with first-order reaction, 

which can be described by the following equation (You and Nikolaou, 1993): 

LKF
dt
dLA i −=  (3.21)

A
RTE

AAi
iA CekCC

V
F

dt
dC /

0)( −−−=  (3.22)

)1()( /
0 v

Vc
QCek

c
HTT

V
F

dt
dT

P
A

RTE

p

R
i

i +−
∆−

+−= −

ρρ
 (3.23)

The parameters used in the simulation and the nominal operating conditions 

are summarized in Table 3.2. In this example, the variables  and  are process 

inputs, whereas , , and 

iF AiC

L AC T  are process outputs.  
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Figure 3.4 Validation result of C  B
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Figure 3.5 Response for step changes from 34.3 to 49.3 (top) and 14.3 (bottom) in  F
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Figure 3.6 Response for step changes from 34.3 to 55 (top) and 109 (bottom) in  F
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Figure 3.7. Validation result (with noisy process data) 
 

 
Table 3.2 Parameters and nominal values of CSTR example 

 

Variable Value Variable Value 
A  1.000 m2 v  0 
K  0.9715 m5/2/h V  1.360 m3

0k  7107.08× 1/h iT  373.3 K 
RE /  8375 K AC  393.3 mol/ m3

RH∆  -69755 J/mol T  547.5 K 
pc  3140 J/kg K L  1.360 m 
ρ  800.8 kg/m3

iF  1.133 m3/h 
Q  8101.055× J/h AiC  8008 mol/m3
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To proceed with the proposed method, the following regression vectors are 

chosen:  

)]1(),2(),1([)1(: 1 −−−=− kFkLkLkL iz  (3.24)

)]1(),1(),2(),1([)1(: 2 −−−−=− kCkFkCkCkC AiiAAA z  (3.25)

)]1(),1(),2(),1([)1(: 3 −−−−=− kCkFkTkTkT Aiiz  (3.26)

To generate the database, random step signals with uniform distribution of 

 and  and the switching probability of 0.15 are added to  

and , respectively. The input/output data given in Figure 3.8 are then used to 

construct three databases: 

]25.102.1[ ]88087207[ iF

AiC

2000~11 )]1(),([ =− kkkL z , , and 

 for predicting , , and 

2000~12 )]1(),([ =− kA kkC z

2000~13 )]1(),([( =− kkkT z L AC T , respectively. 

As a result of the open-loop stable nature of this reactor, the parameters of 

three local models obtained for each query data need to satisfy the stability constraints 

given in Eqs. (3.15) and (3.16). In addition, 6min =k  and  are chosen to 

predict the output L , whereas 

60max =k

8min =k  and 60max =k  are used for the other two 

predicted outputs. To determine the optimal value of γ , Table 3.3 summarizes the 

mean squared errors of the validation test for three process outputs. 

 

Table 3.3 Validation error of the proposed method for various values of γ  
 

 Distance 
measure 

98.0=γ  95.0=γ  90.0=γ  85.0=γ  75.0=γ  70.0=γ  

L  -3103.90× -5101.18×  -5101.11× -5101.16× -5101.17× -5101.17×  -5101.18×
AC  211.66 93.50 82.02 68.17 67.02 67.91 68.00 

T  1.62 0.92 0.86 0.68 0.64 0.53 0.56 
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Figure 3.8 Input-output data used for constructing the database (CSTR example) 
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Figure 3.9 shows the input signal used in the validation test. As can be seen 

from Table 3.3, 95.0=γ , 85.0=γ , and 75.0=γ  are the best values for the proposed 

method to predict L , , and AC T . For comparison purpose, JITL based on the 

distance measure alone and the same database is also used to model this process. The 

comparison results given in Table 3.3 and Figures 3.10 to 3.12 show that the proposed 

method has superior prediction accuracy than the conventional JITL. Again, the 

robustness of the proposed method is evaluated by introducing 1% Guassian white 

noise to the measured process variables. As illustrated in Figures 3.13, the proposed 

method is insensitive to process noise to some extent.  

For traditional data-based modeling methods, it is not a trivial task to update 

the model parameters online. For example, neural networks need to be retrained to 

adjust the network parameters according to the new operating condition. In the 

extreme cases, the network structure may even be re-determined to achieve better 

prediction of the new process dynamics. Evidently, this procedure is not desirable 

from a computational point of view. In contrast, JITL is inherently adaptive by simply 

adding the current process data online to the database. For illustration, assume that the 

heat transfer Q  in Eq. (3.23) is suddenly changed %25±  from its nominal value due 

to the effect of unmeasured disturbance, meaning that the parameter v  changes from 

the nominal value of 0 to 0.25 and –0.25, respectively. Two scenarios are studied: 

non-adaptive version and adaptive version of the proposed method. In the former, the 

original databases mentioned previously remain unchanged, whereas in the latter the 

databases are constantly updated by adding the new available input-output data to the 

databases at each sampling time. Simulation results in Figures 3.14 and 3.15 show 

that significantly smaller modeling error is achieved by the adaptive version of the 

proposed method.  
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3.5 Conclusion 

In this chapter, a data-based methodology for nonlinear process modeling is 

proposed. The proposed method makes use of both distance measure and angular 

measure to evaluate the similarity between the query data and data in the database. In 

addition, a constrained optimization problem is incorporated into the proposed 

method to address the stability of local model. Simulation studies illustrate that the 

proposed method gives marked improvement over its conventional counterparts in 

nonlinear process modeling. It is also demonstrated that the proposed method can be 

made adaptive online readily by simply adding the new process data to the database. 

In the subsequent chapters, we will employ this JITL modeling methodology to 

controller design and process monitoring.  
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Figure 3.9 Input data used in the validation test of CSTR example 
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Figure 3.10 Validation results of  L
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Figure 3.11 Validation results of  AC

 

 

 

 

 

55 



Chapter 3 An enhanced just-in-time learning 

 

 

 

0 100 200 300 400 500 600
-6 
-4 
-2 
0 
2 
4 
6 

Sample 

E
rro

r o
f T

 

Conventional JITL  
JITL with γ=0.75    

 

0 100 200 300 400 500 600
500

520

540

560

580

T 

Sample 

0 100 200 300 400 500 600
500

520

540

560

580

Sample 

T 

Process   
JITL with γ=0.75         

Process        
Conventional JITL   

 

 

 

 

 

 

Figure 3.12 Validation results of T  
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Figure 3.13 Validation result (with noisy process data) 
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Figure 3.14 Response when  varies from 0 to 0.25 v
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Figure 3.15 Response when  varies from 0 to -0.25  v
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Chapter 4 

 
 
 
 

Robust Controller Design for Nonlinear 

Processes Using JITL Technique 

 
4.1 Introduction 

Accurate models of chemical processes are often difficult to obtain since many 

of the model parameters are poorly known. Therefore, the common approach to robust 

controller design is based on empirical models of the process. From the review 

provided in Chapter 2, it is clear that the robust control problem for linear systems has 

been solved by representing the process by Laplace transfer function models in which 

the model parameters are constrained in a pre-specified range (Packard and Doyle, 

1993). Doyle et al. (1989) proposed a robust controller design method for a nonlinear 

CSTR for which a first-principle model is assumed to be available. By assuming that 

the process/model mismatch is entirely due to the nonlinearities of the process, 

bounds on the conic sectors to describe the process nonlinearities were developed and 

used in the standard ∆−M  structure for robust stability analysis. However, the 
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identification of the conic bounds is not trivial and the resulting robust stability 

analysis tends to give conservative result, not to mention that first-principle models 

are generally not available for many chemical processes. 

Knapp and Budman (2000) developed a robust control design methodology for 

nonlinear processes using empirical state affine models, which can be readily 

transformed into a suitable form for the robust stability analysis. Although their result 

provides an attractive alternative to Doyle’s work where conic sector bounds on the 

nonlinearities of a process have been employed, the construction of the state affine 

models is rather tedious and the computational requirements are high. According to 

Budman and Knapp (2001), in order to obtain a state affine model, a NARMA model 

is initially constructed from the available process input and output data. Subsequently, 

an algorithm developed by Diaz and Desrochers (1988) is employed to find the 

parameters for a truncated Volterra model based on the NARMA model identified 

previously. Once the Volterra kernels are obtained, a generalized Hankel matrix (or 

Behaviour matrix) can be developed to find a state affine model (Sontag, 1979). 

Obviously, the modeling efforts required to identify a state affine model are extensive 

and thus hampers the application of robust controller design method developed based 

on such a model. 

To circumvent the aforementioned drawbacks, a robust control design 

methodology for nonlinear processes using JITL technique is developed in this 

chapter. Similar to the previous work, it is assumed in this work that the nonlinearity 

is the only source of the model uncertainty. Furthermore, our work is concerned with 

modest nonlinearities, i.e. linear dynamics play a dominant role in governing the 

process output behaviour in the operating range of interest, but the linearization errors 

may be significant. In the proposed method, a nominal ARX model is used to capture 

60 



Chapter 4 Robust controller design for nonlinear processes using JITL technique 

the linear process dynamics and the inevitable modeling error caused by the 

nonlinearity is approximated by the JITL. The state space realization of the resulting 

composite model is then reformulated as an uncertain system, by which the robust 

stability analysis of this uncertain system under PID control is developed. Several 

literature examples including the CSTR example aforementioned are used to illustrate 

the proposed method and a comparison with previous result is made. 

 

4.2 Modeling Methodology  

As stated earlier, a composite model consisting of a nominal ARX model and 

JITL models is used to model the nonlinear process in the operating range of interest, 

where the former can be identified by using the process input and output data around 

a nominal operating condition and the latter is used to capture the modeling error 

caused by the process nonlinearity, i.e. the difference between the predicted output of 

nominal ARX model and actual process output. Suppose that an input sequence 

 is injected into the process and that the corresponding output sequence 

 is measured. The following composite model is then used to model the 

nonlinear mapping from  to :  

})({ ku

})({ ky

})({ ku })({ ky

)()()(ˆ kykyky nll +=  (4.1)

where  is the output of the composite model,  is the predicted output by 

nominal ARX model, and  is the effect of process nonlinearity, i.e. 

, approximated by JITL.  

)(ˆ ky )(kyl

)(kynl

)()( kyky l−

Because JITL normally employs a first-order or second-order ARX model, we 

shall use a second-order model structure for both nominal ARX model and JITL in the 

subsequent developments. Therefore,  and  are represented as follows: )(kyl )(kynl
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)1()2()1()( 1,2,1, −+−+−= kukykyky llll βαα  (4.2)

)1()2()1()( 121 −+−+−= kukykykynl βαα  (4.3)

Given the process input and output data , the plant/model 

mismatch caused by the nonlinearity, i.e. 

})(),({ kyku

)()( kyky l− , can be calculated once the 

nominal ARX model given in Eq. (4.2) has been identified. Subsequently, JITL 

technique can be applied to the known sequence })()({ kyky l−  by using the 

reference dataset constructed from . Upon the successful implementation 

of JITL algorithm, denote the range of variation for each model coefficient in Eq. (4.3) 

by: 

})(),({ kyku

[ ]max,1min,11 ααα ∈ , [ ]max,2min,22 ααα ∈ , and [ ]max,1min,11 βββ ∈ . 

 Following the standard practice in robust control theory, the model 

coefficients in Eq. (4.3) are represented by the following equations: 

1||);1(
1||);1(
1||);1(

33311

22222

11111

≤+=
≤+=
≤+=

δδββ
δδαα
δδαα

r
r
r

 (4.4)

where iδ  )  is the model uncertainty and other relevant parameters are 

defined as follows: 
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 (4.5)

By using Eqs. (4.2) to (4.5), Eq. (4.1) can be rewritten as: 

)1()(

)1()()1()()(ˆ

33111,

22222,11111,

−+++

−+++−++=

kur

kyrkyrky

l

ll

δβββ

δαααδααα
 (4.6)

The state space realization of Eq. (4.6) can be expressed by: 
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)()()()1( 02
21

2
1

21

1
0 kuBk

AA
Ak +⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+=+

××

x
00

x δδ  (4.7)

)1()()()(ˆ 0310 −++= kuDkCCky xδ  (4.8)

where [ ]Tkxkxk )()()( 21=x ,  denote a mn×0 mn×  zero matrix and  

⎥
⎦

⎤
⎢
⎣

⎡ ++
=

01
22,11,

0

αααα llA  

[ ]0111 rA α= ; [ ]222 0 rA α=  

[ ]TB 010 = ; [ ]011,0 ββ += lC  

[ ]0311 rC β= ;  00 =D

To account for the modeling error resulting from the approximation of the 

nonlinear process by the proposed composite model, an additional additive 

uncertainty aδ  is added to the model output  as follows: )(ˆ ky

aa kxlkyky δ)()(ˆ)( 1+= ,  1|| ≤aδ  (4.9)

where  is the magnitude of the worst perturbation as obtained by: al

|
)/()(ˆ

)(ˆ)(|
11, ββ +

−
=

l
ka ky

kykyMaxl    (4.10)

 It is noted from Eq. (4.8) that the state variable  has no effect on the 

model output . This explains why the additive uncertainty 

)(2 kx

)(ˆ ky aδ  in Eq. (4.9) is only 

associated with the state variable . )(1 kx

After some algebraic manipulation, the composite model by including the 

additional uncertainty aδ , i.e. Eqs. (4.7) and (4.9), can be recast into the standard 

∆−M structure as depicted in Figure 4.1, where  

⎥
⎦

⎤
⎢
⎣

⎡
=

0000
0011

1E ; [ ]11002 =E ; 443 ×= 0E  
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Figure 4.1 M-∆ structure for the composite model described by Eqs. (4.7) and (4.9) 

 

 

 The interconnection structure given in Figure 4.1 lays the foundation for the 

robust stability analysis to be presented in the next section. To this end, it is here to 

summarize the input and output relationship of the system given in Figure 4.1 as 

follows: 

64 



Chapter 4 Robust controller design for nonlinear processes using JITL technique 

)(~)()()1( 100 kEkuBkAk uxx ++=+  (4.11)

)(~)()()( 200 kEkuDkCky ux ++=  (4.12)

)(~)()()(~
321 kEkuFkFk uxy ++=  (4.13)
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Figure 4.2 M-∆ structure for the composite model based on a first-order ARX model 

 

 

Lastly, when a first-order ARX model is employed for both nominal model 

and JITL, the corresponding ∆−M  structure can be deducted from Figure 4.1 as 

shown in Figure 4.2, where  

11,0 αα += lA ;   10 =B

11,0 ββ += lC ;   00 =D

[ ]0011 =E ;  [ ]1102 =E ;  333 ×= 0E  
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[ ]TalrrF 31111 βα= ;  132 ×= 0F  

[ ]Ta kxlkxrkxrk )()()()(~
3111 βα=y  

[ ]Taa kxlkxrkxrk δδβδα )()()()(~
331111=u  

 

4.3 Robust Stability Analysis 

Since PID controller is the most commonly used controller in the process 

industries, it is considered in the ensuing robust stability analysis. To facilitate the 

subsequent development, PID controller is represented by the following state space 

equation:  

)()()1( keBkAk cc +=+ ΨΨ  (4.14)

)()()( keDkCku cc += Ψ  (4.15)

where  is a  state variable vector of PID controller,  is the tracking 

error, i.e. the difference between the set-point and process output, and other model 

parameters are given by: 
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 (4.16)

were , ck Iτ , and Dτ  are the PID parameters. 

 By using Eqs. (4.11) to (4.15), the resulting closed-loop system can be 

represented by the following augmented state space equation: 
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were the matrices , , , and  are given by: 11M 12M 21M 22M
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 [ ]24121 ×= 0FM  

  4422 ×= 0M

 The uncertain closed-loop system described by Eqs. (4.17) and (4.18) is now 

amenable for robust stability analysis by referring to Figure 4.3(a), where the delay 

operator  can be treated as a perturbation with magnitude bounded by one and is 

therefore substituted by an artificial uncertainty 

1−z

zδ  with 1|| ≤zδ . Because 

 is a [ ]Tkk )1()1( ++ Ψx 14×  vector, zδ  is thus a repeated perturbation and is 

appropriately denoted by 4Izδ  where  stands for a 4I 44×  identity matrix. 

Consequently, Figure 4.3 (a) is equivalent to the ∆−M  structure as shown in Figure 

4.3(b). With the interconnection matrix  and the uncertainty structure ⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

MM
MM

[ az Idiag ]δδδδδ 3214=∆  available, robust stability condition for the 

uncertain closed-loop system aforementioned can be obtained by applying the 

structured singular value test as given by the Theorem 2.1 in Chapter 2 to obtain: 

1
2221

1211 <⎥
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⎡
∆ MM

MM
µ  (4.19)
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Figure 4.3 M-∆ structure for the uncertain closed-loop system 
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Lastly, it is evident that Eq. (4.19) is applicable to the case where the 

composite model is constructed by a first-order ARX model and a PI controller is 

desired. In this situation, the relevant model parameters as provided at the end of last 

section and the following parameters for PI controller, 1=cA , , 1=cB
I

c
c

k
C

τ
= , and 

I

c
cc

k
kD

τ
+= , are used to obtain the interconnection matrix. In addition, the 

corresponding perturbation structure is simplified as [ ]az Idiag δδδδ 312  as a 

result of the number of state variable in both composite model and controller being 

reduced to one.  

 

4.4 Examples 

Example 1 Consider the van de Vusse reactor as described by  

)(2
31 AAfAA

A CC
V
FCkCk

dt
dC

−+−−=  (4.20)

BBA
B C

V
FCkCk

dt
dC

−−= 21  (4.21)

where the model parameters are detailed in Chapter 3. The control objective of this 

example is to design a robust PI controller to manipulate the inlet flow rate  to 

regulate  when the operating space is 

)( uF =

)( yCB = [ ]255∈F  and . To 

construct the composite model, a first-order ARX model is adopted. By using the 

process input and output data obtained around the nominal operating condition, the 

parameters of the nominal ARX model are obtained by 

[ ]13783.0∈BC

7405.01, =lα  and 

0313.01, =lβ . To model the process nonlinearity by the JITL, a different set of input 

and output data is generated within the operating space as illustrated in Figure 4.4, 
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where  is the predicted output by the nominal ARX model subject to the same input 

signal and  is the modeling error caused by the process nonlinearity. To model 

the nonlinearity effect by the JITL with 

ly

lyy −

9.0=γ , 10min =k , and  chosen, the 

resulting model parameters are obtained as 

60max =k

[ ]1317.03822.01 −∈α  and 

[ 0015.00223.01 −∈ ]β . In addition, to quantify the modeling error of the composite 

model, the worst perturbation is calculated as 0012.0=al . Figure 4.5 illustrates that 

the resulting composite model gives reasonably good prediction in the validation test 

by using input and output data different from that used in constructing the composite 

model. 
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Figure 4.4 Input-output data used for constructing the database for JITL 
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Figure 4.5 Validation result for the composite model 

 

 

Figure 4.6 Robust stability region (shadow) for van de Vusse reactor 
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Figure 4.7 Closed-loop responses for set-point changes from  to  (top) 
and  (bottom) with PI parameters 

7.0=BC 0.1
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Figure 4.8 Closed-loop responses for set-point changes from  to  (top) 

and  (bottom) with PI parameters 
7.0=BC 0.1

4.0 4.35=ck  and 4=Iτ  
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To proceed with the proposed robust PI design, Eq. (4.19) is applied to obtain 

the PI parameters that guarantee the robust stability over the operating space 

aforementioned. Figure 4.6 shows the resulting robust stability region in Ick τ−  space. 

To verify the proposed analysis result, two viable PI designs are evaluated by the set-

point changes covering the entire operating space. The first PI parameters chosen are 

 and 8.31=ck 2=Iτ , where the former is the maximum allowable  for the robust 

stability criterion Eq. (4.19) when 

ck

2=Iτ . Figure 4.7 shows the responses of this 

controller subject to the set-point changes from 7.0=BC  to  and 1=BC 4.0=BC , 

respectively. It is evident that this PI controller is able to maintain closed-loop 

stability over the entire operating space. Similar observation is also obtained for PI 

controller with  and 2.36=ck 4=Iτ , as illustrated in Figure 4.8. Again, the 

proportional gain chosen for this controller is the maximum allowable  for Eq. 

(4.19) when 

ck

4=Iτ .  

 

Example 2 The second application considered is a distillation process as 

described by (Gao et al., 2000): 

))1((243.0)1(757.0)( −+−= kugkyky  (4.22)

432 7.56272.1611.1404.1)( xxxxxg +−−=  (4.23)

The top column composition is the process output and the reflux flow rate 

 is the process input. The operating space under consideration is given by 

 and . Again, input and output data around 

the nominal operating condition are generated to identify the nominal ARX model 

with parameters obtained by 

(%)y

(mol/min)u

[ ]01.005.0−∈u [ 009.00817.0−∈y ]

7686.01, =lα  and 2183.01, =lβ . To construct JITL to 

model the process nonlinearity, a different set of input and output data as depicted in 
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Figure 4.9 is generated within the operating space. With the parameters for JITL 

chosen as 95.0=γ , , and 8min =k 60max =k , the range of variation of the resulting 

model parameters is obtained as [ ]0480.03750.01 −∈α  and 

[ 6614.00133.01 −∈ ]β . Also, the modeling error of the composite model is 

calculated as . To compare the predictive performance of nominal ARX 

model and composite model, another set of data different from that given in Figure 

4.9 is used in the validation test. As can be seen from Figure 4.10, the composite 

model gives better prediction than the nominal ARX model over the entire operating 

space. 

0543.0=al
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Figure 4.9 Input-output data used for constructing the database for JITL 
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Figure 4.11 shows the viable PI designs in Ick τ−  space that meets the robust 

stability criterion Eq. (4.19) for the process under PI control. To verify the proposed 

analysis result, two PI controllers obtained in the robust stability region, i.e. 

( ) ( 5.224.1=Ick )τ  and , are chosen for the set-point changes from 

 to  and 

( 432.1 )

035.0−=y 009.0=y 08.0−=y , respectively. Similar to the previous 

example, the proportional gains of these two PI controllers are the maximum 

allowable  for Eq. (4.19) when their respective integral time constants are kept 

constant. It is evident from Figures 4.12 and 4.13 that these two PI controllers give 

stable responses for the set-point changes ranging over the entire operating space.  

ck
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Figure 4.10 Validation results for nominal ARX model and composite model  
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Figure 4.11 Robust stability region (shadow) for distillation process 
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Figure 4.12 Closed-loop responses for set-point changes from  to  
(top) and  (bottom) with PI parameters 

035.0−=y 009.0
08.0− 24.1=ck  and 5.2=Iτ  
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Figure 4.13 Closed-loop responses for set-point changes from  to  

(top) and  (bottom) with PI parameters 
035.0−=y 009.0

08.0− 32.1=ck  and 4=Iτ  
 

 

Example 3 Consider the CSTR as described by the following equations (Doyle 

et al., 1989): 

ν/1
111

2

2

)1( x
x

exDaxx +−+−=&  (4.24)

ν/1
1222

2

2

)1()( x
x

c exBDaxxbxx +−+−−−=&  (4.25)

where  and  are the dimensionless concentration and temperature of the reactor, 

and  is the cooling temperature selected as manipulated variable while  is the 

controlled variable. The process has one stable steady state when , 

1x 2x

cx 1x

072.0=Da 1=B , 

, and 3.0=b 20=ν . The following operating space  and 

 is considered in this example. To construct the composite 

model, a nominal ARX model with parameters 

[ 235∈cx ]

][ 8781.01969.01 ∈x

7216.01, =lα  and 1231.01, =lβ  is 
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obtained around the nominal operating condition. With another set of input and output 

data generated over the operating space, the nonlinearity effect is captured by 

constructing JITL with its parameter chosen as 75.0=γ , , and 10min =k 60max =k . 

The resulting model parameters are obtained by [ ]0191.0,3363.01 −∈α  and 

[ 1112.0,0217.01 −∈ ]β . By using Eq. (4.10), the modeling error of the composite 

model is obtained as .  0514.0=al

 Similar to the previous two examples, Figure 4.14 shows the robust stability 

analysis result for this example, while Figures 4.15 and 4.16 verify the viable PI 

designs that meet the design criterion Eq. (4.19) by choosing two PI controllers with 

( ) ( 1.14.32=Ick )τ  and , respectively. It is obvious that these two 

controllers are able to achieve stable responses for the set-point changes in the 

operating space of interest. Lastly, it is worthy pointing out that this example was 

studied by Knapp and Budman (2000) who developed a robust stability analysis test 

based on the state affine model. Compared with the viable PI designs that satisfy the 

robust stability condition reported in their paper, for example the respective maximum 

allowable  obtained for the 

( 34.41 )

ck 1.1=Iτ  and 3=Iτ  are 18  and , it is clear that the 

proposed method is less conservative than that given in Knapp and Budman, not to 

mention the tedious modeling procedure required to build a state affine model. 

27
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Figure 4.14 Robust stability region (shadow) for CSTR process 
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Figure 4.15 Closed-loop responses for set-point changes from  to  (top) 

and  (bottom) with PI parameters 
55.01 =x 87.0

2.0 4.32=ck  and 1.1=Iτ  
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Figure 4.16 Closed-loop responses for set-point changes from  to  (top) 

and  (bottom) with PI parameters 
55.01 =x 87.0

2.0 4.41=ck  and 3=Iτ  
 

 

4.5 Conclusion 

 Based on the assumption that nonlinearity is the only source of the model 

uncertainty, this chapter develops a new methodology for robust PID controller design. 

In the proposed method, a composite model is first constructed to model the process 

dynamics in the operating space of interest. This composite model consists of a 

nominal ARX model used to capture the linear process dynamics and JITL used to 

approximate the modeling error caused by process nonlinearity. The state space 

realizations of the resulting composite model and PID controller are then reformulated 

as an uncertain system, which can be recast into the standard ∆−M  structure, by 

which the robust stability analysis by using the structured singular value test can be 

developed as the design criterion for robust PID controller design. The application of 
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this methodology is illustrated by three literature examples. Simulation results 

indicate that the proposed robust stability analysis result can be used to design the 

robust controllers, which assure the closed-loop stability for controlling the processes 

with moderate nonlinearity over a given operating space.  
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Chapter 5 

 
 
 
 

Adaptive Single-Neuron Controller Design 

 
5.1 Introduction 

In chemical and biochemical industries, most processes are inherently 

nonlinear, however most controller design methods are based on linear control 

techniques. The prevalence of linear control strategies is partly due to the fact that the 

process dynamics can be approximated by a linear model around the nominal 

operating region. Furthermore, theories for linear control systems are quite well 

developed so that linear control techniques are widely accepted. In contrast, controller 

design for nonlinear models is considerably more difficult than that for linear models. 

However, for a process that exhibits significant nonlinearities, linear control design 

methodologies may not be adequate to achieve a good control performance. This has 

led to an increasing interest in the nonlinear and adaptive controller designs for the 

nonlinear dynamic processes in the last two decades (Bequette, 1991; Stephanopoulos 

and Han, 1996; Linkens and Nyongesa, 1996; Ogunnaike and Raymond, 1996). 

Among various methods, neural network (NN) based control techniques 
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(Stephanopoulos and Han, 1996; Linkens and Nyongesa, 1996) have become one of 

the most popular methods due to the ability of neural network to model any nonlinear 

function to an arbitrary degree of accuracy (Cybenko, 1989). Narendra and 

Parthasarathy (1990) applied NN for system identification and incorporated it into an 

adaptive control structure to control nonlinear dynamic systems. Hernandez and 

Arkun (1992) constructed NN based on the state space realization model for nonlinear 

system control. Nahas et al. (1992) proposed an internal model control scheme 

integrated with NN for the control of nonlinear process. te Braake et al. (1998) made 

use of the NN and feedback linearization technique to transform the nonlinear process 

into an equivalent linear system in order to simplify the controller design problem.  

Most approaches of using neural network for nonlinear process control make 

use of two neural networks, i.e., one NN is used to model nonlinear dynamics of the 

process and the other NN acts as a controller. As mentioned in Chapter 2, NN has 

drawback in on-line nonlinear process modeling. Furthermore, previous NN based 

control schemes need to deal with the issue of updating a large number of weights. 

Consequently, a nonlinear optimization routine is required for this purpose, which 

may lead to the problems of large computing effort and poor convergence. Thus, it is 

desirable to keep the NN based control scheme as simple as possible. 

It is well documented that proportional-integral-derivative (PID) controller has 

been widely employed for about  or more control loops in process industry 

(Astrom and Hagglund 1995) due to its simple structure and clear physical meaning 

of controller parameters. However, like other linear control techniques, it is difficult 

to obtain good control performance for nonlinear systems simply using a fixed- 

parameter PID controller. To overcome this drawback, researchers proposed various 

adaptive PID tuning methods based on neural networks because of their learning and 

%80
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adaptive abilities (Jeon and Lee, 1996). For example, Omatu et al. (1995) and Yeo 

and Kwon (1999) treated the PID parameters as the output nodes of the neural 

networks and consequently PID controller can be adjusted on-line at each sampling 

instant based on certain learning algorithms. Chen and Huang (2004) proposed the use 

of an off-line neural network to model the nonlinear process and then an 

instantaneous linearization of this neural network at each sampling instant is 

conducted to obtain the linearized model. The parameters of linearized NN are 

subsequently used to tune the PID parameters. Andrasik et al. (2004) also made use of 

two neural networks for online tuning of PID controller. In their method, a hybrid 

model consisting of a neural network and a simplified first-principle model is 

constructed as an estimator, while the second neural network is a neural PID-like 

controller, which is pre-trained off-line as a black-box model inverse of the controlled 

process. However, most of the approaches mentioned above are computationally 

expensive as inevitably required by the associated highly complex learning algorithms 

developed, which hampers the use of these methods in practical applications. 

In this chapter, we present an easy-to-implement controller design strategy for 

nonlinear processes. To keep the controller structure as simple as possible, a single-

neuron controller that mimics a PID controller is considered. Adaptive learning 

algorithm is derived to adjust controller parameters by using the information from 

JITL. Literature examples are presented to illustrate the proposed control strategy and 

a comparison with its conventional counterparts is made. 
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5.2 JITL Based Adaptive Single-Neuron Controller Design  

5.2.1 Control strategy 

The proposed adaptive single-neuron (ASN) control scheme is depicted in 

Figure 5.1, where the JITL model acts as an estimator to provide the most up-to-date 

process information so that the ASN controller can learn the current dynamics of the 

process and adapt its parameters to compensate for the changing operating condition. 

 

 

 

ASN 
Controller

Process 

JITL 

e 
-

+ u yr  

Figure 5.1 JITL based ASN control system 

 

 

Inspired by the simple and widely used PID structure, a single neuron is 

adopted in the proposed controller structure as shown in Figure 5.2, where  is the 

error between process output and its set-point at the k-th sampling instant, 

 is the difference between the current and previous error, 

)(ke

)1()()( −−=∆ kekeke

)1()()( −∆−∆= kekekeδ , and  (iw 3~1=i ) are the neuron weights. 

From Figure 5.2, control law of the ASN controller is obtained as follows: 
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)()1()( kukuku ∆+−=   

)()()()()()()( 321 kekwkekwkekwku δ+∆+=∆  (5.1)

where , , and  are the ASN controller parameters obtained at the  

k-th sampling instant. 

)(1 kw )(2 kw )(3 kw

It is obvious that the ASN controller has identical structure with PID controller 

except that the controller parameters are adjusted on-line. Thus, the proposed ASN 

controller can be viewed as an adaptive PID controller. In the following section, a 

learning algorithm integrated with the JITL will be developed to update the 

parameters of ASN controller at each sampling instant.  

 

 

 

 

Figure 5.2 ASN controller 

 

 

5.2.2 Learning algorithm 

As mentioned in Chapter 3, the JITL model is able to identify the current 

process dynamics at each sampling instant, therefore a simple model structure, e.g. 

low-order ARX models, can be used for each local model at every sampling time. 
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Therefore, the following second-order ARX model is considered in the ASN 

controller design. 

)()1()()1(ˆ 21 kuykyky βαα +−+=+  (5.2)

The control objective is to determine  such that the following quadratic 

function, consisting of the one-step-ahead tracking error and the change in the control 

inputs, is minimized 

)(ku

22 ))1()(())1(ˆ)1(( −−++−+= kukukykrJMin κ  (5.3)

where  is the set-point, )1( +kr )1(ˆ +ky  is one-step-ahead prediction by the JITL 

model, and κ  is a weight parameter. Substituting )1(ˆ +ky  and  by Eqs. (5.2) and 

(5.1) respectively, it can be seen that Eq. (5.3) is a function of controller parameters, 

i.e., the control objective is to find the optimal values of  to minimize Eq. (5.3).  

)(ku

)(kwi

Since the controller parameters  are constrained to be positive or 

negative, the following mapping function is introduced: 

)(kwi

⎪⎩

⎪
⎨
⎧
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0)(     if     ,

0)(     if      ,
)(
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)(

kwe

kwe
kw

i
k

i
k

i
i

i

ς

ς

,  3~1=i  (5.4)

where iς  is a real number. Therefore, the objective is equivalent to finding the 

optimal iς  to minimize Eq. (5.3). 

To tune the controller parameters at every sampling time, backpropogation 

method is used to derive the parameter updating equations as follows: 

)(
)(

)()(  

)(
)()( )1(

kw
kw
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 (5.5)
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))1()((2
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)1(ˆ
))1(ˆ)1((2
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−−+

∂
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+−+−=
∂
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ku
kykykr

ku
J κ  (5.7)

for . The derivative 3~1=i
)(

)1(ˆ
ku

ky
∂

+∂  can be obtained from the JITL model, and 

)(
)(
)(
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kw
ku

=
∂
∂ , )(

)(
)(
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ke
kw

ku
∆=

∂
∂ , )(

)(
)(

3

ke
kw

ku δ=
∂
∂ .   

In Eq. (5.5), the adaptive learning rate )(kiη  is determined by the following 

rules: (i) if the increment of J  is more than the threshold, the controller parameters 

remain unchanged and the learning rate is decreased by a factor , i.e. decl

)1()( −= klk ideci ηη ; (ii) if the increment of  is smaller than the threshold, only the 

controller parameters are updated; (iii) if the increment of J  is negative, the 

controller parameters are updated and the learning rate is increased by a factor , 

i.e., 

J

incl

)1()( −= klk iinci ηη . The parameters 7.0=decl  and 05.1=incl  are employed in 

the simulation studies presented in the next section. 

 From the on-going discussion, it is evident that the ASN controller maintains 

simple PID controller structure, which is made possible by the use of only one neuron, 

and consequently it is much easier to be implemented in practice. On the other hand, 

the adaptive nature of ASN controller enables the proposed controller to deliver better 

control performance than the linear controllers. The implementation of the proposed 

ASN control algorithm is summarized as follows: 

1. Given the weight parameter κ , initialize  and iw iη ; 

2. Given the current error  compute the manipulated variable  from 

Eq. (5.1); 

),(ke )(ku

3. Update local ARX model by using the most current process data and JITL 

algorithm and subsequently adjust iς  by Eq. (5.5); 
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4. Obtain controller parameters at the next sampling instant using Eq. (5.4). 

Set  and go back to step 2. 1+= kk

To demonstrate the proposed ASN controller, two literature examples are 

presented in the next section. 

 

5.3 Examples 

Example 1 Considering a continuous polymerization reaction that takes place 

in a jacketed CSTR (Doyle et al., 1995), as depicted in Figure 5.3. In the reactor, an 

isothermal free-radical polymerization of methyl methacrylate (MMA) is carried out 

using azo-bis-isobutyronitrile (AIBN) as initiator and toluene as solvent. The control 

objective is to regulate the product number average molecular weight (NAMW) by 

manipulating the flow rate of the initiator ( ), i.e., NAMW is the process output  

and  is as process input u . Under the following assumptions (Doyle et al., 1995): (i) 

isothermal operation; (ii) perfect mixing; (iii) constant heat capacity; (iv) no polymer 

in the inlet stream; (v) no gel effect; (vi) constant reactor volume; (vii) negligible 

initiator flow rate (in comparison with monomer flow rate); and (viii) quasi-steady 

state and long-chain hypothesis, the dynamics of the reactor can be described by the 

following model equations: 

IF y

IF
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Figure 5.3 Polymerization reactor 
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The model parameters and steady-state operation condition are given in Tables 

5.1 and 5.2. 

 

Table 5.1 Model parameters for polymerization reactor 

cTk    =     10103281.1 × h)/(kmolm3 F      =   1.00   /hm3

dTk    =     11100930.1 × h)/(kmolm3 V       =   0.1  3m  

Ik      =     1100225.1 −× L/h inIC   =  8.0   3kmol/m

pk     =      6104952.2 × h)/(kmolm3
mM   =  100.12  kg/kmol 

mfk   =      3104522.2 × h)/(kmolm3
inmC  =  6.0   3kmol/m

*f    =   0.58 

 

 
Table 5.2 Steady-state operating condition of polymerization reactor 

mC   =   5.506774     3kmol/m 1D        =   49.38182   3kmol/m

IC   =   0.132906     3kmol/m IFu =  =   0.016783   /hm3

0D   =   0.0019752   3kmol/m y          =   25000.5    kg/kmol 

 

 

To apply the JITL method for process modeling, input/output data are 

generated by introducing uniformly random steps with distribution of 

and switching probability of  at every sampling time to the process input . 

With sampling time of 0.03h, input/output data thus obtained (see Figure 5.4) are used 

to build the database. The process input and output are scaled by 

]080.0,004.0[  

25.0 IF

01.0
016783.0~ −

=
uu  

and 
10000

5.25000~ −
=

yy  respectively. A second-order ARX model is used as the local 

model and the parameters chosen for JITL algorithm are as follows: 9.0=γ , 6min =k , 

and . 60max =k
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Figure 5.4 Input-output data used for constructing the database for JITL 

 

To proceed with the proposed control strategy, the weight parameter used in 

the objective function (5.3) is 15.0=κ  and the initial controller parameters are 

, , and 4.01 −=w 2.12 −=w 5.03 −=w , with their respective initial learning rates 

9.01 =η , 1.02 =η , and 5.03 =η .  

For the purpose of comparison, the following IMC controller, which is 

employed as the benchmark design in the work of Doyle et al. (1995), is designed 

based on the linear model obtained around the nominal operating condition and a 

second-order filter with filter time constant equal to 0.2:  

8.29479.17238.36079.31
7220628223.41390.266560.0

234

234

++++
−−−−−

ssss
ssss  (5.9) 
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 To compare the control performances of the two controllers aforementioned, 

set-point changes from 25000.5 to 40000 kg/kmol and from 25000.5 to 15000 

kg/kmol are conducted, as illustrated in Figure 5.5. For set-point change from 25000.5 

to 40000 kg/kmol, IMC controller gives a large overshoot and oscillatory response, 

while ASN controller arrives at the set-point quickly with smaller overshoot, resulting 

in  reduction of the mean absolute error (MAE). On the other hand, the 

response of IMC controller is much more sluggish than the ASN controller for set-

point change from  to 15000  kg/kmol. Consequently, ASN controller shows 

marked improvement over IMC controller, as evidenced by reduction of MAE 

achieved by the ASN controller. Figure 5.6 shows the updating of the ASN controller 

parameters in the aforementioned closed-loop responses.  

%2.33

5.25000

%0.71

Clearly, IMC controller cannot provide satisfactory control performance for 

this nonlinear process. Note that the IMC controller yields an oscillatory response at 

the set-point of 40000 kg/kmol, while a sluggish response is observed at the set-point 

of 15000 kg/kmol. As a result, if one adopts a more aggressive IMC design (as 

compared with the present IMC design) to avoid sluggish response for set-point 

change to 15000 kg/kmol, this will inevitably make the servo response for the set-

point change to 40000 kg/kmol highly oscillatory. Likewise, a more conservative 

IMC design can eliminate the oscillatory response in the latter case, but at the expense 

of even more sluggish response in the former case. Table 5.3 summarizes the tracking 

errors of these two controllers for various set-point changes. It is evident that the 

proposed controller gives a better performance over the operating space compared 

with the IMC controller.  
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Table 5.3 MAEs of two controllers for various set-point changes 

Set-point            IMC           ASN   Improvement 

  40000         31080.2 ×        31087.1 ×          33.2% 

  35000         31011.1 ×        21030.6 ×          43.2% 

  30000        21098.5 ×        21012.3 ×          47.8% 

  20000        21096.9 ×        21041.3 ×          65.8% 

  15000        31075.2 ×        21097.7 ×          71.0% 

 

 

To illustrate the disturbance rejection capability of the proposed controller, it 

is assumed that the inlet initiator concentration is subject to  step 

disturbance respectively. As can be seen from Figure 5.7, ASN controller outperforms 

IMC controller by reducing the MAE by  and , respectively. Next, to 

evaluate the robustness of the proposed control strategy, it is assumed that the process 

kinetic parameter  is subject to 

inIC %10±

%3.62 %1.61

Ik %10−  modeling error and the resulting servo 

responses of two controllers are compared in Figure 5.8. It is evident that the 

proposed controller still maintains superior control performance by achieving  

reduction of MAE for set-point change to 40000 kg/kmol and  reduction for 

set-point change to 15000 kg/kmol. Furthermore, to study the effect of process noise 

on the proposed design, both process input and output are corrupted by 1% Gaussian 

white noise, which means that the database used for JITL algorithm also contains the 

corrupted process data. As shown in Figure 5.9, ASN controller can yield reasonably 

good control performance in the presence of process noise. Lastly, to illustrate the 

advantage of the JITL compared to the recursive least square (RLS) identification 

procedure, the proposed ASN design is compared with the ASN design based on a 

second-order ARX model with parameter adaptation by the RLS modeling technique. 

%0.27

%2.66
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As can be seen from Figure 5.10, the proposed ASN design with the JITL models 

gives better control performance not only because it takes less time to reach the set-

point of 40000 kg/kmol with smaller oscillation, but also it has faster response for the 

set-point change to 15000 kg/kmol than the ASN design with RLS models, as 

supported by the reduction of MAE by 5.5% and 23.4%, respectively. 

 

Example 2 Consider the van de Vusse reaction as discussed in Chapter 3, 

where the control objective is to regulate the concentration of component B ( ) by 

manipulating the inlet flow rate F . The nominal operation conditions are given by: 

, , and 

BC

0.30 =AC 1172.10 =BC 3.340 =F .  

To apply the proposed controller strategy, a second-order ARX model is 

employed as the local model for JITL algorithm. A database is generated by 

introducing uniformly random steps with distribution of  and switching 

probability of  at every sampling instant to the process input F . The parameters 

used for JITL algorithm are: 

]65,4[

1.0

95.0=γ , 6min =k , and 60max =k . In addition, the 

weight parameter in the objective function (5.3) is chosen as 55.0=κ  and the initial 

controller parameters are 35.01 =w , 22 =w , and 7.03 =w , with their initial learning 

rates specified by 8.01 =η , 1.02 =η , and 1.03 =η , respectively.  

For the purpose of comparison, the benchmark IMC controller designed based 

on the linear model around the nominal operating condition as given in the work of 

Doyle et al. (1995) is employed. With a first-order filter and filter time constant equal 

to 0.01, the IMC controller is given by:  

                    
)100)(2.168(

)3.144)(3.134(29.89
++
++

ss
ss  (5.10)
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To evaluate the control performance of the two controllers,  and  

step changes in the set-point of  are considered. As can be seen from Figure 5.11, 

the proposed controller settles down at the new set-point faster than the IMC 

controller for 

%10+ %50−

BC

%10+  set-point change, resulting in  reduction of MAE. For 

 set-point change, the proposed controller also displays better control 

performance than the IMC controller, leading to  reduction of MAE. Figure 5.12 

shows the updating of the ASN controller parameters in the aforementioned closed-

loop responses. 

%4.26

%50−

%8.8

To evaluate the disturbance rejection capability of the ASN controller,  

step disturbances are assumed to occur in the inlet concentration of component A 

( ) respectively. It is evident from Figure 5.13 that ASN controller outperforms 

IMC controller and consequently MAEs are reduced by  and , 

respectively. Lastly, the robustness of the proposed controller is also evaluated by 

assuming  modeling error in the kinetic parameter . It can be seen from 

Figure 5.14 that the proposed controller achieves better performance than the IMC 

controller, as also evident by the respective  and  reduction of MAE for 

 and  set-point changes. 

%10±

AfC

%7.26 %1.8

%10− 3k

%9.11 %2.8

%10 %50−
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Figure 5.5 Closed-loop responses for set-point changes to 40000 kg/kmol (top) and 
15000 kg/kmol (bottom). Dashed: set-point; solid: ASN; dashed-dot: IMC 
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Figure 5.6 Updating of ASN parameters for set-point changes to 40000 kg/kmol (top) 
and 15000 kg/kmol (bottom) 
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Figure 5.7 Closed-loop responses for %10−  (top) and  (bottom) step 
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Figure 5.8 Closed-loop responses for set-point changes to 40000 kg/mol (top) and 
15000 kg/kmol (bottom) under %10−  modeling error in . Dashed: set-point; solid: 

ASN; dashed-dot: IMC 
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Figure 5.9 Servo responses in the presence of process noise 
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Figure 5.10 Servo response for the ASN design based on JITL and recursive least 
square (RLS) models. Dashed: set-point; solid: JITL; dashed-dot: RLS 
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Figure 5.11 Closed-loop responses for %10+  (top) and %50−  (bottom) set-point 
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5.4 Conclusion 

A new adaptive controller, ASN controller, is proposed in this chapter. To 

mimic the traditional PID controller, a single neuron is employed in the proposed 

controller design strategy. Incorporated with the neural network’s learning ability, the 

proposed controller can control the unknown nonlinear dynamic process adaptively 

through the updating of its parameters by the adaptive learning algorithm developed 

and the information provided from the JITL. Compared with the previous neural 

network based PID controller designs, ASN controller is more amenable for on-line 

implementation. Furthermore, the proposed controller retains the PID structure and 

therefore it is easy for field operators to understand the ASN controller structure, 

which is in sharp contrast to the neural network based controllers previously 

developed that represent as a black-box to the operators. Simulation results illustrate 

that the proposed controller gives better control performance than its conventional 

counterparts. 
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Chapter 6 

 
 
 
 

Adaptive IMC Controller Design 

 
6.1 Introduction 

From the review of nonlinear IMC design approaches in Chapter 2, it is noted 

that most nonlinear IMC methods attempt different techniques to transform the 

original nonlinear control problem to an equivalent linear IMC design problem so that 

controller design can be easily carried out by the linear IMC design procedure. For 

instance, Calvet and Arkun (1988) used state-space linearization approach for 

nonlinear systems in the presence of disturbances. A disadvantage of this method is 

that an artificial controlled output is introduced in the controller design procedure and 

therefore it is difficult to be specified a priori (Henson and Seborg, 1991a). Doyle et 

al. (1995) proposed a partitioned model inverse controller synthesis strategy based on 

Volterra model that retains the original spirit and characteristics of conventional IMC 

while extending its capabilities to nonlinear systems. Although Doyle’s method can 

capture the local nonlinearities around an operation point accurately, it may be 

108 



Chapter 6 Adaptive IMC controller design  

erroneous in describing global nonlinear behavior (Maner et al., 1996). Another 

drawback of this method is that parameters of second-order Volterra model is not 

parsimonious to describe the process nonlinearities. Harris and Palazoglu (1998) 

employed functional expansion (Fex) models instead of Volterra model. However, 

functional expansion model are limited to fading memory systems and the radius of 

convergence is not guaranteed for all input magnitudes. Consequently, the resulting 

controller gives satisfactory performance only for a limited range of operation. 

Another popular approach is to integrate neural network into the IMC framework 

(Bhat and McAvoy, 1990; Hunt and Sbarbaro, 1991; Nahas et al., 1992; Li et al., 

2000). In this approach, a neural network is trained to learn the inverse dynamic of the 

nonlinear process meanwhile another NN is used to design a controller. Although 

successful in some cases, this approach may lead to offset because the product of the 

gains of the NN model and the NN controller does not necessarily yield unity. 

Furthermore, nonlinear optimization is required to update a large number of weights 

which is not only computationally demanding but also prone to the problem of poor 

convergence.  

To alleviate the aforementioned problems, we propose to incorporate the JITL 

into the IMC framework to develop an adaptive IMC design methodology that takes 

advantage of the low-order model employed in JITL, by which the model inverse can 

be readily obtained for IMC design at each sampling instant. The proposed design 

strategy shares the same idea with the ASN controller presented in Chapter 5, i.e. it 

exploits the information provided by the JITL and adjusts the controller parameters 

on-line by an adaptive learning method. However, three controller parameters and 

three learning rates need to be initialized in the ASN design, which uses trial and error 

procedure. In contrast, in the proposed IMC design scheme, the JITL is employed as 
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the process model and the IMC controller is designed based on the JITL model 

augmented with a filter. In this manner, the number of controller parameters can be 

reduced to two, i.e. the IMC filter parameter and its associated learning rate used in 

the adaptive learning algorithm to be developed in this chapter. Consequently, the 

proposed IMC design strategy is an attractive alternative because it lessens the efforts 

of tuning controller parameters compared to the ASN controller. Last, it is worth 

pointing out that the proposed IMC design can be considered as an adaptive IMC 

controller because the model obtained by the JITL algorithm is updated at each 

sampling instant. 

 

6.2 JITL Based Adaptive IMC Design 

6.2.1 Linear IMC framework 

The block diagram of the IMC structure is shown in Figure 6.1, where  and G

G~  denote the open-loop stable process and process model, respectively.  
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Figure 6.1 Block diagram of IMC structure 
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The IMC controller, , can be designed by the following equation (Morari 

and Zafiriou, 1989): 

Q

fGQ 1~ −
−=  (6.1)

where −G~  is the minimum phase part of G~  and  is a low-pass filter, which is 

designed to make the IMC controller Q  realizable and to meet the design trade-off 

between the performance and robustness requirements. 

f

The IMC framework allows the use of a variety of process models, such as 

first-principle models as well as neural network models. However, the difficult in the 

use of these models in the IMC framework arises in the design of the controller. 

Because the IMC controller is based on the inverse of the minimum phase part of the 

model G~ , a reliable and efficient method is required to achieve this inversion 

(Maksumov et al. 2002). To this end, the JITL model is embedded in the IMC 

framework so that the model inverse can be obtained readily, as discussed in the next 

section. 

 

6.2.2 Proposed adaptive IMC controller design 

The proposed adaptive IMC shares the similar design concept with the ASN 

design, i.e. JITL is used to obtain the local model at each sampling instant and an 

adaptive learning method is employed to tune the controller parameters on-line. The 

proposed adaptive IMC scheme is depicted in Figure 6.2, where the process model G~  

is updated by the JITL algorithm on-line. According to the IMC design, controller Q  

is designed based on the inversion of the minimum phase of process model G~  

augmented with a low-pass filter. In the proposed method, filter parameter of Q  is not 

fixed, instead it is adjusted on-line by the gradient descent algorithm to be developed 

111 



Chapter 6 Adaptive IMC controller design  

in the sequel. As such, the JITL is employed not only to update the model parameters 

but also to adjust the IMC controller as well. 
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Figure 6.2 JITL based adaptive IMC scheme 

 

Recall that a first-order or second-order ARX model is employed in the JITL 

algorithm, i.e.  

)1()2()1()( 21 −+−+−= kukykyky kkk βαα  (6.2)

where the model parameters , , and  are identified by the JITL at the k-th 

sampling instant. The transfer function model corresponding to Eq. (6.2) is given by: 

k
1α

k
2α kβ

2
2

1
1

1
1

1
)( −−

−

−

−−
=

zz

z
zG kk

k
k

αα

β
 (6.3)

112 



Chapter 6 Adaptive IMC controller design  

Using a first-order filter, IMC controller is designed as following: 

1

2
2

1
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)(1
)(11)( −

−−
−

−
−−−

=
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kzzzQ k

kk
k

λ
λ

β
αα  (6.4)

where )(kλ  is the IMC filter parameter obtained at the k-th sampling instant. 

The controller law resulting from Eq. (6.4) is then given by 

))2()1()(()(1)1()()( 21 −−−−
−

+−= kkkkkukku kk
k ναναν

β
λλ  (6.5)

where )()(ˆ)()( kykykrk −+=
∆

ν . 

 To update the filter parameter on-line, the following objective function is 

considered: 

22 ))1()(())1(ˆ)1(( −−++−+= kukukykrJMin κ  (6.6)

where  is the set-point, )1( +kr )1(ˆ +ky  is one-step-ahead prediction from the JITL, 

and κ  is the weight parameter. 

Because )(kλ  is constrained between 0 and 1, the following sigmoid function 

is employed to map the space  to the entire real number space: ]10[

)(1
1)( ke

k ςλ −+
=  (6.7)

where )(kς  is a real number. In the sequel, an adaptive learning algorithm will be 

developed to update )(kς  on-line, and the filter parameter )(kλ  can be easily 

calculated by Eq. (6.7). Similar to what has been described in Chapter 5, the following 

summarizes the updating algorithm for )(kς : 
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where )(kη  is the adaptive learning rate which is determined based on the identical 

rules discussed in Chapter 5, and 
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where 
)(

)1(ˆ
ku

ky
∂

+∂  can be obtained from the most updated ARX model obtained by the 

JITL. Based on the on-going discussion, it can be seen that the proposed adaptive 

IMC controller exploits more information from the JITL model and fewer tuning 

parameters are needed compared with the ASN controller. 

The implementation of the proposed adaptive IMC controller is summarized as 

follows: 

1. Given the weight parameter κ , initialize the filter parameter and learning rate 

η ; 

2. Given , , and  at the k-th sampling instant, compute  

according to Eq. (6.5); 

)(kr )(ky )(ˆ ky )(ku

3. Update the linear model by applying the JITL algorithm to the most current 

process data and subsequently adjust )(kς  according to Eq. (6.8); 

4. Calculate IMC filter parameter for the next sampling instant by Eq. (6.7). Set 

 and go to step 2. 1+= kk
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6.3 Examples 

Example 1 The first example considered is the control of a polymerization 

reaction in a jacketed CSTR discussed earlier in Chapter 5. The model parameters and 

steady-state operation condition can be found in Tables 5.1 and 5.2. The proposed 

adaptive IMC controller design is based on the same database and parameters used for 

the JITL algorithm mentioned in Chapter 5. In addition, the IMC controller provided 

in Chapter 5 serves the benchmark design for comparison purpose.  

To evaluate the servo performances of two controllers, set-point changes from 

25000.5 to 40000 kg/kmol and 15000 kg/kmol are considered, as illustrated in Figure 

6.3. The initial parameters used for the proposed adaptive IMC design are 731.0=λ , 

3.0=η , and 1.0=κ . It is obvious that adaptive IMC design has better performance 

than that achieved by the IMC controller. For set-point change to 40000 kg/kmol, 

IMC controller gives a large overshoot and oscillatory response, while the proposed 

controller arrives at set-point more quickly without overshoot. As a result, the 

proposed controller reduces MAE by  compared with the IMC controller. For 

set-point change to 15000 kg/kmol, the proposed controller reaches set-point much 

faster than the IMC controller, resulting in significant reduction of MAE, relative to 

the IMC controller, by approximately . Table 6.1 summarizes the tracking 

errors of these two controllers for various set-point changes. Figure 6.4 shows the 

updating of the filter parameter in the aforementioned closed-loop responses.  

%2.22

%5.73

Figure 6.5 compares the disturbance rejection capabilities of two controllers 

when  step disturbances in  are introduced into the process. It is apparent 

that the proposed controller has superior control performance over the IMC controller 

by reducing MAE by  and , respectively. To further evaluate the 

robustness of the proposed controller, it is assumed that there exists  modeling 

%10±
inIC

%9.65 %7.64

%10−
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error in the kinetic parameter . As can be seen from Figure 6.6, the proposed 

controller outperforms the IMC controller, as also evidenced by the reduction of MAE 

by  for set-point change to 40000 kg/kmol and  for set-point change to 

15000 kg/kmol. Last, to evaluate the effect of process noise on the proposed design, 

both process input and output are corrupted by 1% Gaussian white noise. As shown in 

Figure 6.7, the proposed IMC design can yield reasonably good control performance 

in the presence of process noise. 

Ik

%6.25 %2.70

 

Table 6.1 MAEs of two controllers for various set-point changes 

Set-point            IMC    Adaptive IMC   Improvement 

  40000         31080.2 ×         31018.2 ×         22.2% 

  35000         31011.1 ×         21090.8 ×         19.8% 

  30000        21098.5 ×         21025.4 ×         28.9% 

  20000        21096.9 ×         21097.1 ×         80.2% 

  15000        31075.2 ×         21029.7 ×         73.5% 

 

 

Example 2 Consider again the control of van de Vusse reactor as studied in 

Chapter 5. With the initial parameters 957.0=λ , 2.0=η , and 5.0=κ  chosen for 

adaptive IMC controller, Figure 6.8 shows the servo responses of adaptive IMC and 

IMC controllers for  and %10 %50−  set-point changes, respectively. For the former, 

the setting time of the proposed controller is approximately 59% of that obtained by 

the IMC controller, resulting in  reduction of MAE. For  set-point 

change, IMC controller displays oscillatory response, while adaptive IMC controller 

gives smooth response and reaches the set-point faster than the IMC controller, 

leading to  reduction of MAE.  

%9.30 %50−

%8.14
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To evaluate the disturbance rejection performance, %10±  step disturbances 

are assumed to occur in the inlet concentration of component A. The resulting 

performances of two controllers are compared in Figure 6.9. Again, the performance 

of the proposed controller shows marked improvement over that obtained by the IMC 

controller and consequently the resulting MAEs are reduced by  and , 

respectively. The robustness of the proposed controller is also evaluated by assuming 

 modeling error in the kinetic parameter . Figure 6.10 shows the 

performance of the two controllers for  and 

%8.48 %2.16

%10− 3k

%10 %50−  set-point changes. It is clear 

that the proposed controller still achieves better control performance by reducing 

MAEs by  and , respectively. %4.23 %2.13

 

6.4 Conclusion 

By incorporating the JITL into IMC framework, an adaptive IMC design 

methodology is developed for nonlinear process control in this chapter. The IMC 

controller parameters are updated not only based on the information provided by the 

JITL, but also its filter parameter is adjusted online by an adaptive learning algorithm. 

Compared with the conventional nonlinear IMC controller design method, it is 

straightforward for the proposed method to obtain the model inversion based on the 

JITL modeling technique. Simulation results are presented to demonstrate the 

advantage of the proposed adaptive IMC controller design over its conventional 

counterpart. 
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Figure 6.3 Closed-loop responses for set-point changes to 40000 kg/kmol (top) and 
15000 kg/kmole (bottom). Dashed: set-point; solid: adaptive IMC; dashed-dot: IMC 
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Figure 6.4 Updating of filter parameters for set-point changes to 40000 kg/kmol (top) 
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Figure 6.6 Closed-loop responses for set-point changes to 40000 kg/mol (top) and 
15000 kg/kmol (bottom) under %10−  modeling error in . Dashed: set-point; solid: 

adaptive IMC; dashed-dot: IMC 
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Figure 6.7 Servo responses in the presence of process noise 
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Figure 6.8 Closed-loop responses for %10+  (top) and %50−  (bottom) set-point 
changes. Dashed: set-point; solid: adaptive IMC; dashed-dot: IMC 
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Chapter 7 

 
 
 
 

Auto-Tuning PID Controller Design 

 
7.1 Introduction 

It is well known that proportional-integral-derivative (PID) controller has 

gained widespread use in many process control applications due to its simplicity in 

structure, robustness in operation, and easy comprehension in its principle. It can be 

thus said to be the “bread and butter” of control engineering (Astrom and Hagglund, 

1995). Numerous tuning methods have already been proposed to achieve this purpose, 

like Cohen-Coon (C-C), Ziegler-Nichols (Z-N), dominant pole design (Astrom and 

Hagglund, 1995). Nevertheless, it is difficult for conventional PID algorithms to 

obtain good control performance for nonlinear processes by simply using the fixed 

PID parameters. As we discussed in Chapter 5, a lot of artificial intelligence methods 

like neural networks have been proposed to auto-tune PID parameters on-line to 

improve the control performance. However, these methods are computationally 

expensive as inevitably required by the associated highly complex learning algorithms 
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developed to tune the PID parameters, which hampers the use of these methods in 

practical applications. 

Compared with the traditional learning methods like neural networks, the JITL 

technique just stores data in the database and then based on the new observation, the 

relevant information from database is extracted to construct the predicted output for 

the new observation. In Chapters 5 and 6, we have investigated two nonlinear 

controller designs by incorporating the JITL technique. However, in the previous 

studies, JITL only serves as the process model in the controller design, which 

influences the controller performance in an indirect manner. In this chapter, we 

explore the spirit of the JITL technique to construct a database for controller itself as 

well so that this controller database can have direct impact on the controller design, 

which is in sharp contrast with the previously design methods developed in Chapters 

5 and 6. A similar design concept was discussed in the memory-based PID controller 

design proposed by Yamamoto et al. (2004). In the proposed method for auto-tuning 

PID controller, a controller database is constructed to store the known PID parameters 

with their corresponding information vectors, while another database is employed for 

the standard use by JITL for the modeling purpose. During the on-line 

implementation of this auto-tuning method, the controller database is used to extract 

the relevant information to obtain new PID parameters based on the current process 

dynamics characterized by the information vector. Moreover, the PID parameters thus 

obtained can be further updated on-line when the predicted control error is greater 

than a pre-specified threshold and the resulting updated PID parameters with their 

corresponding information vector are stored into the controller database. Finally, it is 

worthy pointing out that the initialization of the present controller design requires less 

trial and error effort than that for the controller designs proposed in Chapters 5 and 6. 
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This is because the initial controller database can be easily constructed from the 

closed-loop data available in the historical operating data. 

In the following sections, we first analyze how to select the information vector 

for the controller database and the design procedure to obtain the controller 

parameters from the controller database, then a learning strategy is provided to update 

the controller parameters and controller database, whenever necessary, to realize the 

auto-tuning PID parameters on-line. Lastly, literature examples are presented to 

illustrate the proposed control strategy.  

 

7.2 Auto-Tuning PID Controller Design  

7.2.1 Information vector selection 

Different from the controllers developed in Chapters 5 and 6, the proposed 

auto-tuning PID design as depicted in Figure 7.1 requires not only the database used 

for JITL for the modeling purpose but also the controller database to be exploited by 

the on-line tuning algorithm to extract the relevant information in order to compute 

PID parameters at every sampling instant. 

Undoubtedly, the objective to explore the controller database is to design PID 

parameters based on the current closed-loop dynamics characterized by the 

corresponding information vector. In what follows, we shall first discuss how to select 

the information vector and for that matter the content of the controller database. 
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Figure 7.1 Block diagram of the auto-tuning PID design 

 

Consider the following continuous-time expression for PID controller: 

)]()(1)([)(
0

te
dt
ddteteKtu d

t

i
p ττ

τ
++= ∫  (7.1)

where  is the process input,  is the error,  is the proportional constant, )(tu )(te pK iτ  

is the integral time, and dτ  is the derivative time. The velocity form of PID algorithm 

can be obtained from Eq. (7.1) as follows: 

))2()1(2)(()())1()(()1()( −+−−++−−+−= kekekeKkeKkekeKkuku dip  (7.2)

where  and  are discrete time signals at the k-th sampling instant, )(ku )(ke

i
Pi

TKK
τ

= , 
T

KK d
pd
τ

= , and T is the sampling time. 
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From Eq. (7.2), it is clear that the controller output  is the function of PID 

parameters and process input, i.e.  

)(ku

))1(),2(),1(),(),(()( −−−= kukekekekgku K  (7.3)

where  denotes a linear function and )(⋅g

)](),(),([)( kKkKkKk dip=K  (7.4)

Suppose that the nonlinear process under control can be described as 

following: 

))1(,),(),1(,),(()1( +−+−=+ uy nkukunkykyhky KK  (7.5)

where  denotes a nonlinear function,  and  are integers related to the model 

orders. 

)(⋅h yn un

By combining Eqs. (7.3) and (7.5), the controller parameter K is the function 

of the following equation:  

))2(),1(),(),1(,),1(

),1(,),(),1(()(

−−+−−

+−+=

kekekenkuku

nkykykyFk

u

y

K

KK
 (7.6)

where  denotes a nonlinear function. )(⋅F

Consequently, the information vector which is used to construct the controller 

database is defined as following: 

)]2(),1(),(,)1(,),1(

),1(,),(),1([)(

−−+−−

+−+=

kekekenkuku

nkykykyk

u

y

K

Kσ
 (7.7)

However, since  in Eq. (7.7) is not available at the current sampling 

instant,  is replaced by 

)1( +ky

)1( +ky )1( +kr . Eq. (7.7) is thus rewritten as: 

)]2(),1(),(,)1(,),1(

),1(,),(),1([)(

−−+−−

+−+=

kekekenkuku

nkykykrk

u

y

K

Kσ
 (7.8)

 Based on the on-going analysis, it is clear that the controller parameter  

is a function of the information vector 

)(kK

)(kσ  defined in Eq. (7.8). As a result, the data 
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pair in the controller database is chosen as ))(),(( kk σK . In the next subsection, we 

will discuss how the initial controller database is constructed off-line and the 

procedures to obtain the PID parameters from the controller database on-line. In 

addition, a criterion to update the controller database on-line will be addressed. 

 

7.2.2 Controller design 

The initial controller database can be easily constructed from the closed-loop 

data when the process is under PID control around the nominal operating condition. 

For example, a PID controller is designed to give good control performance around 

the nominal operating condition and subsequently successive set-point changes 

around the nominal operating condition are conducted, from which the resulting 

closed-loop data can be measured to construct the information vectors 
0~1))(( Nii =σ , 

where  is the number of data points in the initial controller database. Alternatively, 

the available historical closed-loop data can be used for the same purpose. Because a 

fixed-parameter PID controller is employed in constructing the initial controller 

database, we have 

0N

)()2()1( 0NKKK === L . 

With the available initial controller database, auto-tuning PID design can be 

conducted as discussed in the sequel. At each sampling instant, the following measure 

between the current information vector )(kσ  obtained from the closed-loop system 

and that in the controller database is calculated: 

2)||()(|| ik
i es σσ −−= , Ni ~1=  (7.9)

where ⋅  is an Euclidean norm and N  is the number of data points in the current 

controller database.  
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 To extract PID parameters from controller database, those relevant 

information vectors or nearest neighbours resemble the current information vector 

)(kσ  are identified. In this work, l  nearest neighbours are selected corresponding to 

the largest  to the l-th largest . Subsequently, a weight for each neighbour is 

calculated using the following equation: 

is is

∑
=

= l

i
i

i
i

s

s

1

ω ,         1
1

=∑
=

l

i
iω

(7.10)

 The PID parameters are then obtained by using the following formula: 

∑
=

=
l

i
i ik

1

0 )()( KK ω  (7.11)

and the corresponding controller output is obtained by using Eq. (7.2) as: 

))2()1(2)(()())1()(()1()(ˆ 000 −+−−++−−+−= kekekeKkeKkekeKkuku dip  (7.12)

Because the initial controller database is constructed by using the local data 

around the nominal operating condition, it may not provide adequate information to 

adjust PID parameters effectively when the operating condition is away from the 

nominal one. In this situation, the PID parameters  and for that matter 

need further refinement and there is also a need to update the controller database by 

expanding it to include the current information vector and PID parameters. To 

determine whether  is satisfactory or not, the following criterion is introduced: 

)(0 kK )(ˆ ku

)(0 kK

ε<
+

+−+ |
)1(

)1(ˆ)1(|
ky

kyky

r

r  (7.13)

where  is the reference trajectory at the next sampling instant , )1( +kyr 1+k )1(ˆ +ky  

is the predicted output by the JITL by using , and )(0 kK ε  is the threshold. Evidently, 

 is considered to give good control performance if the above inequality is )(0 kK
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satisfied and thus there is no need for further refinement. On the other hand, when the 

above inequality does not hold,  can be refined further by the steepest descent 

method to be given in what follows. 

)(0 kK

 Similar to what was done in Chapters 5 and 6, the following quadratic function 

is used as the objective function for the updating law of PID parameters: 

22 ))1()(ˆ())1(ˆ)1(( −−++−+= kukukykyMinJ r κ  (7.14)

where κ  is a weight parameter. 

Since the PID parameters are constrained to be positive or negative, to 

automatically incorporate the constraints to the objective function, the following 

mapping function is introduced: 
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where  is a real number. Similar to Eq. (7.15),  denotes the corresponding 

mapping variable with respect to the PID parameters . The following updating 

algorithm can be derived to improve the design of : 
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for . In above equations, the derivative dipx ,,=
)(

)1(ˆ
ku

ky
∂

+∂  can be obtained from the 

JITL model, xη  are the respective learning rate for , and 0
xς
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After  is calculated by Eq. (7.16), the corresponding new PID 

parameters are obtained from Eq. (7.15). Furthermore, these new PID parameters and 

their corresponding information vector are stored into controller database. The 

implementation of the proposed control algorithm is summarized as follows: 

)(knew
xς

1. Given the threshold ε , weight parameterκ , learning rate xη , number of 

nearest-neighbour , and the initial controller database; l

2. At each sampling instant, calculate PID parameters  according to 

Eq. (7.11) and the corresponding controller output  by Eq. (7.12), by 

which  is obtained from JITL model; 

)(0 kK

)(ˆ ku

)1(ˆ +ky

3. Evaluate the fitness of  by the criterion given in Eq. (7.13). If this 

criterion is satisfied,  is implemented to the process and set 

)(0 kK

)(ˆ ku 1+= kk  

and go to step 2. Otherwise, go to step 4; 

4. Update  by Eq. (7.16) and calculate the resulting new PID 

parameters using Eq. (7.15), by which controller output is obtained and 

implemented to the process. In addition, the controller database is updated 

by adding new PID parameters and their corresponding information vector. 

Set  and go to step 2. 

)(0 kxς

1+= kk
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7.3 Examples 

Example 1 The first example considered is the control of polymerization 

reaction as studied in Chapters 5 and 6. The model parameters and steady-state 

operation condition can be found in Tables 5.1 and 5.2. In addition, the same database 

and parameters for the JITL used in Chapters 5 and 6 are employed.  

To construct the initial controller database, the information vector 

)]2(),1(),(),1(),1(),(),1([)( −−−−+= kekekekukykykrkσ  is specified because a 

second-order ARX model has been employed by the JITL. Furthermore, a PID 

controller with parameters, 8.0−=pK , 25.0−=iK , and 3.0−=dK , is designed to 

give good control performance for %10±  set-point changes around the nominal 

operating condition, as shown in Figure 7.2. This PID controller is then used in a 

closed-loop experiment consisting of multiple set-point changes as illustrated in 

Figure 7.3, from which one hundred information vectors (i.e. ) are obtained 

to construct the initial controller database. In addition, the following parameters are 

chosen in the proposed design: the threshold 

1000 =N

05.0=ε , the weight parameter 2.0=κ , 

the number of nearest-neighbour 5=l , the learning rates 15.0=pη , 4.0=iη , and 

3.0=dη , and the reference trajectory given by: 

)1(05.0)(95.0)( −+= kykrky rr  (7.22)

To evaluate the performance of the proposed controller, set-point change from 

25000.5 to 40000 kg/kmol is initially conducted, followed by the  step 

disturbance in . For the comparison purpose, the control performance of the PID 

controller aforementioned is also shown in Figure 7.4. It is clear that the PID 

controller gives a large overshoot while the proposed controller reaches to the set-

point quickly with less overshoot, resulting in  reduction of the MAE. For 

%20−

inIC

%2.8
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disturbance rejection, the proposed controller gives better control performance by 

reducing the MAE by . Figure 7.5 compares the performances of two 

controllers for set-point change from 25000.5 to 15000 kg/kmol and the subsequent 

 step disturbance in . Evidently, the proposed controller not only reaches 

the set-point much faster but also displays better disturbance rejection performance 

than the PID controller, leading to  and  reduction of MAE, respectively. 

The updating of the parameters of the proposed controller in the aforementioned 

closed-loop responses are shown in Figure 7.6. 

%1.23

%20−
inIC

%5.27 %5.35

Although the PID controller is designed to provide good control performance 

around the nominal operating condition as shown in Figure 7.2, it is not capable of 

producing the same level of good control performance for the set-point changes given 

in Figures 7.4 and 7.5, as evidenced by an oscillatory response for the set-point 

change to 40000 kg/kmol and a sluggish response for the set-point change to 15000 

kg/kmol. As a result, if more aggressive PID controllers are designed to avoid 

sluggish response for set-point change to 15000 kg/kmol, this will inevitably make the 

servo response for the set-point change to kg/kmol highly oscillatory. Likewise, 

more conservative PID controller design can eliminate the oscillatory response in the 

latter case, but at the expense of even more sluggish response in the former case.  

40000

Next, to evaluate the robustness of the proposed control controller, it is 

assumed that the process kinetic parameter  is subject to Ik %10−  modeling error and 

the resulting servo responses of two controllers are compared in Figure 7.7. It is 

evident that the proposed controller still maintains better control performance by 

achieving  reduction of MAE for set-point change to 40000 kg/kmol and  

reduction for set-point change to 15000 kg/kmol. Furthermore, to study the effect of 

process noise on the proposed design, both process input and output are corrupted by 

%3.8 %2.33

136 



Chapter 7 Auto-tuning PID controller design 

1% Gaussian white noise. As can be seen from Figure 7.8, the proposed controller can 

yield reasonably good control performance in the presence of process noise. Lastly, 

Figure 7.9 compares the performances of the proposed controller and the benchmark 

IMC controller designed in Chapters 5 and 6. Obviously, the proposed controller 

outperforms the IMC controller by reducing  and of MAE for the set-

point changes to 40000 kg/kmol and 15000 kg/kmol, respectively. 

%6.34 %6.62
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Figure 7.2 Servo responses of the PID controller for %10±  set-point changes. Dashed: 
set-point; solid: PID  
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Figure 7.3 Data used for constructing the initial controller database 

 

Example 2 Consider the control problem of the van de Vusse reaction (Doyle 

et al., 1995) as discussed in the previous chapters. The same nominal operation 

conditions given in Chapters 5 and 6 are considered, i.e. , , 

and . To apply the proposed control strategy, the identical database and 

parameters for the JITL used in Chapters 5 and 6 are employed. Furthermore, initial 

controller database is generated by a PID controller with parameters, 

0.30 =AC 1172.10 =BC

3.340 =F

2=pK , 

, and , which gives good control performance in the vicinity of the 

nominal operation condition, as depicted in Figure 7.10. Because a second-order ARX 

model is employed for the JITL, the information vector of the controller database is 

2.0=iK 1=dK
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given by )]2(),1(),(),1(),1(),(),1([)( −−−−+= kekekekukykykrkσ  with other 

parameters chosen as follows: 05.0=ε , 1.0=κ , 1000 =N , , 5=l 3.0=pη , 

45.0=iη , 5.0=dη , and the following reference trajectory: 

)1(1.0)(9.0)( −+= kykrky rr  (7.23)

To compare the performances of the proposed controller and the PID 

controller aforementioned,  set-point change followed by %10 %2−  step disturbance 

in  is conducted. It is apparent from Figure 7.11 that the proposed controller 

reaches to the set-point much faster than the PID controller, as supported by the 

reduction of MAE by . Furthermore, the proposed controller has better 

disturbance rejection capability than the PID controller, resulting in reduction 

of MAE. Figure 7.12 compares the performances of two controllers for  set-

point change and  step disturbance in . The proposed controller yields less 

oscillatory response and has shorter setting time than the PID controller, resulting in 

 and  reduction of MAE, respectively. The updating of the parameters of 

the proposed controller in the aforementioned closed-loop responses are shown in 

Figure 7.13. 

AfC

%3.24

%3.34

%50−

%20− AfC

%6.9 %2.12

The robustness of the proposed controller is also evaluated by assuming 

 modeling error in the kinetic parameter . It can be seen from Figure 7.14 

that the proposed controller achieves better performance than the PID controller, 

leading to the respective  and  reduction of MAE for  and  

set-point changes. Lastly, the performances of the proposed controller and the IMC 

controller designed in Chapters 5 and 6 are compared in Figure 7.15. Again, the 

proposed controller shows better control performance than the IMC controller by 

%10− 3k

%3.17 %8.9 %10 %50−
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reducing MAE by  and  for  and %9.14 %1.9 %10 %50−  set-point changes, 

respectively. 

 

7.4 Conclusion 

A new auto-tuning PID controller is proposed for nonlinear process control in 

this chapter. In the proposed design strategy, the spirit of JITL technique is exploited 

for controller design directly, i.e. a controller database is constructed to contain the 

known PID parameters and their corresponding information vectors for controller 

design purpose, while another database is employed for the standard use by JITL 

algorithm for process modeling purpose. During the on-line implementation, the 

controller database is used to extract the relevant information to obtain new PID 

parameters based on the current process dynamics characterized by the current 

information vector. Moreover, the PID parameters obtained can be further updated 

when the predicted control error is greater than a pre-specified threshold and the 

resulting PID parameters with their corresponding information vector are stored into 

the controller database. The proposed method is evaluated through the simulation 

studies to show better control performance than its conventional counterpart. 
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Figure 7.8 Servo responses in the presence of process noise 
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Figure 7.9 Comparison between the proposed design and IMC controller for set-point 
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Chapter 8 

 
 
 
 

JITL-PCA Based Process Monitoring 

 
In this chapter, a new method is proposed for monitoring nonlinear static or 

dynamic systems. In the proposed method, JITL and PCA are integrated to construct 

JITL-PCA monitoring scheme, where JITL servers as the process model to account 

for the nonlinear and dynamic behavior of the process under normal operating 

conditions. The residuals resulting from the difference between JITL’s predicted 

outputs and process outputs are analyzed by PCA to evaluate the status of the current 

process operating conditions.  

 

8.1 Introduction 

Process monitoring is an important aspect of process engineering not only 

from plant’s safety viewpoint, but also for the maintenance of yield and quality of 

process products. Therefore there is strong incentive to have efficient tools for process 

monitoring to ensure the success of the plant operations by recognizing anomalies of 

the behavior. Various methods have been developed for fault detection and diagnosis 
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in the past three decades, e.g. multivariate statistical methods, model-based methods, 

qualitative knowledge based methods, artificial intelligence, and various integrated 

methods (Yoon and MacGregor, 2000; Venkatasubramanian et al., 2003a, 2003b, 

2003c) In this study, we will focus on multivariate statistical and model-based 

methods. 

One of the popular multivariate statistical methods employed for fault 

detection is principal component analysis (PCA). From the review provided in 

Chapter 2, we know that conventional PCA is originally developed for the static 

system and therefore its application to the monitoring of nonlinear and dynamic 

systems is limited (Xu et al., 1992; Ku et al., 1995). To alleviate this drawback, 

various methods to extend linear static PCA for nonlinear and dynamic process 

monitoring are proposed, as discussed in Chapter 2. For model-based monitoring 

methods, Wachs and Lewin (1998) and Rotem et al. (2000) presented a model-based 

PCA approach, which was applied to the monitoring of an ethylene compressor with 

good result. In this approach, the nonlinearity and dynamics of process are accounted 

for by using known first-principle models, followed by the PCA analysis of the 

residuals, i.e. the difference between the actual process outputs and model’s predicted 

outputs. However, the difficulty with this procedure is that a first-principle model may 

not be available or too costly to obtain. To circumvent this problem, Chen and Liao 

(2002) used neural networks as the process model in the model-based PCA. It is noted 

that, however, neural network suffers from the drawbacks of requiring a priori 

knowledge to determine the network structures and complicated training strategy to 

determine the optimal parameters of the network. Furthermore, neural networks are 

difficult to be updated online when the process operating conditions are changed.  
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In this chapter, we develop a new monitoring method called JITL-PCA that 

integrates JITL and PCA for nonlinear static or dynamic process monitoring. In the 

JITL-PCA framework, JITL is used as the process models to remove the nonlinear or 

dynamic information from the raw process data, while the resulting residuals between 

the actual process outputs and JITL’s predicted outputs are used in the PCA analysis 

to draw the monitoring charts. Two nonlinear examples are used to illustrate the 

utility of JITL-PCA in monitoring the nonlinear systems and a comparison with the 

conventional PCA and dynamic PCA is made.  

 

8.2 PCA and Model-Based PCA 

The principle of PCA is to find combinations of variables that capture the 

largest amount of information in a data set. Let N  scaled observations  

generate a data matrix 

1×∈ n
i Rx

nNR ×∈X  whose i -th row vector is . The covariance matrix 

of  is defined as:  

T
ix

X

1−
=Σ

N

T XX  (8.1)

Denote jλ  ( ) the eigenvalues of the matrix nj ,,1K= Σ  that are arranged in 

descending order to determine the principal components (PCs), and their 

corresponding eigenvectors are the principal component loadings, . If the first k  

PCs are selected, the prediction of the PCA model for a new observation data  is 

given by  

jp

newx

tPx knew =ˆ  (8.2)

where  and  is the score vector. The resulting residual is 

defined as:  

[ ]kk pppP ,...,, 21= new
T

k xPt =
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new
T
kknewnew xPPIxxr )(ˆ −=−=  (8.3)

Two statistical variables 2T  and  can be calculated from t  and  

respectively (Jackson and Mudholkar, 1979; Kresta et al., 1991; MacGregor and 

Kourti, 1995): 

Q r

tt 12 −Λ= k
TT  (8.4)

rrTQ =  (8.5)

where  is a diagonal matrix constructed by the first k  eingenvalues of . The 

control limit of 

kΛ Σ

2T  is calculated by: 

),1,()1(2
lim α−

−
−

= NkF
kN

NkT  (8.6)

where ),1,( α−NkF  is a  distribution with  and F k 1−N  degrees of freedom with 

significance level α  (MacGregor and Kourti, 1995), and the control limit of Q  is 

obtained by (Jackson and Mudholkar, 1979):  

0/1
2

1

002

1

2
02

1lim ]1(1
2

[ hhhhc
Q

θ
θ

θ
θ

θ α −
++=  (8.7)

where for , and ∑
+=

=
n

kj

i
ji

1
λθ 3,2,1=i

2
2

31
0 3

21
θ
θθ

−=h ,  is the normal deviate 

corresponding to the upper 

αc

)1( α−  percentile. For a new observation , if its 

associated  and  are smaller than their respective control limits  and , the 

system can be considered working under the normal condition with 

newx

2T Q 2
limT limQ

)%1(100 α−  

confidence. Otherwise, some faults may occur in the system. 

Algebraically, PCs are linear combinations of independent random variable, 

and geometrically PCs represent a new coordinate system obtained by rotating the 

original coordinate. Therefore, PCA is based on linear and static assumption and it 

156 



Chapter 8 JITL-PCA based process monitoring 

may not extract adequate information for nonlinear or dynamic systems. To alleviate 

this shortcoming, model-based PCA as depicted in Figure 8.1 uses a nominal process 

model to account for the process nonlinear or dynamic behavior under normal 

operating condition. If the model is accurate enough, the residual between actual 

process and model will be relatively insensitive to the variations resulting from the 

nonlinearity or dynamics of the normal process (Rotem et al., 2000) As a result, PCA 

is more sensitive to detect the process variation caused by the process faults. In the 

next section, a new model-based PCA method by incorporating the JITL will be 

developed. 

 

 

Figure 8.1 Model-based PCA monitoring scheme 

 

 

8.3 JITL-PCA for Process Monitoring 

Although JITL with ARX model has been shown to be efficient in modeling 

nonlinear systems, it is not suitable to be employed in the proposed JITL-PCA 

monitoring framework due to its lack of proper sensitivity to the process faults, which 

will be discussed in more detail in the ensuing discussion. Instead, it is more desirable 

to employ the finite impulse response (FIR) model as the local model in the proposed 
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JITL-PCA monitoring scheme to achieve better monitoring accuracy. With a FIR 

local model, the j-th predicted output  for a multivariable system with  inputs 

and  outputs is given by: 

)(ˆ ky j 1m

2m

j
T

jj kky Ψ−= )1()(ˆ z  (8.8) 

where the regression vector )1( −kjz  and model parameter vector  are defined as: jΨ

T
mujmmujj nkukunkukuk ]1),(,),1(,),(,),1([)1( 1_,1_,11 11

−−−−=− KKKz  (8.9) 

T
jnnjnnjnjjj b

muumuuu
],,,,,,,[

1_1_1)11_(1_1_ ,,,1, ++++ +−
=Ψ KK KKK ψψψψ  (8.10) 

 For monitoring of the static systems, low order polynomial models can be 

chosen as the local model for JITL:  

j
T
jjy Ψ= zˆ  (8.11) 

where 

Tn
mm

n
j

mjj uuuu ]1,,,,,,,[ 1,

11

1,
11 KKK=z  (8.12) 

T
jnnjnnjnjjj b

mjjmjjj
],,,,,,,[

1,1,11,1,1, ,,,1, 1 ++++ +−
=Ψ KK KKK ψψψψ  (8.13) 

Having discussed the local model structure to be employed in the proposed 

JITL-PCA monitoring scheme, we are in the position to discuss JITL-PCA monitoring 

scheme for multivariable static or dynamic systems, as shown in Figure 8.2, where 

each JITL is used as the process model to predict each process output. The residuals 

between the process outputs and predicted outputs are calculated and subsequently 

used to build the PCA model.  
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Figure 8.2 JITL-PCA monitoring scheme 

 

The following summarizes the construction procedure of JITL-PCA and its 

application to process monitoring:  

(1) Process data under normal condition are collected to generate the database 

for JITL modeling purpose;  

(2) Another set of N  process data under normal condition is generated, where 

the measured process outputs are used to form the output matrix Y . By 

using the appropriate regression vector, Eq. (8.10) or (8.13), the JITL 

algorithm is applied to obtain the model outputs and the predicted output 

matrix  is constructed;  Ŷ

(3) The residual matrix YYE ˆ−=  is calculated and the number ( k ) of PCs is 

determined by the aforementioned PCA procedure. The resulting PCA 

model is then integrated with JITL to form the JITL-PCA monitoring 

scheme;   
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(4) When a new observation comes during the monitoring phase, the scaled 

residual newe~  between the actual process outputs and JITL predicted 

outputs are calculated and the statistic variables  and  are obtained by:  2T Q

                 new
T
kkk

T
newT ePPe ~~ 12 −Λ=  (8.14)

                  new
T
kk

T
new IQ ePPe ~)(~ −=  (8.15)

If  and Q  are below their respective control limits, Eqs. (8.6) and (8.7), 

the system is considered to be under normal operating condition; otherwise 

some process faults may have occurred.  

2T

 

Based on the on-going discussion, it is evident that the effectiveness of the 

JITL-PCA monitoring scheme hinges on the sensitivity of JITL algorithm to the 

different types of process faults. For example, if process fault only affects the process 

outputs, e.g. process parameter drift or process output sensor bias, it is essential that 

JITL prediction should be insensitive to the values of process outputs as much as it 

can. Therefore, if one applies JITL with ARX model structure, which makes use of 

past values of both process outputs and process inputs, JITL will attempt to mimic the 

faulty process outputs and hence the resulting residuals cannot truly reflect the 

influence of process fault on the process output. As a result, the monitoring capability 

of JITL-PCA is compromised. In contrast, for JITL with FIR model structure, where 

only the past values of process inputs are employed, the predicted outputs are not 

influenced by the occurrence of the aforementioned process fault. Consequently, the 

resulting residuals are able to reflect closely the deviation of process outputs from 

those obtained in the absence of process fault, resulting in better monitoring capability 

of the JITL-PCA. On the other hand, if process fault only affects the process inputs, 
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e.g. input sensor bias, it is crucial that JITL prediction is sensitive to the process fault 

so that noticeable difference between the predicted outputs and process outputs can be 

observed. Again, FIR model is preferred over ARX model to be incorporated by 

JITL-PCA due to the reason previously discussed, i.e. distinct monitoring 

characteristics caused by the different regression vectors employed in these two 

model structures. In the next section, an example will be used to illustrate the different 

fault sensitivity between FIR and ARX models.       

 

8.4 Examples 

Example 1 Considering a nonlinear static system as given by (Dong and 

McAvoy, 1996): 

11 ε+= uy   

2
2

2 3 ε+−= uuy  (8.16)

3
23

3 3 ε++−= uuy   

where u  is the system input,  are system outputs, 321 ,, yyy 321 ,, εεε  are independent 

random noise , and system’s operating space is . To 

demonstrate the monitoring capability of JITL-PCA, two system faults are considered. 

)01.0,0(N ]101.0[∈u

The first fault assumes a small deviation occurred in  as described by: 2y

11 ε+= uy   

2
2

2 31.1 ε+−= uuy  (8.17)

3
23

3 3 ε++−= uuy   

The following equations describe the second fault: 

11 ε+= uy   
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2
2

2 3 ε+−= uuy  (8.18)

3
23

3 31.1 ε++−= uuy   
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Figure 8.3 Modeling result of JITL. (•): actual output; (+): model output   

 

To proceed with the JITL algorithm, one hundred process data under normal 

condition, i.e. Eq. (8.16), are generated to construct the databases and  and 

 are chosen. In addition, a first-order polynomial model, i.e. the regression 

vector 

6min =k

30max =k

u=== 321 zzz , is employed as the local model to predict the three outputs. 

To build the PCA model, another one hundred normal process data as illustrated in 

Figure 8.3 are generated and used to calculate the residuals between the actual system 

outputs and JITL’s predicted outputs, which are subsequently used to construct the 

PCA model. For this new process data, which is not included in the databases of JITL, 
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JITL is able to predict three outputs with excellent accuracy, as shown in Figure 8.3. 

For this process, the variances captured by the three PCs are 1.17, 0.99, and 0.84 

respectively, therefore three PCs are selected to build the PCA model used in JITL-

PCA.  

The monitoring result of the proposed method for the first fault is illustrated in 

Figure 8.4(a), where the first one hundred samples are the normal operating data and 

the next one hundred samples are the faulty data as simulated by Eq. (8.17). The 

dashed line is the 95% control limit and the solid line is the 99% control limit. As can 

be seen, for the normal samples, the 2T  values of three samples exceed the 95% 

control limit and none exceeds the 99% control limit, whereas for the faulty data, the 

2T  values of 52 samples exceed the 95% control limit and 45 samples exceed the 

99% control limit. This indicates that after one hundred samples something had 

changed in the systems or/and the occurrence of the unmeasured disturbances. For 

comparison purpose, Figure 8.4(b) shows the 2T  plot of the PCA analysis with three 

PCs for the identical set of process data used in the JITL-PCA. For the normal 

samples, the 2T  values of five samples exceed the 95% control limit and none 

exceeds the 99% control limit, while for the faulty data, only 14 samples’ 2T  values 

exceed the 95% control limit and four samples exceed the 99% control limit. 

Figure 8.5 compares the monitoring result of JITL-PCA and PCA for the 

second fault. For JITL-PCA, 44 samples exceed the 95% control limit and 35 samples 

exceed the 99% control limit under the faulty condition. In contrast, PCA analysis 

reveals that nine samples exceed 95% control limit and only one sample exceeds 99% 

control limit, indicating that PCA fails to detect the second fault. As clearly shown 

from both Figures 8.4 and 8.5 that the proposed method is more effective than PCA in 

monitoring the nonlinear system.  
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Figure 8.4 Monitoring result of the fault 1: (a) JITL-PCA; (b) PCA  
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Figure 8.5 Monitoring result of the fault 2: (a) JITL-PCA; (b) PCA  

164 



Chapter 8 JITL-PCA based process monitoring 

In general, it is not a trivial task for neural network based modeling methods 

to update its model online. For example, when the system operating space is changed 

to the new operating space, neural network requires model update from scratch. In 

contrast, JITL is inherently adaptive by simply adding the current system data online 

to the database. For illustration purpose, assume that the system’s operating space 

shifts from  to ]101.0[∈u ]2.17.0[∈u , while the system nonlinearity under normal 

condition and faulty conditions, i.e. Eqs. (8.16) to (8.18), remain unchanged. To learn 

the new process nonlinearity, the original database of JITL is augmented by the 

addition of new process data obtained in the new operating space  at 

each sampling time.  

]2.17.0[∈u

To illustrate this point, Figure 8.6(a) shows that the initial 2T  values of some 

data samples exceed the control limit, indicating that the database still closely 

resembles the original operating space ]101.0[∈u . However, the 2T  value 

eventually falls below the control limit, showing that the database of JITL has been 

updated with sufficient number of new process data and hence is capable of modeling 

the system dynamics in the new operating space. Figure 8.6 (parts (b)-(d)) and Table 

8.1 show the monitoring results of JITL-PCA with this new database for three 

scenarios, i.e. normal condition and two faulty conditions under new operating space. 

Evidently, JIT-PCA can monitor the system in the new operating space effectively.  

 

Table 8.1 Summary of JITL-PCA monitoring result in the new operating space 

 Normal Fault 1 Fault 2 

95% 4 92 75 

99% 0 88 66 
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Figure 8.6 Monitoring result of JITL-PCA in the new operating space 
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Example 2 Two continuous stirred tank reactors (CSTRs) in series with an 

intermediate feed as depicted in Figure 8.7 are used to demonstrate the application of 

the proposed monitoring technique for nonlinear dynamic process. The reaction 

system involves an exothermic and irreversible reaction  in both reactors. In 

addition, an undesired side-reaction  takes place in the two reactors. Pure 

component A is fed to the first reactor and the mixer.  

BA→

CB →

 

Figure 8.7 Two CSTRs in series with an intermediate feed 

 

The process can be described by the following equations (Loeblain and 

Perkins, 1998): 

11110
1

11 )( AAAA
A CkCC

V
F

dt
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The process parameters are given in Table 8.2 and the range of normal 

operating condition is: ]42.028.0[1 ∈F (m3/min), (K), 

(m

]310290[10 ∈T

]24.016.0[∈mF 3/min). The inlet concentration to the first tank, eCA += 2010  

(kmol/m3), where e  is the white noise with 0.2 variance, is considered as the 

unmeasured system noise. Additionally, measurement noises are assumed to be 1% of 

the respective measurement ranges for all measured variables. The sampling time is 

four minutes. To test the monitoring capability of the proposed method for nonlinear 

dynamic system, ten process faults including process parameter faults and the 

input/output sensor faults as summarized in Table 8.3 are considered.  
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Table 8.2 Parameters of example 2 

Variable Value Variable Value 

0Ak  8102.7× /min 1V  5 m3

0Bk  160/min 
2V  5 m3

REA /  6000 K 1cT  300 K 

REB /  4500 K 2cT  300 K 

)/( ρpA cH∆  -5 m3 K/kmol )/( 11 VcU pρ  0.35 /min 

)/( ρpB cH∆  -5 m3 K/kmol )/( 22 VcU pρ  0.35 /min 

 

Table 8.3 Fault description for example 2 

Fault                             Description 

Fault 1 5%  decrease in the heat transfer coefficient of CSTR1 

Fault 2 5%  decrease in the heat transfer coefficient of CSTR2 

Fault 3 5%  decrease in the kinetic parameter  of CSTR1 0Ak

Fault 4 5%  decrease in the kinetic parameter  of CSTR2 0Ak

Fault 5 01.0±  m3/min measurement bias of  1F

Fault 6 2± K measurement bias of  10T

Fault 7 01.0±  kmol/ m3 measurement bias of   1AC

Fault 8 2± K measurement bias of   1T

Fault 9 01.0±  kmol/ m3 measurement bias of  2AC

Fault 10 2± K measurement bias of   2T

 

As mentioned previously, different model structure employed by JITL has 

distinct sensitivity to the process faults. To illustrate this point, both ARX and FIR 

models are used to predict the output  in the presence of Fault 1. To do so, the 

following regression vectors are chosen for ARX and FIR models respectively: 

1T

)]1(),1(),2(),1([)1(:)(ˆ
101111 −−−−=− kTkFkTkTkARXT z  (8.20)
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]1),10(,),1(),10(,),1([)1(:)(ˆ
1010111 −−−−=− kTkTkFkFkFIRT KLz  (8.21)

As clearly shown in Figure 8.8, the residual between the process output and 

the predicted output by the JITL with FIR model is larger than that obtained from the 

JITL with ARX model, indicating that FIR model is more sensitive to the fault than 

the ARX model. This observation confirms the previous discussion given in the last 

section. Because ARX model will degrade the effectiveness of the JITL-PCA 

monitoring scheme, FIR model is used in the subsequent JITL-PCA monitoring 

scheme.  
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Figure 8.8 Comparison between FIR model and ARX model under the fault 1 
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To do so, four process outputs , , , and , are predicted by JITL 

using the regression vectors Eqs. (8.21) to (8.24): 

1T 1AC 2AC 2T

]1),10(,),1(),10(,),1([)1(:ˆ
1010111 −−−−=− kTkTkFkFkCA KLz  (8.22)

]1),10(ˆ,),1(ˆ),10(,),1([)1(:ˆ
2020222 −−−−=− kTkTkFkFkCA KLz  (8.23)

]1),10(ˆ,),1(ˆ),10(,),1([)1(:ˆ
2020222 −−−−=− kTkTkFkFkT KLz  (8.24)

where  is the predicted inlet temperature of the second tank, 

. Three thousand process data under normal conditions are used 

to build the database for JITL modeling purpose. In addition, the parameters 

20T̂

2101120 /)ˆ(ˆ FFTFTT m+=

7.0=γ , 

 and  are chosen for four predicted outputs. Figure 8.9 shows 

that JITL with FIR model has good modeling accuracy in the validation test. Another 

one thousand process data are collected and the resulting residuals are used to build 

the PCA model. Because the variances captured by the four PCs are 1.87, 0.93, 0.6 

and 0.59, respectively, four PCs are selected to build the PCA model for JITL-PCA.  

60min =k 120max =k

For comparison purpose, dynamic PCA (DPCA) (Ku et al., 1995) is applied 

by using 27 measured variables, )(1 ikF − , )(10 ikT − , , )(2 ikF − )(20 ikT − , 

, , )(1 ikCA − )(1 ikT − )(2 ikCA − , )(2 ikT − , and )( ikFm −  ( 3~1=i ) and the same 

process data used in constructing the JITL-PCA scheme. Eight PCs, which explain 

 variance, are selected to build the DPCA model. Table 8.4 compares the 

monitoring performances of JITL-PCA and DPCA. Figures 8.10 to 8.19 also illustrate 

the monitoring results where the first one hundred samples are the normal operating 

data, followed by one hundred faulty data. It is evident that JITL-PCA outperforms 

DPCA for monitoring the nonlinear dynamic systems.  

%99
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Table 8.4 Monitoring results of JITL-PCA and DPCA 

JITL-PCA DPCA 
2T  Q  2T  

 

95% 99% 95% 99% 95% 99% 
Fault 1 99 94 35 21 6 6 
Fault 2 81 62 39 17 11 5 
Fault 3 96 78 9 6 2 2 
Fault 4 78 63 17 7 5 4 
Fault 5 73 44 15 7 6 3 
Fault 6 94 82 10 8 10 5 
Fault 7 100 99 89 68 6 5 
Fault 8 100 100 100 99 3 3 
Fault 9 99 95 99 84 17 6 
Fault 10 100 99 89 54 54 18 
 

 

8.5 Conclusion 

A new model-based monitoring scheme, JITL-PCA, is proposed for 

monitoring the nonlinear static or dynamic systems. In this framework, JITL is used 

to model the nonlinear and dynamic information of the process and PCA is employed 

to monitor the residuals in order to evaluate whether the current process is under 

normal working condition or not. Literature examples are used to illustrate the utility 

of JITL-PCA in monitoring the nonlinear systems and a comparison with the 

conventional PCA and dynamic PCA is made. Simulation results show that JITL-PCA 

gives marked improvement over PCA and DPCA in the monitoring of nonlinear static 

or dynamic systems.  
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Figure 8.9 Modeling result of JITL under normal condition. 

Solid line: actual output; dashed line: model output 
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Figure 8.10 Monitoring result of fault 1: (a) JITL-PCA; (b) DPCA 
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Figure 8.11 Monitoring result of fault 2: (a) JITL-PCA; (b) DPCA 
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Figure 8.12 Monitoring result of fault 3: (a) JITL-PCA; (b) DPCA 
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Figure 8.13 Monitoring result of fault 4: (a) JITL-PCA; (b) DPCA 
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Figure 8.14 Monitoring result of fault 5: (a) JITL-PCA; (b) DPCA 
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Figure 8.15 Monitoring result of fault 6: (a) JITL-PCA; (b) DPCA 
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Figure 8.16 Monitoring result of fault 7: (a) JITL-PCA; (b) DPCA 
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Figure 8.17 Monitoring result of fault 8: (a) JITL-PCA; (b) DPCA 
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Figure 8.18 Monitoring result of fault 9: (a) JITL-PCA; (b) DPCA 
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Figure 8.19 Monitoring result of fault 10: (a) JITL-PCA; (b) DPCA 
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Conclusions and Further Work 

 
9.1 Conclusions 

In chemical processes, a well-known problem called ‘data rich but information 

poor’ is constantly encountered by the engineers dealing with the assignments of 

nonlinear process modeling, control, and monitoring. To circumvent this problem, this 

thesis investigates the use of JITL technique as a modeling framework, by which 

robust and adaptive controller designs and a process monitoring methodology for 

nonlinear processes are developed. Unlike the standard learning methods, JITL has no 

standard learning phase and the models are built dynamically upon query at each 

sampling instant. In this sense, a simple model structure can be chosen, e.g. a low-

order ARX model. Another advantage of JITL is its inherently adaptive nature, which 

is achieved by storing the current measured data into the database. These advantages 

make JITL attractive in nonlinear process modeling, modeling and monitoring.  

In this thesis, an enhanced JITL technique is developed by combining the 

angle measure into the distance measure to evaluate similarity between two data 
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samples to improve the modeling accuracy. In addition, parametric stability 

constraints are incorporated into the proposed method to address the stability of local 

models. Moreover, a new procedure of selecting the relevant data set is proposed. 

Simulation results show that the proposed JITL has better modeling accuracy than its 

conventional counterparts. 

By using the enhanced JITL technique, several control strategies are proposed. 

Firstly, a robust controller design methodology is proposed based on a composite 

model consisting of a nominal ARX model and JITL, where the former is used to 

capture the linear process dynamics and the latter to approximate the process 

nonlinearity, which is assumed to be the only source of the model uncertainty. The 

state space realizations of the resulting model and PID controller are then 

reformulated as an uncertain system, which can be recast into the standard ∆−M  

structure, by which the robust stability analysis by using the structured singular value 

test can be developed as the design criterion for robust PID controller design. 

Literature examples are employed to illustrate that the proposed methodology can be 

used to obtain the robust stability region in the parameter space of a PI controller, 

which assures the closed-loop stability for controlling the nonlinear process in the 

concerned operating space.  

Secondly, by integrating JITL into the controller design, three data-based 

adaptive control strategies are developed, meaning that adaptive single-neuron (ASN) 

controller, adaptive IMC controller, and auto-tuning PID controller. These controllers 

take advantages of the information provided by JITL to realize online control 

parameter tuning for nonlinear process. Because of the parsimonious design 

framework, these adaptive controllers can be implemented online without heavy 
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computational burden. The simulation results illustrate that the proposed methods 

have better control performance than their counterparts.  

Lastly, this thesis proposes a JITL-PCA scheme for nonlinear dynamic process 

monitoring. JITL serves as the process observer to account for the nonlinear dynamic 

characteristics of the process under normal operating conditions. The residuals 

resulting from the difference between JITL and process outputs are analyzed by PCA 

to evaluate the status of the current process operating conditions. Simulation results 

show that JITL-PCA outperforms PCA and DPCA in the monitoring of the nonlinear 

processes.  

 

9.2 Suggestions for Further Work 

There are few open questions that need to be further studied. Some possible 

topics for future research are listed below.  

JITL is one of the powerful techniques for learning from observed data and for 

gaining insight on the local behaviour of nonlinear systems. However there are still 

some concerns for adoption of JITL for process modeling and control. One is the well 

known problem of the curse of dimensionality, that is the sparseness of data in 

situation of high dimension of the query space. JITL shares this problem with all other 

nonlinear modeling techniques. But, unlike other approaches, JITL can take 

advantage from its feature of updating the database continuously (Atkeson et al., 

1997). Therefore, the technique to detect the local regions where data are missing and 

need to collect additional samples could be found useful in this context. Another 

concern is how can JITL model real systems fast enough when the size of the 

database grows. This problem is actually a dataset-searching problem. When working 

with huge datasets, it would be more desirable to utilize a database management 
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system (DBMS). Then, how such a DBMS could be integrated with the estimation 

procedure clearly needs further investigation.  

Virtually all practical control systems are subject to hard constraints on their 

manipulated inputs. In this respect, model predictive controller (MPC) is now widely 

recognized as one of the few design methods of handling constraints in a systematic 

manner. However, MPC techniques are based on linear models and thus not very 

well-suited for the control of nonlinear systems. Thus how to integrate JITL technique 

into MPC design for nonlinear system warrants future investigation. 

For the data-based control strategies developed in Chapters 5 to 7, the 

controller parameters are updated on-line by the steepest descent method with the aim 

to minimize the tracking error at the next sampling instant. In this regard, it is of 

theoretical interest for future research to derive a more rigorous updating algorithm 

for controller parameters by the Lyapunov method such that the convergence of 

predicted tracking error at the next sampling instant is guaranteed. 

Last, how to integrate process monitoring and controller design is an open 

topic that warrants further investigation. Specifically, when fault is identified and 

diagnosed in a control system, how can the monitoring information be applied in the 

redesign of controller to maintain acceptable control performance? This problem is 

closely related to the fault tolerant controller design and is a challenging problem 

given the complexity of chemical processes. Moreover, from the demand of process 

model’s point of view, there is a fundamental conflict between the tasks of controller 

design and process monitoring. For example, in adaptive controller design, it is 

desired to have a model that is able to track parameter variations quickly for better 

control performance. Under this situation, it expects small residuals between the plant 

outputs and the predicted outputs despite that all the changes occur in the system. On 
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the other hand, a process model insensitive to the changing parameters is preferred in 

process monitoring application because large residuals can be obtained in the 

presence of faults, leading to higher successful rate of detecting system abnormalities.  
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