38 research outputs found

    A practical approach to adaptive sliding mode control

    Get PDF
    This paper is concerned with the development of a practical approach to the design of adaptive sliding mode controllers. The objective is to define an adaptive control law that presents some desired advantages such as non overestimation of the disturbance input, cancellation of the chattering phenomenon, zero overshooting response, avoid control saturation and simplicity of algorithm tuning. In this practical approach a solution is provided that uses both, adaptive sliding surfaces and adaptive control gains so the proposed controller is able to manage input disturbances with bounded derivatives.Agencia Estatal de InvestigaciĂłn | Ref. DPI2017-84259-C2-2-RMinisterio de EconomĂ­a y Competitividad | Ref. PTQ-14-07366Ministerio de EconomĂ­a y Competitividad | Ref. DPI2016-79278-C2-2-

    Smooth non linear high gain observers for a class of dynamical systems

    Get PDF
    High-gain observers are powerful tools for estimating the state of nonlinear systems. However, their design poses several challenges due to the need of dealing with phenomena such as peaking and chattering. To address these issues, we propose a differentiator operator design based on a non linear second order high-gain observer, which is suited to a class of dynamical systems. Our method includes a procedure to determine high gains in order to avoid chattering in the case of noise-free models, and cut-off frequency based gain design in the case of noisy measurements. Complementary, we suggest performing observability analyses to ensure a priori the feasibility of the estimation. The main strengths of our approach are its simplicity and robustness. We demonstrate the performance of the proposed method by applying it to two processes (chemical and biological).Xunta de Galicia | Ref. ED431F 2021/003MCIN/AEI/10.13039/501100011033 | Ref. RYC-2019-027537-

    Nonlinear Controller for the Set-Point Regulation of a Buck Converter System

    Get PDF
    In this paper, we present a nonlinear PID controller based on saturation functions with variable parameters in order to regulate the output voltage of a buck converter in the presence of changes in the input voltage. The main feature of the proposed controller is to bound the control input with a variable parameter to avoid the windup effect generated by the combination of the integral control action and some operation conditions. The main advantages of the proposed nonlinear PID controller are its low computing cost and the simple tuning task to implement the control strategy in an embedded system. The acceptable behavior of the closed-loop system is presented through the simulation and experimental results

    Automatic Control and Routing of Marine Vessels

    Get PDF
    Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels

    Development of U-model enhanced nonlinear dynamic control systems —Framework, algorithms and validation

    Get PDF
    This study aims to develop the classical model-based U-control design framework to enhance its robustness and reduce its dependence on model accuracy. By absorbing the design concepts of other advanced control algorithms, firstly, based on the discrete-time U-control algorithm, a continuous-time (CT) U-model based dynamic inversion algorithm is proposed. Then the CT U-control system design procedures are presented and explained step by step with numerical and simulation demonstrations of the linear and nonlinear U-control system design examples. Secondly, the U-control algorithm develops two mainstream nonlinear robust control algorithms, disturbances suppression and disturbances compensation, while maintaining its system dynamic cancellation characteristics, including two-degree-of-freedom U-model-based internal model control (UTDF-IMC), Disturbance observer-based U-control (DOBUC), sliding mode enhanced U-control (U-SMC) and U-model based double sliding mode control (UDSMC) algorithms. At the same time this study first developed and applied the U-control method to a practical industry application: robust quadrotor trajectory tracking control. The proposed UDSMC method and multiple-input and multiple-output extended-state-observer (MIMO-ESO) established the quadrotor flight control system. The difficulties associated with quadrotor velocity measurement disturbances and uncertain aerodynamics are successfully addressed in this control design. A rigorous theoretical analysis has been carried out to determine whether the proposed control system can achieve stable trajectory tracking performance, and a comparative real-time experimental study has also been carried out to verify the better effectiveness of the proposed control system than the classical SMC and built-in PID control system. This study is clearly novel as the methods and experiments it proposed have not been researched before

    Optimal Direct Yaw Moment Control of a 4WD Electric Vehicle

    Get PDF
    This thesis is concerned with electronic stability of an all-wheel drive electric vehicle with independent motors mounted in each wheel. The additional controllability and speed permitted using independent motors can be exploited to improve the handling and stability of electric vehicles. In this thesis, these improvements arise from employing a direct yaw moment control (DYC) system that seeks to adapt the understeer gradient of the vehicle and achieve neutral steer by employing a supervisory controller and simultaneously tracking an ideal yaw rate and ideal sideslip angle. DYC enhances vehicle stability by generating a corrective yaw moment realized by a torque vectoring controller which generates an optimal torque distribution among the four wheels. The torque allocation at each instant is computed by finding a solution to an optimization problem using gradient descent, a well-known algorithm that seeks the minimum cost employing the gradient of the cost function. A cost function seeking to minimize excessive wheel slip is proposed as the basis of the optimization problem, while the constraints come from the physical limitations of the motors and friction limits between the tires and road. The DYC system requires information about the tire forces in real-time, so this study presents a framework for estimating the tire force in all three coordinate directions. The sideslip angle is also a crucial quantity that must be measured or estimated but is outside the scope of this study. A comparative analysis of three different formulations of sliding mode control used for computation of the corrective yaw moment and an evaluation of how successfully they achieve neutral steer is presented. IPG Automotive’s CarMaker software, a high-fidelity vehicle simulator, was used as the plant model. A custom electric powertrain model was developed to enable any CarMaker vehicle to be reconfigured for independent control of the motors. This custom powertrain, called TVC_OpenXWD uses the torque/speed map of a Protean Pd18 implemented with lookup tables for each of the four motors. The TVC_OpenXWD powertrain model and controller were designed in MATLAB and Simulink and exported as C code to run them as plug-ins in CarMaker. Simulations of some common maneuvers, including the J-turn, sinusoidal steer, skid pad, and mu-split, indicate that employing DYC can achieve neutral steer. Additionally, it simultaneously tracks the ideal yaw rate and sideslip angle, while maximizing the traction on each tire[CB1] . The control system performance is evaluated based on its ability to achieve neutral steer by means of tracking the reference yaw rate, stabilizing the vehicle by means of reducing the sideslip angle, and to reduce chattering. A comparative analysis of sliding mode control employing a conventional switching function (CSMC), modified switching function (MSMC), and PID control (HSMC) demonstrates that the MSMC outperforms the other two methods in addition to the open loop system

    Dynamic analysis, design and control of an industrial parallel robot

    Get PDF
    An investigation into the applicability of the bond-graph methodology, using the so-called Model Transformation Tools software, has been undertaken to model parallel robots. This software is a novel, non-commercial, program developed at the University of Glasgow, and in addition to the standard bond graph, it contains a powerful tool called the Hierarchical Bond Graph for dealing with very large-scale dynamical systems. It is the first time this tool has been applied for the modelling of parallel manipulators. A General Method for modelling parallel robots using the Hierarchical Bond-Graph concept has been developed. The method is based on related work on the modelling of closed chain robots using the Lagrange method. Introduction of a new design concept to be known as the Multi-cell Parallel Planar Manipulator. The methodology allows for an increase in the workspace of the manipulator by increasing the number of cells without affecting the number of DOF. It can also be shown to enhance the manoeuvrability of the system. Application of the multi-cell approach to a specific 2-DOF planar parallel manipulator and recognition of the need for a general model led to the development of a general dynamic model for the multi-cell manipulator using the Lagrange method. The reason for using the Lagrange formulation is that the necessary generalisation cannot be formalised using the Bond Graph technique due to the dependency of a bond graph on the specified structure of the system being modelled. Static balancing of the new general manipulator was addressed and a new method for balancing has been introduced. The method reduces the number of parameters to be adjusted to only one

    Experimental Validation Of An Integrated Guidance And Control System For Marine Surface Vessels

    Get PDF
    Autonomous operation of marine surface vessels is vital for minimizing human errors and providing efficient operations of ships under varying sea states and environmental conditions which is complicated by the highly nonlinear dynamics of marine surface vessels. To deal with modelling imprecision and unpredictable disturbances, the sliding mode methodology has been employed to devise a heading and a surge displacement controller. The implementation of such a controller necessitates the availability of all state variables of the vessel. However, the measured signals in the current study are limited to the global X and Y positioning coordinates of the boat that are generated by a GPS system. Thus, a nonlinear observer, based on the sliding mode methodology, has been implemented to yield accurate estimates of the state variables in the presence of both structured and unstructured uncertainties. Successful autonomous operation of a marine surface vessel requires a holistic approach encompassing a navigation system, robust nonlinear controllers and observers. Since the overwhelming majority of the experimental work on autonomous marine surface vessels was not conducted in truly uncontrolled real-world environments. The first goal of this work was to experimentally validate a fully-integrated LOS guidance system with a sliding mode controller and observer using a 16’ Tracker Pro Guide V-16 aluminium boat with a 60 hp. Mercury outboard motor operating in the uncontrolled open-water environment of Lake St. Clair, Michigan. The fully integrated guidance and controller-observer system was tested in a model-less configuration, whereby all information provided from the vessel’s nominal model have been ignored. The experimental data serves to demonstrate the robustness and good tracking characteristics of the fully-integrated guidance and controller/observer system by overcoming the large errors induced at the beginning of each segment and converging the boat to the desired trajectory in spite of the presence of environmental disturbances. The second focus of this work was to combine a collision avoidance method with the guidance system that accounted for “International Regulations for Prevention of Collisions at Sea” abbreviated as COLREGS. This new system then needed to be added into the existing architecture. The velocity obstacles method was selected as the base to build upon and additional restrictions were incorporated to account for these additional rules. This completed system was then validated with a software in the loop simulation

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics
    corecore