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ABSTRACT High-gain observers are powerful tools for estimating the state of nonlinear systems. However,
their design poses several challenges due to the need of dealing with phenomena such as peaking and
chattering. To address these issues, we propose a differentiator operator design based on a non linear second
order high-gain observer, which is suited to a class of dynamical systems. Our method includes a procedure
to determine high gains in order to avoid chattering in the case of noise-free models, and cut-off frequency
based gain design in the case of noisy measurements. Complementary, we suggest performing observability
analyses to ensure a priori the feasibility of the estimation. The main strengths of our approach are its
simplicity and robustness. We demonstrate the performance of the proposed method by applying it to two
processes (chemical and biological).

INDEX TERMS Biosystems, chattering phenomenon, high gain observers, observability, peaking phe-
nomenon, process control, state estimation.

I. INTRODUCTION
The observation and estimation of unmeasured system states
and unknown parameters of a dynamical system is an impor-
tant problem in process control. As discussed in [1], at
least two distinct approaches to this problem can be found
in the literature: estimation with differentiator techniques
[2]–[6] and estimation with dynamical observers. Work on
this topic focused initially on linear systems [7], [8], and was
later extended to nonlinear systems using approaches such
as linearisation assumptions on the structure of the dynam-
ics [9]–[11], multivariable circle criterion [12], sliding mode
approaches [13]–[21], and high-gain observers [22]–[36].
The application of observers to chemical processes
has been reviewed in [37], with examples of design
including [38]–[45].

High-gain observers, which have excellent robustness
properties, have been developed for systems that can be
transformed into one of the available normal forms. This
methodology guarantees the existence of an exponentially
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convergent observer; it has only one tuning parameter, which
should be set to a sufficiently large value.

Assuming that there is no noise, by setting the observer
gain to a sufficiently large value the observer error can be
made arbitrarily small. However, choosing an adequate value
can be challenging in practical applications, mainly due to
two issues: the peaking and chattering phenomena.

The peaking phenomenon occurs when high-gain feedback
leads certain states to very large values before they rapidly
decay to zero. These states may destabilize the system, and
even make certain states reach infinite values in finite escape
time [46]. To understand this phenomenon, consider the prob-
lem of differentiating a state x1 subject to unknown inputs that
affect its derivative. At the beginning of the observation pro-
cess, the first variable of the observer, z1, converges rapidly
with respect to the system dynamics, until the estimation error
e = x1 − z1 reaches zero. During this reaching phase, the
derivative estimated by the second observer state, z2 = ż1,
reaches high values due to the fast convergence of z1, causing
a narrow large peak in the initial estimation x2 = ˙̂x1. Since the
observer is much faster than the observed system, the peaking
period is very short relative to the time scale of the closed-
loop dynamics, hence appearing in the transitory response.
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The chattering phenomenon is difficult to define math-
ematically; it consists of high-frequency, finite-amplitude
oscillations [47]. Two possible sources are: the use of
non-continuous functions (such us the set valued sign func-
tion used in classical slidingmode control), and discretization
(which can introduce chattering in the steady-state response
if the gains are large enough, even if all the functions are
continuous, as long as the system dynamics includes high
frequency components with respect to the sampling time τ ).

Another issue that might impact the upper bounds for high
gain observers is the presence of noise in output signals,
to which the observer may be highly sensitive [27], specially
to output measurement noise for higher dimensional sys-
tems having nonlinearities with large Lipschitz constant. This
problem can be tackled using time-varying gains, switched
approaches, or low-pass filters, in order to attenuate noise
sensitivity [5].

It is worth mentioning that the theoretical possibility of
inferring the state of a system from the observations of the
output (i.e. the observability problem) should also be taken
into account. This property must be assessed a priori to
guarantee that the state estimation is feasible, thus ruling
out the existence of estimation artifacts. The observability
of nonlinear systems can be analysed with differential geo-
metric techniques [48], which are available in state of the
art tools. This is the approach that we adopt in the present
work. It is also important to consider the implementation
aspects of the observer design. Numerical computations can
be problematic in practice, especially when the dimension
of the observer is high. To this end, cascade connections
[30], [34], [49] have been proposed to reduce computational
complexity. Besides, a graphical approach can be used to
guide the cascade observer design. By describing the dynami-
cal system of interest as a network, paths in the corresponding
structural graph determine the cascade operations that solve
the observation problem. In this context, a solution to the
observation design problem can be seen as a logical sequence
of operations between nodes that create a path along the
graph [50]–[53].

In said graphs each node represents a state, and an edge
indicates that a state is present at the differential equation of
other state. Linear and nonlinear relations are represented by
continuous and dashed edges, respectively. The observability
of nonlinear systems may depend on the trajectory, because
nonlinear connections can vanish at some regions of the state
space. In this work we propose a graphical representation of
the dynamical system that includes its states and functions,
and we use two types of operators (differentiation and inver-
sion) to create solution paths in the graph. Applying these two
operators we show how to tune them to avoid chattering. Our
differentiator includes linear and nonlinear functions tuned to
avoid peaking and chattering.

We implement the methodology in MATLAB and we
demonstrate its performance with analytic results and numer-
ical simulations of two case studies, considering both
noise-free and noisy scenarios.

Thus, the integrated approach proposed in this paper
addresses five aforementioned aspects of observer design:
peaking, chattering, noisy measurements, numerical imple-
mentation and observability analysis.

The paper is organized as follows. First, in Section II
we present the class of dynamical problems that are suit-
able for the method, and we present a functional graph
based on its structure, consisting of a sequence of two
operators – differentiation and inversion – that solve the
observation problem. Then, in Section III we show how
to design the differentiator operator based on a non linear
second order high-gain observer, which we refer to as the
Smooth Nonlinear Super-Twisting Approximation (SNSTA).
In Section IV we describe the semi-implicit discretization of
the continuous algorithm and determine its parameters, i.e.
the gains accounting for the chattering phenomenon. We dis-
cuss observability analysis in Section V. We demonstrate
the proposed approach with two case studies in Section VI.
Finally, we summarize the conclusions and discuss future
developments in Section VII.

II. PROBLEM STATEMENT AND PROPOSED SEQUENCE
OF OPERATORS
A. DYNAMICAL SYSTEMS STUDIED IN THIS WORK
In this work we consider the following class of nonlinear
dynamical systems, which is a generalization of the classic
triangular normal form

ẋ1(t) = f1([x1, u], x2)+ g1([x1, u])

ẋ2(t) = f2([x1, x2, u], x3)+ g2([x1, x2, u])

ẋ3(t) = f3([x1, x2, x3, u])

y(t) = x1(t)+ n(t) (1)

where the notation [x] denotes that the presence of the vari-
able in the function is optional. In this model x1(t) is the
measurable state, x2(t) and x3(t) are non measurable states,
u(t) is the input excitation, usually a control input signal and
n(t) is the noise that corrupts the measured state. To present
the results clearly, we exclude from the notation the temporal
dependence of the state variables and the state dependency of
the model functions.

It is assumed that f2, g2, f1 and g1 are sufficiently smooth
functions with known expressions, and f3 is an unknown
function. Note that, since f3 is unknown, it allows for the pos-
sibility of rewriting systems of dimension higher than three in
the above form, thus providing additional flexibility. If f3 is
known, an additional state or parameter may be estimated,
as will be shown in the numerical simulations.

The class of nonlinear dynamical systems (1) can be used
to describe, among others, chemical and biological processes
such as the case studies presented in Section VI, including
processes with up to three states, in which it is often the case
that only one output can be measured. This class includes
some systems that cannot be modeled with the classic trian-
gular normal form, as e.g. the continuous stirred-tank reactor
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FIGURE 1. Observation graph: logical sequence of operators that solves
the observation problem. Green shaded circles denote known variables
(u, x1) and the function that can be directly computed from them (g1).
Estimated variables and functions are displayed in white with a hat (∗̂).
The differentiator and inversion operators are denoted as dif and inv.

considered in Section VI. More complex dynamical systems
can arise as networks of interconnected models of this class.

The observability of system (1) depends on the expressions
of its functions, that is, on the properties of the maps between
model variables defined by fi and gi.

B. A LOGICAL SEQUENCE OF OPERATORS THAT SOLVES
THE OBSERVATION PROBLEM
The objective is to estimate the values of the hidden states
x2(t) and x3(t) by means of the knowledge of the expressions
of f2, g2, f1, and g1, the system input u(t), and the measured
state x1(t), under some assumptions. To this endwe present an
algorithmic procedure consisting of a logical sequence, which
we obtain from the graph shown in Figure 1. In this graph, the
operators used to solve the problem are:

• f (x)
dif
−−→
x(t)

d̂(t): This operator represents the use of a

differentiator to estimate the unknown term d(t) in the
following differential equation,

ẋ(t) = f (x)+ d(t),

by means of the available information, x(t) and f (x).
As commented in [27], a high-gain observer pro-
vides a solution to obtain a fast and robust estimation
d̂(t) ≈ d(t).

• h
inv
−−→
x(t)

y(t): In this case we assume that in a function

h(x, y) it is possible to calculate y(t) from the values
of h(x, y) and x(t). From the implicit function theorem,
this condition is achieved on a domain X of x if ∂f

∂y 6=

0 ∀x ∈ X . The domain X determines the state space
region where the proposed solution can be applied.

The restrictions that must be considered in order to apply
the proposed operators are:
•

∂f1
∂x2
6= 0 ∀([x1, u]), so that it is possible to apply the

operator:

f1
inv
−−−→
[x1,u]

x2

Small values of | ∂f1
∂x2
| indicate the practical impossi-

bility to apply the inversion operator, which prevents
the observation of x2(t) and, because of the logical
sequence, of x3(t).

•
∂f2
∂x3
6= 0 ∀([x1, x2, u]), so that it is possible to apply the

operator:

f2
inv

−−−−−→
[x1,x2,u]

x3

Small values of | ∂f2
∂x3
| indicate the practical impossibil-

ity to apply the inversion operator, which prevents the
observation of x3(t).

• x1, x2, and x3 are such that:

|x1| < X1
|x2| < X2
|x3| < X3

where X1, X2 and X3 are design constants. These con-
ditions are related with the peaking phenomenon gen-
erated because the second differentiator operator in the
logical sequence operates with an estimated value x̂2(t).
Condition |x3| < X3 is introduced to account for a
third order differentiator that – as will be shown with
the CSTR example in the numerical simulations of
Section VI – can be used to estimate a model parameter.

The logical sequence of operators to solve the problem is:

g1
dif
−−−→
[x1,u1]

f̂1
inv
−−−→
[x1,u]

x̂2
dif

−−−−−→
[x1,x̂2,u]

f̂2
inv

−−−−−→
[x1,x̂2,u]

x̂3

where the notation x̂ denotes the estimation of x.
Note that this graphical representation also facilitates the

introduction of new nodes, where one node could represent
not only states, but estimations and functions, and new oper-
ators that can be used to solve the problem. The relation from
one node to other node (i.e. the arc) would depend on the
type of operator and its associated restrictions. For example,
adding a filtering operator to the graphical representation
would allow filtering the noisy signal from the origin node,
which represents the raw state signal, to the destiny node,
which represents the filtered signal.

III. DIFFERENTIATOR DESIGN: THE SMOOTH NONLINEAR
SUPER-TWISTING APPROXIMATION
Consider a first-order dynamical system of the form:

ẋ(t) = f (x)+ d(t) (2)

where f (x) is known and d(t) is unknown with the following
assumption:
Assumption 1: d(t) in (2) satisfies the following restriction

|ḋ(t)| ≤ 1

with 1 > 0 a positive real number.
Our goal is to obtain the estimation of the variable deriva-

tive. A comparative study of techniques to solve this prob-
lem can be found in [54], where the following issues are
considered:
• Measurement noise and sampling period can affect the
exactness of any differentiator.
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• There is always a trade-off between the exactness and
the robustness of a differentiator.

• In many applications, it is necessary to utilize some
noise filtering elements before a differentiator block.

Due to the trade-off between noise filtering and phase
lag of a linear filter, it is necessary to decrease its cut-off
frequency in order to improve its noise filtering performance.
In cascade connections of linear differentiators this phase-lag
is transmitted to higher order elements. Solutions like sliding
mode or homogeneous differentiators have been introduced
in the literature to overcome the drawbacks of the afore-
mentioned methods, but implicit discretization procedures
are needed to keep the nonlinear properties of the discrete
model. In this work we propose a different approach, based
on smooth nonlinear function approximations that maintain
the continuous properties in the discrete model.

To this end, note that classical linear algorithms are less
sensitive to measurement noise but less robust to perturba-
tion [55], so nonlinear terms can be introduced to improve
the performance with respect to perturbations. To this end,
let us define the state estimation error as:

e(t) = x(t)− x̂(t) (3)

We propose a differentiator (observer of the variable
derivative) with the following dynamics:

˙̂x(t) = f (x)+ λe(t)+ β tanh(γ e(t))+ ε(t)

ε̇(t) =
λ2

4
e(t)+

λ

2
βγ sech2(γ e(t))e(t) (4)

and initial conditions:

x̂(0) = x(0) ε(0) = 0 (5)

Note that the observer dynamics (4) shares the struc-
ture with the Super-Twisting Algorithm, see [44], [56], [57],
designed as a differentiator, which are given as:

˙̂x(t) = f (x)+ λ
√
|e(t)| sign (e(t))+ ε(t)

ε̇(t) = κ sign (e(t)) (6)

The set value (sign(e(t)) and the power factor (|e(t)|0.5)
used in (6) are replaced in (4) with a combination of linear
and nonlinear functions. Hence we refer to this algorithm as
Smooth Nonlinear Super-Twisting Approximation (SNSTA).

From (3) and (4), the dynamics of e(t) are given as:

ė(t) = −λe(t)− β tanh(γ e(t))− ε(t)+ d(t)

ε̇(t) =
λ2

4
e(t)+

λ

2
βγ sech2(γ e(t))e(t) (7)

An important difference of the proposed SNSTA with
respect to the ST differentiator is that the final estimate of the
variable derivative is obtained from the approximate equilib-
rium condition (13), (ė(t), e(t)) ≈ (0, 0); that is, assuming the
condition:

ε(t) ≈ d(t). (8)

Therefore, the estimation of ẋ(t) is obtained in the same
way as in the case of a nonlinear observer estimation
approach, that is:

ẋ(t) ≈ f (x)+ ε(t) (9)

This choice reduces the amount of chattering and the sensi-
tivity of the algorithm to high frequency noise in themeasured
input.

Consider (7), assumption (1) and the linear manifold σ (t)
defined as:

σ (t) = ė(t) +
λ

2
e(t) (10)

Theorem 1: The compact set �σ defined as:

�σ = {σ (t) ∈ R : |σ (t)| < νσ } (11)

with νσ given as:

νσ =
1

λ
2 + βγ sech2(γ e(t))

(12)

is Globally Uniformly Asymptotically Stable (GUAS).
Proof: Differentiation of e(t) leads to:

ė(t) = f (x)+ d(t)− ˙̂x(t)

Replacing f (t) from (4), we obtain:

ė(t) = −λe(t) − β tanh(γ e(t))− ε(t)+ d(t) (13)

Let us now differentiate ė(t) again:

ë(t) = −λė(t) −
λ2

4
e(t)− βγ sech2(γ e(t))ė(t)

−
λ

2
βγ sech2(γ e(t))e(t)+ ḋ(t) (14)

We choose V (σ ) = 1
2σ

2 as a candidate Lyapunov function.
Its derivative is:

V̇ (σ ) = σ (ë(t) +
λ

2
ė(t)) (15)

Replacing ë(t) from (14) yields:

V̇ (σ ) = −σ ((
λ

2
+ βγ sech2(γ e(t))σ (t)− ḋ(t)) (16)

Condition (12) and assumption (1) implies that:

|
λ

2
+ βγ sech2(γ e(t))||σ (t)| > |ḋ(t))|, ∀σ (t) 6∈ �σ (17)

so that:

(
λ

2
+ βγ sech2(γ e(t)))σ (t)− ḋ(t) = ρ(t)σ (t) (18)

with ρ(t) > 0. Thus, V̇ (σ ) can be written as:

V̇ (σ ) ≤ −ρ(t)V (σ ) ∀σ 6∈ �σ (19)

which implies that �σ generates exponential convergence
(with time variable rate ρ(t)) with respect to σ (t).
Theorem 2: Let us define

ψ < atan(
λ

2
) (20)
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The compact set �e defined as:

�e = {(e(t), ė(t)) ∈ R2
: |e(t)| <

νσ

| sin(ψ)|
∧ |ė(t)|

<
νσ

| cos(ψ)|
} (21)

is Global Uniform Asymptotically Stable (GUAS).
Proof: Inside �σ the following condition holds:

|ė(t) +
λ

2
e(t)| < νσ

which geometrically entails:

|e(t)| <
νσ

| sin(ψ)|
(22)

|ė(t)| <
νσ

| cos(ψ)|
(23)

Theorem 3: The compact set �∗σ defined as:

�∗σ = {σ (t) ∈ R : |σ (t)| < ν∗σ } (24)

with ν∗σ given as:

ν∗σ =
1

βγ sech2(γ e(t))
(25)

is Finite Time Stable (FTS).
Before introducing the proof, let us recall the following

result introduced in [58]:
Lemma 1: For any real numbers ψ1 > 0, ψ2 > 0 and

0 < ψ3 < 1, an extended Lyapunov function condition of
finite time stability can be given as

V̇ (x)+ ψ1V (x)+ ψ2Vψ3 (x) ≤ 0 (26)

where the settling time can be estimated by

T ≤
1

ψ1(1− ψ3)
ln (
ψ1V (1−ψ3)(0)+ ψ2

ψ2
) (27)

Proof: By definition (25),

|βγ sech2(γ e(t))||σ (t))| > |ḋ(t)|, ∀σ 6∈ �∗σ

Therefore:

−βγ sech2(γ e(t))σ (t)+ ḋ(t) = −φ(t) sign(σ (t)),

∀σ 6∈ �∗σ

with φ(t) > 0. In this case the derivative of the Lyapunov
function (16) follows the expression:

V̇ (σ ) ≤ −
λ

2
V (x)− φ(t)V 0.5(σ ), ∀σ 6∈ �∗σ (28)

Therefore, Lemma (1) implies that�∗σ generates a finite time
convergence with variable rate.

The following remarks are in order:
• �σ ⊂ �

∗
σ ∀e(t). Exponential convergence changes from

finite time to asymptotic time inside �σ ∩�∗σ .
• |e(t)| → 0 implies that:

νσ →
1

λ
2 + βγ

(29)

ν∗σ →
1

βγ
(30)

• |e(0)| ≈ 0 when the initial value of the estimation vari-
able can be estimated with a given minimum accuracy.
Therefore, the peaking phenomenon will not affect the
proposed differentiator if the value of x(t) is previously
known, as it happens with reduced order observers.
Nevertheless, when it is necessary to use a previously
estimated value in the differentiation chain, the problem
can be overcome by enforcing bounds on the estimated
value [27].

IV. DIFFERENTIATOR DESIGN: DISCRETIZATION AND
PARAMETER SETTINGS
As discussed in [54], [56], [59]–[62], the discretization of
continuous-time systems that include set value or homoge-
neous functions must be done carefully because:
• The chattering phenomenon is closely related to the
discretization method.

• The properties related to set value and homogeneous
functions in the continuous analysis should be preserved
in the discrete model.

To address these points, it is common to replace the explicit
discretization method with an implicit approach, which pro-
vides higher stability in the integration process and rejects
chattering. Our approach is to use a semi-implicit discretiza-
tion method in order to introduce parameter restrictions that
cancel chattering.

A. DIFFERENTIATOR DISCRETIZATION
The Backward Euler discretization method with fixed sam-
pling time τ yields:

ek+1 = ek − τ (λek + β tanh(γ ek )+ εk − dk ) (31)

εk+1 = εk + τ (
λ2

4
ek +

λ

2
βγ sech2(γ ek )ek ) (32)

A semi-implicit approximation can be obtained by replac-
ing εk with εk+1 in the expression of ek+1, which leads to:

ek+1 = ek − τ (λek − β tanh(γ ek )− εk+1 + dk ) (33)

so that:

ek+1 = ek −1k − τ (εk − dk ) (34)

with

1k = τ ((λek + β tanh(γ ek ))

+τ 2(
λ2

4
ek +

λ

2
βγ sech2(γ ek )ek ) (35)

B. NOISE-FREE MODEL: PARAMETER SETTINGS
Here we consider a noise-free scenario, in which the differen-
tiator is designed to converge as fast as possible, taking only
into account the chattering resulting from the discretization
process. This choice presents a trade-off: on the one hand,
it is desirable to set these gains to high values, in order to
obtain a fast observer. On the other hand, they cannot be
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too large, in order to avoid chattering at the steady-state of
the estimation error. Hence, in this section we calculate the
bounds for the gains λ, β, and γ that prevent chattering for a
fixed sampling time τ .

It can be shown that:

|1k | ≤ (τ (λ+ βγ )+ τ 2(
λ2

4
+
λ

2
βγ ))|ek | (36)

Assuming that τ (εk − dk ) is negligible in (34) when |ek | is
small, we introduce two restrictions to cancel the chattering
caused by finite time discretization:

(λ+ βγ ) <
1
2τ

(37)

(
λ2

4
+
λ

2
βγ ) <

1
2τ 2

(38)

which implies that |1k | < 1. Thus, sign(ek+1) = sign(ek )
when |ek | is small and τ (εk − dk ) is negligible. Choosing

βγ = λ, (39)

the restriction

λ <
1
4τ

(40)

yields the desired condition, |1k | < 1.
The parameter γ should be selected as large as possible,

to achieve a good approximation of the sign function but
without causing chattering. Its value is obtained as:

γ =
1
2τ

(41)

In case of noisy models, the values of the parameters
should be modified with respect to a required cut-off fre-
quency designed to filter high frequency noisy signals, thus
introducing a frequency domain approach to determine the
values of the parameters.

C. CUT-OFF FREQUENCY DESIGN
Note that if the nonlinear terms in (14) are canceled, the
transfer function from d(t) to e(t) is given as:

Gde(s) =
Z (s)
D(s)
=

s

(s+ λ
2 )

2
(42)

which resembles the full-order observer transfer function
obtained in [27] (page 11) for a second order system. This
means that, if d(t) is corrupted by noise, the proposed
observer will have a good attenuation of high-frequency dis-
turbance signals. Transfer function Gde(s) implies that:

λ = 2ωc (43)

where ωc is chosen as the desired cut-off frequency. Apply-
ing (40), a bound for the application of the algorithm is:

ωc ≤
1
8τ

(44)

D. PEAKING PHENOMENON REDUCTION
The frequency design approach allow us to introduce a mod-
ification that reduces the peaking phenomenon, which, as in
the case of chattering, is related to high frequency oscilla-
tions. To reduce the impact of peaking, adaptive values of
the cut-off frequency are used in the high order elements of
the differentiators chain. In this way, besides the introduction
of saturation in the states estimations, a reduced value of
the cut-off frequency when the differentiator is affected by
peaking is used as a high frequency filter that attenuates the
oscillations. Thus, in the simulations the cut-off frequencies
of the second and third differentiators are chosen as:

ωc2 = ωc1 ((1− α)+ α(1− e
−κ2t )) (45)

ωc3 = ωc1 ((1− α)+ α(1− e
−κ3t )) (46)

with α = 0.80, κ2 = 0.25, κ3 = 0.1, and ωc1 the chosen
cut-off frequency for the first differentiator.

In the noise free case, ωc1 is chosen to be equal to the limit
cut-off frequency:

ωc1 =
1
8τ

rad
s

(47)

such that it is used to test the chattering cancellation caused
by discretization.

V. OBSERVABILITY
The theoretical possibility of inferring the internal state of
a system by observing its output is defined by the property
of observability. Thus, it is advisable to assess this property
before designing an observer. The observability of nonlinear
systems can be analyzed with differential geometry methods.
In particular, it can be checked by calculating the rank of
the (generalized) observability matrix. Let us write our non-
linear models in the following general form:

MNL :=


ẋ(t) = f (x(t), θ, u(t),w(t)),
y(t) = h(x(t), θ, u(t),w(t)),
x(t0) = x0(θ )

(48)

where θ ∈ Rq is the unknown parameter vector, u(t) ∈
Rmu is the known input, w(t) ∈ Rmw the unknown external
disturbances, x(t) ∈ Rm the state vector, y(t) ∈ Rn the output
vector, and f and h analytical functions.

Unknown parameters and inputs can be considered as
unmeasured states. While parameters are constant, unknown
inputs can be time-varying. Thus, they can be included in an
augmented state vector as follows:

x̃(t) =

x(t)θ
w(t)

 , ˙̃x(t) =

f (̃x(t), u(t))0
ẇ(t)

 . (49)

The observability matrix of the system defined above can
be built with Lie derivatives of the output function. The Lie
derivative of h(̃x) with respect to f (̃x) is given by:

Lf h(̃x) =
∂h(̃x)
∂ x̃

f (̃x, u)+
∞∑
j=0

∂h(̃x)
∂u(j)

u(j+1), (50)
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where u(j) stands for the jth derivative of u. The Lie derivatives
of higher orders can be obtained recursively as follows:

L if h(̃x) =
∂L i−1f h(̃x)

∂ x̃
f (̃x, u)+

∞∑
j=0

∂L i−1f h(̃x)

∂u(j)
u(j+1). (51)

We can now define the observability matrix of the system
as follows:

O(̃x, u) =



∂

∂ x̃
h(̃x, u)

∂

∂ x̃
(Lf h(̃x, u))

∂

∂ x̃
(L2f h(̃x, u))

...
∂

∂ x̃
(L ñx−1f h(̃x, u))


. (52)

And the observability of model (48) is given by the observ-
ability condition: if the above matrix has full rank, i.e.
rank(O(̃x0, u)) = m+q+mw, where x̃0 is a (possibly generic)
point in the augmented state space, then the model is fully
observable in a neighbourhood N (̃x0) of x̃0. [63].

VI. CASE STUDIES: NUMERICAL SIMULATIONS
In this section we apply our methodology to two models
of dynamical systems. First, we analyze their observability
with the MATLAB toolbox STRIKE-GOLDD [63], which
automatically builds matrix (52) and checks the observabil-
ity condition. In both cases we obtain that the models are
observable. Next, we design an observer using the proposed
approach.

We compare the results of our smooth nonlinear
super-twisting approximation algorithm (SNSTA) with those
obtained with the super-twisting differentiator (ST), and with
the cascade high-gain observer (KC) proposed in [49]. In this
case, a coordinate transformation to generate a normal form
compatible with [49] needs to be introduced. Consider the
following transformation:

ν1 = x1
ν2 = ẋ1
ν3 = ẍ1

The structure of the cascade high-gain observer to estimate
ν = [ν1, ν2, ν3]T is given as:

ż1 = (
1
ε
)[z2 + 2(y− z1)]

ż2 = (
1
ε
)(y− z1)

ż3 = −(
1
ε
)(z3 + ν̂2)

where

ν̂1 = z1

ν̂2 = M2sat(
z2
εM2

)

ν̂3 = M3sat(
z3 + ν̂2
εM3

)

In order to transform ν̂ into the original coordinates x, note
that ν can be written as:

ν1 = x1
ν2 = f1 + g1
ν3 = ḟ1 + ġ1

Therefore, the estimation of x2 it is obtained as

x̂2 = f −11 (ν̂2 − g1)

where f −11 denotes the inverse of the function f1 with respect
to x2. The estimation of x3 depends on the expressions of
ḟ1 and ġ1 that must be obtained for each case study.
In the next subsections, we show numerical simulations

using a fixed sampling time τ = 0.01.
Besides the noise free model scenario, we introduce two

cases where the measurements are corrupted by different
types of noise, given as follows:
• White Gaussian noise. Following [54], we add white
noise to the input signal using the MATLAB command
y = awgn(x,SNR,’measured’), where x is the
input signal, y is the polluted signal, and SNR is the
signal-to-noise ratio. In this case, the differentiator is
configured by selecting a cut-off frequency that pro-
vides a good trade-off between filtering and tracking
properties, that is, low sensitivity to noise and good
reproduction of the underlying signal with minimal time
lag. In the simulations we set SNR = 30 dB, as in [54].

• High frequency harmonic noise.
In this case, as in [5], a high-frequency harmonic signal
with a large amplitude is considered as noise:

n(t) = N (cos(ωnt)+ 0.83 sin(1.29ωnt − 0.14)

+0.23 cos(5.12ωnt + 0.26)

+0.65 cos(3.37ωnt + 0.36)ecos(1.21ωnt+0.13))

(53)

where N = 0.25 is the noise amplitude and ωn = 80 rads
is the noise base frequency.

In the case of noisy measures, ωc1 is set to:

ωc1 = 8
rad
s

(54)

A. FITZHUGH-NAGUMO
Our first case study is the modified Fitzhugh-Nagumo model
presented in [22] (page 107), the dynamics of which is given
by:

V̇ (t) = V (t)−
V 3(t)
3
−W (t)

Ẇ (t) = ε(g(V )−W (t)− η)
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where

g(V ) =

{
αVV (t) if V (t) > 0
βVV (t) if V (t) ≤ 0

The model contains two states, one of which (V (t)) is the
measured output, and four parameters, two of which (αV and
βV ) are unknown. Since αV and βV play the same role in the
dynamics, for the purpose of observability analysis they can
be seen as the same parameter with different values in sepa-
rate regions. Therefore, for the model to be fully observable,
the rank of matrix (52) should be three (two states plus one
parameter). The analysis with STRIKE-GOLDD yields that
this is indeed the case, so we proceed to the observer design.
The objective is to develop an estimator of W (t) and g(V )
using the information of the measured output, V (t), and the
knowledge of parameters ε and η.

In order to define the restrictions of the logical sequence of
operators, the state space is assumed to be constrained by:

|V (t)| < 4.0 |W (t)| < 5.0

In the graphical results of the numerical simulations it will
be shown that these are conservative assumptions, i.e. the
chosen values overestimate the real limits. These bounded
state space assumptions lead to the following inequality:

|g(V )| ≤ βV |V (t)| < 7.84

The modified Fitzhugh-Nagumo model can be written in
the form (1) by choosing:

x1(t) = V (t)

x2(t) = W (t)

x3(t) = g(V )

and

f1 = −x2

g1 = x1 −
x31
3

f2 = εx3
g2 = −ε(x2 + η)

The model dynamics is such that:

ḟ1 = −f2 − g2
ġ1 = (f1 + g1)(1− y2)

The estimation of x3 provided by cascade high-gain observer
is obtained as:

x̂3 = f −12 (−ν̂3 − ĝ2 + ν̂2(1− y2))

where f −12 denotes the inverse of the function f2 with respect
to x3.

In the numerical simulations we use the parameter values
shown in Table 1, and the initial conditions x1(0) = 1.0656,
x2(0) = 2.6903 and x3(0) = 2.0886.
First we assess the performance of the compared dif-

ferentiators in the noise free case. Results are shown in

TABLE 1. Parameters of the Fitzhugh-Nagumo model.

FIGURE 2. Fitzhugh-Nagumo model without noise: trajectories of the
states V (t), W (t) and g(V (t)), along with their estimations (∗̂). Dashed
cyan lines: true trajectories of V (t), W (t) and g(V (t)); red lines: estimates
obtained with the observer proposed in the present work; black lines:
estimates obtained with the observer proposed in [49]; blue lines:
estimates obtained with the super-twisting algorithm.

Figures 2–3. Figure 2 displays the time course of the states
and their estimations Ŵ (t) and ĝ(V ), and Figure 3 shows a
detailed view of the initial responses.

While algorithmsKC and SNSTA are able to estimateV (t),
W (t) and g(V ) without significant chattering or time lag,
ST generates some appreciable chattering in ĝ(V ).
Figure 4 shows the results obtained when white Gaussian

noise corrupts the measured state and the desired cut-off
frequency. Algorithms KC and SNSTA are able to estimate
V (t) and W (t) with high robustness and very good perfor-
mance between noise sensitivity and introduced time lag, but
ST generates some chattering in Ŵ (t). Estimation of g(V )
shows a small amount of time lag and a certain level of high
frequency signals, but SNSTA provides less time lag than KC
and better chattering attenuation than ST.

Figure 5 shows the results obtained when the high fre-
quency harmonic noise corrupts the measured state, with the
same cut-off frequency. In this case the ST algorithm is not
used, due to the large amount of chattering that it introduces.

B. CONTINUOUS STIRRED-TANK REACTOR (CSTR)
In this example we apply the proposed method to the CSTR
model described in [64], which we modify by assuming that
Tr (t) is not measurable. The model equations are:

Ċr (t) = Q(U1 − Cr (t))− 0.072F(Tr )Cr (t)+ d(t)
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FIGURE 3. Fitzhugh-Nagumo model without noise: time courses of the
states for t ∈ [0, 2]. Dashed cyan lines: true trajectories of V (t), W (t) and
g(V (t)); red lines: estimates obtained with the observer proposed in the
present work; black lines: estimates obtained with the observer proposed
in [49]; blue lines: estimates obtained with the super-twisting algorithm.

FIGURE 4. Fitzhugh-Nagumo model with Gaussian noise: trajectories of
the states V (t), W (t) and g(V (t)), along with their estimations (∗̂). Dashed
cyan lines: true trajectories of V (t), W (t) and g(V (t)); red lines: estimates
obtained with the observer proposed in the present work; black lines:
estimates obtained with the observer proposed in [49]; blue lines:
estimates obtained with the super-twisting algorithm.

Ṫr (t) = Q(U2 − Tr (t))+ 0.576F(Tr )Cr (t)

−0.3(Tr (t)− Tc(t))

Ṫc(t) = δ1QC (U3 − Tc(t))+ 3.0(Tr (t)− Tc(t))

y(t) = Tc(t)

with

F(Tr ) = exp(
γTr
γ+Tr

)

In this model, the variable Cr (t) is the concentration of
the chemical reactive, Tr (t) is the reactor temperature, and
Tc(t) is the cooled jacket temperature. The observed variable
is Tc(t), and there is an external disturbance d(t). The model
parameters are assumed known. Thus, for the purpose of
observability analysis the model has one output, three states

FIGURE 5. Fitzhugh-Nagumo model with high frequency harmonic noise:
trajectories of the states W (t) and g(V (t)), along with their estimations
(∗̂). Dashed cyan lines: true trajectories of V (t), W (t) and g(V (t)); red
lines: estimates obtained with the observer proposed in the present
work; black lines: estimates obtained with the observer proposed in [49].

TABLE 2. Parameters of the CSTR model.

and one unknown input. If we assume that d(t) is a polyno-
mial function with a finite number of nonzero derivatives, the
analysis concludes that the model is fully observable.

In the design of the observer the first objective is to esti-
mate Tr (t), Cr (t) from the dynamics of Ṫr (t) and Ṫc(t). Then,
the external disturbance d(t) is estimated from the dynamics
of Ċr (t) applying a differentiator operator. The model can be
written in form (1) choosing:

x1(t) = Tc(t)

x2(t) = Tr (t)

x3(t) = Cr (t)

and

f1 = 3.0 x2
g1 = δ1QC (U3 − x1)− 3.0 x1
f2 = 0.576F(x2)x3
g2 = Q(U2 − x2)− 0.3(x2 − x1)

We assume that the states are bounded as follows:

|Tc(t)| < 5.0 |Tr (t)| < 4.0 |Cr (t)| < 4.0

The initial conditions are x1(0) = 0.12, x2(0) = 2.67, and
x3(0) = 0.58. The parameter values used for simulations are
shown in Table 2.
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FIGURE 6. CSTR model without noise: numerical simulations of the state
estimation. Full trajectory of Tc (t), Tr (t) and Cr (t), and of the unknown
disturbance d (t), as well as of their estimations (∗̂). Dashed cyan lines:
Tc (t), Tr (t), Cr (t) and d (t); red lines: estimates obtained with the
observer proposed in the present work; black lines: estimates obtained
with the observer proposed in [49]; blue lines: estimates obtained with
the super-twisting algorithm.

FIGURE 7. CSTR model with Gaussian noise: numerical simulations of the
state estimation. Full trajectory of Tc (t), Tr (t) and Cr (t), and of the
unknown disturbance d (t), as well as of their estimations (∗̂). Dashed
cyan lines: Tc (t), Tr (t), Cr (t) and d (t); red lines: estimates obtained with
the observer proposed in the present work; black lines: estimates
obtained with the observer proposed in [49]; blue lines: estimates
obtained with the super-twisting algorithm.

We apply the cascade high-gain observer to the model
dynamics,

ḟ1 = 3(f2 + g2)

ġ1 = −(δ1QC + 3)(f1 + g1),

obtaining the estimation of x3 as:

x̂3 = f −12 ((
1
3
)(ν̂3 − 3ĝ2 + (δ1QC + 3)ν̂2))

where f −12 denotes the inverse of the function f2 with respect
to x3.

The results obtained in the noise free case are shown in
Figure 6. We have used the differentiator operator to estimate

FIGURE 8. CSTR model without with high frequency harmonic noise:
numerical simulations of the state estimation. Full trajectory of Tc (t),
Tr (t) and Cr (t), and of the unknown disturbance d (t), as well as of their
estimations (∗̂). Dashed cyan lines: Tc (t), Tr (t), Cr (t) and d (t); red lines:
estimates obtained with the observer proposed in the present work;
black lines: estimates obtained with the observer proposed in [49];.

the value of the external disturbance d(t) from the dynamics
of Ċr (t), which is known. The conclusions are similar to the
first example for T̂r (t) and Ĉr (t). In the case of d̂(t), it can be
noticed that, as the depth in the logical sequence of estimation
increases, the peaking phenomenon is more pronounced and
the estimation is more sensitive to errors in the previous stage
of the logical sequence.

Figures 7 and 8 show the results obtained in the noisy
scenarios (resp., with Gaussian and high frequency harmonic
noises). It can be observed that the SNSTA solution provides
better performance, reducing chattering and time lag, at least
up to the third estimation.

VII. DISCUSSION AND CONCLUSION
In this work we have proposed an approach to develop nonlin-
ear observers for a class of nonlinear dynamical systems. The
methodology consists on the successive application of two
operators, differentiation and inversion. The logical sequence
of operations is derived from a graph of the relationships
among the variables and functions of the dynamical system.
Traversing this graph, we obtain a path from the known
quantities to the unknowns that need to be estimated. Progress
along the path entails applying, at each step, either the differ-
entiator or the inversion operator. The application of the inver-
sion operator requires that certain conditions are fulfilled.
More specifically, in order to solve the observation problem
the dynamics must have non-zero sensitivity to changes in the
unmeasured states.

The main goal of the methodology is to avoid two undesir-
able phenomena, peaking and chattering. The first one is pre-
vented by introducing bounds on a saturation term included
in the differentiator. The second one is avoided by tuning the
design parameters λ, β and γ , which are directly related with
the desired cur-off frequency and with the sampling time.
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We introduce as a restriction an upper bound on the deriva-
tive of the unknown term in the dynamic equation (1). Note
that, if we consider d(t) as an external disturbance (instead
of a internal unknown state), the value of 1 in Section III
can be estimated from the filtering properties of a second
order dynamic system. Any frequency higher than this cut-
off frequency value present in d(t) will not affect the response
obtained.

In future work, we plan to investigate the use of nonlinear
high frequency filtering techniques for attenuating the time
lag caused by noisy signals, and to scale the technique to han-
dle more complex dynamic networks, as well as to develop an
extended graph representation in order to define observability
maps based on system state and operator restrictions, which
will bring the methodology closer to machine learning opti-
mization techniques.

DATA AND CODE AVAILABILITY
The MATLAB code of the numerical simulations presented
in this paper is available at:

https://github.com/jagprieto/high_gain_observers_
chemical/. The implementation of the numerical simulations
is included in the file simulations.m
The observability analysis of the case studies was per-

formed with theMATLAB toolbox STRIKE-GOLDD, which
is available at https://github.com/afvillaverde/strike-goldd.
The implementations of the case studies are included in the
models folder, with the names FHN_observer.mat and
CSTR_observer.mat
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