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A practical approach to adaptive sliding mode control
José Antonio González, Antonio Barreiro, Sebastián Dormido

Abstract: This paper is concerned with the development of a practical approach to the design of adaptive sliding
mode controllers. The objective is to define an adaption control law that presents some desired advantages such
as non overestimation of the disturbance input, cancellation of the chattering phenomenon, zero overshooting re-
sponses, avoid control saturation and simplicity of algorithm tuning. In this practical approach it is provided a
solution that uses both, adaptive sliding surfaces and adaptive control gains so the proposed controller is able to
manage input disturbances with bounded derivatives.
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1. INTRODUCTION

Sliding mode control (SMC) has been proposed as a
control strategy in a vast collection of control problems
because of its robustness properties with respect to model
uncertainties, as in can be seen in [1], [2], [3], [4], [5], [6],
[7], [8] and [9]. Usually conventional sliding mode con-
trollers use a design procedure with conservative upper
bound on the disturbance input to guarantee that sliding
will take place. This methodology creates a trade-off with
respect to the chattering phenomenon that could causes an
impracticable control law design from a practical perspec-
tive.

The main contribution of this paper is to purpose a new
adaptive SMC scheme that uses an approximation of the
sign function to achieve a total cancellation of the chat-
tering (if some conditions about the sampling time are
ensured), integrates the reaching and the sliding mode
phases in a unique continuous control law that do not over-
estimate the disturbance bounds and it can be easily con-
figured by means of time domain parameters. The pro-
posed procedure is presented with a practical implemen-
tation approach with the following objectives:

• Create responses with zero overshoot, zero steady-
state error, robustness and high stability margin with
respect to external disturbances.

• The design has to be easy to be tuned, that is, it must
be defined with a small number of parameters that
could be configured with a time domain perspective
(settling time).

• The control input definition must be a continuous
function but taking into account that it will be imple-

mented on a computer with finite sampling time an
numerical precision in order to avoid chattering.
• The design has to avoid the control saturation by

means of a low/high gain profile that bounds the con-
trol output at largest sliding distances.

The structure of the present paper is organized as fol-
lows. In Section 2. we define the problem statement
and the control design objectives. After that in Section 3.
we introduce the procedure to compute the adaptive SMC
control law and in Section 4. we propose an adaptive slid-
ing mode surface definition. Next in Section 5. we present
some numerical simulations of the proposed control algo-
rithm to conclude in Section 6. with final conclusions and
ideas for future developments.

2. PROBLEM STATEMENT

Consider a class of n-th order uncertain siso nonlinear
systems described in the form

ẋi(t) = xi+1(t), i=1,2,...,n-1

ẋn(t) = fx(x)+gx(x)u(t)+dx(x, t) (1)

where x(t) ∈Rn is the system measurable state, u(t) ∈R
is the control input, fx(x) ∈ R and gx(x) ∈ R are known
nonlinear functions and dx(x, t) ∈ R is an unknown term
that includes external disturbances and system model un-
certainties. The problem is to design a SMC such that the
system state converges to zero and remains at zero despite
the presence of the unknown term dx(x, t) by means of a
control methodology with two design phases:
• Definition of the control input that leads to reach the

sliding surface and next it keeps the trajectory on this
manifold.
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• Definition of the sliding surface manifold, such that
the system dynamics at this surface have a desired
performance and stability properties.

One of the most popular existing sliding mode algo-
rithms is the adaptive super-twisting controller (ASTC)
(see [10] page 42) where it is assumed that a sliding vari-
able σ(t) ∈ R (the distance to the sliding manifold) has
been defined such that

σ̇(t) = u(t)+dσ (x, t) (2)

with unknown term dσ (x, t) acting as a distur-
bance/uncertainty term. The choice of the following con-
trol action based on ASTC

u(t) =−kp(t)|σ(t)|
1
2 sign(σ(t))

−
∫

ki(t)sign(σ(t))dt (3)

leads to a sliding dynamics in the form

σ̇(t)+ kp(t)|σ(t)|
1
2 sign(σ(t))

+
∫

ki(t)sign(σ(t))dt−dσ (x, t) = 0 (4)

where the controller computes the adaptive gains kp(t) and
ki(t) with the goal of keep stability and performance with-
out chattering. ASTC creates a PI controller with respect
to the sign(σ(t)) variable, so a generic formulation of the
PI control structure could be written in terms of σ(t) as
follows

σ̇(t)+α(t)σ(t)+
∫

η(t)σ(t)−dσ (x, t) = 0 (5)

Because α(t)σ(t) = α(t)|σ(t)|sign(σ(t)) implies that
a linear function over the variable σ(t) could be seen as an
adaptive function over the variable sign(σ(t)) where α(t)
and |σ(t)| modulate the adaptation of the gain. Choos-
ing α(t) = kp(t)√

σ(t)
and η(t) = ki(t)

|σ(t)| the ASTC formula-

tion could be replicated using the variable σ(t) instead
of sign(σ(t)). It is interesting to emphasize that in this
formulation the adaptation gains α(t) and η(t) tend to in-
finity if kp(t)> σ(t) and ki(t)> σ(t) as σ(t)→ 0.

From a practical perspective (that is, taking account of
numerical precision, finite sampling time, noise, ...) the
real objective of the SMC is to keep the distance to the
sliding manifold inside a bounded region defined by a
small distance ε > 0. This implies that there is no a sig-
nificant difference between a terminal sliding mode and
a linear sliding mode with asymptotic approximation, be-
cause a linear solution (σ(t) = σ(0)e−λ t) can be designed
to create a terminal time convergence to a bounded region
around the sliding surface (using σ(0)e−λT < ε with T a
finite time objective).

3. ADAPTIVE SMC CONTROL FUNCTION
DESIGN PROCEDURE

3.1. Adaptive SMC control function design.
Let’s assume that a sliding mode surface function has

been defined such that the sliding variable dynamics are
as follows

σ̇(t) = fσ (x)+gσ (x)u(t)+dσ (x, t) (6)

where σ(x) ∈ R is the sliding variable and fσ (x) ∈ R,
gσ (x)∈R and dσ (x, t)∈R depends respectively on fx(x),
gx(x), dx(x, t) and the geometric definition of the sliding
surface function. The following assumptions are intro-
duced now

Assumption 1: The uncertain/disturbance term
dσ (x, t) satisfies.

|ḋσ (x, t)|< Ḋσ ,∀t ≥ 0 (7)

Let’s note that we don’t introduce a condition of the type
|dσ (x, t)|< Dσ or even the assumption that any bound Dσ

exists for |dσ (x, t)|.
Assumption 2: gσ (x) is well defined, that is, gσ (x) is

a continuous invertible function with |gσ (x)| 6= 0 ∀x. The
singular control problem is out of the scope of this work.

In [11] we have presented a SMC design procedure that
uses a nominal plant to formulate the solution as a tracking
control problem. In this work we use the same concept but
the nominal system used for the tracking is created using
the trajectory of a nominal sliding variable s(t) ∈ R with
dynamics given as

ṡ(t) =−αs(t) (8)

with s(0) = σ(0) and α > 0 ∀t.
Let’s also define the sliding error variable eσ (t) ∈R as

the difference between the nominal and the control objec-
tive sliding variables as

eσ (t) = s(t)−σ(t) (9)

and the function φ(t) ∈R as

φ(t) = κeσ (t)+ z(t) (10)

where

ż(t) = δeσ (t)+β (t) tanh(λeσ (t)) (11)

with z(0) = 0. If the control function u(t) is defined as

u(t) =− 1
gσ (x)

( fσ (x)+ασ(t)−φ(t)) (12)

it implies that

σ̇(t) =−ασ(t)+φ(t)+dσ (x, t) (13)

Derivation of the eσ (t) leads to

ėσ (t) =−αeσ (t)−φ(t)−dσ (x, t) (14)
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ëσ (t) =−α ėσ (t)− φ̇(t)(e)− ḋσ (x, t) (15)

such that applying (15), (10) and (11) it is obtained

ëσ (t)+(α +κ)ėσ (t)+δeσ (t)

+β (t) tanh(λeσ (t))+ ḋσ (x, t) = 0 (16)

The design of the parameters that determines the dy-
namics of the error variable eσ (t) could be developed as-
suming that the disturbance has been perfectly compen-
sated (β (t) tanh(λeσ (t))+ ḋσ (x, t) = 0) such that

ëσ (t)+(α +κ)ėσ (t)+δeσ (t) = 0 (17)

If we set

δ =
(α +κ)2

4.0
(18)

the dynamics of (16) defines an stable under-damped re-
sponse (double real root solution). On the other hand if
the assumption of perfect compensation of the perturba-
tion it is not achieved (β (t) tanh(λeσ (t))+ ḋσ (x, t) 6= 0),
the condition

β (t)≥ Ḋσ

tanh(λeσ (t))
(19)

ensures the stability properties of (16) with the worst
value assumed in the disturbance term. If the disturbance
is overestimated it implies that |β (t) tanh(λeσ (t))| >
|ḋσ (x, t)|, such that the under-damped solution of the er-
ror dynamics changes and creates a complex pair of poles
which generates oscillations when the trajectory cross
through the surface eσ (t) = 0. In order to mitigate the os-
cillating behavior we introduce an adaptive algorithm for
β (t) by means of the definition of the set

Ωeβ
= {eσ (t) | |eσ (t)|> eβ (t)} with eβ (t)> 0 ∀t

(20)

The choice

β (t) =
Ḋσ

tanh(λeβ (t))
(21)

implies that

β (t)>
Ḋσ

tanh(λeσ (t))
∀eσ (t) ∈Ωeβ

(22)

such that the stability of the response in Ωeβ
could be guar-

anteed. Thus we are constructing an algorithm that uses
an adaptive bounded region around the sliding mode man-
ifold that minimizes its size at the same time that the dis-
turbance term is being compensated by the adaptive con-
trol term β (t) tanh(λeσ (t)).

In order to choose a function that determines the value
of eβ (t) we consider the following aspects:

• The function must have a profile such that it provides
a larger (lower) value of eβ (t) when |σ(t)| is large
(small), which implies an adaptive gain β (t) with the
desired low to high gain profile in other to allow a fast
and accuracy disturbance compensation that avoids
control saturation.
• The dynamics of eβ (t) has to be designed such that it

avoids the introduction of impulsive behaviors in the
parameter value with respect to the system dynamics,
therefore its velocity of change must be similar to the
system controlled dynamics.

Based on these desired properties in this work the func-
tion that determines the value of eβ (t) is chosen as

eβ (t) = (emax
β
− emin

β
)(1.0− e(−ν |σ(t)|))+ emin

β
(23)

where emin
β

(emax
β

) is the minimum (maximum) value al-
lowed of eβ (t). We have that

ėβ (t) = νsign(σ(t))σ̇(t)(emax
β
− emin

β
)(1.0− e(−ν |σ(t)|))

(24)

and therefore eβ (t)→ emin
β

if σ(t)σ̇(t) < 0 and eβ (t)→
emax

β
if σ(t)σ̇(t) > 0 which is coherent with the desired

properties. Let’s note that ν determines the velocity of
change of eβ (t) in the same way (exponential decay) that a
eigenvalue of a stable first order linear system determines
the velocity of convergence of its solution. A deepest re-
search of the functions that can be used to define the value
of eβ (t) will be developed in future works, but it is out of
the scope of the present paper.

3.2. Adaptive SMC chattering analysis.
The chattering phenomenon caused by the use of a

switched sign function in the conventional sliding modes
designs has motivated an active research in order to mini-
mize this problem. Several techniques has been purposed
in the literature in order to minimize the chattering, such
as higher order sliding modes in [12], [13], [14], switched
equivalent control filtering schemes in [15], disturbance
estimation in [16], continuous sign function approxima-
tions in [17], [11] and adaptive sliding mode gains in [18],
[19], [20], [21], [22].

In order to analyze the chattering effect we first consider
the following assumptions

Assumption 3: fx(x),gx(x) and dx(x, t) in (1) are
smooth vector fields.

Assumption 4: The sliding surface manifold is a
smooth continuous function.

Assumptions 3 and 4 implies that control law (12) is de-
fined as a continuous smooth function which implies that
theoretically (assuming infinitesimal sampling time) chat-
tering effect has been canceled. However, from a prac-
tical point of view we need to consider that the control
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system is implemented (simulated) in a digital computer
with finite sampling time, so we introduce the following
assumption

Assumption 5: The control system sampling time is τ

and it is simulated with Euler’s method.

In order to avoid chattering we impose a condition that
delimits the value of |σ̇(t)| when |σ(t)| is small. If we
consider the case |σ(t)|= emin

β
(let’s note that that s(t)→ 0

implies that |σ(t)| → |e(t)|) this condition is given as

|σ̇(t)| ≤
2emin

β

τ
(25)

such that |σ(t)| could not leave a boundary layer of size
emin

β
in one cycle of the sampling time when |σ(t)|= emin

β
.

Equation (21) establishes the condition that ensure the
stability properties for error dynamics (16), but an over-
estimation of the disturbance could cause an excessive
oscillating behavior which, combined with the bounded
sampling time, could generate the chattering effect. Let’s
note that condition (21) implies that β (t) tanh(λeσ (t))+
ḋσ (x, t) = χeσ

(t)eσ (t) with χeσ
(t) > 0 for all the instants

where eσ (t) belongs to Ωeβ
. In this case the dynamic equa-

tion (16) can be rewritten as

ëσ (t)+(α +κ)ėσ (t)+(δ +χeσ
(t))eσ (t) = 0 (26)

and thus the roots of the perturbed solution are given as

eσ1,2 =
α +κ

2
±
√

χeσ
(t)i (27)

To avoid the disturbance overestimation that could
cause chattering it is introduced a condition in the form

β (t)| tanh(λeσ (t))|+ |ḋσ (x, t)|< χemax |eσ (t)| (28)

with χemax > χeσ
(t) > 0 ∀t ≥ 0. This condition provides

an upper bound on the perturbation generated at the error
dynamics with respect to the solution with perfect distur-
bance cancellation.

It is possible to relate the sampling time τ with the
bounded natural frequency

√
χemax (in rad

s ) by checking
that it does not exceed the limit imposed by the Nyquist-
Shannon sampling theorem, that is

√
χemax ≤

π

τ
(29)

To estimate a bound for emin
β

we assume the case where
|eσ (t)|= eβ (t) = emin

β
so from (21), (28) and (29) it is ob-

tained

emin
β
≥ 2.0τ2Ḋ

π2 (30)

which imposes a minimum bound in the size of the
boundary layer of the sliding variable with respect to the

sampling time and the frequency bandwidth of the exter-
nal disturbance term dσ (x, t). In order to apply a security
margin to avoid the undesired chattering phenomenon in
this work we choose the value of emin

β
as

emin
β

=
4.0τ2Ḋ

π2 (31)

From (31), (21) and applying the approximation
tanh(λeσ (t)) ≈ λeσ (t) when |eσ (t)| = emin

β
we have that

the designed value of β (t) must fulfill the inequality

β (t)<
π2

4.0λτ2 (32)

in order to ensure the chattering cancellation.
Because |eσ (t)| → 0 implies that tanh(λeσ (t)) →

λeσ (t), condition (28) can be approximated when
|eσ (t)|<< 1 as

β (t)λ |eσ (t))|+ |ḋσ (x, t)|< χemax |eσ (t)| (33)

which can be rewritten as

(β (t)λ − π2

τ2 )|eσ (t))|+ |ḋσ (x, t)|< 0 (34)

A necessary (but not sufficient) condition to fulfill this
inequality is

β (t)λ <
π2

τ2 (35)

On the other side the function tanh(λeσ (t)) is used as a
continuous approximation for the sign function such that

lim
λ→∞

tanh(λeσ (t)) = sign(eσ (t)) (36)

but taking into account that the system is executed with a
finite sampling time τ implies that the condition

λ <
1

|ėσ (t)|τ
(37)

it is needed to be satisfied when eσ (t) → 0 in order to
obtain a different behavior between a pure switching func-
tion and the proposed continuous approximation. Because
the designed control law implies that |ėσ (t)| → 0 when
|eσ (t)| → 0 it is possible to consider that a high robust-
ness condition that generates a good smooth approxima-
tion of the sign function taking account of the finite sam-
pling time is given as

λ =
1.0
τ

(38)

which also implies from (35) that

β (t)<
π2

τ
(39)

such that the expression of β (t) is compatible with the
bound of β (t) expressed in (32) if the value of λ is given
as in (38).
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3.3. Summary of the adaptive SMC algorithm.
The proposed adaptive control function can be summa-

rized as follows

1. Compute the value of α using the settling time for the
nominal system (tσ ) as

α =
− log(ε)

tσ

so the nominal system runs from an initial condition
s(0) = σ(0) to a value bounded by ε in a time tσ .

2. Choose the settling time for the error dynamics (teσ
)

such that the trajectory arrives at |eσ (t)| < ε before
the nominal sliding dynamics achieves the condition
s(t)≈ 0 (teσ

<< tσ ) and compute γ as

γ =
− log(ε)

teσ

= α +κ

so the error proportional gain in (10) is obtained as

κ = γ−α

3. Set the value of δ from (18).

4. Set the value of λ from (38).

5. Set the parameter values related to eβ (t) as follows

• emin
β

is obtained from (31)
• emax

β
is chosen equal to the size of the objective

convergence region, that is emax
β

= ε

• ν is obtained such that eβ (0)≈ emax
β

, that is

ν =−log(
ε

|σ(0)|
) (40)

4. ADAPTIVE SMC SLIDING SURFACE DESIGN
PROCEDURE

In the previous section we have presented an algorithm
to compute the control function once that the sliding sur-
face has been defined. In this section we provide the def-
inition of the dynamics that govern the system when its
trajectory flows on the sliding surface manifold.

In the available literature there have been purposed sev-
eral type of sliding manifolds definitions as functions of
the system states beyond the classical fixed parameters
linear functions. Some proposals of this advanced man-
ifolds include recursive nonlinear sliding manifolds as in
[16] and [23], non linear full order dynamics as in [18],
[12] and [15] or adaptive damping parameters with linear
functions as in [11].

In this work we use adaptive damping parameters re-
lated to a time variable linear sliding manifold definition
motivated by the following arguments:

• It can provide the desired low/high gain profile with
respect to the distance of the system states to its de-
sired zero values, such that it avoids saturation when
the distance is large allowing higher gains at small
distances in order to achieve smaller steady state er-
rors.

• The selection of the adaptive parameters values could
be developed such that the sliding manifold defines
stable dynamics with time variable under dumped
characteristics which helps to achieve the desired
properties of zero overshooting of the system states.

• It allows to develop a simple procedure to determine
the values of the adaptive parameters at each instant,
for example, based on classical linear root locus of
frequency based design methods.

• As in the case of bounded region adaption law pro-
posed in (21) the calculation of the sliding manifold
parameters must not introduce dynamics that could
be considered impulsive from the point of view of the
system dynamics.

Following these ideas let’s define the sliding surface
function as

σ(t) = cT (t)x(t) (41)

where cT (t) = [c1(t),c2(t), ...,cn(t)] are the adaptive sur-
face parameters chosen to be positive such that the polyno-
mial cn(t)µn−1+cn−1(t)µn−2+ ...c1(t) is Hurwitz at every
instant. Derivation of (41) leads to

σ̇(t) = ċT (t)x(t)+ cT (t)ẋ(t)

such that in (6) it is obtained

fσ (x) = ċT (t)x(t)+ cT (t)


x2(t)
x3(t)
...

fx(x)


gσ (x) = cn(t)gx(x)

dσ (x, t) = cn(t)dx(x, t) (42)

At this point it is needed to consider that the value of
σ(t) could not be used to compute c(t). Nevertheless, as
we have introduced in [11], it is possible to use the value
of the nominal sliding variable at the previous instant
(that is, s(t − τ)) as an approximation without affecting
the overall system performance assuming that σ(t)→ s(t)
much faster that σ(t)→ 0.

Therefore, based on these arguments, we choose a
parameter adaption law based in the same form that
(21), such that we first compute a time performance
scaling factor c∗(t) and then calculate (using one of
the mentioned classic linear techniques) the values of
[c1(t),c2(t), ...,cn(t)] according to c∗(t) in order to achieve



6 José Antonio González, Antonio Barreiro and Sebastián Dormido

the desired under damped solution. In this work we
choose the scaling factor adaption law in the form

c∗(t) = (cmax
∗ − cmin

∗ )(e(−ν |s(t−τ)|))+ cmin
∗ (43)

and then compute c1(t),c2(t), ...,cn(t) using this scale fac-
tor as a time domain design requirement. Let’s note that,
as in (21), the parameter ν is used as the velocity adaption
regulator that avoids to introduce undesired impulsive be-
haviors.

5. NUMERICAL SIMULATIONS

In order to check the performance of the proposed adap-
tive SMC design we consider first, second and third or-
der examples and compare the results with previous works
published in [12], [15], [18] and [28].

5.1. First order case.
In this first order example we check the results with the

example proposed in [18] and [28] (with the algorithms
configured to achieve a similar settling time) so we con-
sider the case of the SMC control where the system dy-
namics are given as

ẋ(t) = u(t)+dx(x, t) (44)

with σ(t) = x(t) (c(t) = [1.0] in this case), initial condi-
tion x(0) = 0.0 and dx(x, t) = cos(t). The simulation is
executed with sampling time τ = 0.2ms, ε = 1.0e−3 and
Ḋ = 1.0. Following the algorithm summary we have

1. Set tσ = 1.0s for a value of σ(0) = 0.01 (we consider
this value because in the proposed algorithm it is as-
sumed that the sliding variable starts with non zero
initial condition in order to compute the controller pa-
rameters) which implies that α = 2.302

2. The settling time for the error dynamics is obtained by
selecting teσ

= 0.1tσ which implies that κ = 20.723.
3. Using α and κ it is computed δ = 132.547
4. From the value of τ we have λ = 5.0e3.
5. The parameter values related to adaptive choice of

eβ (t) are obtained as

• emin
β

= 1.62e−8
• emax

β
= 1.0e−3

• ν = 690.775

Figure 1 shows the evolution of the sliding variable and
the control. We can observe that the proposed solution
achieves a better convergence of the sliding variable than
the benchmark solutions. Let’s note that control time evo-
lution graphic shows (with transparency to facilitate visu-
alization) the high frequency switched control inputs ob-
tained at the benchmark solutions but it also represents the
filtering of these signals that cancels the switching behav-
ior. Compared with computed control law obtained with

the proposed algorithm we can see that it avoids the peak
in the control input and totally avoids the chattering.
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Fig. 1. First order system. State and control evolution.

Figure 2 show the evolution of the input disturbance
compared with the adaptive gains of the benchmark so-
lutions and the function φ(t) which, as previously com-
mented, it has been designed to compensate the distur-
bance. This figure shows that the performance of the solu-
tion with respect to the overestimation of the disturbance
is faster and better which implies that a better control so-
lution can be computed to solve the proposed problem.
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(t)
| v
s ρ
(t)
 v
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(t)
  v
s |
ϕ(
t)|

Disturbance vs adaptive gains

Edwards et al. Oliveira et al. Gonzalez et al.

Fig. 2. First order system. Disturbance and adaptive gains
evolution.

5.2. Second order case.
In this case we consider the second order example pro-

posed in [15], so we have the following dynamic system

ẋ1(t) = x2(t)

ẋ2(t) = u(t)+0.1sin(20.0t)

with initial conditions x1(0) = 1.0 and x2(0) = 0.0. The
simulation runs with τ = 1.0 ms, ε = 1.0e−3 and Ḋ= 2.0,
so following the algorithm summary we have
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1. Set tσ = 1.0s (because the controllers proposed in
[12] and [15] achieves an approximate settling time
of one second) so α = 6.91

2. The settling time for the error dynamics is obtained by
selecting teσ

= 0.1tσ which implies that κ = 62.17.
3. Using α and κ it is computed δ = 1192.92
4. From the value of τ we have λ = 1.0e3.
5. The parameter values related to adaptive choice of

eβ (t) are obtained as

• emin
β

= 8.1e−7
• emax

β
= 1.0e−3

• ν = 6.91

In order to define the sliding surface manifold in this
example we choose c2(t) = 1.0 and c1(t) with the general
adaption law proposed in (43), that is

c1(t) = (cmax
1 − cmin

1 )(e(−ν |s(t−τ)|))+ cmin
1

Therefore the sliding surface is defined as

σ(t) = c1(t)x1(t)+ x2(t)

which implies that the dynamics ẋ1(t) = −c1(t)x1(t) are
obtained at the sliding manifold when σ(t) = 0. To final-
ize the sliding surface definition we choose

cmin
1 = 1.0

cmax
1 = 5.0cmin

1

so when the condition σ(t) = 0 is established the system
dynamics are defined as ẋ1(t) =−cmax

1 x1(t).
Figure 3 shows the time evolution of the system states

and the control law obtained in this example. We can ob-
serve that the proposed solution achieves a better perfor-
mance with zero overshooting in both states employing a
control law without chattering and with smaller absolute
values than the benchmark solutions.
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Time(s)
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1

x 1
(t)

First state time evolution
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Time(s)

−2

0
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Second state time evolution

0 1 2 3 4 5 6
Time(s)

−10

0

u(
t)

Control time evolution

Kamal et al. Feng et al. Gon ale  et al.

Fig. 3. Second order system. States and control evolution.

Figure 4 shows a detailed view of the system states and
control input where it is clear that the chattering behav-
ior at the steady state has been canceled in the proposed
method compared with the benchmark selected solutions.
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−0.05
0.00
0.05

u(
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Detail of control time evolution

Kamal et al. Feng et al. Gonzalez et al.

Fig. 4. Second order system. Detail of states and control
evolution.

If the limit condition obtained in (30) is used without
the anti-chattering security margin (setting emin

β
= 4.05e−

7) chattering appears because of finite sampling time as
it is clearly shown in Figure 5. This result validates, for
the second order plant, the limit obtained for the bounded
region around the sliding manifold as a function of the
disturbance bandwidth and the simulation sampling time
before the chattering phenomenon appears.
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Fig. 5. Second order system. Detail of states and control
evolution with chattering.

5.3. Third order case.
In this case we consider the third order example pro-

posed in [12], so we have the following dynamic system

ẋ1(t) = x2(t) (45)

ẋ1(t) = x3(t) (46)
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ẋ3(t) = u(t)+2.0+ sin(20.0 t) (47)

with initial conditions x1(0) = 1.0, x2(0) = 0.5 and
x3(0) = 0.0. The simulation runs with τ = 1.0 ms, ε =
1.0e−3 and Ḋ = 20.0, so we have that

1. Set tσ = 3.5s so α = 8.70. Le’t note that in this case
we adjust the values given in [12] multiplying the pro-
posed gains with a fixed factor of value 2.5 in order to
achieve an approximate settling time of one second.

2. The settling time for the error dynamics is obtained by
selecting teσ

= 0.1tσ which implies that κ = 78.29.

3. Using α and κ it is computed δ = 1892.04

4. From the value of τ we have λ = 1.0e3.

5. The parameter values related to adaptive choice of
eβ (t) are obtained as

• emin
β

= 1.21e−6

• emax
β

= 1.0e−3

• ν = 1.15

In this case the sliding surface is defined as

σ(t) = c1(t)x1(t)+ c2(t)x2(t)+ x3(t) (48)

where the value of c2(t) is obtained as

c2(t) = (cmax
2 − cmin

2 )(e(−ν |s(t−τ)|))+ cmin
2 (49)

with

cmin
2 = 1.5 (50)

cmax
2 = 5.0cmin

2 (51)

and the value of c1(t) is obtained in order to generate a
double root solution in the sliding surface induced dynam-
ics, that is

c1(t) =
c2

2(t)
4.0

(52)

such that the sliding surface dynamics are in the form

x3(t)+ c2(t)x2(t)+
c2

2(t)
4.0

x1(t) = 0 (53)

when σ(t) = 0.
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Fig. 6. Third order system. States and control evolution.

Figure 6 shows the results obtained at this third order
example, where we can observe that the proposed algo-
rithm is able to achieve the desired performance by keep-
ing the low/high gain profile. This h implies that at the ini-
tial state (when it is assumed that the trajectory is far from
the sliding manifold) the control input is lower and it is
continuously adapted as far as the trajectory converges to
the sliding manifold. When the sliding condition is being
achieved the algorithm is able to establish robust dynamics
without the presence of chattering as in can be observed
in Figure 7, where the high gain value and the continuous
control definition that are used at the sliding mode allows
the system to generate a smaller steady state error.
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Fig. 7. Third order system. Detail of state and control evo-
lution.

6. CONCLUSIONS AND FUTURE
DEVELOPMENT

In this paper a chattering free adaptive sliding mode
control solution has been proposed based on the appli-
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cation of nonlinear adaptive gains that are obtained by
means of the definition of an adaptive size sliding man-
ifold bounded region and the use of time varying linear
sliding surfaces. The design of the SMC control laws cre-
ates non-overshooting responses such that the algorithm
computes its parameters based on the initial conditions,
the desired settling time, the bandwidth of the perturba-
tion term and the sampling time used.

In future works we will consider to extend the analy-
sis of the proposed methodology to new control problems
such as the use of hybrid control systems with discrete dy-
namics related to the initialization (resetting) of the nomi-
nal sliding variable in order to compensate impulsive dis-
turbances, application of the framework to solve problems
with unmatched disturbances or consider the formulation
to be applied on under-actuated plants by means of a back-
stepping procedure.
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