
 

 

 

OPTIMAL DIRECT YAW MOMENT CONTROL OF A 4WD ELECTRIC VEHICLE 

 

 

 

 

 

A thesis  

presented to  

the Faculty of California Polytechnic State University,  

San Luis Obispo 

 

 

 

 

 

 

 

 

In Partial Fulfillment of the Requirements for the Degree 

Master of Science in Mechanical Engineering 

 

 

by 

Winston Wight 

October 2019 

 

 



 

 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

© 2019 

Winston Wight 

ALL RIGHTS RESERVED 

 



 

 

iii 

 

COMMITTEE MEMBERSHIP 

 

TITLE:    Optimal Direct Yaw Moment Control of a 4WD Electric Vehicle 

 

AUTHOR:   Winston James Wight 

 

DATE SUBMITTED:  October 30, 2019 

 

 

COMMITTEE CHAIR:  Dr. Charles B. Birdsong, Ph.D. 

    Professor of Mechanical Engineering 

 

 

COMMITTEE MEMBER: John Fabijanic 

    Lecturer in Mechanical Engineering 

 

 

COMMITTEE MEMBER: Dr. William R. Murray, Ph.D. 

    Professor of Mechanical Engineering 

  

 

 

 



 

 

iv 

 

 

 

 

 

 

 

Dedicated to my parents, David and Susan. 

Their love, support, and encouragement to made it possible to persevere.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

v 

 

AKNOWLEDGEMENTS 

 

I would like to express my sincerest gratitude to my advisor, Dr. Birdsong, for his patient guidance over 

the course of this thesis and for the opportunity to participate in an exciting area of research. His insight 

and mentorship continuously pushed me explore every tributary along my path. 

 

I would also like to extend my great appreciation to John Fabijanic and Dr. Murray for sharing their wisdom 

and advice over the course of my studies. 

 

My special thanks are given to Dr. Widmann for encouraging me to pursue engineering and for making 

sure I was able to do so. Although not easy, it was a pursuit well worth undertaking. 

  



 

 

vi 

 

ABSTRACT 

OPTIMAL DIRECT YAW MOMENT CONTROL OF A 4WD ELECTRIC VEHICLE 

This thesis is concerned with electronic stability of an all-wheel drive electric vehicle with 

independent motors mounted in each wheel. The additional controllability and speed permitted 

using independent motors can be exploited to improve the handling and stability of electric 

vehicles. In this thesis, these improvements arise from employing a direct yaw moment control 

(DYC) system that seeks to adapt the understeer gradient of the vehicle and achieve neutral steer 

by employing a supervisory controller and simultaneously tracking an ideal yaw rate and ideal 

sideslip angle. DYC enhances vehicle stability by generating a corrective yaw moment realized 

by a torque vectoring controller which generates an optimal torque distribution among the four 

wheels. The torque allocation at each instant is computed by finding a solution to an optimization 

problem using gradient descent, a well-known algorithm that seeks the minimum cost employing 

the gradient of the cost function. A cost function seeking to minimize excessive wheel slip is 

proposed as the basis of the optimization problem, while the constraints come from the physical 

limitations of the motors and friction limits between the tires and road. The DYC system requires 

information about the tire forces in real-time, so this study presents a framework for estimating 

the tire force in all three coordinate directions. The sideslip angle is also a crucial quantity that 

must be measured or estimated but is outside the scope of this study. A comparative analysis of 

three different formulations of sliding mode control used for computation of the corrective yaw 

moment and an evaluation of how successfully they achieve neutral steer is presented. IPG 

Automotive’s CarMaker software, a high-fidelity vehicle simulator, was used as the plant model. 

A custom electric powertrain model was developed to enable any CarMaker vehicle to be 

reconfigured for independent control of the motors. This custom powertrain, called 

TVC_OpenXWD uses the torque/speed map of a Protean Pd18 implemented with lookup tables 

for each of the four motors. The TVC_OpenXWD powertrain model and controller were 

designed in MATLAB and Simulink and exported as C code to run them as plug-ins in 

CarMaker. Simulations of some common maneuvers, including the J-turn, sinusoidal steer, skid 

pad, and mu-split, indicate that employing DYC can achieve neutral steer. Additionally, it 

simultaneously tracks the ideal yaw rate and sideslip angle, while maximizing the traction on 

each tire. The control system performance is evaluated based on its ability to achieve neutral 
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steer by means of tracking the reference yaw rate, stabilizing the vehicle by means of reducing 

the sideslip angle, and to reduce chattering. A comparative analysis of sliding mode control 

employing a conventional switching function (CSMC), modified switching function (MSMC), 

and PID control (HSMC) demonstrates that the MSMC outperforms the other two methods in 

addition to the open loop system.  
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1 INTRODUCTION 

Electric vehicles symbolize a call to duty for the automotive industry to meet the challenges of 

tomorrow. New regulations capping emissions and pollution create pressure to make the switch from 

internal combustion engines to a new alternative, but few technologies have offered a combination of 

range, performance, and supporting infrastructure that rivals that of conventional vehicles. As the use 

of electric vehicles increases around the world, academic and private researchers are putting more and 

more effort into improving the technologies supporting them. Although battery life and durability 

have been major challenges, they are continuously improving and are supported by current research 

into energy recovery and performance enhancement. Electric vehicles are generally classified 

according to the configuration of their powertrain and related components (FEV, HEV, F/R/4WD, 

IWM, TVD, 4MIDEV) which includes the type of energy storage as well as the number and location 

of the motors.  

Among the numerous classifications of electric vehicles, one of the most compelling is the four in-

wheel motor independent drive electric vehicle (4MIDEV) as it has the greatest capacity for 

development and optimization. These vehicles are equipped with motors mounted within each wheel 

carrier. This results in a significant change in vehicle structure and base performance due to the 

redistribution of sprung and unsprung mass. The independence of the motors from one another means 

that, in the context of electronic stability control (ESC), there are more controllable signals than 

states. When there are more potential control inputs than states in a system, it means that there may be 

more than one possible combination of control commands to satisfy some desired behavior. 

Consequently, there is a large bandwidth to achieve several control objectives simultaneously without 

loss of quality in controller performance. Recent research conducted by the Seventh Framework 

Program has demonstrated that fully electric vehicles (FEVs) outfitted with independently controlled 

in-wheel motors can alter their steady state and transient handling response using active control 

schemes. In addition, the fast response time and high controllability of electric motors within each 

wheel can bring significant benefit to the control of lateral dynamics in all situations [1, 2]. 

At its base level, this thesis aims to exploit the previously mentioned advantages brought by the 

4MIDEV. The most significant improvement with respect to conventional combustion vehicles is the 

ability to provide each wheel with a different torque signal. This improvement permits the design of 

an optimal TVC algorithm. Torque vectoring is a technology that allows enhanced performance by 

setting the understeer characteristics of a vehicle going through a turn purely by varying the torque 

distribution. Depending on the driving scenario, the understeer characteristic can be set to enhance 

performance or safety. This is also made possible in combustion vehicles by use of advanced 
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mechanical torque vectoring differentials and is usually adopted in all-wheel drive vehicles. However, 

even in these cases, the combustion vehicle suffers from slower response times and traction loss while 

shifting gears. With all this considered, having four independently controlled motors gives the 

potential for enormous improvements in the application of torque vectoring.  

Toward the realization of functional torque vectoring control via DYC, it is necessary to define 

several stages of yaw moment control. The first stage of control uses a supervisory controller which, 

for a given steer angle and velocity, computes the reference yaw rate and sideslip angle corresponding 

to a desired understeer gradient using a simple bicycle model.  The next stage of control is referred to 

as the high-level controller and generates a corrective yawing moment on the vehicle body from the 

difference between the two reference signals and their actual values at each time step. The last stage 

is a low-level controller, or TVC, which computes the optimal torque distribution that satisfies the 

corrective yawing moment as well as the base torque required to maintain a velocity setpoint. The 

primary objective of this thesis is to compare the ability of three DYC systems with different high-

level controllers but the same low-level controller in achieving neutral steer, which is achieved by 

tracking the output of the supervisory controller while simultaneously maximizing available traction 

at any given moment. In the absence of feedback from the UTFE, the force terms in the sliding mode 

control command are replace with PID control to minimize steady-state error, which would otherwise 

occur. However, PID control reduces the transient performance of the controller. 

The control systems were implemented in IPG CarMaker, a high-fidelity vehicle simulation package 

with several maneuvers, including the J-turn, double lane change, skid pad. Results of the simulations 

under each controller configuration were compared to evaluate the tracking performance and power 

usage of each configuration and highlight the relative strengths and weaknesses.  

This thesis is organized into eight chapters. In Chapter 1, an introduction to the research background, 

research motivations and research objectives are given. To address these objectives, extensive 

research was reviewed to establish the state-of-the-art of vehicle dynamics, yaw control methods, 

parameter and state estimation, numerical optimization and validation techniques relevant to 

electronic stability control. Chapter 2 presents a comprehensive literature review to summarize the 

topics. In Chapter 3, the complete vehicle model and tire model are presented to predict the true 

longitudinal and lateral dynamics of the vehicle. In Chapter 4, based on the vehicle equations of 

motion, the mathematical relationships governing closed loop control of yaw rate and sideslip angle 

are derived. The control of yaw-dynamics fundamentally changes the understeer characteristic of a 

vehicle, which is discussed in detail. Sideslip angle cannot be measured directly without exotic 

sensors. These sensors are very expensive and are currently not integrated into commercial vehicles. 

Likewise, tire-road friction coefficient and force are crucial values, but are incredibly difficult to 
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measure. However, both variables can be estimated to a reasonable degree using estimation 

algorithms. The vehicle model is simplified to the well-known bicycle model and is used in Chapter 5 

to develop the optimal torque vectoring system. A simplified model is used to minimize 

computational cost in the embedded system environment. Algorithms to estimate both sideslip angle 

and tire forces are derived in Chapter 6. In Chapter 7, the estimators are integrated with the DYC 

system and were simulated in CarMaker to verify that the system with conventional sliding mode 

control (CSMC) and with modified sliding mode control (MSMC) remains stable with force feedback 

and sees better performance than the system with hybrid sliding mode control (HSMC). In Chapter 8, 

conclusions on the entire study are given and recommendations for future work are presented.  
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2 LITERATURE REVIEW AND BACKGROUND 

A large proportion of individuals around the world depend on passenger vehicles for transportation. 

In 2017 there were 270.4 million registered vehicles in the United States alone. With so many people 

behind the wheel, passenger vehicles were involved in 56% of all traffic crashes in the US in 2016. 

Of those traffic crashes, 30% were either resulted in death or injury [3]. In addition to the 

psychological impact of crashes, their annual cost in damages was 3% of the world gross domestic 

product, totaling almost one trillion USD in 2000 [4]. 

Some statistics suggest that over 90% of all traffic collisions occur due to a loss of control of the 

vehicle by the driver. Such a scenario arises when the driver is unaware of an impending skid or tire 

lockup [5, 4]. The role control loss plays in traffic collisions highlights the fact that the typical driver 

is not adept at detecting the stability limits from driver feedback alone. Historically, passenger 

vehicles have been self-contained, mechanical machines, forcing the driver to determine safe 

maneuvers based on the self-aligning propagated back to the steering wheel and acceleration [6]. 

Automated control has only become practical recently because of developments in digital electronics 

that allows features such as ESC systems and collision avoidance systems to be programmed directly 

into an embedded system [7, 4]. The concept of electronic stability control and active vehicle safety 

goes back quite a way, but the advent of low cost, high performance microcontrollers have enabled 

more advanced mathematical structures to be used in the implementation of such systems. Now, there 

is a plethora of published academic and commercial research dedicated to the control of passenger 

vehicle powertrains to enhance the handling and safety of modern vehicles.   

While there are many promising solutions, research shows the control of independent in-wheel 

electric motors on each wheel is particularly promising because they respond far faster than a 

conventional drivetrain equipped with mechanical differentials. Moreover, electric motors can 

generally produce more torque and can leverage more advanced control methods in software. An 

electric powertrain of this type can begin reacting quickly by virtue of the low time constant 

associated with electric motors and optimize evasive maneuvers with control of each individual 

motor. These independent motors make it possible to generate a stabilizing yaw-moment by 

allocating a portion of the available power to each wheel to generate a differential traction or braking 

force between the left and right tires. This type of control is referred to as torque vectoring. 

Developments in active differentials enable torque vectoring control in combustion vehicles by 

modulating clutch engagement and braking to each individual wheel. This method results in a slower 

response and greater wear on the system because mechanical powertrains tend to have a greater 

effective rotational inertia at the extremities of the powertrain and depends on more moving parts than 

in the electric powertrain. 
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2.1  TORQUE VECTORING CONTROL APPROACHES 

Torque vectoring is a special subset of algorithms within electronic stability control concerned with 

the stabilization of a vehicle’s yaw dynamics during emergency maneuvers by continuously 

manipulating the driving and braking torque supplied to each of four individual electric motors 

attached to the wheel carriers. The allocated torque generates a corrective yawing moment about the 

vehicle to keep it traveling along some desired trajectory. Such a system has an advantage over 

traditional differential systems because of its fast response time and high degree of controllability. In 

extreme cornering events lateral weight transfer is significant, greatly reducing the ability of the 

inside wheels to generate lateral force. In an open differential, power will try to dissipate along the 

path of least resistance so more power will be sent to the inside wheel, causing it to spin while the 

outside wheel has a high adhesion margin. Limited slip differentials and torque vectoring differentials 

reduce this effect, but still lack the speed and controllability of electric motors. Methods for control 

using differential systems are outside the scope of this thesis and only torque vectoring with in-wheel 

motors was considered. This section presents a comprehensive review of several torque-vectoring 

control strategies. Of these strategies, the direct yaw moment control method was chosen because it 

breaks steps involved in torque vectoring into modular blocks, which are easily interpreted. DYC 

systems are generally classified in three categories: yaw rate based, vehicle sideslip angle based 

DYC, and simultaneous control of yaw rate and sideslip angle. The equal torque methods and 

Ackermann methods have also been reviewed to highlight what makes DYC effective. 

Beyond enhancing active vehicle safety and handling performance, torque vectoring with all four 

wheels enables the system to meet several control objectives simultaneously and optimally. For 

instance, it has been shown that fuel-optimal torque vectoring control can extend the range of a FEV 

by up to 8.45% while simultaneously improving the cornering performance of the vehicle [8, 9]. For 

the previously mentioned reasons, this thesis revolves around developing a torque vectoring controller 

that can improve all dimensions of vehicle performance over an internal combustion vehicle (ICV) 

[10]. 

2.1.1 EQUAL TORQUE METHOD 

The most basic condition for control of two independent motors is to send an equal torque command. 

Control methods based on this principle are called equal torque methods and their behavior is 

analogous to an open differential because they apply equal torque to the left and right wheels without 

constraining power distribution so that a velocity difference can occur as: 
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 𝑃𝑖 = 𝑇𝑖𝜔𝑖 (2.1)  

 

 𝑇𝑅 = 𝑇𝐿 = 𝑇 (2.2)  

 

where Pi is power, Ti is torque, and ωi is angular velocity [10, 11]. Index i denote the lateral position 

of the tire (right/left). The equal torque methods provide an electric vehicle with a cornering 

performance like that of an ICV vehicle with an open differential. It is worth noting that equal torque 

methods cannot be classified as DYC because the torques do not generate a net moment.  

2.1.2 ACKERMANN METHOD 

Ackermann steering geometry enables the inner and outer wheels on an axle to spin without wheel 

slip at very low speeds and can be expressed mathematically as: 

 

 𝑐𝑜𝑡𝛿2 − 𝑐𝑜𝑡𝛿1 =
𝑑𝑟
𝐿

 (2.3)  

 

where dr is the rear track width, L is the wheelbase, and δ1, δ2 are the steer angles of the front left and 

front right wheels, respectively. At low speeds, the lateral forces applied on the vehicle are very small 

so the motion can be described well by the kinematics that are purely a result of geometry. As a 

result, the tire slip angles are negligible and the turn radius ri is defined as the distance from point O 

to inside front tire and the turn radius ro is defined as the distance from point O to the outside tire, as 

shown in Figure 2.1. 
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Figure 2.1 Ackermann steering geometry [11]. 

 

To summarize, the assumptions of the Ackermann method are as follows: 

• Vehicle has Ackermann steering geometry, 

• Very low speed (~<10 mph), 

• No wheel slip. 

With these assumptions, the angular velocities of the rear driving wheels can be expressed as: 

 

 𝜔𝐿 =
𝑣𝐿
𝑅
=
𝑣𝑟
𝑅
(1 −

𝑑𝑟𝑡𝑎𝑛𝛿

2𝐿
), (2.4)  

 

 𝜔𝑅 =
𝑣𝑅
𝑅
=
𝑣𝑟
𝑅
(1 +

𝑑𝑟𝑡𝑎𝑛𝛿

2𝐿
). (2.5)  

 

where R represents the tire radius, δ is the average of the front wheel steer angles, vr is the velocity at 

the center of the rear axle, and vL and vR are the velocities of the left and right wheel centers, 

respectively. 

It has been shown that at low speed the above two equations approximate the actual wheel speeds 

well [11, 7]. A significant body of research has been established with the objective of forcing the 



 

 

8 

 

actual wheel speeds to track the Ackermann wheel speeds. These control systems are commonly 

referred to as the “electric differential.” When the vehicle with an electric differential enters a turn, 

the control system acts on the independent motors such that the angular velocity of the inner wheel is 

reduced and that of the outer wheel is increased until they converge to the Ackermann wheel 

velocities. It should be noted that the Ackermann methods focus on control of the wheel angular 

velocities rather than the yaw moment. A yaw moment can be developed by these systems, but only 

indirectly. Therefore, they cannot be classified as direct yaw control and are only introduced here to 

show how control solutions evolved from simple methods. 

Ackermann steering geometry was used to design a control system for a RWD FEV with two 

independent permanent magnet brushed DC motors as shown in Figure 2.2. This geometry was used 

to define reference angular velocities for the rear wheels while the actual angular velocities were 

estimated using a motor model and from data provided by voltage and current sensors. The error 

formed by the actual and reference angular velocities are input into a first-order SMC which causes 

the actual velocities to track the reference values. The sliding model controller defines a sliding 

surface in the phase-plane of the error signal which the error is forced towards until it returns to the 

origin. This sliding surface can be expressed by: 

 

 𝑠 = 𝑒̇𝜔 + 𝑘𝑒𝑒𝜔. (2.6)  

 

where eω is the angular velocity error and ke is a design parameter. 
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Figure 2.2 Ackermann control system proposed by Cordeiro. [12] 

 

2.1.3 DIRECT YAW MOMENT CONTROL 

The equal torque method and Ackermann method present obvious drawback, particularly that they do 

not actively control the drivetrain ends and assume a linear vehicle model, and do not provide 

acceptable performance for most of a vehicle’s operating range. Researchers have dedicated a great 

deal of effort to the development of control algorithms utilizing the full breadth of vehicle dynamics 

in order to achieve better performance even at the vehicle’s stability limits. A major advantage of 

DYC is that it takes into consideration the vehicle dynamics and directly adjusts the yaw moment 

generated as an effect of the difference in torque between the motors in order to regulate the vehicle 

states. DYC systems can stabilize lateral motion of a vehicle in emergencies and has been shown to 

be the most effective method of motion control compared with other existing control systems like 

four-wheel steer [12, 11]. 

While researchers have published work related to DYC systems with different approaches, the control 

architecture is generally the same. The upper controller must ensure stability of the chassis by 

commanding whatever yawing moment is necessary to meet the driver’s request. It uses 

measurements from wheel speed sensors, a yaw rate sensor, an accelerometer and a steering angle 
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sensor. The lower controller ensures that the yawing moment commanded by the upper controller is 

developed by utilizing the wheel rotational dynamics and modulating the torque sent to each motor. 

 

 

Figure 2.3 Simplified schematic of the DYC control structure [15]. 

 

Figure 2.3 shows the overall architecture for a DYC system. A reference model develops reference 

signals for the yaw states of the system from the requested steer angle and velocity. This steer angle 

and velocity come from the driver or path-planning controller and are detected with sensors on the 

steering column and accelerator pedal, depending on whether the system is in a standard vehicle or an 

autonomous vehicle. A higher control layer not shown here converts the requested torque into a 

requested velocity. This layer is outside the scope of the thesis presented here. The controller error 

vector is converted to a stabilizing yaw moment, Mz by the upper (high-level) controller. This 

moment is converted into individual wheel torques that would generate the ideal wheel forces by the 

torque-vectoring controller. The ideal forces assume infinite grip and cannot be realized because the 

motors can only put out so much torque and the tire-road friction coefficient limits the maximum 

instantaneous force that can be put down by the tires without sliding. A wheel slip controller 

estimates the road conditions and modifies the torque signals so that the values are achievable by the 

motors and tires. Based on the sign of the torque signal, the brake blending function performs the 

steps to send the signal to the appropriate system. A passenger vehicle can theoretically meet the 

request for a stabilizing yaw moment by the following: 

• Differential traction only (Tw,mod,ij > 0 for all i, j), 

• Differential braking only (Tw,mod,ij < 0 for all i, j), 

• Combined traction and braking (no constraint on sign of Tw,mod,ij). 

In third case, the motors and friction brakes respectively handle traction and braking. Brake blending 

must detect the sign of Tw,mod,ij and determine whether to send the signal to the motor driver or the 
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brake controls. The torque-vectoring controller, wheel-slip controller and brake-blending function 

together perform the task of the DYC lower controller. 

DYC of electric drivetrains can be broken up into three categories: yaw rate feedback, sideslip angle 

feedback and simultaneous yaw rate and sideslip feedback [11].  Studies have shown overwhelmingly 

that simultaneous feedback control of yaw rate and sideslip is the most effective means of stabilizing 

the yaw dynamics of a vehicle at low and high speeds [11, 12]. This nested type of control is more 

complex because the sideslip angle must be estimated. However, the inclusion of this state is 

desirable when stabilizing a vehicle at high accelerations because it makes the system more robust 

and less susceptible to uncertainty about the friction coefficient [13]. This thesis limits the scope of its 

investigation of DYC systems to simultaneous feedback control of yaw rate and sideslip angle in the 

interest of developing new control laws rather than control architectures [14, 15, 16, 13, 17, 18, 19, 

12, 7, 4]. It is worth noting that there is a large body of published research for yaw rate feedback 

control [20, 2, 21, 22, 13, 23, 24, 25, 26, 15] and sideslip angle feedback control [11].   

As introduced in Chapter 1, the yaw rate and vehicle sideslip are known to be the two fundamental 

states that govern the vehicle handling and stability. Controlling only one of these states may bring 

about problems in some driving scenarios. For instance, on low friction roads the vehicle sideslip can 

grow rapidly, resulting in loss of control of the vehicle and spinout [17-19]. In this circumstance, 

vehicle sideslip feedback would stabilize the vehicle. On the other hand, controlling the vehicle 

sideslip alone guarantees vehicle stability but may not produce desirable yaw rate response that is 

required to achieve some maneuver. In order to eliminate the downsides from controlling one state 

individually, numerous recent DYC works adopt feedback control of both states simultaneously, as 

shown in Figure 2.3  [14, 27, 11, 28] 

Sliding mode control has received attention for DYC design because of its robustness against 

uncertainties and disturbances, making it ideal for controlling nonlinear systems like vehicles. Central 

to SMC is the design of the switching, which is often employed as a function of the yaw rate and 

vehicle sideslip errors [11, 4, 14, 23, 18, 12, 27]: 

 

 𝑠 = 𝜓̇ − 𝜓̇𝑟𝑒𝑓 + 𝜉(𝛽 − 𝛽𝑟𝑒𝑓). (2.7)  

 

where 𝜓̇𝑟𝑒𝑓 and 𝛽𝑟𝑒𝑓 are the reference yaw rate and vehicle sideslip respectively, 𝜉 is a design 

parameter that is greater than zero and varies the relative weight. However, the switching function is 

not unique and can be chosen depending on the application to achieve different results [11, 27]. 
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Notably, there is no guarantee that the conventional switching function shown in Equation (2.7) will 

drive the yaw rate error and sideslip angle error to zero because s will be zero either when: 

 

 |𝜓 − 𝜓𝑟𝑒𝑓| = −𝜉|(𝛽 − 𝛽𝑟𝑒𝑓)|. (2.8)  

 

The form of Equation (2.8)  means that s = 0 either when the error is zero or when the yaw rate error 

and the sideslip angle error term, including the weighting parameter are non-zero, have equal 

magnitude, and opposite signs. And. In this application, the sliding mode control command comes 

from the equation of motion for the yaw rate, which is derived in Chapter 3. This equation of motion 

includes terms with the lateral tire force, which typically depends on a high-fidelity tire model, a 

sensor, or estimation algorithm. All these methods have tradeoffs. The tire model requires a large 

amount of data to characterize the way force is generated but can model the tire force very accurately. 

However, even with all this data, the force it predicts is only valid for the conditions under which the 

tires were tested. Sensors can do a better job of quantifying the tire force, but these sensors are highly 

complex and expensive. On the other hand, tire force estimation results in a greater degree of error 

than the other methods but can achieve satisfactory results for a wide range of operation with a simple 

tire model and sensor fusion. Kalman filters can achieve reasonable performance in tire force 

estimation by comparing data from an IMU with forces predicted by a relatively simple model. 

However, the estimator performance is not guaranteed and the tuning process can be very tedious [29, 

30, 31, 32, 33, 34, 6, 35]. 
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3 VEHICLE MODEL 

Despite the availability of a validated automobile simulator for this thesis, a full two-track vehicle 

model was derived with the purpose of designing the tire force estimators and enabling vehicle 

simulation in the MATLAB/Simulink environment in the absence of a proprietary license. CarMaker 

grants the user a lot of flexibility in defining the type of vehicle, but it relies on a vast number of 

parameters, some of which are difficult to interpret. The vehicle model is configured for a medium-

class vehicle with standard dimensions and parameters  assuming that: it is a 4MIDEV, so the vehicle 

is driven by independent motors in the hub of each wheel and the battery is located under the hood to 

maintain a center of gravity is closer to the front axle; the pitch dynamics are neglected: there is no 

weight transfer from the rear axle to the front axle or vice-versa.  

The following sections present the equations of motion for the nonlinear longitudinal, lateral, yaw and 

roll dynamics of the vehicle as well as the Magic Formula tire model and electric motor 

characteristics generating the forces upon which these dynamics depend. A separate tire model, the 

Dugoff model, will be used for the Kalman filter estimation and, although this model is presented in 

the following sections, its actual use and description follows in Chapter 6. 

3.1 VEHICLE EQUIVALENT MECHANICAL MODEL 

In order to derive the vehicle equations of motion, a vehicle equivalent model was first established. A 

vehicle consists of two major parts: the sprung mass and unsprung mass, which can be regarded as 

two rigid bodies connected by flexible suspension elements. Figure 3.1 shows the vehicle equivalent 

model and vehicle fixed coordinate system. The top body represents the sprung mass constituting the 

chassis and vehicle body and the bottom one represents the unsprung mass constituting the wheels 

and axles. The XYZ coordinate system is the global reference frame, which does not move with the 

vehicle body. The xyz coordinate system is attached to the unsprung mass with the origin, A located 

directly beneath the center of mass. There is also a sprung mass coordinate system that will be called 

the x’y’z’ coordinate system which is coincident with the xyz coordinate system when the vehicle is 

stationary. Both the global coordinate system and body-fixed coordinate systems are defined 

according to the Society of Automotive Engineers (SAE) J1733 sign convention standard [36]. 
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Figure 3.1 Vehicle equivalent mechanical model and body-fixed coordinate system [36]. 

 

The two bodies were assumed to yaw together about the z-axis such that the angle between the x-axis 

and x’-axis is always zero. Furthermore, the roll motion of the unsprung mass about the x axis was 

neglected. The vertical motion and pitch motion of the two masses were neglected as well because 

these motions are related primarily to vehicle ride while the focus of this thesis is on vehicle handling 

and stability [11].  

The black and white sphere represents the composite center of mass of the sprung and unsprung mass. 

The variable h’ (called hS throughout this work) represents the distance between the center of mass 

and the roll axis; a and b are the distance from the front axle to the center of mass and the distance 

from the rear axle to the center of mass along the x-axis respectively and their sum is equivalent to the 

wheelbase l. The variables s1 and s2 represent half the front track width and rear track width 

respectively, e is the pneumatic trail, Cψi is the cornering stiffness of the ith tire. The variables h1 and 

h2 represent the height of the roll center above the front axle and rear axle respectively and cφi and Mφi 

are the roll stiffness and roll moment on the ith axle. For the remainder of this work, cφ will be 

equivalent to kφ to differentiate it from the tire cornering stiffness. Fijk represents a tire force, where i 

= {x, y, z}, j = {1, 2} and k = {L, R}.  The variables r and p represent the yaw rate and the roll rate 

respectively and φ represents the roll angle of the sprung mass and are related to the rotational states 

of the vehicle. On the other hand, u, v, and ay represent the longitudinal velocity, lateral velocity and 

lateral acceleration respectively. The body mass is denoted by m and the moments of inertia with 

respect to the center of mass and horizontal and vertical axes by Ix, Iz, Ixz. The variables δ and α 

represent the average front axle steering angle and the average front tire slip angle respectively. It is 
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assumed that ψ1, V1 and αa1, which represent steering angle, velocity and slip angle induced by body 

roll, are small enough to be neglected.  The situation depicted by the vehicle equivalent mechanical 

model is that of a vehicle negotiating a turn at constant velocity with friction or throttle being applied 

[35].  

3.2 VEHICLE EQUATIONS OF MOTION 

A set of vehicle equations of motion was necessary to compute the state of the vehicle in response to 

driver inputs such as steering, throttle and braking. The driver inputs are combined with state 

feedback to form the control signals, which are used to compute the optimal torque distribution 

among the wheels. The torque signal to each electric motor and the applied steering angle constitute 

the inputs to the vehicle model. The states of the model are the longitudinal velocity, lateral velocity, 

yaw rate, roll rate, and the angular velocity of each wheel. The outputs are the longitudinal velocity, 

yaw rate, roll rate, and wheel angular velocities. Most IMUs are unable to directly measure 

longitudinal velocity so it would have to be integrated from acceleration or estimated. However, it 

was assumed the velocity was available as an output for the sake of simulation. It was possible to split 

the vehicle model into two parts: translational dynamics which describes the longitudinal and lateral 

motion of the vehicle within the xy plane, and rotational dynamics, which describes the roll and yaw 

rotation of the sprung mass about the x’-axis and y’-axis respectively. The rotational dynamics of the 

wheels about their spin axis will be considered within rotational dynamics. 

Lagrange’s equations for virtual work were employed to derive the equations of motion using the 

system depicted in Figure 3.1. The angular velocity of the wheels will not be considered states of the 

sprung mass, so the system is assumed to have four states relating to the translation and rotation of the 

vehicle body. This system has four degrees of freedom, so four generalized coordinates qi are selected 

to describe the motion. The vehicle system has kinetic energy T and potential energy U with external 

generalized forced Qi associated with the generalized coordinates acting on it. The general form of 

Lagrange’s equation is: 

 

 
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞̇𝑖
−
𝜕𝑇

𝜕𝑞𝑖
+
𝜕𝑈

𝜕𝑞𝑖
= 𝑄𝑖 (3.1) 

 

For small yaw angles, equations of motion defined in the global XYZ coordinate system may be 

adequate to derive the equations of motion. Since this study is concerned primarily with turning and 

handling, the body-fixed coordinate system will usually be in a configuration much different from 
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that of the global reference frame. Lagrange’s equation can be modified to describe motion in the 

body-fixed reference frame by using a rotation transformation about the Z-axis. The relation between 

the global and body-fixed state variables is: 

 

 𝑢 =  𝑋̇𝑐𝑜𝑠𝜓 + 𝑌̇𝑠𝑖𝑛𝜓 (3.2) 

 

 𝑣 = 𝑋̇𝑠𝑖𝑛𝜓 + 𝑌̇𝑐𝑜𝑠𝜓 (3.3) 

 

 𝑟 =  𝜓̇ (3.4) 

 

This transformation results in a set of coupled Lagrange equations. A more detailed derivation of the 

modified equations can be found in [35]. The modified Lagrange equations for u, v, r and φ are: 

 

 
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑢
− 𝑟

𝜕𝑇

𝜕𝑣
= 𝑄𝑢 (3.5) 

 

 
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑣
+ 𝑟

𝜕𝑇

𝜕𝑢
= 𝑄𝑣 (3.6) 

 

 
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑟
− 𝑣

𝜕𝑇

𝜕𝑢
+ 𝑢

𝜕𝑇

𝜕𝑣
= 𝑄𝑟 (3.7) 

 

 
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑝
−
𝜕𝑇

𝜕𝜑
+
𝜕𝑈

𝜕𝜑
= 𝑄𝜑 (3.8) 

 

The generalized forces were derived from the virtual work: 
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 𝛿𝑊 = ∑𝑄𝑗𝛿𝑞𝑗

4

𝑗−1

 (3.9) 

where qj  refers to the body-fixed coordinates x, y, ψ and φ. For the vehicle model, the virtual work is 

found using the virtual displacements for each coordinate: 

 𝛿𝑊 = ∑𝐹𝑥𝛿𝑥 +∑𝐹𝑦𝛿𝑦 +∑𝑀𝑧𝛿𝜓 +∑𝑀𝜑𝛿𝜑 (3.10) 

and the generalized forces can be found by resolving Newton’s Second Law on Figure 3.1 to find the 

net force in the x and y direction as well as the net moment about the z-axis and x-axis to find the 

yawing moment and rolling moment respectively. These resolve into: 

 𝑄𝑢 =∑𝐹𝑥 (3.11) 

 

= (𝐹𝑥11 + 𝐹𝑥12)𝑐𝑜𝑠𝛿 − (𝐹𝑦11 + 𝐹𝑦12)𝑠𝑖𝑛𝛿 + 𝐹𝑥21 + 𝐹𝑥22 − 𝐹𝑑𝑟𝑎𝑔 − 𝐹𝑓 

 

 𝑄𝑣 =∑𝐹𝑦 (3.12) 

 

= (𝐹𝑥11 + 𝐹𝑥12)𝑠𝑖𝑛𝛿 + (𝐹𝑦11 + 𝐹𝑦12)𝑐𝑜𝑠𝛿 + 𝐹𝑦21 + 𝐹𝑦22 

 

 𝑄𝑟 =∑𝑀𝑧 (3.13) 

 

= 𝑎(𝐹𝑥11 + 𝐹𝑥12)𝑠𝑖𝑛𝛿 + 𝑎(𝐹𝑦11 + 𝐹𝑦12)𝑐𝑜𝑠𝛿 − 𝑏(𝐹𝑦21 + 𝐹𝑦22)…

+ 𝑠1[(−𝐹𝑥11 + 𝐹𝑥12)𝑐𝑜𝑠𝛿 + (𝐹𝑦11 − 𝐹𝑦12)𝑠𝑖𝑛𝛿] + 𝑠2(−𝐹𝑥21 + 𝐹𝑥22) 

 

 𝑄𝜑 =∑𝑀𝑥 (3.14) 

 

= −(𝑏𝜑1 + 𝑏𝜑2)𝜑̇ 
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The tire forces are indexed as Fijk where i = {x, y, z}, j = {F, R}, k = {L, R}. The second index, j 

represents the axle and the third index k represents the side. The roll moment results from the shock 

absorbers in the suspension with damping coefficients bφ1 and bφ2 for the front and rear axle 

respectively. Fdrag represents the resistive force imposed on the vehicle due to aerodynamic drag and 

is equivalent to: 

 𝐹𝑑𝑟𝑎𝑔 =
1

2
𝜌𝐶𝑑𝐴𝑓𝑉

2 (3.15) 

 

where ρ is the air density Cd is the dimensionless drag coefficient of the vehicle Af is the frontal area 

of the vehicle and V is the velocity of the vehicle. Excluding maneuvers in which the vehicle is 

drifting, the vehicle is not expected to experience sideslip angles beyond 5° so it is reasonable to 

assume that the overwhelming contribution to the drag force is due to the longitudinal velocity of the 

vehicle. As a result, the equation used for Fdrag in this thesis is: 

 

 𝐹𝑑𝑟𝑎𝑔 =
1

2
𝜌𝐶𝑑𝐴𝑓𝑢

2 (3.16) 

 

The last longitudinal force term Ff is the resistive force due to the total rolling resistance caused by 

hysteresis effects between the tires and road. The force due to rolling resistance is equivalent to: 

 

 𝐹𝑓 =∑∑𝑓𝑖𝑗𝐹𝑧𝑖𝑗

2

𝑗=1

2

𝑖=1

 (3.17) 

 

Since lateral weight transfer effects are included in the vehicle model, the rolling resistance 

contribution due to the left and right wheels will change as the vehicle negotiates a turn. The above 

equation allows for the possibility that the road is not a homogenous surface. The variable f represents 

the friction coefficient due to hysteresis and is a function of the road roughness. If the left and right 

wheels of the vehicle go over a surface with different roughness, the rolling resistance contribution 

will vary on the left and right side of the vehicle. Throughout this work, it is assumed that the road is 

homogenous, so the expression becomes: 
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 𝐹𝑓 = 𝑓∑∑𝐹𝑧𝑖𝑗

2

𝑗=1

2

𝑖=1

 (3.18) 

 

In order to evaluate Lagrange’s equation and obtain the equations of motion for the vehicle body, it is 

necessary to obtain an expression for the kinetic energy and potential energy from the vehicle 

equivalent mechanical model in Figure 3.1. If the roll angle and the roll axis inclination angle 

between the front and rear axis θr are small, the kinetic energy becomes: 

 

 

𝑇 =
1

2
𝑚[(𝑢 − ℎ𝑆𝜑𝑟)

2 + (𝑣 + ℎ𝑆𝜑̇)
2] +

1

2
𝐼𝑥𝜑̇

2 +
1

2
𝐼𝑦(𝜑𝑟)

2…

+
1

2
𝐼𝑧(𝑟

2 − 𝜑2𝑟2 + 2𝜃𝑟𝑟𝜑̇) − 𝐼𝑥𝑧𝑟𝜑̇ 

(3.19) 

 

The roll axis inclination angle θr is neglected in this study, as it is generally quite small. The potential 

energy U comes from compression in the suspension springs and from the height of the center of 

gravity. Again, assuming small angles, the potential energy can be expressed as: 

 

 𝑈 =
1

2
(𝑘𝜑1 + 𝑘𝜑2)𝜑

2 −
1

2
𝑚𝑔ℎ𝑆𝜑

2 (3.20) 

 

The equations of motion are finally established by taking the partial derivatives of the kinetic energy 

and potential energy expressions with respect to u, v, r, p and φ. An expression for the equations of 

motion for the longitudinal velocity, lateral velocity, yaw rate, and roll rate arises from substituting 

the partial derivatives as well as the expressions for the virtual forces back into Lagrange’s equation. 

The assumption of small roll angles is maintained in these equations of motion, but they remain 

nonlinear functions of the steering angle because some maneuvers require large steering angles. 

These equations of motion can be expressed as: 
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𝑚(𝑢 − 𝑟𝑣 − ℎ𝑆𝜑𝑟̇ − 2ℎ𝑆𝑟𝜑̇)…

= (𝐹𝑥11 + 𝐹𝑥12)𝑐𝑜𝑠𝛿 − (𝐹𝑦11 + 𝐹𝑦12)𝑠𝑖𝑛𝛿 + 𝐹𝑥21…

+ 𝐹𝑥22 + 𝐹𝑑𝑟𝑎𝑔 + 𝐹𝑓 

(3.21) 

 

 
𝑚(𝑣 + 𝑟𝑢 + ℎ𝑆𝜑̈ − ℎ𝑆𝑟

2𝜑)…

= (𝐹𝑥11 + 𝐹𝑥12)𝑠𝑖𝑛𝛿 + (𝐹𝑦11 + 𝐹𝑦12)𝑠𝑖𝑛𝛿 + 𝐹𝑦21 + 𝐹𝑦22 
(3.22) 

 

 

𝐼𝑧𝑟̇ + 𝐼𝑥𝑧𝑝̇ − 𝑚ℎ𝑆(𝑢̇ − 𝑟𝑣)𝜑…

=  𝑎(𝐹𝑥11 + 𝐹𝑥12)𝑠𝑖𝑛𝛿 + 𝑎(𝐹𝑦11 + 𝐹𝑦12)𝑐𝑜𝑠𝛿 …

− 𝑏(𝐹𝑦21 + 𝐹𝑦22)…

+ 𝑠1[(−𝐹𝑥11 + 𝐹𝑥12)𝑐𝑜𝑠𝛿 + (𝐹𝑦11 − 𝐹𝑦12)𝑠𝑖𝑛𝛿]…

+ 𝑠2(−𝐹𝑥21 + 𝐹𝑥22) 

(3.23) 

 

 
(𝐼𝑥 +𝑚ℎ𝑆)𝜑̈ + 𝑚ℎ𝑆(𝑣̇ + 𝑟𝑢) − 𝐼𝑥𝑧𝑟̇ − (𝑚ℎ𝑆

2 + 𝐼𝑦 − 𝐼𝑧)𝑟
2𝜑…

+ (𝑏𝜑1 + 𝑏𝜑2)𝜑̇ + (𝑘𝜑1 + 𝑘𝜑2 −𝑚𝑔ℎ𝑆)𝜑 = 0 
(3.24) 

 

The small roll and compliance steer angles ψi, which is the steer generated by the suspension during 

cornering, have been neglected to simplify the equations of motion. It is worth noting that there is a 

significant degree of nonlinearity in the state derivative terms on the left-hand side of the equations of 

motion. Order of magnitude analysis can be employed to linearize the state derivative terms. 

Assuming all deviations from rectilinear motion are small, all products of states including roll can be 

considered negligible and the equations of motion can be rewritten as follows: 

 

 
𝑚(𝑢 − 𝑟𝑣) = (𝐹𝑥11 + 𝐹𝑥12)𝑐𝑜𝑠𝛿 − (𝐹𝑦11 + 𝐹𝑦12)𝑠𝑖𝑛𝛿 + 𝐹𝑥21 + 𝐹𝑥22…

+ 𝐹𝑑𝑟𝑎𝑔 + 𝐹𝑓 
(3.25) 
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𝑚(𝑣 + 𝑟𝑢 + ℎ𝑆𝑝̇) …

= (𝐹𝑥11 + 𝐹𝑥12)𝑠𝑖𝑛𝛿 + (𝐹𝑦11 + 𝐹𝑦12)𝑐𝑜𝑠𝛿 + 𝐹𝑦21…

+ 𝐹𝑦22 

(3.26) 

 

 

𝐼𝑧𝑟̇ − 𝐼𝑥𝑧𝑝̇ =  𝑎(𝐹𝑥11 + 𝐹𝑥12)𝑠𝑖𝑛𝛿 + 𝑎(𝐹𝑦11 + 𝐹𝑦12)𝑐𝑜𝑠𝛿 …

− 𝑏(𝐹𝑦21 + 𝐹𝑦22)…

+ 𝑠1[(−𝐹𝑥11 + 𝐹𝑥12)𝑐𝑜𝑠𝛿 + (𝐹𝑦11 − 𝐹𝑦12)𝑠𝑖𝑛𝛿]…

+ 𝑠2(−𝐹𝑥21 + 𝐹𝑥22) 

(3.27) 

 

 
(𝐼𝑥 +𝑚ℎ𝑆)𝑝̇ + 𝑚ℎ𝑆(𝑣̇ + 𝑟𝑢) − 𝐼𝑥𝑧𝑟̇ …

= −(𝑘𝜑1 + 𝑘𝜑2 −𝑚𝑔ℎ𝑆)𝜑 − (𝑏𝜑1 + 𝑏𝜑2)𝜑̇ 
(3.28) 

 

Neglecting the state products with roll in Equations (3.25), (3.26), (3.27) and (3.28) removes much of 

the nonlinearity with respect to the states and state derivatives. However, these equations remain 

highly nonlinear in the expressions for the longitudinal and lateral tire forces. A marked advantage of 

this assumption is that Equation (3.27) is linear with respect to r which makes the derivation of the 

DYC control law in Chapter 4 notably simpler. 

The last component necessary to solve the above system of equations is to derive an expression for 

computing the longitudinal and lateral tire forces. The tire forces depend on the slip ratio and slip 

angle as well as the tire normal loads. In order to compute these quantities, the equations of motion of 

each wheel and a model for generating tire forces from the wheel dynamics must be developed. 

3.3 WHEEL EQUATIONS OF MOTION 

Longitudinal force arises from a difference between the vehicle velocity and effective velocity of the 

spinning wheels. It is adequate to assume that undriven wheels roll without slipping, but not for 

driven wheels. Since the core of this thesis is torque vectoring for a 4MIDEV, slip occurs on all four 

wheels. Moreover, the wheels are all independent of each other, so the slip on each wheel must be 

treated independently as well. An equation of motion to calculate the effective velocity of each wheel 

is derived in this section. The wheel free body diagram shown in Figure 3.2 illustrates the forces 

acting on the wheel that produce angular acceleration about its center. 
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Figure 3.2 Free body diagram of a wheel [11]. 

 

Newton’s Second Law can be applied to equate the change in angular momentum to the moments 

acting about the center of the wheel: 

 

 𝐻̇𝐺 =∑𝑀𝐺   (3.29) 

 

 𝐽
𝑑𝜔𝑖𝑗

𝑑𝑡
= 𝑇𝑖𝑗,𝑚𝑜𝑡𝑜𝑟 − 𝑇𝑖𝑗,𝑏𝑟𝑎𝑘𝑒 − 𝐹𝑥𝑖𝑗𝑅 − 𝐹𝑓𝑅  (3.30) 

 

where J denotes the mass moment of inertia of the wheel assembly, ω denotes the wheel angular 

velocity, T represents the applied motor torque, Fx represents the longitudinal tire force, R represents 

the effective wheel radius, Ff represents the rolling resistance, and a represents the tire trail. This 

expression assumes that all the wheels have the same mass moment of inertia and radius and neglects 

the torque contribution due to the trail. As indicated by the indexes i and j, this expression is used to 

compute the angular velocity of each wheel independently. 

3.3.1 TIRE MODEL: PACEJKA’S MAGIC FORMULA 

Pacejka’s semi-empirical Magic Formula equation is employed to model the tire forces in this study. 

The Magic Formula has been shown to predict tire forces quite accurately [35]. Although the Magic 
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Formula is generally considered a steady-state model, it captures some of the tire dynamics caused by 

tire deformation that are often neglected in other models. The Magic Formula equation takes the 

following form: 

 

 𝑦(𝑥) = 𝐷𝑠𝑖𝑛{𝐶𝑎𝑟𝑐𝑡𝑎𝑛[𝐵𝑥 − 𝐸(𝐵𝑥 − 𝑎𝑟𝑐𝑡𝑎𝑛𝐵𝑥)]} (3.31) 

 

and: 

 

 𝑌(𝑋) = 𝑦(𝑥) + 𝑆𝑣 (3.32) 

 

 𝑥 = 𝑋 + 𝑆𝐻 (3.33) 

 

where X is the slip ratio σ or the slip angle α, Y(X) represents the tire force Fx or Fy, Sv and SH are the 

vertical and horizontal shift due to camber, respectively. B, C, D, and E denote the stiffness factor, 

shape factor, peak value, and curvature factor, respectively. It is worth noting that the constant 

cornering stiffness representing the slope of the force-slip curve at the origin (x = y = 0), Cα for a tire 

can be computed from the product BCD [29]. Depending on the set of tire parameters available, a set 

of Magic Formula parameters can be computed from cornering stiffness and vice-versa. This is useful 

in the implementation of the Dugoff Model presented in the following section. A more in-depth 

description of the Magic Formula can be found in [32]. The calculation of the longitudinal and lateral 

forces requires computing of the slip ratio σ, slip angle α, and vertical load Fz. The tire slip ratio is 

defined as [4, 29]: 

 

 𝜎 =
𝑅𝜔 − 𝑉𝑤𝑥

max {𝑎𝑏𝑠(𝑅𝜔), 𝑎𝑏𝑠(𝑉𝑤𝑥)}
 (3.34) 

 

where Vwx denotes the longitudinal velocity of the wheel center in the wheel coordinate system, or the 

velocity in the wheel heading direction. The denominator switches using MATLAB’s max and abs 
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functions to reflect the fact that the optimal torque computed by the TVC can be either a braking 

torque or an accelerating torque. The velocity of the wheel center is computed as follows [29]: 

 𝑉𝑤𝑥11 = (𝑢 − 𝑟𝑠1)𝑐𝑜𝑠𝛿 + (𝑣 + 𝑟𝑎)𝑠𝑖𝑛𝛿, (3.35) 

 

 𝑉𝑤𝑥12 = (𝑢 + 𝑟𝑠1)𝑐𝑜𝑠𝛿 + (𝑢 + 𝑟𝑎)𝑠𝑖𝑛𝛿, (3.36) 

 

 𝑉𝑤𝑥21 = 𝑢 − 𝑟𝑠2, (3.37) 

 

 𝑉𝑤𝑥22 = 𝑢 + 𝑟𝑠2. (3.38) 

where, again si is half the track width of the front and rear axles and a is the distance between the 

front axle and the center of gravity of the vehicle. Calculation of the slip ratio is only one of the two 

forms of slip required to calculate the tire forces. The lateral force is dependent on the slip angle, 

which is defined as the angle between the wheel heading direction and the velocity vector of the 

wheel center [11]. Neglecting the small contribution due to roll steer, the slip angle for each tire is 

expressed as: 

 𝛼11 = 𝛿 − arctan [
𝑣 + 𝑎𝑟

𝑢 − 𝑠1𝑟
] , (3.39) 

 

 𝛼12 = 𝛿 − arctan [
𝑣 + 𝑎𝑟

𝑢 + 𝑠1𝑟
], (3.40) 

 

 𝛼21 = −arctan [
𝑣 − 𝑏𝑟

𝑢 − 𝑠2𝑟
], (3.41) 

 

 𝛼22 = −arctan [
𝑣 − 𝑏𝑟

𝑢 + 𝑠2𝑟
] . (3.42) 

 

The last component necessary to compute the tire longitudinal and lateral forces is the tire vertical 

load. The Magic Formula peak factor D can be computed as different functions of this normal load, 
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but in most cases it is sufficient to assume that the peak factor increases linearly with the normal load 

and can be written as: 

 

 𝐷 =  𝜇𝐹𝑧 (3.43) 

 

where μ is the maximum friction coefficient, or “grip” resulting from the tire road interface. The tire 

vertical load consists of four factors: the static load, unsprung weight transfer, geometric load 

transfer, and elastic load transfer [37]. The static load is defined as the weight distribution of the 

vehicle when at rest and can be simply calculated by summing the moments acting on the vehicle 

center of gravity, resulting in an expression for the front and rear axle: 

 

 𝐹𝑧𝑓,𝑠𝑡𝑎𝑡𝑖𝑐 =
1

2𝑙
𝑚𝑔𝑏, (3.44) 

 

 𝐹𝑧𝑟,𝑠𝑡𝑎𝑡𝑖𝑐 =
1

2𝑙
𝑚𝑔𝑎. (3.45) 

 

The next component of the normal force to consider is the geometric weight transfer. The geometric 

weight transfer is found by resolving the non-rolling overturning moment caused by the lateral 

acceleration acting through the center of gravity of the vehicle. However, the left-hand side of the 

vehicle lateral equation is not simply the lateral acceleration and so information about the state of the 

vehicle would be lost by taking the above approach. Instead, the right-hand side can be used to 

resolve the geometric weight transfer. The geometric weight transfer effect is a consequence to the 

moment about the x-axis generated by the forces on the right-hand side of the vehicle lateral equation 

of motion as seen in Figure 3.1 [38]: 

 

 ∆𝐹𝑧𝑓,𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 = [(𝐹𝑥11 + 𝐹𝑥12)𝑠𝑖𝑛𝛿 + (𝐹𝑦11 + 𝐹𝑦12)𝑐𝑜𝑠𝛿]ℎ1, (3.46) 

 

 ∆𝐹𝑧𝑟,𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 = (𝐹𝑦21 + 𝐹𝑦22)ℎ2. (3.47) 
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where h1 and h2 denote the front and rear roll center heights, respectively. 

The final component of the lateral weight transfer equation is the elastic weight transfer. This 

component results from the rolling moment on the sprung mass developed in the suspension springs 

and dampers as a result of the roll dynamics. The elastic weight transfer is written as: 

 

 ∆𝐹𝑧𝑟,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝑘𝜑𝑟𝜑 + 𝑏𝜑𝑟𝑝 (3.48) 

 

This thesis is concerned primarily with the control of a vehicle at constant velocity, but this is not 

always possible. In especially extreme maneuvers, the dual control tasks of tracking desired yaw 

dynamics and maintaining a steady velocity can be too much, and the velocity may increase or 

decrease. Although the model neglects vehicle pitch dynamics, the contribution of pitch on the tire 

normal load should not be ignored in these cases. Like for the geometric load transfer, the pitching 

weight transfer is caused by the moment from the acceleration in the same direction as the weight 

transfer. Like in that case, information would be lost if the acceleration were used, so the sum of the 

forces acting in the longitudinal direction is used instead. As such, the following terms are included in 

the load transfer model to account for longitudinal acceleration: 

 ∆𝐹𝑧𝑓,𝑙𝑜𝑛𝑔 = −ℎ𝐶𝐺∑𝐹𝑥 , (3.49) 

 

 ∆𝐹𝑧𝑟,𝑙𝑜𝑛𝑔 = ℎ𝐶𝐺∑𝐹𝑥 . (3.50) 

 

Now, combining the above terms, the tire normal loads for each wheel considering both longitudinal 

and lateral load transfer, are written as follows [11]: 

 𝐹𝑧11 =
1

2𝑙
(𝑚𝑔𝑏 + ∆𝐹𝑧𝑓,𝑙𝑜𝑛𝑔) −

1

2𝑠1
(∆𝐹𝑧𝑓,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + ∆𝐹𝑧𝑓,𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐), (3.51) 

 

 𝐹𝑧12 = 
1

2𝑙
(𝑚𝑔𝑏 + ∆𝐹𝑧𝑓,𝑙𝑜𝑛𝑔) +

1

2𝑠1
(∆𝐹𝑧𝑓,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + ∆𝐹𝑧𝑓,𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐), (3.52) 
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 𝐹𝑧21 =
1

2𝑙
(𝑚𝑔𝑎 + ∆𝐹𝑧𝑟,𝑙𝑜𝑛𝑔) +

1

2𝑠2
(∆𝐹𝑧𝑟,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + ∆𝐹𝑧𝑟,𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐), (3.53) 

 

 𝐹𝑧22 =
1

2𝑙
(𝑚𝑔𝑎 + ∆𝐹𝑧𝑟,𝑙𝑜𝑛𝑔) −

1

2𝑠2
(∆𝐹𝑧𝑟,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + ∆𝐹𝑧𝑟,𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐). (3.54) 

The expanded form is: 

 𝐹𝑧11 =
1

2𝑙
(𝑚𝑔𝑏 − ℎ𝐶𝐺∑𝐹𝑥) −

1

2𝑠1
(𝑘𝜑𝑓𝜑 + 𝑏𝜑𝑓𝑝 + ℎ1∑𝐹𝑦𝑓), (3.55) 

 

 𝐹𝑧12 =
1

2𝑙
(𝑚𝑔𝑏 − ℎ𝐶𝐺∑𝐹𝑥) +

1

2𝑠1
(𝑘𝜑𝑓𝜑 + 𝑏𝜑𝑓𝑝 + ℎ1∑𝐹𝑦𝑓), (3.56) 

 

 𝐹𝑧21 =
1

2𝑙
(𝑚𝑔𝑎 + ℎ𝐶𝐺∑𝐹𝑥) +

1

2𝑠2
(𝑘𝜑𝑟𝜑 + 𝑏𝜑𝑟𝑝 + ℎ2∑𝐹𝑦𝑟), (3.57) 

 

 𝐹𝑧22 =
1

2𝑙
(𝑚𝑔𝑎 + ℎ𝐶𝐺∑𝐹𝑥) −

1

2𝑠2
(𝑘𝜑𝑟𝜑 + 𝑏𝜑𝑟𝑝 + ℎ2∑𝐹𝑦𝑟). (3.58) 

 

At this point the most fundamental components of the vehicle model have been described, including a 

vehicle equivalent model from which the four vehicle equations of plane motion and the four-wheel 

equations of motion were derived. The Magic Formula tire model was postulated and expressions for 

the slip ratio, slip angle, and tire normal loads were presented. However, the form of the Magic 

Formula tire model presented assumes pure slip the longitudinal (x) and lateral (y) direction. In many 

cases a vehicle experiences a combination of longitudinal slip and lateral slip and will reach its 

cornering limits far sooner than what would be predicted by this model. The TVC proposed in 

Chapter 5 includes a traction control component that limits the torque in combined slip conditions. 

3.3.2 TIRE MODEL: DUGOFF’S MODEL 

The core component in a model-based tire force estimator is Dugoff’s tire model. Although Dugoff’s 

model generally yields worse predictions of the actual tire forces, especially at greater vertical tire 
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loads, this model has several advantages over Pacejka’s Magic Formula: it only depends on the 

longitudinal tire stiffness coefficient Cλ and lateral stiffness coefficient Cα and the Magic Formula 

depends on thirteen or more; Dugoff’s model easily handles pure longitudinal, pure lateral, and 

combined slip scenarios, unlike the Magic Formula and it does not depend on complex trigonometric 

functions [39, 4, 29, 34]. These advantages make the Dugoff model ideal for online tire force 

estimation because a well-tuned estimator compensates for some of the modelling error. 

Like the Magic Formula, Dugoff’s model depends on the longitudinal slip ratio and the slip angle. 

The longitudinal force is given by: 

 

 𝐹𝑥 = −𝐶𝜆
𝜎

1 + 𝜎
𝑓(𝜏), (3.59) 

 

where τ is a combined slip correction factor and f(τ) is a nonlinear function described below. The 

lateral force follows a similar form to the longitudinal force calculation and is written as: 

 

 𝐹𝑦 = −𝐶𝛼
𝑡𝑎𝑛𝛼

1 + 𝜎
𝑓(𝜏), (3.60) 

 

and f(τ) takes the form: 

 

 𝑓(𝜏) =  {
(2 − 𝜏)𝜏,   𝑖𝑓 𝜏 < 1
1,                𝑖𝑓 𝜏 ≥ 1

, (3.61) 

 

where:  

 

 𝜏 =
𝜇𝐹𝑧(1 + 𝜎)

2{(𝐶𝜎𝜎)
2 + (𝐶𝛼𝛼)

2}1 2⁄
. (3.62) 
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It is obvious from the formulas for Dugoff’s tire model that there is a coupled relationship between 

the longitudinal and lateral tire forces. The tire adhesion capability used for generating longitudinal 

tire force limits how much lateral force can be generated in the contact patch, and vice versa. This 

coupled relationship is often referred to as the friction circle or Kamm circle concept. This concept is 

shown in Figure 3.3. The total possible tire force that can be generated in the contact patch F is 

equivalent to μFz. Whatever maneuver is taken, the resultant of the longitudinal and lateral tire forces 

cannot exceed F or the vehicle may begin skidding. The friction circle is a simplification of the 

friction ellipse, which assumes that the force that can be generated in the direction of the wheel 

heading is greater than that which can be generated perpendicular to the wheel heading. This concept 

becomes even more complex when the limits are assumed to vary with the state of the vehicle. 

However, the friction ellipse and more complex forms are beyond the scope of this thesis. 

 

 

Figure 3.3 Friction circle concept for combined slip modelling [42]. 

 

Dugoff’s tire model is fitting for use with real-time estimation like a nonlinear Kalman filter because 

the partial derivates are much easier to compute. The unscented Kalman filter (UKF) can model high 

degrees of nonlinearity, but requires computation from the nonlinear model, which can be 

computationally expensive. On the other hand, the extended Kalman filter (EKF) relies on a first-

order Taylor series linearization of the nonlinear function at each time step. In both instances, the 

Magic Formula would take longer to compute and the Kalman filter would rely far more on the 

model’s predicted output than the estimated output.  
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3.4 ELECTRIC MOTORS 

The characteristic performance of the electric motors used in simulation is a crucial final step in 

developing the complete model for a 4MIDEV. Electric motors are characterized by unique torque-

speed curves. The maximum torque a motor can produce at any instant is a function of the current 

motor speed and always decreases as speed increases because of the fundamental relationship 

between torque, speed and power: 

 

 𝑃 = 𝑇𝜔 (3.63) 

 

where P is the consumed power, T is the torque produced by the motor and ω is the motor speed. 

3.4.1 PEAK TORQUE CURVE 

Depending on the type of motor, the characteristic peak torque curve can look very different. In all 

cases, the peak torque is a nonlinear function of motor speed. The motor can produce its maximum 

rated torque for a range of speeds so long as the consumed power does not exceed the power supplied 

to the motor. Once the motor begins operating at maximum power, the torque decreases as speed 

increases. This reduction in torque can be linear or quadratic, depending on the motor construction.  

Figure 3.4 shows the peak torque curves for the two classes of motors. One motor is a small motor 

which may be used for RC cars or other low power applications, while the other motor is a much 

bigger, more powerful motor designed specifically for automotive applications. 
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Figure 3.4 Maximum torque vs. speed performance curves for the (a) 70W Maxon 45 Flat Brushless 

motor and (b) 80 kW Protean Pd18 motor [43, 44]. 

 

One stark difference between the two motors is their shape. The Maxon motor here has a piecewise 

linear relationship between torque and speed, while the Protean, the motor used to in the CarMaker 

simulation has a piecewise nonlinear relationship where the maximum torque is constant up to about 

650 rpm (roughly 70 km/h) after which the relationship becomes quadratic. The torque can remain 

constant up to this point because the motor has not reached its maximum power, but as soon as the 

maximum power of the motor is achieved, then the torque starts to drop. These curves indicate the 

maximum torque that can be achieved on each wheel for a given speed and are implemented in 

simulation as 1D look-up tables in Simulink and Carmaker. The Maxon curve requires very few 

interpolating points because it is linear, but the Protean curve requires a fine linear interpolation to 

sufficiently fit the maximum torque beyond 650 rpm. 

3.4.2 ELECTRIC MOTOR MAP 

The peak torque curve determines the maximum possible torque at any motor speed. However, this 

says nothing about how the torque is generated for operating points below the maximum. In order to 

model sub-peak torques, the torque must be mapped not just to the motor angular velocity but also the 

throttle input by the driver. Table 3-1 shows a motor map to compute torque values, which also 

includes the peak values and is illustrated in Figure 3.5. 

 

Table 3-1 Motor map of the Protean Pd18 where torque is a function of the rotational speed (rpm) and 

throttle (%). Values between the discrete levels in this table are interpolated. Values highlighted green 

must be added manually, while the values in orange are computed automatically from them [40]. 

       
% rotational speed in rpm               

99999 0 200 400 600 800 1000 1200 1400 1600 

            

% gas pedal | motor torque in Nm        

0 0 0 -5 -5 -5 -6 -7 -8 -9 
0.2 250 250 250 250 193 150 125 106 92 

0.4 500 500 500 500 386 300 250 212 183 

0.6 750 750 750 750 579 450 375 318 275 

0.8 1000 1000 1000 1000 772 600 500 424 366 

1 1250 1250 1250 1250 965 750 625 530 458 
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Figure 3.5 A graphical representation of the motor map showing the torque curves for throttle levels 

evenly spaced between 0% and 100% throttle. Interstitial curves are interpolated. 

3.5 VEHICLE PARAMETERIZATION 

CarMaker uses over one hundred parameters defining the vehicle. Table 3-2 shows a minimum set of 

parameters to characterize the geometry, suspension, tires, and environmental conditions of the 

vehicle for simulation and for design of the control system in Chapters 4, 5, and 6. Parameters 

relating to the suspension and tires had to be assumed because CarMaker does not make these 

available to the user. This parameter set represents a medium class sedan, but any parameterization 

can be used. Adapting the control system for a new vehicle involves defining new values for this list 

and tuning the controller parameters. 

 

Table 3-2 Vehicle parameter sets used in simulation. 4MIDEV data generated from default dataset for 

a medium-class vehicle with RT 195 65R15 p2.50 tires. 

  Medium class 4MIDEV 

Name Symbol Value Unit Comments 

Mass m 1,321 kg  

Sprung mass ms  727.0 kg  

Roll moment of inertia Ix  508.7 kg-m2  

Pitch moment of inertia Iy  1,891.2 kg-m2  

Yaw moment of inertia Iz  2,083.5 kg-m2  
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Roll-yaw product of inertia Ixz  5.642 kg-m2  

Tire polar moment of inertia J  1.085 kg-m2  

Wheelbase l  2.708 m  

Front semi-wheelbase a  1.056 m  

Rear semi-wheelbase b  1.652 m  

Front track width 2s1  1.500 m  

Rear track width 2s2  1.498 m  

Height of CG hcg  0.536 m  

Drag coefficient Cd  0.32 -  

Frontal Area Af  2.139  m2  

Tire radius R  0.308 m  

Steering ratio ist 20 -  

Height of front axle roll center h1  0 m Assumed 

value—

inaccessible in 

IPG CarMaker 

Height of rear axle roll center h2  0.05 m Assumed 

value—

inaccessible in 

IPG CarMaker 

Distance from roll axis to CG hS  0.02 m Assumed 

value—

inaccessible in 

IPG CarMaker 

Front axle roll stiffness kϕ1  21,938 N/m Assumed 

value—

inaccessible in 

IPG CarMaker 

Rear axle roll stiffness kϕ2  17,976 N/m Assumed 

value—

inaccessible in 

IPG CarMaker 

Front roll damping coefficient bϕ1  868.5 Ns/m Assumed 

value—

inaccessible in 

IPG CarMaker 

Rear roll damping coefficient bϕ2  727.0 Ns/m Assumed 

value—
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inaccessible in 

IPG CarMaker 

Front tire cornering stiffness Cαf  36,724 N/rad Assumed 

value—

inaccessible in 

IPG CarMaker 

Rear tire cornering stiffness Cαr  36,724 N/rad Assumed 

value—

inaccessible in 

IPG CarMaker 

Front tire longitudinal stiffness Cλf  381 N Assumed 

value—

inaccessible in 

IPG CarMaker 

Rear tire longitudinal stiffness Cλr  381 N Assumed 

value—

inaccessible in 

IPG CarMaker 

Grip coefficient Μ  0.5/0.8 - 0.5 for Mu-Split, 

0.8 otherwise. 

Rolling resistance coefficient f  0.015 -  

Air density ρ  1.24 kg/m3  
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4 DIRECT YAW MOMENT CONTROL (DYC) 

This study employs DYC architecture for the design of the control system. This architecture addresses 

the issue of directional stability of vehicles near their handling limits by imposing a corrective 

moment by applying differential traction among the tires. It has been demonstrated that the corrective 

yaw moment produced by DYC is the most effective method of motion control when compared with 

other systems such as four-wheel steering (4WS) [12]. Different versions of DYC have been 

developed to respond to different control requirements, including yaw rate control, sideslip control 

and the simultaneous control of yaw rate and sideslip. PID control is often employed for high-level 

control in the former two cases because there is only one control objective. In the case of 

simultaneous control, it is advantageous to use other controllers such as sliding-mode control (SMC) 

which synthesizes the yaw rate and sideslip error into a switching function that drives the error states 

toward a desired trajectory on the phase plane within some region of attraction. The focus of this 

section is to develop two methods of computing the corrective yawing moment using SMC: a force-

estimate feedback-based controller and a combined SMC/PI controller, both of which aim to control 

the yaw rate and sideslip angle simultaneously. The supervisory controller, which generates the 

reference signals for the DYC system to track, is established before formulating the controllers. 

4.1 SUPERVISORY CONTROL 

A supervisory controller computes the reference, or ideal yaw rate r and sideslip angle β as well as the 

admissible control region from gas and steering angle demanded by a driver or path-planning 

controller. The reference signals come from the ideal handling characteristic that the control engineer 

selects. Automotive engineers use the understeer gradient to evaluate the stability of a vehicle. The 

understeer gradient relates δ, the steering angle of the vehicle, to the radius of the turn, wheelbase, 

weight distribution, and the lateral acceleration. The following equation defines the linear form of the 

understeer gradient: 

 

 𝛿 = 57.3𝑙𝜌𝑡 + (
𝐹𝑧𝑓

𝐶𝛼𝑓
−
𝐹𝑧𝑟
𝐶𝛼𝑟

)∑𝐹𝑦 (4.1) 

 

and: 
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 𝐾 =
𝐹𝑧𝑓

𝐶𝛼𝑓
−
𝐹𝑧𝑟
𝐶𝛼𝑟

 (4.2) 

 

where ρt denotes the curvature of the turn. The understeer gradient determines the fundamental 

turning characteristic and stability limits of the vehicle. Three possible characteristics exist: neutral 

steer (K = 0), understeer (K > 0) and oversteer (K < 0). These understeer gradients can be expressed 

in terms of the relative magnitude in the tire slip angle: 

 

 𝐾 = {

0,                      𝑖𝑓 𝛼𝑓 = 𝛼𝑟 

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒,       𝑖𝑓 𝛼𝑓 > 𝛼𝑟
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒,      𝑖𝑓 𝛼𝑓 < 𝛼𝑟 

 (4.3) 

 

A limit understeering vehicle will lose grip on the front axle first due to the larger slip angle on the 

front axle, while a limit oversteering vehicle will lose grip on the rear axle first. An understeering 

vehicle is considered stable at its limit because a reasonably skilled driver could maintain control of 

the vehicle. On the other hand, an oversteering vehicle is considered unstable because rear wheel 

skidding tends to make the vehicle fishtail and spin out. A neutral steering vehicle is ideal in most 

cases because it maximizes the lateral acceleration that a vehicle can achieve for a given velocity and 

longitudinal acceleration. This is clear from the equation relating steering angle to lateral acceleration 

above. When the understeer gradient is zero, the additive dynamic term drops out and the required 

steering angle is equivalent to the kinematic steering angle: 

 

 𝛿 = 57.3𝑙𝜌𝑡 (4.4) 

 

The understeer gradient varies nonlinearly for all three possibilities. Figure 4.1 compares the 

understeer gradient for an electric Formula 1 racing vehicle with equal torque distribution and with 

torque-vectoring control with a neutral steer selected as the desired understeer gradient. The two 

vehicles perform similarly far away from the stability limit but begin deviating when the lateral 

acceleration exceeds 15 m/s2. As the slope increases, the steering input becomes less effective at 

controlling the heading of the vehicle. This loss of control begins at 15 m/s2 for the passive vehicle 

with a maximum lateral acceleration of 23 m/s2. On the other hand, the torque-vectoring vehicle 
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extends effectiveness of steering input on the vehicle heading all the way up its maximum lateral 

acceleration, 25 m/s2.  

 

 

Figure 4.1 Understeer characteristics during a ramp steer test at 150 km/h: comparison of the passive 

vehicle and TV-controlled vehicle [38]. 

 

A linear vehicle model with two degrees of freedom called the bicycle model, with appropriate 

constraints on the dynamics, is proposed as a desired model to be followed by the controller. The 

advantage of using the bicycle model is that it is quick and easy to compute. The governing equations 

of the bicycle model come from a linearization of the nonlinear eight-degree-of-freedom model 

derived in 3 and neglecting roll dynamics. This linearized model is expressed in state-space form as 

[12]: 

 

 [𝛽̇
𝑟̇
] =

[
 
 
 −

𝐶𝛼𝑓 + 𝐶𝛼𝑟

𝑚𝑢

−𝑎𝐶𝛼𝑓 + 𝑏𝐶𝛼𝑟

𝑚𝑢2

−𝑎𝐶𝛼𝑓 + 𝑏𝐶𝛼𝑟

𝐼𝑧

−𝑎2𝐶𝛼𝑓 − 𝑏
2𝐶𝛼𝑟

𝐼𝑧𝑢 ]
 
 
 

[
𝛽
𝑟
] +

[
 
 
 
𝐶𝛼𝑓

𝑚𝑢
𝑎𝐶𝛼𝑓

𝐼𝑧 ]
 
 
 

𝛿 (4.5) 
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The steady-state values of the yaw rate and sideslip angle are computed by setting 𝛽̇ and 𝑟̇ equal to 

zero and solving for β and r, leading to the expressions: 

 

 
𝑟𝑠𝑠 =

𝑢

𝑙 + [
𝑚
𝑙
(
𝑏
𝐶𝛼𝑓

−
𝑎
𝐶𝛼𝑟

)] 𝑢2
𝛿 

(4.6) 

 

 
𝛽𝑠𝑠 = (1 −

𝑚𝑎𝑢2

𝑏𝑙𝐶𝛼𝑟
)

𝑏

𝑙 + [
𝑚
𝑙
(
𝑏
𝐶𝛼𝑓

−
𝑎
𝐶𝛼𝑟

)] 𝑢2
𝛿 

(4.7) 

 

The expression for the steady-state yaw rate is substituted into the expression for the steady-state 

sideslip angle and is written as: 

 

 𝛽𝑠𝑠 = 𝑟𝑠𝑠 (
𝑏

𝑢
−
𝑚𝑎

𝑙𝐶𝛼𝑟
𝑢) (4.8) 

 

Referring to the equations of motion for the vehicle in 3, the lateral acceleration in the global 

reference frame is: 

 

 𝑎𝑦 = 𝑣̇ + 𝑢𝑟 (4.9) 

 

Setting 𝑣̇ equal to zero, the vehicle steady-state lateral acceleration is: 

 

 𝑎𝑦𝑠𝑠 = 𝑢𝑟𝑠𝑠 (4.10) 

 

Rearranging the above expression yields a second equation for the steady-state yaw rate: 
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 𝑟𝑠𝑠 =
𝑎𝑦𝑠𝑠

𝑢
 (4.11) 

 

However, the steady-state lateral acceleration (expressed in g’s) is limited by the grip coefficient of 

the road. Therefore, the maximum steady-state yaw rate must be limited to: 

 

 |𝑟𝑠𝑠| ≤
𝜇𝑔

𝑢
 (4.12) 

 

The torque-vectoring controller will be able to achieve a selected understeer gradient within the 

admissible control region. The equation for the steady-state yaw rate can be rewritten in terms of the 

desired understeer gradient as follows: 

 

 𝑟𝑠𝑠 =
𝑢

𝑙 + 𝐾𝑢2
𝛿 (4.13) 

Since the largest performance benefit comes from a neutral steer vehicle, the desired understeer 

gradient throughout this thesis is set to zero, simplifying the expression for the steady-state yaw rate 

to: 

 

 𝑟𝑠𝑠 =
𝑢

𝑙
𝛿 (4.14) 

 

Using the expression for the steady-state yaw rate and its admissible control region, the desired yaw 

rate can be expressed piecewise [12]: 

 

 𝑟𝑑 = {

𝑢

𝑙
𝛿,              𝑖𝑓 |

𝑢

𝑙
𝛿| <

𝜇𝑔

𝑢
𝜇𝑔

𝑢
𝑠𝑔𝑛 (

𝑢

𝑙
𝛿)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.15) 
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The sideslip angle is also significant in the control of vehicle yaw stability. A controller that tracks 

only yaw rate can still become unstable due to an uncontrolled increase in the sideslip angle. The 

sideslip angle is defined as the angle between the vehicle x-axis and the velocity vector at the center 

of gravity: 

 

 𝛽 =
𝑣

𝑢
 (4.16) 

 

The sideslip angle cannot be measured without expensive sensors. These sensors generally are not 

used commercially as the cost may dissuade consumers. However, the sideslip angle can be estimated 

by combining sensor signals from an inertial measurement unit (IMU) and encoders on each wheel 

using sensor fusion techniques. The expression for the steady-state sideslip angle can be used to 

compute the desired sideslip angle βd , but a simpler method is to assume the desired sideslip is 

always zero. This guarantees that the sliding-mode controller will continue to request a substantial 

torque distribution even when the yaw rate error goes to zero so long as there is a non-zero sideslip 

angle, which is always the case when turning. For this study: 

 

 𝛽𝑑 = 0 (4.17) 

 

The desired yaw rate and sideslip angle have been defined and an admissible control region has been 

established to limit the states of the reference model to feasible values. Depending on which of the 

two is available, the vehicle model derived in Chapter 3 and CarMaker may compute the yaw rate and 

sideslip angle in simulation, or the sideslip angle may be estimated for real-time applications. These 

states are fed back to produce the error states that are input into the high-level controller. This high-

level controller is derived in the following subsection. 

4.2 SLIDING MODE CONTROL 

The objective of the high-level controller is to compute a desired total tractive force Fx,d and 

corrective yaw moment Mz,d to simultaneously track the desired vehicle cruising velocity and yaw 

dynamics. The desired tractive force comes from the driver (e.g. accelerator/brake pedal input). In the 

case of DYC control for a vehicle with either FWD or RWD, it is difficult to achieve both of the 

control objectives. The case where there are only two driving wheels makes the system determinant in 
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planar motion because the dimension of the control vector is the same as the state vector and there is a 

set of unique equilibrium points for the system [28, 41, 12]: 

 

 dim([
𝛿
𝑇1
𝑇2

]) = dim([
𝛽
𝑟
𝑢
]) (4.18) 

 

where T1 and T2 denote the torque vectoring distribution on a single axle. When negotiating a 

particularly sharp turn, differential driving torque on a single axle may be insufficient to generate the 

necessary yawing moment. In this case, a braking torque must be supplied to the inside wheel while a 

driving torque is applied to the outside wheel. The implication of this is that the velocity must 

decrease to generate the desired yaw moment. On the other hand, the 4MIDEV is an underdetermined 

system because the dimension of the control vector is greater than the dimension of the state vector, 

shown as: 

 

 dim

(

 
 

[
 
 
 
 
𝛿
𝑇11
𝑇12
𝑇21
𝑇22]

 
 
 
 

)

 
 
> dim([

𝛽
𝑟
𝑢
]) (4.19) 

 

which results in non-unique solutions to the equations of motion. The obvious implication of adding 

non-redundant actuators to drive the system is that it is more likely that there is a feasible 

combination of actuation signals to generate the desired velocity and yawing moment simultaneously. 

Moreover, this configuration can achieve some optimal behavior such as minimizing the total power 

demand from the electric motors. 

The high-level controller is sub-divided into two parts, namely: a speed controller and a yaw moment 

controller. In this study, a PID controller handles the task of speed control while a sliding-mode 

controller handles the yaw moment control.  

4.2.1 SLIDING MODE METHODS 

The potential problems of only controlling the vehicle yaw rate or sideslip angle have already been 

discussed. In order to avoid the potential downside of only controlling one of these variables, 
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numerous multi-input DYC methods have been employed in research to adopt both states 

simultaneously as control variables. SMC is commonly used because of its good tracking and 

robustness to uncertainty in the observed values of the state. This is particularly useful for real-time 

implementation of DYC on a vehicle because of the stochastic nature of sensor signals. In this case, 

SMC has the added benefit of potentially compensating for accrued error in the sideslip observer and 

tire force estimator. This chapter proposes three variations of SMC. The CSMC depends directly on 

lateral force feedback from the tire force estimator and implements the switching function that is 

linear combination of the yaw rate and sideslip angle; the HSMC disconnects the tire force feedback 

and replaces it with a PI controller to compensate for the lack of tire force estimation; the MSMC 

employs force feedback and a modified switching function using a linear combination of the 

normalized absolute values of the yaw rate and sideslip angle to guarantee simultaneous convergence 

of the yaw rate and sideslip angle. This function also eliminates the possibility that the switching 

function equals zero when there is nonzero error [11]. The rationale for using force feedback is that it 

improves the transient response of the SMC and tracks the steady-state values of the yaw rate and 

sideslip well. The integral gain of the proportional-integral (PI) controller results in better tracking in 

the steady-state region but has a worse transient response than the force-based controller has. Instead 

of using a linearized and simplified vehicle control model, the sliding mode controller uses the 

complete nonlinear equations of motion proposed in Chapter 3 allowing the control design to be more 

effective over a wide operating range [11]. Chapter 7 presents a comparative simulation of the DYC 

system with three variations on SMC. 

SMC is widely used in DYC systems and most commonly relies on a switching function, which is a 

linear combination of the error states. The definition of the conventional switching function follows: 

 

 𝑠 = 𝑟 − 𝑟𝑑 + 𝜉(𝛽 − 𝛽𝑑) (4.20) 

 

but in implementation a state observer estimates the sideslip angle and the switching function 

becomes: 

 

 𝑠 = 𝑟 − 𝑟𝑑 + 𝜉(𝛽̂ − 𝛽𝑑) (4.21) 

= 𝑒𝑟 + 𝜉𝑒̂𝛽 
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where rd and βd are the desired yaw rate and desired sideslip angle discussed in Chapter 4 and ξ is a 

positive weight coefficient which reflects the allowable sideslip angle deviation [42]. The switching 

function in Equation (4.20) is ubiquitous in research but has a major limitation. An SMC works by 

driving the trajectories of the controlled states towards the sliding surface s = 0 and holding the 

trajectories on this surface. Ideally, this would occur when the error states converge to zero which is 

guaranteed when er and eβ have the same sign. Since the signs of the errors may change depending on 

the operating conditions, it is possible that s = 0 when er = - ξeβ. In this case, the SMC will fail to 

track the desired values.  

4.2.1.1 CONVENTIONAL DYC WITH FORCE FEEDBACK 

One of the reasons SMC pairs well with DYC is that it directly depends on the nonlinear vehicle 

dynamics derived in Chapter 3. The advantage of using the nonlinear equation of motion for yaw in 

the computation of the control policy is that it avoids error that would otherwise arise due to 

linearization of the system or use of the simple bicycle model as is often the case with other control 

techniques. In many cases this error grows the more the states depart from the operating point about 

which the system was linearized—this is not the case with SMC, which produces stable dynamics for 

a wide operating range. 

The nonlinear yaw dynamics are introduced into the control law by first taking the time derivative of 

the switching function: 

 

 𝑠̇ = 𝑟̇ − 𝑟̇𝑑 + 𝜉 (𝛽̇̂ − 𝛽̇𝑑) (4.22) 

 

A fundamental principle of sliding mode control theory requires that, to drive the trajectories to the 

sliding surface s = 0, the following condition should be satisfied [11]: 

 

 
1

2

𝑑

𝑑𝑡
𝑠2 = 𝑠𝑠̇ (4.23) 

𝑠𝑠̇ ≤ −𝜂|𝑠| 

 

where η is a positive constant. Away from the sliding surface s > 0 so (4.23) simplifies to: 
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 𝑠̇ ≤ −𝜂 (4.24) 

 

Rearrangement of Equation (3.27) yields the following expression for 𝑟̇: 

 

 
𝑟̇ =

1

𝐼𝑧
(𝐼𝑥𝑧𝑝̇ + 𝑎(𝐹𝑦11 + 𝐹𝑦12)𝑐𝑜𝑠𝛿 − 𝑏(𝐹𝑦21 + 𝐹𝑦22)

+ 𝑠1(𝐹𝑦11 − 𝐹𝑦12)𝑠𝑖𝑛𝛿 + ∆𝑀𝑧) 

(4.25) 

 

where ΔMz is the corrective yaw moment generated by the differential torque on all four wheels and is 

written as: 

 

 ∆𝑀𝑧 = 𝑠1(𝐹𝑥12 − 𝐹𝑥11)𝑐𝑜𝑠𝛿 + 𝑠2(𝐹𝑥22 − 𝐹𝑥21) + 𝑎(𝐹𝑥11 + 𝐹𝑥12)𝑠𝑖𝑛𝛿 (4.26) 

 

The expression (4.25) is substituted into (4.22) to obtain the equation for 𝑠̇ in terms of the yaw 

dynamics: 

 

 

𝑠̇ =
1

𝐼𝑧
[𝐼𝑥𝑧𝑝̇ + 𝑎(𝐹𝑦11 + 𝐹𝑦12)𝑐𝑜𝑠𝛿 − 𝑏(𝐹𝑦21 + 𝐹𝑦22) + 𝑠1(𝐹𝑦11 − 𝐹𝑦12)

+ ∆𝑀𝑧] − 𝑟̇𝑑 + 𝜉 (𝛽̇̂ − 𝛽̇𝑑) 

(4.27) 

 

In order to satisfy the condition (4.23), the following control policy is proposed [11, 42]: 

 

 ∆𝑀𝑧 = ∆𝑀𝑧,𝑒𝑞 − 𝑘𝑠𝑖𝑔𝑛(𝑠) (4.28) 

 

where k is a designed controller gain and ΔMz,eq is referred to as the equivalent control in sliding 

mode control theory [11]. The equivalent control is the control policy that would force 𝑠̇ to zero and 
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depends on the chosen switching function s, which for the (4.20) can be expressed as follows by 

setting 𝑠̇ = 0 in (4.27) and rearranging the terms: 

 

 
∆𝑀𝑧,𝑒𝑞 = 𝐼𝑧 [𝑟̇𝑑 − 𝜉 (𝛽̇̂ − 𝛽̇𝑑)] − 𝑎(𝐹𝑦11 + 𝐹𝑦12)𝑐𝑜𝑠𝛿 + 𝑏(𝐹𝑦21 + 𝐹𝑦22)

− 𝑠1(𝐹𝑦11 − 𝐹𝑦12)𝑠𝑖𝑛𝛿 

(4.29) 

 

Combining (4.29) with (4.28) results in the control policy that used to control the vehicle yaw 

dynamics: 

 

 
∆𝑀𝑧 = 𝐼𝑧 [𝑟̇𝑑 − 𝜉 (𝛽̇̂ − 𝛽̇𝑑)] − 𝑎(𝐹𝑦11 + 𝐹𝑦12)𝑐𝑜𝑠𝛿 + 𝑏(𝐹𝑦21 + 𝐹𝑦22)

− 𝑠1(𝐹𝑦11 − 𝐹𝑦12)𝑠𝑖𝑛𝛿 − 𝑘𝑠𝑖𝑔𝑛(𝑠) 
(4.30) 

 

Substituting the full expression for the control policy back into (4.27) results in the following 

expression for the sliding mode dynamics: 

 

 𝑠̇ =
1

𝐼𝑧
[𝐼𝑥𝑧𝑝̇ − (𝑘𝑠𝑖𝑔𝑛(𝑠))] (4.31) 

 

Substituting (4.31) into (4.23) imposes the following condition on the gain k: 

 

 𝐼𝑧[𝐼𝑥𝑧𝑝̇ − 𝑘𝑠𝑖𝑔𝑛(𝑠)] ≤ −𝜂 (4.32) 

 

Rearranging the above inequality results in: 

 

 𝑘 ≥ (𝐼𝑧𝜂 + 𝑓)𝑠𝑖𝑔𝑛(𝑠) (4.33) 
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where 𝑓 = 𝐼𝑥𝑧𝑝̇. Since Ixz is constant and the roll acceleration 𝑝̇ is constrained, it is assumed that the 

term f is bounded such that | f | ≤ 𝐼𝑥𝑧𝑝̇. A user-defined constant bound 𝐹 ≥ 𝐼𝑥𝑧𝑝̇𝑚𝑎𝑥 is defined. The 

gain k is bound by: 

 

 𝑘 = 𝐼𝑧𝜂𝑠𝑖𝑔𝑛(𝑠) + 𝐹 (4.34) 

 

As indicated in (4.30), that the SMC policy requires information about the yaw rate r, sideslip angle 

β, and tire forces. The yaw rate is measured from an on-board gyroscope, the sideslip angle and tire 

forces are estimated using the techniques employed in [20, 29, 43, 44] with cascaded Kalman filters.  

As long as the chosen value for k satisfies condition (4.48) the error states are guaranteed to converge 

simultaneously to the sliding surface s = 0. It is noted that the measurement or estimation errors can 

be compensated for by increasing or decreasing the value of F. In effect, this adapts the value of the 

switching gain k. The governing equation for varying F is calculated as follows: 

 

 
∆𝑀𝑒𝑞 = 𝐼𝑧 [𝑟̇𝑑 − 𝜉 (𝛽̇̂ − 𝛽̇𝑑)] − 𝑎(𝐹̂𝑦11 + 𝐹̂𝑦12)𝑐𝑜𝑠𝛿 + 𝑏(𝐹̂𝑦21 + 𝐹̂𝑦22)

− 𝑠1(𝐹̂𝑦11 − 𝐹̂𝑦12)𝑠𝑖𝑛𝛿 

(4.35) 

 

and the varying expression for f can be written as: 

 

 

𝑓 = 𝐼𝑥𝑧𝑝̇ + 𝑎[(𝐹𝑦11 − 𝐹̂𝑦11) + (𝐹𝑦12 − 𝐹̂𝑦12)]𝑐𝑜𝑠𝛿

− 𝑏[(𝐹𝑦21 − 𝐹̂𝑦21) + (𝐹𝑦22 − 𝐹̂𝑦22)]

+ 𝑠1[(𝐹𝑦21 − 𝐹̂𝑦11) − (𝐹𝑦12 − 𝐹̂𝑦12)] 

(4.36) 

 

The chosen value of F is then adapted based on the force estimation errors by the designed maximum 

value of the lateral tire force estimation error. The design parameter F then needs to be chosen such 

that: 
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 𝐹 ≥ 𝐼𝑥𝑧𝑝̇𝑚𝑎𝑥 + 2(𝑎 + 𝑏 + 𝑠1)∆𝐹𝑦 (4.37) 

 

where ΔFy denotes the maximum estimation error of the lateral tire forces. The above expression for 

F implies that by adapting the value chosen for F in such a way the measurement and estimation 

errors can be suppressed [11]. Since adaptation of F is equivalent to adaptation of k, it enlarges the 

demanded yaw-moment and exacerbates chattering. 

The proposed control policy ΔM is discontinuous due to the sign terms which lead to chattering, 

effectively making the policy a “bang-bang” type control. This chattering can increase wear and even 

damage the actuators depending on the chattering frequency and is difficult to deal with when it 

comes to the conventional formulation of SMC. The conventional SMC (CSMC) policy is computed 

as follows: 

 

 
∆𝑀𝑒𝑞 = 𝐼𝑧 [𝑟̇𝑑 − 𝜉 (𝛽̇̂ − 𝛽̇𝑑)] − 𝑎(𝐹̂𝑦11 + 𝐹̂𝑦12)𝑐𝑜𝑠𝛿 + 𝑏(𝐹̂𝑦21 + 𝐹̂𝑦22)

− 𝑠1(𝐹̂𝑦11 − 𝐹̂𝑦12)𝑠𝑖𝑛𝛿 − 𝑘𝑠𝑖𝑔𝑛(𝑠) 
(4.38) 

 

One way of dealing with this chattering is to implement a low-pass filter to attenuate the chattering 

signal. The trade-off for smoothing the control signal is that information is lost in the process. If the 

signal is attenuated too much, the performance of the controller will suffer. Designing a low-pass 

filter for the SMC requires tuning of the cut-off frequency to balance signal smoothing and 

information loss. A low-pass filter can be implemented as a simple first-order transfer function of the 

form: 

 

 ∆𝑀𝑧𝐿𝑃𝐹 =
1

𝜏𝑐𝑠 + 1
∆𝑀𝑧 (4.39) 

 

where τc denotes the time constant of the low-pass filter. 

4.2.1.2 DYC WITH INTEGRAL GAIN 

An adaptation to the above control policy follows in the absence of tire force estimation. Integral gain 

is used in control theory to eliminate steady-state error, which arises due to uncertainty in the vehicle 
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model and parameters. Thus, integral gain could replace the force terms to simplify the computation 

of the control policy. However, the transient response in this method generally performs worse than 

that of the force-based methods because it replaces the nonlinearity in the force terms with integral 

compensation, which is linear in the error states. Moreover, proportional-integral-derivative (PID) 

control is generally implemented as a single-input single-output (SISO) control and cannot be used 

with the switching function so it cannot compensate both er and eβ. Since the sideslip angle generally 

remains small up to the point when the tires start skidding the PID controller in this study is designed 

to compensate only the yaw rate error er and is written as: 

 

 ∆𝑀𝑃𝐼 = 𝐾𝑃𝑟(𝑟 − 𝑟𝑑) + 𝐾𝐼𝑟
1

𝑠
(𝑟 − 𝑟𝑑) (4.40) 

 

where KPr and KIr are the proportional and integral gain for yaw-moment control, respectively and the 

derivative gain is zero. The subscript r differentiates this PID control from that of the speed controller 

proposed in Chapter 4. 

Replacing the estimated tire force terms in (4.38) with (4.40) results in the proposed hybrid sliding 

mode-PI control policy [4, 11, 16]. 

 

 ∆𝑀𝑧 = 𝐼𝑧 [𝑟̇𝑑 − 𝜉 (𝛽̇̂ − 𝛽̇𝑑)] + 𝐾𝑃(𝑟 − 𝑟𝑑) + 𝐾𝐼
1

𝑠
(𝑟 − 𝑟𝑑) − 𝑘𝑠𝑎𝑡 (

𝑠

𝛷
) (4.41) 

 

4.2.1.3 DYC WITH FORCE FEEDBACK AND MODIFIED SWITCHING FUNCTION 

The final variation on SMC for the purpose of DYC follows the same logic as that in Section 4.2.1.1. 

However, this method relies on a more sophisticated switching function aimed at the simultaneous 

convergence of the yaw rate and sideslip angle onto the sliding-surface s=0. It is shown that this 

switching function proposed in [11] outperforms both variations of the conventional sliding-mode 

controllers. In this section, the same derivation for the conventional SMC with force feedback is 

carried out with this alternative switching function. This switching function is a linear combination of 

the normalized absolute values of the error states and is expressed as: 

 𝑠 =
𝜌

|∆𝑟|𝑚𝑎𝑥
|𝑟 − 𝑟𝑑| +

1 − 𝜌

|∆𝛽|𝑚𝑎𝑥
|𝛽 − 𝛽𝑑| (4.42) 



 

 

49 

 

 

where 𝜌 ∈ [0,1] is a design parameter and |∆𝑟|𝑚𝑎𝑥 and |∆𝛽|𝑚𝑎𝑥 are the maximum absolute values of 

the yaw rate error and vehicle sideslip error chosen by the designer, respectively. Due to the absolute 

values of the error states in the above switching function, the switching function only becomes zero 

when the yaw rate error and sideslip error converge simultaneously. This eliminates the alternative 

possibility that the switching function goes to zero when the yaw rate error and sideslip error are non-

zero with opposite signs. The error states are normalized with respect to designed maximum values 

and ρ is dimensionless and defines the relative importance of the error states. At its extremes, when 

ρ=1, the switching function is only a function of yaw rate error, and when ρ=0, the switching 

function is only a function of sideslip angle error. 

The resulting derivative of the switching function (4.42) is written as: 

 

 𝑠̇ =
𝜌

|∆𝑟|𝑚𝑎𝑥
|𝑟̇ − 𝑟̇𝑑| +

1 − 𝜌

|∆𝛽|𝑚𝑎𝑥
(𝛽̇ − 𝛽̇𝑑) (4.43) 

 

The following control policy is defined to satisfy the sliding condition (4.23) [11]: 

 

 ∆𝑀𝑧 = ∆𝑀𝑒𝑞 − 𝑘𝑠𝑖𝑔𝑛(𝑟 − 𝑟𝑑) (4.44) 

 

The sign function in the expression for ΔMz depends on the yaw error instead of the switching 

function in this case because the sign of the switching function (4.42) is always positive and tracking 

the yaw error is a higher priority than tracking the sideslip angle in this study. 

The equivalent control in this derivation is more complex than in the conventional sliding-mode 

control policy proposed in Section 4.2.1.1 by virtue of a more complex switching function. The 

proposed equivalent control in this case is expressed as: 
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∆𝑀𝑒𝑞 = 𝐼𝑧 {𝑟̇𝑑 −
|∆𝑟|𝑚𝑎𝑥
|𝛽|𝑚𝑎𝑥

1 − 𝜌

𝜌
𝛽̇𝑠𝑖𝑔𝑛[(𝑟 − 𝑟𝑑)𝛽]}

− 𝑎(𝐹𝑦11 + 𝐹𝑦12)𝑐𝑜𝑠𝛿 + 𝑏(𝐹𝑦21 + 𝐹𝑦22)

− 𝑠1(𝐹𝑦11 − 𝐹𝑦12)𝑠𝑖𝑛𝛿 

(4.45) 

 

Substituting ΔMeq into (4.44) and then substituting the expanded equation for ΔMz into (4.25), the 

following function for 𝑠̇ can be derived: 

 

 𝑠̇ = 𝜌/(𝐼𝑧|∆𝑟|𝑚𝑎𝑥[𝑓𝑠𝑖𝑔𝑛(𝑟 − 𝑟𝑑) − 𝑘] (4.46) 

where 𝑓 = 𝐼𝑥𝑧𝑝̇ and k is a designed gain on the controller switching term defined in Section 4.2.1.1. 

The same process used previously to determine the bounding values for k is used in the derivation of 

this control policy as well and is now calculated as: 

 

 𝑘 ≥ 𝑓𝑠𝑖𝑔𝑛(𝑟 − 𝑟𝑑) +
𝜂𝐼𝑧|∆𝑟|𝑚𝑎𝑥

𝜌
 (4.47) 

 

 𝑘 =
𝜂𝐼𝑧|∆𝑟|𝑚𝑎𝑥

𝜌
+ 𝐹 (4.48) 

 

where F is chosen using the adaptation law (4.37). 

Like in the case of the conventional SMC, chattering is exacerbated by the adaptation of F. However, 

the modified variation replaces the sign function in control policy with the sat function and the policy 

takes on the following form: 

  

 

∆𝑀𝑧 = 𝐼𝑧 {𝑟̇𝑑 −
|∆𝑟|𝑚𝑎𝑥
|𝛽|𝑚𝑎𝑥

1 − 𝜌

𝜌
𝛽̇𝑠𝑎𝑡 [

(𝑟 − 𝑟𝑑)𝛽

𝛷1
]} − 𝑎(𝐹𝑦11 + 𝐹𝑦12)𝑐𝑜𝑠𝛿

+ 𝑏(𝐹𝑦21 + 𝐹𝑦22) − 𝑠1(𝐹𝑦11 − 𝐹𝑦12)𝑠𝑖𝑛𝛿

− 𝑘𝑠𝑎𝑡 (
𝑟 − 𝑟𝑑
𝛷2

) 

(4.49) 
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where Φ denotes a boundary layer thickness used to limit chattering to a region near the sliding 

surface so that control action along most of the trajectory remains smooth [11].. In this case, there are 

two sign terms in the control policy so boundary layer thicknesses Φ1 and Φ2 and are selected as 

independent design parameters. 

This chapter focused on defining three variations of SMC to be compared. The two algorithms that 

use tire force feedback include an adaptation law on the switching gain k to compensate for some of 

the measurement and estimation error propagated by the IMU and cascaded Kalman filters. The 

hybrid sliding-mode and PI control simplifies the control policy by replacing the tire force feedback 

with integral gain. This section presented a derivation of the governing equations for three variations 

of DYC. The corrective yaw moment computed by the DYC is fed to the torque vectoring controller 

derived in Chapter 5. 

4.3 SPEED CONTROLLER 

The speed controller is a PID controller, which generates a throttle command based on the velocity 

error of the vehicle. The input to the speed controller is the difference between the desired velocity 

and current velocity. For large deviations in the velocity, the controller applies a large throttle to 

accelerate the vehicle with equal torque signals sent to all four wheels via the torque-vectoring 

controller. When the vehicle is just driving straight ahead this analogous to the equal-torque 

distribution on a conventional all-wheel drive (AWD) vehicle with equipped with passive 

differentials. The speed controller takes the following form: 

 

 % 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 = 𝐾𝑃𝑒𝑢 + 𝐾𝐼∫𝑒𝑢𝑑𝑡 + 𝐾𝐷
𝑑

𝑑𝑡
𝑒𝑢 (4.50) 

 

where KP and KI  are the proportional and integral gain of the speed controller, respectively. The 

Laplace transformation is applied to Equation 4.50 allowing it to be expressed in the frequency 

domain: 

 

 % 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 = 𝐾𝑃𝑒𝑢 + 𝐾𝐼
1

𝑠
𝑒𝑢 + 𝐾𝐷𝑠𝑒𝑢 (4.51) 
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The velocity error is: 

 

 𝑒𝑢 = 𝑢𝑑 − 𝑢 (4.52) 

 

The throttle signal goes to the TVC directly and maps to the base torque Tbase using the electric motor 

map in Table 3-1. Tbase is a constraint on the TVC and it limits the allocation such that the sum of all 

four motor torques must be Tbase. This constraint ensures that the TVC tracks the desired velocity and 

the corrective yaw moment simultaneously. This torque is easily mapped to the total driving force 

Fxtot,d with the following expression: 

 

 𝐹𝑥𝑡𝑜𝑡,𝑑 =
1

𝑅
𝑇𝑏𝑎𝑠𝑒 . (4.53) 

 

 

 

 

 

 

 

 

 

5 TORQUE VECTORING CONTROL 

There is a wide variety of techniques that can be used to achieve torque vectoring control (TVC). At 

any instant each of the four motors can independently produce torque ranging from its peak driving 

torque to a full braking torque and various combinations of torques can be produced for a given 

vehicle state. A system such as this is referred to as an underdetermined system where there is a 

higher degree of freedom in the control vector than in the state vector and is an ideal application for 
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optimal control. One of the greatest challenges with electric vehicles is battery life and range. Since 

the electric motors for a 4MIDEV are some of the biggest consumers of power on the vehicle, optimal 

torque vectoring control is often concerned with minimizing power consumption. On the other hand, 

electric vehicles are becoming increasingly viable in racing where performance is key. A common 

technique in this case is to distribute the torque according to the normalized vertical tire force so that 

the torque is distributed according to the peak force potential for each tire at any moment. The 

objective function used in this thesis is framed to minimize longitudinal slip power loss by 

minimizing the slippage on each tire while tracking the desired trajectory and the desired speed [16, 

38, 17]. In other words, the TVC is an optimal traction controller. 

5.1 DYNAMIC CONSTRAINTS 

The torque distribution must be constrained by Mz,d and Fx,d as well as physical limitations of the 

force that can be generated by each wheel. The first two constraints arise from the wheel geometry 

and vehicle yaw dynamics. Recall that the desired yaw moment can be written in the form (4.26): 

 

 ∆𝑀𝑧 = 𝑠1(𝐹𝑥12 − 𝐹𝑥11)𝑐𝑜𝑠𝛿 + 𝑠2(𝐹𝑥22 − 𝐹𝑥21) + 𝑎(𝐹𝑥11 + 𝐹𝑥12)𝑠𝑖𝑛𝛿 (5.1) 

 

Equation (5.1) can be written in as a vector product: 

 

 𝑀𝑧,𝑑 = 𝒃𝟏𝑻 (5.2) 

 

where b1 is a 1x4 row vector where each element corresponds to sum of terms in (4.26) multiplied by 

the longitudinal force on each tire. Linearizing the relationship between the motor torque and 

longitudinal force on the wheels results in the following expression: 

 

 𝑭𝑥 =
𝑻

𝑅
 (5.3) 

 

with Fx being the vector of longitudinal tire forces and T is the vector of motor torques. Combining 

(5.3) and (4.26), b1 can be written as: 
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 𝒃𝟏 = [
𝑎𝑠𝑖𝑛𝛿 − 𝑠1𝑐𝑜𝑠𝛿

𝑅
   
𝑎𝑠𝑖𝑛𝛿 + 𝑠1𝑐𝑜𝑠𝛿

𝑅
 −
𝑠2
𝑅
  +

𝑠2
𝑅
]. (5.4) 

 

The second constraint that must be satisfied is the total force Fx,d demanded in order for the system to 

satisfy the driver input from the gas and brake pedals. The force on each tire must sum to this total 

force as follows: 

 

 𝐹𝑥,𝑑 = 𝐹𝑥11 + 𝐹𝑥12 + 𝐹𝑥21 + 𝐹𝑥22 (5.5) 

 

Again, linearizing the forces as in expression (5.3) allows the equation for the total longitudinal force 

to be rewritten in terms of torque: 

 

 𝐹𝑥,𝑑 = 𝒃𝟐𝑻 (5.6) 

 

where b2 denotes the vector:  

 

 𝒃𝟐 = [
1

𝑅
  
1

𝑅
  
1

𝑅
  
1

𝑅
]. (5.7) 

 

With the two constraints expressed as vector they can be combined into a single equation: 

  

 𝑩𝑻− 𝒄 = 𝟎 (5.8) 

 

and:  
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 𝑩 = [
𝒃𝟏
𝒃𝟐
], (5.9) 

 

 𝒄 = [
𝑀𝑥,𝑑
𝐹𝑥,𝑑

]. (5.10) 

 

The above constraints were related to the outputs of the speed controller and yaw-moment controller 

in DYC. Let us now turn our attention to the physical constraints on the motor torque. The limitations 

imposed on the motor torque for the purpose of torque-vectoring control comes from the rated 

performance of the motor discussed in Chapter 3; the road adhesion limit and the friction circle 

relationship. The road adhesion limit determines the maximum torque that can be applied assuming 

pure longitudinal slipping and the friction circle relationship accounts for combined slipping cases. 

These values change with the state of the vehicle, and hence they must be calculated at every time 

step, and the final limitation is the minimum of the three [16]. 

This thesis assumes that the four motors are the same so the motor performance of each is identical. 

The limiting torque is calculated at each time step by computing the rotational speed of the motors 

from the built-in encoders. The rotational speed is then fed into a one-dimensional look-up table, 

which computes the current peak torque of the motor for the speed at that instant. For the Pd18 

motors, the look-up table for peak torque approximates the following equation: 

 

 |𝑇𝑚𝑎𝑥,𝑒𝑚,𝑖| =

{
 

 
𝑇𝑝𝑒𝑎𝑘,𝑒𝑚𝜂

𝑖
         𝑖𝑓 0 ≤ 𝜔𝑒𝑚 < 𝜔𝑒𝑚,0

𝑃𝑝𝑒𝑎𝑘𝜂

𝜔𝑒𝑚
2 𝑖

 𝑖𝑓 𝜔𝑒𝑚,0 ≤ 𝜔𝑒𝑚 ≤ 𝜔𝑒𝑚,𝑚𝑎𝑥

 (5.11) 

 

where Tpeak,em denotes the constant peak torque of the motor in the operating range where the power 

demand is less than the peak motor power; η denotes the efficiency of the electric motors; itrans 

denotes the transmission ratio between the motor and wheel; ωem denotes the current rotational speed 

of the motor; ωem,0 is the rotational speed where the motor begins operating at peak power and the 

torque begins decreasing quadratically with increasing speed; Ppeak denotes the peak power of the 

motor which is determined by the motor construction; ωem,max denotes the maximum rotational speed 

that can be achieved by the motors and is determined by motor construction. 
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The Brushless 45 Maxon maximum torque are computed in a similar way as with the Pd18 motors 

with minor differences. The equation for the torque limitation for the Maxon motors as: 

 

 |𝑇𝑚𝑎𝑥,𝑒𝑚,𝑖| =

{
 

 
𝑇𝑝𝑒𝑎𝑘,𝑒𝑚𝜂

𝑖𝑡𝑟𝑎𝑛𝑠
         𝑖𝑓 0 ≤ 𝜔𝑒𝑚 < 𝜔𝑒𝑚,0

𝑃𝑝𝑒𝑎𝑘𝜂

𝜔𝑒𝑚𝑖𝑡𝑟𝑎𝑛𝑠
 𝑖𝑓 𝜔𝑒𝑚,0 ≤ 𝜔𝑒𝑚 ≤ 𝜔𝑒𝑚,𝑚𝑎𝑥

 (5.12) 

 

Modeling the torque limitation for the electrical motors is identical (with the exception of the 

performance parameters) for operating points below peak power. Once the motor operates at its 

maximum rated power, the maximum torque for the Pd18 decreases to 1/ωem
2 and the maximum 

torque for the brushless Maxon decreases proportional to 1/ωem [45, 46]. 

The second constraint on the motor torque comes from the road adhesion. According to the Magic 

Formula tire model described in Chapter 3, the peak force that can be achieved by a tire is given by D 

= μFz. In general, the road adhesion coefficient is different in the wheel heading direction and in the 

direction perpendicular to the heading. This would lead to the pair of equations: 

 

 𝐷𝑥 = 𝜇𝑥𝐹𝑧 , (5.13) 

 

 𝐷𝑦 = 𝜇𝑦𝐹𝑧 . (5.14) 

 

but in this thesis it is assumed that the directional coefficients are the same so the force in the 

longitudinal and lateral directions are governed by a single parameter μ. In order to maximize the 

torque effectiveness and minimize slip, the torque must be limited such that the longitudinal force it 

produces does not exceed the peak force. Once again employing the linearization (5.3), the road 

adhesion limitation is written as: 

 

 |𝑇𝑚𝑎𝑥,𝑎𝑑,𝑖𝑗| = 𝜇𝑗𝐹𝑧𝑖𝑗𝑅 (5.15) 
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where i symbolizes the front and rear axle and j symbolizes the left or right side. The road adhesion 

coefficients for the tires on the left and right sides can differ to allow the simulation of mixed-mu 

road conditions. 

The final restriction arises from the friction circle in which the concept of the road adhesion limit is 

applied to the resultant of the forces in the tire x and y-directions. The following inequality defines 

this restriction: 

 

 (
𝐹𝑥𝑖𝑗

𝜇𝑗𝐹𝑧𝑖𝑗
)

2

+ (
𝐹𝑦𝑖𝑗

𝜇𝑗𝐹𝑧𝑖𝑗
)

2

≤ 1 (5.16) 

 

Equation (5.16) is rearranged by carrying all terms to the right-hand side of the inequality except for 

Fxij and combining with (5.3). The following equality replaces the inequality when the tires operate at 

the edge of the friction circle: 

 

 |𝑇𝑚𝑎𝑥,𝑓𝑐,𝑖𝑗| = 𝑅𝜇𝑗𝐹𝑧𝑖𝑗√1 −
𝐹𝑦𝑖𝑗

𝜇𝑗𝐹𝑧𝑖𝑗
 (5.17) 

 

These torque limitations clearly depend on information about the tire forces. Chapter 4 discussed the 

necessity of a real-time estimator provides feedback to the DYC. Likewise, these torque limitations 

also depend on force estimate feedback. Hence, the latter two limitations become the following: 

 

 |𝑇̂max,ad,ij| = 𝜇𝑗𝐹̂𝑧𝑖𝑗𝑅 (5.18) 

 

 |𝑇̂max,fc,ij| = 𝑅𝜇𝑗𝐹̂𝑧𝑖𝑗√1 −
𝐹̂𝑦𝑖𝑗

𝜇𝑗𝐹̂𝑧𝑖𝑗
 (5.19) 

 

The three torque limitations combine to become a single condition that the maximum torque is the 

minimum of the previous three restrictions computed at each time step:  
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 |𝑇𝑖| ≤ min(𝑇𝑚𝑎𝑥,𝑒𝑚,𝑖𝑗 , 𝑇𝑚𝑎𝑥,𝑎𝑑,𝑖𝑗, 𝑇𝑚𝑎𝑥,𝑓𝑐,𝑖𝑗) (5.20) 

  

and in vector form the condition is: 

 

 𝑻𝒎𝒊𝒏 ≤ 𝑻 ≤ 𝑻𝒎𝒂𝒙 (5.21) 

 

5.2 OBJECTIVE FUNCTION 

At the core of optimal control theory is the objective function, also referred to as the cost function. 

The goal of this optimization is to find a torque distribution that satisfies the objective function. An 

optimization algorithm searches for either the minimum or maximum of the objective function 

depending on the objective. In the case of unconstrained optimization, the optimization finds the 

minimum or maximum over the entire solution domain. However, the solutions to the objective 

function will be constrained based on the limitations developed in Section 5.1. In this thesis, the 

primal-dual gradient descent algorithm handles linear equality constraints, and inequality constraints 

as a dynamic system to solve the objective function [16, 47, 48, 49]. The reason for using constrained 

optimization is that it is better suited to address the physical limitations of a system in the real world. 

This section presents a derivation of the objective function and the primal-dual gradient descent 

algorithm that constitute the torque vectoring controller in the DYC system.  

5.2.1 LONGITUDINAL SLIP POWER LOSS 

The longitudinal slip power loss objective function poses the minimization problem as one aimed at 

reducing the power lost due to longitudinal slip. This function effectively works as an optimal traction 

control algorithm, whereas conventional traction control may saturate the torque in a way that does 

not minimize power loss or meet the control demand from the direct yaw controller. The equation to 

minimize the longitudinal slip power loss is [17]: 

 

 𝐽𝑠𝑙 = min
𝑻

∑ |𝐹𝑥,𝑖𝑗𝑉𝑠,𝑥,𝑖𝑗|

2

𝑖=1,𝑗=1

 (5.22) 
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where Vsij denotes the longitudinal slip velocity of each tire and is expressed as: 

 

 𝑉𝑠,𝑥,𝑖𝑗 = 𝑉𝑤,𝑥,𝑖𝑗𝜎𝑖𝑗 (5.23) 

 

combining (5.23) with (3.34) and (3.35) to (3.38) and substituting back into (5.22) allows the 

objective function to be rewritten as: 

 

 𝐽 = min
𝑻

∑
𝑇𝑖𝑗

𝑅
𝑉𝑤,𝑥,𝑖𝑗𝜆𝑖𝑗

2

𝑖=1,𝑗=1

 (5.24) 

 

Gradient descent depends on there being a smooth, continuous gradient of the objective function with 

respect to the minimization variable. Another condition placed upon the gradient is that the 

minimization variable must not vanish. This condition poses a problem with the above objective 

function, since it is only first-order with respect to the torque. The slip ratio depends on the tire force 

in the Magic Formula tire model in Chapter 3.3.1, but the nested trigonometric functions would make 

the gradient very complex. The gradient simplifies by using the following linear tire model instead: 

 

 𝐹𝑥𝑖𝑗 = 𝐶𝜆,𝑖𝑗𝜎𝑖𝑗 (5.25) 

 

rearranging the linear model, the slip ratio is written as a function of the longitudinal tire force and the 

constant longitudinal tire stiffness. This simplification tracks the true tire force sufficiently well in a 

small region near the origin of the tire force curve but overestimates the true force in the region near 

the maximum tire force. Hence, the gradient descent is more likely to converge to a local minimum 

rather than the global minimum as the slip ratio increases. However, this assumption should be 

sufficient as long as the tires operate at slip-ratios less than that of the maximum force which is 

usually in the range of ±10% slip. Applying the linear tire model, the objective function is rewritten 

as: 
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 𝐽𝑠𝑙 = min
𝑻

∑
𝑇𝑖𝑗
2

𝐶𝜆,𝑖𝑗𝑅
2
𝑉𝑤,𝑥,𝑖𝑗

2

𝑖=1,𝑗=1

 (5.26) 

  

Defining a matrix D as: 

  

 𝑫 =

[
 
 
 
 
 
 
 
 
𝑉𝑤,𝑥,11
𝐶𝜆,11𝑅

2
0 0 0

0
𝑉𝑤,𝑥,12
𝐶𝜆,12𝑅

2
0 0

0 0
𝑉𝑤,𝑥,21
𝐶𝜆,21𝑅

2
0

0 0 0
𝑉𝑤,𝑥,21
𝐶𝜆,21𝑅

2]
 
 
 
 
 
 
 
 

 (5.27) 

 

the objective function can be expressed in matrix form as: 

 

 𝐽𝑠𝑙 = min
𝑻
𝑻𝑇𝑫𝑻 (5.28) 

 

The full optimization problem is described by the following system: 

 

 min 
𝑻
   𝐽 = 𝑻𝑇𝑫𝑻 (5.29) 

 𝑠. 𝑡.    𝑩𝑻 − 𝒄 = 0 (5.30) 

 𝑻 − 𝑻𝒎𝒊𝒏 ≥ 0 (5.31) 

 𝑻𝒎𝒂𝒙 − 𝑻 ≥ 0 (5.32) 

 



 

 

61 

 

5.3 PRIMAL-DUAL GRADIENT ALGORITHM 

this section gives a more in-depth description of the primal-dual gradient descent algorithm and its 

application to the minimization problem. Gradient descent finds the optimal solution to the 

constrained minimization problem if one exists. The basic gradient descent algorithm is an 

unconstrained optimization, but the gradient method introduces the constraints as dynamic equations, 

which converge in finite time. A set of design parameters govern the transient behavior of these 

constraint equations. In some steps, the constraint equations may not be able to satisfy the constraints, 

but the final solution is guaranteed to be optimal [16].  

The minimization problem can be rewritten in the generalized formulation: 

 

 min 
𝑻
   𝐽 = 𝑓(𝑥) (5.33) 

 𝑠. 𝑡.    𝒉(𝒙) = 0 (5.34) 

 𝑔(𝒙) ≤ 0 (5.35) 

 

where x ϵ ℝn, f : ℝn → ℝ is a strictly convex function, h(x) = Ax - c : ℝn → ℝm, b ϵ ℝm and g(x) = (gi 

(x)), i = 1,…, p : ℝn → ℝp are convex ℂ2-class functions [49]. The optimization variables change with 

the gradient of the cost function. The gradient descent and primal-dual dynamics is written as: 

 

 𝑙(𝒙, 𝝀, 𝜸) = 𝑓(𝒙) + 𝝀𝑇𝒉(𝒙) + 𝜸𝑇𝒈(𝒙) (5.36) 

 

and its gradient is: 

 

 
𝜕𝑙

𝜕𝒙
= ∇𝑓(𝒙) + ∇𝒉(𝒙)𝑇𝝀 + ∇𝒈(𝒙)𝑇𝜸 (5.37) 

 

Equation (5.37) is the Lagrangian of the optimization problem. ∇𝑓(𝒙) denotes the gradient of the 

objective function with respect to the optimization variable; ∇𝒉(𝒙) and ∇𝒈(𝒙) are gradient operators 

on h(x) and g(x), respectively and act such that: 
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 ∇𝒉(𝒙) = 𝐴 (5.38) 

 ∇𝑔1 = −1 (5.39) 

 ∇𝑔2 = 1 (5.40) 

 

The modified gradient descent algorithm for this problem is formulated for discrete time steps and is 

given by: 

 

 𝒙𝑘+1 = 𝒙𝑘 − 𝛼𝑘(∇𝑓(𝒙
𝑘) + 𝑨𝑇𝝀𝑘 + ∇𝒈(𝒙𝑘)

𝑇
𝜸𝑘 (5.41) 

 𝝀𝑘+1 = 𝝀𝑘 + 𝛽𝑘𝒉(𝒙
𝑘) (5.42) 

 𝜸𝑘+1 = [𝜸𝑘 + 𝜿𝑘𝒈(𝒙
𝑘)]

+
  (5.43) 

 

where k denotes the current time step; α, β and κ denote fixed learning rate parameters for the 

Lagrangian, and primal-dual dynamic equations for the equality constraint and inequality constraint, 

respectively and [∙]+ = max{∙ ,0} applied componentwise. Note that the update equation for xk seeks 

to minimize the Lagrangian with respect to its x argument while the update equations for λk and γk 

seek to maximize the Lagrangian with respect to their x arguments. The form of the update equation 

for γk is a projected gradient algorithm. The reason for the projection is that the vector of Lagrange 

multipliers is required to be nonnegative in order to satisfy the Karush-Kuhn-Tucker condition. Only 

the gradient is necessary, this algorithm is a first order Lagrangian algorithm [49]. The last step in 

the algorithm is a condition on the Lagrangian to evaluate the stable convergence of the f(x) to the 

global minimum. For some x* to be a global minimizer of f(x), the following necessary condition 

must be satisfied: 

 

 𝑷∇𝑓(𝒙∗) = 0 (5.44) 

 

where: 
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 𝑷 = 𝑰 − 𝑨𝑇(𝑨𝑨𝑇)−1𝑨 (5.45) 

 

Although the above condition is necessary to prove there is a global minimum over the constraint set 

{x : Ax = b}, it is not only sufficient if the f is a convex function, which in this case, it is. Applying 

the gradient descent algorithm to the objective function in Section 5.2 and the constraints in Section 

5.1, the final expression for the optimal torque vectoring problem becomes: 

 

 𝑻𝑘+1 = 𝑻𝑘 − 𝛼𝑘(−2𝑫𝑻 +𝑩𝜆
𝑘 + 𝛾1

𝑘 − 𝛾2
𝑘) (5.46) 

 𝜆𝑘+1 = 𝜆𝑘 + 𝛽𝑘(𝑩𝑻 − 𝒄) (5.47) 

 𝛾1
𝑘+1 = [𝛾𝑘 + 𝜿𝑘(𝑻𝒎𝒊𝒏 − 𝑻)]+ (5.48) 

 𝛾2
𝑘+1 = [𝛾𝑘 + 𝜿𝑘(𝑻 − 𝑻𝒎𝒂𝒙)]+ (5.49) 

 

Equations (5.46) through (5.49) constitute a discrete dynamic system, which has stability margins and 

may oscillate. It is up to the designer to obtain a desired optimization performance by tuning the 

optimization, including the learning rate parameters, the maximum number of iterations, and the 

function tolerance. Table 5-1 shows the parameters chosen to achieve the desired dynamic response in 

this study. The chosen values for α, κ, and γ result in the second-order dynamic response with 

minimal overshoot and a short rise time shown in Figure 7.8. 

Table 5-1 Selected parameter values for Primal-Dual Gradient Algorithm. 

 Value Comments 

α 0.1 Learning rate for torque update 

κ 0.01 Learning rate for equality constraint update 

γ 0.01 Learning rate for inequality constraint update 

Max # iterations 2e4  

Tolerance 1e-3 Resolution of the optimization. This is a user-defined minimum 

difference in computed torque from one iteration to the next. 

Reaching this tolerance means the optimization has succeeded 

in finding the optimal distribution. 
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6 UNIFIED TIRE FORCE ESTIMATOR 

The incorporation of electronic stability control systems into modern vehicles has greatly increased 

the safety of driving. Stability control traditionally has relied on knowledge of the state of the vehicle 

obtained from sensors including inertial measurement units (IMUs), gyroscopes, wheel encoders and 

the global positioning system (GPS). While these signals are useful, they only provide information 

about the position and motion of the vehicle. Detection of the tire forces would enhance the 

robustness of active safety systems, but tire force sensors are prohibitively expensive and as such are 

generally limited to use in a research environment. The only alternative to direct detection of these 

forces is to estimate them. There is a copious amount of published research dedicated to designing 

estimation algorithms with varying degrees of success. Many of these methods can predict the true 

tire forces quite well, but only work well in a limited operating range. This limited operating range is 

since many algorithms depend on a simplified system model that must neglect certain dynamic effects 

so that the algorithms are compatible with real-time systems. These dynamic effects include tire wear 

and changes in the sprung mass. 

Stochastic filters such as Kalman filters can address the estimation problem to a certain degree. The 

output of the Kalman filter is a fusion of the predicted states from the model and states detected by 

the sensors. The sensor input captures all the nonlinearities in the real plant and the filter output 

updates at each time step using the weighted difference between the predicted state and the actual 

state. This technique is not perfect and propagates estimation error like any other. Especially in the 

case when Kalman filters are cascaded together where the estimation of one filter is dependent on the 

output of another estimator, these errors can become significant. Acknowledging the drawbacks on 

tire force estimation, this thesis proposes a unified structure for the estimation of the longitudinal, 

lateral, and vertical tire forces using a series of Kalman filters. In practical implementation all three 

tire forces are computed at each instant and are then available to be fed back to other subsystems such 

as the direct yaw-moment controller and torque-vectoring controller proposed in Chapter 4 and 

Chapter 5, respectively. Figure 6.1 illustrates the overall structure of the estimation algorithm. It is 

worth noting that the lateral force estimation block is dependent on the estimated vertical tire forces, 

so some degree of error propagates forward. Rather than accepting the longitudinal and lateral 

acceleration signals directly from the accelerometer, the Lateral Force Estimation accepts it from the 

Vertical Force Estimation block. The reason for this is that the accelerometer detects the acceleration 

with respect to the current orientation of the vehicle, thus if there is any pitch or roll angle, part of the 

sensed acceleration comes from gravity, and error is introduced into the sensor signals, like in Figure 

6.3. The Vertical Force Estimation block combines the detected accelerations with the states of a 
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suspension and the pitch and roll model shown in Figure 6.2 to correct the error introduced by gravity 

when the vehicle accelerates. 

 

  

Figure 6.1 Unified structure of the force estimator and sideslip angle observer. 

 

A unique feature of the lateral force estimation subsystem is that it employs the full nonlinear vehicle 

model with the Dugoff tire model introduced in Chapter 3. An advantage of this feature is that it 

allows for the prediction of states that cannot be directly sensed without exotic sensors or require the 

integration of accelerometer outputs. Integration of these states would produce large errors. The most 

crucial state of this type is the vehicle sideslip angle because it is a control variable for the DYC 

system. As a result, the unified estimation algorithm acts both as a tire force estimator and a sideslip 

observer [44, 29]. 

This section is broken into three sections dedicated to the tire force in each coordinate direction in 

ascending order of complexity: the first section presents the algorithm for longitudinal tire force 

estimation; the following section presents the vertical tire force algorithm, and the last section 

presents the lateral tire force algorithm. 

6.1 LONGITUDINAL TIRE FORCE ESTIMATION 

As discussed in Chapter 3, the longitudinal tire force develops as a nonlinear function of the slip ratio 

σ. In general, estimation of nonlinear functions is quite difficult. In this case, however, the tire force 

does not require a special filter and directly computes the force from a torque sensor and wheel 

encoder. Rearranging the wheel equation of motion (3.30), the following equation can be obtained 

[12]: 
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 𝐹𝑥𝑖𝑗𝑅 = 𝑇𝑖𝑗 − 𝐽𝜔̇𝑖𝑗 (6.1) 

 

The above equation is rewritten in the Laplace domain [44, 50] as: 

 

 𝐹𝑥,𝑖𝑗𝑅 = 𝑇𝑖𝑗 − 𝐽𝑠𝜔𝑖𝑗 (6.2) 

 

The wheel encoders detect the angular velocity of the wheels using quadrature and not the angular 

acceleration, so the angular acceleration comes from differentiating the encoder signal. This process 

introduces error because of measurement noise, but a low pass filter would be sufficient to attenuate 

the higher frequency fluctuation in the computed angular acceleration. On the other hand, the motor 

torque can be determined from the current I through the motor and voltage V across the motor 

terminals. In the absence of current and voltage sensing capabilities, the motor’s torque map may 

perform a look-up of the torque as a function of wheel speed. The final equation for the longitudinal 

tire force estimate is: 

 

 𝐹̂𝑥,𝑖𝑗 =
1

𝜏𝑠 + 1

𝑇𝑖𝑗

𝑅
−

1

𝜏𝑠 + 1

𝐽

𝑅
𝑠𝜔𝑖𝑗 (6.3) 

 

where an appropriate τ is chosen to balance noise attenuation and signal fidelity. It is important to 

note that the longitudinal tire force estimate requires that the torque and force are proportional. When 

the tires operate near the perimeter of the friction circle and the tires reach the apex of the force curve, 

additional torque has a diminishing marginal impact on this force. Hence, this algorithm will only 

provide good estimates as long as the slip ratio remains small and is often bounded by |𝜎| ≤ 0.10 in 

industry. If the rolling resistance term is not negligible then the expression for the tire force estimate 

becomes: 

 

 𝐹̂𝑥,𝑖𝑗 =
1

𝜏𝑠 + 1

𝑇𝑖𝑗

𝑅
−

1

𝜏𝑠 + 1

𝐽

𝑅
𝑠𝜔𝑖𝑗 −

𝑓𝐹̂𝑧,𝑖𝑗

𝑅
 (6.4) 
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where f is the rolling resistance coefficient and 𝐹̂𝑧,𝑖𝑗 is the estimated vertical tire force. In normal 

cornering maneuvers for a full-scale vehicle, the order of magnitude of the vertical tire force 103 and 

the order of magnitude of the rolling resistance coefficient of asphalt is 10-3, which resolves to a very 

small force due to rolling resistance. Unless the vehicle in question is off-road, it is generally 

acceptable to neglect the contribution of rolling resistance. 

6.2 VERTICAL TIRE FORCE ESTIMATION 

The vertical load distribution is essential for understanding the vehicle behavior in terms of steering, 

vehicle stability and cornering stiffness. This force determines the maximum cornering capability 

which dictates the acceptable operating range of safety systems as well as the boundary of the friction 

circle within which the tires must operate. It is practically impossible to estimate the lateral tire force 

without estimating the vertical tire force in some manner. The proposed algorithm consists of two 

blocks as shown in Figure 6.2.  

 

 

Figure 6.2 Vertical tire force estimation diagram 

 

The inputs to the vertical tire force estimator come from the accelerometer and gyroscope units 

embedded in the inertial measurement unit (IMU). These inputs include the measured longitudinal 

and lateral acceleration ax and ay, respectively, the roll rate p and the roll angle φ. The intermediate 

variables in the algorithm include the left load transfer ∆𝐹𝑧𝑙 and the lateral acceleration corrected for 

roll angle, ay. The output of the algorithm is 𝐹̂𝑧,𝑖𝑗, the vertical tire force on wheel ij. 
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The objective of the first part of the algorithm is to estimate the lateral load transfer. It uses a linear 

Kalman filter based on the vehicle’s roll dynamics that arise due to the suspension, which is 

equivalent to estimating the elastic load transfer term discussed in Chapter 3.2. The second part 

estimates the geometric load transfer due to pitch and roll dynamics that arise from the longitudinal 

and lateral acceleration. In general, these effects are coupled, but if the coupling effect is neglected 

the geometric load transfer is simply a linear combination of terms including longitudinal acceleration 

and lateral acceleration. If one includes the coupled acceleration in the model, the estimated forces 

will track the true forces poorly during aggressive maneuvers unless a more complex, nonlinear filter 

is used. However, this study assumes the geometric load transfer is decoupled, allowing the use of a 

linear Kalman filter in the second part of the algorithm. In other words, two cascaded linear Kalman 

filters resolve the vertical force estimate. The algorithm depends on the assumptions that the positions 

of the roll centers do not change; that the suspension functions in its linear zone according to Hooke’s 

Law; and the road is flat without irregularities [29]. 

6.2.1 ROLL PLANE MODEL 

The single degree of freedom roll plane model that represents only the roll motion as follows 

describes the roll dynamics of the vehicle body: 

 

 𝐼𝑥𝑝̇ + (𝑏𝜑1 + 𝑏𝜑2)𝑝 + (𝑘𝜑1 + 𝑘𝜑2)𝜑 = 𝑚𝑠ℎ𝑠(𝑎𝑦 + 𝑔𝑠𝑖𝑛𝜑) (6.5) 

 

and the steady-state equation for the lateral load transfer applied to the left side of the vehicle is the 

sum of the geometric load transfer and the elastic load transfer: 

 

 ∆𝐹𝑧𝑙 = −(
𝑘𝜑1

𝑠1
+
𝑘𝜑2

𝑠2
)𝜑 −

𝑚𝑠𝑎𝑦

𝑙
(
𝑏ℎ1
𝑠1

+
𝑎ℎ2
𝑠2
) (6.6) 

 

6.2.2 LATERAL ACCELERATION CORRECTION 

During movement, the accelerometer is unable to distinguish between the acceleration caused by 

vehicle motion and the gravitational acceleration.  When the vehicle rolls, a portion of the sensed 

lateral acceleration comes from gravity. Since the gravity component is not of interest the acceleration 

needs correction. One way of correcting the acceleration is to compute it with the following equation: 
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 𝑎𝑦,𝑚 = 𝑎𝑦𝑐𝑜𝑠𝜑 + 𝑔𝑠𝑖𝑛𝜑 (6.7) 

 

Another way of correcting the acceleration is using sensor fusion. The vertical tire force estimator 

corrects the acceleration by comparing the measured acceleration to the acceleration predicted by the 

load transfer model that outputs planar acceleration. The measured acceleration contributes some 

nonlinearity to the predicted vertical force, while the model compensates for the gravity component of 

the measurement. Figure 6.3 illustrates how the lateral acceleration measured by an IMU mounted on 

the sprung mass results from the combination of the cornering acceleration and the gravitational 

acceleration. 

 

 

Figure 6.3 Components of lateral acceleration during normal cornering [29]. 

 

6.2.3 LATERAL LOAD TRANSFER MODELS 

6.2.3.1 LINEAR ELASTIC LOAD TRANSFER MODEL 

The Kalman filters used in this stage of the estimation structure are linear because the models on 

which they depend are linear. Hence, the models are a linear combination of the states and inputs, or 

in state-space form. These filters are stochastic, so stochastic state-space models are used. The 

following expression is the general form of a stochastic state-space model: 

 𝒙𝑘 = 𝑨𝒙𝑘−1 +𝑩𝒖𝑘 +𝒘𝑘 , (6.8) 

 𝒚𝑘 = 𝑯𝒙𝑘 + 𝒗𝑘 (6.9) 
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where xk is the state vector at time step k; An x n is the state transition matrix; Bn x p is the input-to-state 

matrix; uk is the control signal, wn x 1 is the process noise vector; ym x 1 is the measurement vector; Hm x 

n is the state-to-measurement matrix, and vn x 1 is the measurement noise vector.  

In the case of this linear stochastic system, the process and measurement noise are assumed Gaussian, 

white, uncorrelated, and have zero-mean. Hence, only the diagonal covariance matrix is necessary to 

describe the noise. First, the linear vehicle model for both parts of the vertical force estimator are 

proposed, and then the covariance matrices for the process and measurement noise are proposed. 

Differentiating equation (6.6) with respect to time and combining and discretizing (6.5) through (6.7) 

results in the state-space model. The state vector xk consists of the following states: 

 

 𝒙𝑘 = [∆𝐹𝑧𝑙,𝑘, 𝑎𝑦,𝑘 , 𝑎̇𝑦,𝑘 , 𝜑, 𝑝]
𝑇

 (6.10) 

 

and is initialized as a null vector [29]. 

The system has no input vector, so the matrix B is null. The measurement vector yk is determined by 

the relevant sensor signals available on the vehicle and is written as: 

 

 𝒚𝑘 = [𝑎𝑦,𝑚,𝑘 , 𝜑, 𝑝, ∆𝐹𝑧𝑙]
𝑇
 (6.11) 

 

The lateral acceleration ay,m is measured from the accelerometer, the roll angle φ and roll rate p are 

both measured by the gyroscope and the left load transfer is ∆𝐹𝑧𝑙 is calculated from (6.6). With the 

state and measurement vectors chosen, the corresponding matrices A and H for the suspension model 

observer are given by: 
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 𝑨 =

[
 
 
 
 
 
 1 0 −𝑡

𝑚𝑠

𝑙
(
𝑏ℎ1

𝑠1
+
𝑎ℎ2

𝑠2
) 0 −𝑡 (

𝑘𝜑1

𝑠1
+
𝑘𝜑2

𝑠2
)

0 1 𝑡 0 0
0 0 1 0 0
0 0 0 1 𝑡

0 𝑡𝑚𝑠
ℎ𝑠

𝐼𝑥
0 𝑡

𝑚𝑠𝑔ℎ𝑠−(𝑘𝜑1+𝑘𝜑2)

𝐼𝑥
1 − 𝑡

𝑏𝜑1+𝑏𝜑2

𝐼𝑥 ]
 
 
 
 
 
 

 , (6.12) 

 𝑯 = [

0 1 0 𝑔 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

] . (6.13) 

 

The constant t denotes the sampling time. 

6.2.3.2 NONLINEAR GEOMETRIC LOAD TRANSFER MODEL 

During normal driving, the vehicle accelerates longitudinally and laterally because of the longitudinal 

and lateral forces. These accelerations redistribute the vertical forces between wheels on the same 

axle as well as across the axles. The subject of the previous section was the estimation of the load 

transfer from one side of the vehicle to the other, laterally. In this section, a second filter incorporates 

this estimate to evaluate the vertical load on each tire. 

The previous section assumed load transfer purely due to the suspension dynamics. This section 

concerns only the load transfer due to acceleration of the vehicle body, neglecting the suspension 

dynamics. Assuming coupling of the longitudinal and lateral acceleration necessitates the use of a 

more complex, nonlinear function for lateral load shift. The lateral load shift for the coupled model 

follows: 

 𝐹𝑧,11 =
𝑚

2
(
𝑏

𝑙
𝑔 −

ℎ𝑐𝑔

𝑙
𝑎𝑥) −𝑚(

𝑏

𝑙
𝑔 −

ℎ𝑐𝑔

𝑙
𝑎𝑥)

ℎ𝑐𝑔

2𝑠1𝑔
𝑎𝑦  (6.14) 

 𝐹𝑧,12 =
𝑚

2
(
𝑏

𝑙
𝑔 −

ℎ𝑐𝑔

𝑙
𝑎𝑥) +𝑚(

𝑏

𝑙
𝑔 −

ℎ𝑐𝑔

𝑙
𝑎𝑥)

ℎ𝑐𝑔

2𝑠1𝑔
𝑎𝑦  (6.15) 

 𝐹𝑧,21 =
𝑚

2
(
𝑎

𝑙
𝑔 +

ℎ𝑐𝑔

𝑙
𝑎𝑥) −𝑚(

𝑎

𝑙
𝑔 +

ℎ𝑐𝑔

𝑙
𝑎𝑥)

ℎ𝑐𝑔

2𝑠2𝑔
𝑎𝑦  (6.16) 

 𝐹𝑧,22 =
𝑚

2
(
𝑎

𝑙
𝑔 +

ℎ𝑐𝑔

𝑙
𝑎𝑥) +𝑚(

𝑎

𝑙
𝑔 +

ℎ𝑐𝑔

𝑙
𝑎𝑥)

ℎ𝑐𝑔

2𝑠2𝑔
𝑎𝑦  (6.17) 
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While the above system of equations alone would provide a decent estimate of the vertical tire force 

on each wheel, it neglects complex factors such as changes in the height of the center of gravity and 

roll center. A second, extended Kalman filter (EKF) constitutes the Pitch and Roll Dynamics 

Observer module in Figure 6.2, which compensates for the modeling error. The EKF is a nonlinear 

form of Kalman Filter and is preferable for this role because of the nonlinear-coupled terms in the 

system of equations. 

This Kalman filter uses the same general form (6.8) and (6.9) as that in the previous section. The 

vehicle state vector xk ϵ ℝ8 is given as: 

 

 𝒙𝑘 = [𝐹𝑧,11,𝑘, 𝐹𝑧,12,𝑘, 𝐹𝑧,21,𝑘, 𝐹𝑧,22,𝑘, 𝑎𝑥,𝑘 , 𝑎̇𝑥,𝑘, 𝑎𝑦,𝑘 , 𝑎̇𝑦,𝑘]
𝑇

 (6.18) 

 

The state vector is initialized as: 

 

 𝒙0 = [
𝐹𝑧𝑓,𝑠𝑡𝑎𝑡𝑖𝑐

2
,
𝐹𝑧𝑓,𝑠𝑡𝑎𝑡𝑖𝑐

2
,
𝐹𝑧𝑟,𝑠𝑡𝑎𝑡𝑖𝑐

2
,
𝐹𝑧𝑟,𝑠𝑡𝑎𝑡𝑖𝑐

2
, 0, 0, 0, 0]

𝑇

 (6.19) 

 

where the first four elements correspond to the vertical tire force on each wheel when the vehicle is at 

rest which is expressed in Chapter 3.3. The measurement vector yk ϵ ℝ5 is given by: 

 

 𝒚𝑘 = [∆𝐹𝑧𝑙,𝑘, (𝐹𝑧,11,𝑘 + 𝐹𝑧,12,𝑘), 𝑎𝑥,𝑘 , 𝑎𝑦,𝑘,∑𝐹𝑧,𝑖𝑗,𝑘]^𝑇  (6.20) 

 

where ∆𝐹𝑧𝑙 and ay come are outputs of the Suspension Model Observer module, Fz,11 + Fz,12 is 

calculated directly from equations (6.14) and (6.15), ax is measured using an accelerometer and 

∑𝐹𝑧,𝑖𝑗,𝑘 is the constant total weight of the vehicle. The nonlinear state evolution function follows: 

 

 𝒇 = [𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓8]
𝑇 (6.21) 
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where:  

 

𝑓1 = 𝑥1,𝑘−1 + 𝑡 [−
ℎ𝑐𝑔

2𝑙
𝑚𝑥6,𝑘−1 −𝑚

𝑏ℎ𝑐𝑔

𝑙𝑤1
𝑥8,𝑘−1 +𝑚

ℎ𝑐𝑔
2

𝑏𝑤1𝑔
𝑥5,𝑘−1𝑥8,𝑘−1 +𝑚

ℎ𝑐𝑔
2

𝑙𝑤1𝑔
𝑥6,𝑘−1𝑥7,𝑘−1], 

𝑓2 = 𝑥1,𝑘−1 + 𝑡 [−
ℎ𝑐𝑔

2𝑙
𝑚𝑥6,𝑘−1 +𝑚

𝑏ℎ𝑐𝑔

𝑙𝑤1
𝑥8,𝑘−1 −𝑚

ℎ𝑐𝑔
2

𝑏𝑤1𝑔
𝑥5,𝑘−1𝑥8,𝑘−1 −𝑚

ℎ𝑐𝑔
2

𝑙𝑤1𝑔
𝑥6,𝑘−1𝑥7,𝑘−1], 

𝑓3 = 𝑥3,𝑘−1 + 𝑡 [
ℎ𝑐𝑔

2𝑙
𝑚𝑥6,𝑘−1 −𝑚

𝑏ℎ𝑐𝑔

𝑙𝑤1
𝑥8,𝑘−1 −𝑚

ℎ𝑐𝑔
2

𝑏𝑤1𝑔
𝑥5,𝑘−1𝑥8,𝑘−1 −𝑚

ℎ𝑐𝑔
2

𝑙𝑤1𝑔
𝑥6,𝑘−1𝑥7,𝑘−1], 

𝑓4 = 𝑥4,𝑘−1 + 𝑡 [
ℎ𝑐𝑔

2𝑙
𝑚𝑥6,𝑘−1 +𝑚

𝑏ℎ𝑐𝑔

𝑙𝑤1
𝑥8,𝑘−1 +𝑚

ℎ𝑐𝑔
2

𝑏𝑤1𝑔
𝑥5,𝑘−1𝑥8,𝑘−1 +𝑚

ℎ𝑐𝑔
2

𝑙𝑤1𝑔
𝑥6,𝑘−1𝑥7,𝑘−1], 

𝑓5 = 𝑥5,𝑘−1 + 𝑡𝑥6,𝑘−1, 

𝑓6 = 𝑥6,𝑘−1, 

𝑓7 = 𝑥7,𝑘−1 + 𝑡𝑥8,𝑘−1, 

𝑓8 = 𝑥8,𝑘−1. 

 

In considering the relationship between the states and outputs in this case, each output of the model 

measurement function is a linear combination of the states. Consequently, the model measurement 

function is linear and is easily formulate as: 

 

 𝒉 = [ℎ1, ℎ2, ℎ3, ℎ4, ℎ5]
𝑇 (6.22) 

 

ℎ1 = 𝑥1,𝑘 − 𝑥2,𝑘 + 𝑥3,𝑘 − 𝑥4,𝑘, 

ℎ2 = 𝑥1,𝑘 + 𝑥2,𝑘 , 

ℎ3 = 𝑥5,𝑘, 

ℎ4 = 𝑥7,𝑘, 

ℎ5 = 𝑥1,𝑘 + 𝑥2,𝑘 + 𝑥3,𝑘 + 𝑥4,𝑘. 
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The Pitch and Roll Dynamics Observer uses an EKF. The prediction step of the filter involves the 

computation of the Jacobian of the state evolution function and measurement function and linearizing 

the system at each time step for the given state. The steps to computing the new state estimate is 

practically identical to that of the linear Kalman filter after computing the Jacobians. Appendix 

9.2.3.3 describes the systematic implementation of the EKF.  

6.2.4 KALMAN FILTER DESIGN FOR VERTICAL FORCE ESTIMATION 

The last component necessary to complete the estimator is to lay out the update algorithm to generate 

estimates in real-time. The Kalman filter computation has three steps: initialization, prediction and 

correction. In the initialization step an initial value of the state-vector and covariance matrix are set 

and only occurs once, usually when the system initializes. In the prediction step, the elements of the 

state-vector x and covariance matrix P are predicted for the next time step k using the system model 

derived in the previous two sections. In the correction step, fusion of the model prediction and sensor 

input results in an estimate of the state vector and covariance matrix for time step k. The initialization 

values for the state-vector are given in the previous sections and an initial covariance matrix should 

be chosen to be positive definite.  

The prediction step of the Kalman filter is carried out as follows: 

 

 𝒙̂𝑘|𝑘−1 = 𝑨𝒙̂𝑘−1|𝑘−1 +𝑩𝒖𝑘 , (6.23) 

 𝑷𝑘|𝑘−1 = 𝑨𝑷𝑘−1|𝑘−1𝑨
𝑇 +𝑸 . (6.24) 

 

where Q denotes the designed process covariance matrix. The following series of computations 

constitute the correction step: 

 

 𝑲𝑘 = 𝑷𝑘|𝑘−1𝑯
𝑇[𝑯𝑷𝑘|𝑘−1𝑯

𝑇 + 𝑹]
−1
 , (6.25) 

 

where K denotes the Kalman gain matrix. The estimate of the state is: 
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 𝒙𝑘|𝑘 = 𝒙𝑘|𝑘−1 +𝑲𝑘[𝒚𝑘 −𝑯𝒙𝑘|𝑘−1] . (6.26) 

 

The estimated covariance is then computed as: 

 

 𝑷𝑘|𝑘 = [𝑰 − 𝑲𝑘𝑯]𝑷𝑘|𝑘−1 (6.27) 

 

The update algorithm composed of equations (6.23) through (6.27) is the linear Kalman filter. In 

addition to this filter, the vertical tire force estimation employs an EKF, which Figure 6.2 presents. 

The linear systems representing the elastic and geometric load transfer models are observable if the 

observability matrix O has rank n.  Multiplication of the state evolution matrix and measurement 

matrix results in the observability matrix seen below: 

 

 𝑶 = [𝑯,𝑯𝑨,𝑯𝑨𝟐,⋯ ,𝑯𝑨𝑛−1]
𝑇
. (6.28) 

 

6.3 LATERAL TIRE FORCE ESTIMATION 

As depicted in Chapter 4 and 5, the estimation of both the vertical and lateral tire forces enables the 

use of more complex control laws to stabilize the vehicle. Estimation of the lateral force is 

considerably more complex than in the case of both the longitudinal and vertical tire forces. The 

lateral force is highly nonlinear and is not directly observable, making the estimation process 

challenging. Assuming the vehicle only ever operates in the linear region of the lateral force curve, 

the estimate of the per-axle lateral force follows: 

 

 𝐹𝑦1 =
𝑚𝑎𝑦𝑏 − 𝐼𝑧𝑟̇

𝑙𝑐𝑜𝑠𝛿
 (6.29) 

 𝐹𝑦2 =
𝑚𝑎𝑦𝑎 + 𝐼𝑧𝑟̇

𝑙
 (6.30) 
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The force lateral force on each tire of the axle is proportional to the estimated vertical force. The 

advantage of this method is that it represents the lateral forces for normal driving situations well 

without a priori knowledge of the road friction and only relies on available measurements. On the 

other hand, it is only valid for a very limited range of lateral accelerations and any noise or error in 

the measured signals corrupt the results.  

This section seeks to develop a stochastic lateral force estimator with a wide operating range and 

robustness against sensor noise. As shown in Figure 6.1 the lateral force depends on the output of the 

longitudinal and vertical force estimators. We have already derived the vertical force estimator and 

now have access to all the input signals upon which the lateral algorithm depends. This section 

employs another Kalman filter and it depends on the nonlinear vehicle model with the Dugoff tire 

model to address the nonlinearity in the tire force and observability problem. In this case, the vehicle 

model neglects suspension and roll dynamics as well as road grade and irregularities. 

6.3.1 NONLINEAR STATE-SPACE MODEL 

Assuming the road surface has already been classified and assigned an appropriate road adhesion 

coefficient, a stochastic, discrete-time, model-based Kalman filter is sufficient to predict the sideslip 

angle and lateral tire forces with input from kinematic sensors. Since the model is nonlinear, a 

nonlinear state-space formulation is necessary. The equation for the general form of a nonlinear state-

space model is: 

 

 𝒙𝑘 = 𝑓𝑘−1(𝒙𝑘−1, 𝒖𝑘) + 𝒘𝑘 (6.31) 

 𝒚𝑘 = ℎ(𝒙𝑘) + 𝒗𝑘 (6.32) 

 

where xk is the state vector at time step k, fk-1
 is the state evolution function, wn x 1 is the process noise 

vector, ym x 1 is the measurement vector, h is the observation function and vn x1 is the measurement 

noise vector. The state vector is as follows: 

 

 𝒙𝑘 = [𝑥1,𝑘, 𝑥2,𝑘, 𝑥3,𝑘 , 𝑥4,𝑘, 𝑥5,𝑘, 𝑥6,𝑘, 𝑥7,𝑘]
𝑇
, (6.33) 

= [𝑟𝑘, 𝑢𝑘 , 𝑣𝑘 , 𝐹𝑦,11,𝑘, 𝐹𝑦,12,𝑘, 𝐹𝑦,21,𝑘, 𝐹𝑦,22,𝑘]
𝑇
. 
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where rk, uk and vk denote the yaw rate, longitudinal velocity and lateral velocity, and Fy,ij,k is the 

lateral tire force on tire ij at time step k, respectively. The state vector is initialized as a null vector so 

that: 

 

 𝒙0 = [0, 0, 0, 0, 0, 0, 0]
𝑇 . (6.34) 

 

 The equation for the vehicle sideslip angle is expressed in discrete time as: 

 

 𝛽𝑘 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑣𝑘
𝑢𝑘
  (6.35) 

 

and is evaluated directly from the estimated states of the Kalman filter. The yaw and lateral dynamics 

are clearly dependent on the longitudinal tire forces. In [29] the front longitudinal tire forces are also 

states of the lateral tire force estimator, but this method limits the region of the nonlinear state-space 

within which the states are observable because the longitudinal for state has only one non-zero term 

and appears only in a single term in the model measurement function. Inclusion of the longitudinal 

force in as a state would tend to decrease the degree of observability in Equation (6.78). This thesis 

proposes a modified form of the nonlinear state-space model in which the longitudinal forces are 

inputs, not states, since the Unified Tire Force Estimator estimates them separately. The input vector 

is written as: 

 

 𝒖𝑘 = [𝑢1,𝑘, 𝑢2,𝑘, 𝑢3,𝑘, 𝑢4,𝑘, 𝑢5,𝑘, 𝑢6,𝑘, 𝑢7,𝑘, 𝑢8,𝑘, 𝑢9,𝑘]
𝑇
, (6.36) 

= [𝛿𝑘 , 𝐹𝑧,11,𝑘 , 𝐹𝑧,12,𝑘, 𝐹𝑧,21,𝑘, 𝐹𝑧,22,𝑘, 𝐹𝑥,11,𝑘, 𝐹𝑥,12,𝑘, 𝐹𝑥,21,𝑘, 𝐹𝑥,22,𝑘]
𝑇
. 

 

where δk, Fz,ij,k and Fx,ij,k denote the steering angle, vertical force on tire ij and longitudinal force on 

tire ij, respectively. The measurement vector yk consists of the yaw rate, longitudinal velocity and 

longitudinal and lateral accelerations: 
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 𝒚𝑘 = [𝑦1,𝑘 , 𝑦2,𝑘 , 𝑦3,𝑘 , 𝑦4,𝑘]
𝑇
, (6.37) 

= [𝑟𝑘, 𝑢𝑘 , 𝑎𝑥,𝑘 , 𝑎𝑦,𝑘]
𝑇
. 

 

Typical IMUs do not measure the longitudinal velocity so it would need to be determined through 

integration or filtering of the acceleration. If the vehicle were in a two-wheel-drive configuration the 

longitudinal velocity could be approximated as the mean of the rolling wheel velocities calculated 

from the wheel-encoder data. However, a four-wheel-drive vehicle such as in this study experiences 

slip on all four wheels, so the all four wheels propagate error if used for velocity estimation. 

Longitudinal velocity estimation is outside the scope of this study. 

The nonlinear state evolution function f which relates the state at time step k to the previous state at 

time step k-1 and the input uk  is [29]: 

 𝑓 = [𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7]
𝑇 (6.38) 

where: 

𝑓1 = 𝑥1,𝑘−1 +
𝑡

𝐼𝑧
[𝑎(𝑥4,𝑘−1𝑐𝑜𝑠𝑢1,𝑘 + 𝑥5,𝑘−1 cosu1,k + (𝑢6,𝑘 + 𝑢7,𝑘)𝑠𝑖𝑛𝑢1,𝑘 − 𝑏(𝑥6,𝑘−1 + 𝑥7,𝑘−1)…

+ 𝑠1[(𝑥4,𝑘−1 − 𝑥5,𝑘−1)𝑠𝑖𝑛𝑢1,𝑘) + (−𝑢6,𝑘 + 𝑢7,𝑘)𝑐𝑜𝑠𝑢1,𝑘] + 𝑠2(−𝑢8,𝑘 + 𝑢9,𝑘)], 

𝑓2 = 𝑥2,𝑘−1 + 𝑡𝑥1,𝑘−1𝑥3,𝑘−1 +
𝑡

𝑚
[−(𝑢6,𝑘 + 𝑢7,𝑘)𝑐𝑜𝑠𝑢1,𝑘 − (𝑥4,𝑘−1 + 𝑥5,𝑘−1)𝑠𝑖𝑛𝑢1,𝑘], 

𝑓3 = 𝑥3,𝑘−1 − 𝑡𝑥1,𝑘−1𝑥2,𝑘−1…

+
𝑡

𝑚
[−(𝑢6,𝑘 + 𝑢7,𝑘)𝑠𝑖𝑛𝑢1,𝑘 + (𝑥4,𝑘−1 + 𝑥5,𝑘−1)𝑐𝑜𝑠𝑢1,𝑘 + 𝑥6,𝑘−1 + 𝑥7,𝑘−1], 

𝑓4 = 𝑥4,𝑘−1 +
𝑡𝑥2,𝑘−1
𝜎𝑟𝑙,𝑓

[−𝑥4,𝑘−1 + 𝐹̅𝑦,11(𝛼11,𝑘−1, 𝑢2,𝑘)], 

𝑓5 = 𝑥5,𝑘−1 +
𝑡𝑥2,𝑘−1
𝜎𝑟𝑙,𝑓

[−𝑥5,𝑘−1 + 𝐹̅𝑦,12(𝛼12,𝑘−1, 𝑢3,𝑘)], 

𝑓6 = 𝑥6,𝑘−1 +
𝑡𝑥2,𝑘−1
𝜎𝑟𝑙,𝑟

[−𝑥6,𝑘−1 + 𝐹̅𝑦,21(𝛼21,𝑘−1, 𝑢4,𝑘)], 

𝑓7 = 𝑥7,𝑘−1 +
𝑡𝑥2,𝑘−1
𝜎𝑟𝑙,𝑟

[−𝑥7,𝑘−1 + 𝐹̅𝑦,22(𝛼22,𝑘−1, 𝑢5,𝑘)], 
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where t is the sampling rate, 𝐹̅𝑦,𝑖𝑗 corresponds to the force predicted by the Dugoff tire model and αij,k-

1 is the tire slip angle and is computed with equations (3.39) through (3.42). The equations for the tire 

slip angle in terms of the states are computed by: 

 

 𝛼11,𝑘−1 = 𝑢1,𝑘 − atan(
𝑥3,𝑘−1 + 𝑎𝑥1,𝑘−1
𝑥2,𝑘−1 − 𝑠1𝑥1,𝑘−1

), (6.39) 

 𝛼12,𝑘−1 = 𝑢1,𝑘 − atan(
𝑥3,𝑘−1 + 𝑎𝑥1,𝑘−1
𝑥2,𝑘−1 + 𝑠1𝑥1,𝑘−1

), (6.40) 

 𝛼21,𝑘−1 = −atan(
𝑥3,𝑘−1 − 𝑏𝑥1,𝑘−1
𝑥2,𝑘−1 − 𝑠2𝑥1,𝑘−1

), (6.41) 

 𝛼22,𝑘−1 = −atan(
𝑥3,𝑘−1 + 𝑏𝑥1,𝑘−1
𝑥2,𝑘−1 + 𝑠2𝑥1,𝑘−1

). (6.42) 

 

The observation equation, h is: 

 

 ℎ = [ℎ1, ℎ2, ℎ3, ℎ4]
𝑇 (6.43) 

 

where: 

 

ℎ1 = 𝑥1,𝑘, 

ℎ2 = 𝑥2,𝑘, 

ℎ3 =
1

𝑚
[−(𝑥4,𝑘 + 𝑥5,𝑘)𝑠𝑖𝑛𝑢1,𝑘 + (𝑢6,𝑘 + 𝑢7,𝑘)𝑐𝑜𝑠𝑢1,𝑘], 

ℎ4 =
1

𝑚
[(𝑥4,𝑘 + 𝑥5,𝑘)𝑐𝑜𝑠𝑢1,𝑘 + (𝑢6,𝑘 + 𝑢7,𝑘)𝑠𝑖𝑛𝑢1,𝑘 + 𝑥6,𝑘 + 𝑥7,𝑘]. 
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6.3.1.1 DUGOFF TIRE MODEL WITH FIRST ORDER DYNAMICS 

The tire model used in this study was first described in Chapter 3.3.2. This tire model computes both 

the longitudinal force Fx,ij and lateral force Fy,ij  for pure slip or combined loading using a model of 

the friction circle. However, it is unnecessary to consider combined slip in the context of the lateral 

tire force estimation because the torque allocation output by the torque vectoring controller upon 

which the longitudinal tire force estimation depends accounts for combined slip already. Hence, for 

any given lateral force, the longitudinal force will drop to remain in the friction circle. Consequently, 

the Dugoff model can be simplified to compute lateral force only. The simplified model is expressed 

as [34, 29]: 

 

 𝐹𝑦,𝑖𝑗 = −𝐶𝛼,𝑖𝑗𝑡𝑎𝑛𝛼𝑖𝑗𝑓(𝜏𝑖𝑗) (6.44) 

 

where f(τ) is still given by equation (3.61) but the equation for τ becomes: 

 

 𝜏 =
𝜇𝐹𝑧,𝑖𝑗

2𝐶𝛼,𝑖𝑗|𝑡𝑎𝑛𝛼𝑖𝑗|
 (6.45) 

 

The slip angle for each wheel is computed with equations (3.39) through (3.42).  

Equations f4 through f7 utilize a dynamic form of the Dugoff tire model. If it is assumed that the tire 

force is a first-order response to an imposed slip angle, the dynamic expression for the lateral tire 

force can be written as: 

 

 𝜏𝑐𝐹̇𝑦 + 𝐹𝑦 = 𝐹̅𝑦, (6.46) 

 

where τc is a relaxation time constant, Fy is the dynamic lateral force and 𝐹̅𝑦 is the quasi-static tire 

force calculated by the Dugoff tire model. The relaxation time constant can be approximated by: 
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 𝜏𝑐 =
𝐶𝛼
𝐾𝑢
, (6.47) 

 

where K is the effective tire lateral stiffness. This relaxation time constant is the time it would take to 

build the tire force to 63.2% of the steady-state force. Multiplying the relaxation time constant be the 

vehicle’s velocity, u, results in a relaxation length: 

 

 𝜎𝑟𝑙 =
𝐶𝛼
𝐾
, (6.48) 

 

where σ is the approximate distance the tire must travel before 63.2% of the steady-state tire force is 

achieved for the given longitudinal velocity. The relaxation length is a physical quantity that varies 

substantially with changes in vertical tire force and longitudinal velocity and cannot be known 

precisely without tires equipped with load cells and extensive testing. However, in this study it is 

considered sufficient to assume the relaxation distance is a fixed parameter. While there is no precise 

information about the relaxation distance available for this study, a general rule of thumb is that it is 

of the order of magnitude of the wheel radius at nominal vertical load [35].  

Equation (6.46) can be rewritten in terms of the relaxation length as: 

 

 𝐹̇𝑦 =
𝑢

𝜎𝑟𝑙
(−𝐹𝑦 + 𝐹̅𝑦). (6.49) 

 

Equation (6.49) is used in f4 through f7 because, in reality, the tire force is not generated instantly. If 

this were the case, the lateral tire force estimation could feasibly return a high frequency oscillating 

force estimate. More importantly, this enables the lateral force to be written as an ordinary differential 

equation and discretized for use in the state evolution function. 

6.3.2 KALMAN FILTER DESIGN FOR LATERAL FORCE AND SIDESLIP 

ESTIMATION 

The stochastic discrete-time nonlinear state-space model for the nonlinear Kalman filter was 

developed. Like in the case of vertical tire force estimation, a Kalman filter is used to estimation the 
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lateral dynamics. Due to the high degree of nonlinearity, a linear Kalman filter is not sufficient. Two 

other alternatives exist: The extended Kalman filter (EKF) and the unscented Kalman filter (UKF). 

These filters are both used to estimate nonlinear functions with a key difference: the EKF depends on 

a first-order Taylor series linearization of the model at each operating point and the UKF employs the 

full nonlinear function. Hence, the UKF generally does a better job of estimating highly nonlinear 

functions but is slower than the EKF when the linearization is simple. The UKF was chosen for this 

application for two reasons. The first reason is that the lateral tire force is a highly nonlinear function 

of tire slip angle and the second reason is that the linearization of the Dugoff tire model is not trivial.  

The update algorithm for the UKF is fundamentally different from that of the linear Kalman filter and 

EKF. The latter two filters follow the same set of steps: initialization, prediction and correction with 

the added step of linearizing the system model at each step. On the other hand, the UKF employs 

something called the Unscented Transformation, which is a method for calculating the statistics of a 

random variable [29, 51]. 

The UT uses a set of weighted points, or sigma points, which represent samples of probability 

distributions. These points are chosen such that they completely capture the true mean and covariance 

of the Gaussian variable accurately up to the third-order Taylor series expansion for any nonlinearity. 

The sigma points are calculated in the steps that follow. 

6.3.2.1 THE UNSCENTED TRANSFORMATION 

The UT generates a set of 2n+1 sigma points χ which approximate some n dimensional vector of 

random variables xi with sample mean 𝒙̅ and covariance Pxx. This transformation can be interpreted as 

a Monte Carlo simulation of the input-output set fed through the nonlinear function, f using a 

minimum sample set, and the final estimate can be interpreted as a regression on this input-output 

data. The sigma points are computed as follows: 

 

 

 

𝝌0 = 𝒙̅  𝑓𝑜𝑟 𝑖 = 0, (6.50) 

 𝝌𝑖 = 𝒙̅ + (√(𝑛 + 𝜅)𝑷𝑥𝑥)
𝑖
   𝑓𝑜𝑟 𝑖 = 1,⋯ , 2𝑛, (6.51) 

 𝝌𝑖+𝑛 = 𝒙̅ − (√(𝑛 + 𝜅)𝑷𝑥𝑥)
𝑖−𝑛

   𝑓𝑜𝑟 𝑖 = 𝑛 + 1,⋯ , 2𝑛, (6.52) 
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with the corresponding weight parameters: 

 

 𝑤0
(𝑚)

=
𝜅

𝑛 + 𝜅
   𝑓𝑜𝑟 𝑖 = 0, (6.53) 

 𝑤0
(𝑐)
=

𝜅

𝑛 + 𝜅
+ (1 − 𝛼2 + 𝛽2)   𝑓𝑜𝑟 𝑖 = 0, (6.54) 

 𝑤𝑖
(𝑚)

=
1

2(𝑛 + 𝜅)
   𝑓𝑜𝑟 𝑖 = 1,⋯ , 2𝑛, (6.55) 

 𝑤𝑖
(𝑐)
=

1

2(𝑛 + 𝜅)
   𝑓𝑜𝑟 𝑖 = 1,⋯ , 2𝑛, (6.56) 

 

where the term (√(𝑛 + 𝜅)𝑷𝑥𝑥)𝑖 is the ith column of the matrix square root of (𝑛 + 𝜅)𝑷𝑥𝑥 and wi are 

the weights associated with the ith sigma point. The parameter κ is given by: 

 

 𝜅 = 𝛼2(𝑛 + 𝜅) − 𝑛, (6.57) 

 

where α influences the spread of the points around 𝒙̅ and is usually some small positive number, κ is a 

secondary scaling parameter and β is related to the probability density function and selected based on 

prior knowledge of the distribution. For this study it is assumed that α is bounded by: 

 

 1𝑒10−4 ≤ 𝛼 ≤ 1, (6.58) 

 

whereas κ = max(0, 3-n) = 0 and β = 2, which is considered optimal for a Gaussian distribution [51, 

29]. 

Once the sigma points and corresponding weights are computed, the sigma points are fed through the 

nonlinear function to map the input-output response of the sigma points to the nonlinear model as 

follows: 

 𝒛𝑖 = 𝑓(𝝌𝑖). (6.59) 
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The mean and covariance of z is computed from the weight average and weighted outer product of the 

transformed sigma points zi, respectively: 

 

 𝒛̅ = ∑𝑤𝑖
(𝑚)
𝒛𝑖,

2𝑛

𝑖=0

 (6.60) 

 𝑷𝑧𝑧 =∑𝑤𝑖
(𝑐)
(𝒛𝑖 − 𝒛̅

2𝑛

𝑖=0

)(𝒛𝑖 − 𝒛̅)
𝑇 (6.61) 

 

6.3.2.2 UKF ALGORITHM 

The UKF algorithm consists of three steps that are related to but different from those of the linear and 

extended Kalman filters. These steps, sequentially, are the state prediction, taking into account 

process noise; the observation prediction, taking into account observation noise and finally the cross-

correlation prediction [29, 51, 44]. 

The process model is written in the familiar form: 

 

 𝒙𝑘+1 = 𝑓(𝒙𝑘 , 𝒖𝑘). (6.62) 

 

A set of 2n+1 transformed sigma points are computed by feeding the original sigma points from 

Equations (6.50), (6.51) and (6.52) through the nonlinear process model: 

 

 𝝌𝑖,𝑘+1|𝑘 = 𝑓(𝝌𝑖,𝑘−1, 𝒖𝑘−1). (6.63) 

 

The predicted mean of the state vector is the weighted average of the transformed augmented sigma 

points: 
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 𝒙̅𝑘|𝑘−1 =∑𝑤𝑖
(𝑚)
𝝌𝑖,

2𝑛

𝑖=0

 (6.64) 

 

and the predicted covariance is computed as follows: 

 

 𝑷𝑘|𝑘−1 = 𝑸𝑘 +∑𝑤𝑖
(𝑐)
(𝝌𝑖 − 𝒙̅𝑘|𝑘−1)(𝝌𝑖 − 𝒙̅𝑘|𝑘−1)

𝑇
,

2𝑛

𝑖=0

 (6.65) 

 

where R is the covariance matrix of the process noise w. 

 Next, the augmented set of sigma points feed through the observation model to obtain another set of 

transformed sigma points: 

 

 𝜸𝑖,𝑘 = ℎ(𝝌𝑖,𝑘−1, 𝒖𝑘−1). (6.66) 

 

In this same manner as before, the mean observation vector is computed as: 

 

 𝒚̅𝑘|𝑘−1 =∑𝑤𝑖
(𝑚)𝜸𝑖,𝑘.

2𝑛

𝑖=0

 (6.67) 

 

and the innovation, or observation covariance is: 

 

 𝑷𝑌𝑌,𝑘 = 𝑹𝑘 +∑𝑤𝑖
(𝑐)
(𝜸𝑖,𝑘 − 𝒚̅𝑘|𝑘−1)(𝜸𝑖,𝑘 − 𝒚̅𝑘|𝑘−1)

𝑇
,

2𝑛

𝑖=0

 (6.68) 

 

where is R is covariance matrix of the observation noise, v. Next, the cross-correlation matrix is 

determined by: 
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 𝑷𝑋𝑍,𝑘 =∑𝑤𝑖
(𝑐)
(𝝌𝑖,𝑘 − 𝒙̅𝑘|𝑘−1)(𝜸𝑖,𝑘 − 𝒚̅𝑘)

𝑇
.

2𝑛

𝑖=0

 (6.69) 

  

Then the Kalman gain can be computed according to: 

 

 𝑲𝑘 = 𝑷𝑋𝑍,𝑘𝑷𝑌𝑌,𝑘
−1 , (6.70) 

 

and finally is used to update the estimated state and covariance: 

 

 𝒙̅𝑘 = 𝒙̅𝑘|𝑘−1 +𝑲𝑘(𝒚𝑘 − 𝒚̅𝑘|𝑘−1), (6.71) 

 𝑷𝑘 = 𝑷𝑘|𝑘−1 −𝑲𝑘𝑷𝑌𝑌,𝑘𝑲𝑘
𝑇 (6.72) 

 

The observability of the nonlinear system is complex and the degree of observability may vary over 

time. In this study, the Lie derivative is used. The Lie derivative for hi of order (r+1) is defined as: 

 

 𝐿𝑓
𝑟+1ℎ𝑖(𝒙) =

𝜕𝐿𝑓
𝑟ℎ𝑖(𝒙)

𝜕𝒙
𝑓(𝒙, 𝑢) (6.73) 

 

where  

 

 𝐿𝑓
1ℎ𝑖(𝒙) =

𝜕ℎ𝑖(𝒙)

𝜕𝒙
𝑓(𝒙, 𝑢), (6.74) 

 

where i ϵ {1, …, p}. 

The nonlinear observability function oi for the observation function hi is defined as: 
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 𝑜𝑖 =

[
 
 
 
 
𝑑ℎ𝑖(𝒙)

𝑑𝐿𝑓
1ℎ𝑖(𝒙)

⋮
𝑑𝐿𝑓

𝑛−1ℎ𝑖(𝒙)]
 
 
 
 

, (6.75) 

 

where d is the partial derivative operator: 

 

 𝑑ℎ𝑖 = [
𝜕ℎ𝑖
𝑑𝑥1

, ⋯ ,
𝜕ℎ𝑖
𝑑𝑥𝑛

]. (6.76) 

 

The system observability matrix is calculated as: 

 

 𝑶 = [

𝑜1
⋯
𝑜𝑝
]. (6.77) 

 

The system is observable if and only if the observability matrix has rank n. A nonlinear system may 

gradually become unobservable in some areas of the phase space. To quantify the degree of 

observability, an observability index can be used and is defined as: 

 

 𝛬(𝒙𝑘) =
𝜆𝑚𝑖𝑛[𝑶

𝑇𝑶,𝒙𝑘]

𝜆𝑚𝑎𝑥[𝑶
𝑇𝑶,𝒙𝑘]

, (6.78) 

 

where 𝜆𝑚𝑎𝑥[𝑶
𝑇𝑶,𝒙𝑘] denotes the maximum eigenvalue of the dot product of the observability matrix 

estimated at each point xk at each time step. The minimum eigenvalue is computed in the same 

fashion. Thus, 0 ≤ 𝛬(𝒙𝑘) ≤ 1 where the lower bound is reached when the system is unobservable at 

state xk [29]. 
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7 SIMULATION RESULTS 

This section presents a comparative study of the results of the three configurations of the Direct Yaw 

Moment Controller (DYC). All three systems share the same parameters and algorithms for the 

Torque Vectoring Controller (TVC) and Unified Tire Force Estimator (UTFE). Chapter 5 and 

Chapter 6 discuss these parameters and algorithms, respectively, in much more detail. The primary 

differences between the DYC methods lies in the formulation of the switching function and in the 

handling of tire force feedback which are discussed in more detail in Chapter 4. For clarity, these 

three methods are referred to as “conventional sliding mode control (CSMC)”, “hybrid sliding mode 

control (HSMC)” and “modified sliding mode control (MSMC) which are discussed in 4.2.1.1, 

4.2.1.2, and 4.2.1.3, respectively. In addition to these methods, a fourth system referred to as “open 

loop” is simulated. The open loop system is unable to produce torque differentials and represents how 

a conventional vehicle might perform. These control systems control the vehicle motion via its 

powertrain; hence, it relies on a model of the vehicle to produce feedback signals. CarMaker, a high-

fidelity vehicle simulation tool, is employed to simulate four vehicle maneuvers and evaluate the 

differences in performance when equipped with each controller. In addition to being able to simulate 

maneuvers, CarMaker provides a virtual sensor toolbox which enables the simulation of real IMU, 

encoder and steering angle sensor signals. CarMaker validates its models using real measurement data 

from test vehicles equipped with a suite of sensors and can simulate responses to common maneuvers 

within 5% of the same vehicle’s actual response to the same stimulus. 

Before the closed loop control performance of the vehicle can be evaluated, the open loop 

performance of the TVC must be shown to be stable. Two tests are simulated to show that the TVC 

remains stable when subjected to zero stimulation of the yaw mode and when subjected to a step 

input. The first of the two tests is to disconnect the high-level controller and accelerate from rest up to 

some velocity, ufinal then remain at speed. When there is no stimulation of the vehicle’s yaw mode and 

the only signal fed to the TVC is the base torque, Tbase that evolves from the electric motor map 

discussed in Chapter 3. In this case, there should be no difference in the torque produced by the 

motors on the left and right sides of the powertrain. In the second of the two tests, the vehicle is 

accelerated from rest up to a steady-state velocity and is then subjected to a step steer and yaw 

moment input at the same time. This test demonstrates that the TVC is stable when the yaw mode is 

highly excited and steady. 

Even if the open loop system is stable, it does not guarantee it will remain stable when the loop is 

closed. In order to ascertain the stability of the closed loop systems and investigate their performance, 

four closed loop tests are performed. The first of these tests is a J-turn whereby the driver increases 

the steering angle linearly while holding the velocity steady for a period, after which they hold the 
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steering angle steady at some final value. This maneuver excites the yaw mode while minimizing the 

time variance. This maneuver is followed by a sinusoidal steering sweep. The effect of a sinusoidal 

steering maneuver is like that of a lane-change. In this case, the driver maintains steady velocity while 

providing a sinusoidal steering input. This test excites the yaw mode with a greater time rate of 

change than the J-turn. The third of the four maneuvers is a skid pad. A skid pad is effectively the 

inverse of a J-turn. During the skid pad a driver slowly accelerates from rest while turning through a 

circular road of constant curvature. The test ends when the vehicle is no longer able to negotiate the 

turn, either because it fishtails or goes off the road. Fishtailing is characteristic of terminal oversteer 

while “going of the road” is characteristic of terminal understeer. A more detailed discussion of 

oversteer and understeer is found in Chapter 4. In this test the lateral acceleration increases steadily 

and minimizes nonlinearity in the load transfer which would arise from the suspension dynamics and 

coupling of the longitudinal and lateral acceleration expressed in (6.14), (6.15), (6.16) and (6.17). 

Such an effect can enable the steering angle to be expressed as a single-variable function of lateral 

acceleration and allows the characteristic understeer gradient of the vehicle to emerge. The linearized 

function (4.1) indicates that the slope of this function is the understeer gradient, which depends on the 

difference of the ratio of the front axle vertical load to front tire cornering stiffness and front axle rear 

axle vertical load to rear tire cornering stiffness. DYC attempts to control the yaw dynamics in such a 

way that this difference is zero, so that the understeer gradient, and thereby the slope relating lateral 

acceleration to steer angle, becomes zero. In other words, the skid pad test enables the performance of 

the controller to be framed as how successfully the controller drives the slope of this function to zero. 

The final test is referred to as a “braking mu-split” test. Here, the vehicle accelerates to freeway 

speed, after which the two left tires hit a strip of road with a much lower coefficient of friction, which 

could represent snow or ice. The driver slams on the brakes, but the left tires are unable able to 

translate a fraction of the braking torque into braking force, so the vehicle tends to spin out clockwise. 

In this scenario, the high-level controller detects that the vehicle is beginning to spin even though the 

driver has not input a steering angle and generate a corrective yaw moment to offset the clockwise 

spin while, at the same time, satisfy the torque constraints imposed by the TVC based on the friction 

circle and load on each individual tire. The performance of the controllers is framed as how 

effectively they reduce or even prevent spinout. 

All implementation of the work presented in the preceding chapters was done within the MATLAB 

and Simulink environments. Once complete, the Simulink model was built as C code using a 

CarMaker’s TLC compiler and exported to the CarMaker API as the custom plug-in PowerTrain 

model TVC_OpenXWD. All simulations were run, and results obtained using a high-fidelity custom 

medium-class vehicle model designed in the spirit of a BMW 5 Series sedan. 
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7.1 UNIFIED TIRE FORCE ESTIMATOR SUMMARY 

The Unified Tire Force estimator is a crucial component in maximizing the effectiveness of the force-

based sliding mode controller. The output of the sliding mode controller depends on the computation 

of the moment about the vehicle body z-axis, which is a function of the switching function, controller 

gain and lateral tire forces according to (4.38) and (4.49). A set of three individual estimation 

modules constitutes the estimator, but it is “unified” in the sense that the lateral estimation step, the 

final and, by far, most involved step depends on the estimates from the longitudinal estimation step 

and vertical estimation step. The UTFE outputs a 3D vector of tire forces for each individual tire and 

outputs twelve force estimates. 

This chapter investigates the UTFE in open loop only so that the controllers and estimators can be 

evaluated independent of each other. There is no real benefit to evaluate the closed loop behavior of 

the estimator because its objective, tracking the real tire forces as closely as possible, is entirely 

unrelated to and independent of the objectives of the Direct Yaw Moment Controller. Furthermore, it 

is more desirable to investigate the DYC with the UTFE out of the loop because it is difficult to 

discern the influence of the UTFE on the performance of the controllers. The results of the UTFE are 

presented for each closed loop maneuver in this section and is evaluated by how closely it tracks the 

nonlinear RT 195 65R15 p2.50 tires from CarMaker’s Tire Data Set Generator. This generator uses 

the Magic Formula and tire characteristics defined by the European Standard Tire and Rim Technical 

Organization (ETRTO) to develop nonlinear tire curves from measurement data. It is important to 

note that when referring to the UTFE, “open loop” means that the states feedback to it and the forces 

are estimated, but they do not feed back to the SMC. Rather, the RT model forces feedback. As stated 

before, this is to decouple the controller and estimator for the purpose of analysis. 

The force estimation sections for each of the simulated maneuvers demonstrate estimator 

performance for the x, y, and z forces that are consistently different. The vertical (z-direction) force 

estimate tracks the RT model very well for a variety of operating conditions. The longitudinal force 

estimate tracks the RT model well for less aggressive maneuvers but even then, it deviates if there is 

significant load transfer, rolling resistance, or application of brakes. On the other hand, the lateral 

force estimate is somewhat unpredictable because it is highly nonlinear and is relatively difficult to 

observe. Sometimes it performs well, but in some cases, it is even unable to track the shape of the RT 

tire force response. One would not be wrong to say that the lateral force estimates and, to a degree, 

the longitudinal force estimates are mediocre. These forces are incredibly difficult to predict even 

using measurement data and the Magic Formula tire model. A large amount of data is required to 

develop an accurate model. On the other hand, the UTFE produces decent estimates with a great deal 

of robustness considering that there is substantial uncertainty in the tire and suspension parameters. 
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7.2 OPEN LOOP TVC RESULTS 

The TVC constitutes the foundation of this study by the fact that it is principally responsible for 

allocating the torque to each end of the powertrain of the vehicle. More so than the yaw moment 

controller, the TVC is at risk of instability due to its dynamic nature, especially if an inappropriate set 

of learning parameters is chosen for the primal-dual gradient descent algorithm. The stability of the 

controller was investigated through open loop simulations with the TVC disconnected from the yaw-

moment controller and sending it only throttle and the angular velocity of the wheels, the two signals 

necessary to compute the base torque from the electric motor map of the Pd18 motors. The learning 

rates chosen for the algorithm are those listed in Table 5-1. The objective function is the longitudinal 

slip power loss function described in Chapter 5. Slip power loss occurs when the slip ratio becomes 

excessive, so minimizing slip power loss is essentially a form of traction control.   

Figure 7.1 shows the result of the torque allocation for a scenario in which the vehicle is initially to 

100 km/h from rest and then maintains that speed until the simulation ends. The torque allocates a 

high torque during the period that the vehicle is acceleration. Once the top speed is achieved, the 

torque drops sharply to a level required only to maintain the speed. Notably, the torque on all four 

wheels is identical. This is due to the cost function that was adopted: torque is biased towards the 

wheels with a greater longitudinal stiffness, Cλ. In this study, it was assumed that all four wheels have 

the same stiffness, so the minimum power loss would occur if the wheels were all driven with the 

same torque.  
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Figure 7.1 Torque response of the TVC during straight driving when front and rear wheels have equal 

stiffness. Vehicle starts at rest, accelerates to 100 km/h, and holds speed.  

 

Figure 7.2 Torque response of the TVC to a step steer and moment where u = 45 km/h, 𝛿̇𝑓,𝑠𝑡𝑒𝑝  = 120 

deg/s and Mz = 2000 Nm. 
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If, for instance, the longitudinal stiffness of the tires on the front axle were greater than on the rear 

axle, the front axle could bear a greater torque than the rear axle for the same slip, so the allocation 

would bias towards the front axle and shift TFL and TFR up.  

Figure 7.2 shows the torque response of the torque allocation when subjected to a simultaneous step 

input of steer and yaw moment at t = 10 s. The vehicle is steered to the left, so the desired yaw 

moment is counterclockwise. A step input is not achievable and so the step is modeled as a ramp steer 

that is one second long. The torque sent to the outside wheels is positive, driving, and the torque sent 

to the inside wheels is negative, braking. Interestingly, the torque sent to the front outside wheel is 

greater than the rear outside wheel, but the opposite is true for the inside wheels—the magnitude of 

the braking torque from the motor on the rear inside wheel is greater than it is for the front inside 

wheel. The front axle bears a greater portion of the vehicle weight, so one would think both front 

wheels would produce more torque than the rear wheels. However, the front wheels also steer. 

Typically, when torque is applied, the moment arm is the distance between the wheel and the 

centerline of the car, or half the track width. Since the front wheels turn, they also have a longer 

moment arm than the rear wheels and so can generate a greater moment for the same torque. This 

demonstrates the very important job the torque-vectoring controller has of juggling the tire load, 

friction limits and steering angle when coming up with a torque allocation solution. 

7.3 CLOSED LOOP DYC RESULTS 

This section presents results from simulations in CarMaker of the complete closed loop system. After 

demonstrating the effectiveness and stability of the torque-vectoring controller in open loop, the next 

step was to connect it to the supervisory controller, yaw moment controller and Unified Tire Force 

Estimator (UTFE). This system works by feeding the throttle and steering angle imposed by the 

driver and the current vehicle velocity to a supervisory controller which computes setpoints for the 

yaw rate and sideslip angles which would result in the understeer gradient, K, being driven to zero. 

These setpoints go to the yaw moment controller. Other signals fed to the yaw moment controller are 

the yaw rate detected by the IMU and the sideslip angle and lateral tire forces estimated by the UTFE. 

The yaw moment controller combines the yaw rate and sideslip angle into a switching function used 

by a sliding mode controller (SMC) to compute the desired yaw moment required to meet the request 

of the supervisory controller. The desired yaw moment goes to the torque-vectoring controller, which 

allocates the torque to satisfy the desired yaw dynamics imposed by the yaw moment and the desired 

longitudinal dynamics imposed by the throttle while also attempting to minimize excessive 

longitudinal slip.  
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Each of the four following major sections summarizes the results of each simulated maneuver. These 

results are presented as plots. The first plots are related to the performance of the closed loop 

controller, include plots of the yaw rate response, and sideslip angle response in that order. Responses 

from DYC systems with CSMC, HSMC, and MSMC are shown on a single plot so that they can be 

compared. The next plot is the torque distribution computed by the TVC for the system with MSMC. 

The choice to present a torque plot for MSMC was made because chatter in the CSMC and HSMC 

systems make the torque distributions practically unintelligible, whereas distribution from the MSMC 

was smooth and easily interpreted. The last part of each section presents the results of the UTFE. 

Included in these results are plots of the longitudinal force, lateral force, and vertical force, with the 

results of the RT tire model overlaid for comparison. The tire force plots for each section number 

twelve in total. Unlike for the other three maneuvers, the results of the skid pad includes a plot of the 

USG following the sideslip angle response because this maneuver involves the vehicle traversing a 

constant radius circle so the ideal steering angle is constant and nonzero so it is obvious from a plot of 

the USG whether a vehicle demonstrates understeer, oversteer, or neutral steer. 

7.3.1 J-TURN 

This section presents the results of a J-turn simulated in CarMaker performed at the upper end of 

intermediate lateral acceleration (~ 0.6g). The maneuver is carried out at 45 km/h, an appropriate 

speed for urban driving and the steering profile is as shown in Figure 7.3. The speed and steering 

profile of this maneuver is very similar to what one might expect entering and negotiating a 

roundabout. 
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Figure 7.3 Front wheel steer angle for the ramp steer maneuver at u = 45 km/h. 

 

Recall that the supervisory controller generates a yaw rate setpoint, which would drive the system 

towards neutral steer. This corresponds to the yaw rate setpoint shown in Figure 7.4 below plotted 

against the actual yaw rate achieved by each of the three controllers as well as the open loop system. 

As can be seen in Figure 7.5, the MSMC steady-state yaw rate error er = -0.14 deg/s, or -0.5%; the 

open loop error is -0.44 deg/s, or -1.6%; the CSMC average error is -1.30 deg/s, or -4.7% and the 

HSMC average error is -1.36 deg/s or -4.9%. The CSMC and HSMC yaw responses chatter with an 

amplitude of 0.12 deg/s and frequency of 11.5 Hz. One can also see that the HSMC lags the CSMC 

response by 180˚. The MSMC method clearly tracks the desired yaw rate very closely while the 

CSMC, HSMC and open loop systems lag at a lower yaw rate than the ideal, demonstrating 

understeering behavior. In fact, the CSMC and HSMC perform worse than the open loop system. This 

is because these methods produce intense chattering, which dilutes the desired yaw moment and 

torque allocation. It is also notable that the CSMC and HSMC produce similar yaw rates. This is 

because the switching gain term in the controller is the primary contributor to the desired yaw 

moment signal while the tire force terms tend to shape the transient response, so the HSMC would 

track similarly to the CSMC with a poorer transient response. 
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Figure 7.6 illustrates the sideslip angle response of the vehicle during the J-turn for the four systems. 

The sideslip angle setpoint is βd = 0˚ so a lower sideslip angle is always good. No matter how good a 

controller is, sideslip is unavoidable so long as a vehicle is turning. The results demonstrate that the 

modified DYC outperforms all three of the other systems having the smallest sideslip angle 

throughout the entire maneuver and a 3.5% improvement relative to the open loop sideslip angle. 

 

 

Figure 7.4 Yaw rate response during the ramp steer maneuver when u = 45 km/h and δss = 120˚. 
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Figure 7.5 Controller steady-state error and CSMC/HSMC switching frequency. 

 

 

Figure 7.6 Sideslip angle response during the ramp steer maneuver when u = 45 km/h and δss = 120˚. 
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Figure 7.7 Torque response of the DYC system using the modified sliding mode controller during the 

ramp steer maneuver when u = 45 km/h and δss = 120˚. 

 

Figure 7.7 shows the torque allocation developed by the TVC over the course of the J-turn. The 

response shows three distinct phases of evolution in the torque allocation, which illustrates how the 

primal-dual gradient descent algorithm responds to different stimuli because of the tuning process. In 

the first phase there is no steering or other lateral disturbances so the TVC produces equal torque at 

all the wheels just to maintain the speed at 45 km/h; in the second phase, the steering angle begins 

turning at a rate of 12 deg/s and the TVC generates a second-order response at both the initiating and 

termination of the ramp; during the third phase, the steering angle is held steady at 120˚ and, 

following the settling of second-order response, the torque distribution remains constant. This elegant 

torque profile makes it trivial to characterize the second-order dynamic response of the TVC for the 

chosen set of tuning parameters using the known overshoot, approximate steady-state value, rise time 

and settling time. From the entry response of the right rear tire, it is obvious that the overshoot is 38.1 

N while the steady-state value is approximately 36.5 N, or a 4.36% overshoot. The resulting damping 

ratio is ξ = 0.7. The peak time Tp = 0.08 s and the settling time Ts = 0.60 s. Using the peak time and 
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damping ratio, the computed natural frequency and damped natural frequency of the torque vectoring 

controller are fn = 8.8 Hz and fd = 6.3 Hz. The second order TVC system has two poles in the left-

hand plane of the root locus at 38.5 ± 39.3j so the torque-vectoring controller is stable in closed loop. 

 

  

Figure 7.8 Second-order response at the entrance and termination of the second phase of the J-turn. 

 

7.3.1.1 J-TURN TIRE FORCE ESTIMATION  

This section presents results from the RT tire model and UTFE during the J-turn maneuver. The 

UTFE runs in open loop, meaning that it is runs without affecting the rest of the system, while the RT 

tire model forces feed back to the DYC. The purpose of this is to decouple the performance of the 

controller from the performance of the estimator. 

7.3.1.1.1 LONGITUDINAL FORCE 

The longitudinal tire force curves should look very similar to those of the driving torques shown in 

Figure 7.7 since torque directly generates the force. It is shown clearly in Figure 7.9-Figure 7.12 that 

the longitudinal force estimates are unable to track the actual force well. This is because the 

longitudinal force estimate is based on the wheel equation of motion in Equation (3.30), but does not 

account for dissipative rolling resistance term, variations in the vertical load on the tire, or braking 

force. As a result, the estimator over-predicts the force, especially during transient maneuvers where 

the suspension is highly active and the second phase of the J-turn is certainly transient. Moreover, the 

longitudinal tire force estimate assumes that the difference in the torque and angular acceleration 

terms always leads to a proportional rise in force. In other words, it assumes a linear relationship 

between torque and force. This holds true for operation within the linear region of the tire curves at 
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accelerations less than about 0.4 g, but the error increases the tire approaches its limits. Figure 7.13-

Figure 7.16 and Figure 7.17-Figure 7.20 show the offset in force caused by the modeling error. 

 

 

Figure 7.9 Comparison of the longitudinal force estimate and nonlinear model on the left front tire 

during a ramp steer maneuver when u = 45 km/h and δss = 120˚. 
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Figure 7.10 Comparison of the longitudinal force estimate and nonlinear model on the right front tire 

during a ramp steer maneuver when u = 45 km/h and δss = 120˚. 

 

Figure 7.11 Comparison of the longitudinal force estimate and nonlinear model on the left rear tire 

during a ramp steer maneuver when u = 45 km/h and δss = 120˚. 
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Figure 7.12 Comparison of the longitudinal force estimate and nonlinear model on the right rear tire 

during a ramp steer maneuver when u = 45 km/h and δss = 120˚. 

 

7.3.1.1.2 LATERAL FORCE 

Despite being a more difficult quantity to observe than the longitudinal force and vertical force, the 

lateral force estimate for the front axle forces during the J-turn tracks quite well while the estimates 

for the rear axle are very poor. The likely cause of this is an inadequate choice of state and 

measurement covariance for the unscented Kalman filter (UKF), which constitutes the lateral 

estimation step. Tuning the covariance and parameters related to the Unscented Transformation has a 

great influence on how well the filter deals with modeling error and nonlinearities. One can expect 

that forcing the filter to track the lateral tire forces is an especially difficult task by virtue of low 

degree of observability, high degree of nonlinearity and modeling error introduced by the feedforward 

error in the longitudinal tire force estimation. The lateral force estimate during the transient response 

for the rear left tire is a good example of the filter struggling to overcome the function nonlinearity 

but being able to overcome the modeling error. The lateral force estimate for the rear right tire is an 

especially good example of the UKF being unable to overcome function nonlinearity during the 

transient response as well as the modeling error seeing as it fails to track the actual force even once 

the vehicle reaches steady-state in phase three of the J-turn. 
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Figure 7.13 Comparison of the lateral force estimate and nonlinear model on the left front tire during 

a ramp steer maneuver when u = 45 km/h and δss = 120˚. 
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Figure 7.14 Comparison of the lateral force estimate and nonlinear model on the right front tire during 

a ramp steer maneuver when u = 45 km/h and δss = 120˚. 

 

Figure 7.15 Comparison of the lateral force estimate and nonlinear model on the left rear tire during a 

ramp steer maneuver when u = 45 km/h and δss = 120˚. 
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Figure 7.16 Comparison of the lateral force estimate and nonlinear model on the right rear tire during 

a ramp steer maneuver when u = 45 km/h and δss = 120˚. 

7.3.1.1.3 VERTICAL FORCE 

Figure 7.17 through Figure 7.20 show that the vertical tire force estimator can track the actual force 

far better than either the longitudinal estimator or the lateral estimator. This is because the vertical 

force depends on the suspension and load transfer of the vehicle and avoids the modeling problems 

associated with slip and operation within the friction circle. The approximate average steady-state 

vertical force estimation error is as follows: eFL = 147 N (6.7%), eFR = -150 N (-2.6%), eRL = -70.5 N 

(-7.1%), eRR = 83 N (2.9%). 
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Figure 7.17 Comparison of the vertical force estimate and nonlinear model on the left front tire during 

a ramp steer maneuver when u = 45 km/h and δss = 120˚. 
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Figure 7.18 Comparison of the vertical force estimate and nonlinear model on the right front tire 

during a ramp steer maneuver when u = 45 km/h and δss = 120˚. 

 

Figure 7.19 Comparison of the vertical force estimate and nonlinear model on the left rear tire during 

a ramp steer maneuver when u = 45 km/h and δss = 120˚. 
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Figure 7.20 Comparison of the vertical force estimate and nonlinear model on the right rear tire 

during a ramp steer maneuver when u = 45 km/h and δss = 120˚. 

 

7.3.2 SINE STEER TEST 

The next simulation is a sinusoidal steering, or “sine steer” maneuver. The sine steer maneuver aims 

at constantly exciting the yaw mode of the vehicle at an intermediate degree of lateral acceleration. 

Figure 7.21 shows the steering angle applied during the sine steer maneuver. At first, the vehicle 

travels straight at 60 km/h. After five seconds, the driver begins steering back and forth at constant 

velocity. This steering input has an amplitude of 60° and period of 2.5 seconds and lasts for one and a 

half cycles. This test induces a response resembling that of an aggressive lane-change and seeks to 

show good controller estimator tracking for a maneuver that is more complex and transient than a J-

turn. 
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Figure 7.21 Front wheel steer angle for the sinusoidal steer maneuver at u = 60 km/h. 

 

Figure 7.22 shows that all three controllers track the ideal yaw rate very closely while the open loop 

system perform worse. The modified sliding mode controller performs the best of the three controllers 

while the conventional and hybrid sliding mode controllers perform comparably. Although it is 

negligible, the MSMC demonstrates oversteer at the peak steer, overshooting the ideal by 0.01 deg/s, 

but settles in approximately 80 milliseconds with practically zero error during the rise and fall of the 

steering angle. On the other hand, the CSMC and HSMC both overshoot by about the same amount, 

0.74 deg/s, and settle in approximately 830 milliseconds with very little error. Unlike the controlled 

systems, the open loop system demonstrates significant understeer and has a phase lag in its yaw rate 

response. The open loop system undershoots the ideal yaw rate by 1.82 deg/s and lags by 15.8°. 

Figure 7.23 shows how, once the vehicle straightens out, all three controllers’ overshoot while the 

open loop vehicle approaches zero yaw rate asymptotically. It is evident from the controller response 

that they all have similar damping ratios, resembling what one might expect with a damping ratio 

around 0.5. Meanwhile, the open loop controller demonstrates an overdamped response with a 

response resembling what one might expect with a damping ratio of approximately 1.5. Although it 

appeared that the CSMC and HSMC performed the same during the sine steering, the response in 

Figure 7.23 seems to indicate that the HSMC outperforms the CSMC. 
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Figure 7.24 shows the sideslip angle response to the sine steer maneuver. It is immediately evident 

that the open loop vehicle has the smallest sideslip throughout the maneuver. This should not be 

construed as better performance because it is a consequence of the open loop vehicle understeering 

and not better control. The sliding mode controllers attempt to drive both the yaw rate and sideslip 

angle errors to zero, but in the case of an understeering baseline vehicle such as this, the controller 

must increase the yaw rate to achieve neutral steer. The consequence of increasing the yaw rate to 

satisfy the neutral steer condition is that it increases the sideslip angle. Hence, the sideslip angle 

response of the controllers can only be compared to each other, not to the open loop response. On that 

note, one can see that the modified sliding mode controller is more successful at decreasing the 

sideslip angle than the conventional sliding mode controller and the hybrid sliding mode controller. 

Part of this is explained by the reason the modified sliding mode controller was developed in the first 

place: to drive the absolute value of the yaw rate and sideslip angle to zero so that the switching 

function is driven to zero only when the yaw rate error and sideslip angle error both go to zero. In this 

scenario, the yaw rate and sideslip angle have opposite signs. Since the conventional and hybrid 

sliding mode controllers do not use the absolute value of the errors, the switching function may be 

driven to zero when there is finite error and the effect of this is to reduce the desired yaw moment fed 

to the TVC when the error is high. The MSMC avoids this problem, and so can outperform the 

CSMC and HSMC in its yaw rate response and its sideslip angle response. This is exactly what is 

observed in both this case and in the J-turn in the previous section. 
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Figure 7.22 Yaw rate response during the sinusoidal steer maneuver when u = 60 km/h. 

 

 

Figure 7.23 Dynamic response of the vehicle when rd = 0 deg/s and u = 60 km/h. at the end of the 

sine steer maneuver. 
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Figure 7.24 Sideslip angle response during the sinusoidal steer maneuver when u = 60 km/h. 

 

 

Figure 7.25 Torque response of the DYC system using the modified sliding mode controller during 

the sinusoidal steer maneuver when u = 60 km/h. 
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Figure 7.25 shows the torque allocation for the MSMC during the sine steer maneuver. During the 

maneuver, the TVC sends similar torques to the wheels on the left and to the right side of the 

powertrain. Except for the initiation and termination of the maneuver, the torque allocation varies 

smoothly in accordance with the intensity of the yaw behavior. The shape of the torque curve 

generated by the TVC is that of two sine waves of opposite sign that are in phase. During the 

maneuver, three cross-overs occur at t1 = 5.72 s, t2 = 6.97 s,  6.97 s and t3 = 8.22 s and two maxima in 

the torque differential between left and right hand sides occur at t1 = 6.42 s, t2 =7.66 s. Cross-overs 

occur at the extremes of the steering profile and the torque differential maxima occur at the inflection 

points of the steering profile. This is driven by the 𝑟̇𝑑 term in the corrective yaw moment command 

from the MSMC in Equation (4.49) because the yaw rate error is very small and 𝛽̇ is an order of 

magnitude smaller than 𝑟̇𝑑 . At the extremes of the steering angle, 𝑟̇𝑑 = 0 so no moment is generated 

by the TVC at that moment. At the inflection points of the applied steering angle, 𝑟̇𝑑 is at its highest, 

so the greatest moment is generated by the TVC at these points. 

7.3.2.1 SINUSOIDAL STEERING SWEEP TEST TIRE FORCE ESTIMATION 

This section presents results from the RT tire model and UTFE during the sine steer maneuver. The 

UTFE runs in open loop, meaning that it is runs without affecting the rest of the system, while the RT 

tire model forces feed back to the DYC. The purpose of this is to decouple the performance of the 

controller from the performance of the estimator. 

7.3.2.1.1 LONGITUDINAL FORCE 

The longitudinal force estimation performs very well in this maneuver. One can see that the shape of 

the two forces are the same and are in phase with each other, but there is an offset in the magnitude of 

the force at any given instant, with the UTFE overestimating the model force. This overestimation is 

due to the modeling error within the estimator from neglecting rolling resistance, drag, and 

suspension dynamics. 
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Figure 7.26 Comparison of the longitudinal force estimate and nonlinear model on the left front tire 

during a sinusoidal steer maneuver when u = 45 km/h and δss = 120˚. 

 

Figure 7.27 Comparison of the longitudinal force estimate and nonlinear model on the right front tire 

during a sinusoidal steer maneuver when u = 45 km/h and δss = 120˚. 
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Figure 7.28 Comparison of the longitudinal force estimate and nonlinear model on the left rear tire 

during a sinusoidal steer maneuver when u = 45 km/h and δss = 120˚. 

 

Figure 7.29 Comparison of the longitudinal force estimate and nonlinear model on the right rear tire 

during a sinusoidal steer maneuver when u = 45 km/h and δss = 120˚. 
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7.3.2.1.2 LATERAL FORCE 

The lateral force estimation of the UTFE tracks the model force very well for the most part 

considering the high degree of nonlinearity of the lateral force. Evolution of the lateral force 

experiences a greater degree of nonlinearity than the longitudinal or lateral forces because it exists 

closer to the nonlinear region of the tire force curve than the longitudinal force because of the 

magnitude of the force, while the vertical force does not depend on the tire force curve whatsoever. 

As opposed to the longitudinal force, the model is a good representation of the true force because it is 

zero when there is no steering input. The UKF, which constitutes the lateral tire force estimator, also 

predicts zero force when there is zero input. During the steering phase of the maneuver, the estimator 

tracks the true force closely during the rise and fall, but overshoots for positive steer and undershoots 

for negative steer for the tires on the inside of the turn. On the other hand, it undershoots for positive 

steer and overshoots for negative steer on the outside tires. This is because, for the inside tires, the 

positive longitudinal force and lateral force peaks coincide, leading the tires to be operating near the 

edge of the friction circle and nonlinear region of the tire curve for positive steer. For the outside 

tires, the negative longitudinal force and lateral force peaks coincide so the tires operate near the edge 

of the friction and nonlinear region of the tire curve for negative steer. Consequently, the lateral force 

tracking is worse for the inside wheels during positive steer and poor for the outside wheels during 

negative steer. An exception to this rule is the rear right lateral tire force estimation. For the tuning 

parameters used in this study, the unique dynamics of the rear right tire are poorly estimate. This 

tracking performance is a testament to how difficult it is to estimate the lateral force because the UKF 

is designed to track highly nonlinear functions.  
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Figure 7.30 Comparison of the lateral force estimate and nonlinear model on the left front tire during 

a sinusoidal steer maneuver when u = 45 km/h and δss = 120˚. 
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Figure 7.31 Comparison of the lateral force estimate and nonlinear model on the right front tire during 

a sinusoidal steer maneuver when u = 45 km/h and δss = 120˚. 

 

Figure 7.32 Comparison of the lateral force estimate and nonlinear model on the left rear tire during a 

sinusoidal steer maneuver when u = 45 km/h and δss = 120˚. 
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Figure 7.33 Comparison of the lateral force estimate and nonlinear model on the right rear tire during 

a sinusoidal steer maneuver when u = 45 km/h and δss = 120˚. 

 

7.3.2.1.3 VERTICAL FORCE 

The cascaded linear and extended Kalman filters easily track the vertical forces during the sine steer 

maneuver because these forces do not develop according to a tire force curve or friction circle, but 

rather the vehicle suspension. The governing equation of the lateral load transfer has a far lower 

degree of nonlinearity than the planar tire forces. While the linear Kalman filter is unable to deal with 

a great deal of nonlinearity, the extended Kalman filter is quite good at it since it calculates the 

linearized lateral load transfer at each instant using the Jacobian of the system (6.14), (6.15), (6.16) 

and (6.17). One can see that the shape of the vertical tire forces follows the shape of the steering 

profile, but the inner tire forces are phase offset by 180˚ and the outer tire forces are in phase because 

of the load shifting from the inside wheels to the outside wheels. 
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Figure 7.34 Comparison of the vertical force estimate and nonlinear model on the left front tire during 

a sinusoidal steer maneuver when u = 45 km/h and δss = 120˚. 

 

Figure 7.35 Comparison of the vertical force estimate and nonlinear model on the right front tire 

during a sinusoidal steer maneuver when u = 45 km/h and δss = 120˚. 
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Figure 7.36 Comparison of the vertical force estimate and nonlinear model on the right front tire 

during a sinusoidal steer maneuver when u = 45 km/h and δss = 120˚. 

 

Figure 7.37 Comparison of the vertical force estimate and nonlinear model on the right rear tire 

during a sinusoidal steer maneuver when u = 45 km/h and δss = 120˚. 
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7.3.3 SKID PAD TEST 

The skid pad maneuver tests a vehicle’s handling and identifies its understeer gradient over its entire 

operating range. For conventional vehicles, the powertrain can only send equal torque to the ends of 

each axle, so the steering angle must change during the skid pad maneuver. Since, for a torque-

vectoring electric vehicle, the wheels can produce torque independently, the wheels take over some of 

the responsibility for steering the vehicle and the understeer gradient can be shaped, to a degree, 

depending on the torque allocation algorithm. In this case the controllers attempt to achieve a neutral 

understeer gradient which results in an acceleration versus steering angle curve with zero slope, or 

δ(ay) = b where b is the neutral, or Ackermann steering angle from Equation (4.4). The resulting 

understeer gradient for each controller and the open loop system is shown in Figure 7.40.  For this to 

be true, the yaw rate may only vary due to the change in longitudinal velocity, u. Since the ideal 

steering angle is constant and the velocity changes linearly due there being a constant longitudinal 

acceleration of 0.2 m/s2, the ideal yaw rate changes linearly according to Equation (4.14) as shown in 

Figure 7.38. 

This study was able to successfully produce neutral steer performance because of Direct Yaw 

Moment Control. In Figure 7.38, the yaw rate response from all three controller systems as well as the 

open loop system spike at t = 8 s because the driver model inputs a step steer at t = 0 s when the 

vehicle is at rest. Throughout the response, the CSMC and HSMC yaw rate responses experience 

several yaw rate spikes because of chattering from the controllers, which becomes more severe the 

closer the controller tracks the ideal response. This shows a cycle of the yaw rate of the two 

controllers settling towards neutral steer, chattering more severely, and then overshooting. The 

HSMC tracks the ideal yaw rate more closely than the CSMC response and chatters less severely but 

slips off course before the CSMC. The CSMC remains on course longer than the HSMC and open 

loop systems, but its limit behavior is terminal oversteer. In all these cases, the vehicle leaves the road 

as opposed to fishtailing since the yaw rates drops below the ideal yaw rate, indicating terminal 

understeer. 

 



 

 

124 

 

 

Figure 7.38 Yaw rate response during the skid pad maneuver when ax = 0.2 m/s2 and ρ = 0.0238 m-1. 

 

 

Figure 7.39 Sideslip angle response during the skid pad maneuver when ax = 0.2 m/s2 and ρ = 0.0238 

m-1. 
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As expected, the open loop yaw rate remains stable throughout its entire response but deviates from the 

ideal yaw rate at the same time as the HSMC and with a comparable peak lateral acceleration. On the 

other hand, the MSMC experiences no overshoot or chattering and deviates from the ideal yaw rate at 

the same time as the CSMC. In addition, the MSMC reaches a similar peak lateral acceleration as the 

CSMC. Additionally, the MSMC tracks the ideal yaw rate during its entire response. The MSMC 

deviates from the ideal yaw rate at t = 104 s in a much different manner than any of the other three 

systems: it begins fishtailing slightly, indicating limit oversteer, but remains stable. This limit behavior 

is neither terminal understeer nor terminal oversteer. The vehicle equipped with MSMC becomes 

marginally stable about the ideal yaw rate with a slight bias towards terminal oversteer. The vehicle 

begins fishtailing, but before it can go unstable the front tires slip and the vehicle enters a turn with a 

wider radius, which is concentric with the original turn radius and becomes stable again.  

While the yaw rate response indicates the limit behavior of the vehicle and shows the tracking 

performance of the vehicle, it does not say anything qualitative about the handling performance of the 

vehicle. The understeering gradient plot in Figure 7.40 frames the vehicle performance in terms of 

lateral acceleration, which is determined by the speed of the vehicle and radius of the turn with the 

formula ay = u2/R. A higher maximum lateral acceleration means the vehicle can negotiate a turn 

faster without loss of control. The CSMC demonstrates a highly inconsistent understeer gradient and 

never achieves neutral steer. Although it does achieve a greater maximum lateral acceleration than the 

open loop and HSMC systems, it results in severe chattering and oversteer. The HSMC approaches 

neutral steer for a short period for intermediate lateral acceleration, but quickly deviates towards 

understeer. Both the open loop and HSMC systems terminate at approximately 8.4 m/s2 (0.856 g), the 

CSMC terminates at approximately 8.95 m/s2 (0.912 g) and the MSMC terminates at approximately 

8.96 m/s2 (0.913 g). Only the MSMC was able to achieve neutral steer with an Ackermann steering 

angle error of 1˚, or 1.4%. 
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Figure 7.40 Understeer gradient during the skid pad maneuver when ax = 0.2 m/s2 and ρ = 0.0238 m-1. 

 

In the context of the performance that each system achieves, the MSMC is most successful in limiting 

the sideslip angle. Figure 7.39 shows the sideslip angle for each system over the duration of the skid 

pad test. The angle spikes toward the beginning of the maneuver because the driver model inputs a 

step steer at t = 0 s when the vehicle is at rest. Through the low and intermediate acceleration range, 

the sideslip angle of the MSMC tracks very closely to that of the open loop system, both of which 

remain lower than the CSMC and HSMC up until t = 80 s and u = 58 km/h. After this point, the 

sideslip angle for all systems goes negative and each system settles into its characteristic understeer 

behavior. The sideslip angle of the open loop and HSMC systems track together, with the HSMC 

angle having a lower magnitude until right before they leave the track. On the other hand, the CSMC 

and MSMC systems track together, with the MSMC angle having a lower magnitude than that of the 

CSMC until right before they leave the track. These represent two pairs of understeering behavior, 

where the open loop and HSMC systems understeer, failing at a lower lateral acceleration, while the 

CSMC and MSMC systems oversteer and fail at a higher lateral acceleration. The sideslip angle of 

the different pairs cannot be compared because the lateral acceleration is directly related to the 

sideslip angle, so it would not make sense for the first pair to have a greater sideslip angle than the 

latter pair. However, the pair members can be compared to each other. This means the HSMC and 

MSMC outperform the other two. 
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Figure 7.41 Torque response of the DYC system using the modified sliding mode controller during 

the skid pad maneuver when ax = 0.2 m/s2 and ρ = 0.0238 m-1. 

 

The controller does show some interesting behavior in terms of the torque allocation scheme. At low 

and intermediate lateral acceleration, the controller sends positive torque to the inside wheels and 

negative torque to the outside wheels which generates a clockwise moment about the vehicle, but the 

vehicle is turning to the left. This is because the initial steer step caused a large positive spike in yaw 

rate and sideslip angle, far above that which corresponds to neutral steer. A clockwise yawing 

moment was necessary to offset the counterclockwise yaw rate overshoot, which would have 

otherwise occurred. As the velocity increases, the sideslip angle decreases, and the ideal yaw rate 

increases until t = 62 s and u = 45 km/h at which point the yaw moment goes from opposing the 

steering moment to assisting it, requiring the torque to the outside wheels to exceed that of the inside 

wheels. The net torque shifts vertically to remain positive throughout the maneuver because it must 

meet the base torque required to accelerate the vehicle. 
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7.3.3.1 SKID PAD TEST TIRE FORCE ESTIMATION 

7.3.3.1.1 LONGITUDINAL FORCE 

The general trend of the longitudinal force closely matches the requested driving torque in terms of 

shape. The inner wheels initially generate a positive longitudinal force, which decreases over time 

while the outer wheels initially generate a negative, force, which increases over time until the yaw 

rate deviates. The inside wheels experience a small offset from the model force and the outside 

wheels track the model force very well. When the velocity is very small (< 1 m/s) there is a large 

spike in the estimate force due to the vehicle being at rest and lasts until t = 5 s. As the vehicle gains 

some speed, the spike subsides. 

 

 

Figure 7.42 Comparison of the longitudinal force estimate and nonlinear model on the left front tire 

during a skid pad test where ax = 0.2 m/s2. 
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Figure 7.43 Comparison of the longitudinal force estimate and nonlinear model on the right front tire 

during a skid pad test where ax = 0.2 m/s2. 

 

Figure 7.44 Comparison of the longitudinal force estimate and nonlinear model on the left rear tire 

during a skid pad test where ax = 0.2 m/s2. 
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Figure 7.45 Comparison of the longitudinal force estimate and nonlinear model on the right rear tire 

during a skid pad test where ax = 0.2 m/s2. 

 

7.3.3.1.2 LATERAL FORCE 

In this case, the UTFE tracks the model lateral tire force better for the outside wheels than for the 

inside wheels. As with the longitudinal force estimation, the lateral force estimator predicts a spike at 

low speeds, which settles within the first five seconds of the maneuver. The UTFE does not track the 

model force precisely during the intermediate acceleration range of the maneuver (40 s < t < 80 s) for 

the outside wheels and tracks better at high acceleration (> 80 s). On the other hand, the UTFE does 

not track precisely at all beyond low acceleration (> 40 s). As with the J-turn and Sine steer 

maneuvers, the estimated right rear lateral tire force does not track the model force at all. However, it 

does follow the same general shape. 
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Figure 7.46 Comparison of the lateral force estimate and nonlinear model on the left front tire during 

a skid pad test where ax = 0.2 m/s2. 

 

Figure 7.47 Comparison of the lateral force estimate and nonlinear model on the right front tire during 

a skid pad test where ax = 0.2 m/s2. 
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Figure 7.48 Comparison of the lateral force estimate and nonlinear model on the left rear tire during a 

skid pad test where ax = 0.2 m/s2. 

 

Figure 7.49 Comparison of the lateral force estimate and nonlinear model on the right rear tire during 

a skid pad test where ax = 0.2 m/s2. 
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7.3.3.1.3 VERTICAL FORCE 

The vertical tire force estimation of the UTFE tracks the RT tire model very precisely. On the other 

hand, the front axle vertical force estimation begins deviating some beyond 80 seconds. This 

inconsistency arises because the roll dynamics become significant at high lateral accelerations and the 

UTFE assumes static roll parameters. Perhaps the most consequential of the modeling assumptions 

was that the roll center of the front axle is coincident with the ground to eliminate certain roll terms 

from the force computation. 

 

 

Figure 7.50 Comparison of the vertical force estimate and nonlinear model on the left front tire during 

a skid pad test where ax = 0.2 m/s2. 
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Figure 7.51 Comparison of the vertical force estimate and nonlinear model on the right front tire 

during a skid pad test where ax = 0.2 m/s2. 

 

Figure 7.52 Comparison of the vertical force estimate and nonlinear model on the left rear tire during 

a skid pad test where ax = 0.2 m/s2. 
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Figure 7.53 Comparison of the vertical force estimate and nonlinear model on the right rear tire 

during a skid pad test where ax = 0.2 m/s2. 

 

7.3.4 BRAKING MU SPLIT TEST 

This maneuver is intended to test the traction control capabilities of the control system. The vehicle 

drives ahead at a high speed until the left tires hit a low-friction strip on the road after 29 seconds 

simulating an ice slick. At this point, the driver slams on the brake pedal, applying 80% of the 

maximum pressure to the brake pads until the vehicle comes to rest. In this case, the driver does not 

input any steer, but the vehicle begins rotating because of the unequal braking force on the left and 

right-hand side. This would typically lead to the vehicle dangerously spinning out. However, the 

controller detects that the driver has not input a steering angle and attempt to straight the vehicle. The 

result of this test will show the relative performance of the controllers in preventing spinout and 

demonstrate the control system’s robustness against uncertainty in the friction coefficient of the road. 

Figure 7.54 and Figure 7.55 show the yaw rate and sideslip angle response of each system during the 

mu-split maneuver, respectively. Severe chattering in the CSMC because of the very small tracking 

error causes it to yaw at the beginning of the maneuver before straightening out again. When the 

vehicle begins braking on the slick, a large yaw moment occurs on the vehicle which the open loop 

system, CSMC system and HSMC system are unable to recover from, resulting in them spinning out 
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unstably as evident from the sudden deviation in the yaw rates and sideslip angles. On the other hand, 

the MSMC system experiences a relatively small deviation with peak yaw rate and sideslip magnitude 

1.05 deg/s and 0.4˚, then begins slipping more severely with a peak yaw rate and sideslip magnitude 

of 1.35 deg/s and 1.8˚ respectively, then it fully corrects and comes to rest 

 

 

Figure 7.54 Yaw rate response during the skid pad maneuver where t = 29 s and u = 100 km/h when 

the friction patch is hit. 
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Figure 7.55 Sideslip angle response during the braking mu-split maneuver where t = 29 s and u = 100 

km/h when the friction patch is hit. 

 

Figure 7.56 Torque response of the DYC system using the modified sliding mode controller during 

the braking mu-split maneuver where t = 29 s and u = 100 km/h when the friction patch is hit. 
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Since the yaw instability occurs due to a lesser braking force on the left-hand tires, the vehicle rotates 

clockwise. Figure 7.56 shows the torque allocation, which counters this rotation. The TVC allocates 

positive torque to the right-hand tires of the vehicle and negative torque to the left-hand tires. The 

TVC is unaware of the braking torque because it is not modeled in the longitudinal force estimator 

upon which the torque constraint module depends. Consequently, the torque-vectoring controller does 

not produce an optimal torque distribution during the braking mu-split scenario. This is evident by the 

fact that the controller tries to generate a large amount of negative torque on the left tires of the 

vehicle, which are skidding.  

Figure 7.57 shows a simulation from CarMaker of the vehicle losing traction and spinning out during 

the mu-split maneuver after the driver begins braking after hitting a low mu strip. This figure 

demonstrates how the MSMC can keep the vehicle from spinning out while the CSMC and HSMC do 

not. The suboptimal solution results in the CSMC and HSMC systems spinning out clockwise even 

though they produce a counter moment. This scenario is exacerbated by chattering from these two 

controllers, which reduced the effectiveness of the torque allocation in the critical first moment of 

braking when spinning starts. On the other hand, the MSMC was able to stop the spinout. Since the 

left hand tires of the vehicle is already near the limit of the negative torque it can produce, the MSMC 

was able to steady the vehicle because it provided a sufficiently large driving torque on the right-hand 

tires to reduce the braking force such that severe spinning did not occur in the first moment of 

braking. Once the vehicle started slowing down, it became easier to control. Although the torque-

vectoring controller did not have information from the braking system, the MSMC was able to 

prevent the vehicle from becoming unstable because it produced smooth, chatter-free counter moment 

compensated for uncertainty in the friction coefficient by tracking both the yaw rate and sideslip 

angle as well as their rates of change. 

  

                       (a)                                                  (b)                                                   (c) 

Figure 7.57 Demonstration of the yaw response of the three control methods in CarMaker during the 

braking mu-split test. The greyish-blue patch represents the low mu slick and the results, from left to 

right are with (a) conventional sliding mode, (b) hybrid sliding mode and (c) modified sliding mode. 
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7.3.4.1 BRAKING MU-SPLIT TEST TIRE FORCE ESTIMATION 

7.3.4.1.1 LONGITUDINAL FORCE 

Figure 7.58 to Figure 7.61 show a comparison of the longitudinal force estimated by the UTFE and 

the nonlinear RT tire model in CarMaker during the braking mu-split maneuver. In this case, the 

estimator performs extremely poorly because it assumes the only torque applied to the tires comes 

from the in-hub electric motors of the 4MIDEV vehicle and because the tires on the left side of the 

vehicle are slipping after 29 seconds into the simulation. As shown in Figure 7.56, the torque-

vectoring controller sends a negative torque signal to the motors on the left side wheels and a positive 

torque signal to the motors on the right side wheels. The longitudinal force estimates in the following 

four figures comes purely from the applied motor torques, but the actual force comes from the sum of 

the braking force and force transmitted by the motors. As such, none of the forces track, and the 

estimated force on the right tires is the wrong sign. 

 

Figure 7.58 Comparison of the longitudinal force estimate and nonlinear model on the left front tire 

for a braking mu-split test where u = 100 km/h when the left tires hit a slick with μ = 0.5 at t = 29 s. 
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Figure 7.59 Comparison of the longitudinal force estimate and nonlinear model on the right front tire 

for a braking mu-split test where u = 100 km/h when the left tires hit a slick with μ = 0.5 at t = 29 s. 

 

Figure 7.60 Comparison of the longitudinal force estimate and nonlinear model on the left rear tire for 

a braking mu-split test where u = 100 km/h when the left tires hit a slick with μ = 0.5 at t = 29 s. 
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Figure 7.61 Comparison of the longitudinal force estimate and nonlinear model on the right rear tire 

for a braking mu-split test where u = 100 km/h when the left tires hit a slick with μ = 0.5 at t = 29 s. 

 

7.3.4.1.2 LATERAL FORCE 

Figure 7.62 to Figure 7.65 show a comparison of the lateral force estimated by the UTFE and the 

nonlinear RT tire model in CarMaker during the braking mu-split maneuver. Since the lateral force 

during this maneuver is small, the scale of these figures is much finer, so the nuances of the lateral 

force curves are observable. The estimated lateral force for all four wheels is centered on zero as one 

would expect, but the RT tire model predicts some fluctuation around 0 ± 300 N when the vehicle is 

just driving straight. This force arises because the closed loop DYC system is running all the time, so 

any small deviation whatsoever leads to a control action. Unless a switch triggers the controller only 

above a certain yaw rate, there will always be small fluctuations like this even when driving straight.  
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Figure 7.62 Comparison of the lateral force estimate and nonlinear model on the left front tire for a 

braking mu-split test where u = 100 km/h when the left tires hit a slick with μ = 0.5 at t = 29 s. 

 

Figure 7.63 Comparison of the lateral force estimate and nonlinear model on the right front tire for a 

braking mu-split test where u = 100 km/h when the left tires hit a slick with μ = 0.5 at t = 29 s. 
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Figure 7.64 Comparison of the lateral force estimate and nonlinear model on the left rear tire for a 

braking mu-split test where u = 100 km/h when the left tires hit a slick with μ = 0.5 at t = 29 s. 

 

Figure 7.65 Comparison of the lateral force estimate and nonlinear model on the right rear tire for a 

braking mu-split test where u = 100 km/h when the left tires hit a slick with μ = 0.5 at t = 29 s. 
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7.3.4.1.3 VERTICAL FORCE 

Figure 7.66 to Figure 7.69 show a comparison of the vertical forces estimated by the UTFE and the 

nonlinear RT tire model in CarMaker during the braking mu-split maneuver. As with the previous 

three cases, the vertical force estimation tracks the RT model the most precisely of the three modules 

of the UTFE. There is a small deviation between the two forces at the rear axle. Deviations like this 

are difficult to avoid at the handling limits because there is a marked difference in the dynamics of the 

vehicle when it is slipping. Accurate tracking of the forces at the limit requires a more sophisticated 

model in the Kalman filters. The filters still estimate the vertical forces very well for all four wheels 

despite this. 

 

 

Figure 7.66 Comparison of the vertical force estimate and nonlinear model on the left front tire for a 

braking mu-split test where u = 100 km/h when the left tires hit a slick with μ = 0.5 at t = 29 s. 
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Figure 7.67 Comparison of the vertical force estimate and nonlinear model on the right front tire for a 

braking mu-split test where u = 100 km/h when the left tires hit a slick with μ = 0.5 at t = 29 s. 

 

Figure 7.68 Comparison of the vertical force estimate and nonlinear model on the left rear tire for a 

braking mu-split test where u = 100 km/h when the left tires hit a slick with μ = 0.5 at t = 29 s. 
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Figure 7.69 Comparison of the vertical force estimate and nonlinear model on the right rear tire for a 

braking mu-split test where u = 100 km/h when the left tires hit a slick with μ = 0.5 at t = 29 s. 
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8 CONCLUSION AND RECOMMENDATIONS 

8.1 CONCLUSIONS 

The initial motivation of this study was to show the usefulness and viability of all-wheel drive torque 

vectoring control (TVC) for powertrain control of an electric vehicle with four independent hub-

motors. In the past, powertrain control has largely been limited by mechanical components such as 

the mechanical differential. Differentials allowed the wheels on a single axle to rotate at different 

speeds, but both wheels would receive the same torque. Sophisticated active differentials exist today, 

which allow torque splitting, such as the limited slip differential, but these are highly complex 

mechanical systems with many moving parts. Research on TVC goes back decades—it is nothing 

new. However, the focus of TVC implementation has remained primarily in the mechanical world. 

The viability of electric vehicles and availability of high quality, efficient motors have encouraged 

researchers to develop new algorithms specific to torque vectoring of electric vehicles. These 

algorithms leverage the fact that a vehicle with four independently controlled motors and front wheel 

steering can simultaneously achieve optimal longitudinal and lateral control tasks.  

In the pursuit of a viable torque-vectoring control system, a comprehensive and modular framework 

for implementation of a direct yaw moment control (DYC) arose. DYC systems produce a corrective 

yaw moment in a high-level controller to enhance vehicle handling and safety by means of a torque 

allocation generated by the torque vectoring low-level controller, which individually varies the 

longitudinal tire forces, in either braking or traction. In accomplishing this task, three approaches to 

direct yaw moment control for the simultaneous control of vehicle yaw rate and sideslip angle. These 

approaches for the high-level control module include a conventional sliding mode controller 

employing a linear combination of the yaw rate and sideslip angle errors as the switching function; a 

hybrid sliding mode controller employing the same switching function as the conventional sliding 

mode controller and with integral control replacing force-feedback from a unified tire force estimator 

and; a modified sliding mode controller employing a linear combination of the normalized absolute 

values of the yaw rate and sideslip error as the switching function [11]. The dynamic terms of the 

sliding mode controller and the basis of the unscented Kalman filter constituting the lateral tire force 

estimator employ the nonlinear eight degree of freedom vehicle model developed in Chapter 3. The 

cost function and gradient descent algorithm derived in Chapter 5 constitute the low-level TVC takes 

the output of the sliding mode controller and computes an appropriate optimal torque distribution 

among the four electric motors on the vehicle using a cost function, which minimizes power loss due 

to tire slippage. Lastly, the tire force estimation framework laid out in Chapter 4 takes the states of the 

vehicle system and computes an estimate of twelve tire forces. This estimation framework includes 
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the wheel equation of motion derived in Chapter 3, one Kalman filter, one extended Kalman filter and 

one unscented Kalman filter. 

The open loop simulation of the TVC demonstrated promising results using the longitudinal slip 

power loss cost function. For the set of parameters used in this study, the optimization quickly and 

reliably found an optimal solution and was stable for all simulated maneuvers. 

Simulations of four driving maneuvers showed relative effectiveness of the three DYC systems. 

Simulated J-turn, sine steer, skid pad and braking mu-split maneuvers challenged the control systems 

in unique ways to draw out specific results. Each maneuver employed either controlled steering angle, 

velocity, acceleration, or some combination of the three. The simulations demonstrate that the DYC 

system with the modified switching function outperformed the other two systems in simultaneously 

achieving neutral steer and driving down the sideslip angle as well as having some traction control 

functionality.  

The Unified Tire Force Estimator demonstrated mixed results. The vertical force estimator 

consistently tracked the RT model very well, even for intense maneuvers. The longitudinal force 

estimator performed well when the tires are not operating at their limits and the brakes are not 

applied. The lateral force estimator performed inconsistently at best, but this is due to the high degree 

of nonlinearity of the lateral tire force and the difficulty of tuning the unscented Kalman filter 

constituting this estimator. Although the Unified Tire Force Estimator did not perform as well as 

hoped in the scope of this study, there is no doubt it that could be improved with minor changes. 

8.2 RECOMMENDATIONS 

The direct yaw moment controller developed and successfully implemented in this thesis provide a 

good foundation for understanding control strategies that enhance a vehicle’s handling and stability 

up to its operational limits while satisfying multiple control objectives. It also provides a solid 

framework for real-time estimation of tire forces. From this foundation, there are several directions 

for future projects. 

8.2.1 IMPLEMENTATION ON THE CAL POLY SSIV 

Although the simulator used to validate the direct yaw moment control system is a good 

representation of reality, it cannot account for all variables and challenges in operating such a system 

in the real world. Cal Poly’s Small-Scale Intelligent Vehicle Platform (SSIV) is a 1/10th scale car 

equipped with the microcontroller unit, sensors, and powertrain which would be necessary to port all 

components included in this thesis and run it in real-time. The system depends on a set of measured or 
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approximated physical for the control system to perform optimally. A follow up task to implementing 

the system in hardware could be to run experiments to determine these parameters. 

8.2.2 REFINEMENT OF THE UNIFIED TIRE FORCE ESTIMATOR 

This thesis derived the estimator with certain assumptions built in which limit its performance, which 

include but are not limited to neglecting the braking torque and rolling resistance in the longitudinal 

force estimator and making very rough estimates of the physical, vehicle-specific parameters related 

to the lateral and vertical estimation processes. Refinement in tuning the process and measurement 

covariance matrices of the UKF of the lateral force estimator and the EKF of the vertical force 

estimator would yield better force tracking. Tuning the parameters α, β and κ of the UT would 

improve the filter’s ability to deal with function nonlinearity. 

The UKF Filter in the Unified Tire Force Estimator has the capacity to estimate the vehicle sideslip 

angle. It is essential to estimate the sideslip angle to perform simultaneous control of the yaw rate 

error and sideslip angle error because it is very difficult to measure this quantity. It currently 

functions decently but would be improved by the tuning methods discussed above.  

8.2.3 EXPERIMENT WITH NEW COST FUNCTIONS 

The longitudinal slip power loss cost function is just one of many cost functions, which might work 

well for the purpose of optimal torque-vectoring control. It would be an interesting area of future 

research to find and run simulations or experiments on the control system with different cost 

functions or different optimization algorithms. A good starting place to research compatible cost 

functions would be in [17]. 
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9 APPENDIX 

9.1 DIRECT YAW MOMENT CONTROL 
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9.1.1 SUPERVISORY CONTROLLER (K=0) 
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9.1.2 CONVENTIONAL SLIDING MODE CONTROLLER 
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9.1.3 MODIFIED SLIDING MODE CONTROLLER 
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9.1.4 PRIMAL-DUAL GRADIENT DESCENT 

function [moto_torque, fval, iter, ResidualMoment] =... 

    DualPrimalGradientDescent(V_wx, M_des, T_base, T_max, B_TV) 

% This function solves a constrained optimization problem for optimal 

% torque allocation which satisfies the yaw moment control signal 

% Cost function: longitudinal slip power loss 

% Method: Lagrangian algorithm 

% Reference: Wei-Ta Chu, "Algorithms for Constrained Optimization" 

%% Call Global Variables 

global TireParams VehicleGeo GDParams 

 

% Axle cornering stiffness 

C_lf = TireParams(3); 

C_lr = TireParams(4); 

 

R    = VehicleGeo(8); 

 

% Primal-dual parameters 

alpha = GDParams(1); 

kappa = GDParams(2); 

gamma = GDParams(3); 

 

% Optimization parameters 

max_iter = GDParams(4); 

func_tol = GDParams(5); 

 

% Wheel longitudinal velocity in heading direction 

V_wx_1 = V_wx(1); 

V_wx_2 = V_wx(2); 

V_wx_3 = V_wx(3); 

V_wx_4 = V_wx(4); 

 

% Tire longitudinal stiffness 

C_l1 = C_lf; 

C_l2 = C_lf; 

C_l3 = C_lr; 

C_l4 = C_lr; 

 

% Torque constraint 

T_min = - T_max; 

% Initialize A,c,x 

x    = [ 0, 0, 0, 0 ]';              % Initial torque guess 

A    = B_TV;                    % Dynamic constraint coefficient matrix 

c    = [ M_des, T_base / R ]';  % Vector of dynamic constraints 

%% Longitudinal Slip Power Loss Cost Function Derivation 

D    = [ V_wx_1 / (R ^ 2 * C_l1), 0, 0, 0; 

         0, V_wx_2 / (R ^ 2 * C_l2), 0, 0; 

         0, 0, V_wx_3 / (R ^ 2 * C_l3), 0; 
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         0, 0, 0, V_wx_4 / (R ^ 2 * C_l4) ]; 

 

% Function F(x) to minimize for LSPL 

F  = @(x) x' * D * x;  % Cost function 

dF = @(x) 2 * D * x;   % Cost function gradient 

 

% fvals       = zeros(max_iter, 1); % store F(x) values across iterations 

 

% Iterate 

lambda      = [ 0, 0 ]';            % Initial guess for equality... 

                                    % ...Lagrange multipliers 

mu_1        = [ 0, 0, 0, 0 ]';      % Initial guess for inequality... 

                                    % ...Lagrange multiplier #1 update 

mu_2        = [ 0, 0, 0, 0 ]';      % Initial guess for inequality... 

                                    % ...Lagrange multiplier #2 update 

iter        = 1;                    % Iterations counter 

fval        = 1;                    % Function cost 

step        = [ 10, 10, 10, 10 ]';  % Initialize step larger than func_tol 

% fvals(iter) = F(x); 

%% Run Primal-Dual Gradient Descent in Iterative Loop 

while iter < max_iter && any(abs(step) > func_tol) 

    iter        = iter + 1; 

    current_x   = x; 

    lambda      = lambda + kappa * (A * current_x - c); 

    mu_1        = max(mu_1 + gamma * (T_min - current_x), [ 0, 0, 0, 0 ]'); 

    mu_2        = max(mu_2 + gamma * (current_x - T_max), [ 0, 0, 0, 0 ]'); 

%     fvals(iter) = F(current_x); 

    x           = current_x + alpha * (-dF(current_x) - A' * lambda + ... 

                  mu_1 - mu_2); 

    step        = x - current_x; 

end 

% Output dynamic constraint error, torque allocation and cost 

ResidualMoment = A * x - c; 

moto_torque    = x; 

% fval           = fvals(iter); 
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9.1.5 TORQUE-VECTORING CONTROLLER 
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9.1.6 WHEEL SYSTEM LONGITUDINAL VELOCITY 
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9.1.7 TORQUE CONSTRAINTS (LEVEL 1) 
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9.1.8 TORQUE CONSTRAINTS--MOTOR (LEVEL 2) 
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9.1.9 TORQUE CONSTRAINTS—ROAD ADHESION (LEVEL 2) 
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9.1.10  TORQUE CONSTRAINTS—FRICTION CIRCLE (LEVEL 2) 
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9.1.11  DYNAMIC CONSTRAINT MATRIX 
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9.2 UNIFIED TIRE FORCE ESTIMATOR 
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9.2.1 LONGITUDINAL TIRE FORCE ESTIMATOR BLOCK WITH I/O 
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9.2.2 LATERAL TIRE FORCE ESTIMATION 

9.2.2.1 UKF ESTIMATION STEP 

function [EstState,EstCovar]=UKFEstLatForce(PredState,PredCovar,PredOut,... 

    KalmanGain, Pz_P, Msrmnt) 

 

% Compute Estimate 

EstState=PredState+KalmanGain*(Msrmnt-PredOut); 

 

% Compute error covariance 

EstCovar=PredCovar-KalmanGain*Pz_P*KalmanGain'; 

 

end 

9.2.2.2 UKF PREDICTION STEP 

function [X_P, P_P, Z_P, Kk, Pz_P] = UKFPredictLatForce(EstState,Input,EstCovar) 

% Unscented Kalman Filter to predict the lateral tire force of each tire on a vehicle as well     

as the sideslip angle. 

• States -- [r,u,v,FyFL,FyFR,FyRL,FyRR]' 

• Inputs -- [steer,FzFL,FzFR,FzRL,FzRR,FxFL,FxFR,FxRL,FxRR]' 

m  = 1321;      %Total mass of vehicle [kg] 

Iz = 2083.5;    %Mass moment of inertia about vehicle z-axis [kg-m^2] 

a  = 1.056;     %Distance from front axle to center of gravity [m] 

b  = 1.652;     %Distance from rear axle to center of gravity [m] 

w1 = 1.500;     %Front track width [m] 

w2 = 1.498;     %Rear track width [m] 

 

C_af = 80000;   %Tuned front tire cornering stiffness [N/rad] 

C_ar = 80000;   %Tuned rear tire cornering stiffness [N/rad] 

mu = 1.0;       %Assumed tire-road friction coefficient [-] 

RlxLen1 = 0.05; %Relaxation length of front tires [m] 

RlxLen2 = 0.05; %Relaxation length of rear tires [m] 

 

T  = 0.001;     %Sample rate [s] 

% Process Covariance 

Q1 = 1e-3;      %Process yaw rate covar 

Q2 = 1e-2;      %...   long. velocity covar 

Q3 = 1e-1;      %...   lat. velocity covar 

Q4 = 1e2;       %...   FyFL covar 

Q5 = 1e2;       %...   FyFR covar 

Q6 = 1e2;       %...   FyRL covar 

Q7 = 1e2;       %...   FyRR covar 

Q_v = [Q1 Q2 Q3 Q4 Q5 Q6 Q7]; 

Q = diag(Q_v,0);   % Make diagonal matrix 
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% Measurement Covariance 

R1 = 5e-2;      %Measurement yaw rate covar 

R2 = 1e-1;      %... long. velocity covar 

R3 = 1e-2;      %... long. acceleration covar 

R4 = 1e-2;      %... lat. acceleration covar 

R_v = [R1 R2 R3 R4]; 

R = diag(R_v,0);   % Make diagonal matrix 

alpha = .9;     % 1e-4 <= alpha <= 1 

beta  = 2;      % 2 is optimal for Gaussian dist. 

k     = 0; 

%% Nonlinear Vehicle Model 

% Tire slip angle 

ALF = @(X, U) [U(1) - atan((X(3,:) + a * X(1,:)) ./ (X(2,:)-w1/2*X(1,:))); 

               U(1) - atan((X(3,:) + a * X(1,:)) ./ (X(2,:)+w1/2*X(1,:))); 

                    - atan((X(3,:) - b * X(1,:)) ./ (X(2,:)-w2/2*X(1,:))); 

                      atan((X(3,:) + b * X(1,:)) ./ (X(2,:)+w2/2*X(1,:)))]; 

 

 

% Dynamic Dugoff, Tau --- see Chapter 3.3 

TAU = @(ALF, U) [mu * U(2) / 2 / C_af ./ abs(tan(ALF(1,:))); 

                 mu * U(3) / 2 / C_af ./ abs(tan(ALF(2,:))); 

                 mu * U(4) / 2 / C_ar ./ abs(tan(ALF(3,:))); 

                 mu * U(5) / 2 / C_ar ./ abs(tan(ALF(4,:)))]; 

 

% Simplified Dugoff Tire Force 

F_y_bar = @(ALF, f_LAM) [-C_af * tan(ALF(1,:)) .* f_LAM(1,:); 

                         -C_af * tan(ALF(2,:)) .* f_LAM(2,:); 

                         -C_ar * tan(ALF(2,:)) .* f_LAM(3,:); 

                         -C_ar * tan(ALF(2,:)) .* f_LAM(4,:)]; 

 

% Nonlinear State Evolution Function (Vehicle EOMs) 

f = @(X, U, F_y_bar) [X(1,:) + T / Iz * (a * (X(4,:) + X(5,:)) * cos(U(1))... 

     + (U(6)+U(7)) * sin(U(1)) - b * (X(6,:) + X(7,:)) + w1 / 2 *... 

     ((X(4,:)- X(5,:)) * sin(U(1)) + (U(7)-U(6)) * cos(U(1)))); 

 

     X(2,:) + T / m * (-(U(6)+U(7)) * cos(U(1)) -... 

     (X(4,:) + X(5,:)) * sin(U(1)))+ T * X(1,:) .* X(3,:); 

 

     X(3,:) - T * X(1,:) .* X(2,:) + T / m * ((U(6)+U(7)) * sin(U(1)) +... 

     (X(4,:) + X(5,:)) * cos(U(1)) + X(6,:) + X(7,:)); 

 

     X(4,:) + T * X(2,:) / RlxLen1 .* (-X(4,:) + F_y_bar(1,:)); 

 

     X(5,:) + T * X(2,:) / RlxLen1 .* (-X(5,:) + F_y_bar(2,:)); 

 

     X(6,:) + T * X(2,:) / RlxLen2 .* (-X(6,:) + F_y_bar(3,:)); 

 

     X(7,:) + T * X(2,:) / RlxLen2 .* (-X(7,:) + F_y_bar(4,:))]; 
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h = @(X,U) [X(1,:); 

            X(2,:); 

            1 / m * (-(X(4,:) + X(5,:)) * sin(U(1)) + (U(6)+U(7)) * cos(U(1))); 

            1 / m * ((X(4,:) + X(5,:)) * cos(U(1)) + X(6,:) + X(7,:) + ... 

            (U(6)+U(7)) * sin(U(1)))]; 

 

% Init UKF Parameters 

L=length(EstState); 

chi_E = zeros(L,2*L+1); 

W_m   = zeros(1,2*L+1); 

W_c   = zeros(1,2*L+1); 

lambda=alpha^2*(L+k)-L; 

 

% Init Dugoff Matrix 

f_lt = zeros(4,2*L+1); 

% Computation of Sigma Points and Corresponding Mean and Covariance Weights 

chi_E(:,1)=EstState;                        % Sigma point 

W_m(1)=lambda/(L+lambda);                   % Mean weight 

W_c(1)=lambda/(L+lambda)+(1-alpha^2+beta);  % Covar weight 

A = chol(EstCovar);                         % Cholesky Inverse of Pxx 

 

% Sigma points 1-->L 

for ii=1:L 

    temp=((L+lambda))^0.5*A; 

    chi_E(:,ii+1)=EstState+temp(ii,:)'; 

    W_m(ii+1)=1/(2*(L+lambda)); 

    W_c(ii+1)=1/(2*(L+lambda)); 

end 

 

% Sigma points (L-1)-->(2L) 

for ii=L+1:2*L 

    temp=((L+lambda))^0.5*A; 

    chi_E(:,ii+1)=EstState-temp(ii-L,:)'; 

    W_m(ii+1)=1/(2*(L+lambda)); 

    W_c(ii+1)=1/(2*(L+lambda)); 

end 

%% Propagate 2n+1 [nx1] Sigma Points (chi) through nonlinear model 

slip = ALF(chi_E, Input); 

tau_tire = TAU(slip, Input); 

for i = 1:4 

    for j = 1:(2*L+1) 

        if tau_tire(i,j) < 1 

            f_lt(i,j) = (2-tau_tire(i,j))*tau_tire(i,j); 

        else 

            f_lt(i,j) = 1; 

        end 

    end 

end 

 

% Compute Dugoff Model lateral force 

F_y_qs = F_y_bar(slip, f_lt); 
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% Compute transformed process/measurement sigma points 

chi_P=f(chi_E, Input, F_y_qs); 

zed_P = h(chi_E, Input); 

%% Compute mean and Covariance for Sigma Points 

P_P=Q; 

X_P=chi_P*W_m'; 

for ii=1:2*L+1 

    P_P=P_P+W_c(ii)*(chi_P(:,ii)-X_P)*(chi_P(:,ii)-X_P)'; 

end 

 

Pz_P=R; 

Z_P=zed_P*W_m'; 

for ii=1:2*L+1 

    Pz_P=Pz_P+W_c(ii)*(zed_P(:,ii)-Z_P)*(zed_P(:,ii)-Z_P)'; 

end 

 

Pxz_P=zeros(7,4); 

for ii=1:2*L+1 

    Pxz_P=Pxz_P+W_c(ii)*(chi_P(:,ii)-X_P)*(zed_P(:,ii)-Z_P)'; 

end 

%% Compute Kalman Gain 

Kk=Pxz_P/Pz_P; 
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9.2.2.3 LATERAL FORCE ESTIMATION BLOCK IN SIMULINK WITH I/O 
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9.2.3 VERTICAL TIRE FORCE ESTIMATION 

9.2.3.1 ROLL PLANE AND GEOMETRIC LOAD TRANSFER MODELS 

function [LLT,sum_Fz11Fz12,Fz_tot]= Sum_Fzf(ax,ay,phi) 

%Computation of feedforward, "measurement" quantities for 

% Suspension Model Observer and Pitch & Roll Dynamics Observer 

 

m  = 1321;   %Total vehicle mass [kg] 

ms = 55*m;   %Sprung mass of vehicle [kg] 

L = 2.708;   %Wheelbase [m] 

a = 1.056;   %Distance from front axle to center of gravity [m] 

b  = 1.652;  %Distance from rear axle to center of gravity [m] 

w1 = 1.500;  %Front track width 2*s1 [m] 

w2 = 1.498;  %Rear track width 2*s2 [m] 

g = 9.81;    %Gravitational acceleration [m/s^2] 

hcg = 0.536; %Height of center of gravity [m] 

hf = 0.0;    %Front roll center height [m] 

hr = 0.05;   %Rear roll center height [m] 

 

 

kf = 45000;  %Front axle suspension stiffness 

kr = .82*kf; %Rear axle suspension stiffness 

 

% Left/right front tire vertical load -- geometric transfer 

Fz11 = m/2*(b*g/L-hcg*ax/L)-m*(b*g/L-hcg*ax/L)*hcg*ay/w1/g; 

Fz12 = m/2*(b*g/L-hcg*ax/L)+m*(b*g/L-hcg*ax/L)*hcg*ay/w1/g; 

 

% Roll plane model -- elastic transfer 

LLT = -2*(kf/w1+kr/w2)*phi-2*ms*ay/L*(b*hf/w1+a*hr/w2); 

 

% Front axle vertical load 

sum_Fz11Fz12 = Fz11+Fz12; 

 

% Total vehicle weight 

Fz_tot = m*g; 

9.2.3.2 SUSPENSION MODEL OBSERVER 

function [x,P] = VertForce_LKF(x,y,P) 

% Estimates the lateral load transfer associated with suspension 

% dynamics of a vehicle. Random-walk model. 

m  = 1321;    %Total vehicle mass [kg] 

ms = 0.55*m;  %Sprung mass of vehicle [kg] 

hcg = 0.536;  %Height of center of gravity (COG) from the ground [m] 

L = 2.708;    %Wheelbase [m] 

a = 1.056;    %Distance from front axle to COG [m] 

b  = 1.652;   %Distance from rear axle to COG [m] 

w1 = 1.500;   %Front track width 2*s1 [m] 

w2 = 1.498;   %Rear track width 2*s2 [m] 

h1 = 0;       %Front roll center height [m] 



 

 

171 

 

h2 = 0.05;    %Rear roll center height [m] 

hs = hcg-(h1+h2)/2;   %Vertical distance from roll axis to COG [m] 

kphi1 = 45000;        %Front axle suspension stiffness [N/rad] 

kphi2 = .82*kphi1;    %Rear axle suspension stiffness [N/rad] 

kphi = kphi1+kphi2;   %Total suspension stiffness [N/rad] 

bphi1 = 0;            %Front axle shock damping rate 

bphi2 = 0;            %Rear axle shock damping rate 

bphi = bphi1+bphi2;   %Total shock damping rate 

Ix = 508.7;           %Mass moment of inertia about vehicle x-axis [kg-m^2] 

g = 9.81;             %Gravitational acceleration [m/s^2] 

 

T  = 0.001; 

 

% Process Covariance 

Q1 = 10^3;     %Process left lateral load transfer Eq. (6.6) covar 

Q2 = 0.1;      %... lat. acceleration covar 

Q3 = 0.1;      %... lat. d(lat. acceleration)/dt covar 

Q4 = 0.1;      %... roll angle covar 

Q5 = 0.1;      %... roll rate covar 

Q_v = [Q1 Q2 Q3 Q4 Q5]; 

Q = diag(Q_v,0);   %Make diagonal matrix 

 

% Measurement Covariance 

R1 = 0.01;     %Measurement lat. acceleration covar 

R2 = 0.01;     %... roll angle covar 

R3 = 0.01;     %... roll rate covar 

R4 = 10^3;     %... left lateral load transfer covar 

R_v = [R1 R2 R3 R4]; 

R = diag(R_v,0);   %Make diagonal matrix 

 

% State Evolution Matrix 

A = [1 0 -2*T*ms/L*(b*h1/w1+a*h2/w2) 0 -2*T*(kphi1/w1+kphi2/w2); 

     0 1  T                          0  0; 

     0 0  1                          0  0; 

     0 0  0                          1  T; 

     0 T*ms*hs/Ix 0 T*(ms*g*hs-kphi)/Ix 1-T*bphi/Ix]; 

 

% Measurement Matrix 

H = [0 1 0 g 0; 

     0 0 0 1 0; 

     0 0 0 0 1; 

     1 0 0 0 0]; 

 

% Time update 

x = A*x; 

P = A*P*A'+Q; 

 

% Measurement update 

K = P*H'/(H*P*H'+R); 

x = x+K*(y-H*x); 

P = (eye(5)-K*H)*P; 
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9.2.3.3 PITCH AND ROLL DYNAMICS OBSERVER 

function [x,P] = LLT_EKF_p2(x,y,P) 

%Extended Kalman Filter for estimating the nonlinear lateral load 

% transfer arising from coupled pitch/roll acceleration effects 

m  = 1321;   %Total vehicle mass [kg] 

hcg = .536;  %Height of the center of gravity (COG) above ground [m] 

L = 2.708;   %Wheelbase [m] 

b  = 1.652;  %Distance from front axle to COG [m] 

w1 = 1.500;  %Distance from rear axle to COG [m] 

g = 9.81;    %Gravitational acceleration [m/s^2] 

 

T  = 0.001;  %Sampling rate 

 

% Process Covariance 

Q1 = 1e2;    %Process FzFL covar 

Q2 = 1e2;    %... FzFR covar 

Q3 = 1e2;    %... FzRL covar 

Q4 = 1e2;    %... FzRR covar 

Q5 = 1e-1;   %... long. acceleration covar 

Q6 = 1e-3;   %... d(long. acceleration)/dt covar 

Q7 = 1e-1;   %... lat. acceleration covar 

Q8 = 1e-3;   %... d(lat. acceleration)/dt covar 

Q_v = [Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8]; 

Q = diag(Q_v,0);   %Make diagonal matrix 

 

R1 = 1e-1;   %Measurement Fz,l covar 

R2 = 1e2;    %... sum Fzf covar 

R3 = 1e-2;   %... long. acceleration covar 

R4 = 1e-2;   %... lat. acceleration covar 

R5 = 1e2;    %... total vehicle weight covar 

R_v = [R1 R2 R3 R4 R5]; 

R = diag(R_v,0);   %Make diagonal matrix 

 

% Nonlinear State Evolution Function 

f = @(X) [X(1)+T*(-m*hcg/2/L*X(6)-

m*b*hcg/L/w1*X(8)+m*hcg^2/L/w1/g*X(5)*X(8)+m*hcg^2/L/w1/g*X(6)*X(7)); 

 

          X(2)+T*(-m*hcg/2/L*X(6)+m*b*hcg/L/w1*X(8)-m*hcg^2/L/w1/g*X(5)*X(8)-

m*hcg^2/L/w1/g*X(6)*X(7)); 

 

          X(3)+T*(m*hcg/2/L*X(6)-m*b*hcg/L/w1*X(8)-m*hcg^2/L/w1/g*X(5)*X(8)-

m*hcg^2/L/w1/g*X(6)*X(7)); 

 

          

X(4)+T*(m*hcg/2/L*X(6)+m*b*hcg/L/w1*X(8)+m*hcg^2/L/w1/g*X(5)*X(8)+m*hcg^2/L/w1/g*X(6)*X(7)); 

          X(5)+T*X(6); 

 

          X(6); 
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          X(7)+T*X(8); 

 

          X(8)]; 

 

% Measurement Function 

h = @(X) [X(1)-X(2)+X(3)-X(4); 

          X(1)+X(2); 

          X(5); 

          X(7); 

          X(1)+X(2)+X(3)+X(4)]; 

 

% Jacobian, State Evolution Function 

A = [ 1, 0, 0, 0,  (T*x(8)*hcg^2*m)/(L*g*w1), -T*((hcg*m)/(2*L) - (x(7)*hcg^2*m)/(L*g*w1)),  

(T*x(6)*hcg^2*m)/(L*g*w1), -T*((b*hcg*m)/(L*w1) - (x(5)*hcg^2*m)/(L*g*w1)); 

 

      0, 1, 0, 0, -(T*x(8)*hcg^2*m)/(L*g*w1), -T*((x(7)*m*hcg^2)/(L*g*w1) + (m*hcg)/(2*L)), -

(T*x(6)*hcg^2*m)/(L*g*w1),  T*((b*hcg*m)/(L*w1) - (x(5)*hcg^2*m)/(L*g*w1)); 

 

      0, 0, 1, 0, -(T*x(8)*hcg^2*m)/(L*g*w1),  T*((hcg*m)/(2*L) - (x(7)*hcg^2*m)/(L*g*w1)), -

(T*x(6)*hcg^2*m)/(L*g*w1), -T*((x(5)*m*hcg^2)/(L*g*w1) + (b*m*hcg)/(L*w1)); 

 

      0, 0, 0, 1,  (T*x(8)*hcg^2*m)/(L*g*w1),  T*((x(7)*m*hcg^2)/(L*g*w1) + (m*hcg)/(2*L)),  

(T*x(6)*hcg^2*m)/(L*g*w1),  T*((x(5)*m*hcg^2)/(L*g*w1) + (b*m*hcg)/(L*w1)); 

 

      0, 0, 0, 0, 1, T, 0, 0; 

 

      0, 0, 0, 0, 0, 1, 0, 0; 

      0, 0, 0, 0, 0, 0, 1, T; 

      0, 0, 0, 0, 0, 0, 0, 1]; 

 

% Jacobian, Measurement Function 

H = [ 1, -1, 1, -1, 0, 0, 0, 0; 

      1,  1, 0,  0, 0, 0, 0, 0; 

      0,  0, 0,  0, 1, 0, 0, 0; 

      0,  0, 0,  0, 0, 0, 1, 0; 

      1,  1, 1,  1, 0, 0, 0, 0]; 

 

% Time update 

x = f(x); 

P = A*P*A'+Q; 

 

% Measurement update 

K = P*H'/(H*P*H'+R); 

x = x+K*(y-h(x)); 

P = (eye(8)-K*H)*P;  
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9.2.3.4 VERTICAL FORCE ESTIMATION BLOCK WITH I/O 
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