167 research outputs found

    Robust control of underactuated wheeled mobile manipulators using GPI disturbance observers

    Full text link
    This article describes the design of a linear observer–linear controller-based robust output feedback scheme for output reference trajectory tracking tasks in the case of nonlinear, multivariable, nonholonomic underactuated mobile manipulators. The proposed linear feedback scheme is based on the use of a classical linear feedback controller and suitably extended, high-gain, linear Generalized Proportional Integral (GPI) observers, thus aiding the linear feedback controllers to provide an accurate simultaneous estimation of each flat output associated phase variables and of the exogenous and perturbation inputs. This information is used in the proposed feedback controller in (a) approximate, yet close, cancelations, as lumped unstructured time-varying terms, of the influence of the highly coupled nonlinearities, and (b) the devising of proper linear output feedback control laws based on the approximate estimates of the string of phase variables associated with the flat outputs simultaneously provided by the disturbance observers. Simulations reveal the effectiveness of the proposed approach

    Bio-inspired robotic control in underactuation: principles for energy efficacy, dynamic compliance interactions and adaptability.

    Get PDF
    Biological systems achieve energy efficient and adaptive behaviours through extensive autologous and exogenous compliant interactions. Active dynamic compliances are created and enhanced from musculoskeletal system (joint-space) to external environment (task-space) amongst the underactuated motions. Underactuated systems with viscoelastic property are similar to these biological systems, in that their self-organisation and overall tasks must be achieved by coordinating the subsystems and dynamically interacting with the environment. One important question to raise is: How can we design control systems to achieve efficient locomotion, while adapt to dynamic conditions as the living systems do? In this thesis, a trajectory planning algorithm is developed for underactuated microrobotic systems with bio-inspired self-propulsion and viscoelastic property to achieve synchronized motion in an energy efficient, adaptive and analysable manner. The geometry of the state space of the systems is explicitly utilized, such that a synchronization of the generalized coordinates is achieved in terms of geometric relations along the desired motion trajectory. As a result, the internal dynamics complexity is sufficiently reduced, the dynamic couplings are explicitly characterised, and then the underactuated dynamics are projected onto a hyper-manifold. Following such a reduction and characterization, we arrive at mappings of system compliance and integrable second-order dynamics with the passive degrees of freedom. As such, the issue of trajectory planning is converted into convenient nonlinear geometric analysis and optimal trajectory parameterization. Solutions of the reduced dynamics and the geometric relations can be obtained through an optimal motion trajectory generator. Theoretical background of the proposed approach is presented with rigorous analysis and developed in detail for a particular example. Experimental studies are conducted to verify the effectiveness of the proposed method. Towards compliance interactions with the environment, accurate modelling or prediction of nonlinear friction forces is a nontrivial whilst challenging task. Frictional instabilities are typically required to be eliminated or compensated through efficiently designed controllers. In this work, a prediction and analysis framework is designed for the self-propelled vibro-driven system, whose locomotion greatly relies on the dynamic interactions with the nonlinear frictions. This thesis proposes a combined physics-based and analytical-based approach, in a manner that non-reversible characteristic for static friction, presliding as well as pure sliding regimes are revealed, and the frictional limit boundaries are identified. Nonlinear dynamic analysis and simulation results demonstrate good captions of experimentally observed frictional characteristics, quenching of friction-induced vibrations and satisfaction of energy requirements. The thesis also performs elaborative studies on trajectory tracking. Control schemes are designed and extended for a class of underactuated systems with concrete considerations on uncertainties and disturbances. They include a collocated partial feedback control scheme, and an adaptive variable structure control scheme with an elaborately designed auxiliary control variable. Generically, adaptive control schemes using neural networks are designed to ensure trajectory tracking. Theoretical background of these methods is presented with rigorous analysis and developed in detail for particular examples. The schemes promote the utilization of linear filters in the control input to improve the system robustness. Asymptotic stability and convergence of time-varying reference trajectories for the system dynamics are shown by means of Lyapunov synthesis

    NEW METHODS OF UNDERACTUATED ROBOT ANALYSIS, DESIGN AND CONTROL FOR CYCLIC TASKS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Design and control of a gravity-assisted underactuated snake robot with application to aircraft wing assembly

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.Includes bibliographical references (p. 108-111).We present the design and control of a hyper-articulated robot arm comprising just a few active joints driving a multitude of passive joints. This underactuated arm design was motivated by the need for a compact snake-like robot for assembly operations inside an aircraft wing. The interior of the wing is accessible only through small access portholes distributed along the length. Currently, such assembly operations are performed by human operators who crawl into the wing through its access portholes. The working conditions are ergonomically challenging and result in frequent injuries. The conflicting requirements of small form factor and high payload carrying capacity have been the primary bottlenecks in the development of assembly robots. We propose a nested-channel serial linkage structure for the hyper-articulated arm. When fully contracted, the arm is extremely compact and can access the interior of the wing through its access porthole. Once inside the wing, the arm may be expanded to access distal assembly locations. However, it is impossible to package current actuator technology to meet the payload requirements within the limited size of the robot arm. The joints of the hyper-articulated arm have no dedicated actuators. Instead, they are deployed by modulating gravitational torques. By tilting the base link appropriately, the gravitational torque drives each unactuated link to a desired angular position. With simple, compact locking mechanisms, the arm can change its configuration using the actuated base placed outside the wing. We analyze the system dynamics to gain physical insight into the interaction between the actuated and unactuated degrees of freedom. We make important approximations to capture the dominant effects in the system dynamics so as to facilitate control design.(cont.) The dynamics (actual, as well as approximate) of the unactuated links are essentially 2nd order non-holonomic constraints, for which there are no general control techniques. We present several motion planning algorithms for sequential positioning of the free joints of the robot arm. The motion planning algorithms are formulated as parameterized non-linear two point boundary value problems. These algorithms demonstrate reasonable performance in the absence of disturbances. However, the end-effecter requires accurate positioning to perform assembly operations. To address this issue, we present a sequential closed-loop control algorithm for accurate positioning of the free joints. We synthesize a Lyapunov function to prove the convergence of this control scheme and to generate estimates of the domain of convergence. For faster deployment of the robot arm, multiple free links must move concurrently. We also present several motion planning algorithms to address this problem. We built two prototypes to illustrate the design and actuation concepts. The first prototype has 3 links and has a fixed axis of tilt in the horizontal plane. The second prototype has 4 links and may be tilted about an arbitrary axis in the horizontal plane. The motion planning and closed-loop control algorithms were implemented on both prototypes. The experimental results indicate the efficacy of such control schemes.by Binayak Roy.Ph.D

    Cooperative Control of Port Controlled Hamiltonian Systems

    Get PDF

    Estimation and control of flexible space structures for autonomous on-orbit assembly

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2009.Includes bibliographical references (p. 135-139).The ability to autonomously assemble large structures in space is desirable for the construction of large orbiting solar arrays, interplanetary spacecraft, or space telescopes. One technique uses free-flying satellites to manipulate and connect elements of the structure. Since these elements are often flexible and lack embedded actuators and sensors, the assembly robot must use its own actuators and onboard measurements to suppress vibrations during transportation maneuvers. This thesis will examine the dynamic modeling of a free-flying robot attached to a flexible beam-like element, vision-based estimation of vibrational motion, and trajectory control for assembly of a space structure.by Jacob G. Katz.S.M

    6th International congress of the Serbian society of mechanics: Review

    Get PDF
    Ovaj rad prikazuje najvažnije informacije o 6. kongresu Srpskog društva za mehaniku, koji je održan na Tari od 19. do 21. juna 2017. Kongres je organizovan od strane Srpskog društva za mehaniku. Dat je kratak prikaz najznačajnijih radova predstavljenih na ovom kongresu, a koji se bave teorijskom i primenjenom mehanikom.This paper presents the most important information and describes the activities of the 6th Congress of the Serbian Society of Mechanics which was held on mountain Tara, on 19- 21 June, 2017. The Congress was organized by the Serbian Society of Mechanics. Brief summaries of the plenary lectures and some of 99 accepted papers, which admittedly attracted the most interest were shown as well

    6th International congress of the Serbian society of mechanics: Review

    Get PDF
    Ovaj rad prikazuje najvažnije informacije o 6. kongresu Srpskog društva za mehaniku, koji je održan na Tari od 19. do 21. juna 2017. Kongres je organizovan od strane Srpskog društva za mehaniku. Dat je kratak prikaz najznačajnijih radova predstavljenih na ovom kongresu, a koji se bave teorijskom i primenjenom mehanikom.This paper presents the most important information and describes the activities of the 6th Congress of the Serbian Society of Mechanics which was held on mountain Tara, on 19- 21 June, 2017. The Congress was organized by the Serbian Society of Mechanics. Brief summaries of the plenary lectures and some of 99 accepted papers, which admittedly attracted the most interest were shown as well
    corecore