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Abstract
We present the design and control of a hyper-articulated robot arm comprising just a
few active joints driving a multitude of passive joints. This underactuated arm design
was motivated by the need for a compact snake-like robot for assembly operations
inside an aircraft wing. The interior of the wing is accessible only through small
access portholes distributed along the length. Currently, such assembly operations are
performed by human operators who crawl into the wing through its access portholes.
The working conditions are ergonomically challenging and result in frequent injuries.
The conflicting requirements of small form factor and high payload carrying capacity
have been the primary bottlenecks in the development of assembly robots.

We propose a nested-channel serial linkage structure for the hyper-articulated arm.
When fully contracted, the arm is extremely compact and can access the interior of the
wing through its access porthole. Once inside the wing, the arm may be expanded
to access distal assembly locations. However, it is impossible to package current
actuator technology to meet the payload requirements within the limited size of the
robot arm. The joints of the hyper-articulated arm have no dedicated actuators.
Instead, they are deployed by modulating gravitational torques. By tilting the base
link appropriately, the gravitational torque drives each unactuated link to a desired
angular position. With simple, compact locking mechanisms, the arm can change its
configuration using the actuated base placed outside the wing.

We analyze the system dynamics to gain physical insight into the interaction be-
tween the actuated and unactuated degrees of freedom. We make important approx-
imations to capture the dominant effects in the system dynamics so as to facilitate
control design. The dynamics (actual, as well as approximate) of the unactuated
links are essentially 2 nd order non-holonomic constraints, for which there are no gen-
eral control techniques. We present several motion planning algorithms for sequential
positioning of the free joints of the robot arm. The motion planning algorithms are
formulated as parameterized non-linear two point boundary value problems. These
algorithms demonstrate reasonable performance in the absence of disturbances. How-
ever, the end-effecter requires accurate positioning to perform assembly operations.



To address this issue, we present a sequential closed-loop control algorithm for ac-
curate positioning of the free joints. We synthesize a Lyapunov function to prove
the convergence of this control scheme and to generate estimates of the domain of
convergence. For faster deployment of the robot arm, multiple free links must move
concurrently. We also present several motion planning algorithms to address this
problem.

We built two prototypes to illustrate the design and actuation concepts. The first
prototype has 3 links and has a fixed axis of tilt in the horizontal plane. The second
prototype has 4 links and may be tilted about an arbitrary axis in the horizontal
plane. The motion planning and closed-loop control algorithms were implemented
on both prototypes. The experimental results indicate the efficacy of such control
schemes.

Thesis Supervisor: H. Harry Asada
Title: Ford Professor of Mechanical Engineering
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Chapter 1

Introduction

Most assembly operations in aircraft manufacturing are currently done manually. Al-

though aircraft are small in lot size, numerous repetitive assembly operations have to

be performed on a single aircraft. The conditions are often ergonomically challenging

and these result in low productivity as well as frequent injuries. Thus, there is a

need to shift from manual assembly to automated robotic assembly. The following

wing-box assembly illustrates this.

0· AssemblyOperation~

i access portole

Figure 1-1: Cross-section of an aircraft wing



Fig. 1-1 shows a cross-section of an aircraft wing. Several assembly operations,

such as burr-less drilling and fastener installations, have to be carried out inside the

wing after the upper and lower skin panels are in place. The interior of the wing is

accessible only through small portholes along its length. These access portholes are

roughly elliptical with dimensions of 0.46 m (18 in) by 0.25 m (10 in). The wing also

has a substantial span, which varies from 0.9 m (36 in) to 3 m (120 in) depending

upon the size of the aircraft. The height of the section varies from about 0.2 m (8

in) to 0.9 m (36 in), depending upon the size of the aircraft, as well as the location

of the wing-section along the length of the wing. Presently, the assembly operations

are carried out manually. A worker enters the wing-box through the small portholes

and lies flat on the base, while carrying out the assembly operations. Evidently, the

working conditions are ergonomically challenging.

Figure 1-2: Structure of robot arm

We propose a "nested-channel" hyper-articulated mechanism capable of operating

inside the aircraft wing. The links are essentially C-channels with successively smaller

base and leg lengths, as shown in Fig. 1-2. They are connected by one degree-of-

freedom rotary joints, the axes of which are parallel. The use of channel structures is

advantageous for a number of reasons. The channels can fold into each other resulting

in an extremely compact structure during entry through the porthole, as shown in
Fig. 1-2. Once inside the wing, the links may be deployed to access distal points in
the assembly space. The open channel structure also facilitates the attachment of a
payload to the last link without increasing the overall dimensions of the arm.



The lack of a compact, powerful and high stroke actuation mechanism is the

primary bottleneck in the development of the hyper-articulated arm. Other hyper-

articulated mechanism, such as snake robots, are well known in robotics literature

[3, 27]. They are primarily used for reconnaissance purposes and the issue of payload

has not been addressed. We propose an underactuated design concept which obviates

the use of dedicated actuators for each joint. Instead, we utilize gravity for driving

individual joints. This drastically reduces the size and weight of the manipulator

arm. The methodology requires a single actuator for tilting the arm at the base.

This single actuator can be placed outside the wing and can be used in conjunction

with simple locking mechanisms to reconfigure the hyper-articulated structure.

The reconfiguration scheme is illustrated in Fig. 2-5, which shows a schematic of

an n-link robot arm. The base link (link 1) is the only servoed link. It may be rotated

about a fixed axis Z, which is orthogonal to the direction of gravity. All other joint

axes are orthogonal to Z. They are equipped with simple on-off locking mechanisms

only. The goal is to rotate link i by actuating link 1 appropriately. All unactuated

links except link i are locked. Link 1 starts in the vertical upright position. Then

it is rotated, first clockwise and then counter-clockwise, before being brought back

to its vertical position. This tends to accelerate and then decelerate link i due to

gravity and dynamic coupling with link 1. By controlling the tilting angle of link 1,

link i can be brought to a desired position with zero velocity. Link i may be locked

thereafter. This procedure can be repeated sequentially for the other unactuated

links. Contraction of the arm can be performed by reversing the above deployment

procedure.

The dynamics of the unactuated links represent non-holonomic constraints, i.e.,

the constraints cannot be integrated. A considerable amount of work has been done

in the area of non-holonomic systems. A good survey of the area is presented in [7].

Most of the work in this area deals with 1st order non-holonomic constraints, i.e.,

constraints on the velocities. Such constraints arise in motion planning for space

robots [11, 13, 16, 17], as well as steering trailers [25,26], to name a few.

Underactuated systems represent a special class of non-holonomic systems, viz.,



systems with 2nd order non-holonomic constraints. This was first pointed out by Ori-

olo and Nakamura [15]. Since then, several researchers have considered the design and

control of underactuated mechanisms for robotics applications [1, 5,6,8-10,14, 22-24].

The focus is mostly on the planar (vertical or horizontal) case where the actuated

and unactuated joint axes are parallel. In our approach, the actuated and unactuated

joints are orthogonal and we can modulate the effects of gravity by controlling the

actuated joint. Other systems in a gravity field, like the Acrobot [2,19], have isolated

equilibrium points. Since we can modulate gravity, there exists a continuum of equi-

librium points in our system. The presence of gravity also renders our system locally

controllable, as can be seen from local linearization. This ensures that we can go

from any initial point to any final point in the configuration space of the unactuated

coordinate. However, it is inefficient to patch together local linear control laws to tra-

verse the entire configuration space. Moreover, any control design must ensure that

the range of motion of the actuated coordinate is small, because the arm operates

inside an aircraft wing-box. Earlier approaches [1,10] to the control of underactuated

systems generate constructive global control laws applied to specific systems. Such

constructive control laws cannot be directly applied to our system.

In Chapter 2, we describe the design of the robot arm based on the functional

requirements of the tasks associated with aircraft wing assembly. We first describe

some of the assembly operations that are performed in aircraft wing manufacturing.

Secondly, we outline the functional requirements and design challenges associated

with the automation of such assembly operations. Next, we describe the design of

the structure and actuation scheme of the manipulator arm.

In Chapter 3, we analyze the system dynamics of our proposed underactuated

system. We gain some physical insight into the interaction between the actuated and

unactuated degrees of freedom. We also make important approximations to capture

the dominant effects in the system dynamics so as to facilitate control design. The

dynamic model is also used to establish the controllability of the system.

In Chapter 4 we propose several motion planning algorithms suitable for the

gravity-assisted underactuated robot arm. We first consider the case of sequential



link deployment with a fixed axis of tilt. We propose feed-forward optimal control, as

well as parameterized trajectory planning schemes for the actuated joint. These ap-

proaches essentially result in two-point boundary value problems involving non-linear

Ordinary Differential Equations. We present comparisons from numerical simulations

of the generated trajectories using these techniques. Secondly, we consider the case

of sequential link deployment with an arbitrary axis of tilt. We demonstrate that

the motion planning problem has an analytical solution in this case. Next, we con-

sider the case of concurrent multi-link deployment. We present an extension of the

parameterized control scheme for sequential link deployment. Numerical simulations

indicate the efficacy of this algorithm.

In Chapter 5, we first propose a closed loop control strategy for sequential point-

to-point control of the free joints. We synthesize a Lyapunov function to prove the

convergence of the control law. The Lyapunov function is used to generate estimates

of the domain of convergence of the control law for various control gains. Next, we pro-

pose an intermittent feedback control scheme for concurrent multi-link deployment.

This is accomplished by smoothly updating the motion plan based on intermittent

measurements of the state of the system.

In Chapter 6, we discuss the implementation of our design and control algorithms.

We present two prototype systems which illustrate our ideas. The first prototype has

3 links and is actuated through a fixed tilt axis in the horizontal plane. The second

prototype has 4 links and may be actuated by tilting about an arbitrary axis in the

horizontal plane. We present experimental evidence to demonstrate the efficacy of

the control algorithms.

Finally, in Chapter 7, we summarize the contributions of this thesis and propose

some future directions.



Chapter 2

Robot Arm Design

In this chapter, we discuss the design of the robot arm based on the functional

requirements of the task. We first describe some of the assembly operations that

are performed in aircraft wing manufacturing. Secondly, we outline the functional

requirements and design challenges associated with the automation of such assembly

operations. Next, we describe the design of the structure and actuation scheme of

the manipulator arm.

2.1 Task Description

Fig. 2-1 shows a schematic of a section of an aircraft wing. The italicized items in the

following description are shown in Fig. 2-1. Several repetitive assembly operations,

such as burr-less drilling and fastener installations, have to be performed inside the

wing after the upper and lower skin panels are attached to the spars. The interior

of the wing is separated by ribs into several compartments along the length. The

spacing between successive ribs varies from 0.9 m (36 in) to 1.2 m (48 in), depending

on the size of the aircraft. Each compartment between such successive ribs is called a

wing-box. Each wing-box is accessible only through a small access porthole located on

the lower skin panel. These portholes are roughly elliptical with dimensions of 0.46

m (18 in) by 0.25 m (10 in). The wing also has a substantial span, which varies from

0.9 m (36 in) to 3 m (120 in) depending upon the size of the aircraft. The height of



the wing-box varies from about 0.2 m (8 in) to 0.9 m (36 in), depending upon the size

of the aircraft, as well as the location of the wing-box along the length of the wing.

Fig. 2-1 also shows the various types of joints for the fastener installations. There

are essentially three types:

1. rib flange to spar web joint

2. rib flange to skin joint

3. spar cap to skin joint

unner skin nanel rib flange " ýQ"c 11

A

=4

a

Figure 2-1: Aircraft wing section

The assembly operations are currently performed manually using hand-held pneu-

matic tools. Fig. 2-2 shows several such tools used for fastener installations. A worker



enters each wing-box through its access porthole. He then lies flat inside the wing and

performs the assembly operations. See Fig. 2-3. There could be up to a million

fastener installations depending on the size and type of aircraft. Evidently, such

repetitive assembly operations inside the wing-box are ergonomically challenging.

Figure 2-2: Pneumatic tools for fastener installations

Figure 2-3: Worker performing assembly operations manually

ap

~is~



2.2 Functional Requirements

Our goal is to design a robotic device which can automate the assembly operations

inside an aircraft wing. This device should be compact enough to enter a wing-box

through it's access porthole. Once inside the wing-box, it should be able to access

distal points in the assembly space. Additionally, the device has to be designed to

carry a payload of approximately 18 kg (40 lb) at the end-effecter.

2.3 Structure of Manipulator Arm

We propose a reconfigurable serial linkage structure for the manipulator arm. The

links are essentially C-channels with successively smaller base and leg lengths, as

shown in Fig. 2-4. They are connected by 1 d.o.f rotary joints, the axes of which are

parallel. The use of channel structures is advantageous for a number of reasons. The

channels can fold into each other resulting in an extremely compact structure during

entry through the porthole. Once inside the wing-box, the links may be deployed to

access distal points in the assembly space. The open channel structure also facilitates

the attachment of a payload to the last link without increasing the overall dimensions

of the arm.

2.4 Actuation Scheme

The lack of a compact, powerful and high stroke actuation mechanism is the primary

bottleneck in the development of the manipulator arm. We propose a novel idea

for the actuation of the serial linkage structure, which obviates the use of separate

actuators or complex mechanical transmissions for each joint. Our methodology re-

quires a single actuator, which can be placed outside the wing-box and can be used

in conjunction with simple locking mechanisms to reconfigure the robot arm. The

actuation scheme exploits gravitational and inertial coupling in the system dynamics

to rapidly deploy the manipulator arm inside the wing-box.

Fig. 2-5 illustrates the basic deployment process of an n-link arm. There is no



fully folded arm during entry

Figure 2-4: Structure of robot arm

on-off locking mechanisms
(no servoed actuator)

locked
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locked
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locked
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(c) Link 1 rotated counter clock-wise (d) Link 1 vertical, all joints locked

Figure 2-5: Deployment scheme
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dedicated actuator at the individual joints along the arm linkage. The only servoed

actuator is at the base of link 1 and is placed outside the wing-box. There is a

simple locking mechanism at each rotary joint which operates either in the locked

or unlocked mode. The links are free to rotate unless the locking mechanism at a

particular rotary joint fixes the corresponding link. We note that the axis of rotation

of link 1 (Z) is in the horizontal plane (orthogonal to gravity). Further, this axis is

orthogonal to the axes of rotation of the other links.

Each distal arm link i may be positioned by controlling the tilting angle of link

1. As shown in Fig. 2-5(a), link 1 starts in the vertical upright position with all

joints locked. In the next step, only joint i - 1 is unlocked and link 1 is rotated in

the clockwise direction, as shown in Fig. 2-5(b). This tends to accelerate link i due

to gravity and dynamic coupling with link 1. Thereafter, link 1 is rotated counter-

clockwise, as shown in Fig. 2-5(c). This tends to decelerate link i. In the final step

link 1 is brought back to its vertical position and joint i - 1 is locked, as shown in

Fig. 2-5(d). By controlling the tilting angle of link 1, link i can be brought to a

desired position with zero velocity. This procedure can be repeated for other links

by unlocking the corresponding joints. Contraction of the arm can be performed by

reversing the above deployment procedure. This actuation scheme is scalable in the

sense that a single actuator may be used even if more links are added.

The trajectory of the actuated link must be designed such that the unactuated

links arrive at a desired position with zero velocity. The motion of the actuated link

must also be restricted to a small amplitude about its vertical upright position. This

is of utmost importance as the arm operates inside an aircraft wing-box and must

remain clear of the access porthole and other obstacles. The design of such trajectories

for the actuated link requires a careful consideration of the system dynamics. These

issues are addressed in Chapters 4 and 5



2.5 Fixed Axis of Tilt

The simplest underactuated design concept uses a single actuator at the base for

deploying the unactuated links of an n-link robot arm. Fig. 2-6 shows a robot arm,

where the base link (link 1) may be rotated about a fixed axis Zo that is orthogonal

to the direction of gravity. All other joint axes that are orthogonal to Zo are free to

rotate unless the brakes are turned on. The simplest deployment scheme is to rotate

one joint at a time by unlocking the joint and tilting the base link. All the unactuated

links except link i are locked. By controlling the tilting angle of link 1, link i can be

brought to a desired position with zero velocity. Link i may be locked thereafter. This

procedure can be repeated sequentially for the other unactuated links. Contraction

of the arm can be performed by reversing the above deployment procedure.

encoders
...................................... ................ ... .................................

Free
joint
with
off
brak

Figure 2-6: Fixed axis of tilt



2.6 Arbitrary Axis of Tilt

We consider another design where the orientation of the axis of tilt may be chosen

arbitrarily in the horizontal plane. The gravitational torque on the unactuated joints

may be weak in certain configurations if the axis of tilt has a fixed orientation. This

additional "input" enables us to improve the speed of response of the unactuated

links. Fig. 2-7 shows a schematic of the robot arm mounted on a Stewart Platform,

also known as a hexapod. Z8 denotes a fixed reference direction in the horizontal

plane. By coordinating the motion of the six legs of the hexapod, the table may be

tilted about an arbitrary axis Zo in the horizontal plane.

---------------------- ------m

ga -------- --------- --------mm ---- -----m ---mmm

Figure 2-7: Arbitrary axis of tilt using hexapod

The hexapod mechanism may be used for rapid fastener installations. Fig. 2-8(a)
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shows the location of the end-effecter after the links have been deployed and locked.

Fig. 2-8(b) shows the motion of the hexapod table so as to accomplish rapid motion

of the end-effecter between successive fastener locations. It may be noted that the

motion of the hexapod table is limited by the size of the access porthole. Thus,

it; is best to reconfigure the arm after a few successive translational motions of the

hexapod table.

IPYannlA Tnhle

(a)

Hexapod Table Motion
C-0l

(b)

Figure 2-8: Rapid fastener installation using hexapod: (a) Initial position after link
deployment; (b) Translational motion of hexapod table

Fastener Installations -- 4I

F-C~W



Chapter 3

Dynamic Modeling

3.1 Fixed Axis of Tilt

Fig. 3-3 shows a schematic of an n-link robot arm with one actuated (link 1) and

n- 1 unactuated links. XoYoZo denotes the World Coordinate Frame. The coordinate

frames are attached according to the Denavit-Hartenberg convention with the i th

coordinate frame fixed to the ith link. We seek rotation of link i (i > 2) about the

axis Zi- 1 by rotating link 1 about the horizontal axis Zo. The angle Oi denotes the

angular displacement of link i relative to link i - 1. For clarity, the displacement of

the first joint (the only servoed joint) tilting link 1 relative to the fixed vertical axis

Xo is denoted by q.

The system dynamics may be written as:

Hi1 Hil F G, I - (3.1)
Hil Heii i F Gi 0

0j = j j 1, i (3.2)

Here [Hkl(q)] is the n x n symmetric positive-definite inertia matrix, q = [02,..., 0,] T

is the n - 1 dimensional vector of unactuated joint angles, [FI(q, , 4), Fi(q, (, T)]T

represents the 2 x 1 vector of centrifugal and Coriolis effects and [G1(q, ¢), G (q, T)]T

represents the 2 x 1 vector of gravitational effects. The torque on the actuated joint
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servoed actuator for link 1

Figure 3-1: Schematic of n-link robot arm: fixed axis of tilt

axis Zo is represented by -1 . We note that Ojo is a constant because the jth link

(j : 1, i) is locked. As shown in Appendix A, the centrifugal and gravity terms may

be written as

(3.3)

(3.4)Gi(q, ¢) = gi (q)g sin ¢.

Using (3.3) and (3.4), the second row of (3.1) may be written as:

Hil (q)
Hii(q)

fi(q) 2

Hii(q)
gi(q) (3.5)

As shown in [15], (3.5) is a 2 nd order non-holonomic constraint and thus cannot be

integrated to express 60 as a function of q. Also, at any given time only one unactuated

link (link i) is in motion. Thus, the n-link problem can be treated as a 2-link problem

I

JJ. . •



without loss of generality. For the 2-link case, we may write (3.5) as:

H 212 f2 (2) 2 _92 (0 2 )92 (=) H() 2( 2)9 sin (3.6)H22(02) H22(02) H22(02)

The expressions for H21 etc. are given in Appendix A.

The position (q), velocity ( ) and acceleration ($) of the actuated coordinate may

be viewed as forcing functions driving the dynamics of the unactuated coordinate 02.
These forcing functions may be freely specified by an appropriate choice of the control

input -71 in (3.1). In particular, let Od(t) be a desired trajectory for the actuated

coordinate. The control torque T1 may be chosen as

71= + F + G + N12 (F2 + G2 ), (3.7)
N11 N 11

where [Nij] = [Hij]- 1. This gives rise to the dynamics ¢ = 4d, as desired. In view of
these arguments, we refer to q and its derivatives ( , ¢) in (3.6) as the pseudo input.

The terms involving 02 in (3.6), i.e. H 12/H 22, f 2/H 22 and g2/H 22, are referred to as the
modulating coefficients. These modulating coefficients scale the various components

of the pseudo input (0, ý, ¢) depending on the position of the unactuated link 2.

Figure 3-2: Comparison of modulating coefficients over configuration space

Fig. 3-2 shows the variation of the dimensionless modulating coefficients in the
configuration space (0O to 1800) of the unactuated coordinate. The simulation is based
on parameter values taken from a 2-link version of our prototype system shown in Fig.



6-1. The dominant term is the modulating coefficient due to gravity (g2/H 22), followed

by the contribution of the inertial coupling (H 12/H 22) and finally the contribution of

the centrifugal coupling (f 2/H 22). In view of these observations, we make the following

assumptions:

1. Inertial coupling is neglected.

2. Centrifugal coupling is neglected.

These assumptions are valid as long as the gravitational component of acceleration

Ig sin 1 is of the same (or higher) order of magnitude as compared to /4I and 1¢21.

We validate these approximations a posteriori in the section on experimental results.

Under these assumptions, the dynamics (3.6) may be simplified as:

2 9202• g sin (3.8)
H22

Using (A.3) and (A.7), we may write (3.8) as:

= A sin 0 sin ¢, (3.9)

where

0 = 02+a,

M2g9 /y2  + (xc2+ a2 )2

Izz2 + M2(Yc2  c2+ a2)2)' (3.10)

a = atan2(yc 2, c2 + a2). (3.11)

Remark 3.1.1. It is worthwhile to examine the physical significance of the dynamics

(3.9). It represents a pendulum in a modulated "gravity" field. For a fixed value of ,

the quantity A may be identified with the square of the natural frequency. The strength

of this field can be modulated as A sin 4 by controlling the angle 0. The pendulum

behaves as a regular or inverted pendulum depending on the sign of sin 0 sin 0. Also,

the "gravity" field may be switched off by setting q = 0. This gives rise to a continuum



of equilibria given by [0 = 0, 0 = 0, q = 0], where 6 is arbitrary.

Remark 3.1.2. Although inertial and centrifugal terms have been neglected in (3.9),

the dynamical system is still second-order non-holonomic. The gravity term is a

function of the generalized coordinates 0 and q. Therefore it satisfies the conditions

for 2nd order non-holonomic systems stated in [15].

Remark 3.1.3. The inertial effects have the same significance relative to the cen-

trifugal effects [4]. Thus, it is consistent to neglect both inertial and centrifugal effects

in the system dynamics.

3.2 Arbitrary Axis of Tilt

3.2.1 Sequential Link Deployment

Fig. 3-3 shows a schematic of an n-link robot arm with one actuated (link 1) and

n - 1 unactuated links. XJYO*Z8 denotes the World Coordinate Frame, with the

axis ZO being normal to the direction of gravity. The coordinate frames are attached

according to the Denavit-Hartenberg convention with the it h coordinate frame fixed

to the ith link. We seek rotation of link i (i > 2) about the axis Zi- 1 by rotating link

1 about the horizontal axis Zo. The angle - denotes the orientation of the axis Zo

with respect to Z8. The angle Oi denotes the angular displacement of link i relative

to link i - 1. For clarity, the displacement of the first joint (the only servoed joint)

tilting link 1 about the horizontal axis Zo is denoted by ¢.

[HI Hil 1 + [ + [ =i][ (3.12)
Hi1 Hii Fi Gi 0

0j = 0 jo j 1, i (3.13)

Here [Hkl (q, 7)] is the nx n symmetric positive-definite inertia matrix, q = [02,..., On] T

is the n - 1 vector of unactuated joint angles, [F1 (q, 7, q, ý), Fi(q , 7, 4)]T represents



z zi i

Figure 3-3: Schematic of n-link arm: arbitrary axis of tilt

the 2 x 1 vector of centrifugal and Coriolis effects and [G1 (q, -, 0), Gi(q, -, )]T repre-

sents the 2 x 1 vector of gravitational effects. The torque on the actuated joint axis

Zo is represented by T1. We note that Ojo is a constant because the jth link (j f 1, i)

is locked. The second row of (3.12) may be written as:

62 = -hil(q, y)¢ - fi(q, _y) 2 _ gi(q, y) sin 0. (3.14)

Here

h ( Hil (q, , 315))hix (q,>) = Hii(q ) (3.15)

S(, 2 (q, ) (3.16)
Hii(q)

Gi(q, ) )(3.1)
9i(q, 7) sin = (3.17)Hii (q)

I (unlocked)
nk i-1
ocked)

zo
.- Z 0



As with the fixed axis of tilt, the quantity gi(q, y) may be written as

g_(q, -y) = -Ai sin(0i - - + ai) (3.18)

The parameters Ai and ai may be identified with the parameters A and a respectively

in (3.10)-(3.11). As shown in Chapter 4, this structure in the gravitational effects

greatly simplifies the motion planning problem when the orientation -y of the axis of

tilt may be chosen freely.

3.2.2 Concurrent Multi-link Deployment

We consider the case where multiple unactuated links of the hyper-articulated arm

are in motion concurrently. Fig. 3-4 shows a schematic of this setup. As usual, link

1 (not shown) is the actuated link, and links 2 and 3 are unactuated. The axis of tilt

is located on the horizontal plane and is denoted by Zo. It is oriented at an angle -7

with respect to the link 1 frame X 1Y1 . The points C2 and C3 denote the locations

of the center of mass of links 2 and 3 respectively. The masses of links 2 and 3 are

denoted by m 2 and m 3 respectively. Izz2 and Izz3 denote the centroidal inertias of

links 2 and 3 respectively.

Lagrange's equations of motion for the unactuated links may be written as

d (aTo0  To  LV
S- ) q= =0. (3.19)dt q a8 q aq

Here q = [02, 0 3 ]T denotes the 2 dimensional vector of unactuated coordinates, To(0, q, , )

denotes the kinetic energy and V(O, y, q) the potential energy of the system.

As with the single link case, we make the following assumptions:

1. Centrifugal and Coriolis coupling with link 1 (actuated link) is negligible.

2. Inertial coupling with link 1 is negligible.

It may be noted that the inertial coupling between links 2 and 3, as well as the cen-

trifugal and Coriolis effects within the plane of links 2 and 3 are retained. Effectively,



we may approximate To by T(q, q), the kinetic energy of a double pendulum system

in a fixed plane. The "fixed" plane instantaneously makes an angle 0 with the hori-

zontal plane. We retain the gravitational effects in V(q, y, q). We essentially end up

with a double pendulum whose dynamics is modulated by gravity through a choice

of the axis of tilt Zo (in the horizontal plane) and the tilt angle q.

4 7 axis of tilt in horizontal plane

SY 1

kra2Z 0(2
02 12

03

C3 1

X1Y
link 3
M391 zz3

Figure 3-4: Double pendulum in modulated gravity field

The kinetic energy of the double pendulum system may be written as

T = E + Izzi
i=2

2 (m2r2 2 2 3 32 - 212r3 COS+03 - 3)22 3))

+ (Izz22 + Izz3 (92 - 3)).

The potential energy may be written as

V =m2gr 2 sin(02 + a 2 - y) sin ¢

+ m 3g(1 2 sin(0 2 - 7) - r3 sin(02 - 03 + a 3 - 7)) sin 0.

Using (3.20) and (3.21) in (3.19), the system dynamics for this approximate model

(3.20)

(3.21)

"1 t



may be written as:

H(q)q + C(q, 4) + G(, -y, q) = 0.

H = H22 H23
L-H23 H33

q) = m2r2 ~m 3(1 + r - 21

q) = 3 r3 (12 os(03 - a3) -

q) m= 3r3 + zz3,

q) = (m2r2cos( 2 + 2 - )

2r3 COS(0 3 - a 3)) + ,zz2 + 'zz3,

T3),

G3( (Y, q)

C(q, 4)

-m 3 (T3 COS(0 2 - 03 + a 3 - 7) - 12 COS(0 2 - y)))g sin q5,

m 3r3 cos(0 2 - 03 -- e3 - 'y)g sin •,
H T

= Hq -.
8q

This dynamical model is used as the basis of our concurrent multi-link deployment

algorithms presented in Section 4.2.1.

3.3 Controllability Analysis

In this section, we address the controllability of our proposed underactuated system

with respect to the input torque -r1 . Our goal is to steer each unactuated link from an

arbitrary initial position to an arbitrary desired final position with zero final velocity.

In other words, we wish to ascertain the existence of an input torque for the steering

process. We first analyze the case of sequential link deployment using a fixed axis

of tilt. Next, we analyze concurrent multi-link deployment using an arbitrary axis of

tilt.

(3.22)

Here

H22 (

H23(

H33(

G2(0, _Y,



3.3.1 Sequential Link Deployment

The state space model for sequential link deployment using a fixed axis of tilt is given

by (3.1). After some rearrangement, (3.1) may be written as

[q ] Nil Ni 11 F + G, 1 Ni= - + T, (3.23)
LiL N1 N} J Fi + Gi Nli

where [Nij] = [Hij] - .
The system dynamics (3.23) is non-linear and its global controllability cannot be

checked directly. We linearize (3.23) about an operating point in the state space

and check the controllability of the linearized system. If the linearized system is

controllable, then it is guaranteed that the non-linear system is locally controllable

around that operating point. If the linearization is controllable at every point in the

state space, then the non-linear system is globally controllable.

Let us define x A [¢, 9, , Oi]T. The operating point is chosen as (x, Tr) =

([0, 0,0,, #]T, 71). Physically, this corresponds to the upright (0 = 0) equilibrium

position for link 1 and an arbitrary equilibrium position (Oi = Oi) for link i. The

nominal torque to keep the system in this equilibrium position is denoted by I1. The

linearization of (3.23) about (x, Ti) = ([0, 0, 0, #i]T, r-) can be written as

6oi

0 0 A 13 A 14

0 0 A23 A24

10 0 0

0 1 0 0

qi¢
+

N11

Nli

0

0

67 (3.24)



Here

A13 = -N 1

A23 = -n

DG1  DGi
11 -'li

8G1
A 14 = -Nlll

80i

1 i l -_ Nii DC

OG1
A 24 1- -nTliG

D0i

The controllability matrix is given by:

A = [B AB A2B A3B]

Ni 1

Nli

0

0

0

Nil1

0 Nli

A13N11 + A 14N1li

A23N11 + A24Nli

0

0

0

0

Al3N 11 + A14N1i

A23N11 + A24N1i

The controllability matrix A is singular iff

det(A) = 0

: Nl(Nl1 A23 - N1iA 13) - N1i(NliA 14 - N11A24) = 0.

Using (3.25) - (3.28) and (3.4), (3.29) reduces to

DOG
=0

== gi = 0.

The linearized analysis indicates that the system (3.1) is locally controllable at all

points in the state space of the form x = [0, 0,0, , 0 ]T except when Oi = 0*, such that

gi(O*) = 0. The physical interpretation of this condition is that the gravitational

torque is identically zero, i.e., the axis of tilt is orthogonal to the plane containing the

center of mass of the free link and the corresponding free joint axis. The linearized

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)



analysis is inconclusive at this point.

A non-linear analysis is required to check the controllability of (3.1) at x =

[0, 0, 0, t*]T . We wish to check the Small Time Local Controllability (STLC) of (3.1)

at x* = [0, 0,0, Of]T. We note that the nominal torque required to keep the system

at equilibrium at x* is given by 7* = Gi(x*). Let 7 = 71 - T*. Then, we can rewrite

(3.1) as:

x = f(x) + g(x)u (3.30)

Equation (3.30) is in the standard form & = f(x) + g(x)u such that f(x*) = 0.

Let us consider repeated Lie brackets containing f and g, e.g. [f, [g, [f, g]]]. Following

Sussmann [20], for a Lie bracket B, we define 6o(B) and J1(B) to be the number

of times f and g appear in B respectively. The degree of B is defined as 6(B) =

Jo(B) + 61 (B). If 6o(B) is odd and 61 (B) is even, then B is called a bad bracket. A

bracket is good if it is not bad. Thus [f, [g, [f, g]]] has degree 4 and is a good bracket.

Sussmann's sufficient conditions for STLC of (3.30) are:

1. The system satisfies the Lie Algebra Rank Condition (LARC).

2. Every bad bracket is a linear combination of good brackets of lower degree.

Condition 1 also implies that the system (3.30) is locally accessible. A system is said

to be locally accessible at x*, if it can reach an open set starting at x*. The local con-

trollability condition is stronger and requires the open set to contain a neighborhood

of x*. We consider the following set of Lie brackets to check this:

L = {g, [f, g], [g, [f, g]], If, [g, [f, g]]]} (3.31)

Appendix B shows that the brackets in L satisfy the LARC. Thus the system is

locally accessible. Also, we note that L has brackets up to degree 4. Thus, the only

bad brackets we are concerned about are f and [g, [f, g]]. The good brackets of lower



degree are g and [f, g]. Once again, from Appendix B, it may be verified that the

good brackets do not span the bad brackets.

We further check that the Hermes necessary condition (HNC) [20] for local

controllability is satisfied at x*, i.e.,

[g, [f, g]] E span{ f, g, [f, [f, 9g]]}. (3.32)

Appendix B shows that this necessary condition is satisfied. The conclusion of the

non-linear analysis is that the system is locally accessible. Intuitively, this ensures

that we can "get out" of the singular configuration. However, the non-linear analysis

is also inconclusive in ascertaining the local controllability of the system.

Remark 3.3.1. The linearized controllability analysis is conclusive if the orientation

y of the axis of tilt may be chosen arbitrarily. From (3.18), it may be noted that it

is always possible to choose 7y such that gi(y, 0i) 0 O. In a sense, the control problem

involving an arbitrary axis of tilt is more straightforward than the case of a fixed axis

of tilt. This is expected, as the orientation -y serves as an additional input.

3.3.2 Concurrent Multi-link Deployment

In this section, we wish to ascertain the feasibility of concurrent multi-link deploy-

ment. We first perform a linearized controllability analysis on the approximate dy-

namical model (3.22) and then provide a physical interpretation of the result. The key

observation is that the effective direction of gravity is orthogonal to the orientation

of the axis of tilt. Indeed, the effective direction of gravity can be chosen arbitrarily

by choosing an appropriate orientation of the axis of tilt.

Linearized Analysis

We check the sufficient condition for local controllability by linearizing the system

dynamics (3.22) about an equilibrium point in the state space. Let us define the



state as x = [92, 93, 92, 93]T . It is convenient to redefine the inputs ¢ and y as

u•t [4, A ,]T A [# cOs y, sin '] T  (3.33)

We linearize the system dynamics (3.22) about (92, 93, 92, 93 2, ,y) = (0, 0, 02, 03, 0, 0),

where #2, and 03 are arbitrary. The linearization is given by:

d~z = A6x - B6u, (3.34)

where

N 22923x + N2393x

N 23923x + N3393x

N22923y + N 2393y

N23923y + N3393y

0 2x2

Here

[N] =[H]- 1

g23x =m2gr2 cos(0 + a2) - m3g(r 3 cos( 2 - 03 + a3) - 12 COS e2)

g23y =m29gr 2 Sin(9 2 + 2) - m3g(93 sin(92 - 93 + a3) - 12 sin 92)

g3 =m397gr3 cOS(9 2 - 93 + a 3 )

g3y =m3gr 3 sin(0 2 - 93 + a 3)

The controllability matrix in this case is given by

P= B

B 11

B 2 1

0

0

AB

B 12

B22

0

0

A 2B

0

0

B 11

B 21

A3B]
0

0

B 12

B22

04x4

0 2x4

I2x2 02x2
B

LI

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)



Using the Kalman rank condition, the system is not controllable iff

B11B22 - B12B21 = 0

S(N22N 33 - T23) (23xg3y - 93x923y)
g23y g3y

g23x 93x

Thus, the dynamical system (3.22) satisfies the sufficient condition for local controlla-

bility, except in certain special configurations in the state space. A non-linear analysis

using Sussmann's sufficient conditions [20] may be conclusive in such configurations.

Physical Interpretation

In this section, we present an intuitive understanding of the controllability analysis

from the previous section. See Fig. 3-5. The point C23 denotes the combined center-

of-mass of links 2 and 3. The point C3 denotes the location of the center-of-mass of

link 3. The goal is to achieve in-phase and out-of-phase steering for the free links. We

define in-phase steering as the case where links 2 and 3 move in the same direction,

viz. clockwise or counter-clockwise. Similarly, we define out-of-phase steering as the

case where links 2 and 3 move in opposite directions.

Fig. 3-5(a) shows the choice of the orientation 7y of the tilt axis 0 2Zo, such that in-

phase steering may be achieved. The effective direction of gravity in the instantaneous

plane of motion is given by OG. It may be noted that OG is orthogonal to 0 2 Zo.

The direction 02G2 (respectively, 03G3) is parallel to OG and denotes the direction

of gravity as viewed from joint 2 (respectively, 3). It is evident from the figure that

the gravitational torques on the free joints enable in-phase steering. Similarly, Fig. 3-

5(b) shows the choice of the orientation 'y of the tilt axis 0 2Zo, such that out-of-phase

steering may be achieved.

The condition (3.41) corresponds to the case where 02C23 and 03C3 are par-

allel or anti-parallel. When 02C23 and 03C3 are parallel, the effective direction of

gravity is the same relative to links 2 and 3. Thus, out-of-phase steering cannot be

achieved. Similarly, in-phase steering cannot be achieved when 02C23 and 03C3 are



anti-parallel. Indeed, the quantities g23x and g23y in (3.41) may be identified with

the x and y coordinates of the combined center-of-mass of links 2 and 3, i.e., the

point C23. Similarly, the quantities g3x and ga, may be identified with the x and y

coordinates of the center-of-mass of link 3, i.e., the point C3.

Remark 3.3.2. Out-of-phase steering may be achieved even when the lines 02C23

and 03C3 are parallel. The intuitive explanation is that the links start moving in

phase, but at different rates. Thus, the lines 02C23 and 03C3 are no longer parallel

after the onset of motion. At this point, the axis of tilt may be switched to enable out-

of-phase steering. A non-linear analysis based on Sussmann's sufficient conditions

may be fruitful.
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Figure 3-5: Multi-link steering: (a) In-phase steering; (b) Out-of-phase steering



Chapter 4

Feed-forward Control

The goal of this chapter is to develop motion-planning algorithms for positioning the

links of the robot arm. Since the arm lacks dedicated actuators at the joints, there

is no direct means of positioning the links arbitrarily. Instead, the tilt trajectory of

the base joint has to be carefully designed so as to move each link (starting at rest)

to a desired final position with zero final velocity. Further, the arm operates inside

an aircraft wing, and it must be ensured that the amplitude of the tilt trajectory

is within reasonable bounds. We develop algorithms for the generation of such tilt

trajectories. We first present algorithms for sequential link deployment and extend

these results for concurrent multi-link deployment.

4.1 Sequential Link Deployment

In this section we develop motion planning algorithms for the sequential deployment

of the unactuated links. At any given time, only one unactuated link is free; all

other unactuated links are locked. We first consider an optimal control formulation

of the problem with an appropriate cost function. Next, we gather insights from

the optimal control solution and propose a parameterized control scheme. The latter

scheme generates trajectories which are similar to the optimal control setup, but is

computationally superior.



4.1.1 Optimal Control Scheme

We have ascertained the controllability of the system and now we investigate a fixed

horizon optimal control approach to generate a control law for the system (3.30). Op-

timal control approaches have been used for the generation of trajectories of systems

involving 1st order non-holonomic constraints [12]. Often, analytical solutions are

available for the optimal control problem. It is straightforward to extended the opti-

mal control framework to systems with 2nd order non-holonomic constraints. However,

analytical solutions are in general not available and we must use numerical techniques

to solve the associated boundary value problem.

The choice of an appropriate cost function is very important in an optimal control

framework. The qualitative nature of the solution changes depending on the choice

of the cost function. It is common practice to use a measure of control effort, for

example, f u2dt, as the cost function. However, our application does not necessarily

benefit from this choice of cost function. Instead, it is more important for us to restrict

the amplitude of the actuated coordinate because the arm operates inside an aircraft

wing-box. We would also like to avoid excitation of structural modes of the system

through large accelerations of the actuated coordinate. Under these considerations,

we choose to minimize the cost function:

Jo = L(x, u)dt = j 2dt. (4.1)

As before, x [0, 0, 2, 821 T, u T1 and the state x evolves as

-Nil (F1 + G1) - N 12 (F2 + G2)

-AN12 (F1 -+ G1 ) - N22(F 2 + G2)

02

+

Nil

N12

0

0

T1 (4.2)

A f(x) + g(x)u

The expressions for the quantities Nll, N12 etc. are given in Appendix A.

J:



Introducing Lagrange Multipliers A = [A1, A2, A3, A4]T, the augmented cost func-

tion may be written as:

J = (L(x, u) + AT(f(x) + g (x)u - t)) dt. (4.3)
0

Using the calculus of variations, the necessary conditions for optimality may be writ-

ten as:

' = f(x) + g(x)u (4.4)

+,U A (4.5)
Lu -AT g(x) (4.6)

The system of equations (4.4)-(4.6) can be solved as a two point boundary value

problem with the following boundary conditions:

x(0) = [0 , 0 0, , 20]T, X(tf) = [0 , 0 0, 0, 02]T (4.7)

We note that the range of motion of 02 is 0O (fully folded) to 1800 (fully extended).

Fig. 4-1 shows the simulation results for 020 = 200 and 02f = 500. It is instructive

to compare the results for the cost functions Jo = fs 42dt and JO = fS' T dt. From

Fig. 4-1(a), it is evident that the latter choice of cost function results in a higher

amplitude and frequency components in the actuated joint trajectory. Fig. 4-1(b)

shows that the unactuated coordinate also displays a large overshoot and oscillatory

behavior when the cost function is JO. Fig. 4-1(c) shows the corresponding torque

profiles. The peak torque is higher for the cost function JO, but the average torque

is lower. As mentioned before, we are interested in a small amplitude of tilt and low

frequency of oscillations of the actuated coordinate. Thus, the trajectory obtained

using the cost function Jo = fo ,2dt is preferred.

The system of equations (4.4) to (4.7) represents an 8 th order boundary value

problem. The computation time for this example was approximately 1000ms. If



disturbances act on the system during the motion, it may be required to update the

motion plan in real time based on actual measurements. The slow computation time

makes the approach unsuitable for this purpose. The convergence of the numerical

techniques is also contingent on a "good" initial guess for the actual solution. The

guess solution used for the trajectory of the unactuated coordinate is:

2 (t) = 10/ - 15 (f) + 6 - (02f - 20) + 020 (48)

The initial guess (4.8) is based on the intuition that the unactuated coordinate should

change smoothly between the initial and final positions. The simulated trajectory

conforms well to the initial guess when the cost function Jo is used. However, the

trajectory shows a marked deviation when the cost function is JO.

4.1.2 Parameterized Control Scheme

In this section, we mitigate the convergence issues of the optimal control approach

by solving a reduced order boundary value problem. This reduction is achieved by

treating the trajectory of the actuated coordinate as a pseudo input in lieu of the

torque, which is the true input. This redefinition of the input is justified in (3.7).

We gather insights into the structure of the pseudo input from the basic nature

of the optimal control solution. From Fig. 4-1(a), we note that the actuated joint

trajectory must start from the zero position with zero velocity and return to the

zero position with zero velocity at the end of the motion. Further, it undergoes one

change of sign during motion. This change of sign is required to first accelerate (from

zero initial velocity) and then decelerate the unactuated link to zero final velocity.

Using these notions, we construct the trajectory of the actuated joint by smoothly

patching together piecewise sigmoid polynomial segments, as shown in Fig. 4-2. Such

sigmoid polynomials are the lowest order polynomials which are C2 and also satisfy

the boundary conditions.

We parameterize the tilt trajectory as follows:



`-e

(a)

t (s)

(b)

k

t(s)

(c)

Figure 4-1: Optimal control: (a) Actuated joint trajectory; (b) Unactuated joint
trajectory; (c) Joint torque
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Figure 4-2: Typical parameterized sigmoid trajectory

M(t) =

(10p 3 - 15p 4 + 6p 5 )0a

I t - t 0 < t < 71tf

(10p 3 - 15 p4 + 6p5)(0a - b) + b (4.9)
11 2tf -- t

/-I (rq2_rll)tf- 771tf < t <_ 772tf

(101
3 - 15/ 4 + 6 /5) b

tf -2 rtf tt
p=tUs 72f<t<t

We need to determine the parameters 4 a, Ob, 771, 772 and tf of the actuated joint

trajectory 0(t) for desired motions of the unactuated joint 02(t) between 020 and 0 2f.

We do this by substituting the parameterized pseudo input in (3.5) and solving it

as a 2 point boundary value problem (bvp). (3.5) becomes a 2nd order bvp with 4

boundary conditions and 5 unknown parameters to be determined. The system is

clearly indeterminate. We thus fix 3 of the unknown parameters, viz. 771, 772 and tf,

and solve the 2nd order bvp for qa and Ob. This is motivated by the fact that ,a and

qb are linearly involved parameters if we ignore the weak term associated with 2.

Further, we note that if 0(t) is an input trajectory for motion of the unactuated

coordinate from 020 to 0 2f in time tf, 0'(t) = /(tf - t) is the input trajectory for

motion from to 0 2f to 020 in time tf. If we choose 771 and 712 such that q1 = 1 - T12,

c*4 tf

02 tf

172 t f IV



the parameters for the sigmoid trajectory for retraction are q' = ql, q = 72, (P = (b

and q$ = Oa. Thus, we do not need to recompute the parameters of the sigmoid

trajectory for retraction of the arm. The parameter tf may be set to get a desired

average speed of motion required for point to point movements.

Fig. 4-3 shows the simulation results for 920 = 0O and 02f = 600. The total

duration of motion is set at tf = 4s. We consider two choices of the "fixed" parameters

71i and 7/2. The corresponding parameters Pa and (b are listed below.

1. 1i = 0.33, 772 = 0.67: Oa = 1.10 and (b = -1.51'

2. 77i = 0.20, 772 = 0.50: Oa = 1.510 and (b = -1.260

The computation time for this approach is around 450ms.

Remark 4.1.1. The trajectory of the actuated coordinate may also be parameterized

using other smooth functions in lieu of sigmoidal functions. For example, we may use

sinusoidal functions to parameterize 0(t) as

( = Oa sin3 wit 0 < t < tfl, wltfl = r (4.10)

¢ = Cb sin3 w2 (t - tfl) tfl1 t < tf2, W2(tf 2 - tfl) = r (4.11)

The form of the input function ensures that 0(0) = ¢(tf2 ) = ¢(0) = ¢(tf2) = 0, which

also means that the initial and final accelerations of the unactuated joint are zero. As

before, the quantities tf 1 and tf2 are fixed a priori and we determine the unknown

parameters (a and (b by solving the associated boundary value problem.

4.1.3 Optimal vs. Parameterized Control

It is worthwhile to compare the two solution methodologies vis-a-vis the computa-

tional costs and the nature of the solutions. A faster computational time is desirable

because it may be necessary to dynamically update the motion plan based on actual

measurements. Both approaches result in 2 point boundary value problems (bvp).

The parameterization approach results in a 4th order bvp, while the optimal control
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approach results in an 8th order bvp. The lower order bvp associated with the pa-

rameterized formulation results in a 50 percent reduction in the computation time.

The use of a sigmoidal parameterization also ensures that the final accelerations of

both actuated and unactuated joints are zero. The optimal control approach lack this

feature.

The solutions in both approaches are strikingly similar, as seen in Figs. 4-4 and

4-5. Fig. 4-4 shows the case where the modulating coefficient 92 (shown in Fig.

3-2), does not change sign during the motion. Thus, the actuated joint has to tilt

forward to accelerate the unactuated joint and then tilt backward to decelerate it. As

a result, the actuated joint changes sign once during the motion. Fig. 4-4 shows the

case where the modulating coefficient changes sign (at 02 e 900) during the motion.

Thus, the actuated joint does not change sign during the motion. These intuitive

notions are captured in both numerical approaches.

4.1.4 Arbitrary Axis of Tilt

In this section we consider a deployment scheme where the links of the robot arm are

deployed one at a time. The goal is to move link i from an initial position Oio (relative

to link i - 1) with zero initial velocity to a final position Oif with zero final velocity.

By repeating this sequence for each link, the entire arm may be reconfigured. It may

be noted that links i to n move as a single rigid body during the motion. The motion

planning problem admits an analytical solution if the input is chosen appropriately.

The key idea is to design the input so that links i to n emulate the motion of a

pendulum in a gravity field.

Fig. 4-6(a) shows the initial configuration of the links and the location of the

center of mass of links i to n. Fig. 4-6(b) shows the desired final configuration and

the corresponding location of the center of mass. The amplitude of motion is AOi.

Fig. 4-6(c) shows the choice of the axis of tilt Zo in the horizontal plane. The axis of

tilt Zo is such that the effective direction of gravity is symmetric with respect to the

initial and desired final positions of the center of mass. As a result, links i to n move

as a pendulum whose equilibrium position is the axis of symmetry of the initial and



Figure 4-4: Parameterized vs. optimal Control: (a) Actuated joint trajectory; (b)
Unactuated joint trajectory; (c) Joint torque

51



3

2.5

- 1.5

1
0.5- -.- Optimal Control min. ff q2 t

---Parameterized Control

0.5 1 1.5 2
t (s)

(a)

3 3.5

t (s)

(b)

t (s)

(c)

Figure 4-5: Parameterized vs. optimal control: (a) Actuated joint trajectory; (b)
Unactuated joint trajectory; (c) Joint torque

52

II



desired final positions. Due to symmetry, the pendulum will reach the desired final

position with zero velocity.

We may formally arrive at these conclusions from the dynamics represented by

(3.14). First, we set the orientation y of the axis of tilt as

a io + Oif7 = ai + (4.12)

Next, we set

¢ = o0, 7 = 0 and ¢ = O (4.13)

This corresponds to a constant tilt 0(t) = ¢o of link 1. Using (4.12) and (4.13) in

(3.14), we get

=io + Oil
2 = Ai sin( 2i - ) sin 0o. (4.14)

If sin( • + ) > 0 (< 0), we choose 0o such that sin 0 < 0 (> 0). In either case,

(4.14) represents a pendulum whose stable equilibrium position is Oi = OiOif

The algorithm is summarized below:

1. Determine initial and desired final positions of center of mass of links i to n.

2. Choose axis of tilt (in horizontal plane) orthogonal to the axis of symmetry of

initial and desired final positions.

3. Tilt link 1 about chosen axis.

4. Unlock brake to free link i.

5. Lock brake when arm reaches zero velocity.

6. Tilt link 1 back to vertical upright position.



initial position

( Center of Mass of links i to n

(a)

desired final position

Center of Mass of links i to n

(b)

Effective direction of g

A 0,

2

I Z-l lj

2

Axis of Tilt in Horiz ontal Plane

(c)

Figure 4-6: Single link deployment: (a) initial position, (b) desired final position, (c)
choice of tilt axis
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4.2 Concurrent Multi-link Deployment

We consider the case where two unactuated links of the hyper-articulated arm are

in motion concurrently. Our goal is to concurrently steer 2 links from their respec-

tive initial locations (starting at 0 velocity) to desired final locations with zero final

velocity. The corresponding boundary conditions may be written as (i = 2, 3)

Oi(O) = Oio, Oi(tf) = OaI and O~i() = 0, O~(tf) = 0. (4.15)

(3.22) and (4.15) represent a system of 4 th order ODEs with 8 boundary conditions.

This problem may be formulated as a boundary value problem if the control input

0 is parameterized in terms of 4 parameters. These parameters pj (1 < j < 4) are

constant but unknown and the system (3.22) and (4.15) may be augmented with the

system

ij = 0. (4.16)

We propose an algorithm for formalizing this approach.

4.2.1 Control Algorithms

We parameterize the tilt of link 1 along two fixed orthogonal axes, X0* and Y0* in

the horizontal plane. Let us denote the angular rotations by Ox and qy respectively.

See Fig. 4-7. The trajectories 4x and Oy comprise three sigmoidal segments each.

The parameters correspond to the peaks and troughs of the sigmoidal segments and

are denote by OXa, kXb, 0Ya and $Yb. For finite angular rotations, the sequence of

rotations determines the final orientation of a rigid body. However, if Ioxl and Joyl

are small, the rotations commute up to first order. We verify a posteriori, that this

small angle assumption is indeed true.

The orientation 7y of the equivalent axis of tilt and the amplitude of tilt are give
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7 = atan2(¢y, Ox) (4.17)

q 0= /2 + 2 (4.18)

The duration of each sigmoidal segment was fixed at -. As a result, the orien-

tation -y of the axis of tilt remains fixed during each subinterval (0, 4), (4~, )

and (, 3 tf). These fixed orientations are given by ya = atan2(ya, oXa), -Yb

atan2(¢yb - OYa, OXb - qXa) and ya = atan2(--yb, --Xb).

4.2.2 Simulation Results

Fig. 4-8 shows the simulation results for the boundary conditions

02(0) = 00, 2 (tf) = 600 and 03(0) = 800, 3 (tf) = 250.

02(0) = 0, 92(tf) = 0 and 93(0) = 0, 63(tf) = 0.

These boundary conditions correspond to in-phase motion of links 2 and 3 (both

clockwise). The final time was set at tf = 8s. Fig. 4-8(a) shows the X and Y com-

ponents of the trajectories of the link 1. The parameters of the sigmoid trajectories

obtained from the solution of the boundary value problem are

•xa = -0.050, OXb = -0.200, OYa = -0.350, •yb = 0.440.

Fig. 4-9 shows the simulation results for the boundary conditions

02(0) = 00, 02(tf) = 800 and 9a(0) = 00, 03(tf) = 900.

02(0) = 0, 62(tf) = 0 and 93(0) = 0, 63(tf) = 0.

These boundary conditions correspond to out-of-phase motion of links 2 and 3 (link

2 counter-clockwise, link 3 clockwise). The final time was set at tf = 8s. Fig. 4-9(a)
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shows the X and Y components of the trajectories of the link 1. The parameters of

the sigmoid trajectories obtained from the solution of the boundary value problem

are

OXa = -0.39o, OXb = 0.380, vYa= -- 0.380, Yb = 0.32'.

In both cases the amplitudes of tilt are small. This verifies, a posteriori, the small

angle assumption ensuring commutativity of rotations.

Remark 4.2.1. The concurrent multi-link deployment problem also admits an op-

timal control formulation. The associated boundary value problem is of order 12.

However, as seen in the single link case, the solution obtained from the optimal con-

trol formulation is almost identical to the parameterized control formulation. Thus

the solution of a higher order boundary value problem is unwarranted.
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Chapter 5

Feedback Control

We have proposed several motion planning algorithms suitable for the gravity-assisted

underactuated robot arm. They include parameterized trajectory planning for the

actuated joint and feed-forward optimal control. These are open-loop techniques and

work well in the absence of disturbances. Also, an exact knowledge of the system

dynamics is needed. In particular, a good estimate of stiction characteristics as

well as dynamics associated with assorted cables and hoses is necessary for accurate

position control of the robot arm. However, it is unrealistic to assume prior knowledge

of such state dependent unknown parameters. This necessitates the development of

a closed-loop control strategy for our system.

We first propose a feedback control law for sequential link deployment; in this case,

only one unactuated link is in motion at any given time. We synthesize a Lyapunov

function to prove the convergence of our control law. The Lyapunov function is

also used to generate estimates of the domain of convergence for this law. Next,

we discuss concurrent multi-link deployment. It is not immediately clear as to how

feedback control schemes can be generated to control multiple links using a single

input. Instead, we propose an intermittent feedback scheme, where the feed-forward

motion plan is smoothly updated based on periodic measurements of the output.



5.1 Feedback Law for Sequential Link Deployment

In this section, we propose a closed loop control law for point-to-point control of the

unactuated link. The goal is to transfer the unactuated link from an initial angular

position 9o (= 02 0 +a) with zero initial velocity to a final angular position Of (= 02f+a)

with zero final velocity. We treat the actuated coordinate € as a pseudo input and

prescribe a feedback law in terms of the pseudo input. The formal justification of this

treatment is deferred to Appendix D.

From (3.9), we see that the input q has a bounded effect on the acceleration

because Isin 01 < 1. We propose a feedback control law of the form:

sin 0 = sin(kl(9f - 0) - k2 ) sin 0
k

where k > 1 and k1 , k2 > 0 are constants. Also Of is the desired final angular position

of the unactuated link. We note that q exists because I sin(ki (Of -9) - k29) sin 9/ki k

1. Using (5.1) in (3.9) we get:

0= sin(k• (Of - 9) - k29) sin2 9. (5.2)

Let us introduce a non-dimensional time scale 7 Wt, where wn A A/k. We can

now rewrite (5.2) as:

0 = sin(k l(Of - 0) - k2 ) sin2 9. (5.3)

Here k2 = w•k 2 and it is understood that the derivatives denote differentiation with

respect to 7.

5.1.1 Physical Interpretation

The intuition behind the control law (5.1) is to introduce a virtual non-linear spring

and damper into the system. These virtual elements introduce a stable equilibrium

point [9, 9] = [9O, 0] in the system dynamics. In the vicinity of the equilibrium point



[Of, 0], the dynamics (5.3) may be approximated as:

ý (k sin2 of )(Of - 0) - (k2 sin 2 Of ) O.  (5.4)

The parameters kl and k2 are measures of stiffness and damping respectively. Further,

the multiplicative term sin 0 in (5.1) ensures that the sign of the acceleration 0 in

(5.3) is not affected by the regime of motion (sin 0 > 0 or sin 0 < 0). It is only affected

by the deviation from the desired final state [0, 0] = [Of, 0].

The linearized system (5.4) does not provide any insight about the domain of

convergence of the control law for different choices of kl and k2. Also, the linearization

of (5.3) about the other equilibrium point [0, 0] is degenerate and the stability of the

non-linear system cannot be inferred. These issues are formally addressed in the

non-linear convergence analysis below.

5.1.2 Proof of Convergence

Let us consider the domain Q = {[0, 0] : Ikl(Of - 0) - k20 <• 7/2 and 101 < 7}, and a

Lyapunov function candidate (defined on t ):

12 x + k2  d !2 (5.5)
V(O, 0) - - sin x sin ( Of)dx 2, (5.5)

ki 0  ki 2

where '0 = kl(Of - 0) - k2A.

Proposition. The control law (5.1) guarantees local asymptotic convergence of the

state [0, O] in (5.3) to [Of, 0] for arbitrary gains ka, k2 > 0. Further, E l(k1 , k2) > 0

for which an estimate of the domain of attraction of the control law is the bounded

region Q, = {[0, ] : V(O, 0) < 1} C Q.

Proof. The scalar function V(O, 0) defined in (5.5) is positive definite in Q because it

satisfies the following conditions:

1. V(of, 0) = 0.

2. V(0, 0) > 0 in Q V [0, 0] =# [Of, 0].



The 1t condition follows from direct substitution in (5.5) and noting that [09, ] =

[91, 0] implies 0 = 0. The 2 nd condition follows by noting that sin x > 0 for 7/2 >

x > 0 and sinx < 0 for -7r/2 < x < 0. Thus, for 0 < 101 <7 r/2:

/* ' x + k26
sin x sin 2 (- Of)dx > 0. (5.6)

o ki

Henceforth, we abbreviate V(O, 9) as V. It is convenient to rewrite (5.5) as:

ki (cos o-cos ?± ) cos 20+(k, sin -2 sin ) sin ( - co20) + 2 k

V = I
2(k -4) + 1c o

1(sin ip sin 20 - sin(04 + 20) + 4sin2 2) + I 2, kl = 2.

(5.7)

Appendix E shows a construction of 1 such that the region •1 is a subset of Q. The

time derivative of (5.7) along system trajectories is given by:

av. ov..dV =V --= 0+ 80
k2 s2

{ k2 sin2 ) (k1 sin V) (sin 20 cos P - sin 2( + 9)) + (2- k2 sin2 )sin2 ), ki #2.
S k (4-k)ki

-- ksin20((1 + 2 sin2 0) sin2 2 - 11sin cos(20 + 0)), kl = 2.

(5.8)

It may be shown that V < 0 in Q for all k1, k 2 > 0. In the interest of brevity, we just

prove this assertion for kl = 1 and k2 > 0. We defer the proof of the general case to

Appendix A. Substituting kl = k2 = 1 in (5.8) and after some rearrangement we get:

B2

V = sin2 0(1 - cos 0) [3 sin2 0 cos 0(1 - cos 0) + (2 sin 0 cos 0 + sin ' cos 0) 2

+ (sin 0 cos 9 + sin 9)2 + sin2 0 Cos 2 /] (5.9)

We note the 0 < cos 0 < 1 in Q. Thus, the expression in square brackets in (5.9) is



always non-negative. Hence, V < 0 in Q. Also, from (5.9):

V=0

=~ = 0 or o = 0 (5.10)

Using (5.12) in (5.2) we get:

V=0= 09=0 (5.11)

Since V is only negative semi-definite, we next analyze the invariant sets where V = 0.

From (C.5):

S= 0 ~ O= 0 or = 0 (5.12)

Using (5.12) in (5.2) we get:

V = 0 0=0 (5.13)

From (5.12) and (5.13), the largest invariant set where V = 0 is given by {[0, 0] =

[0, 0] U [Of, 0]}. Using La Salle's invariant set theorem, we conclude that the state

[0, 0] converges to [0 = 0, 0 = 0] or [0 = Of, 0 = 0].

It remains to establish the stability of the equilibrium points. If Of = 0, the largest

invariant set is {[0, 9] = [0, 0]}. Thus, [0f, 0] is a stable equilibrium point. If 0Bf 0,

we show that [0 = 0, 0 = 0] is unstable and [0 = 0f, 0 = 0] is a stable equilibrium

point. From (5.7):

d2V = 0 and 3V 0 -- 2 sin(k1 1 ) = 0.
092 0,0 93 0,0

This implies that [9 = 0, 0 = 0] is not a local minimum for V and thus an unstable
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Figure 5-1: Estimates of domain of convergence for various gains

equilibrium point. Once again, from (5.7):

Sk, sin2 f k2 sin2 "o
,0[o k2 sin2 of k sin2 O +

This implies that V 2V is positive definite and [0 = 0f, 0 = 0] is a local minimum

for V and thus a stable equilibrium point. Thus the state [0, 9] in (5.2) converges to

[Of, 0] as long as it does not start from [0, 0]. O

Remark 5.1.1. Fig. 5-1 shows a comparison of the estimates of the domain of

convergence for various choices of kl and k2 . The desired final position was Of = 500

in each case.

Remark 5.1.2. The Hamiltonian of the undamped system (setting k2 = 0 in (5.3))

may also serve as a Lyapunov function candidate. This Hamiltonian is given by

H = _ fki (0-0 ) sin x sin 2( _ - Of)dx + 1 2. However, the domain of convergence is

smaller than that obtained from the Lyapunov function (5.5). This is shown in Fig.

5-2.

Remark 5.1.3. It may be noted that the instability of the equilibrium point [0 = 0, 0 =

0] does not follow from linearization because the linearized system has zero eigenvalues

66
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Figure 5-3: Stable and unstable equilibria of system dynamics

at that point. Fig. 5-3 shows the variation of the Lyapunov function as a function of

0 on the plane 0 = 0. The parameter values were ki = 1.2, k2 = 0.2 and Of = 50'.

The equilibrium [0 = 0, 0 = 0] is unstable, while the destination [0 = Of, 0 = 0] is

stable.

5.1.3 Simulation Results

Fig. 5-4 shows the simulation results for various control gains. The parameters in

(3.10) and (3.11) are set at A = 32.8 and a = -3.22' for the simulations. These

correspond to our experimental setup presented in Chapter 6.

~ r\~' ZI
V.06;

0

We also introduced



some viscous friction in simulations. The tilt trajectory (q) of link 1 is shown in

Fig. 5-4(a) for various choices of the control gains. A small amplitude of q is very

important in practice because the arm operates inside an aircraft wing. If link 2 starts

at 80 with zero initial velocity, the initial tilt of link 1 is given by:

sin(ki(8f - o0)) sin (5.14)
sin o = k(5.14)

The maximum tilt is 1.30 for the case k = 12 and kl = 1.2. This is acceptable for

operation inside the wing-box.

The trajectory (02) of the free link is shown in Fig. 5-4b for various control gains.

From (5.4), the quantity k2/1lVk (= k2/ VTk) may be interpreted as a measure

of "damping ratio" for the closed loop dynamics. As expected, less overshoot is

observed as the "damping ratio" is increased. A lower "damping ratio" also results

in a faster rise time. However, the corresponding settling time is also larger because

of oscillations. These observations are evident in Fig. 5-4(b).

5.1.4 Extension of Control Law

A primary drawback of the proposed control law arises from the conflicting require-

ments of small amplitude of tilt of link 1 and small steady state error for link 2. This

is readily seen from (5.14). The initial tilt 0o may be large if the amplitude of motion

I Of - 0 I is large. To achieve smaller values of o0, the scaling factor k may be increased

or the gain kl may be reduced. As noted before, the ratio k 1/k is a measure of the

stiffness of the virtual non-liner spring introduced by the controller. Increasing k and

reducing kl would result in lower stiffness. This would lower the speed of convergence

and also increase the steady state error induced by Coulomb friction.

We address this issue by replacing the fixed reference Of in (5.1) by a time vary-

ing reference ref(t) starting at 80 and changing smoothly to Of. In particular, the



Q

-0-

0 1 2

50

45

40

,0

4 5 6 7
t (S)

(a)

1 2 3 4 5 6 7 8
t (s)

(b)

Figure 5-4: Feedback control:
trajectory

(a) actuated joint trajectory; (b) Unactuated joint

69

12, k1 = 0.8, k2 = 0.4
12, kl = 1, k2 = 0.4
12, k1 = 1.2, k2 = 0.2

=0.8, k2 = 0.4
= 1, kc2 = 0.4

= 1.2, k2 = 0.2

'I

1 I

-

-

r

t (s)

(•)
4 5 6

·-

C

C

C

E

i-···

E

"a



reference may be a sigmoidal trajectory given by:

re0(t 0 = 8 0 + ( )3 - 15() 4 + 6 )5) (f - o) 0 < t < t< (5.15)O (t) = -f -1(5.15)
1Of t > tfi

We may choose tf 1 to set a desired average speed of motion I Of - Oo /tf 1. Substituting

(5.15) in (5.1), we obtain the modified control law:

sin ¢ = sin(kl(Oref(t) - 0) + k 2 (Oref (t) - 0)) sin (516)
k

Fig. 5-5 shows the simulation results using the modified control law (5.16). The

parameter tf 1 was set at 10s. The trajectory of the unactuated joint is shown in Fig.

5-5(a). Fig. 5-5(b) shows the corresponding actuated joint trajectories for various

gains. The maximum amplitude of tilt is 0.4'. This is well within acceptable limits.

The Fig. 5-5(c) shows the actuated joint trajectories, when a fixed reference Of is

used. The maximum amplitude of tilt is 100, which is too large for operation inside

an aircraft wing.

Remark 5.1.4. The convergence proof presented for the autonomous case does not

carry over for the time varying control law. However, as seen from (5.15), the system

is autonomous for t > tf 1. From (5.2), we see that the magnitude of the acceleration

01 is upper bounded by A. Thus, the position and velocity of the system at time

tf1 are also bounded. Some conservative estimates of these bounds are 0I(tfl)l <

I0(0)I + Al0(0)tflr + At2f and 10(t$1)I < 9(0)1 + -tfl. If the state [9,0] at time

tf 1 is within the domain of attraction for the autonomous control law, the system is

guaranteed to converge to [Of, 0]. However, these bounds are too conservative to be

practically useful.
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5.2 Intermittent Feedback for Concurrent Multi-

link Deployment

The feedback control scheme for sequential link deployment cannot be readily ex-

tended to concurrent multi-link deployment. It is not immediately clear as to how

error signals from multiple free joints may be used to generate a single feedback input

for the actuated joint. Instead, we present a scheme whereby the planned input tra-

jectory may be periodically modified based on actual measurements of the positions

and velocities of the free links.

5.2.1 Control Algorithm

The key idea is to update the pre-computed motion plan based on measurements of

the actual system states. Fig. 5-6 shows a block diagram of the intermittent feed-

back control scheme. The "Actual System" block corresponds to the true physical

system, while the "Dynamic Model" corresponds to our approximate model (3.22).

The switches S1 and S 2 are closed at t = 0 and then again at t = to, when the ac-

tual outputs [2 (t), 3 (tc), 02(tc), 03(tc)] are checked against the model-based outputs

2 (tc 83 (tc), 82(tc) 83 c -

At t = 0, we start with pre-computed sigmoidal input trajectories along two or-

thogonal axes in the horizontal plane, given by -x (t) (parameters qx$ and xb) and

-y(t) (parameters vYa and 'Yb). At t = tc, if the actual output differs significantly

from the model-based output, we recompute the input trajectory parameters. The

"Input Parameter Generator" generates the updated parameters [OXa, OXb, eYa, qYbl,

as well as the additional time frame Atf for which the motion is executed. These

parameters are generated from the solution of the associated boundary value problem

with the actual outputs as updated initial conditions. The parameter Atf is deter-

mined from considerations on maximum allowable acceleration of the tilt trajectory.

The updated input trajectories at t = t, are patched smoothly with the pre-computed

ones.
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Figure 5-6: Block diagram for intermittent feedback control

Fig. 5-7 shows the pre-computed and updated sigmoidal trajectory segments.

Let us denote the position, velocity and acceleration of the pre-computed sigmoidal

trajectory at time t, by qc, we and ac respectively. The updated sigmoidal trajectory

must match these initial conditions for a smooth transition. Also, let us denote the

final position, velocity and acceleration by Of, wf and af respectively. A sigmoid

with these boundary conditions is given by:

5 i

(t) = ai 0 < t < At (5.17)

where

a5 = 6(qf - Oc) - 3(wf + wc)At + 2(ai - ac)(At)2  (5.18)
1

a4 = -15(of - Oc) + (7wf + 8wc)At - 1(2af - 3ac)(At) 2  (5.19)

a3 = 10(Of - Oc) - (4wf + 6wc)At + 2(af - 3ac)(At) 2  (5.20)

a2 = 2ac(At)2 (5.21)

al = wcAt (5.22)

ao = Oc (5.23)
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Figure 5-7: Pre-planned and updated sigmoid trajectories

5.2.2 Simulation Results

Fig. 5-8 shows the simulation results for the boundary conditions

02(0) = 00, 2(tf) = 1000 and 03(0) = 0O, 03(tf) = 1200.

02 (0) = 0, 2 (tf) = 0 and 03(0) = 0, 03(tf) = 0.

The pre-computed motion plan was over a duration tf = 8s. At time t, = 4.77s,

the output (position and velocity of the unactuated links) was "measured". The dis-

crepancies (A02(tc) = 100, A03 (tc) = -300) in the actual and pre-computed outputs

are shown in Fig. 5-8(b). The boundary value problem was solved with the updated

initial conditions and the updated sigmoidal trajectory was smoothly patched (using

(5.17)) with the pre-computed sigmoidal trajectory. The final time was extended by

Atf = 6s. The pre-computed and updated sigmoidal trajectories are shown in Fig.

5-8(a). Using the updated sigmoidal input, the output satisfies the desired boundary

conditions at the final time t~ + Atf. This is shown in Fig. 5-8(b).
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Fig. 5-9 shows the simulation results for the boundary conditions

02(0) = 900, 0 2(tf) = 100 and 03(0) = 600, 03(tf) = 1200.

02(0) = 0, 12(tf) = 0 and 03(0) = 0, 03 (tf) = 0.

The pre-computed motion plan was over a duration tf = 8s. At time t, = 4.77s, the

output (position and velocity of the unactuated links) was measured. The discrepancy

in the pre-computed and actual output is shown in Fig. 5-9(b). The boundary value

problem was solved with the updated initial conditions and the updated sigmoidal

trajectory was smoothly patched with the pre-computed trajectory. The final time

was extended by Atf = 6s. The pre-computed and updated sigmoidal trajectories

are shown in Fig. 5-9(a). Using the updated sigmoidal input, the output satisfies the

desired boundary conditions at the final time tc + Atf. This is shown in Fig. 5-9(b).
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Chapter 6

Implementation and Experiments

6.1 Fixed Axis of Tilt

We conducted position control experiments on a prototype system with 3 links which

is shown in Fig. 6-1. The link mechanism, which operates inside the wing-box, is

shown in Fig. 6-1(a). The links are essentially C-channels which are serially connected

by 1 d.o.f rotary joints. Link 1 is the only servoed link. Links 2 and 3 are equipped

with on-off pneumatic brakes. The relative angular displacement of each link is

measured using an optical encoder placed at the rotary joint. The resolution of each

encoder is 1000 pulses per revolution.

The actuators and transmission mechanisms for link 1 are completely outside the

wing-box and are shown in Fig. 6-1(b). They comprise a servoed tilting mechanism

and a servoed azimuthal positioning mechanism. The tilting mechanism is used to

tilt link 1 relative to a vertical axis. Depending on the state (on or off) of the

pneumatic brakes, the unactuated links (2 and 3) may be deployed by exploiting

gravity and dynamic coupling with link 1. The azimuthal positioning mechanism is

used for angular positioning of the entire link mechanism inside the wing-box and

serves to expand the workspace of the robot arm. This mechanism is used after the

links have been deployed using the tilting mechanism. The pneumatic brakes are in

the on state when the azimuthal positioning mechanism is in use. Both mechanisms

have harmonic drive gearing (100:1) coupled to AC servomotors (0.64 Nm, 3000rpm).



In the experiments that follow, the azimuthal positioning mechanism is not used. We

only use the tilting mechanism to deploy the links and verify the proposed control

law.

(a) Link mechanism (operates inside wing-box)

(b) Actuation Mechanisms (operate outside wing-box)

Figure 6-1: 3-link prototype arm

6.1.1 Feed-forward Control

Fig. 6-2 shows the experimental results for motion of the free link using a sigmoidal

parameterization for the tilt trajectory. The initial position of link 2 was 020 = 00

and the desired final position was 02f = 500. The 3 rd link was kept fixed at 0O during

the motion. Fig. 6-2(a) shows the tilt trajectory. The 2 unknown parameters for the

tilt trajectory 0(t) are &0 = 1.100 and /b = -1.100. The other parameters were fixed

at; 71i = 0.33 and 7r2 = 0.67. The total duration of motion was tf = 4 s. A viscous

friction coefficient of b, = 0.2 N-m/s was introduced into the model to determine the



parameters for the tilt trajectory q(t). The trajectory of the free link is shown in Fig.

6-2(b). The actual final position was 02f = 510.

0 0.5 1 1.5 2 2.5 3 3.5 4
t (s)

(a)

t (s)

(b)

Figure 6-2: Feed-forward control algorithm on
trajectory; (b) Unactuated joint trajectory

3-link prototype: (a) Actuated joint

6.1.2 Feedback Control

The dynamical system (3.9) corresponding to our experimental setup has the param-

eters A = 32.8s- 2 and a = -3.220. The experimental results are shown in Fig. 6-3.

The goal was to move link 2 from an initial position 920 = 350 to a desired final po-



sition of 0 2f = 500. Link 3 was kept fixed at 300 relative to link 2. The experiments

were conducted for 3 sets of gains:

(a) k = 12, ki = 1.2 and k2 = 0.2 s,

(b) k = 12, ki = 1 and k2 = 0.4 s and

(c) k = 12, ki = 0.8 and k2 = 0.4 s.

It may be verified that these controller parameters ensure that the initial position lies

within the estimated domain of convergence for the desired final position 02f = 50'.

The tilt trajectory (b) of link 1 is shown in Fig. 6-3(a) for various choices of the

control gains. A small amplitude of 0 is very important in practice because the arm

operates inside an aircraft wing. The maximum tilt is 1.3' for the case k = 12 and

k, = 1.2. This is small enough for operation inside the wing-box.

The trajectory (02) of the free link is shown in Fig. 6-3(b). From (5.4), the

quantity k2/ vl (= k2/k-k 1 ) may be interpreted as a measure of "damping ratio"

for the closed loop dynamics. As expected, less overshoot is observed as the "damping

ratio" is increased. A lower "damping ratio" also results in a faster rise time. However,

the corresponding settling time is also larger because of oscillations. As seen in Fig.

6-3b, the convergence time was 6.5s, 4s and 2.5s for the various control gains.

Fig. 6-4 shows a comparison of the gravitational, inertial and centrifugal contribu-

tions to the angular acceleration of link 2 for each set of control gains. We use the full

system model to compute the various effects. The angles and angular velocities used

in the computation are based on actual data. The gravitational contribution clearly

dominates the other dynamical effects in each case. This demonstrates, a posteriori,

the validity of the approximations made in our dynamic modeling.

The control law (5.1) demonstrates reasonable positioning accuracy of the unac-

tuated links. The performance is achieved without any knowledge of stiction or the

dynamics introduced by the flexible hose supplying air to the pneumatic brakes.

We also conducted experiments with the modified time varying control law (5.16)

on our prototype system. The goal was to move link 2 from an initial position
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Figure 6-3: Feedback control algorithm on 3-link prototype: (a) Actuated joint tra-
jectory; (b) Unactuated joint trajectory
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(a) Link 2 trajectory (unactuated joint)

(b) Link 1 trajectory (servoed joint)

Figure 6-5: Experimental results for modified control law using sigmoidal reference

trajectory

020 = 100 to a desired final position of 0 2f = 700. Link 3 was kept fixed at 00 relative

to link 2. The controller parameter values in (5.16) were set at k = 5, kl = 1 and

k2 = 0.2s, tf = 12s. The experimental results are shown in Fig. 6-5. The actual

final position was 69.70 at the end of 12s, as shown in Fig. 6-5a. The tilt trajectory

of link 1 is shown in Fig. 6-5b. The maximum amplitude of tilt of link 1 was 1.10

which is within the acceptable limits.

6.2 Arbitrary Axis of Tilt

We conducted position control experiments on a prototype system with 4 links. The

links are deployed using a hexapod mechanism, which is shown in Fig. 6-6. By

coordinating the motion of the six legs of the hexapod, it is possible to choose the

orientation of the axis of tilt and the angle of tilt of the hexapod table arbitrarily.

The legs of the hexapod are actuated by means of AC servomotors coupled to linear

s

0



ball screw mechanisms. The hexapod table is equipped with a dual-axis MEMS tilt

sensor for determining its absolute orientation with respect to the direction of gravity.

The hexapod table interfaces with the hyper-articulated link mechanism through a

coupling comprising two parts:

1. Azimuthal positioning mechanism.

2. Neck

These are shown in Fig. 6-7(a). The azimuthal positioning mechanism is used for

angular positioning of the entire link mechanism inside the wing-box and serves to

expand the workspace of the robot arm. It may be noted that the limited azimuthal

rotation range of the hexapod table necessitates the additional azimuthal positioning

mechanism. We use harmonic drive gearing (100:1) coupled to an AC servomotor (0.64

N-m, 3000 rpm) for the azimuthal positioning mechanism. The neck is essentially a

hollow cylindrical tube connecting the link mechanism with the azimuthal positioning

mechanism.

The link mechanism, which operates inside the wing-box, is shown in Fig. 6-

7(b). The links are essentially C-channels which are serially connected by 1 degree-

of-freedom rotary joints. Link 1 is the only actuated link. Links 2, 3 and 4 are

equipped with on-off electromagnetic brakes. The brakes for links 2, 3 and 4 are

rated at 50 N-m, 20 N-m and 12 N-m respectively. The relative angular position of

the links are measured using optical encoders placed at the rotary joints. They have

a resolution of 1000 pulses per revolution.

The hexapod is used to tilt link 1 about an arbitrary axis in the horizontal plane.

Depending on the state (on or off) of the electromagnetic brakes, the unactuated links

(2, 3 and 4) may be deployed by exploiting gravity and dynamic coupling with link 1.

The azimuthal positioning mechanism is used after the links have been deployed using

the hexapod. The electromagnetic brakes are in the on state when this mechanism

is in use. In the experiments that follow, the azimuthal positioning mechanism is not

used. We only use the tilting mechanism to deploy the links and verify the proposed

control laws.



Figure 6-6: Hexapod mechanism
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(a)

(b)

Figure 6-7: Prototype 4 link system: (a) Azimuthal rotation mechanism; (b) Link
mechanism



6.2.1 Sequential Deployment

We conducted position control experiments on our prototype system. We used the

algorithm presented in Section 4.1.4, where the axis of tilt is chosen symmetrically

with respect to the initial and final positions of the center-of-mass. Fig. 6-8 shows

the results for an initial position of 020 = 00 and desired final position 02f = 90'.

The actual final position was 02f = 87.750. This discrepancy is due to unmodelled

dynamical effects such as cabling and friction. This may be corrected by using the

feedback control scheme presented in Chapter 5

80-
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Figure 6-8: Link 2 trajectory

6.2.2 Concurrent Multi-link Deployment

We conducted position control experiments on the prototype system to verify the

control algorithms for concurrent multi-link deployment. We verify the theoretical

predictions for both in-phase and out-of-phase motion. Fig. 6-9(a) shows the experi-

mental results for in-phase motion. The boundary conditions and duration of motion

are identical to those of the simulation results presented in Fig. 4-8. Fig. 6-9(b)

shows the experimental results for out-of-phase motion. The boundary conditions

and duration of motion correspond to the simulation results presented in Fig. 4-9.

The actual final positions were [92(tf), 03(tf)] = [56.250, 29.970] for in-phase motion

10-



and [02(tf), 3 (tf)] = [77.580, 90.450] for out-of-phase motion. The experimental re-

sults show reasonable agreement with the theoretical predictions. The errors in the

final positions may be attributed to unmodelled dynamical effects such as friction

and presence of cables. These errors may be compensated by using the sequential

closed-loop control scheme presented in Chapter 5.

0 2 4 6 8
t (s)

(a)

t (s)

(b)

Figure 6-9: Experimental results: (a) In-phase motion; (b) Out-of-phase motion



Chapter 7

Conclusions

7.1 Summary of Contributions

This thesis presented a new design and actuation mechanism for a hyper-articulated

robot arm. The arm is underactuated with just a few active joints driving a multitude

of passive joints. This underactuated arm design was motivated by the need for a

compact snake-like robot for assembly operations inside an aircraft wing.

* We proposed a "nested-channel" hyper-articulated mechanism, which is ex-

tremely compact and has a high expansibility. The joints of the hyper-articulated

arm have no dedicated actuators. Instead, they are deployed by modulating

gravitational torques. By tilting the base link appropriately, the gravitational

torque drives each unactuated link to a desired angular position. With simple,

compact locking mechanisms, the arm can change its configuration using the

actuated base placed outside the wing. This underactuated design results in a

compact arm with a high payload carrying capacity. These characteristics make

the arm particularly well suited to high payload assembly operations inside an

aircraft wing.

* We analyzed dynamical models for fixed as well as arbitrary axes of tilt in the

horizontal plane. For sequential link deployment, we showed that the dynamics

of the free links are primarily influenced by gravity; the centrifugal, Coriolis



and inertial effects are negligible. For concurrent multi-link deployment, the

centrifugal, Coriolis and inertial coupling between free links is significant. The

behavior of the system is akin to a k-pendulum in a modulated gravity field.

The simplified system models greatly facilitate the synthesis of control laws.

* The dynamics (actual, as well as approximate) of the free links are essentially

2"d order non-holonomic constraints. We proposed several motion planning

algorithms which satisfy these constraints. The motion planning problem is

formulated as a non-linear two point boundary value problem through a suitable

parameterization of the input. This formulation may be used to generate input

trajectories for both sequential and concurrent multi-link deployment.

* We proposed a closed loop control algorithm for sequential deployment of the

unactuated links. This algorithm is based on the simple idea of introducing a

virtual non-linear spring and damper into the system dynamics. A Lyapunov

function was synthesized to prove the convergence of the control law. The

Lyapunov function is used to generate estimates of the domain of convergence

of the control law for various control gains. These estimates are usually less

conservative than those provided by the Hamiltonian.

* We proposed an open-feedback scheme for deploying multiple links in unison.

This is done by updating the motion plan based on periodic measurements of

the output. The updated motion plan is generated by solving the associated

boundary value problem with updated initial conditions from the measured

output. The updated input is patched smoothly with the pre-computed input.

This results in improved positioning accuracy of multiple free links.

* We built two prototypes to demonstrate our design and control algorithms. The

first prototype has one actuated link and three unactuated links. The axis of

tilt is fixed in the horizontal plane. It has two unactuated links. The second

prototype has one actuated link and three unactuated links. The axis of tilt

may be chosen arbitrarily in the horizontal plane. This is accomplished using a



hexapod.

* The motion planning and closed loop control algorithms were applied to both

prototypes. The experimental results demonstrate the efficacy of the control

laws in the absence of prior knowledge of friction and other unmodelled dynam-

ical effects.

7.2 Future Directions

* Unactuated joint redesign: The unactuated joints of the robot arm may be

made more compact by integrating the bearings and encoders with the electro-

magnetic brakes. Using this approach, it may not be necessary to shrink the

link dimensions.

* Existence of solution for the motion planning problem: We formulated

the motion planning problem as a boundary value problem and solved it nu-

merically. The input was limited to the class of polynomial sigmoidal functions.

The numerical solution to the boundary value problem converged for all the

boundary conditions that we tried. However, the existence of solutions to this

boundary value problem remains to be theoretically established.

* Hybrid control formulation for concurrent multi-link motion: We for-

mulated the motion planning problem such that multiple free links are unlocked

and locked simultaneously at the beginning and end of motion respectively. Al-

ternatively, the brakes may be treated as binary inputs which may be switched

at appropriate time instants during the motion. The discrete binary inputs

combined with the continuous tilt input open up interesting possibilities for

hybrid control design.

* Closed loop control with time varying reference: The modified closed-

loop control law for sequential link deployment results in a non-autonomous

dynamical system. Our current proof has to be suitably modified to prove

asymptotic convergence of the output using the modified control scheme.



* Closed loop control for concurrent multi-link deployment: We have

presented motion planning and open-feedback schemes for concurrent multi-

link deployment. It is not immediately clear as to how feedback control laws

may be synthesized for concurrent multi-link deployment.



Appendix A

Dynamics of 2-link Arm

The dynamics of the 2-link arm may be written as

The components of the 2 x 2 symmetric

by

= IY + M,((xci + a1)2 + z1)

+M 2((yc2 sin 92 - (xc 2 + a2)

F, G,
+ =

F2  G2 0

positive definite inertia matrix H are given

+ I.x2 sin2 82 + Iyy2 Cos 2 82 - Ixy2 sin 282

cos 2 - a1)2 + (z2 + d2) 2), (A.1)

= M2(c 2 + d2)(c2 cos92 + (xc2 + a2) sin 92)

+Iyz2 coS 92 + Ixz2 sin 92,

SIzz2 + M2((c2+ a2)2 + y2).

(A.2)

(A.3)

M1 and M2 denote the masses of links 1 and 2 respectively. Ixy2 etc. denote the

moments of inertia of link 2 about a centroidal coordinate frame. The parameters

Xc2, Yc2, Zc2 are the coordinates of the center-of-mass of link 2 in the link-attached

frame. Also, a2, d2 etc. refer to the corresponding Denavit-Hartenberg parameters.

H1l

H 12

H22

H1 12 1
H12 H22 8iJi



The Coriolis and centrifugal effects are given by

F1 = (M2 (c 2 + d2) (( 2 + a2) cos 02 - Y,2 sin 02) - yz2 sin 02 + IZ2COS 02) 2

+(2M 2(al + (X2 + a2) cos 02 - Y,2 sin 02)(( 2 + a2) sin 02 + Yc2 COS 02)

-2 1 xy2 COs 202 + (Iyy2 - Ixx2) sin 20 2)082  (A.4)

F2 = M2 (al + (xc2 + a2) COS 2 - Y,2 sin 02)((xc2 + a2) sin 02 + Yc2 cos 02 2

+(Ixy2 COs 202 + 0.5(Iyy2 - IXx2) sin 202) 2 .  (A.5)

The gravitational effects G1 and G2 are given by

G1 = -Mlg(zl sin - (x~l + al)cos)

-M 2g(Yc 2 sin 02 - (Xc2 + a2) cos 02 - al) cos 0 + (z- 2 + d2 ) sin ¢) (A.6)

G2 = -M 2g((X 2 + a2) sin 2 +Yc2COS02)sin . (A.7)



Appendix B

Verifying LARC and HNC

Let us define:

g _
Ox

AT11

N12

0

0 0 0 ON11
000 Ni

0 0 0 0
000 0

-Al, (F1 + G 1) - A'12 (F2 •-C 2)+ Nll(x*)Gl(x*)

-N 12(F1 + G 1) - N 22(F2 + G2) + N1 2(x*)Gl(x*)

0

0

(B.1)

(B.2)

(B.3)



ll aF1 _NllOG1 - N12 G2
~-N12 2-_ -N 2 F2 -N] 12 F AT12 G _ N22 oa

0

0

-N- 12 •- -- N2 2 oG2i oi
0

0

Let us define:

aN11 k r ++ 2 N 0F' +N -- 2OF2 +F_O +i 21 1 1 4 N 1 2( + L_

ON12 +NNOF1 +N? 0 F1 O+ NNF2
oi + NI 0N12 +N122 1+Nl22

-N 11

0

0

-N 11

- N12

bl(x*) =

l1N12( 2 F1

N11N22
02 " f N 2 02F,N1N2 2 122 040

0

0

0

__]1 1AT2 2 04H11 N2 0H 11-NI22 122 +
0

0

N ll J12N O2F1 + N 1 1 Ai 2O2F1
aoi a¢0bi -2 i

O 12 + N11N 12 02F1  02F 1

0

0

N+ N21 0H + 2NI N 12 H2

ON12 +NlIN12 -•i + 2N,2 2aI2

0

0

f
ax

(B.4)

bl [f, 9] =
ag
ax

8z

af
- ax =

8z:
(B.5)

(B.6)

8x

* *

0 *

*c *

(B.7)

N 1F1 2 --'- 12 F2aý aý



Let us define:

b2 = [~[ b, ] abl
xg -

8x

dg
xbl =

8x

aei + 1 +N2F 1 F2 + 'F1

-v + N N12 12 F N2 1 1NN 22-
aa ao• a

-N 11

-N 12

Here:

1
b22= - A (H1

0 0 0 ab218 0i

0 0 0 ab22

000 0

000 0

Let us define:

0b21. O f

0b2 2 ~  O-( f21•00 1

0

0
b3(X*) =

(B.8)

H 12 H22 dA
A3 =

2H 3HM12
H A

H22(9i

(B.9)

A = H1 1 H 2 2 - H122

(B.10)

(B.11)

db2
19X

(B.12)

b3 -= [f, b2] = db 2
fx -8x

af
b2 =ax

b21- (x)

b21 - (x)

12 `4

22 b22 (B.13)

(B.14)



We note that Nllb22 $ N12b21 . This implies that bo(x*), bl(x*), b2(x*) and b3(x*)

span R 4. Thus the set L satisfies the LARC at x* and the system is locally accessible

at x*.

Further, we verify that the Hermes necessary condition is satisfied at x*, i.e.,

[g, [f, g]] E span{f, g, [f, [f, g]]}.

Indeed,

[f, [f, g]] = [f, bi] =
Obl f 1f

0x9

a11 ae•

0

0

Thus [g, [f, g]] is spanned by g and [f, [f, g]].



Appendix C

Negative Semi-Definiteness of V

We establish the negative semi-definiteness of V for all k1, k2 > 0. Let us define:

Fk1 (0, /) = (Pkl (4) + Rkl (V)) tan2 0 + 2 Qkx (0) tan 0 + Rk, (4) (C.1)

2n20
Pk1 ( ) = k1 sin 2 4 - 2kl sin sin • (C.2)

Qkl () = kl

Rk 1 (V) = k

24sin 4(cos -- - cos 4)

24
sin 4 sin - 2 sin2 2ki

(C.3)

(C.4)

We may rewrite (5.8) as:

B2 k2 sin2 O
V 2 k 2sin [Pkl () sin 2 0 + Qk, (0) sin 20 + Rk1()1ki(k 2- 4)

B 2 k2 sin 2 0 cos 2 0

ki (ki2 -4) [(Pk (4) + Rkl (0)) tan2 0 + 2Qk (0) tan 0 + Rk ()i

B 2k2 sin2 0 cos 2 0
k 2 c Fk h(0r, ) (C.5)

We consider three cases to prove the negative semi-definiteness of V in Q.

(i) k1 > 2: In this case, we prove that Fk,(0, 4') 2 0.

Pkl (7), Rk, (0) > 0. Let us define:

We note that for kl > 2,

Skl() (Pkl(4_) + Rkl ( k))Rkl (4)- 2(-)).
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Thus, Fk, (0, 0) 0 iff Sk, (?) > 0. Substituting (C.2) - (C.4) in (C.6) we have:

Sk,(?) = kl sin 7 sin k71 ki"'I i + 2k, cos - cos V - (k' -ki 4) sin 2 74 - 2k 2 .

We note that Sk (0) = 0 and Sk, (0) = Sk, (- 0)). Also:

k- (k -4)(ki sin - 2 sin 0) cos >_ 0 0 < 0 < 7/2.

Thus, Skl(') > 0 for 11<I r/2.

(ii) 0 < ki < 2: In this case, we prove that Fk, (0, 1) < 0. The argument follows

along the same lines noting that Rk1 (4) < 0 and Pkl (0) + Rk, (4) < 0. Thus,

Fk (0, ) • 0.

(iii) kl = 2: In this case, we prove that

Fkj (0, 0)
f2(0) lim = [(P2 + r2) tan2 0 + 2q2 tan 0 + r2] > 0 (C.9)

kj--2 ki - 2

Here:

P2(0) = lim P 1 ()
k i-,2 ki - 2

q2 () = lim Qk ()
k1 -'2 k1 - 2

r2 () =lim Rk ()
kl--,2 ki - 2

= 2 sin 22 + 20 sin 4 cos 4

= 7 sin 22

= sin 22 - 4 sin cos

As before, we note that P2(0), r2 (4) > 0. Let us define:

S2(4) - (P2(0) + r2( ())r2 () - q2(4). (C.13)

Thus f2(4) > 0 iff s 2(',) > 0. Substituting (C.10) - (C.12) in (C.13) we have:

s2(0) = 3 sin 2 4 - 24 sinl cos 4 + , 2 . (C.14)
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We note that S2(0) = 0 and s 2(O) = s2 (-O). Also:

a82
= 4 sin 0 (9 sin ' + cos b) > 0 0 < < 7r/2.

Thus, S2(0) > 0 for || < 7•/2.

102
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Appendix D

Stability of Cascade System

We justify the treatment of the actuated coordinate 0 as a pseudo input. We denote

the desired trajectory of 0 by /d. From (5.1), Od = sin-l(sin(kl(Of-0)-k 2A) sin 2 O/k).

The dynamics of the actuated coordinate 0 may always be feedback linearized by

choosing the control torque as:

jd - 2A - A2 N1 21 - + F 1 + G1 + (F2 -+ G2 ), (D.1)

where:

N11l NT12  H1l H1

N12 N22 Hi1 Hii

01 = 0= - d and A > 0.

Using (D.1) in (3.1), the error dynamics of the actuated coordinate is given by:

+ 2A + A2 = 0. (D.2)

Let us define x = [0, Q]T and y = [0, ]T". The dynamics of the unactuated coordinate

(z) and the error dynamics of the actuated coordinate (y) may be written in cascade

form as f = f(z,y) and y = g(y). Here, f(z, y) = [O, Asin 0 sin(d+ + )]T and g(y) =

[ , -2AO - A20]T. We note that f(x, y) is globally Lipschitz and the linear subsystem
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y = g(y) is globally exponentially stable. Also, we have proved that the non-linear

subsystem ±1 = f(x, 0) is asymptotically stable using La Salle's Theorem. It follows

from Sontag's Theorem [18], [21] that the cascade system is locally asymptotically

stable for an appropriate choice of A.
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Appendix E

Level Curves of Lyapunov Function

We construct 1(kl, k2) > 0 such that the region •1 = {[0, 0] : V(0, ) < l} is a subset

of Q. From (5.7),

vC 2 + D 2

V = 42(kl2 -4) sin(20 + E) +
1 1

S(1- cos V) + 2,
2k, 2

where C = ki(cos V - cos -1), D = ki sinEŽ - 2sin 7 and E = atan2(C, D). From

(5.5) and (E.1)

1 o + k2•)S sin sin2( +k 2  Of)dx

C2 + D2 1- cos
2(kl2 -4) sin(20 + E) + 2k

Using (5.6) in (E.2) and noting that I sin(20 + E)I < 1 we have

1- cos i vC2 + D 2
2 - > 0.

2kF1 2(kEl - 4)

From (E.1) and (E.3) we have

V > V (1 - cos z) (1 - I sin(20 + E) 1) + -1 2 .

- 2k 2

(E.2)

(E.3)

(E.4)
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Let us consider the region (See Fig. E-1)

where

• 1 = {[0, 0] :V(0, ) < 1, 20 + El < 7max},,

1= -(1- cosmax) (1 - I sin 7max ).2k,

(E.5)

(E.6)

Here Emax E (0, 7-/2) and ymax E (0, 7-/2) U (7r, 37/2) are to be determined such that

n, is a subset of Q. From (E.4), (E.5) and (E.6):

, a I E 0 1-j O<max and #| <O max 2 V/. (E.7)

Using 0 = Of - (0 + k20)/k 1 and (E.7) we have

01 Ormax • Of + ()max + k 2 Omax)/ki. (E.8)

OInmax E (0, 7/2) and -Ymax E (0, 7/2) U (7r, 37/2) are chosen to satisfy

Omax _ min( (Qmax- max I E ), ) .2 IV) I 510max
(E.9)

Condition (E.9) implies that 101 < r V 0 E fn. From (E.7) and (E.9)

, 10 E z =# > 0 < 7 and 11 • ~max < -r/2. (E.10)

Thus Q1 C Q. From (E.4), V > V. Thus Ql C •1 C Q.
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