2,868 research outputs found

    Method of self-similar factor approximants

    Full text link
    The method of self-similar factor approximants is completed by defining the approximants of odd orders, constructed from the power series with the largest term of an odd power. It is shown that the method provides good approximations for transcendental functions. In some cases, just a few terms in a power series make it possible to reconstruct a transcendental function exactly. Numerical convergence of the factor approximants is checked for several examples. A special attention is paid to the possibility of extrapolating the behavior of functions, with arguments tending to infinity, from the related asymptotic series at small arguments. Applications of the method are thoroughly illustrated by the examples of several functions, nonlinear differential equations, and anharmonic models.Comment: Latex file, 21 pages, 4 tables, 4 figure

    Self-similar factor approximants for evolution equations and boundary-value problems

    Full text link
    The method of self-similar factor approximants is shown to be very convenient for solving different evolution equations and boundary-value problems typical of physical applications. The method is general and simple, being a straightforward two-step procedure. First, the solution to an equation is represented as an asymptotic series in powers of a variable. Second, the series are summed by means of the self-similar factor approximants. The obtained expressions provide highly accurate approximate solutions to the considered equations. In some cases, it is even possible to reconstruct exact solutions for the whole region of variables, starting from asymptotic series for small variables. This can become possible even when the solution is a transcendental function. The method is shown to be more simple and accurate than different variants of perturbation theory with respect to small parameters, being applicable even when these parameters are large. The generality and accuracy of the method are illustrated by a number of evolution equations as well as boundary value problems.Comment: Latex file, 27 pages, 2 figures, 5 table

    Status of the differential transformation method

    Full text link
    Further to a recent controversy on whether the differential transformation method (DTM) for solving a differential equation is purely and solely the traditional Taylor series method, it is emphasized that the DTM is currently used, often only, as a technique for (analytically) calculating the power series of the solution (in terms of the initial value parameters). Sometimes, a piecewise analytic continuation process is implemented either in a numerical routine (e.g., within a shooting method) or in a semi-analytical procedure (e.g., to solve a boundary value problem). Emphasized also is the fact that, at the time of its invention, the currently-used basic ingredients of the DTM (that transform a differential equation into a difference equation of same order that is iteratively solvable) were already known for a long time by the "traditional"-Taylor-method users (notably in the elaboration of software packages --numerical routines-- for automatically solving ordinary differential equations). At now, the defenders of the DTM still ignore the, though much better developed, studies of the "traditional"-Taylor-method users who, in turn, seem to ignore similarly the existence of the DTM. The DTM has been given an apparent strong formalization (set on the same footing as the Fourier, Laplace or Mellin transformations). Though often used trivially, it is easily attainable and easily adaptable to different kinds of differentiation procedures. That has made it very attractive. Hence applications to various problems of the Taylor method, and more generally of the power series method (including noninteger powers) has been sketched. It seems that its potential has not been exploited as it could be. After a discussion on the reasons of the "misunderstandings" which have caused the controversy, the preceding topics are concretely illustrated.Comment: To appear in Applied Mathematics and Computation, 29 pages, references and further considerations adde

    Accurate calculation of the solutions to the Thomas-Fermi equations

    Get PDF
    We obtain highly accurate solutions to the Thomas-Fermi equations for atoms and atoms in very strong magnetic fields. We apply the Pad\'e-Hankel method, numerical integration, power series with Pad\'e and Hermite-Pad\'e approximants and Chebyshev polynomials. Both the slope at origin and the location of the right boundary in the magnetic-field case are given with unprecedented accuracy
    corecore