1,864 research outputs found

    Robust Adaptive Cerebellar Model Articulation Controller for 1-DOF Nonlaminated Active Magnetic Bearings

    Get PDF
    This paper presents a robust adaptive cerebellar model articulation controller (RACMAC) for 1-DOF nonlaminated active magnetic bearings (AMBs) to achieve desired positions for the rotor using a robust sliding mode control based. The dynamic model of 1-DOF nonlaminated AMB is introduced in fractional order equations. However, it is challenging to design a controller based on the model\u27s parameters due to undefined components and external disturbances such as eddy current losses in the actuator, external disturbance, variant parameters of the model while operating. In order to tackle the problem, RACMAC, which has a cerebellar model to estimate nonlinear disturbances, is investigated to resolve this problem. Based on this estimation, a robust adaptive controller that approximates the ideal and compensation controllers is calculated. The online parameters of the neural network are adjusted using Lyapunov\u27s stability theory to ensure the stability of system. Simulation results are presented to demonstrate the effectiveness of the proposed controller.The simulation results indicate that the CMAC multiple nonlinear multiple estimators are close to the actual nonlinear disturbance value, and the effectiveness of the proposed RACMAC method compared with the FOPID and SMC controllers has been studied previously

    Parallel Distributed Compensation for Voltage Controlled Active Magnetic Bearing System using Integral Fuzzy Model

    Get PDF
    Parallel Distributed Compensation (PDC) for current-controlled Active Magnetic Bearing System (AMBS) has been quite effective in recent years. However, this method does not take into account the dynamics associated with the electromagnet. This limits the method to smaller scale applications where the electromagnet dynamics can be neglected. Voltage-controlled AMBS is used to overcome this limitation but this comes with serious challenges such as complex mathematical modelling and higher order system control. In this work, a PDC with integral part is proposed for position and input tracking control of voltage-controlled AMBS. PDC method is based on nonlinear Takagi-Sugeno (T-S) fuzzy model. It is shown that the proposed method outperforms the conventional fuzzy PDC. It stabilizes the bearing shaft at any chosen operating point and tracks any chosen smooth trajectory within the air gap with a high external disturbance rejection capability

    Adaptive PI Hermite neural control for MIMO uncertain nonlinear systems

    Get PDF
    [[abstract]]This paper presents an adaptive PI Hermite neural control (APIHNC) system for multi-input multi-output (MIMO) uncertain nonlinear systems. The proposed APIHNC system is composed of a neural controller and a robust compensator. The neural controller uses a three-layer Hermite neural network (HNN) to online mimic an ideal controller and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability in the Lyapunov sense. Moreover, a proportional–integral learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed APIHNC system is applied to an inverted double pendulums and a two-link robotic manipulator. Simulation results verify that the proposed APIHNC system can achieve high-precision tracking performance. It should be emphasized that the proposed APIHNC system is clearly and easily used for real-time applications.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    An optimized fractional order PID controller for suppressing vibration of AC motor

    Get PDF
    Fractional order Proportional-Integral-Derivative (PID) controller is composed of a number of integer order PID controllers. It is more accurate to control the complex system than the traditional integer order PID controller. The values of parameters of the fractional order PID controller play a decisive role for the control effect. Because the fractional order PID controller added two adjustable parameters than the traditional PID controller, it is very difficult to tune parameters. So the Back Propagation (BP) neural network is selected to optimize the parameters of the fractional order PID controller in order to obtain the high performance. Then the optimized fractional order PID controller and the traditional PID controller are used to control AC motor speed governing system. And the vibration spectrum and stator current spectrum under different rotating speeds are compared and analyzed in detail. The results show that the optimized fractional order PID controller has better vibration suppression performance than the traditional PID controller. The reason is that the optimized fractional order PID controller changed the stator current component, and further changed the frequency components and the amplitude of the vibration signal of the motor

    Control approaches for magnetic levitation systems and recent works on its controllers’ optimization: a review

    Get PDF
    Magnetic levitation (Maglev) system is a stimulating nonlinear mechatronic system in which an electromagnetic force is required to suspend an object (metal sphere) in the air. The electromagnetic force is very sensitive to the noise, which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev benefits the industry since 1842, in which the maglev system has reduced power consumption, increased power efficiency, and reduced maintenance cost. The typical applications of Maglev system are in wind turbine for power generation, Maglev trains and medical tools. This paper presents a comparative assessment of controllers for the maglev system and ways for optimally tuning the controllers’ parameters. Several types of controllers for maglev system are also reviewed throughout this paper

    Sensors Fault Diagnosis Trends and Applications

    Get PDF
    Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis

    Feasibility assessment of a Kalman filter approach to fault detection and fault-tolerance in a highly unstable system: The RIT heart pump

    Get PDF
    The purpose of this project is to assess the feasibility of a Kalman Filter approach for fault detection in a highly unstable system, specifically the heart pump currently under development at RIT. Simulations and experimental work were completed to determine the effects of possible position sensor fault conditions on the system; that information was then used in conjunction with a pair of Kalman filters to create a method of detecting faults and providing fault-tolerant operation. The heart pump system was modeled using Simulink and then the fault diagnosis and tolerance system was added to the model and tested via simulation in SIMULINK TM. The simulations showed the filters were able to calculate and remove bias caused by any type of position sensor error, provided the estimated plant model is nearly identical to the actual plant model. Sensitivity analysis showed that the fault detection/fault-tolerance method is extremely sensitive to discrepancies between the estimated plant model and actual pump behavior. Because of this, it is considered unfeasible for implementation on a real system. Experimental results confirmed these findings, demonstrating the drawbacks of model-based fault detection and tolerance methods

    Metamodel-based Optimization of a PID Controller Parameters for a Coupled-tank System

    Get PDF
    Liquid flow and level control are essential requirements in various industries, such as paper manufacturing, petrochemical industries, waste management, and others. Controlling the liquids flow and levels in such industries is challenging due to the existence of nonlinearity and modeling uncertainties of the plants. This paper presents a method to control the liquid level in a second tank of a coupled-tank plant through variable manipulation of a water pump in the first tank. The optimum controller parameters of this plant are calculated using radial basis function neural network metamodel. A time-varying nonlinear dynamic model is developed and the corresponding linearized perturbation models are derived from the nonlinear model. The performance of the developed optimized controller using metamodeling is compared with the original large space design. In addition, linearized perturbation models are derived from the nonlinear dynamic model with time-varying parameters
    corecore