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Abstract: Magnetic levitation (Maglev) system is a stimulating nonlinear mechatronic system in which an electromagnetic 
force is required to suspend an object (metal sphere) in the air. The electromagnetic force is very sensitive to the noise, which 
can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev benefits the 
industry since 1842, in which the maglev system has reduced power consumption, increased power efficiency, and reduced 
maintenance cost. The typical applications of Maglev system are in wind turbine for power generation, Maglev trains and 
medical tools. This paper presents a comparative assessment of controllers for the maglev system and ways for optimally 
tuning the controllers’ parameters. Several types of controllers for maglev system are also reviewed throughout this paper.  
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1. INTRODUCTION 
Magnetic levitation (Maglev) systems have been described for a decade as a revolutionary means of travel in science fiction. 
In 1726, Jonathan Swift has described the magnetic levitation system for the first time. Also, in 1842 an English clergyman, 
Samuel Earnshaw described the importance of Maglev and its limitation. It is shown that the system of Maglev has instability 
issues where the force between the static magnets and the contactless levitated part was impossible to be stable. The free 
levitated part has unstable displacement at least in one direction [1].  

Engineering and industry fields are not the only once concerned with the maglev system. The medical and natural fields 
have also used Maglev in many applications. In 2010, a group of researchers from the University of Rice had developed a 
three-dimensional tumor model related to magnetic levitation. They had injected the cancer cells with magnetic iron oxide and 
gold nanoparticles. Then, by installing a coin size magnet near the infected area, they had successfully lifted the cells [2]. 
Recently, maglev systems have been appreciated for removing mechanical contact friction, reduce maintenance costs and 
achieve high-precision positioning. Maglev system has been widely used in various applications including high-speed trains, 
magnetic bearing systems, vibration insulation systems, stepper photolithography, and wind turbine [3]. 

1.1 Overview of Maglev Systems  
Magnet levitation techniques can be classified into two types: Electro Dynamic Suspension (EDS) and Electro Magnetic 
Suspension (EMS) as shown in Figure 1. EDS systems are often known as repulsive levitation. Superconductivity magnets [4] 
or permanent magnets [5] provide corresponding levitation sources. Nevertheless, it is difficult to activate the repulsive magnet 
poles at the low speed of superconductivity magnets. Therefore, they are usually used in a high-speed passenger train. The 
EDS magnetic levitation force is partly stable and allows a high clearance. However, the magnetic materials manufacturing 
process is more complicated and expensive compared to the EMS system.  

Attractive levitation refers to the EMS system. Inherently, the magnetic levitation force is unstable, thus controlling the 
system is much harder than the EDS system. The process and cost of manufacturing of EMS are lower than EDS, but additional 
electricity is required to maintain levitation height. Over the years, engineers and researchers have been paying great attention 
to stabilize the maglev system. The characteristics of the maglev system is extremely nonlinear, unstable and considerable 
uncertainty. One of the controllers used for the maglev system is the Proportional-Integral- Derivative (PID) controller, and it 
was used with several different optimization algorithms [6]. 
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Figure 1. Attractive versus repulsive maglev system [1] 

 
 

 
Figure 2. Magnetic levitation model 

 

2. MAGLEV SYSTEM MODELLING  
Figure 2 shows the basic construction of the Maglev system. It is a system that consists of a ferro ball that must be levitated 
by controlling the magnetic field. For controlling the electromagnetic field and the ferro ball position, an optical sensor can be 
used to measure the ball position, hence the position error can be reduced. Magnetic levitation system is a nonlinear system 
and by studying its characteristics, the mechanical and mathematical modelling behavior of the system can be modelled as 
follows: 

2.1 Electrical Dynamic Equations 
Using the Kirchhoff’s voltage law, the electromagnetic force produced by a current within the coil can be obtained as: 

 
 𝑉𝑉(𝑡𝑡) =  𝑉𝑉𝑅𝑅 + 𝑉𝑉𝐿𝐿 =  𝑅𝑅𝑅𝑅 + 𝑑𝑑 [𝐿𝐿(𝑥𝑥)𝑖𝑖]

𝑑𝑑𝑑𝑑
    (1) 

 
where 𝑉𝑉 is input voltage, 𝑅𝑅 is the coil’s resistance, L is the inductance and 𝑅𝑅 represents current through the spiral. 

2.2 Mechanical Dynamic Equations 
Figure 3 shows the free body diagram of the spherical ball levitated by means of harmonizing the force of gravitational, 𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑑𝑑𝑔𝑔 
and the electromagnetic force, 𝐹𝐹𝑒𝑒𝑒𝑒. If the damping force and air friction are ignored, the total force, 𝐹𝐹𝑔𝑔𝑎𝑎𝑎𝑎 acting on the coil is 
given by the Newton’s Third Law of motion as: 
 𝐹𝐹𝑔𝑔𝑎𝑎𝑎𝑎  =  𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑑𝑑𝑔𝑔 −  𝐹𝐹𝑒𝑒𝑒𝑒   (2) 

 𝑚𝑚�̈�𝑥 =  𝑚𝑚𝑚𝑚 −  𝑘𝑘 𝑖𝑖2

𝑥𝑥2
  (3) 

where 𝑚𝑚 is the ball mass, k is magnetic force constant, 𝑚𝑚 is gravity constant and 𝑥𝑥 is the ball position.  
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Figure 3. Free body diagram of Maglev system assembly 

 

2.3 Mathematical Modelling in a State Space Form 
By combining the related equations of mechanical and electromagnetic, the dynamic equations of Maglev system can be 
obtained as: 
          𝑑𝑑𝑥𝑥

𝑑𝑑𝑑𝑑
 =  𝑣𝑣   (4) 

 𝑒𝑒 =  𝑅𝑅𝑅𝑅 + 𝑑𝑑 [𝐿𝐿(𝑥𝑥)𝑖𝑖]
𝑑𝑑𝑑𝑑

   (5) 

 𝑚𝑚𝑑𝑑2𝑥𝑥
𝑑𝑑𝑑𝑑2

 =  𝑚𝑚𝑚𝑚 −  𝑘𝑘 𝑖𝑖2

𝑥𝑥2
   (6) 

Equation (5) stipulates L(x) as a nonlinear function of the position of the ball. If the inductance varies with respect to the 
position of the ball, that is: 
 𝐿𝐿(𝑥𝑥)  =  𝐿𝐿1 + 2𝑘𝑘

𝑥𝑥
  (7) 

 

where L1 is a Maglev system parameter. By applying the value of 𝐿𝐿(𝑥𝑥) in Equation (5) yields: 

 𝑒𝑒 =  𝑅𝑅𝑅𝑅 +
𝑑𝑑 �(𝐿𝐿1+

2𝑘𝑘
𝑥𝑥 )𝑖𝑖�

𝑑𝑑𝑑𝑑
   (8) 

By using the product rule: 
 
 𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
 =  −𝑅𝑅𝑖𝑖

𝐿𝐿
 +  2𝑘𝑘𝑖𝑖𝑔𝑔

𝐿𝐿𝑥𝑥2
 + 𝑒𝑒

𝐿𝐿
 (9) 

Also, Equation (6) can be re-written as: 
 𝑑𝑑𝑔𝑔

𝑑𝑑𝑑𝑑
 =  𝑚𝑚 −  𝑘𝑘𝑖𝑖

2

𝑒𝑒𝑥𝑥2
  (10) 

 
By considering the state vectors, 𝑥𝑥 = 𝑥𝑥1, 𝑣𝑣 = 𝑥𝑥2, 𝑅𝑅 = 𝑥𝑥3 and 𝑢𝑢 = 𝑒𝑒, Equations (4), (9) and (10) can be written in a vector form 
as: 

 �
𝑥𝑥1̇
𝑥𝑥2̇
𝑥𝑥3̇
�  =

⎣
⎢
⎢
⎡

𝑥𝑥2
𝑚𝑚 − 𝐾𝐾𝑥𝑥3

2

𝑒𝑒𝑥𝑥1
2

− 𝑅𝑅𝑥𝑥3
𝐿𝐿

+ 2𝐾𝐾𝑥𝑥2𝑥𝑥3
𝐿𝐿𝑥𝑥1

2 ⎦
⎥
⎥
⎤
𝑥𝑥 + �

0
0
1
𝐿𝐿

� 𝑢𝑢   (11) 

where the output is the ball position and derived as: 

 𝑦𝑦 =  𝑥𝑥1 = [1 0 0]𝑥𝑥  (12) 

2.4 Linearization of the System 
If 𝑥𝑥1 = 𝑥𝑥1∗ = 𝑦𝑦∗, the system can be linearized using Taylor series which gives the state vector as:  

 
𝑥𝑥0  =  [𝑥𝑥1∗ 𝑥𝑥2∗ 𝑥𝑥3∗] 

 
The time rate of the position must be zero at steady state of the magnetic levitation for example 𝑥𝑥2∗ = 0. In addition, the current 
of the ball at the time of rising can be defined from Equation (3), and it must satisfy the given condition: 

 𝑥𝑥3∗ =  𝑦𝑦∗ �𝑒𝑒𝑔𝑔
𝑘𝑘

   (13) 

Thus, the linearized state-space modelling form can be written as: 
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 𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡

0 1 0
𝑘𝑘𝑥𝑥3

∗2

𝑒𝑒𝑥𝑥1
∗3 0 − 2𝑘𝑘𝑥𝑥3

∗

𝑒𝑒𝑥𝑥1
∗2

0 2𝑘𝑘𝑥𝑥3
∗

𝐿𝐿𝑥𝑥1
∗2 − 𝑅𝑅

𝐿𝐿 ⎦
⎥
⎥
⎥
⎤
   (14) 

 

By replacing the values from Equation (11) and using Equation (14) and 𝑥𝑥1∗ = 𝑦𝑦∗ yields [7]  

𝑘𝑘𝑥𝑥3∗2

𝑚𝑚𝑥𝑥1∗3
 =  −

2
𝑦𝑦∗
�𝑚𝑚𝑘𝑘
𝑚𝑚

 

2𝑘𝑘𝑥𝑥3∗

𝐿𝐿𝑥𝑥1∗2
=  

2
𝐿𝐿𝑦𝑦∗ �

𝑚𝑚𝑚𝑚𝑘𝑘 

 𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡

0 1 0
𝑔𝑔
𝑔𝑔∗

0 − 2
𝑔𝑔∗
�𝑔𝑔𝑘𝑘

𝑒𝑒

0 2
𝐿𝐿𝑔𝑔∗ �𝑚𝑚𝑚𝑚𝑘𝑘 −𝑅𝑅

𝐿𝐿 ⎦
⎥
⎥
⎥
⎤

, 𝐵𝐵 =  �
0
0
1
𝐿𝐿

�  

                          𝐶𝐶 =  [1 0 0],  𝐷𝐷 =  [0] (15) 
 

3. CONTROL APPROACHES FOR MAGLEV SYSTEM 

3.1 Linear Controllers 
PID is a linear controller and a typical method used in industrial applications. The common transfer function of the PID 
controller is given by: 
 
 𝑈𝑈𝑃𝑃𝑃𝑃𝑃𝑃(𝑠𝑠) = (𝐾𝐾𝑃𝑃 + 𝐾𝐾𝑃𝑃

1
𝑠𝑠

+  𝐾𝐾𝑃𝑃𝑠𝑠)𝐸𝐸(𝑠𝑠)  (16) 
 

where 𝑈𝑈𝑃𝑃𝑃𝑃𝑃𝑃 is controller output signal and 𝐸𝐸(𝑠𝑠) is the difference between input and output signals. 𝐾𝐾𝑃𝑃 ,𝐾𝐾𝑃𝑃  and 𝐾𝐾𝑃𝑃 are the PID 
controller gains. The PID controller has been used to control a maglev plant and works based on a basic control feedback loop 
algorithm that is commonly used in modeling of control systems [8]. One of the methods that can be used as a linear controller 
has been proposed by Cohen and Coon in 1953 [9]. Ahmad et al. [10] proposed a PID controller-based maglev system, in 
which the overshoot of 8.4% and a settling time of 0.302 s was achieved.  

Linear Quadratic Regulator (LQR) is a powerful technique for the design of controls and dynamic structures that have 
high performance criteria. The traditional optimum control principle is introduced in [8,11,12]. With an assumption that all 
state variables are available for feedback, the LQR design method starts with a defined set of states which are to be controlled. 
In general, the system model can be written in a state space form as  
 
             �̇�𝑥 = 𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝑢𝑢(𝑡𝑡)  (17) 

The matrices 𝑄𝑄 and 𝑅𝑅 are the weighting matrices and essential elements in the method of optimizing LQR. The LQR feedback, 
𝐾𝐾 is accomplished by choosing the specification parameters 𝑄𝑄 and 𝑅𝑅, solving algebraic Riccati equations for 𝑃𝑃 and finally 
selecting the state variable input (SVFB) using 𝐾𝐾 =  𝑅𝑅−1𝐵𝐵𝑇𝑇𝑃𝑃. The Riccati equation is given as: 

 
  𝐴𝐴𝑇𝑇 𝑃𝑃 +  𝑃𝑃𝐴𝐴 – 𝑃𝑃𝐵𝐵𝑅𝑅−1𝐵𝐵𝑇𝑇  𝑃𝑃 + 𝑄𝑄 =  0   (18) 

 
An LQR controller-based maglev system has been compared with the conventional PID and fuzzy logic controller in [13]. 

The results show that PID controller has a less rise time with 0.042 s as compared to the LQR with 0.16 s. However, the LQR 
controller has a better settling time of 0.166 s as compared to PID with 5.2 s. In 2016, Maji et al. [14] has proposed an LQR-
based maglev controller in real time simulation and compared it with the conventional PID controller. It was found that the 
LQR controller provided better results in term of the stability performance. With the LQR controller, a response with a settling 
time of 7 s and without overshoot was obtained. 

3.2 Nonlinear Controllers 
There are many nonlinear controllers that have been used to control a maglev system. Backstepping is a nonlinear control 
technique that was proposed in the 1990s [15]. This method is sufficient for the implementation in a strict feedback form of a 
broad variety of linear feedback systems. In [16], Katayama et al. has proposed an integrated backstepping sliding mode 
algorithm to control the maglev system. The results show that backstepping technique has a better response with a settling time 
of 0.286 s as compared to the PI controller with a sampling time of 15.9 s. The step-back technique is a structural way to 
construct a control mechanism to maintain a reference signal. For a continuous-time model of a magnetic levitation system, a 
backstepping technique has been used to design state feedback stabilizing laws and derived high-gain observers, and the 
designed controller was efficient with a less steady-state error [17].     
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Sliding mode approach allows the mechanism of magnetic levitation to be regulated and stabilized because of its 
robustness and reliability in extremely nonlinear environments [18]. The sliding mode control (SMC) algorithm inherently 
robust in the changing of the system parameters, nonlinear models, external disturbances, and uncertainty. In [19], an SMC 
was proposed for a maglev system, and the results have shown that the control schemes are robust to parameter variations. The 
proposed method used an adaptive neural terminal SMC to overcome the chattering problem. 

4. CLASSICAL TECHNIQUES FOR PID CONTROLLER TUNING FOR MAGLEV SYSTEM 

4.1 Cohen-Coon Method 
The tuning rules for Cohen-Coon (C-C) are sufficient for a larger range of processes than those for Ziegler-Nichols (Z-N). The 
Z-N technique only works well on processes in which the dead time is less than half of the time constant [16]. However, the 
C-C tuning rules operate exceptionally well on processes where the dead time is less than double the constant time. The process 
response curve is first obtained via an open-loop test and then the process dynamics are approached with first order plus dead 
time. Using C-C method, the process Reaction Curve (𝐺𝐺𝑃𝑃𝑅𝑅𝑃𝑃) can be calculated as  
 

𝐺𝐺𝑃𝑃𝑅𝑅𝑃𝑃(𝑠𝑠) =
𝑦𝑦𝑒𝑒(𝑠𝑠)
𝑐𝑐(𝑠𝑠)

≅
𝐾𝐾𝑒𝑒−𝑑𝑑𝑑𝑑𝑠𝑠

𝜏𝜏𝑠𝑠 + 1
 

(19) 

 
where k is a steady-state output, τ is the time constant for a first order response,  𝑡𝑡𝑑𝑑 is the dead time. 

The C-C method has been compared with Z-N to tune the PID controller for maglev system and the results are shown in 
Table 1 [20]. It was shown that the Z-N provides better results in term of the rise time and settling time. It was found that C-C 
intended to respond to the 4-th amplitude damping. Although the 4-th amplitude tuning system provides a very rapid rejection 
of disturbances, it is very oscillating and often interacts with loops similarly tuned.  

 
Table 1. Comparison results between Z-N and C-C method by [20] 

 Ziegler-Nichols 
[PID] 

Cohen Coon 
[PI] 

Time delay (s) 
Rise time (s) 
Settling time (s) 
Overshoot (%) 
Steady-state error  

0 
0.59 
0.54 

0 
0 

0 
0.8 

0.67 
0 
0 

 

4.2 Ziegler Nichols Method 
Z-N technique is by far the most used tuning method. The PID tuning method proposed by John Ziegler and Nathaniel Nichols 
in 1942 is still easy and yet very reliable [21]. Figure 4 shows a first-order transport system response with delay, with a transfer 
function as: 
 𝐺𝐺(𝑠𝑠) =  𝐾𝐾𝑒𝑒

−𝑠𝑠𝑠𝑠

𝑇𝑇𝑠𝑠+1
    (20) 

where 𝐺𝐺(𝑠𝑠) is a first order transfer function, 𝐿𝐿 is the delay time, 𝑇𝑇 is the time constant, 𝐾𝐾 is a gain and e is an error. This 
technique has been used to tune the PID controller of a maglev system. Ahmad et al. [22] proposed a PID tuning using Z-N 
and compared to a genetic algorithm for Maglev system. The results show that the PID controller based on the Z-N method 
had a better rise time but higher settling time than GA. Kishore and Laxmi [23] compared between Z-N one degree of freedom 
(1-DOF) and two degrees of freedom (2-DOF) of PID tuning for Maglev system and found that the 1-DOF has a slower settling 
time but faster rise time than the 2-DOF.   
  
 

 
 

Figure 4.  Ziegler-Nichols method response [24] 
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5. OPTIMIZATION TECHNIQUES OF PID TUNING FOR MAGLEV SYSTEM 

5.1 Gradient Descent Optimization 
In [25], the Gradient Descent (GD)-based convolutional neural network was used to minimize the loss function to adjust the 
weight parameters and enhance the accuracy of the network via iterative training. The Stochastic Gradient Descent (SGD) 
algorithm was used to find the minimum point from a particular function. Contrariwise, the GD is a technique used to find the 
maximum point close to the recent results. GD algorithm at any starting point of its function will always shift the solution to 
the negative direction of the gradient to get to the desired point. Alagoz et al [26] proposed PID tuning using GD algorithm, 
and the theoretical basis for reference gradient descent equations to determine the adaptive system, start with the cost function 
expressed as a square output difference as:  

 
 𝐸𝐸(𝑛𝑛) =  1

2
 𝑒𝑒(𝑛𝑛)2 =  1

2
 (𝑦𝑦𝑔𝑔(𝑛𝑛) − 𝑦𝑦𝑠𝑠(𝑛𝑛))2  (21) 

where 𝐸𝐸(𝑛𝑛) is instant model error signal. 
The function used to update rule of the control optimizer, which generates the control signals to minimize the cost function 

𝐸𝐸(𝑛𝑛) is as follows: 
 𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑
=  −𝜂𝜂𝑎𝑎  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
  (22) 

In another work, the SGD proposed in [27] was executed by choosing a standard model for simulating the performance of the 
designed controller after tuning the PID controller. The MATLAB simulation was used to test the performance of the optimized 
controller. The optimization executed by initiating the values of the SGD Method using a trial-and-error method. 

5.2 Artificial Neural Networks 
The Artificial Neural Network (ANN) is a conceptual model or theoretical model used for simulation and the operation of 
artificial neural systems. There are many neural network structures and one of these is Radial Basis Function based Neural 
Networks (RBFNN) which has been proposed by Sun et al. [28]. It is a three-layer, hidden-layered feedforward neural 
networks. The radial base function with sliding mode controller for a maglev system has been proposed by Alias [29]. On the 
other hand, a maglev system based on PID tuning using RBF has been proposed by Tong et al. [30]. The inputs connected the 
hidden neurons has nonlinear functions, whereby the output layer is linear from the hidden layer. The ability of the RBF 
network to approximate any continuous function has arbitrary precision. The learning rate is greatly accelerated, and the local 
minimum issue is avoided. An RBFNN block diagram for PID tuning as proposed in [31] is shown in Figure 5. 

Considering that the input vector of the RBFNN is 𝑥𝑥 = [𝑥𝑥1 , 𝑥𝑥2 … . , 𝑥𝑥𝑛𝑛]𝑇𝑇, the neurons at the hidden layer are activated by 
a RBF [32]. Assuming the radial vector is ℎ =  [ℎ1 , ℎ2 … , ℎ𝑛𝑛]𝑇𝑇 where ℎ𝑗𝑗 is a Gaussian equation expressed by the following 
mathematical relation: 

 ℎ𝑗𝑗 = exp �
‖𝑥𝑥−𝑃𝑃𝑗𝑗�

2

2𝑏𝑏𝑗𝑗
2 � , 𝑗𝑗 = 1,2, … ,𝑚𝑚 . (23) 

Similarly, authors in [33, 30] used radial basis neural networks to auto-adjust the maglev suspension of a train and compared 
them to a relay system proposed by Astrom and Hagglund, in which better results were achieved. In another work, comparisons 
of PID control using Neural Networks and Support Vector Machine (SVM) show that the neural network-based controls 
provided a better system performance under noiseless settings, but less performance than SVM in noisy conditions [34].  

5.3 Genetic algorithms 
Genetic algorithm (GA) is a technique of optimization influenced by evolution. It is considered as an important optimization 
technique since it has been implemented in several different fields to solve complicated optimization problems [35]. Based on 
the natural selection mechanisms of shape and advancement, GA has shown an incredibly stable methodology in determining 
the ideal global position. GA is not a single-phase method. It consists of a variety of measures or approaches centred on 
stochastic optimization concepts and names extracted from genetics. A flow chart in Figure 6 explains the implementation of 
GA to a maglev system. To apply the GA for optimization process, it requires addressing the following important steps: a) 
Representation, b) Genetic operators, c) Formulation of the fitness function. 

 
Figure 5. RBF neural network based PID tuning diagram [31] 
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Figure 6. Flow chart of GA [22] 

 

 
Figure 7. Block diagram of FLC-based PID controller [24] 

 
 

Ahmad at el. [22] proposed a GA-based PID optimization and compared to a Z-N method. It was found that the settling 
time is faster than Z-N and the ball levitation is more stable. Altintas and Aydin [36] proposed an optimization method using 
GA for a maglev system and the results shows that GA has a better tuning flexibility than the conventional methods, as it has 
five parameters that can be modified. 

5.4 Fuzzy Logic 
Fuzzy logic controller (FLC) is one of the methods used to interface between artificial intelligence and control engineering. 
The FLC uses the standard PID controller to change the PID controller parameters online and to modify the signals error and 
the change of the error. FLC configuration requirements differ with the plant in use, and the PID controller parameter in 
conjunction with the plant to be used [34, 37]. 

There are two standard models mostly used with a fuzzy interface which are the Mamdani model or Sugeno model. The 
operation of the Mamdani rule can be divided into four parts: 

1) Fuzzification is mapping each of the crisp inputs and determine the degree to which these inputs belong to each of the 
proper fuzzy sets. 

2) Rule’s evaluation: the output of each rule will be determined by its fuzzy antecedents. 
3) Aggregation of the rule outputs: defining the aggregate output of all fuzzy rules. 
4) Defuzzification: mapping the fuzzy output to crisp output. 

 
The fuzzy rules are decided by the plant to be managed and the form and practical experience of the controller [38]. The 

probably most challenging part is to design essential rules bases. Therefore, PD fuzzy system and integrated error control are 
the perfect design. There are also examples where a PI-based FLC controller and a PD-like FLC controller are used to achieving 
a PID-based controller. 

Ataşlar-Ayyıldız and Karahan [39] proposed a FLC for a maglev system based on Cuckoo Search algorithm and obtained 
an outstanding performance as compared to fractional order PID (FOPID). An and Chen [40] proposed an FLC-based PSO 
and PID, where the results are superior than the conventional PID. The proposed methodology is shown in Figure 7, where the 
error and the derivative of the error are the inputs to the fuzzy interface. 

 

+ 
- 
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Figure 8. Ant colony optimization algorithm process [41] 

 

5.5 Ant Colony Optimization 
Ant Colony Optimizations (ACOs) are particularly well adapted to solving a variety of optimization tasks. An artificial ant 
colony collaborates to find good solutions, which is an emergent characteristic of their cooperative interaction. Ant algorithms 
are adaptable and resilient and would be used to multiple versions of the same task as well as distinct optimization problems, 
thanks to their natural resemblance to ant colonies. The ACO technique is ideal for a variety of optimization tasks. The key to 
finding the best answer is for a colony of ants to work together [42].  The natural behavior of ants inspired the nature-inspired 
ant colony algorithm. This method is strong and adaptable, and it may be used to solve a variety of problems [43]. Artificial 
ants have the following characteristics: 

• Artificial ant colonies exist to facilitate inter-individual cooperation. 
• Pheromone deposition is a way of communication that is used in an indirect manner. 
• A sequence of local movements is used to find the shortest path between the starting and destination points. Using 

just local knowledge, a stochastic decision policy is used to determine the optimal solutions. The mathematical 
optimization of the ACO technique is shown in Figure 8. 

The movement of ants is controlled by the local stochastic search strategy, which is influenced by local environmental 
information, pheromone trails, and internal states [44]. The ants use private or public information to select the place and timing 
for releasing pheromones into the environment. In most cases, the quality of an ant's movement is directly related to the number 
of pheromones emitted. 

The following six stages are used to implement the ACO algorithm on the FOPID controller: 
 

1. Initialize the heuristic value, pheromone trail, and potential solutions for the FOPID parameter (KP, KI, KD, λ, µ). 
2. The heuristic value obtained is connected to the error-minimization target and the Y th ant is placed on the node. 
3. Using evaporation rate of pheromones equation, the population of pheromones is regulated, and poor choices are 

permitted to be removed. 
4. The resulting solutions are assessed in relation to the goal. 
5. The optimized parameters' optimal value is produced. 
6. Globally, pheromones are updated based on the data acquired in step 5. The procedure is restarted from step 2 until 

the best result, or the maximum number of iterations is achieved. Figure 9 illustrates the flow chart for the whole 
process of the ACO algorithm for the FOPID controller. 

5.6 Particle Swarm Optimization 
Particle swarm optimization (PSO) is a standard method used to optimize PID controller parameters. This technique was 
developed in 1995 by Eberhart and Kennedy [45]. PSO technique is a population of particles that moves to the solution area 
to find the target, where the system keeps on changing and track for the best solution found by the individuals [46]. Moreover, 
these particles move to a new position based on velocity and current position. Authors in [47, 48] proposed a robust design of 
PSO technique to tune the PID parameter and control Maglev system, for nonlinear optimization problem includes the 
restrictions without the objective function.  The involved equations used are: 

 𝑉𝑉𝑖𝑖𝑑𝑑 = 𝑤𝑤 × 𝑉𝑉𝑖𝑖𝑑𝑑 + 𝐶𝐶1 × 𝑟𝑟1(𝑝𝑝𝑖𝑖𝑑𝑑 − 𝑥𝑥𝑖𝑖𝑑𝑑) +  𝐶𝐶2 × 𝑟𝑟2(𝑝𝑝𝑔𝑔𝑑𝑑 − 𝑥𝑥𝑖𝑖𝑑𝑑) (24) 
 

  𝐺𝐺𝑥𝑥𝑖𝑖𝑑𝑑 =  𝑥𝑥𝑖𝑖𝑑𝑑 +  𝑉𝑉𝑖𝑖𝑑𝑑  (25) 

where 𝑥𝑥 is current position, 𝑉𝑉𝑖𝑖 is the velocity,  𝑝𝑝𝑖𝑖𝑑𝑑 is the article local best position and 𝐺𝐺 is the global best among all particles. 
𝑤𝑤 is the inertia weight, 𝐶𝐶1and 𝐶𝐶2 are positive constants, 𝑟𝑟1 and 𝑟𝑟2 are random numbers generated by PSO and 𝑑𝑑 is the 
dimensional vector space. 
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Figure 9. Flow chart of ACO algorithm for FOPID controller [49] 

 
 

The PSO is designed to decide the optimum set of PID controller parameters. The way the control system finds optimum 
parameters is converted into a solution optimization problem that is solved by the PSO equation, and it has demonstrated its 
excellent results by enhancing the stationary error and that the peak overlap. PSO-based tuning for high-performance maglev 
systems was proposed in [50]. PSO has also been used in position control of maglev system in [51]. Furthermore, it shows a 
better result when compared with a real coded genetic algorithm. 

6. CONCLUSION 
This paper describes linear and nonlinear controllers for maglev system. For a linear controller, PID and LQR controllers are 
discussed, whereas back stepping and sliding mode control are discussed for nonlinear controllers. Tuning of PID-based 
controllers are divided into two types: classical tuning method which consists of Ziegler Nichols and Cohen Coon, and the 
intelligent tuning method which consists of radial basis function, fuzzy logic control, genetic algorithm, and particle swarm 
optimization. Each controller has been explained in this review and some of the algorithms have been compared to others. A 
few works using intelligent-based PID tuning for Maglev system shows a better result, more stable and efficient performance. 
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