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a  b  s  t  r  a  c  t

This  paper  presents  an adaptive  PI Hermite  neural  control  (APIHNC)  system  for  multi-input  multi-output
(MIMO)  uncertain  nonlinear  systems.  The  proposed  APIHNC  system  is  composed  of  a  neural controller
and  a  robust  compensator.  The  neural  controller  uses  a  three-layer  Hermite  neural  network  (HNN)  to
online  mimic  an  ideal  controller  and  the  robust  compensator  is  designed  to eliminate  the  effect  of the
approximation  error introduced  by  the  neural  controller  upon  the  system  stability  in the  Lyapunov  sense.
Moreover,  a proportional–integral  learning  algorithm  is  derived  to  speed  up the  convergence  of  the
tracking  error.  Finally,  the  proposed  APIHNC  system  is  applied  to  an  inverted  double  pendulums  and  a
two-link  robotic  manipulator.  Simulation  results  verify  that the proposed  APIHNC  system  can  achieve
high-precision  tracking  performance.  It  should  be emphasized  that the  proposed  APIHNC  system  is clearly
and easily  used  for real-time  applications.

© 2012  Elsevier  B.V.  All rights  reserved.

1. Introduction

An ideal controller requires an exact model of physical systems
to achieve favorable control performance [1].  There is a trade-off
between control performance and model accuracy for an ideal con-
troller design. But, it is difficult for a designer to obtain an exact
model of physical systems. To attack this problem, several adap-
tive neural control techniques have proposed to solve the unknown
nonlinear control problems without significant prior knowledge of
system dynamics [2–8]. The characteristics of adaptive neural con-
trollers are robust and capable of online learning. In the last few
decades, a number of works are found to focus on the multi-input
multi-output (MIMO) nonlinear control problem based on adap-
tive neural control [9–11]. It is one of the most challenging tasks
for many control engineers, especially when the nonlinear system
is required to maneuver very quickly under external disturbances.

The hidden neurons of neural networks in [2–11] use the same
activation functions such as sigmoid or radial basis functions.
Much research has been done on the applications of orthogonal
neural networks which use different activation functions for dif-
ferent hidden neuron [12–15].  It has been reported in various
fields such as biomedical engineering, signal processing, image
processing, pattern classification and control algorithm because of
their distinguished approximated ability. In [12–14],  a one-hidden-
layer neural network was proposed in which each hidden neuron
employs a different orthogonal Hermite polynomial basis function
for its activation function. The learning ability of HNN is effective

E-mail address: fei@ee.tku.edu.tw

with high convergence precision and fast convergence time. In [15],
a Hermite polynomial-based recurrent neural network is proposed
to control a thrust active magnetic bearing system. Though the con-
trol performances are acceptable, the parameter adaptation law
makes the convergence of tracking error slow.

Further, since the number of hidden neurons is finite in real-time
approaches, the approximation error is inevitable when it is used to
approximate an ideal controller or a system uncertainty. To ensure
the stability of closed-loop control system, a compensator should
be designed to dispel the influence of external disturbances and
approximation errors. The most frequently used compensator is in
a sliding-mode type form which requires the bound of the approxi-
mation error [16,17]. If the bound of approximation error is chosen
too small, it cannot guarantee the system stability. Otherwise, if
the bound of approximation error is chosen large to avoid insta-
bility, it will result in substantial chattering in the control effort.
To reduce the chattering phenomenon, a saturation compensator is
proposed in [18]; however, a trade-off problem between chattering
phenomenon and control accuracy arises.

To attack this problem, Lin et al. [19] uses a fuzzy system to esti-
mate the approximation error; however, the fuzzy rules should be
pre-constructed by trial-and-error tuning procedure. In [20,21], a
fuzzy compensator which possesses the advantages of simple con-
trol framework, stable tracking control performance and robust to
uncertainties is proposed. But, the adaptive law will make the fuzzy
compensator go to infinity. In [22–24],  a robust control theory is
used to attenuate the effects of approximation error. A better con-
trol performance can be achieved as a specified attenuation level
is chosen smaller but it leads to a large control signal. In [25], an
adaptive PI compensator is designed to cope with the bounded
large-and-fast disturbances with unknown bound; however, an
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http://dx.doi.org/10.1016/j.asoc.2012.11.029



Author's personal copy

2570 C.-F. Hsu / Applied Soft Computing 13 (2013) 2569–2576

indefinite steady-state error is caused depending on the selection
of the boundary layer.

In this paper, a Hermite neural network (HNN) which adopts
a Hermite polynomials basis function as the activation function
in each hidden neuron is studied. The training algorithm typically
converges in a smaller number of iterations for HNN than that for
a conventional neural network. As a result, this paper proposes
an adaptive PI Hermite neural control (APIHNC) system for MIMO
uncertain nonlinear systems. From the Lyapunov stability analy-
sis, the proposed APIHNC system can guarantee that the control
tracking error converges to zero even though the approximation
error exists. Finally, the proposed APIHNC system is applied to an
inverted double pendulums and a two-link robotic manipulator.
The simulation results show that high-quality tracking perfor-
mance could be achieved using the proposed APIHNC scheme after
the controller parameters learning. The remainder of this paper
is organized as follows. Section 2 introduces the tracking control
problem of MIMO  nonlinear systems. Section 3 presents the HNN
structure. Section 4 develops the APIHNC system and proves its sta-
bility in the Lyapunov sense. Section 5 provides simulation results
and Section 6 offers a concluding remark.

2. Problem statement

Consider a second-order MIMO  nonlinear systems described by
the following form

ẍ = f(x-, t) + G(x-, t)u (1)

where x = [x1, x2, . . . , xm]T is the system state vector, x- = [xT , ẋT ]
T

and it is assumed to be available for measurement, f(x-, t) and
G(x-, t) are the uncertain nonlinear system dynamics and u =
[u1, u2, . . . , um]T is the control input vector. When neglecting the
modeling uncertainties, the nominal model of MIMO  nonlinear sys-
tems can be represented as

ẍ = fn(x-, t) + Gn(x-, t)u (2)

where fn(x, t) and Gn(x, t) are the nominal parts of f(x, t) and
G(x, t), respectively. When the modeling uncertainties and exter-
nal disturbance exist, the uncertain nonlinear system (1) can be
formulated as

ẍ = [fn(x, t) + �f(x, t)] + [Gn(x, t) + �G(x, t)]u + d(x, t)

= fn(x, t) + Gn(x, t)u + z(x, t) (3)

where �f(x, t) and �G(x, t) are the unknown system uncertain-
ties of f(x, t) and G(x, t), respectively, d(x, t) is external disturbance
and z(x, t) = �f(x, t) + �G(x, t)u(t) + d(x, t) is the lump of system
uncertainty. The control objective is to find a control law so that the
system state vector x can track a reference trajectory command xc

closely. Then, define a tracking error vector as

e = [eT , ėT ]
T

(4)

where e = xc−x. Assume that the lump of system uncertainty is
known, there exists an ideal controller as [1]

u∗ = [u∗
1, u∗

2, ..., u∗
m]T = G−1

n (x, t)[−fn(x, t) + ẍc + KT e − z(x, t)]

(5)

where u∗
k

is the kth ideal controller of control system and K =
[K1, K2]T is the feedback gain matrix which contains real numbers.
Applying the ideal controller (5) into (3),  it is obtained that

ė = �e (6)

Fig. 1. The architecture of HNN.

where � =
[

0 I
−K1 −K2

]
. Suppose the feedback gain K is chosen to

correspond with the coefficients of a Hurwitz polynomial, it implies
that limt→∞

∥∥e
∥∥ = 0 for any starting initial conditions. However,

since the uncertainties z(x, t) are always unknown or perturbed in
practical applications, the ideal controller (5) cannot be precisely
obtained. A trade-off problem between chattering and control accu-
racy arises in the ideal control scheme.

3. Description of HNN

The proposed HNN is shown in Fig. 1 is composed of the input
layer, the hidden layer and the output layer. In this study, the
orthogonal Hermite polynomial basis functions is adopted as the
activation function for each hidden neuron and is represented as
[12]

�i = 1√
2ii!

√
�

e
−�2

j
/2

Hi(�), for i = 1, 2, ..., n (7)

where the orthogonal Hermite polynomials are given recur-
sively by H1(�) = 1, H2(�) = 2�, . . . , Hn(�) = 2�Hn−1(�) − 2(n  −
1)Hn−2(�) for n ≥ 3. In addition, the input of the orthogonal Hermite
polynomials basis function can be represented as

� =
m∑

j=1

ej + ėj. (8)

Thus, the kth output of HNN can be expressed as

unc
k =

n∑
i=1

wik�i = wT
k �, for k = 1, 2, . . . , m (9)

where wik denotes the connecting weight value of the kth output
layer with the ith hidden layer, wk = [w1k, w2k, . . . , wnk]T and � =
[�1, �2, . . . , �n]T . For ease of notation, (9) can be rewritten in a
vector form as

unc = WT � (10)
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where unc = [unc
1 , unc

2 , ..., unc
m ]T and W = [w1, w2, ..., wm].

The main property of neural networks regarding feedback
control purpose is the universal function approximation prop-
erty. It implies that there exists an optimal HNN unc∗ =
[unc∗

1 , unc∗
2 , ..., unc∗

m ]T such that [14,15]

u∗ = unc∗ + � = W∗T � + � (11)

where � denotes the approximation error vector, W∗ =
[w∗

1, w∗
2, . . . , w∗

m] is the optimal parameter matrix of W.  In
fact, the optimal parameters that are needed to best approximate
an ideal controller u* are difficult to determine. Thus, an estimated
HNN ûnc = [ûnc

1 , ûnc
2 , . . . , ûnc

m ]T is defined as

ûnc = Ŵ
T
� (12)

whereŴ = [ŵ1, ŵ2, . . . , ŵm] is the estimated parameter matrix of
W. Define the estimation error as

ũ = u∗ − ûnc = W∗T
 ̊ − ŴT

 ̊ + � = W̃T
 ̊ + � (13)

where W̃ = W∗ − Ŵ. To speed up the parameter convergence of
HNN, the optimal parameter matrix W* is decomposed into two
parts as [26,27]

W∗ = �PW∗
P + �IW

∗
I (14)

where W∗
P = [wP∗

1 , wP∗
2 , . . . , wP∗

m ] and W∗
I = [wI∗

1 , wI∗
2 , . . . , wI∗

m] are
the proportional and integral terms of W*, respectively, �P and �I

are positive constants, and W∗
I =

∫ t

0
W∗

P(�) d�.  Similarly, the estima-

tion parameter matrix Ŵ is decomposed into two  parts as [26,27]

Ŵ = �PŴP + �IŴI (15)

where ŴP = [ŵP
1, ŵP

2, . . . , ŵP
m] and ŴI = [ŵI

1, ŵI
2, . . . , ŵI

m] are the
proportional and integral terms of Ŵ,  respectively, and ŴI =∫ t

0
ŴP(�) d�.  Thus, W̃ can be re-expressed as

W̃ = �IW̃I − �PW̃P + �PW∗
P (16)

where W̃I = W∗
I − ŴI = [w̃I

1, w̃I
2, . . . , w̃I

m]. Substituting (16)
into (13) yields

ũ = (�IW̃I − �PŴP + �PW∗
P)

T
� + � = �IW̃

T
I � − �PŴ

T
P� + � (17)

where ε = �PW∗T
P � + � denotes the lump of approximation error

but it cannot be obtained in practice.

4. APIHNC system design

The proposed APIHNC system is shown in Fig. 2, where the con-
trol law is designed as

uac = ûnc + urc. (18)

The neural controller ûnc uses an HNN to online approximate
the ideal controller and the robust compensator urc is designed to

MIMO
nonlinear

system
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esti mati on 
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Fig. 2. The block diagram of the proposed APIHNC system.

eliminate the effect of the approximation error introduced by the
neural controller upon the system stability. Substituting (18) into
(3) and using (5),  the error dynamic equation can be obtained as

ė = �e + B(u∗ − ûnc − urc) (19)

where B = [0, Gn(x, t)]T . Using the approximation ability of HNN,
(19) can be rewritten as

ė = �e + B(�IW̃
T
I � − �PŴ

T
P� + � − urc). (20)

For guaranteeing the system stability, this paper designs a
robust compensator as

urc = ε̂ + ıBT Pe (21)

where ε̂ denotes the estimated value of the lumped approximation
error, ı is a small positive constant and P is a symmetric positive
definite matrix that satisfies the Lyapunov equation

�T P + PT � = −Q (22)

and Q is a positive definite matrix. Substituting (21) into (20) yields

ė = �e + B(�IW̃
T
I � − �PŴ

T
P� + �̃ − ıBT Pe) (23)

where �̃ = � − �̂. To guarantee the stability of the APIHNC system,
consider a Lyapunov function candidate in the following form as

V = 1
2

eT Pe + �I

2
tr(W̃

T
I W̃I) + 1

2�ε
�̃T �̃ (24)

where �ε is a positive learning rate. Taking the derivative of Lya-
punov function in (24) and using (23), yields

V̇ = 1
2
ėT Pe + 1

2
eT P ė  + �Itr(W̃T

I
˙̃WI ) + 1

�ε
ε̃T ˙̃ε

V̇ = −1
2

eT Qe + eT PB(�IW̃
T
I � − �PŴ

T
P� + �̃ − ıBT Pe) + �Itr(W̃

T
I

˙̃WI) + 1
�ε

�̃T ˙̃�

V̇ = −1
2

eT Qe + �IeT PBW̃
T
I � − �PeT PBŴ

T
P � + eT PB�̃ − ıeT PBBT Pe + �Itr(W̃T

I
˙̃WI ) + 1

�ε
ε̃T ˙̃ε

V̇ = −1
2

eT Q e + �Ie
T PBW̃T

I  ̊ − �PeT PBŴT
P  ̊ + ε̃T BT Pe − ıeT PBBT Pe + �Itr(W̃T

I
˙̃WI ) + 1

�ε
ε̃T ˙̃ε

(25)

where eT PB�̃ = �̃T BT Pe is used since it is a scale. Chooses ŵP
k as

ŵP
k = eT Pbk� (26)
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and noting that

eT PBW̃
T
I � =

m∑
k=1

eT Pbkw̃IT
k � =

m∑
k=1

w̃IT
k eT Pbk� (27)

eT PBŴ
T
P� =

m∑
k=1

eT PbkŵPT
k � =

m∑
k=1

ŵPT
k eT Pbk� (28)

tr(W̃
T
I

˙̃WI) =
m∑

k=1

w̃IT
k

˙̃w
I
k (29)

where bk is the kth column of matrix B and eT Pbk is a scale, thus
(25) can be obtained as

V̇ = −1
2

eT Qe + �I

m∑
k=1

w̃IT
k (eT Pbk� + ˙̃w

I
k)

− �P

m∑
k=1

ŵPT
k ŵP

k + ε̃T
(

BT Pe + 1
�ε

˙̃�
)

− ıeT PBBT Pe (30)

If the adaptation laws are chosen as

˙̂w
I
k = − ˙̃w

I
k = eT Pbk�̂ (31)

˙̂� = − ˙̃� = �εBT Pe (32)

thus (30) can be obtained as

V̇ = −1
2

eT Qe − �P

m∑
k=1

ŵPT
k ŵP

k − ıeT PBBT Pe ≤ −1
2

eT Qe ≤ 0. (33)

Since V̇ ≤ 0 is a negative semi-definite function, which implies
e, W̃I, and �̃ are bounded. Let function ˝(t) = (1/2)eT Qe ≤ −V̇ , and
integrate function 	(t) with respect to time∫ t

0

˝(�)d� ≤ V(0) − V(t). (34)

Because V(0) is bounded and V(t) is non-increasing and
bounded, the following result can be obtained

lim
t→∞

∫ t

0

˝(�) d� < ∞.  (35)

In addition, since ˙̋ (t) is bounded, so by Barbalat’s Lemma  [1],
it can be shown that lim

t→∞
˝(t) = 0. This will imply that

∥∥e
∥∥ con-

verges to zero as t → ∞ As a result, the stability of the proposed
APIHNC system can be guaranteed.

5. Simulation results

In this section, the proposed APIHNC system is applied to an
inverted double pendulums and a two-link robotic manipulator to
verify its effectiveness. It should be emphasized that the devel-
opment of the proposed APIHNC system does not need to know
the controlled system dynamics. For practical implementation, the
controller parameters can be online tuned by the proposed adap-
tive laws without the need of the system parameters. A HNN is used
to online mimic  an ideal controller. In general, a better approxi-
mated performance can be obtained if a higher-order orthogonal
Hermite polynomial basis functions is used. By choosing the values
of K1 and K2 properly, the desired system dynamics such as sett-
ling time can be easily designed by the second-order system. The
parameters �P and �I are the leaning rates of neural controller and
the parameter �ε is the leaning rate of robust compensator. If the
leaning rates are chosen small, the parameter convergence will be
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l l
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( )

Fig. 3. Inverted double pendulums.

easily achieved; however, this will result in slow learning speed. On
the other hand, if the leaning rates are chosen large, the learning
speed will be fast; however, the system may  become unstable. Q
and ı will influence the convergent speed of tracking error. A better
control performance can be achieved as Q and ı are chosen larger
but it leads to a large control signal.

Example 1. Inverted double pendulums

Consider inverted double pendulums connected by a moving
spring mounted on two  carts as shown in Fig. 3. The pivot position
of the moving spring is a function of time that can change along
the length of pendulums. The system dynamics of inverted double
pendulums on carts is given as follows [28,29]:

�̈1 = g

cml
�1 + 1

cmmbl2
u1 + N1(�1, �̇1)

+
[

k(˛(t) − cml)
cmmbl2

(−˛(t)�1 + ˛(t)�2 − y1 + y2)

]
(36)

�̈2 = g

cml
�2 + 1

cmmbl2
u2 + N2(�2, �̇2)

+
[

k(˛(t) − cml)
cmmbl2

(−˛(t)�2 + ˛(t)�1 − y1 + y2)

]
(37)

where �i and �̇i are the angle and angular velocity of pendulums,
ui is the control torque applied to the pendulums, k and g denote
the spring and the gravity constant, respectively, ma and mb are
the masses of the carts and the pendulums, respectively, cm =
mb/(ma + mb), l is the length of the pendulums, y1 and y2 are the
displacements of the moving carts, ˛(t) = sin(5t) and N1(�1, �̇1) and
N2(�2, �̇2) are system uncertainties. Define x�[�1, �2]T = [x1, x2]T ,
the dynamics (36) and (37) can be expressed as

ẍ = f(x, t) + G(x, t)u + d(x, t) (38)

where

x = [xT , ẋT ]
T
,

f(x, t) =

⎡⎢⎣
g

cml
x1 + k(˛(t) − cml)

cmmbl2
(−˛(t)x1 + ˛(t)x2 − y1 + y2)

g

cml
x2 + k(˛(t) − cml)

cmmbl2
(−˛(t)x2 + ˛(t)x1 − y1 + y2)

⎤⎥⎦ ,
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Fig. 4. Simulation results of the RCMAC hybrid control [9].

G(x, t) =

⎡⎢⎣
1

cmmbl2
0

0
1

cmmbl2

⎤⎥⎦ ,

u = [u1, u2]T and d(x, t) =
[

N1(x1, ẋ1)

N2(x2, ẋ2)

]
.

The parameters of inverted double pendulums are ma =
mb = 50 kg, k = 1, g = 1, l = 1, N1(x1, ẋ1) = −(mb/ma)ẋ2

1 sin(x1),
N2(x2, ẋ2) = −(mb/ma)ẋ2

2 sin(x2), ˛(t) = sin(5t), y1 = sin(2t)  and
y2 = sin(3t) + 2 [29].

The parameters for the APIHNC system are selected as K1 =[
0.04 0

0 0.04

]
, K2 =

[
0.4 0
0 0.4

]
, �P = 5, �I = 50, �ε = 1 and ı =

10. The selections of these values are through some trials to achieve
satisfactory control performance. In this example, a HNN with nine
hidden neurons is utilized to approximate an ideal controller. For
a choice of Q = diag(20, 20,  20,  20), solving the Lyapunov Eq. (22),
obtain

P =

⎡⎢⎢⎣
126 0 250 0

0 126 0 250

250 0 650 0

0 250 0 650

⎤⎥⎥⎦ . (39)

To illustrate the effectiveness of the proposed design method,
a comparison between the RCMAC hybrid control [9] and the pro-
posed APIHNC system is made. First, the RCMAC hybrid control [9]
is applied to control. The simulation results of the RCMAC hybrid
control system for inverted double pendulum are shown in Fig. 4.
The trajectory of system states �1 and �2 is shown in Fig. 4(a),
and the control inputs u1 and u2 are shown in Fig. 4(b) and (c),
respectively. The simulation results show that favorable control

Fig. 5. Simulation results of the APIHNC system with integral learning algorithm.

performance can be achieved but the undesirable chattering phe-
nomenon occurs as shown in Fig. 4(b) and (c). Then, the proposed
APIHNC system is applied to control again. To compare the control
efficiency, the APIHNC system with integral parameter adaptation
is considered. This is a special case of the developed APIHNC design
method for �P = 0. As �P = 0, the parameter adaptation results in
an integral tuning mechanism which can be found in many previ-
ous published papers [15]. The simulation results of the APIHNC
system with integral parameter adaptation for inverted double
pendulum are shown in Fig. 5. The trajectory of system states �1
and �2 is shown in Fig. 5(a), and the control inputs u1 and u2
are shown in Fig. 5(b) and (c), respectively. From the simulation
results, excellent tracking performance and chattering-free in con-
trol effort are achieved for the proposed APIHNC system. But, the
convergence of tracking error is slow using the integral type learn-
ing algorithm. Finally, the proportional–integral learning algorithm
is applied with �P = 5. The simulation results of the APIHNC system
with proportional–integral parameter adaptation for inverted dou-
ble pendulum are shown in Fig. 6. The trajectory of system states
�1 and �2 is shown in Fig. 6(a), and the control inputs u1 and u2
are shown in Fig. 6(b) and (c), respectively. The simulation results
show that the favorable tracking performance can be achieved and
the tracking errors converge more quickly than that in Fig. 5.

Example 2. Two-link robotic manipulator

A two-link robotic manipulator is shown in Fig. 7. The system
dynamic of a two-link robotic manipulator system can be expressed
in the Lagrange following form [30–33]

M(q)q̈ + C(q, q̇)q̇ + G(q) = � (40)

where q = [q1, q2]T is the joint vector of robotic manipulator, M(q)
denotes the inertia matrix, C(q, q̇) expresses the matrix of cen-
tripetal and Coriolis forces, G(q) is the gravity vector, and � is the
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Fig. 6. Simulation results of the APIHNC system with proportional–integral learning
algorithm.

torque vectors exerting on joints. The system (40) can be trans-
formed into the form of (1) with

q̈ =
[

f1(q, t)

f2(q, t)

]
+

[
g11(q, t) g12(q, t)

g21(q, t) g22(q, t)

]
u (41)

f1(q, t) = M2l1l2a1a3q2
1 − M2l22a1q2

2 + (M1 + M2)gs1 − M2ga3s2

l1a2
(42)

f2(q, t) = M2l1l2a1a3q2
2 + (M1 + M2)

(
l21a1q2

1 − ga3s1 + gs2

l2a2

)
(43)

g11(q, t) = 1

l21a2
(44)

1M

2M

1q

2q
2l

1l

1M

2M

1q

2q
2l

1l

Fig. 7. Two-link robotic manipulator system.

Fig. 8. Simulation results of the APIHNC system for a two-link robotic manipulator
system.

g12(q, t) = g21(q, t) = −a3

l1l2a2
(45)

g22(q, t) = M1 + M2

M1l22a2
(46)

where q = [qT , q̇T ]
T
, M1 and M2 are link masses, l1 and l2 are

link lengths, g is acceleration, s1 = sin(q1), s2 = sin(q2), c1 = cos(q1),
c2 = cos(q2), a1 = (s1c2 − c1s2)/a2, a2 = M1 + M2 − M2a2

3, and a3 =
c1c2 + s1s2. For the simulation, the system parameter are given
as M1 = 4 kg, M2 = 2 kg, l1 = 2 m, l2 = 1 m, and g = 9.8 m/s2
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Table  1
Comparison of controller characteristics.

Controller Controller parameters Robustness Convergence
speed

Chattering
phenomena

RCMAC hybrid control [9] On-line learning Excellent Fast Yes
APIHNC with integral parameter adaptation On-line learning Middle Slow No
APIHNC with proportional–integral parameter adaptation On-line learning Excellent Fast No

[30]. The proposed APIHNC system is applied to control a two-
link robotic manipulator. The control parameters of the APIHNC

system are selected as K1 =
[

0.25 0
0 0.25

]
, K2 =

[
1 0
0 1

]
, �I = 25,

�P = �ε = 1, and ı = 10. The selections of these values are through
some trials to achieve satisfactory control performance. In this

Fig. 9. Simulation results of the APIHNC system with different reference trajectories.

example, a HNN with seven hidden neurons is utilized to approx-
imate an ideal controller. For a choice of Q = diag(100, 25,  20,  5),
solving the Lyapunov Eq. (22), obtain

P =

⎡⎢⎢⎣
252 0 200 0

0 63.125 0 50

200 0 210 0

0 50 0 52.5

⎤⎥⎥⎦ . (47)

The simulation result of the proposed APIHNC system is shown
in Fig. 8. The tracking responses of states q1 and q2 are shown in
Fig. 8(a) and (b), respectively, the tracking responses of states q̇1
and q̇2 are shown in Fig. 8(c) and (d), respectively, and the control
inputs u1 and u2 are shown in Fig. 8(e) and (f), respectively. The sim-
ulation results show that the favorable tracking performance can be
achieved by the proposed APIHNC system without requiring a pre-
liminary offline tuning. To demonstrate the control performance of
the proposed control system with different reference trajectories,
the reference trajectory commands for joints 1 and 2 are exam-
ined 0.7 sin(1.5t) + 0.3 cos(3.5t) and 0.7 cos(1.5t) + 0.3 sin(3.5t),
respectively. The simulation result of the proposed APIHNC sys-
tem with different reference trajectories are shown in Fig. 9. The
tracking responses of states q1 and q2 are shown in Fig. 9(a) and
(b), respectively, the tracking responses of states q̇1 and q̇2 are
shown in Fig. 9(c) and (d), respectively, and the control inputs u1
and u2 are shown in Fig. 9(e) and (f), respectively. The simulation
results show that the proposed APIHNC system can still achieve sat-
isfactory tracking responses in the presence of different reference
trajectories.

6. Conclusion

This paper has successfully developed an adaptive PI Hermite
neural control (APIHNC) system for an inverted double pendulums
and a two-link robotic manipulator. The proposed APIHNC system
is composed of a neural controller and a robust compensator. The
neural controller uses a Hermite neural network to online mimic
an ideal controller and the robust compensator is design to effi-
ciently suppress the influence of approximation error introduced
by the neural controller upon the system stability in the Lya-
punov sense. Finally, the proposed APIHNC system is applied to
an inverted double pendulums and a two-link robotic manipula-
tor. From the simulation results, it is verified that the proposed
APIHNC scheme can achieve a favorable tracking performance. It
possesses the salient advantages of free from chattering, stable
tracking control performance, and robust to system uncertainties.
In summary, the comparison of various controller characteristics is
made in Table 1. It shows that the proposed APIHNC system with
proportional–integral parameter adaptation is suitable for MIMO
uncertain nonlinear systems.
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