36 research outputs found

    A benchmark mechatronics platform to assess the inspection around pipes with variable pitch quadrotor for industrial sites

    Get PDF
    Article number 102641This paper investigates the inspection-of-pipe topic in a new framework, by rotation around a pipe, peculiar to industrial sites and refineries. The evolution of the ultimate system requires prototype design and preliminary tests. A new benchmark has been designed and built to mimic the rotation around a pipe, with the main purpose of assessing the different types of rotors and control systems. The benchmark control system presents a mechatronics package including mechanical design and machining, electronics and motor drive, motor-blade installation, computer programming, and control implementation. The benchmark is also modular, working with two modes of one- and two-degree-of-freedom (DoF), easily interchangeable. To cover a full rotation, conventional fixed-pitch drones fail to provide negative thrusts; nonetheless, variable-pitch (VP) rotor quad- copters can produce that in both directions. A closed-loop nonlinear optimal method is chosen as a controller, so- called, “the state-dependent Riccati equation (SDRE)” approach. Optimal control policies are challenging for experimentation though it has been successfully done in this report. The advantage of the VP is also illustrated in a rotation plus radial motion in comparison with fixed-pitch rotors while a wind gust disturbs the inspection task. The proposed VP system compensated the disturbance while the fixed pitch was pushed away by the wind gust. The solution methods to the SDRE were mixed, a closed-form exact solution for the one-DoF system, and a numerical one for the two-DoF. Solving the Riccati online in each time step is a critical issue that was effectively solved by the implementation approach, through online communication with MATLAB software. Both simula- tions and experiments have been performed along with a discussion to prove the application of VP systems in rotary-motion pipe inspectionEuropean Union (UE). H2020 779411Agencia Estatal de Investigación española RTI2018-102224-B-I0

    Execution Time of Optimal Controls in Hard Real Time, a Minimal Execution Time Solution for Nonlinear SDRE

    Get PDF
    Many engineering fields, such as automotive, aerospace, and the emerging challenges towards industry 4.0, have to deal with Real-Time (RT) or Hard Real Time (HRT) systems, where temporal constraints must be fulfilled, to avoid critical behaviours or unacceptable system failures. For this reason, estimation of code's Worst-Case Execution Time (WCET) has received lots attention because in RT systems a fundamental requirement is to guarantee at least a temporal upper bound of the code execution for avoiding any drawbacks. However, until now there is no approved method to compute extremely tight WCET. Nowadays, indeed, HRT requirements are solved via hardware, using multi-cores embedded boards that allow the computation of the deterministic Execution Time (ET). The availability of these embedded architectures has encouraged the designers to look towards more computationally demanding optimal control techniques for RT scenarios, and to compare and analyze performances also evaluating a tight WCET. However, this area still lacks deep investigations. This paper has the intent of analysing results regarding the choice between three of the most established optimal controls (LQR, MPC, SDRE), providing the first link between WCET analysis and control algorithms performances. Moreover, this work shows how it is also possible to obtain a minimal ET solution for the nonlinear SDRE controller. The results might be useful for future implementations and for coping with Industry 4.0 emerging challenges. Furthermore, this approach can be useful in control system engineering field, especially in the design stage for RT or HRT systems, where temporal bounds have to be fulfilled jointly with all the other application's specifications

    Formation control of mobile robots and unmanned aerial vehicles

    Get PDF
    In this dissertation, the nonlinear control of nonholonomic mobile robot formations and unmanned aerial vehicle (UAV) formations is undertaken and presented in six papers. In the first paper, an asymptotically stable combined kinematic/torque control law is developed for leader-follower based formation control of mobile robots using backstepping. A neural network (NN) is introduced along with robust integral of the sign of the error (RISE) feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. Subsequently, in the second paper, a novel NN observer is designed to estimate the linear and angular velocities of both the follower and its leader robot and a NN output feedback control law is developed. On the other hand, in the third paper, a NN-based output feedback control law is presented for the control of an underactuated quad rotor UAV, and a NN virtual control input scheme is proposed which allows all six degrees of freedom to be controlled using only four control inputs. The results of this paper are extended to include the control of quadrotor UAV formations, and a novel three-dimensional leader-follower framework is proposed in the fourth paper. Next, in the fifth paper, the discrete-time nonlinear optimal control is undertaken using two online approximators (OLA\u27s) to solve the infinite horizon Hamilton-Jacobi-Bellman (HJB) equation forward-in-time to achieve nearly optimal regulation and tracking control. In contrast, paper six utilizes a single OLA to solve the infinite horizon HJB and Hamilton-Jacobi-Isaacs (HJI) equations forward-intime for the near optimal regulation and tracking control of continuous affine nonlinear systems. The effectiveness of the optimal tracking controllers proposed in the fifth and sixth papers are then demonstrated using nonholonomic mobile robot formation control --Abstract, page iv

    Using a Combination of PID Control and Kalman Filter to Design of IoT-based Telepresence Self-balancing Robots during COVID-19 Pandemic

    Get PDF
    COVID-19 is a very dangerous respiratory disease that can spread quickly through the air. Doctors, nurses, and medical personnel need protective clothing and are very careful in treating COVID-19 patients to avoid getting infected with the COVID-19 virus. Hence, a medical telepresence robot, which resembles a humanoid robot, is necessary to treat COVID-19 patients. The proposed self-balancing COVID-19 medical telepresence robot is a medical robot that handles COVID-19 patients, which resembles a stand-alone humanoid soccer robot with two wheels that can maneuver freely in hospital hallways. The proposed robot design has some control problems; it requires steady body positioning and is subjected to disturbance. A control method that functions to find the stability value such that the system response can reach the set-point is required to control the robot's stability and repel disturbances; this is known as disturbance rejection control. This study aimed to control the robot using a combination of Proportional-Integral-Derivative (PID) control and a Kalman filter. Mathematical equations were required to obtain a model of the robot's characteristics. The state-space model was derived from the self-balancing robot's mathematical equation. Since a PID control technique was used to keep the robot balanced, this state-space model was converted into a transfer function model. The second Ziegler-Nichols's rule oscillation method was used to tune the PID parameters. The values of the amplifier constants obtained were Kp=31.002, Ki=5.167, and Kd=125.992128. The robot was designed to be able to maintain its balance for more than one hour by using constant tuning, even when an external disturbance is applied to it. Doi: 10.28991/esj-2021-SP1-016 Full Text: PD

    A COLLISION AVOIDANCE SYSTEM FOR AUTONOMOUS UNDERWATER VEHICLES

    Get PDF
    The work in this thesis is concerned with the development of a novel and practical collision avoidance system for autonomous underwater vehicles (AUVs). Synergistically, advanced stochastic motion planning methods, dynamics quantisation approaches, multivariable tracking controller designs, sonar data processing and workspace representation, are combined to enhance significantly the survivability of modern AUVs. The recent proliferation of autonomous AUV deployments for various missions such as seafloor surveying, scientific data gathering and mine hunting has demanded a substantial increase in vehicle autonomy. One matching requirement of such missions is to allow all the AUV to navigate safely in a dynamic and unstructured environment. Therefore, it is vital that a robust and effective collision avoidance system should be forthcoming in order to preserve the structural integrity of the vehicle whilst simultaneously increasing its autonomy. This thesis not only provides a holistic framework but also an arsenal of computational techniques in the design of a collision avoidance system for AUVs. The design of an obstacle avoidance system is first addressed. The core paradigm is the application of the Rapidly-exploring Random Tree (RRT) algorithm and the newly developed version for use as a motion planning tool. Later, this technique is merged with the Manoeuvre Automaton (MA) representation to address the inherent disadvantages of the RRT. A novel multi-node version which can also address time varying final state is suggested. Clearly, the reference trajectory generated by the aforementioned embedded planner must be tracked. Hence, the feasibility of employing the linear quadratic regulator (LQG) and the nonlinear kinematic based state-dependent Ricatti equation (SDRE) controller as trajectory trackers are explored. The obstacle detection module, which comprises of sonar processing and workspace representation submodules, is developed and tested on actual sonar data acquired in a sea-trial via a prototype forward looking sonar (AT500). The sonar processing techniques applied are fundamentally derived from the image processing perspective. Likewise, a novel occupancy grid using nonlinear function is proposed for the workspace representation of the AUV. Results are presented that demonstrate the ability of an AUV to navigate a complex environment. To the author's knowledge, it is the first time the above newly developed methodologies have been applied to an A UV collision avoidance system, and, therefore, it is considered that the work constitutes a contribution of knowledge in this area of work.J&S MARINE LT

    Nonlinear optimal control and its application to a two-wheeled robot

    Get PDF
    This research studies two advanced nonlinear optimal control techniques, i.e., the freezing control and the iteration scheme, and their associated applications, such as a single inverted pendulum (IP) on a cart system and a two-wheeled robot (TWR) system. These techniques are applied to stabilise the highly unstable nonlinear systems in the vertical upright position when facing different initial pitch angles. Different linear optimal controllers (linear quadratic regulator and linear quadratic Gaussian) and nonlinear optimal controllers are designed and applied to the models for concurrent control of all state variables. The controlled systems are tested in simulation and the best performing control design is eventually implemented on a robot prototype built with an educational kit – the LEGO EV3, after practical factors such as motor voltage limitation, gyro sensor drift and model uncertainties have been considered, analysed and dealt with. Simulations and experiments on the TWR robot prototype demonstrate the superiority of the nonlinear freezing optimal control technique, showing larger operation ranges of the robot pitch angle and better response performances (i.e., shorter rise time, less overshoot and reduced settling time) than the linear optimal control methods. In particular, a novel mixing method to create a new nonlinear model (Model AB) from two different models on the same physical prototype with an increased controllable region of the TWR system is introduced, for the first time, for the calculations of optimal feedback gains for the system. Significantly, the utilisation of this mixed model, combined with the nonlinear freezing controller, achieves true global control of the TWR, even from an initial pitch angle of 90° (i.e., the horizontal position), when a motor with a saturated voltage of 48V and nominal torque of 298 mNm is adopted in simulation tests. This is wider than the angle achievable from the primary model (Model A) and any other single feedback control method on TWR reported in the literature. Robustness tests when introducing model uncertainties by adding mass and height on the TWR also illustrate excellent control performances from the nonlinear optimal control in both simulations and hardware implementations
    corecore