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ABSTRACT

In this dissertation, the nonlinear control of nonholonomic mobile robot
formations and unmanned aerial vehicle (UAV) formations is undertaken and presented
in six papers. In the first paper, an asymptotically stable combined kinematic/torque
control law is developed for leader-follower based formation control of mobile robots
using backstepping. A neural network (NN) is introduced along with robust integral of
the sign of the error (RISE) feedback to approximate the dynamics of the follower as well
as its leader using online weight tuning. Subsequently, in the second paper, a novel NN
observer is designed to estimate the linear and angular velocities of both the follower and
its leader robot and a NN output feedback control law is developed.

On the other hand, in the third paper, a NN-based output feedback control law is
presented for the control of an underactuated quad rotor UAV, and a NN virtual control
input scheme is proposed which allows all six degrees of freedom to be controlled using
only four control inputs. The results of this paper are extended to include the control of
quadrotor UAV formations, and a novel three-dimensional leader-follower framework is
proposed in the fourth paper. Next, in the fifth paper, the discrete-time nonlinear optimal
control is undertaken using two online approximators (OLA’s) to solve the infinite
horizon Hamilton-Jacobi-Bellman (HJB) equation forward-in-time to achieve nearly
optimal regulation and tracking control. In contrast, paper six utilizes a single OLA to
solve the infinite horizon HJB and Hamilton-Jacobi-Isaacs (HJI) equations forward-in-
time for the near optimal regulation and tracking control of continuous affine nonlinear
systems. The effectiveness of the optimal tracking controllers proposed in the fifth and

sixth papers are then demonstrated using nonholonomic mobile robot formation control.
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SECTION

1. INTRODUCTION

In the past decade, social biological organisms such as ants, fish, and birds have
inspired researchers to explore control objectives. For instance, the use of adaptive neural
networks (NN’s) in closed-loop feedback control systems has been motivated by
biological processes such as the nervous system and its basic unit, the neuron.

Consider the social creatures shown in Fig. 1.1. The leaf cutter ants work
together to harvest fresh plant matter to grow food to sustain and expand the colony. The
fish swim in schools as a defense mechanism from predators and to aid in foraging for
food, and the birds fly in formation to reduce the drag force that each bird experiences
compared to if it was flying alone. While the objectives of each group of organisms are
quite different, they share the same underlying theme. That is, by working together, the
task or objective at hand can be completed more quickly and efficiently than if the task
were undertaken alone. Recognizing these benefits, researchers have applied the lessons
learned from nature to the control and coordination of multiple agents which include
robots and unmanned aerial vehicles (UAVs), and the coordination of multiple agents has
become known as robotic formation control where each robot or UAV in the group seeks
to orient itself relative to its neighbor or a leader.

Just as the social organisms described above orient themselves relative to one
another to complete there respective objectives more effectively, the concept of formation
control is to arrange the robot or UAVs relative to each other so that the mission is

successfully completed more quickly and efficiently. For example, the robots or UAVs



Fig 1.1 Leaf cutter ants', school of fish?, and birds flying in formation®.

may be equipped with sensors that have limited sensing capabilities. If a single agent
were assigned to sweep a large area using its limited sensing, the task could take a very
long time. However, by increasing the number of robots or UAVs and strategically
arranging them, the formation of robots and UAVs can complete the task quicker and
more efficiently than a single robot or UAV acting along can.

Thus, the benefits of controlling a team of robots or UAVs over controlling a
single agent have stimulated the interests of many researchers, and the attention has

shifted from the control of a single robot or UAV to controlling formations of robots or

! Photo courtesy of: http://dsc.discovery.com/news/2008/09/10/gallery/leaf-cutter-ants-324x205.jpg

2 Photo courtesy of: http:/photography.nationalgeographic.com/staticfiles/NGS/Shared/StaticFiles/
Photography/Images/POD/f/fish-and-coral-tuamotu-513704-x1.jpg

3 Photo courtesy of: http://www.wunderground.com/data/wximagenew/r/Ralfo/561.jpg



UAVs.  Next, several applications of formation control of robots and UAV’s are

considered, and the benefits over controlling a single agent are discussed.

1.1 APPLICATIONS OF FORMATION CONTROL

A team of mobile robots or unmanned aerial vehicles (UAVs) working together is
often more effective than a single agent acting alone in applications like surveillance,
search and rescue, perimeter security, and exploration of unknown and/or hazardous
environments to name a few. In addition to redundancy, a team of robots each with a
variety of sensors offers the opportunity for increased sensor coverage when compared to
a single mobile sensor or multiple stationary sensors. Therefore, mobile sensor networks
are preferred over a single suite of sensors.

For example, in January 2004, the National Aeronautics and Space
Administration (NASA) successfully landed two identical rovers on Mars known as
Spirit and Opportunity, and shown in Fig. 1.2. For more than five years, the two robots
have accumulated more than 15 miles in total odometry [2]. Had NASA only deployed a
single rover, the total odometry could have been as low as 5 miles [2] (approximate total
distance traveled by Spirit rover as of July 15, 2009). In contrast, by deploying a fleet of
rovers to the surface of Mars, the unknown terrain could have been systematically
divided and explored autonomously while providing scientists with an increased amount
and wider variety of data from the Martian surface compared to the amount of data
provided by just two rovers. In addition, increasing the number of robots provides
redundancy and decreases the chances of complete mission failure.

In addition to exploring foreign planets, formation control can also be applied to

satellite formation flying where multiple smaller satellites work together to perform the



Fig. 1.2. NASA’s twin Mars rovers, Spirit and Opportunity4.

task normally accomplished by one larger and more expensive satellite [3]. Not only are
the smaller satellites often cheaper and quicker to build, they provide an increase in the
resolution that can be achieved by a single satellite, and they have the ability to view
targets from multiple angles or at multiple times. These qualities make them ideal for
meteorological, environmental, astronomy, and communications applications [3]. In
addition, increasing the number of satellites adds redundancy and robustness for
successfully completing the desired tasks.

A well known example of formation control is a squadron of fighter jets flying in

formation as shown in Fig. 1.3 where the formation traditionally consists of jets flown by

* Photo courtesy of: http://www.jpl.nasa.gov/images/missions/Mer640.jpg



Fig. 1.3. Formation of fighter jets".

well-trained pilots. Now, recent advances in technology have paved the way for
unmanned jets to fly in formation with both manned and unmanned aircraft [4] where
objectives include flying in tight formations so that a reduction in the formation’s
induced drag is achieved [5]. By reducing the drag incurred on the formation, the team of
UAV’s reduces their fuel consumption, and thus, they can achieve longer flight durations
[5]. However, as a result of a follower UAV flying in close proximity to its leader, the
follower must not only consider its own dynamics, but also the dynamics of its leader.
That is, the formation dynamics must be considered.

The examples above have illustrated three of the many possible applications of
robotic formation control. In addition, these examples have brought to light several

benefits of formation control over employing a single agent as well as several

3 Photo courtesy of: http://www.baseops.net/militarypilot/at38_formation.jpg



considerations that should be taken into account in the design of formation control laws.
That is, the designed formation control laws must ensure that the formation errors are
small to ensure the success of the mission as well as the stability of the formation. In
addition, the dynamic effects of the leader on the follower robot (formation dynamics)
should be explicitly considered. Observing that autonomous robots and UAV’s are often
powered by batteries, the task of achieving and maintaining the desired formation should
also be completed in an optimal manner to extend the duration of a mission and thus
reduce the risk of mission failure due to depleted power. The optimal use of system
resources becomes especially important in tasks such as the Mars rover and satellite
formation examples described above where simply replacing batteries is not an option.
Next, an overview of current methodologies for robotic and UAV formation
control is presented, and their shortcomings are exposed. Subsequently, the organization

of this dissertation is presented.

1.2 OVERVIEW OF FORMATION CONTROL METHODOLOGIES

For the formation control of wheeled mobile robots shown in Fig. 1.4, many
researchers [1] have simplified their approaches by considering only the kinematic
system of the robot thereby ignoring the robot and formation dynamics. As observed
from robot arm control, the dynamics must be considered in practice to guarantee that the
robots track a desired velocity while avoiding the use of large control gains which would
become necessary to dominate the neglected dynamics in order to ensure an acceptable
performance [6]. Similarly, experimental studies have illustrated the need for dynamical
controllers for wheeled mobile robots with high inertia, high operating speeds, significant

unmodeled dynamics, or high system noise [7].



Likewise, the control of quadrotor UAVs, similar to the UAV shown in Fig. 1.5,
is often accomplished by making small angle approximations and considering simplified
dynamics. However, experimental studies have shown that the above simplifications are
valid only at very low speeds such as hovering while the aerodynamic effects can become
significant even at moderate velocities causing instability of the UAV [8]. In addition,
for the formation control of UAV’s, cylindrical coordinates and contributions from
wheeled mobile robot leader follower formation control [1] have been extended for
aircrafts by assuming the dynamics are known [9]. However, it is desirable to solve the
UAV formation control problem without requiring full knowledge of the system
dynamics while in a coordinate system that is better suited for a three-dimensional (3D)
formation, such as spherical coordinates, since the type of sensor measurements required

to solve the 3D-formation control problem are often in a spherical coordinate system.

Fig 1.4. Missouri S&T autonomous trucks.



Fig. 1.5 Missouri S&T quadrotor UAV.

In addition, the stability of the wheeled mobile robot or UAV is often the sole
consideration of many existing formation control schemes [1],[9]. However, as described
above, optimal use of system resources if often required so as to extend the duration of
the mission while improving the likelihood completing the task at hand. Thus, the
control laws derived in this dissertation seek to address the shortcomings described

above.

1.3 ORGANIZATION OF THE DISSERTATION

In this dissertation, the control of nonholonomic mobile robot formations and
UAV formations is undertaken while relaxing the above common assumptions and
simplifications. This dissertation is presented in six papers, and their relation to one
another is illustrated in Fig. 1.6. The common theme of each paper is the formation

control of wheeled mobile robots and UAV’s. The first two papers deal with wheeled



mobile robots and address the asymptotic stability of the formation and output feedback
controller designs, respectively, when the dynamics of the robots and formation are
unknown. The third and forth papers consider the output feedback control of a single
quadrotor UAV and state feedback control of formations of quadrotor UAVs,
respectively, in the presence of unknown dynamics. The final two papers of the
dissertation consider solving the Hamilton-Jacobi-Bellman (HJB) equation in both
discrete and continuous time frameworks, respectively. Additionally, the contributions of
the final paper are extended to solve the Hamilton-Jacobi-Isaacs (HJI) equation
commonly used in H. optimal control. The effectiveness of the optimal control laws

derived in the final two papers is demonstrated using wheeled mobile robots.

Robot Formations using RISE Feedback,” IEEE Transactions on Systens,
\ Man, and Cybernetics — Part B, vol. 39, pp 332-346, April 2009.
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.
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time Systems with Unknown Internal Dynamics using Online Approximators,” Submitted,
\ IEEE Transactions on Automatic Control, 2009.
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Formation IEEE Transactions on Automatic Control, 2009.
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Fig 1.6. Dissertation outline.
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In the first paper, an asymptotically stable combined kinematic/torque control law
is developed for leader-follower based formation control of mobile robots using
backstepping in order to accommodate the complete dynamics of the robots and the
formation. A NN is introduced along with robust integral of the sign of the error (RISE)
feedback to approximate the dynamics of the follower as well as its leader using online
weight tuning, and Lyapunov theory guarantees that the tracking errors are
asymptotically stable as opposed to uniformly ultimately bounded (UUB) stability which
is typical with most NN controllers. In comparison to our previous work [10], the RISE
method achieves asymptotic stability by using the integral of a high-gain term whereas
the method in [10] attained asymptotic stability through a robust adaptive term.
Subsequently, a NN output feedback control law is developed requiring minimal
communication in the second paper. Further, a novel NN observer is designed to estimate
the linear and angular velocities of both the follower robot and its leader.

In the third paper, a novel NN output feedback control law is presented for the
control of an underactuated quad rotor UAV. Although a quadrotor UAV is
underactuated, a novel NN virtual control input scheme is proposed which allows all six
degrees of freedom of the UAV to be controlled using only four control inputs.
Furthermore, a NN observer is introduced to estimate the translational and angular
velocities of the UAV. In paper four, we extend the results of paper three to include the
control of UAV formations, and a new leader-follower formation control framework is
proposed for UAVs based on spherical coordinates where the desired trajectory of a
follower UAYV is specified using a desired- separation, angle of incidence, and bearing ,

s,» a,,p,, respectively, relative to its leader. In the proposed formation control
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formulation, the desired separation, angle of incidence and bearing angle will be utilized
to define a desired trajectory of a follower UAV relative to its leader, so as to convert the
formation control problem into a tracking control problem.

Our previous work [11] explored solving the HIB equation using offline training
and NN’s. For the approach in [11], an additional NN was utilized to relax the need of
exact knowledge of the system dynamics. In contrast, direct dynamic programming
techniques are utilized in paper five to solve the infinite horizon Hamilton Jacobi-
Bellman (HJB) equation online and forward-in-time time for the optimal control of
general affine nonlinear discrete-time systems. The proposed approach, referred
normally as adaptive dynamic programming, uses online approximators (OLA’s) to solve
the infinite horizon optimal regulation and tracking control of affine nonlinear discrete-
time systems in the presence of unknown internal dynamics and a known control
coefficient matrix. Novel tuning laws for the OLA’s are derived, and all parameters are
tuned online. Lyapunov techniques are used to show that all signals are UUB and that the
approximated control signals approach the optimal control inputs with small bounded
error. The effectiveness of proposed nearly optimal tracking controller scheme is verified
using a nonholonomic mobile robot. In addition, the online optimal control scheme is
applied to the formation control of nonholonomic mobile robots in [12].

In the final paper, a novel single online approximator (SOLA)-based scheme is
designed to solve the optimal regulation and tracking control problems for continuous
nonlinear affine systems with known dynamics. The SOLA-based adaptive approach is
designed to learn the infinite horizon continuous time HIJB equation and the

corresponding optimal control input that minimizes the HIB equation forward-in-time.
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Subsequently, the SOLA architecture is extended to learn the HJI equation commonly
used in H. optimal control. Novel tuning algorithms are derived which not only ensures
the optimal cost (HJB or HJI) function and control input are achieved, but also ensures
the system states remain bounded during the online learning process. Lyapunov
techniques are used to show that all signals are UUB and that the approximated control
signals approach the optimal control inputs with small bounded error. In the absence of

OLA reconstruction errors, an optimal control is demonstrated.

1.4 CONTRIBUTIONS OF THE DISSERTATION

This dissertation provides contributions to the field of robot and UAV formation
control as well as to the control of general nonlinear systems. The control laws
developed in this dissertation in the context of formation control explicitly compensate
for the dynamics of the individual agents as well as the dynamics of the entire formation,
and the stability of the formation is demonstrated in each case. Further, the contributions
of paper 2 illustrate how the formation control objective can be achieved using limited
communication and minimal sensor measurements by using output feedback. For the
control of UAV’s and UAV formations, the control laws derived in this dissertation are
independent of a specific operating point and do not require any small angle
approximations. Although a UAV underactuated, the control of all system states is
achieved using a novel virtual controller structure. Additionally, the formation control
laws derived in this work do not require complete knowledge of the system or formation

dynamics as the NN’s learn them all online.
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In addition to robot formations, the NN/RISE feedback method developed in
paper 1 allows the asymptotic stability of general nonlinear affine systems to be shown in
the presence of uncertainties and disturbances that have time varying upper bounds.
Asymptotic stability is a much stronger result than the boundedness results which
typically arise in presence of bounded uncertainties and disturbances [13]. The
contributions of papers 5 and 6 also pertain to general nonlinear affine systems in
discrete- and continuous-time, respectively, and both provide novel online optimal
control schemes to learn the HIB or HJI equations forward in time in contrast to optimal
control methods which develop backwards in time [14]. Additionally, the schemes in
papers 5 and 6 explicitly consider the approximation and OLA reconstruction errors in

the stability proofs which is not typical of current approaches.
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PAPER 1

Neural Network Control of Mobile Robot Formations using
RISE Feedback'

Travis Dierks and S. Jagannathan

Abstract—In this paper, an asymptotically stable combined kinematic/torque control law
is developed for leader-follower based formation control using backstepping in order to
accommodate the complete dynamics of the robots and the formation, and a neural
network (NN) is introduced along with robust integral of the sign of the error (RISE)
feedback to approximate the dynamics of the follower as well as its leader using online
weight tuning. It is shown using Lyapunov theory that the errors for the entire formation
are asymptotically stable and the NN weights are bounded as opposed to uniformly
ultimately bounded (UUB) stability which is typical with most NN controllers.
Additionally, the stability of the formation in the presence of obstacles is examined using
Lyapunov methods, and by treating other robots in the formation as obstacles, collisions
within the formation do not occur. The asymptotic stability of the follower robots as well
as the entire formation during an obstacle avoidance maneuver is demonstrated using
Lyapunov methods, and numerical results are provided to verify the theoretical
conjectures.

Keywords: Neural network, formation control, Lyapunov method, kinematic/dynamic
controller, RISE.
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[. INTRODUCTION

For complex tasks like search and rescue operations, mapping unknown or
hazardous environments, security and bomb sniffing, a team of robots working together
offers many advantages over employing a single robot. Recognizing these benefits,
robotic formation control has become the focus of many research efforts [1-18], and
several different approaches to the problem have been proposed including behavior-
based, generalized coordinates, virtual structures, and leader-follower, to name a few [1].
Separation-separation and separation-bearing [2-3] are two popular techniques in leader-
follower formation control, and in this work, the latter will be considered where the
followers stay at a specified separation and bearing from its designated leader.

Many formation control works [2-7] have proposed kinematic based control laws
to keep the formation. Thus, perfect velocity tracking assumptions are required to ensure
the desired formation is achieved as well as guarantee the stability of the formation.
Therefore, numerous works [8-16] have proposed solution to formation control problem
which include the robot dynamics. In [8], a neural network (NN) is introduced to learn
the dynamics of the follower robots. The work in [9], [10], and [11] propose
decentralized approaches based on virtual points, potential functions, and the abilities of
the individual robots, respectively; however, in each case, only the inertial matrix of the
robots is considered, and dynamics like the centripetal and coriolis matrix and the friction
vector are ignored. In [12], a centralized control scheme is developed, and a PD
controller is proposed to ensure velocity tracking; however, the derivative of the control
velocity is neglected. Alternatively, the work in [13] proposes a dynamical control

scheme for leader-follower based formation control which considers the dynamics of the
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robots and guarantees collisions do not occur among them. However, this control scheme
is derived using potential as well as bump functions which must be at least three times
differentiable. In each of these works [8-13], the dynamics of the follower robots are
considered whereas the effect of the dynamics of the leader on the follower (formation
dynamics) is still ignored.

Our previous work [14] demonstrated that the dynamics of the lead robot are
incorporated into the torque control inputs of the follower robots through the derivative
of the follower's kinematic control velocity which was found to be a function of its
leader's velocity. Consequently, in a formation of robots where a follower robot follows
another robot directly in front of it, by considering its leader's dynamics, a robot
inherently considers the dynamics of the robots in front of them. The dynamical
extension in [14] provided a rigorous method of taking into account specific robot and
formation dynamics; however, the dynamics of each robot were considered known.
Therefore, in our previous work [15], a NN was introduced to learn the unknown
dynamics of each robot as well as the dynamics of its respective leader, and the formation
errors were shown to be Uniformly Ultimately Bounded (UUB) [20].

By contrast, the contribution of this work lies in a new asymptotically stable NN
torque control law using a NN combined with the recently developed robust integral of
sign of the error feedback method originating in [18] and referred to as RISE feedback in
[19]. The asymptotic stability of the entire formation as well as the boundedness of the
NN weights is shown using Lyapunov methods as opposed to UUB, a result common in
the NN controls literature [15],[20]. The RISE method [19] is designed to reject bounded

unmodeled disturbances, like NN functional reconstruction errors, to yield asymptotic



18

tracking. An approach to blend a multilayer NN with RISE feedback for a single rigid
robot control is taken in [19] where the boundedness of the actual NN weights is shown
separately using projection algorithm while the convergence of the tracking errors is then
demonstrated by using constant controller gains. Selection of the predefined convex set
in the projection algorithm to prevent the NN weights from diverging is a challenging
task since the convex set must be carefully chosen to contain the ideal weights.

By contrast, in this work, a novel weight tuning is used in this work instead of the
projection algorithm [19], and the constant bounds and gains in [19] are replaced here for
formation control with time varying functions allowing bounds and gains to be
determined with more certainty. Further, Lyapunov analysis is presented to show the
asymptotic convergence of the tracking errors and boundedness of the NN weights
simultaneously. The bounds and gains developed here are also applicable to single rigid
robot control [19] besides formation control.

Finally, it is shown that the proposed formation controller achieves stability even
in the presence of obstacles by integrating the RISE method into a simple, but effective
obstacle avoidance scheme which allows each follower robot to navigate around
obstacles while simultaneously tracking its leader. When an obstacle is encountered, the
desired separation and bearing of the follower robot are modified so that the follower
navigates around the obstacle. Similar to [13], collisions within the formation are
avoided in this work too, but without the need of the additional assumption that higher
order derivatives are available. Other works that have considered the formation in the
presence of obstacles include [8] and [10] where potential functions were utilized.

Additionally, the concept of potential trenches was applied in [16] whereas the dynamic
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window approach was utilized [17].  Therefore, the contributions of this manuscript
include: a) development of a novel formation control law by incorporating the dynamics
of the leader, follower and formation; b) proof of asymptotic stability using Lyapunov
stability even with using NN for approximating the leader and follower dynamics and
their interactions; and c¢) simplified scheme to avoid collisions among the robots and with
obstacles.

This paper is organized as follows. First, in Section II, the leader-follower
formation control problem is introduced, and required background information is
presented. Then, the NN/RISE feedback control law is developed for the follower robots
as well as the formation leader, and the stability of the overall formation is presented
along with a general formation controller structure. In Section III, a leader-follower
obstacle avoidance scheme is developed, and Section IV presents numerical simulations.

Section V provides some concluding remarks.

II. LEADER-FOLLOWER FORMATION CONTROL

Background information on leader-follower formation control is introduced next.
Throughout the development, follower robots will be denoted with a subscript '/’ while
the leader will be denoted by the subscript 'i’. The goal of separation-bearing formation
control is to find a velocity control input such that

lim(Z,, - L;)=0 and lim(\¥,, —¥,) =0 (1)
where L, and ‘¥, are obtained using local sensory information and denote the measured
separation and bearing of the follower ; with respect to leader i while L, and

‘P, represent desired distance and angles, respectively [2-3], as shown in Fig. 1.
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X
Fig. 1. Separation-bearing formation control.

The kinematic equations for the front of the /" follower robot, (x ;»¥;), can be

written as
X, cos®, —d,sind,
. _ ing d 0 vj =S = (2)
q,= )ff =|siné, ;cos0; w |- (q,)v;
. 0 1 !

J

whered ;is the distance from the rear axle to the to front of the robot, ¢, =[x, y, 6,1

denotes the actual Cartesian position for the front of the robot and orientation,

respectively, v,, ande, represent linear and angular velocities, respectively,
andv, =[v, a)j]T . Many robotic systems can be characterized as a system having an n-
dimensional configuration space € with generalized coordinates(g,,...q,)subject to ¢
constraints [23]. Applying the transformation [23], the dynamics of the mobile robots are
given by

]‘4]‘7/' +I/mj(qj'3q.j)‘7j +F}(‘7j)+rd/ :?j (3)
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where M ; e R is a constant positive definite inertia matrix, I7mj € R 1is the bounded
centripetal and coriolis matrix, F'] € R”is the friction vector, T, ; €N’ represents

unknown bounded disturbances such that”fdeSdM and”?d %_'dusd]’w for known

!

constantsd,, andd;,, B ; €Ris a constant, nonsingular input transformation matrix,

T, = B 7, € R”is the input vector, and 7, € R” is the control torque vector. For complete

details on (3) and the parameters that comprise it, see [23]. It should be noted that for
the nonholonomic system of (2) and (3) with »n generalized coordinates g, /
independent constraints, and p actuators, the number of actuators is equal to # — ¢, and
for this workn=3,/=1,p=2. We will also apply the assumption from [23] that the
linear and angular velocities are bounded for all time, ¢.
A. Backstepping Controller Design

The complete description of the behavior of a mobile robot is given by (2) and
(3). The NN/RISE controller is introduced so that the specific torque7,(¢) may be
calculated in order that (2) and (3) exhibit the desired behavior for a given control

velocity v, (¢#) without knowing the complete dynamics of the formation.

In this work, a two-layer NN consisting of one layer of randomly assigned
constant weights 7 € R“" in the input layer and one layer of tunable weights W € R*”
in the output layer, with a inputs, b outputs, and L hidden neurons are considered. The

universal approximation property for NN [20] states that for any smooth function f(x),

there exists a NN such that f(x) =W " o(V"x)+ & for some ideal weights W,V , where ¢

is the NN functional approximation error, and o (-): R* — R"is the activation function
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in the hidden layers. It has been shown that by randomly selecting the input layer
weights V', the activation function o(x) = o(V " x) forms a stochastic basis, and thus the
approximation property holds for all inputs, x € R“, in the compact set S[20]. Also, the

functional approximation error is bounded such that”g” < &y where g, is a known bound

and dependent on S§[20]. The sigmoid activation function is considered here. For

complete details of the NN and its properties, see [20].

Remark 1: Throughout this paper, || and |||| - Will be used interchangeably as the

Frobenius vector and matrix norms, respectively [20].
B. Leader-Follower Tracking Control
To complete the separation-bearing formation control objective (1), contributions
from single robot control frameworks such as [23] are extended to leader-follower

formation control. Consider the tracking controller error system from [23] for a single

robot as
e cosf, sinf, Ofx, —x,
€, = TEJ' (q,/r - q_i) =l€pn T~ sin 9_,‘ COs ‘9j 0 Yir=); (4)
e 0 0 1)6,-0,

xjr = vjr cosejr’ yjr = er Slnejr’ gjr = a)jr’ qu = [xjr yjr gjr]

wherex .,y , 6

sandv, =[v, o, 1" are the Cartesian position in the x and y direction,

Jr

orientation and the linear and angular velocities, respectively, of a virtual reference robot

for robot j [23]. In a single robot control, a steering control inputv, (¢)is designed to

solve three basic problems: path following, point stabilization, and trajectory following

such that lim,, (g, —¢;)=0andlim_ (v, -v,)=0[23]. If the mobile robot
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controller can successfully track a class of smooth velocity control inputs, then all three
problems can be solved with the same controller [23].

To extend the contributions from single robot control frameworks such as (4) to
leader-follower formation control, we begin by replacing the virtual reference cart with a
physical mobile robot acting as the leader i for follower jsubject to kinematics and
dynamics that are defined similarly to (2) and (3), respectively. Then, define a reference

position at a desired separation L, and a desired bearing ‘¥, for follower j with respect
to the rear of leader i as
x; =x;—d cosb, + L, cos(\¥;, +6,), Y, =y, —d;sin0 +L,,sin(‘¥;, +6,) (5)
as well as a reference orientation, ¢, that will be defined in the proceeding discussion.
Next, define the actual position and orientation of follower j as
x; =x,—d, cost, + L, cos(‘¥; +6,), y; =y, —d;sin6 + L, sin(‘Y; +46,), 0.=0, (6)
where L; and ¥ are the actual separation and bearing of follower j measured relative to

the rear of the leader i. Substitution of (5) and (6) into the error system (4), and applying
basic trigonometric identities, the kinematic error for leader-follower formation control is

obtained as

e, Ly, cos(Wy, +6;)— L, cos(‘Y; +6,)
e, =|e,|=|Ly,sin(Yy, +6,)-L,sin(¥, +6,) (7
€ 0,-0,

where 6, = 6, — 6, and 6, is the reference orientation. Due to the nonholonomic constraint

as well as the separation-bearing formation control objective, the orientations of each
robot in the formation will not be equal while the formation is turning, and thus, the

reference orientation of each robot cannot be chosen such thatf, =6,. However,
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choosing the reference orientation relative to the leader satisfying the differential

equation

0. :—(a)l.LW cos(y,, +6;)+ v, sin( y;)+kaej2)a (®)

Jr

U~

j
the asymptotic stability of all three error states can be shown, where

0, =0, -0, e[-m,7] and k,1s a positive design constant. Further, it can be shown that

the reference orientation of the follower will become equal the orientation of the leader

(6, -6, =0) after formation errors have converged to zero and whenv, >0and @, =0

which is a desirable attribute. The transformed error system (7) now acts as a formation

tracking controller which not only seeks to remain at a fixed desired distance L, with a
desired angle 'Y, relative to the leader roboti, but also will achieve a relative orientation
with respect to the leader. By taking the desired separation and bearing, L, and ¥, , a

constants similar to other works, and observing the derivatives of the separation and

bearing, L”. and ‘Pl.j defined in [2], the error dynamics of (7) are found to be

e, -V, +v,co80, +w,e;, —aL,, sin(¥,, +6,)
€, |= 1 tv;sing, —d 0, + oL, cos(¥;, +6,)

9)

é/'s i(a)L cos +6)+ sin@,.)+k )

’ d. iijd ijd Vi ijr 2€j2)~ @
J

To stabilize the kinematic system, we propose the following velocity control
inputs which are derived using Lyapunov methods for follower robot j to achieve the

desired position and orientation with respect to leader i as

jc
v je2

’ v,cos0, +k;e, —aL;,sin(¥, +6,)
_| Vier |
v { } ( )+kpe, +kqes) (10)

a)LWcos i+ )+v sin(6 L 13€)3
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where K, =[k; k;, k;;]"is a vector of positive design constants. Next, define the
velocity tracking error as
T = T T
e, =le, esl =v,—v,=[v, vi,] -lv, o] (11)

Observing v, =V, —e

i » substituting the control velocity (10) into the error

dynamics of (9) and applying basic trigonometric identities reveals that

e —k;e,twe,+e,
J
e, 0. +0.
5 [=|2v sin| &2 N - _ : (12)
€, |= 2vl.s1n( 5 Jcos[&i 5 J kje,—kse,—me,+de;
é'3
! _;3 +
7 e t+e;s
L j J

Examining the closed loop error dynamics (12), it is clear that the stability of the

kinematic system is dependent on the velocity tracking error. Additionally, the origin
e, =0and e, =0 consisting of the position, orientation and velocity tracking errors for
follower j, is an equilibrium point of the closed loop kinematic error dynamics (12).
C. Dynamical NN/RISE Controller Design

In the previous section, it was shown that the stability of the kinematic error
system depends on the velocity tracking error. Therefore, the dynamics of the mobile
robot are now considered, and a velocity tracking loop is designed to
ensurev, — v, asymptotically.

To begin the development, define the velocity filtered tracking errors as

r=e.ta(te, (13)
where o, (¢) is a time varying real function greater than zero defined as aj(t) = +0(/1(t)

where «,is a constant and ¢, (¢) is a time varying term. Multiplying both sides of (13)
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by M ; » adding and subtracting I7mj v, and FJ (v,.) , and substituting the robot dynamics

(3) allows (13) to be rewritten as

Mr =f +T.+7, —T,

I Lt ey (14)
where
fo =My AV, v +F(v,), T=e (a, ()M, -V, )+ F,(v)-F,(v,) (15
Differentiating (14) then yields the filtered tracking error dynamics

M =My, +f, +T,+%, -7, (16)

J
Using the wuniversal approximation  property for NN's [20], define

fo=wlo(] x,,)+¢&; where W[,V are bounded constant ideal weights such that

HWJ HF <Ww,, for a known constant W, , &;is the bounded NN reconstruction error such

that”gju <&

ng < ¢}, for known constants ¢, and¢&’,, and x,;=[l v, v, v, @]T.
Examining the definition of the NN input, x 4> reveals v e and v . are necessary; however,
recallingv . in (10) is a function of the leader's velocity
reveals Vv, = fj(\'/i,ci)i,vl.,a)i,ej,éj) where fJ(O) is the function describingv,. The
leader i's dynamics written in the form of (3) can be rewritten as v, =M (z ~E()-7,7 ), and

substituting v, and (9) into fJ(O) results in the kinematic error dynamics of follower j

and the dynamics of leader i to become apart of v, as
v.=/f,,0,71,v,.,0,.¢e,). (17)
It is not difficult to observe that v, ,V je» and 1% jcare also smooth functions since

the leader and follower robots' dynamics are sufficiently smooth. As a
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consequence, V ;. can be approximated with relatively small error by the standard second

je
order backwards difference equation for a small sample period At as

D=V (=20, (t— A+ v, (t—2A1) (18)
Using (18) and forming v, under the assumption that v, =0 as well as including the

termsV,,6;,and 7, of the function defined in (17), the estimated input to the NN x,, takes

- vio0.v, 7] o e 1" so that the dynamics of the leader i can

T T

the form of % g =0 vl

be estimated by the NN, and the terms ofv, omitted by assuming v, =0 can be

accounted for.

Remark 3: In the formation of estimated NN inputX, , the terms v, ', 0 are

considered available via a wireless communication link which is a standard assumption;
see [13].
The NN approximation of f , 1s now defined as

oy

Ja, = W.fTO'(VfT)edf) (19)
where er is the NN estimate of the ideal weight matrix W_/T , and the control torque is now

defined similarly [19] to be
T =t tH, (20)

where £, is the RISE feedback term defined similarly to [18] and [19] as

#; =k, +De, (0= (K, +De,, (0)+ [k, + 1)t ()e,, () + (B, () + By)senle (s)ds (1)
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such that 4, = (k,, +)r; +(B,,(t) + B,,)sgn(e,.) with 3,,(¢) a positive, time varying gain
real function, & and 3, positive real constants, and sgn(e) the signum function.

Remark 4: The projection algorithm is not used in this work to tune the NN
weights as in [19], and as a result, the constant gains of [19] become time varying.
Here g, (1) and « j(t) are time varying functions to facilitate in defining the upper
bounds necessary for the RISE aspects of the NN/RISE controller which will be
discussed in the proceeding development and in the Appendix in comparison to [18-19].

Further, the constant term [, is not same as constant term £, from [18] and [19] and is

included here to aid in the forthcoming stability analysis.

Next, substituting the derivative of (20), as well as adding and subtracting e, and

w6 %,)into (16) yields

M,i, = _;Mj’”j + ﬁj + Ny + Ny —e;. =k +Dry = (8, () + B,)sgnle;.) (22)
where
N == b1 ve, (23)
Ny =&, +7, +W/G,, Ny, =W/ oW %,)=W]6, (24)
andVIN/j =W, —W/, G, = O'(Vijdj) - G(V,.T)%d/). An upper bound for N ;can be obtained

using the Mean Value Theorem as [18] and [19]
I9,1= £z Dl | (25)

T

wherez; =[e;,

r/ 1" and p(”zju) is a positive, globally invertible, non-decreasing

function.
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Lemma 1: The expressions in (24) and their derivatives are upper bounded

according to:

Ny |< e +dy +2W, N, =¢, (26)

[V < e+t + (N, + N, KC +Cle =60 (27)
Nyl < 7+ | NN, =500 (28)

[N < Cle |+ WM, + N, o, + A ROEENG (29)

where C,,C,,C, are known positive constants and c»(?) is a positive time-varying
function based on H)? "/'H :

Proof: See Appendix.
To aid in the forthcoming stability analysis and to facilitate time varying gains,

we define an auxiliary function as

L, =1} (Ny + Ny, = B, sgne, ) —e,.Ny, = B,

.T
€| =€l sgn,)—a;,pbye

Lemma 2: Given the auxiliary functionZ, let f,(#) and f,, be chosen

according to

A

Br()2K ,+K,,

F+Kfe

ejH+KjWe

) +Ked.  B.>0 (0)

Jjec

ejc

withK ;, K, K, K

B> je» K iye» K ;. known positive constants, then

'[Lj(s)dsﬁyj
0

where 7, =[e,. (0)(8,(0)+ 8,,)~ €L (ON ;5(0) >0 with Ny = Ny, + N,

Proof: See Appendix.
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Before proceeding, it is important to note that », =0, e, =0, and VIN/J.T =0 are

equilibrium points of (22) in the absence of disturbances and NN functional

reconstruction error (N, =0). Proof of this claim is straight forward through

examination of (13) and (22).

Theorem 1: (Follower Dynamic Control) Given the nonholonomic robot system
consisting of (2) and (3) along with the leader follower criterion of (1), let a smooth
velocity control input v .(¢) for follower j be given by (10), and the torque control for

follower j given by (20) be applied to (3). Let the NN weight tuning law be given as

A

W.=FG&.e (31)

J J I Je
where F, = F /.T >0is a design parameter. Then there exists a vector of positive
constants K, = [k, k , kj3]T, positive constants k,,[,,,a,,, and positive time varying
functions ,,(¢), «;(¢), such that the position, orientation, and velocity tracking

errors€;and e ;. are asymptotically stable, and the neural network weight estimate errors
VIN/]. are bounded for follower ;j provided that B, (¢) and S, are selected as in (30).

Proof: See Appendix.
D. Leader Control Structure
In every formation, there is a formation leader i whose kinematics and dynamics
are defined similarly to (2) and (3), respectively. From [23], the leader tracks a virtual

reference robot, and the tracking error for the leader and its derivative are found to be

e, cosd, sinf O x, —x é; -V, +v, cose, +w.e,
e, =|e,|=|—sinf cosd O|y —y |ande =|¢é, |=| -—we,+V,sine, (32)

€ 0 0 1 er - ‘91' éi3 W, —
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wherex, ,y,, 6, v, and o, are the states of a virtual reference robot for leaderi defined
as in (4). In this work, the virtual leader's velocity v, is defined by a time varying

function that is twice differentiable. The leader's control velocity v, (?)is then defined

similarly to [23] as

Viel v, Cose; +k; e,
Vie = , (33)
Via | @ thivie, tkik, sine,
where K, = [k, k,, k,,]" is a vector of positive constants, and the third term ofv, ,in (33)

has been altered from [23] to facilitate in the stability analysis to come. To construct the

dynamical NN/RISE controller for the leaderi, define the velocity tracking and filtered
tracking errors as

€, =V,.—V,, r=¢ +al(te, (34)

Using similar steps and justifications used to form (14) for follower j, construct

the error system for leaderito be 1\7/1. =f, +T + T, —T;where /. ¢ and T} are defined

i

similarly to (15). The control torque,7;, for leaderican be defined similarly to

follower j's as
T=Jo T 1 35)
where fd’ is the estimate of f,, 4 is the RISE feedback term defined similarly the

follower's in (19)-(21). The NN input vector for leaderiis defined as

A _ T T T
fu=l vl VL ¥

i ic

8 v, @ 7/]" where the term v, is available while the term /. is
Vi

not due to its dependence on v, which is not known. As a result i is calculated
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assuming v, = 0, and including the terms¥v,,6,,z] in %, so that the unknown dynamics

can be accounted for by the NN similarly to the treatment of (17).
Using the same steps and justifications used to form (22), the closed loop error

system for the for the lead roboti can be formed as
M, = _%Mi’;‘ + Ni + N + Ny, —e,. —(k +1r; - (ﬂzl (O+8, )sgn(eic) (36)

where k, is a positive control gain parameter, and N,, N, and N, are defined similarly to
(23), and (24), respectively, and are bounded similarly to the bounds defined in (25)-(29).
Further, =0, e, =0, and W/ =0 are equilibrium points of (36) in the absence of
disturbances and NN functional reconstruction error (N, =0).

Theorem 2: (Leader Stability) Let the smooth velocity control input for leader i

be given by (33) and let the toque control input defined by (35) be applied to the leader

robot i, defined similarly to (3). Let the NN tuning law for leader i be defined similarly

to (31). Then there exists a vector of positive constants K, =[k, k, k.|, positive constants

k. pB,, «a,, and positive time varying functions S, (), (¢), such that the position,

orientation, and velocity tracking errorse;and e,. are asymptotically stable, and the NN
weight estimate errors 7, are bounded for follower j provided that A3,(f)and /3, are selected
similarly to (30).

Proof : See Appendix.

Next, the stability of the entire formation is demonstrated in the following

theorem.
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E. Formation Stability
Theorem 3: (Formation Stability) Consider a formation of N+/ robots consisting

a leader i and N followers, and let the hypotheses of Theorems I and 2 hold. Then the

. +p)(I+N
formation error e, =[e/ e, e; e ] wheree; € RPN pepresents the augmented

position, orientation and velocity tracking error systems for the leader i and N followers,

respectively, 1is asymptotically stable, and the NN weight estimation

errors VIN/I.T, VIN/J.T ,J=12,..N for the leader i and N followers, respectively, are bounded.

Proof: See Appendix.

Remark 5: The stability of the entire formation for the case when follower j
becomes a leader to follower j+/ follows directly from Theorem [ and selecting a
Lyapunov candidate to be the sum of the Lyapunov candidates for follower j and follower
j+1, respectively. In this case, follower j becomes the reference for follower j+/, and
thus the dynamics of follower j must be considered by follower j+/. Since the dynamics
of follower j incorporates the dynamics of leader i, follower j+/ inherently brings in the
dynamics of leader i by considering the dynamics of follower ;.

A general formation controller structure is shown in Fig. 2 which includes the
controller structures for the leader i and multiple followers. Additionally, communication
between the robots is indicated. In the figure, leader i communicates its velocity,
orientation, and control torque to follower j, and follower j communicates its velocity,
orientation, and control torque to follower j+2, but it is not necessary for follower j to
relay the states of leader i to follower j+2. Also note that in a formation of robots, each

robot may have more than one follower.
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Fig. 2. General formation controller structure.

IIT. LEADER-FOLLOWER OBSTACLE AVOIDANCE
Next, a simple but effective obstacle avoidance scheme is proposed that will
allow follower jto track its leader while simultaneously avoiding obstacles. To
accomplish this, the desired separation and bearing are no longer considered to be
constants but are considered to be time varying, and through the incorporation of RISE
feedback, each follower in the formation asymptotically tracks the new reference position

while avoiding obstacles. In this section, the time varying desired separation and bearing
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will be denoted as L, () and ‘¥, (#) while the constant desired separation and bearing will
be written as L;, and¥,. Furthermore, the distance from the center of follower jto an

obstacle, s i and relative angle of the obstacle, 6., are considered measurable while the

Js?
velocity vector,v, =[v, @,]", and orientation, &,, of the obstacle are unavailable. It is

standard to assume that the formation leaderi utilizes a path planning scheme such that by
tracking the virtual reference cart described in [23], the lead robot i navigates around any
encountered obstacles.

To begin, consider the configuration shown in Fig. 3 where it is desirable that the

follower robot ; maintains a safe distance,s,, from the closest obstacle. When the
nearest edge of an obstacle is detected at an angle €, and distance s, relative to center of
follower j such thats; <s,, the desired separation and bearing, L,,(¢) and‘¥,(¢), are

modified to ensure the follower is steered away from obstacle by

2 2
1 1 1 1 1 1
Ly()=Ly ——K, | ——— | sgn(@,¥;;), Y, (=¥, +-Ky| —— | ¢; (37)
2 S, 8y 2 s, 8y

where & =sgn(\¥,, )sgn(0,\¥,;,), with sgn is the signum function and K, and K, are
positive design constants. Examining (37), one can see that the shifts introduced to the
desired separation and bearing are similar to repulsive potential functions commonly used
in robotic path planning [22]. Here we use the potential like function to push the
desired set point of the follower robot j away from the encountered obstacle thus steering

the robot around the obstruction. Incorporation of sgn(&,'¥,,) allows obstacles to be

avoided on the left or the right, depending on where the follower is located in the
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A

>

Fig. 3. Obstacle avoidance.

formation and where the obstacle is located relative to the follower. This term also
allows collisions to be avoided within the formation by considered neighboring robots as
obstacles.

With the introduction of obstacle avoidance schemes, the orientation of the

follower j will vary from its reference orientation as a result of avoiding an obstacle that
was in the path of the follower j but not its leader. Therefore, while avoiding an obstacle,
it is logical for follower jto track a reference point, but no specific orientation with

respect to its leader. Thus, consider the formation tracking control error system presented
in (7), but rewritten to include only the normal and tangential position error components

as

. - Cor | _ L, ()cos(‘W, (1) +6,)— L, cos(\¥; + ;) . (38)
e, Ly, ()sin(W, () +6,)—L,;sin(\¥, +6,)

jo2

The dynamics of (38) can be found in a similar manner as that of (9), and written as

{éjol} _{ é/ol —v; +v,cost; +we;, —a L, ()sin(t,,(t)+6,) } (39)

€,y —we,, +v,sing, —d o, + oL, (t)cos(¥;, (1) +6;)
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where
€1 =Ly () cos(¥,, () +6,) =V, ()L, (H)sin(¥,, (£) +6,)

€02 = Ly (0)sin(W,, (1) + 6,) + W,y ()L (1) cOS(Wy (£) +6,)

jo2

(40)

The dynamics of the desired separation and bearing, L, (¢) and‘¥,,(¢) in (37),
respectively, are necessary in the calculation of (40), and therefore, the derivatives is
also required. The measured distances;can be written in terms of the x and y
components of s, as s;=s, +s; where s, =x -x, and s, =y -y, and
x,and y are the coordinates of the obstacle. Note that the obstacle is not necessarily

stationary, and therefore assume that the obstacle can be described using the kinematic
model as X, =v, cos@ andy, =v, sinf . Using this information along with (2), it is
evident that the derivative of s;is a function of the velocityv, and orientation®, of
follower j as well as the velocityv, and orientation, @,, of the encountered obstacle.
Since the velocity v, and orientation € of the obstacle are not available to follower j,

§ ,must be estimated, and as a result, Lijd (¢) and ‘PW (¢) must also be estimated. Assuming

that s is a smooth function, define the aforementioned estimates to be

: L@ 1 111
Ly, (1) = sgn(0,, ¥, )K {Sl_lJSleAp \Pijd (t)= _é:jK'//[S N ] 25 (41)
/ J

i Sa)S; i Sa)S
and §_/ =s,(¢) —s,(¢ — Ar) is the estimate of s, for an arbitrarily small time interval, Az.

In order to show that the obstacle avoidance method is asymptotically stable in

the presence of uncertainties, the RISE method described in the previous section will
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again be utilized. To use the RISE method, we begin by defining a filtered tracking error
as

gy =¢, +xe,, (42)
where k is a positive, real design constant. Utilizing the error dynamics (39) and (40), the
filtered tracking error (42) can be rewritten as

gj =J,+H,-E)v, +ke, (43)

where

J. =

J

1 1)1 . |sgn@,¥,,)K, cos(Yy,(1)+6,)+ & Ky L, ()sin(Y,, (1) +6;) 44
s sy )5 sen@, 9, K, sin(®, 0+ 0,)~ £ Ky L, (0cos(¥,, (0 +6,) | Y

S, S48 i

(45)

J

v cos(6,)— o, L, (t)sin(V¥, (1) +6,) +e,,0, e 1 0
| vsin(8,) + o, L, (1) cos(Y, (N +6,)—e, 0, " 7 |0 d,

ands is the real dynamics ofs;. To stabilize the filtered tracking error dynamics in the

presence of an obstacle, the following velocity control input for follower robot j is

proposed
t
v =E; (Hj +J,+(G+xe,, + [(Gre,, + B, seme, ))dsj e (46)
0

where J ; 1s the estimate of J; as a result of using § ;»andG, B, are positive, real design

constants. For analysis purposes, we will assumeJ; =J; + ¢ ;where( is the error in

estimation. Furthermore, we assume that the estimation error and its derivative are

bounded by a positive real valuesd,, and ¢, respectively, such

that¢ ;| < £, and|

Yy

< ¢, for all time.
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Defining the velocity tracking error e, identically to (11), substituting

v,=v, —e, into (43) and taking the derivative, the close loop kinematic filtered

J Jeo Jeo

error dynamics can be written as

191.= —G19j + é’j — ﬂjo sgn(ejg )+ Eje (47)

jeo ?
and when there is zero estimation error, ¢ =0, the origin4, =0, e¢,, =0ande,,, =0is an
equilibrium point of 9 ;- To aid in the stability analysis of the follower robot in the

presence of obstacles, an auxiliary function is defined as R (1) = 9/ (£, - B, sgn(e,,)) .

Lemma 3: Given the auxiliary function R, (#), then

jRK@dSSﬂmeﬁwﬂ—eL«»;xm

provided S, is selected as

Bz Cut-bi (48)

Proof: See Appendix.
Theorem 4: (Follower Obstacle Avoidance) Let the hypothesis of Theorem I hold

with (10) replaced by (46). Then, there exists positive constantsG, ,, K, and K, such

that position and velocity tracking errors for the follower are asymptotically stable in the

presence of obstacles provided S, is selected as (48).

Proof: See Appendix.
Remark 6: Since leader robot i does not track a physical robot, any existing
asymptotically stable obstacle avoidance method can be utilized by the leader to ensure

the stability of the entire formation in the presence of obstacles. The path planning
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algorithm for the leader 7 is beyond the scope of this paper and therefore is not included
here.

Remark 7: The stability of a formation of N+/ robots consisting of a leader i and
N followers in the presence of obstacles follows directly by combining the results of

Theorem 2 and Theorem 4 for j=1,2,3,..N, respectively. Further, the stability of a

formation in the presence of obstacles for the case when follower j becomes a leader to
follower j+1 follows directly from Theorem 4 and combining the Lyapunov candidates
for follower j and follower j+/ into a single Lyapunov function.

Remark 8:  The proposed obstacle avoidance scheme is observed to have
potential limitations. Since the scheme only considers the closest obstruction, it is
possible that in a highly cluttered environment there may be more than one obstacle
within the robot's safety zone; one of which could potentially be another robot in the
formation. In this case, the follower may exhibit an oscillatory behavior between
multiple obstructions located within the safety zone which is not ideal; however, the goal
of the obstacle avoidance scheme is still achieved in that collisions are avoided. In the
event that two or more obstacles are located at the same distance from follower j, the
obstacle which poses the greatest immediate threat of collision is considered. Future
efforts will work to remove these limitations and the obstacle avoidance is not the focus
of this effort.

Remark 9: The control velocity (46) can be applied for any obstacle avoidance
scheme in which the desired separation and bearing are modified to steer the robot around
the obstruction. The only required modified to the control velocity (46) is with respect to

the vector J; in (44) which contains the dynamics of L, () and‘¥;, (?) , respectively.
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Remark 10: By the design of the obstacle avoidance scheme, the follower robot
continues to track its leader while it navigates around an obstacle through the use of the
time varying desired separation and bearing. As the robot navigates around the
obstruction and the obstruction leaves the robot's safety zone, the time varying desired
separation and bearing naturally return to the constant desired values. Thus, the robot
itself returns to its location in the formation.

IV. SIMULATION RESULTS

A formation of identical nonholonomic mobile robots is considered where the
leader's trajectory is the desired formation trajectory and simulations are carried out in
MATLAB under two scenarios: with and without obstacles. In the first scenario, the NN
controller which renders Uniformly Ultimately Bounded (UUB) in [15] is considered, and
then the NN/RISE controller which has been shown to be asymptotically stable (AS) in
this paper is tested. The torque controller developed in [15] is similar the torque control

of (20), but without the extra RISE terms added in (21) and takes the form of

T, = WATG()?]A) +(k, +1e, = f_/ +(k,, +1)e; where j}j is the NN estimate of an

j
unknown function.

An additional difference between the torque control of this work and that of [15]
is the fact that the NN estimates the derivative of an unknown function in this work. In
both cases, unmodeled dynamics are introduced in the form of friction

asF, =g, sign(v,)+ u,,v,;, psign(w,)+ p,,0,1 where 41, are the coefficients of friction

and summarized in Table I. Additionally, disturbance and sensor noise terms are added

to the robot dynamics and state measurements, respectively. Disturbances are added to
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TABLE I: Friction Coefficients
L F1 F2 F3 F4
i 0.5 0.05 0.01 0.015 0.025

s 0.75 0.75 0.65 0.15 0.50

s 0.25 0.025 0.025 0.05 0.015

7, 0.03 0.30 0.20 0.25 0.03
4

the robot dynamics and are generated from a normal distribution with mean zero,
variance one and standard deviation one. The magnitude of the disturbances is taken as
two.

Sensor noise is also generated from an identical normal distribution with
magnitudes of 7, =0.25,7n, =0.1,n, =0.05wheren;,, n,, 7, for the velocity,
separation, and bearing measurements, respectively. In the second scenario, obstacles are
added in the path of the follower robots and the obstacle avoidance scheme of Theorem 4
is demonstrated, and both a static and dynamic obstacle environment is considered.

In the simulations, followers 1 and 2 track the leader while followers 3 and 4 track
followers 1 and 2, respectively, as depicted in Fig. 4. The following parameters are

considered for the leader and its followers:m =5kg ,1 =3kg>, R=.175m, r=0.08m,
and d =0.4m. The control gains for the leader were selected ask, =10, k, =5,

ki;=4,K,=35, and for each follower, gains were selected as £k,

=5,
k;, =5,k;; =165and K, =35, respectively. Five hidden layer neurons are considered
in the NN for the leader and each follower such that N, =5, and the NN parameters for
both the leader and each follower were selected as, F; = F; =10. In addition, the RISE

terms are selected according to (30) withk,, =8, K, =15, K, =8, K,=15 K, =10,
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and the filtered tracking error gaina(t)1s selected as

K (10:29d) + K G+25e) + K, 257 +F/N e With B, =20.

eC

a(t)=5+;2(l<wmﬂ )

Remark 11: In the proceeding analysis, L, F1,F2,F3,and F4 will be used to
denote the leader, follower 1, follower 2, follower 3, and follower 4, respectively.
A. Scenario I: Obstacle Free Environment
In this scenario, the leader follows a virtual robot traveling at a constant linear

velocity of v, =5 m/s with a time varying reference angular velocity, and the NN

controller of our previous work and the NN/RISE controller are tested. The formation is
selected to be a wedge shape as in Fig. 4 where each follower is to track its leader at a

desired separation of L, =2 meters with a bearing of W, =+£120° depending on the

follower's location, and for illustrative purposes, a fifth follower has been added to track
follower 2.

Fig. 5 displays the formation trajectories for both controllers as the formation
performs a sharp turn while navigating around a barrier. Examining the trajectories

reveals that both controllers successfully perform the maneuver; however upon closer

Fig. 4. Formation structure.
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examination, formation errors are seen propagating throughout the formation for the case
when the NN controller is used. The evidence of the error propagation is best seen in the
trajectories of the robots on the inside of the turn which have been enlarged to facilitate
viewing. Examining the trajectories in the bottom right corner of Fig. 5, small errors can
been seen in the path of follower 2 while larger errors are seen in the path of follower 5
for the case when the NN controller is applied. On the other hand, evidence of this error
propagation is not present in the paths of either robot when the NN/RISE controller is
applied. Thus, the theoretical conjectures of Theorem I are verified in that the formation

achieves asymptotic tracking in the presence of bounded disturbances.

Formation Trajectories

Formation Errors
Formation Trajectories

Distance in the Y Direction (m)

A7 8 / 9 1‘0 11 i 12
Distance in the X Direction (m)

Distance in the Y Direction (m)

Error Propagations

Distance in the X Direction (m)

Legend

NN/RISE Control

Distance in the Y Direction {m)

— — - NN Control

95 10 105 1‘1 H‘ 5
Distance in the X Direction (m)

Fig. 5: Formation trajectories.
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Fig. 6 displays the steady-state formation errors of each follower in the
formation. The improved performance of the NN/RISE controller over the NN controller
is again observed, especially in the formation errors for follower 1, 2, and 3, respectively,
and the strength of AS over UUB is revealed. The average formation errors for each
follower are shown in Table II where it is observed that the average error was reduced for
each follower when the NN/RISE controller was utilized. In some cases, as with follower
1, errors were reduced by 50%, while marginal error reduction was observed for follower
5. Reducing the formation errors for the robots near the front of the formation helps
prevent formation errors from propagating through the formation, which was observed
for the case with the NN controller was applied.

Remark 12: The reference position of each robot in the formation is defined with
respect to its respective leader, not the leader of the entire formation. As a result, the

movement of each robot propagates to its followers, a phenomenon observed in Fig. 5

3 Bearing Angle Tracking Errors x 10° Separation Distance Tracking Errors

F3

Angle (rad)

Distance (m)

Fa

-0.02 -

F5

F5

Il L L L L L U L L L L L
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Time (sec) Time (sec)

Legend: NN/RISE Control NN Control -~

Fig. 6. Formation errors.
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TABLE II. Average Steady State Formation Errors.

Average NN/RISE Controller NN Controller
Errors

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

Separation | 0.0048 | 0.0117 | 0.0029 | 0.0066 | 0.0442 | 0.0094 | 0.0179 | 0.0048 | 0.077 | 0.0462
error (m)

Bearing 0.0030 | 0.0069 | 0.0037 | 0.0049 | 0.0449 | 0.0036 | 0.0089 | 0.0041 | 0.0093 | 0.0467
error (rad)

with followers 2 and 5 for the case when the NN control was applied. Additionally, it
was observed in Table II that formation errors for follower 5 were marginally reduced
when the NN/RISE controller was applied; however, although the reduction in the error
was small, the improved performance in the NN/RISE controller over the standard NN
controller is still significant since the oscillatory movements observed for the NN
controller in Fig. 5 are not observed for the case when the NN/RISE control was applied.
B. Scenario II: Obstacle Ridden Environment
Now, consider stationary and moving obstacles for the wedge formation along

with the controller gains outlined above along with K, =.9, K, =15, S, =05,

andx =2. The robots are initialized so that they must avoid one another while
attempting to reach their desired location in the formation.

Fig. 7 depicts the formation trajectories in the presence of both stationary and
moving obstacles, and examining this figure, it is evident that the robots are able avoid
collisions with their neighbors and maneuver around the encountered obstacles while
simultaneously tracking their leaders. Because the followers on the outside of the
formation track the robots in the inner formation, the movements of the robots in the

interior of the formation propagate to followers on the exterior of the formation. Thus,
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when a robot on the interior of the formation performs an obstacle avoidance maneuver,
their movements are mimicked by their followers, which is evident in Fig. 7. As
previously identified, the obstacle avoidance scheme poses potential short comings in
heavily cluttered environment. However, as illustrated in Fig. 7, the obstacle avoidance
scheme can be effective in undemanding environments as well as ensure collisions

between robots in the formation do not occur.

Separation-Bearing Control in the Presence of Obstacles
5 r

[~
S
T

Collisions within
formation avoided

Distance in the Y Direction (m)

©

-0 0 10 20 30 40 50
Distance in the X Direction (m)

Fig. 7. Formation obstacle avoidance.

V. CONCLUSIONS
In the absence of obstacles, an asymptotically stable NN tracking controller for
leader-follower based formation control was presented that considers the dynamics of the
leader and the followers using backstepping with RISE feedback. The feedback control
scheme is valid even when the dynamics of the followers and their leader are unknown
since the NN learns them all online. Numerical results were presented and the

asymptotic stability of the system was verified. Simulation results verify the theoretical
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conjecture and reveal the strength of asymptotic stability over the common result of most
NN literature, UUB. The asymptotic stability of the formation in the presence of
obstacles was also demonstrated by applying the RISE method to a leader-follower
obstacle avoidance scheme. The control was shown to be effective in both a static and
dynamic obstacle environment, and numerical results were presented. Further, by treating
robots in the formation as obstacles, collisions within the formation were guaranteed not
to occur. The stability of the system was verified, and the simulation results verified the
theoretical conjecture.

Future efforts will address a more comprehensive obstacle avoidance scheme for
leader-follower formation control. This work will focus on alleviating the previously
observed limitations of the current obstacle avoidance scheme so that multiple objects
and more complex environments can be navigated while completing the leader-follower
formation control objective.
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APPENDIX
Remark A.1: To begin, certain bounds must be established, and for generality,
the subscripts i and j will be not be used here. First, bounds on NN quantities will be

frequently used as

(A.1)

eC

W, < ol <N, oo N, +N,. | <F N,

where”ec” refers to the velocity tracking error, N, is the constant number of hidden layer

neurons, W,, is the upper bound of the ideal NN weights W, and F), = ||F || 18 a constant.

Next, bounds relating the physical robotic system are written as

01<q,. [veveovaalsy,, H[TT T'T]HSTM (A.2)
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where q,,,V,,,T,, are known constants relating to the physical capabilities of the mobile

robot.  Additionally, bounds on the velocity control (10) and its derivatives can be

established as
(AR AR AN A (YA YeA (A.3)

where”e H :||[e1 e, e ]| refers to the position and orientation tracking errors

with C,,i =4,5 computable constants dependant on (A.2) and the selection of the velocity

control gains in (10). Since the backwards difference equation (18) is utilized to estimate
the higher order derivatives of the control velocity (10), the following bound must also be

established

A A e (A4)

c

with C,,i = 6,7 computable constants. Now, the bounds on the derivative of the ideal

NN input x, as well as the derivative of the estimated NN input x,are found to be
||5cd || <G+ C9H€ H =c, (1), H)éd H <C,+ C”He H =c,(?) (A.5)

with C,,i =8,9,10,11 computable constants. Proof of (A.5) is straight forward using

(A.2), (A.2), (A.3) and (A.4) along with using similar steps described in [20].
Lemma 1: Upper bounds for N, and N, in (24) as well as their derivatives can
be defined as in (26), (27), (28), and (29).

Proof: Recalling ||g|| <&y,

(7] 7] ]” <d,, as well as observing (A.l) reveals
(26). Next, differentiating N, reveals N, = é+7, + W'&. Then, recalling ||g|| <¢y and

again applying the bounds in (A.1) revealsHN BIHSg]’V +d,, +WMH3 , and the bound in
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(27) follows by observing 6 = o —¢& and applying the chain rule for derivatives written
as
I8]< (N, + 3, N+ )= N, + 8, ke + eaon = (YN, + 8, 6, + ¢ fe])

withC, =Cy + Cjyand C, =C, + C,,.

Now, considering N, , recallingW =W —W , and applying (A.1) reveals the
bound in (28).

Finally, differentiating N, revealsN,, = W6+ W'é , and observing W =W,
utilizing the NN weight update law (31), and applying (A.1) N,, is bounded as shown in
(29) withC, = F,, /N, .

Lemma 2: Given the auxiliary function

L =r"(Ny + Ny, —fsgne.))—e Ny, _:Bl € sgne.)—a,fe. | » (A.6)
let B,(t) and f, be chosen according to (30), then
t
J.L(s)dsﬁ 4 (A.7)
0

where y =

e.(0)[(8,(0)+ B,)— €l ()N ,5(0) = 0 with Ny = Ny + N,

Proof:  Integrating both sides of (A.6), substituting (13) and defining

N, =Ny + N, yields

[[Lds=[ el (N~ (8 +B,)sen(e,)ds + [ at)e] [NBI+NB{ ()] B, sen(e )]d A8

—JZ,BI e, —Ltaoﬂz e.|ds

Using integration by parts, the first term can be written as
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J.t écT (NBS - (ﬂl + ﬂz)sgn(ec))ds = ecT (N33 - (ﬂl + ﬂz)sgn(ec))ﬁ) - JZ ecT (NB3 - 181 sgn(e, ))ds , (A9)

0

and substituting (A.9) into (A.8) reveals

eC{N

Recalling a(?) = o, + () substituting the bounds (26), (27), (28), and (29) into (A.10)

1), [V * (A0
+N32(1_05(t)j o) ﬂl_a(l‘)ﬁz} ( 33_(:81+182)Sgn€0)10' (A.10)

and rearranging allows the terms to be written as

3 [Qﬁ@(ﬂ(l—a()J L8050, °ﬂ2}s+e A

fL ds<
0 at) at)

+B). (AN

Next, observinga(t) 2 «, %<i, and0<1—%t)<l fora, 21, (A.11) can be
a, a

rewritten to reveal

+6,) e |80+ B.)+e. (B, +B,) -l (ON,,(0)
o (A.12)
€. (ﬁ +g2(t)+w_ﬁ1 _%ﬂz}’s
a, a(r)

Examining the first term on the right side of (A.12), it can be concluded that

+§2(l‘)—,81(l)—ﬂ2)ﬁ()if

B+ F, 26 +6,(1) . (A.13)

If the inequality of (A.13) is satisfied, then the constant term

ec (0)“(/)’1(0)+ﬁ2)—ecT (0)Np3(0)is guaranteed to be greater than zero. Next, the last term in
(A.12) is less than zero provided

>c +g2([)+§1(f)+§§(l)_ (A.14)

() + () .
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Finally, selecting fB,(f)>¢, +¢,(t) +(c/(t) + ci(¢))/e, and S, >0 and, the inequalities of

(A.13) and (A.14) both hold. Through expansion of the bounds in (26), (27), (28), and

(29), the gain terms defined in (30) are revealed to be

KW=\/E+C10(\/E+N/I) Q, Kez(m+NhXCZ+WMCII)/aO’ K, =G /ao
KWQ:( N, +N,,)C11/a0, K, =g +WMW+(51’V+d]’M +(\/V,1+N,1XC1 +WMC10)) a,

Remark A.2: In the proof of the following theorems, the subscripts i and j will be
reinstated.
Proof of Theorem 1: (Follower Dynamic Control) Consider the following

positive definite Lyapunov candidate

Visa,V,+ AV (A.15)

k./2 2 2 djkj3 2
where Aj:kj2+a’j(kj2+kj3)>0,Vj=7(eﬂ+ej2)+ 5 e;; and

Vi =%e;eﬂ, +%FJTA7/C + P +0, (A.16)

P, =[e, ()](8,(0)+ B,,)— €l (OIN5(0) - [ L, (s)ds (A.17)
0

0, = %tr{WfTFj"Wf) (A.18)

and L,(7) is defined in (A.6). By Lemma 2, it can be concluded that P, >0. Before

proceeding, it is  important to  observe the  existence of the

functionsU,(y;) andU,(y,) such that

U(y) <V <UL (v) (A.19)
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wherey, =[e] e r/ \/?/ \/Qj]eiﬁ””("“), U (y;) and U,(y,) are defined by

2
s

Ui) =2y, and )=y,

respectively, with

J Jo T j2o T jo jT 3 Joj22 " jo ™ jT j3

1 . A,
i.lzamm{A].,Ajﬁl,a k,,a,dk;}, Aﬂ:max{Aj,T'mz,O! k,a,dk,}  and
m,,m, are known positive constants satisfying
o 2 r— o 2
iy, | < viMy, <y
Differentiating V;, and substitution of the kinematic error dynamics (12)

. e, 0. +6.
_ 2 2 2 2 2 . J3 Jr J
V, =k ke, —kje;, —kie;+2k,e,v, sm[Tj cos(@i ) ]—kﬁkﬂeﬂej3

+kje e, +afj(kaej2 +kj3ej3)ej5.
Noting that ‘sin(e i/ 2)‘ < ‘e j3‘ foralle,; e[-7, 7], Vj takes the form of

V, <k ke —k2e, —kieh 4k e e (ks +2v, 4k pe e, +d (ke , e ess (A20)

J27V 151 imax Jj27j2 J37j3 )7

In the next step, it is desired to selectk ; such that(kj3+2v. x)<2kj3, and for any¢,, >0,

1ma:

selecting k;; =2v, . +¢,ensures this inequality holds. Specifically, we select &, = 2¢,;k ;

max

where & €(01/2)so thatk, =2v,.. /(1-2¢,;), and selecting k ; in this way allows ¥, to be

max

written as

- 2 2 2 ) 2
¥, Sk € =k~ ~( = W e |~k e[+ ey +d (knen e, Jess. (A21)

72674 j 7353
Next, differentiating (A.16), notinng =-L, , utilizing the definition of the filtered

tracking error (13), and substituting the filter tracking error dynamics and the derivatives

of (A.17) and (A.18) reveals
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Vi ==, (Dej,e;. - (ks + D1 4 1) N 1] (N + Ny ) =1 B, (Dsgne, ) 1) B, sgnee,)
—L,+toWF'W,)
Then, substitution of the NN weight tuning law (31) and L ,(¢) in (A.6) reveals

s 0les] = e ST Bl a 08 e st 422

Ji

/1
Recallinga (1) =a;, +a,(t) and selectinge (1) > Hﬂﬂ (t)” / B, allows (A.22) to be
rewritten as

4

JNN <

“agle.] =G+ [+ )] (A23)

Next, combining (A.21) and (A.23) and completing the squares with respect to

e, e;,,ande,; yields

Vi<-a dye | —antie.

A 0|+ A I
where 4, = min(k, (k,, ~1/2), g3k, (k, —d, /26, ) ek plky—d, /26,)>0  and
provided ky>1/2,k,>d,[(2¢,3),andk;; >d, [(2¢,,), and

Ay =i, 2++d (k,, +k ),k +d (K, +h,)/2) >0, Recalling &, =2v,,. /(1-2¢,,), the

J'

L . . 2v, d, .
third inequality can be rewritten as ‘2‘“" > 5 — or &,;>d, / (4vimax +2d /), and it is
T4Eyy L ' '

worth noting &,, € (0,1/2)as required since v, . >0. Next, completing the square with

respect to “rju and recalling the bound defined in (25), V_/.’ becomes

2 2
<t -l 4o - 2ELE ] APEIEL s
Js
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where 4,5 = min(a,4,,, A ;) and greater than zero provideder;, >0. The third term in

(A.24) is always less than or equal to zero, so consider the first, second and fourth terms

in the following inequality

. A
sl - 220 e

J J

<-U(y,) (A.25)

T

where U(y;) = cH[ef z; ]‘ is a continuous positive-semi-definite function for some real

positive constant ¢ defined on the domain D such that
V] <-Uy,) for D ={y, e R ||y | < p™ (J44,5k, /A )} (A.26)
The inequalities in (A.19) and (A.26) can be used to show that V/<ooand

bounded inD, and thereforee, , e P,and Q; are also bounded inD. Continuing this

Jje? J’

way by observing the boundedness ofe,, e, andr;in D, standard linear analysis methods

can be used to prove that all of the quantities in (7), (9), (10), (11), (13), (14), (20), and

(22) are also bounded in D . Therefore, using the definitions for U(y;) andz (¢) it can be
concluded that U(y,) is uniformly continuous. For complete details of the steps to draw

this conclusion, see [19].

Let S < D denote a region of attraction such that
S=, (0 S DIUL ()< s (0™ (42K, A, )Y (A27)
Applying Theorem 8.4 of [21], it can be concluded cH[ef z; ]‘2 —0 as t—>©

v o y;(0)eS.

(1), it is clear that
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eJ N ast—> oo for ally;(0) e S thus illustrating the asymptotic stability of the

q

tracking errors and the boundedness of the neural network weight estimates.
Remark A.3: The region of attraction (A.27) can be made arbitrarily large to

include a larger set of initial conditions by increasing the gaink . Also, the boundedness

Vf/jdoes not guarantee that the estimates converge to the ideal W unless certain signals

are persistently excited [20].

Proof of Theorem 2: (Leader Stability) Consider the Lyapunov candidate

Vi=awV, + AV (A.28)
1 , ) 1-cose,
where A, =1+1/k,, V, = E(en +e,)+——— and
2
I ; | Q—
Vi =5 €ic€ie + 57 Miti + 40, (A.29)

where P and Q, are defined similarly to (A.17) and (A.18), respectively.
First, taking the derivative of V, and substitution of the error dynamics (32),

control velocity (33) and velocity tracking error (34) reveals the following after
simplification

; sine,
_ 2 s a2 i3
V.=—k,e, —k;sin" e, +e,e., + €. (A.30)

i2

Then, examining (A.29), one can see that it is defined similarly to the Lyapunov function

(A.16) defined for follower j. Exploiting these similarities and applying steps and
justifications similar to the ones used to derive (A.22)-(A.27), it is straight forward to

show that there exists a domain D, and region of attraction S, such that¥,,<-U(y,) and

thus¥,,is uniformly continuous providedk, >1/2 and k,, >1/(2k,,). Therefore, again
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applying Theorem 8.4 of [21], it can be concluded
r]? r 17 .

cl.H[el.1 e, z ]‘ = CiH[eil e; e. I, ]H —>0a t—>o V y(0)eS, where ¢, is a

positive real constant. ~ Thus ||[el.1 €, ]| — 0, and from the definition ofz,(¢), it is clear

that [e | 0 ast — oo forall y,(0) € S, and thus V,,,, — Oast — .

&
Using the knowledge ||[el.1 e ]| — 0 and examining (31) and the definition ofe,.,

it is then straight forward to verify that e, — 0ast — oo. Thus, the asymptotic stability

of the position and velocity tracking errors and the boundedness of the NN weight
estimates for leaderi follows.
Proof of Theorem 3: (Formation Stability) Consider the following Lyapunov

candidate

N
V,=D V] +V! (A31)
1
where Vj' is defined by (A.15), V/'is defined in (A.28). Taking the derivative of (A.31)
. N . .
yields V; = ZVJ' +V;, and using the results of Theorems I and 2, there exists a region of
1

attraction S defined similarly to (A.27) such that the positions, orientation, and velocity

tracking errors for the entire formation are asymptotically stable and the NN weights

remain bounded.

Lemma 3: 1f [, is chosen according to (45) so that 5, >, +l§ 1 » then
' K

jR«As)ds < B, (0 e}, (00 ,(0). (A.32)
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Proof: Define R (1) = z9f (&, —PB,sgn(e,)). Integrating both sides and using

(38) yields
[ R (s)ds = [xe,, (&, = B, senle, s+ [, = B, sanle, ))ds (A.33)

Then, applying integration by parts to the second term on the right side of (A.33) reveals

(

e, (0] +8,

[R (s)ds<el,(0¢,()-p, ¢,,(0) =€}, (0¢,0)+ [ e, guiuqu—ﬂﬂ,m. (A34)

Recalling”é’ ]H <¢y and”é’ j'” < and selecting B, according to (45), the inequality of

(A.32) follows.

Proof of Theorem 4: (Follower Obstacle Avoidance) Consider the Lyapunov
: , 1 ; 1 or
candidateV, = o,V , + AV, ywhere A, =1+d,, V, =—¢e +519j G+, Vyy as

o9 Jo~ jo

defined in (A.16) with e, and r, replaced by e, and r,, respectively, and

t
T, = B3, (0) - €}, (0),(0)— [ R,(s)ds . By Lemma 3, it can be concluded that T, > 0.
0

Taking the time derivative of ¥, and utilizing (42) and (47) yields

V,=e,9, —keye,—G3 9, +9/E e (A.35)

jo~j jo~ jo Jjeco

Noting that €9, < %(efej +9/9,)<eje, +9; 9 and using the definition of Ein (45),

(A.35) can be rewritten as

+d .9 e

jco4 J 7 Jj2% jeoS

V,< —(x—1)e’ e —(G—l)z9sz9j +39,e

Jjo~ jo (A36)
Then, differentiating V', and applying steps and justifications similar to the ones used to

derive (A.22)-(A.27) except completing the squares with respect to 3, instead of e; , it is
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straight forward to show the asymptotic stability of the position and velocity tracking
errors and the boundedness of the NN weight estimates provided

k>landG >1+(1/2)max(l, d;).
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2. Neural Network Output Feedback Control of Robot
Formations'

Travis Dierks and S. Jagannathan

Abstract—In this paper, a combined kinematic/torque output feedback control law is
developed for leader-follower based formation control using backstepping in order to
accommodate the dynamics of the robots and the formation in contrast with kinematic-
based formation controllers. A neural network (NN) is introduced to approximate the
dynamics of the follower as well as its leader using online weight tuning. Further, a
novel NN observer is designed to estimate the linear and angular velocities of both the
follower robot and its leader. It is shown using Lyapunov theory that the errors for the
entire formation are uniformly ultimately bounded while relaxing the separation
principle. Additionally, the stability of the formation in the presence of obstacles is
examined using Lyapunov methods, and by treating other robots in the formation as
obstacles, collisions within the formation are prevented. Numerical results are provided
to verify the theoretical conjectures.

Keywords: Formation Control, Output Feedback, Backstepping Control, Lyapunov
Stability, Obstacle Avoidance
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[. INTRODUCTION

There are several methodologies [1] to robotic formation control such as
behavior-based, generalized coordinates, virtual structures, and, perhaps the most popular
and intuitive approach, leader-follower, to name a few. Separation-separation and
separation-bearing [2-3] are two popular techniques in leader-follower formation control,
and the latter will be considered in this work where the followers stay at a specified
separation and bearing from its designated leader.

A characteristic that is common in many formation control schemes [2-6] is the
design of a kinematic controller to keep the formation which requires a perfect velocity
tracking assumption. Thus, where only velocity commands are treated [2-6], the stability
of the formation is entirely dependent on the assumption that the robot perfectly tracks
the designed control velocity. In practice, the individual robot and formation dynamics
must be considered to ensure that not only the robots track a desired velocity but also the
formation errors go to zero.

As observed from robot arm control [16], the dynamics must be considered in
practice to guarantee that the robots track a desired velocity while avoiding the use of
large control gains which would become necessary to dominate the neglected dynamics
in order to ensure an acceptable performance. Similarly, the work in [17] illustrates the
need for dynamical controllers for wheeled mobile robots with high inertia, high
operating speeds, significant unmodeled dynamics, or high system noise. Therefore, in
[7], a neural network (NN) is introduced to learn the dynamics of the follower robots to
achieve formation stability using state feedback. Similarly, the work in [8] proposes a

decentralized state feedback formation controller based on virtual points for the robots to
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track in the formation; however, only the inertial matrix of the robots is considered. In
[9], a leader-follower based state feedback formation control scheme is recently
introduced using potential as well as bump functions which must be at least three times
differentiable and by considering the dynamics of the robots while guaranteeing that
collisions do not occur among them. On the other hand, in [10], the robot dynamics are
considered using linear parameterization and input-output feedback linearization, and a
centralized state feedback formation controller is developed. However, only a basic PD
controller is utilized to ensure velocity tracking, and the derivatives of the control
velocities are neglected. In each of these works [7-10], the follower dynamics are
considered alone whereas the effects of the leader’s dynamics on the followers (formation
dynamics) are still ignored.

Consequently, in our previous work [11], it was shown that the dynamics of the
leader become an important part of its follower robots. In addition, in a string formation
of robots where a robot follows another robot directly in front of it, by considering its
leader's dynamics, a robot inherently considers the dynamics of the robots in front of
them. The dynamical extension in [11] provides a rigorous method of taking into account
the specific robot and formation dynamics to convert a steering system command into
control inputs via the backstepping approach, and a state feedback controller by assuming
that the leader communicates all of its states to its followers is developed using a NN
combined with a robustifying feedback term.

By contrast, in this paper, we develop an NN output feedback controller for
leader-follower based formation control. The universal approximation property of NN is

utilized to learn the complete dynamics of the follower robots and the formation using



65

online weight tuning. Then, a NN observer is introduced to estimate the linear and
angular velocity of the follower as well as its leader so that a specific torque command
for the follower robots can be calculated using local sensor measurements with minimal
communication between the leader and its followers as opposed to communicating
leader's orientation, linear and angular velocities and their control torque [11]. In this
work, only the orientation of the leader is assumed available while the separation
principle is relaxed. Finally, it is shown that the proposed output feedback controller
achieves stability even in the presence of obstacles. Similar to [9], collisions within the
formation are avoided in this work too, but without the need of the additional assumption
that higher order derivatives are available.

This paper is organized as follows. In Section II, the leader-follower formation
control problem and required background information is introduced. Then, a NN output
feedback control law is developed for the follower robots by designing a NN observer
followed by the design of a NN torque control input, and the stability of the combined
systems is examined. Next, a NN output feedback control law and its stability are
presented for the leader robot. Finally, the stability of the overall formation is presented,
and a general formation controller structure is given which shows the controllers for the
leader and followers as well as the interactions between them. In Section III, the NN
output feedback control law for the followers is integrated with the leader-follower
obstacle avoidance scheme of our previous work [11], and the stability of the modified
obstacle avoidance scheme is presented. Section IV presents numerical simulations, and

Section V provides some concluding remarks.
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II. LEADER-FOLLOWER FORMATION CONTROL

Background information on leader-follower formation control is introduced next.
Throughout the development, follower robots will be denoted with a subscript '/’ while
the formation leader will be denoted by the subscript 'i. The goal of separation-bearing
formation control is to find a velocity control input such that

lin(Z,, ~L,) =0 and lim(‘¥,, —\¥,;) =0 )
where L, and W, are the measured separation and bearing of the follower j with respect to

leader i, and L, and W, represent desired distance and angles [2-3], respectively, as

shown in Fig. 1. Note that limited sensing capabilities restrict the types of achievable
formation topologies. Therefore, care must be taken during the selection of the desired

separation and bearing, L, andY¥,,, respectively, to ensure follower jcan detect its

leader.

The kinematic equations for the front of the j follower robot can be written as

J
4;=|y,|=|sin0, d, cosb,
0, 0 1

J

X, cos@. —d.sin6,
J J J V/- B (2)
‘ :Sj(f],-)"j
.

J

whered ;is the distance from the rear axle to the to front of the robot, ¢, =[x, y, 6,1

denotes the actual Cartesian position and orientation of the physical robot, v;, and @,
represent linear and angular velocities, respectively, andv, =[v, w;]". Many robotic

systems can be characterized as a system having an n-dimensional configuration space €
with generalized coordinates(g,,...q,)subject to ¢ constraints [12]. Applying the

transformation [12], the dynamics of the mobile robots are given by
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Fig. 1. Separation-bearing formation control.

My, +V,(q;.4,7, +F,0)+ 74, =T, 3)
where M ; e R”*is a constant positive definite inertia matrix, I7mj e R””is the bounded
centripetal and coriolis matrix, f’J €R”is the friction vector, T 4 €N’ represents
unknown bounded disturbances such that”fdju <d, for a known constant,d,,,
B ; €R™is a constant, nonsingular input transformation matrix, 7, =§_ 7, €N’is the

input vector, and 7, € R” is the control torque vector. For complete details on (3) and the

parameters that comprise it, see [12].  For this workn =3,/ =1, p =2, and the inertial

and input transformation matrices are considered to be known while centripetal, friction,
and coriolis forces are considered unknown. We will also apply the assumption from [12]
that the linear and angular velocities of each robot are bounded for all time, . Robotic

systems satisfy the following properties [12]:

1. Boundedness: ]W ;o the norm of I7mj , and 7, are all bounded.
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2. Skew Symmetric: The matrix M i 2I7mj is skew-symmetric.

A. Backstepping Controller Design
The complete description of the behavior of a mobile robot is given by (2) and

(3)- The NN output feedback controller is introduced so that the specific torquez () may
be calculated so that the alternative control velocity v, (¢) derived in [11] can be tracked

without knowing the complete dynamics of the formation while minimizing
communication requirements and relaxing the availability of state variables. In this work,
each robot is not aware of its velocity or the velocity of its leader. In addition, each robot
only has knowledge of its constant inertial and input transformation matrices and no
knowledge of its leader's dynamics. Thus, each robot has many challenging
uncertainties that must be overcome in order to complete its control objective. The NN in
the observer and controller will overcome these problems.

In this work, a two-layer NN consisting of one layer of randomly assigned
constant weights ¥ € R“" in the input layer and one layer of tunable weights W e R*”
in the output layer, with a inputs, b outputs, and L hidden neurons are considered. The

universal approximation property for NN [13] states that for any smooth function f(z),
there exists a NN such that f(z) =W o(V"z) + & for some ideal weights W,V , where ¢

is the NN functional approximation error, and o(-): R — %" is the activation function in
the hidden layers. It has been shown that by randomly selecting the input layer

weights V', the activation functiono(Z) = o(V " z) forms a stochastic basis, and thus the

approximation property holds for all inputs,z € R“, in the compact set S[13]. The
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sigmoid activation function is considered here. For complete details of the NN and its

properties, see [13].

Remark 1: Throughout this paper,

|| and ||||F will be used as the vector and

Frobenius matrix norms, respectively [13].
Before we proceed, the following definition and assumptions which are standard
in leader-follower formation control [4],[6],[9] and NN literature [13] will be revisited.

Definition 1: An equilibrium point x,is said to be uniformly ultimately bounded
(UUB) if there exists a compact set S < R" so that for all initial states x, € S there exists

a bound B and a time T(B, x,) such that [x(r) - x,|| < B for all ¢>1, + T[13].

Assumption 1. The separation L, and bearing ‘¥, [4], [6], and the position and

orientation [12] of all the robots are measured whereas velocity measurements are not
available.

Assumption 2. Leader i communicates its orientation 6, to its followers [9].
Assumption 3. On any compact subset of'R", the target NN weights ¥, and

reconstruction  errors &, are  bounded by known positive values for all

followers j =1,2,...N such  that “W/‘Hp <w, anngjH <&y, respectively, and all

disturbances are bounded such that”z_' dj“ <d, [13].

Remark 2: 1deally, we would like to solve the leader-follower formation control
problem using minimal communication. If the follower robots can measure or estimate
the orientation of their respective leader, then the proposed output feedback scheme could

be implement in a decentralized manner. However, in this work we assume that follower
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robots cannot directly detect the orientation of their respective leader, and thus, the
orientation of the leader must be communicated to its follower. In addition, this work is
developed under the assumption that the velocity vector of each robot is not measureable.
As a result, the leader cannot communicate its velocity vector to its followers unless it
uses the velocity estimate generated by its observer. Therefore, the follower robots’
control laws would be reliant on the accuracy of the leader’s observer and susceptible to
the leader’s observer estimation errors. Since each robot estimates its leader’s velocity
vector online locally, the risk of observer estimation errors propagating throughout a
formation is removed.
B. Leader-Follower Tracking Control

In [11], single robot control frameworks such as [12] were extended to leader-

follower formation control subject to the kinematics and dynamics defined by (2) and (3),

respectively. Then, a reference position at a desired separation L, and bearing ¥, for

follower j with respect to the rear of leader i was defined, and the kinematic error

system was found to be [11]

e, Ly, cos(‘Yy, +6,)—L,cos(¥; +6,)
e, =|e, |=| Lysin(¥, +6,)— L,sin(¥, +6,) 4)
e, 0,-06,

where 6, =0, —0,and 0, is the reference orientation. The reference orientation for
follower j is defined relative to the leader satisfying the differential equation as
0, = (0L, cos(¥,, +6,)+v,sin(0,) + ke, )/d, (5)

where 6, =60, -0, e[-z,x] andk,is a positive design constant. It is noted in our

previous work [11] that due to the nonholonomic constraint [12] as well as the
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separation-bearing formation control objective, the orientations of each robot in the
formation will not be equal while the formation is turning, and thus, the reference

orientation of each robot cannot be chosen such thaté, =6,. However, defining 6, by

(5), allows the stability of all three error states to be shown. It can be shown that the

reference orientation, §,., converges to the orientation of leader i whenw, = 0 (traveling

in a straight path) and formation errors have converged to zero.
The transformed error system (4) now acts as a formation tracking controller

which not only seeks to remain at a fixed desired distance L, with a desired angle'¥,

relative to the leader robot i, but also will achieve a relative orientation with respect to
the leader. Further, the orientation of the follower will become the orientation of the

leader whenw, = 0. Finally, the error dynamics of (4) are found to be [11]

(©)
e,|=| -we,+vsing,—-d o +ol,cos¥,+6;,) |

[}

-V, +v,cost, +we, —aoL,sin(¥, +06,)

)+kpep)/d; — o,

e (oL, cos(Yy, +6;)+v,sin@,,) +k,

To stabilize the kinematic system, the following velocity control inputs for
follower robot j were derived using Lyapunov theory [11] to achieve the desired position

and orientation with respect to leader i as

(7)

b Via | v,cos8, +k e, —aoL,,sin(¥, +6;)
e e

Ly, cos(¥y, +6,) +v,sin@,) +k e , +kj3e,3)/dj

je2 ijr J J
where K, =k k, k j3]T is a vector of positive design constants. Examining (7), one
can see that the linear and angular velocities of leader i must be available in order to

calculate v, . However, given only the orientation of the leader (4ssumption 2), each

follower must estimate the velocity vector of its respective leader online.
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C. Leader-Follower NN Observer Design
In order to estimate the linear and angular velocities of the leader, the follower

must be able to measure either its x; and y; coordinates or its own linear velocity v;. If

neither the position nor the velocity information of the follower is available, only the

relative linear velocity between the leader and its followerv, —v;, can be recovered. In
this work, the velocity vector of the follower, v, 1s considered not measurable, therefore,

the position measurements will be used. If the linear velocity of the follower was directly
measurable, the observer could easily be modified to recover the linear and angular
velocities of the leader.

To begin the development of the NN observer, we define the auxiliary system

states as X, =[-L,cos¥, 6 x, y,] e®*and X,=[v, @ v, o] eR*. Note that X, is
available under Assumptions 1-2, while X, is not. The dynamics of L,and‘¥, can be

written as [2]

L;=v,cos(¥Y;+6,)—v,cos¥; +d o, sin(Y ;+0,)

¥, =(v;sin'¥; —v,sin(¥;+6,) +d 0, cos(¥;+6,) - L;»,) | L,

ij i

(8)

Differentiating (8), the dynamics of the leader can be written in terms of the

formation dynamics and the dynamics of the follower as

cos(¥,) O]'([ cos(W,+6,) d,sin(¥,+6,) [y —L, (%, +@,)(W, +6, )+v, sin(¥,)d,
v, =| —sin(¥;) sin(¥, +6;) d;cosW; +0,) |5 —| . L, . v, '
— 1 — A I3 LY +Lj. (2‘Pij -2, +wj)+zcos(‘l‘ij)¢9ij

y q ) ij ij

)
Using (2), (3), (8), and (9), the dynamics of the auxiliary error system can now be written

as
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X/'l =A/'(le)Xj2 +§jol
ij :fjo(leanz)"‘gjoujo 6

(10)

where 4,(X ;) is an invertible, time varying, nonlinear matrix formulated from (2) and

(8) and comprised of measurable terms as

1 —L,sin(¥;) —cos(6,) —d,sin(6;)

0 1 0 0
A(X) =4, = 0 0 cos ), —d;sin6,

0 0 sind, d;cost,

where g, € R*', k =1,2 represents unknown but bounded measurement errors and

disturbances such that Hé’ ok

<Com k=12, fu(X,, X)) eR =1, =[f7 fT.]is the

vector of robot dynamics formed from (9) and (3) asf,, =V, eR*™ and

fup =M;' (7,7, +F,(¥,))e ®*", respectively, g, €R* is a known constant matrix

mj - j
defined as g, = DM ;' where De®R*’is the constant matrix D=[0010;000 1],
and u, =7, € R>*! is the control torque for follower ;.

Examining the definition of X it is observed that

jr
L;cos¥; =0when'V;, =+7/2. Further, the dynamics (9) contain a singularity
when¥; =+7/2. The singularity problem in (9) is avoided in (10) by using a NN to
estimate v, and is described in detail in the subsequent development; however, in order

to avoid the first term in X ;, from becoming zero, formations defined by ¥, =+7 /2 are

not allowed.

Before proceeding, some useful properties of 4; should be highlighted. First, in

the presence of limited sensing capabilities, there exists a maximum measurable
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separation distance L, ; therefore, both 4;and its inverse are bounded by computable

fjmax
constants 4, and AJI.M , respectively. Also, the terms ¢,/ £ A;IAJ. / 2 and ¢,/ £ AJ.A;I / 2

are shown to be positive definite using Sylvester's criterion for any choice of real positive

constants, c,andc, .
Next, we define a change of variables as z,, = X, andz,, = 4, X, and the new

system dynamics are given by

Zp=2Z)p +§jol

_ _ (11)
Zp = Aj(fjo T8t T joz)

where f, = f,, + A;'A;4;'z,,. According to the universal approximation property of

NN, there exist target weights W,

Jjo?

V,, and a NN approximation error &, such that

v _ T T . . .
Siw=W,oWV,z,)+¢&, wherez,is the NN input.  Then, the NN estimate

joZ jo
f L, =Wio(V5z,) canbe defined where I, is the NN estimate of ¥, and £, is the NN
input defined using the estimated states of the observer which will be identified later.

Remark 3: In [14] and [15], observers were proposed utilizing adaptive fuzzy
logic and a NN, respectively, and by defining a change of variable. In both these
approaches, 4, is the identity matrix, while in this work, 4, is an invertible, time varying,
nonlinear matrix.

The NN observer is now defined as

En=2p Kz,

] . (12)
Z, =4, (f,/o T8 ol + 7./)"' K275
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where K, andK ,,are positive design constants, y,is a robustifying term,
andz;, =z, —z, is the error between the measured and observed states. The observer

estimation error dynamics are found by subtracting (12) from (11) and adding and

subtracting 4 W o(V 12 ,)to Z,, to yield

jo“ jo
=2~ K_/‘olz_/l +6 01

(~r . ) - (13)
= A/ W/'oajo _]/j + 5_1’0 - KonZjl

A

where VT/];:VZO—WO is the weight estimation error, &, =0o(V;Z,) is the hidden-layer

J! Jjo= jo

. . . T T eqs s
activation function vector, and &, =¢ j02+(9_j0+V1/_jo(a(V z,)—o(V! o /0)) Utilizing

jo= jo

Assumption 3 along with properties of the sigmoid activation function [13], it is straight

The robot velocity estimates X ,are then defined as

A

1~ ~
X, = Aj (ij +K_/‘o3Zjl)

J

where K, is a positive design constant. The estimation errors for the auxiliary system
(10) are defined as X, =Z,and Aj)?j2 =Z,-K:Z,.

Differentiating X aand 4 j)N( ;2 yields the error dynamics of the auxiliary system as

=Ky —K;) X, +4,X, +¢, (14)

4(](]()314‘14_114 ))(12 +Vijz;o-/o I<102A_1X A_1K103( 103 /ol)X;l

' -1
whered), = 4; K ;¢

Jjol

+0,,and

s Where 87, is another computable constant.

Finally, the observer NN input can be defined as 2, =[1 X, XI, ¥, L, ‘i’ij Iii]. ‘i’ﬁ i,.j],
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where W, L ‘i’y, and LAl.j are the estimates and derivative estimates of (8), respectively,

ij2 o
which are estimated using the observer velocity estimates.
Theorem 1: (Follower Robot NN Observer) Given the auxiliary system (10), and

NN observer (12) for follower j, and let Assumptions 1-3 hold. Define the robustifying
signal
V= _AJT]K_/M (K 3 = Kjol))?jl (15)

with the NN update law for the observer given by

Al W, (16)

K, >0are design parameters. Then there exists positive

L A -1|| T
W, =Fé,|4'| X —Fo(Kol

oy -1
X ﬂ”"A./ ||F Ko

where F, = F > 0andx

ol»

~

K,,, andK ; such that the observer estimation errors X |, X

design parameters K, K ,, FIERLP)

and the NN observer weight estimation errors, W, , are UUB.

jo?
Please see the Appendix for proof of Theorem 1.
D. Dynamical NN Torque Controller
In this work, the velocity vectors of each mobile robot are not available.
Therefore, the control laws must be defined using the velocity estimates of the NN
observer derived in the previous section. To begin, the control velocity (7) is estimated

using the observed velocities of the leader and written as

| Vi |_ (9, +K i X 1)) 0080, +K ey =(@, +K i X 1)Ly, sin(¥y, +6))
V=l =] > . SN (17)
Vie2 ((a)z +Kjo4Xj12)Lijd cos(r,; + ‘91,) +(v, +Kj04Xj11)Sln(0ijr) +kj2ej2 +kj3ej3 )/dj
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where K, is a positive design constant, and X mand X jpare the first and second
elements of the observer error vector X 1> respectively. Next, we define the actual and

estimated velocity tracking errors, e, and e, , respectively, as

»Cje
T T T =
e =lej el =[Via vinl —lv; @] =v,. =V, (18)

and

5 o T ~ A T A A 1T A .Y
e, =, es5] =[V,y Vil —[V, &1 =V, -v,. (19)

~
Eal A =~

Defining v, =v, —v,, observing v, =v, —e, +V;, and substituting this along

with the control velocity (17) into (6), reveals the closed loop kinematic error dynamics

as
6 e, —k,e, +we,
J e. 0. +6. =~
e, |=|dé,+2y, sin[fjco{&i - '”2 ’]—kﬂei2 —kqe,—we, |+X, (20)
é. .
7 e;s—kye;s/d,
where
. |cos 0, —Lysin(¥,+6;,) -1 0 N cosd, —L,,sin(¥;, +6,) v
X, =|sing, Lycos(¥,,+0;,) 0 -d,|X,-K,,|sin6, L,cos(¥,+06,) |:~’”}
0 0 0 -1 0 0 n

and X ;»1s the observer estimation error vector of the velocities of the robots.

Remark 4: Recall that the reference orientation dynamics (5) are defined in terms
of the linear and angular velocities of the leader; therefore, the reference orientation must
be rewritten in terms of the observer velocity estimates. Thus, the observer estimation

errors are not present in the dynamics of the third error state, ¢;,. Note that the stability

of the kinematic error system now depends on the estimated velocity tracking errors,

demonstrating the necessity for a dynamical velocity tracking control loop.
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~

. . - =z A T
Moving on and observing v, =v, +v,, and v, =v, + X}, — X, where

=, |cosd, —Lysin(¥;,+6;) 0 0}?

27| g
sing,,

.zand)?;l =Kjo4{

Ly,cos(¥y,+6,) 0 0]’ sing, Ly, cos(¥y, +0,) )?_/12

ijr ijd

cosd, —L;,sin W+Q,)}{XN}

e, ande; can be related by

~

eo=e, — X, + X, +V, (21)

Je Jje

1

<

To form the error dynamics of (19), we first find the error dynamics of (18). To

begin, add and subtract M V,.and V_v. to (3), and substitute (18) and its derivative into

m " je

(3) to reveal the actual velocity tracking error dynamics to be

Meé, =V, e +Mpy +V v, +F.(V)-T,+7,. (22)

mj—je mj - jc

Then, multiplying both sides of (21) by M ,and taking its first derivative with respect to

time as well as substituting (22) into the derivative of (21) reveals the dynamics of the

estimated velocity tracking error to be
Me, ==V, e.+[f(z,)-7,+7, (23)

mj - jc

where f,(z,)=M v, +V, v, +F,(v )= M, (X}, - X}, =) +7,

mj " je mj

v v =
(X}, — X}, —-v,) and
LT T =T THT THT =T ST ST =TT . . . .
z, —[vjc, Vies Vis X s XV, s Xy X310, ]1'. The nonlinear functlonfj(zj) brings in
the dynamics of leader i through v, as given by v, = f,,(V,,V;,e;,€;) where £ (e)is

the nonlinear function that relates v e -

According the NN universal approximation property, there exists constant,

bounded, ideal weights w.,v,, such thatHWjHF <w, and

fi(z)=W/o(V/z;)+¢& wheres,is the bounded NN approximation error such
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thate, <¢,[13]. Since the complete dynamics (3) are not known, the universal

approximation property will be invoked to estimate the function f(z;) and thus estimate
. . 7 on =T T A T A 7 on 7

the dynamics of follower j by f,(Z,)=W;o(V;Z,)=W; &, where f,(Z,)andW,are the NN

approximations of /;(z;)and W,, respectively. In order to accommodate the dynamics of

the follower and the formation, the estimated NN input, Z ;s 1s defined as

A AT AT 2T LT AT TAT AT -« . T .
z;=[lv,v,.v, 6,v, 6 e, e; ] where v, isthe estimate of v; calculated using the

observer velocity estimates and their dynamics. Then, the torque control input for

follower j can be written as

7 =K, e, +f(¢)+u, (24)

J

where u,is a robustifying term defined as

k.e.

_ Jj2= (25)

u =a,
! j|:d./‘ (kjpe;, + k./‘3e./‘3):|

and a, is a positive design constant.
Substitution of (24) into the error dynamics (23) as well as adding and subtracting
W6, reveals
Mé, =K, +V, %, —u+W'6 +¢, (26)

A

— e - - ,
where W, =W,-W, ¢,=W,6,+7,+¢; and G,=0,-0,. It is noted that

HCJH < ¢, for a computable constant(,,, =2W, /N, +d,, +¢&, where N, is the number

of hidden layer neurons in the control NN and the relation HEJ.HS 2N, [15] was

utilized. Note in the absence of disturbances, observer estimation errors, and NN
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approximation errors, the originéj = [ef é_?c]T =0is an equilibrium point of (20) and
(26).
Remark 5: Note that the robust termu; (25) is not necessary to prove the

stability of the error system for the follower robot and the entire formation. However,

investigating the control torque (24) one can see u; is the only term that is well known
and measurable. As a result, the reliable signalu; is included in the control input (24).

Next, the stability of the combined NN observer and output feedback controller is
established in Theorem 2 using Lyapunov analysis methods without the need of the
separation principle where it will be shown that the observer estimation errors, position
errors, and estimated velocity tracking errors are all UUB.

Theorem 2: (Follower Output Feedback Control): Given the nonholonomic
robot system consisting of (2) and (3), the leader follower criterion of (1) as well as the

auxiliary system for follower j given by (10) and the NN observer defined by (12), let

Assumptions 1-3 hold. Let a smooth velocity control input,V, , and torque control, 7 iz

jes
for the follower j be given by (17) and (24), respectively, along with the robustifying
term be given by (25). Consider the NN observer update law (16) and dynamic NN

controller update law as

A T N A

W, =FO'j€jC—F(K1HejH+K2)VVj (27)
where F = F” > 0andx, >0,x, >0 are small design parameters. Then, there exist

positive  constants K ,,,K,, K ,;and K

o1 K jo2s a vector of positive constants,

jo4»

~

k., k1", k;;and a; such that the NN observer estimation errors X e

K, =[k

J J1 J
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and its weight estimation errors VIN/J.U , the origin éj =0, consisting of the position,
orientation and estimated velocity tracking errors, and the control NN weight estimation

errors VIN/j , for follower j are all UUB.

Please see the Appendix for proof of Theorem 2.

Remark 6: Recalling the relationship between the actual velocity tracking error
and the estimated velocity tracking error defined in (21), it is clear that the convergence
of the observer estimation errors and the estimated velocity tracking error to a compact

set guarantees the convergence of ¢, .

E. Leader Control Structure
The kinematics and dynamics of the formation leader i are defined similarly to

(2) and (3), respectively, for follower j . From [12], the leader tracks a virtual reference

robot, and the tracking error for the leader and its derivative are found to be

e, cosd, sind, 0| x, —x, €, - v, +v,cose,; +we,
_ N _ and - _ _ .
e, =|e,|=|—sinf cosO Oy —y, e, =|é,|= we;, +v,sine,,
€is 0 0 1] 6,-6, €3 W, —

wherex,,v,, 6,v, and o, are the Cartesian position in the x and y direction,

orientation and the linear and angular velocities, respectively, of a virtual reference robot
for leaderi .

Since leader i tracks a virtual robot, it has knowledge of the velocities of the
reference robot; however, under Assumption I, the leader cannot measure its own linear
and angular velocities, and thus, an observer must be utilized. Similarly to the observer

development for follower j, we define an auxiliary system consisting of a measurable
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term X, =[x, y, ] e®™ and an immeasurable term X, =[v, @] eR*'. The

1

dynamics of X, and X,,are then written as

Xil :S:(X,l)Xlz +§iol
Xpy = 11X, X))+ gt + 8

cosb, sind. 0
—d.sinf, d,cosf 1

T
where Si(Xil) = Si = { } > So(Xi, X)) = M_;I (Vm,-V,- + FI(V,))’

g u, =M 'z, are formulated from the kinematics and dynamics of roboti and

eR™ and ¢, e R*" represent unknown but bounded disturbances. It is useful to

iol

point outc,/ £S’S, is positive definite for any choice of a positive
constant ¢, and / being the identity matrix of appropriate dimension.

Similar to the observer design for follower j, a change of coordinates is defined

asz, =X, eRandz, =S X, eR™ for convenience, and an observer for the

leaderi can be realized as

z,=z,+K,,z,

.z ; iol =i (28)
21‘2 = ﬁo + Si (giouia + )/i )+ KioZEjl

where K, are K, ,real positive design constants, Z, =z, —Z,, andy,is a robustifying

~

signal defined as y, =-S5/ Kio3((Kio3—Kiol)Xﬂ). The NN universal approximation
property is also utilized to estimate the unknown dynamics of leader

iinf, =S,f, +S.X, e R, and the NN takes the form of f, =W o(V'2,) where

io “io

W is the estimate of the target observer weights W'

io io *

and Z, is the input to the NN

defined using the observer velocity estimates asz, =[1 X X/]". The estimate of the
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leader's velocities can now be defined as X,, =S/ (2, + K, ,Z,,) where K, ,is a positive

design constant.

From (28) and the definitions of z, andz,,, the dynamics of the estimation errors

X ., and X ., are found similarly to (14) as

P

0 =8%, (K, — KX, + (29)
=K+ SiTSi))?iz + SiT (fw - Ki02)?“)+ 2

i03

~

M-

where 8, =S/ ({,, +&, +W, (G(VTZ ) —olV,z, )) —K38i)S05  with 5 being  a

computable constant, and &, is the NN approximation error.
Moving on, the control laws for the leader can now be presented. The control

velocity v,.(¢) can be defined similarly to [12] as

v, cose, +k, e,
Vic = ’ l (30)

, +k,v,e, +k;(v, +1)sine,

wherek,, , k., , k., are design constants. Next, define the estimated velocity tracking error
as

é.=[ey &s1' =lv. @1 -0 &1 =v, -V, (1)
Defining v, = v, —v,, manipulating (31) to reveal v, =v, —é,_+v, and substituting this
relation into ¢, above yields the closed loop kinematic tracking error dynamics written to

include the estimated velocity tracking errors as well as the observer estimation errors as

€ ey — ke, +we, -V,
P . 32
e, =lé,|= —we, +v,sine, (32)

i

€ €5 —k,v,e,—k,(v, +1)sine; — @,

ir<i2
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In the absence of observer estimation errors, e, =[e] é.]=0 is an equilibrium

point of (32). Using similar steps as that of (23), the error system for the leader can be

obtained similar to follower j. The torque input7, for the leader is defined as
T, =K+ J(2)+u, (33)

whereu, € R**' is a robustifying term defined as

_ €n 34
s Lin(eg)/kij 9

with ¢, being a positive design constant andK,, = k,,/ for a positive design constantk,, .

Here the NN universal approximation property has been used to estimate the nonlinear

function f,(z,) =W, o(V' z,) +&,, which is defined similar to f;(z,)for follower j (23). The
NN estimate is then written as f‘i(él.) =W'o(Vz,) where W, is the approximation of the

"y 9T @ &' e’ is the NN input written in terms

ic “ic "1

target NN weights, W, , and Z, =[l v

of the observer state estimates.
Remark 7: Similarly to follower j, the stability of leader i can be proven without
the robustifying term (34), but is included in (33) since it is a reliable signal whereas the
other terms in (33) are all being estimated.
Using (33), the closed loop error system for leader ican be formed similarly to

the closed loop error system for the follower (26) as

Mé, =K,y +7,)6, —u, + W6, +¢, (35)
where ||§’ l|| < ¢ for a computable constant g, defined similarly to ¢, . Examining (34)
and (35), it can be concluded thatél. =[e] &/]=0 is an equilibrium point (35) in the

absence of disturbances and NN approximation errors.
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Theorem 3 (Leader Robot Control): Given the kinematic and dynamic system for

leader i (defined similar to (2) and (3), respectively), let v, >0 and®, be bounded.

Consider the NN observer defined by (28) with its weight update defined by

W, =F,6,% - F,(x

io io~io*™ il iol

Xil“+Kioz )/f/io (36)

where F, =F >0, «,, >0andk,, >0are design parameters. Let a smooth velocity
control inputv, (#) (30) and NN torque control (33) be applied, and the NN controller

weight update law be given by

W, = Fol — i, e + w0 W, (37)

where F, =F >0, K, >0andx;, > 0are small design parameters,
24 . AT 4l - - . . ..
and”eiu = H[ej1 sine;; ¢, ]H is an auxiliary error signal. Then there exists positive

constants K. ., K. ,, K.

iol » i02 2 03

k..k,,k;,k,, anda, such that the observer estimation

errors X il,)N( ., the position, orientation and velocity tracking errors éi, and the NN

=

weight estimation errors of the observer and the dynamic controller, VIN/Z.O, .,
respectively, are all UUB.

Please see the Appendix for proof of Theorem 3.

Remark 8: Observing e, =é,_—Vv,, it is clear that the convergence of the
observer estimation errors and the estimated velocity tracking error to a compact set
guarantees the convergence of e,.. Next the stability of the formation is introduced.

F. Formation Stability

It has been shown that the dynamics of leader i are incorporated into the control

torque of follower j. Similarly, in a formation topology where follower j becomes a
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leader to follower j+/, the dynamics of follower j become incorporated into the control
torque of follower j+/, and since the dynamics of follower j incorporates the dynamics of
leader i, follower j+/ inherently brings in the dynamics of leader i by considering the
dynamics of follower j. As a result, the formation error dynamics of a formation
consisting of one leader and N followers can be captured by taking the sum of the

individual Lyapunov candidates for leader i and follower j, j =1,2,...N as demonstrated

in the following theorem.

Theorem 4 (Formation Stability): Let the hypotheses of Theorems 2 and 3 hold.
Then, the formation errors consisting of leader and follower states are UUB.

Please see the Appendix for proof of Theorem 4.

The overall formation controller is now presented in Fig. 2. In the figure, the
complete control structures for follower j and leader i are labeled as (a) and (b),

respectively, where the generalized functions f,, (o), f..(o), Soe (¢)and £, (e) describe the

kinematic error system and the control velocity for follower j and leader i , respectively.
For both the leader and follower control structures, the kinematic and dynamic control
blocks along with the observer block were drawn according to the mathematical
equations derived in this work. In the figure, the follower observer structure was drawn
according equation (12), the follower kinematic controller was drawn according equation
(17), and the torque control input for the follower was drawn according to equation (24).
Similarly, the observer, kinematic controller, and dynamic controller for the leader were
each drawn according to equations (28), (30), and (33), respectively. Using wireless

communication, shown in (c), the leader communicates its orientation to its followers.
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Fig. 2. Formation controller structure.

All other required information is obtained locally by the follower using the NN observer
and local sensory information as shown.

Remark 9: To implement the proposed output feedback control scheme, two
NN’s are required. Although this appears to be a computationally demanding algorithm,
our previous work [18] on the control of spark ignition engines has demonstrated that
three NN’s can be successfully implemented in hardware simultaneously with promising
results. In fact, it was found that the total time required to compute the controller

calculations was less than 100 zsec .
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11l LEADER-FOLLOWER OBSTACLE AVOIDANCE
In [11], an obstacle avoidance scheme was proposed that allowed follower j to
track its leader while simultaneously avoiding obstacles. To accomplish this, the desired
separation and bearing were no longer considered to be constants but were considered to
be time varying. In this section, only an overview of the obstacle avoidance scheme is
presented. The obstacle avoidance scheme from [11] has to be modified and the stability
has to be revisited due to the addition of the observer and output feedback control. In this

section, the time varying desired separation and bearing will be denoted asZ,,(?)
and W, (r)while the constant desired separation and bearing will be written as L,
and¥, .

Furthermore, the distance, s, from follower jto an obstacle and relative angle of

J?

the obstacle, &

Js 2

are considered measurable while the velocity,v, =[v, @ 1", and

orientation, €, of the obstacle are unavailable. It is also assumed that leader i utilizes a

Fig. 3. Obstacle avoidance.
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path planning scheme such that by tracking the virtual reference cart described in [12],
the lead robot i navigates around any encountered obstacles.

In the configuration shown in Fig. 3, it is desirable that the follower robot j
maintains a safe distance, s,, from all obstacles. Therefore, when the nearest edge of an
obstacle is detected at an angle €, and distance s, relative to follower j such thats, <s,,
the desired separation and bearing, L, (¢) and ‘¥, (¢), are modified to ensure the follower
is steered away from the obstacle by

2 2
1o (1 1 1o (11
L) =Ly =K, [S - J S0, %), ¥ya ()= + Ky L —J 3 (38)

i Sa 7 d
where &, = sgn(,, )sgn(@, ¥, ), sgn is the signum function, and K, and K, are design

constants. In [11], the error dynamics in the presence of obstacles were found to be

P } _| Gy tvicos + @, —aLy, (Osint, (0+6) (39)
éf"z éjoz —W€,, TV, Singfj _dja)j +a)il’zjd(t)cosc{]ijd(t)+0y’)
where
¢, =L, (H)cos(¥,, (1) +0,) =¥, (DL, ()sin(¥,, (1) +6,) (40)
€0 = Ly (sin(¥, (1) +6,) +¥,, (DL, () cos(¥,, (1) +6),)
A 1 111 : \i; Z——Ki—ii; and
Ly () =sgn(0,,'¥;,)K, s s, gs‘n (==K, s, s )s 5;°

$ ; =5,;(t)—s,(t— At) is the estimate of s, for an arbitrarily small time interval, Az. The
estimate § ;1s used because velocity vector v,and orientation 6,of the obstacle are not
available to follower j. Utilizing the observer estimates V;, the following velocity control

inputs for follower robot jare proposed to stabilize the error dynamics (39) in the

presence of an obstacle
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‘/;. _ ("} +K/()4 1)COS€ (w + /()4 2) /d(t)sln(\ljl/d(t)—FH )+]€ ejal ;\jal (41)
o (O, +K jod '11)Sm€ +(@ +K jod ;12) d(t)COSCH,d(t)+9 )+k 26/02)/d /oZ/d
and X, 1o were previously defined in Section II1.D while k, ;1 and k

where K X

jo4 > Jl1»

are positive design constants. Next, define the velocity tracking error in the presence of

A

obstacles similarly to (19) as ¢, =7, —v,. Then, substituting (41) into the error

dynamics of (39) while observing v, =V, —¢,,, + \:/j reveals

€ e, —ke ¢, X X
.]0 Jor  TTjel 1y J - (K/U4Q/01X a1 Qj02X jZ) (42)
Cjo2 dj €jos ~ ;€1 kfzef 02 Cio2

where Q) and Q) , are matrices defined by

cost) —L,sm(¥,+6;) 0 0 cos@; —LysinW,+6,) -1 0
" |sin@, L cos a+0) 0 0f 7 sin@), LycosW,+6,) 0 —d, |

ijr ijd ijr
which are shown to be upper bounded such that HQ MH <Q andHQ joa <Q, ), for
some computable constants Q,, andQ,,, , respectively, and ¢, =¢, —¢, and

’e"_/o2 =2, —3_/02 are the bounded estimation errors for the estimates in (40) such that

ejo

=H[ejo1 €] ‘ngMo with¢,,, >0 being a constant. ~Whenever there is zero

estimation error, €, = [e” &' 1" =0is an equilibrium point for (42). It is observed that

jo ~jco
the dynamic controller (24), error system (26), and NN weight update law (27) are valid

in the presence of obstacles withé, replaced withé . Next the performance of the

follower in the presence of obstacles is introduced.
Theorem 5 (Follower Obstacle Avoidance): Given the nonholonomic system

consisting of (2) and (3), the leader follower criterion of (1), and the auxiliary system for
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follower j given by (10), let Assumptions 1-3 hold. In the presence of obstacles,

consider the NN observer defined by (14), and let a smooth velocity control input, v,

Jjco

and torque control, 7, for the follower j be given by (41) and (24), respectively. Select

the robustifying term as u, = a ,[e 1" wherea , is a positive constant, and let

jol j 102
the update law for the NN observer and controller be given by (16) and (27), respectively.
B k

Then, there exists positive constants, K,,K,, K ,,K,,, K ,,;,K and

jol>=* jo2o jo3 > > jo4 07 j1” j4’

@, such that the position and velocity tracking errors for the follower j, the NN weight
estimation errors VIN/]., the observer estimation errors X jl,)? ;» and the NN observer

weight estimation errors, W ,are all UUB in the presence of obstacles.

Please see the Appendix for proof of Theorem 5.
1V. SIMULATION RESULTS
A wedge formation of five identical nonholonomic mobile robots is considered
where the trajectory of the leader is the desired formation trajectory, and simulations are
carried out in MATLAB under two scenarios. First, in the absence of obstacles, the NN
output feedback controllers developed in this work for the leader and its followers is
considered with non-ideal sensor measurements. The linear velocity of the leader's

reference robot isv, =0.5m/s while the reference angular velocity is selected
as®, =—0.025co0s(0.5¢t)rad /s . 1In the second scenario, obstacles are added in the path

of the follower robots, and the obstacle avoidance scheme of Theorem 5 is demonstrated

under both a static and dynamic obstacle environment.
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A wedge formation is considered such that follower j should track its leader at

separation of L, =2 meters with a bearing of ‘¥, =£120° depending on the follower's

location, and the formation leader is located at the apex of the wedge as shown in Fig. 4.
In the figure, followers 1 and 3 track the leader and followers 2 and 4 track followers 1

and 3, respectively. The following parameters are considered for the leader and its
followers:m = Skg ,1 =3kg>, R=.175m, r=0.08m , and d = 0.4m, and the maximum
achievable linear velocity of any robot in the formation is assumed to be2m/s. The
control gains for the leader were selected ask,, =10, k,, =5, k, =4,K,, =diag{25},
and ¢; =0.1, and for each follower, gains were selected as &, = /;/.1 =5,k;, = l;jz =5,
k;;=15,K;, =diag{30}, and «,=a, =0.1. These controller gains were selected

according to the constraints observed in Theorem 2. The observer gains for the leader

were selected asK,, =25, K,, =10, K, ; =20, and for each follower, the observer

gains were selected askK, =25, K,,=6, K,;=20andK,, =0.03. The NN

jo2

parameters for both the leader and each follower were selected asF,, = F, =10,

10

Fig. 4. Formation structure.
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K =Ky =5, K;p =K, =04, F =F, =10, andk, =k, =k, =k, =.4. In addition,

five hidden layer neurons were considered in each NN for the leader and each follower.

Friction is added to the dynamics of the leader and follower and modeled as
F:[alsign(v)+.ﬁ1v, azsign(a))+ﬂza)]r, where ¢ and f,,k =12, are the friction
coefficients as given in Table I.

Remark 10: In the proceeding analysis, L, F1,F2,F3,and F4 will be used to

denote the leader, follower 1, follower 2, follower 3, and follower 4, respectively.

TABLE I. Friction Coefficients.

L F1 F2 F3 F4
a |05 0.05 0.01 0.015 | 0.025

a, |0.75 |0.75 0.65 0.15 0.50
B, 1025 |0.025 |0.025 |0.05 0.015
B, |0.03 |0.30 0.20 0.25 0.03

A. Scenario I: Obstacle Free Environment
Figure 5 shows the resulting trajectories for the NN output feedback controller of
this work where the robots start in the bottom left corner of the figure and travel toward
the top right corner of the figure. Examining Fig. 5, the NN output feedback controller
achieves and maintains the formation in the presence of unknown dynamics,
immeasurable velocities, and sensor noise. In the simulation, noise is generated from a

normal distribution with a zero mean and standard deviation of one and is introduced to
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the formation measurements as well as the position and orientation measurements. The

variance of the noise signals were chosen to represent a 10 percent error in terms of the

desired separation and bearing.
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Figures 6 and 7 present the observer estimation errors for Follower 1 and all the
formation tracking errors, respectively. Examining the observer estimation error plots for
Follower 1, it is clear that the robot successfully recovers its linear and angular velocity
as well as the linear and angular velocity of its leader with bounded error which is
consistent with the theoretical results derived in this work. Furthermore, comparing the
convergence of the formation tracking errors for Follower 1 with the convergence of the
observer estimation errors for Follower 1, it is apparent that the observer errors converge
to the origin before the formation errors. A similar phenomenon was observed for the
other robots, but their observer error plots are not shown due to space constraints. The
relationship between the convergence of the observer estimates and formation errors
demonstrates that accurate velocity information is needed to maintain the formation, and

that the proposed observer recovers the immeasurable velocities in a satisfactory manner.
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The results presented in Figs. 6 and 7 also support the theoretical conjectures presented in
Theorem 4.
B. Scenario II: Obstacle Ridden Environment
Now, the wedge formation of five robots is considered in an environment with
stationary and moving obstacles, and the parameters and controller gains defined

previously along withK; =0.75and K, = 1.5 were utilized. The gains were selected to be

small in order to keep the desired separation and bearing changes small.

Figure 8 depicts the formation trajectories in the presence of both stationary and
moving obstacles. The dotted lines represent the path of moving obstacles, and the
connected circles denote the obstacles' final positions. Examining the formation
trajectories, it is evident that the robots are able to maneuver around the encountered
obstacle while simultaneously tracking their leaders with bounded errors as the result of
Theorem 5 suggests. Because the followers on the outside of the formation track the
robots in the inner formation, the movements of the robots in the interior of the formation
propagate to the followers on the exterior.

Thus, when a robot on the interior of the formation performs an obstacle
avoidance maneuver, their movements are mimicked by their followers, as evident in Fig.
8. The observer estimation errors for Follower 1 are shown in Fig. 9, and examining the
estimation error plots, one can see that a disturbance occurs at approximately 4 seconds
corresponding to the time follower 1 encounters an obstacle. Thus, an encountered
obstacle can be viewed as a disturbance to the formation. When the disturbance occurs,
the NN quickly adapts, and the estimation errors return to a small bounded region around

the origin as per Theorem 5.



Formation Trajectories

 Fa
18/ L lF3 N
'E 16/ NN
E o
c 14+ ) N\ A Y\ |
.2 2 5 0\
o 12 Vol
= ‘
Q 10 W | ] |
> AN
o 8 A
£ I ’/ ’/ ’/
-~ 6 / / /
C // // I3 /
£ S S
Q4 I T /
c e Yy
© 2 S
-~ e >
0 - e
Q o . - -
. O
2r ‘ \\ } ] SN — —_— ‘ ‘
5 0 5 10 15 20
Distance in the X Direction (m)
Fig. 8. Trajectories in the presence of obstacles.
F1 Observer Estimation Errors
6 2
4 o1
Ll ~
~
2 0
S E
~ N’
= 0 S
K 25 50 25 50
Time (sec) Time (sec)
6 5
\
~ 4 =0
© 2 ~
~
S B
N’ 0 N
= o 10
4 15
0 25 50 0 25 50
Time (sec) Time (sec)

Fig. 9. Observer errors of F1 in the presence of obstacles.



98

V. CONCLUSIONS
A NN output feedback tracking controller for leader-follower based formation
control was presented that considers the dynamics of the leader and the follower using
backstepping technique and with limited communication between the leader and its
followers. Further, the velocity vectors were considered to be immeasurable, and a novel

NN observer was designed which allowed the follower robots to not only recover their

own velocity vector, but also the velocity vector of their respective leader. It was shown

using Lyapunov techniques that the entire formation is UUB in both the presence and
absence of obstacles while relaxing the separation principle. Numerical results were
presented and the stability of the system was verified. The formation control scheme was
also shown to be effective in simulation not only in the presence of measurement noise,
but also in both a static and dynamic obstacle environment, and the simulation results
verify the theoretical conjecture.
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APPENDIX

Proof of Theorem 1: (Follower Robot NN Observer): Consider the following
positive definite Lyapunov candidate

lors 1 oope 1 oo o1 g PN
Vo= XX 4 XK bt W, IVI/jo}+K—LXj2(cﬂl+Aj1Aj s (A1)

jo2 jo2 jo2

whose derivative is given by

1 57 3 1 ] 1 7 a1\
+K_Xj2Xj2 +K—tr{Wj0F0 Wi +K_X12(cj1 + 4, A./)X./z

jo2 jo2 jo2
where ¢, > 01is a positive constant. Recalling the properties of 4, presented in Section

I1.C, it is clear (A.1) is positive definite. Substitution of the observer error dynamics (14)

and the robustifying signal (15) reveals

. e 1 - e e -
T T T T4
Vjo = _(Kjol _Kju3)Xj1Xj1 _K—ij (Kjo3 - le)ij + leAijz _XJZAJ le
jo2
~ 1 ~ , ~ o 1 ~, ~. .
+ X0 +K—XJ.T25JU + W F, W, +K—XJ.T2WJ§ajo.
Jjo2 Jjo2 jo2

Next, substituting the NN update law (16), adding and subtracting H)? j2H21/N0 (2K ,,)
where N, is the number of hidden layer neurons of the NN observer, and taking the

upper bound of V'jo yields
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VSR KX | - (03 1~ ] I+ 4% %] %] foB*KI [l
K )

K +W A~ K, MI/K -
g g e S| g )

JZH_

where computable constants 4,,, and AJIM are bounds on 4;and its inverse, respectively,

described in Section II.C.  Further, the facts H&jou <N, , HW]bHF <Ww,, and
~ ~ ~ ~ |12

wW,W,-W,)} < HW/.OHF W _HW-/OHF were utilized with W, being the known positive

constant upper bound of the ideal NN weights. Then, completing the squares with

respect to the terms contalnlngHX leHWJ‘OHF’ HX ﬂHHW}OHF, andHX ﬂHHX fZH’ V., is rewritten

as
e A e i A A A B A
:
o2 jo2 Jjo2

where @, = AL, (N, + W, 5, ] J(4K x,) and B, = c,, +:[N, [2+(A,,, + 4,) |2
are positive constants. Finally, we complete the square with respect

toHX H HXﬂHandHW H to get
I’/jos_l[lco K, _EJ)?‘ L (k.= )zZZ_KL(KﬂAjM—@]VT@iWU (A2)
o2

where7,, is a positive constant defined as

i o) Ay |
77‘/'0 2 (K - K - 1/2) (Kjo2 (KjOS - E‘jo )) (Kjo2 (Ko2 AjM /Kjo2 - JFO/(ZK_/(,z )))
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The first derivative (A.2) is guaranteed to be less than zero as long

askK, >K..+1/2,

jol jo3 ]()3

>E,,K, >N, / (24,,,) and one of the following conditions

holds

~

- 21, 2K 1.
I%,[> J oy o [l

~ 2K 1.
> or W, 2 (A.3)
oty P
Observing the definition of7,, above, it is clear that 7, can be made arbitrarily small by

increasing the design parameters K ,, K. ,, K, k,;and x,,. Similarly, the error

Jjol»> jo2» jo3 > ™ol

bounds in (A.3), are reduced by increasing the design parameters K ,,, K ,;and «,,,

Thus V_,-,, is negative outside of a compact set, and therefore it can be concluded that the

observer estimation errors X, and X ;, and NN observer weight estimation errors W, are

all UUB.
Proof of Theorem 2: (Follower Output Feedback Control): Consider the

following Lyapunov function candidate

V,=Vi+V, (A.4)
h V,is defined in (A1), V=V +V —ﬂ K52 and
where 018 defined in (A.1), +V s = (e +e 2)+ > e, an
VjNN_za &Me, +gtr{WT F'W,). Differentiating/’; and substituting the closed-loop

J
kinematic error dynamics (20) reveals

0,+0,
- kj3kaejzej3

. e
V,=—k ke —khel, —khels +2k ,e v, s1n( 5 jcos(@ —~
+kee, +dj(kaej2 +kj3ej3)éj5 _e;(Kjo4le)?j1 _QJZ)?J'Z)

where 2 ; and Q , are matrices defined as
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k;,cos86, —k,L,sin(¥;,+6,) 0 0
Q, =lk,sin(0,) k,L,cos(¥;,+6,) 0 0,

0 0 0 0

k,cos8, —k,L,sinW;,+6,) —k, 0
and Q, =\k,sin@,,) k,L,cos(¥;,,+6;,) 0 —k,d,
0 0 0 -dkg,

It is important to notice that the matrices are bounded by"Q 1'1”F <Qy andHQjZHF <Q,y,
Noting that ‘sin(e i/ 2)‘ < ‘e j3‘ foralle;; e[-7, 7], VJ takes the form of

V, Skpkye, ke, —kie +kﬂ‘e}2€/3‘(k 2 e 8+ e e ol (K0, X, ~0, K )

ima: 251 j4

where [v[<v, . [12] was utilized. In the next step, it is desired to selectk;,such

rmax

that(k at2v, )< 2k;;, and for anye, >0, selectingk ,=2v, . +¢, ensures this

rmax l max

inequality holds. Specifically, we select ¢, =2¢,,k ; whereg,, € (0,1/2)so that

k.

13 zmax

I(1-2¢,,). (A.5)

Selecting & ;; as in (A.5) allows V] to be written as

V, Sk k€ — ke, — kel + 2k k sle e 5|1 -65) + [k e, j( e kel - KMQ X,-0,%,)(A.6)
k kjlejl gk3kaejz gk3k2 ,23 (l_gld)(kj}‘ej}‘ ‘ ‘) 261 ](kae]2+kaej3)]e j(AQ X j2 j2)

Next, differentiatingV’,,; , substituting the closed loop dynamics (26), the tuning law (27),

and applying the skew symmetric property reveals

V".NNz—Lé?KHé.,—L ,+—H e 7w, =)y + Ztr{W w, W)}+— r¢ (A7)

Je /c
J a J / /
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Now, combining (A.6) and (A.7), substituting the robustifying term (25), and recalling

e =[ef é;] along with noting tr{WT W, - W)}<“W“ “W“ and Assumption 3
reveals
7y <fef +fe H{ o 71+ ]€M+K A |+, H) P LR )

: . . A K. K.
whereT’, :mlr{kj2 Eishy s G ks | a} Next, adding and subtracting Hej“z[ 5”4 + é"z],

H)?ﬂ H2 K ,,Q 1M/2 and HX/2H QJZM /(ZKM) , along with completing the squares with

respect to the terms containing toHW/.HFHEjH , HX /"HHEJH , andHX fz‘méfu , Vj’ can be rewritten

.
1= o - AR - e
{r —@—%jua\r—%m R s
o [ K[ S

Finally, combining (A.8) and (A.2) and completing the squares with respect

to HEH and WH reveals
J J F

L F ) 2, -
] S—?] éj“z _%(Kjal _Kjo3 _% _w]“){ﬂ”z _?ljoz(Kﬂﬁ _Ejo - ]22M )‘Xﬂ“z

i N, b~
o LT AR
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where T, =T,-K,,/2-K,,/2 and 5 =5, +(WMK1+{§W) +K2WM with 7, defined
o 32a;T, 2a,

earlier. ~ Recall that 7,can be made arbitrarily small by increasing the design

parameters K ,,, K,,,, K,;, k,andk,,. Observing the definition of 7, above,

increasing f]. and «; allowsn, to be further reduced. Therefore, (A.9) is guaranteed to be

negative when T[>K,,[2+K,/2, K,>K,+1/2+K /2, K, >E +Q,, [2and

“jol

K, >N, /(24,,) one of the following inequalities is satisfied

A

¢

2n, ~ 2n, ~ 2K 1.
> \/1? or HXJIH > \/(Kjo1 1/2j KJU4Q§1M /2) or HXJZH > \/(Kjo3 — j—(jZZZM /2) (AIO)

~ 2a.1, ~ 2K ..n.
or 7, 22 o [T, [

Note that the bound on Hélu can be made arbitrarily small by increasing f/.

through the design parameters. Therefore, I7j < 0 outside of the compact set, and it can
be concluded that the kinematic and dynamic tracking errors éj , the NN weight
estimation errors VIN/J , the observer estimation errors X i X j» and the NN observer weight
estimation errors, Vl7j0 are all UUB.

Proof of Theorem 3 (Leader Robot Control): Consider the following positive

definite Lyapunov candidate

V.=V, +V, (A.11)

where =—(e,1+e,2)+L(1 cose,3)+LeTMe +Ltr{W E'W,) and
kiZ 2al 2 l

1~ ~ 1=
V., = 2XT 02X,1+2X£X,2+ t{WZF;lW Differentiating ¥, and substituting the closed
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loop kinematic and dynamic error systems (32) and (35), respectively, as well as the NN
weight update law (37) for control reveals

. ks, +1) . 1 ) .
Vi S_kileizl _Bk—zsmz €3 ¢ TKz4e — ( 11" ""‘KzzNW"F Wine "W" =L ||eic||+|eil sine;3||€ ||p|| 2"
1 1 l

whereQ, =[1 0,0 1/k,,], and by selecting k,, >1, clearly ||Q,|| s V2. Completing the
square with respect to the terms containing HQ'HHVIN/ZHF and applying the bounds of

Assumption 3 with ||VK|| » SW,, for a known positive constant/v,, , V. can be rewritten as

of B, " -

where [, = minfk, , k, /k,,, k, /o;,}. Now, adding and subtracting H H and HX “ /2 and

—I

V,<-T,

i i

W, +4 5 7
() o2, i,

a

1

completing the square with respect to andHW H reveals

_e X w2 +4c,, ) kW
efi F 2” (’212 it é”lf;j )

Next, differentiating V) and substitution of the observer error dynamics (29) and NN

tuning law (36) reveals

KOS_Kioz(Kiol—K,voa)yﬂz_( N, (2+d)J~ H ZHWM‘F . (A.13)
2 F

where the facts||Sl.|| » SA2+d, andHWmHF <W,,, for a known positive constant W, ,, were

utilized and 7, 1s a defined as

) 2
(( Nio +Ki01VV[oM) +4§loBKiolKi02J N (2+dl_)§;33
32Ki012Ki02 (Kiol _Kio3) 2(Kja3 -N, (2+di)/(2K02 ))

_ 2
N, = + Kio2VVioM :
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Remark A.1: The steps taken in the formulation of (A.13) are identical to the
formulation of (A.2) and therefore, are not repeated here.

Finally, combining (A.12) and (A.13), 17, can be written as

éi" V"di Koz(K; Ku3)

2 Ky
2%

N,(2+d) > > K
s X =
ZK;'UZ 4

, and (A.14) is less than zero as long as the

+77(A 14)

Ki W2 +4§le +Ki2VVi1%/I

wherery, =1, + ( 32a2(T, ~1)

control parameters are selected as K, >K,,, K ,>N, (2+d,)/(2x,,)+1, T, >1and one of

i03° i03

the following inequalities holds

o[ 2 % 21 X =
el.1> m or "X11"> m o "Xiz">\/Kio3_(N- (2+di))/(2’<mz)_1 (A.15)
- 4n 2077
W
o o

Thus, (A.14) is negative outside of a compact set, and it can be concluded that the

observer estimation errors X i X, ,, the position, orientation and velocity tracking

1

errors a and the NN weight estimation errors of the observer and the dynamic controller,

~ ~

W, ,W., respectively, are all UUB. Observing the bounds in (A.15), one can see that the

system errors can be minimized by increasing controller gain parameters.
Proof of Theorem 4 (Formation Stability): Consider the following Lyapunov

candidate

o7

N_
:ZV
1

~.
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wherel?} and/, are defined by (A.4) and (A.11), respectively. In Theorem 2, sufficient

. N .
conditions where found to ensure V, < 0; thus, it followsZVJ < 0if the provisions of
1

Theorem 2 are satisfied for every j =1,2,3,..N . Similarly, Theorem 3 derived adequate

conditions to ensure/ is less than zero. Combining these results reveals VU is less than

zero outside of a compact set, and the stability of the formation follows.
The stability of a formation for the case when follower j becomes a leader to

follower j+1I follows directly from Theorem 2 and the positive definite Lyapunov

" J+l

candidate V', = ZVJ Wherel7jis defined in (A.4). In this case, follower j becomes the

! J
reference for follower j+1, and thus the dynamics of follower j must be considered by
follower j+1. Since the dynamics of follower j incorporates the dynamics of leader i,
follower j+1 inherently brings in the dynamics of leader i by considering the dynamics of

follower j.

Proof of Theorem 5 (Follower Obstacle Avoidance): Consider the Lyapunov

candidate
71T, T 7, e
| — 1 o — . 1 ~ ~ .
with 7, :E(ef‘o1 +e,) VjNN:Temej jco+ftr{VK7F‘VK) and ¥, defined in (A.1).

“jo “jo

Differentiating 17_/’ and applying similar steps and justifications used to formulate (A.9)

reveals
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where7;,, is a computable constant defined as

- ((45,% R T U e A T ((,2 () ]
"2 32T, 4y KKy 1) KoK 2] Kl K (o 2K,0)
whereT, =T, —K,,/2~K,,/2andT, =minft,,k ,,k,, /@, |. The inequality (A.17) is

/2,K,>K +1/2+K, gf /2,

jo2 jol jo3

less than Zero provided r,>K,,/2+K

K.

jo3

>E, jZM /2 and «,, >N, /(24,,)and one of the inequalities in (A.10) holds
withéj NOEN/ andF replaced by ejo, Qoo andfjo, respectively. Therefore,

V <Ooutside of a compact set, demonstrating the stability of e consisting of the

()7

position and estimated velocity tracking errors, the NN weight estimation errors VIN/j, the

~

observer estimation errors X P X, ;» and the NN observer weight estimation errors, W,

for the follower j in the presence of obstacles. Additionally, the convergence of the
estimated velocity tracking error and observer estimation errors to a compact set implies
that the actual velocity tracking error converges to a compact set as well.

Remark A.2: If the above conditions are satisfied for every

N .
follower j =1,2,3,...N , it followsZVj’SO. Combining this result with Theorem 3
1

reveals the entire formation is UUB in the presence of obstacles. Furthermore, the

stability of a formation in the presence of obstacles for the case when follower j becomes
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_
a leader to follower j+/ follows directly from the Lyapunov candidate V"= ZV_/
J

where 7/ is defined in (A.16).
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3. Output Feedback Control of a Quadrotor UAV using
Neural Networks'

Travis Dierks and S. Jagannathan

Abstract—A new nonlinear controller for a quadrotor unmanned aerial vehicle (UAV) is
proposed using neural networks (NN) and output feedback. The assumption on the
availability of UAV dynamics is not always practical, especially in an outdoor
environment. Therefore, in this work, a NN is introduced to learn the complete dynamics
of the UAV online, including uncertain nonlinear terms like aerodynamic friction and
blade flapping. Although a quadrotor UAV is underactuated, a novel NN virtual control
input scheme is proposed which allows all six degrees of freedom of the UAV to be
controlled using only four control inputs. Furthermore, a NN observer is introduced to
estimate the translational and angular velocities of the UAV, and an output feedback
control law is developed in which only the position and attitude of the UAV are
considered measurable. It is shown using Lyapunov theory that the position, orientation,
and velocity tracking errors, the virtual control and observer estimation errors, and the
NN weight estimation errors for each NN are all semi-globally uniformly ultimately
bounded (SGUUB) in the presence of bounded disturbances and NN functional
reconstruction errors while simultaneously relaxing the separation principle. The

effectiveness of proposed output feedback control scheme is then demonstrated in the

! Research Supported in part by GAANN Program through the Department of Education and Intelligent Systems Center. Authors are
with the Department of Electrical and Computer Engineering, Missouri University of Science and Technology (formerly University of
Missouri-Rolla), 1870 Miner Circle, Rolla, MO 65409. Contact author Email: tad5x4@mst.edu.
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presence of unknown nonlinear dynamics and disturbances, and simulation results are

included to demonstrate the theoretical conjecture.

Index Terms — Neural network, Quadrotor UAV, Lyapunov method, Output feedback,
Observer

[. INTRODUCTION

Quadrotor helicopters have quickly emerged as a popular unmanned aerial vehicle
(UAV) platform in the last several years. Besides applications like surveillance and
search and rescue, the popularity of this platform has stemmed from its simple
construction as compared with conventional helicopters. For example, a quadrotor UAV
employs fixed pitch rotors so that its rotor speed can be adjusted to achieve control as
opposed to mechanical control linkages used in conventional helicopters. Thus, a
quadrotor UAYV is easier to build and maintain [1].

The dynamics of the quadrotor UAV are not only nonlinear, but also coupled with
each other and under actuated; characteristics which can make the platform difficult to
control. In other words, the UAV has six degrees of freedom (DOF) with only four
control inputs consisting of thrust and the three rotational torque inputs. To solve the
quadrotor UAV tracking control problem, many techniques have been proposed [2-10]
where the control objective is to track three desired Cartesian positions and a desired yaw
angle.

In [2], a state-dependent Riccati equation-based control scheme was developed
using the small angle approximation in order to derive the desired pitch and roll required
for velocity tracking. In contrast, the authors of [3] design a controller using backstepping

to track the three desired Cartesian positions and a yaw angle while stabilizing the pitch
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and roll angles. Then, in [4], saturation functions are employed in the development of the
control inputs obtained via backstepping approach. A drawback of these controllers [2-4]
is the need for full state measurement and knowledge of the UAV dynamics a priori
while the dynamics like aerodynamic friction are either simplified or ignored altogether.
It was shown in [1] that the above simplifications are valid only at very low speeds such
as hovering while the aerodynamic effects can become significant even at moderate
velocities causing instability of the UAV.

On the other hand, in [5], a sliding mode observer is introduced to estimate the
translational and angular velocities of the UAV. In addition to the UAV velocities, the
authors in [6] propose a sliding mode estimator of external disturbances such as wind and
model uncertainties. Then, using virtual control inputs and the arcsin function, the
desired pitch and roll of the UAV were defined to track. Although the use of the arcsin
function provides a natural saturation of the desired angles, arcsin becomes undefined

when its argument is outside the range defined by [—1,1], and provisions to ensure the

aforementioned scenario does not happen are not guaranteed by [6]. In [7], an output
feedback controller is achieved by strategically introducing a constant term into the
filtered tracking error which is normally defined as a function of the position and
translational velocity tracking errors, respectively. The introduction of the constant term
is then utilized in the design of an auxiliary control input for the translational velocities
whereas the system nonlinearities have to satisfy a linear in the unknown parameters
(LIP) assumption. In [8], an adaptive observer is proposed to recover the speed of the
UAYV using accelerations, angle measurements, as well as measured angular velocities.

Thus, the estimation relies on an accurate inertial measurement unit besides needing a
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stringent persistency of excitation (PE) condition [12] to guarantee performance which is
very hard to satisfy in practice.

In [9] and [10], the approximation property of NN [12] is applied to learn the
dynamics of the quadrotor UAV. However, in both cases, the NN’s are trained
completely offline with experimentally collected data. A study evaluating the
performance of NN’s applied to UAV models which were trained offline and NN’s with
online learning was performed in [20]. This study verified several well-known properties
of online learning versus offline training. Offline training allows for large amounts of
data to be analyzed since computation time in not a critical issue although offline data
collection is expensive. Moreover, models which are properly trained offline are often
robust to small variations in the system but fail to adapt to larger changes in the system.
Further, an offline scheme alone does not allow the NN to learn any new dynamics it
encounters during a new maneuver. In other words, in dynamical environment, such as
an outdoor setting with changing wind conditions, certain modes of the UAV dynamics
may not be excited all the time (e.g. blade flapping, drag, etc.). Under this scenario, an
offline trained NN may not render a satisfactory performance. In contrast, NN models
which learn online quickly adapt to variations in the nonlinear behavior of the system in
real time with no prior knowledge. Also, it is not practical to collect data for every
operating scenario since UAV’s often operate in dynamic environments.

Therefore, in [21]-[22], NN approaches are proposed to learn the dynamics of the
UAYV online while assuming full state feedback. In contrast, this paper seeks to remove
the assumptions of full state measurement and knowledge of the UAV dynamics. First,

by observing the natural constraints of the underactuated system [11], a novel NN virtual
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control input is developed for the roll and pitch, which not only ensures that they remain
within a stable operating region, but also guarantees that the UAV tracks the specific
velocity command required to follow the desired trajectory. The virtual control input is
well defined and provides a means of controlling all six DOF using only four control
inputs. Additionally, the physical meaning of the virtual control inputs can be linked to
the types of trajectories that can be successfully tracked. Next, the inputs of the
dynamical system are calculated by utilizing the approximation properties of NN to learn
the dynamics of the UAV online, including unmodeled dynamics like aerodynamic
damping and blade flapping [1] while relaxing the LIP assumption.

Finally, a NN observer is utilized to estimate the translational and angular
velocities of the UAV so that an output feedback control law can be realized. All NNs
are tuned online to allow adaptations to changes of the UAV dynamics and the operating
environment. It is shown using Lyapunov theory that the position, orientation, and
velocity tracking errors, the virtual control observer estimation errors, and the NN weight
estimation errors of each NN are all semi-globally uniformly ultimately bounded
(SGUUB). Further by considering the NN observer errors in the same Lyapunov
candidate as the UAV tracking errors, the separation principle is also relaxed. Simulation
results are also presented to verify the controller in the presence of unmodeled nonlinear
dynamics and random disturbances.

Linear models obtained from nonlinear systems are generally valid near a specific
operating point [12], and for the UAV, the operating point is generally chosen near the
hovering configuration [23] which may not be acceptable for dynamical outdoor setting

with changing wind conditions. Therefore, the contribution of the proposed NN output
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feedback controller include: 1) a novel nonlinear NN-based controller is developed for
hovering or tracking time varying trajectories that are not near the hovering operating
point; 2) explicit knowledge of the nonlinear dynamics is not required; 3) using output
feedback, the number of sensors/states required to implement the controller is reduced
while still guaranteeing performance and stability; and 4) the NN relaxes the LIP
assumption which is required for adaptive controllers.

This paper is organized as follows. In Section II, the required background
material is presented, and the dynamic representation of the UAV is identified along with
the constraints associated with the underactuated system. Next, the novel dynamic output
feedback tracking controller is developed and verified in Sections III and IV,

respectively. Finally, concluding remarks are provided in Section V.

II. BACKGROUND

A. Quadrotor UAV Dynamics
Consider the quadrotor UAV shown in Fig. 1 with six DOF defined in the inertial
coordinate frame , E°, as [x,7,z,6,0,w]" € E* where p=[x,y,z]' € E* are the
position coordinates of the UAV and ®=[¢,0,p]" e E* describe its orientation and are
referred to as roll, pitch, and yaw, respectively. The translational and angular velocities

are expressed in the body fixed frame attached to the center of mass of the UAV, E” , and

the kinematics of the UAV are written as

P =Ry (1)
and
O=Tw. (2)
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y Coordinate
z Frame

Fig. 1. Quadrotor helicopter.

The matrix R(®) € R is the translational rotation matrix which is used to relate
a vector in the body fixed frame to the inertial coordinate frame defined as [2]

CoC,  S484C, —CyS,  C4S4C, 5,8,
—R=— _ 3
R(O)=R=|cys, $455,+C,C, €485, =5,, 3)

-5, 84Cy C4Cy
where the abbreviations s,, and ¢, have been used for sin(e)and cos(e), respectively. It

is important to note that ||, =R, for a known constantR __, R =R", R =RS(®)

max max *

and R” = —S(w)R" where S(e) e R*"is the general form of a skew symmetric matrix
defined in [7] which satisfies the skew symmetric property [12],w'S(y)w=0, for any
vector we R’ andy € R*. It is also necessary to define a rotational transformation matrix
from the fixed body from to the inertial coordinate frame as [7]

Los,t, ¢ty 1 0 -5,

7@ =T=0 ¢, ~-s, | T7=[0 ¢, s4 (4)

0 s,/c, ¢,/c, 0 -5, c4e
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where the abbreviationz, has been used for tan(e). The transformation matrix 7' is
bounded according to ||T ||F <T,.for a known constant7 __ provided —(z/2)< ¢ < (7/2)
and —(z/2)< 6 < (z/2) [15].
Next, the dynamics of the UAV in the body fixed frame can be written as [7]
| R
M{qu(a)){v}{N‘(v)}{G( )}+U+r‘,, (5)
@ | [ N)(o) 05
where M =diagimL,J}eR™, S(w)=diagi-mS(®),S(Jo)}eR*™®, U=[0 0 u, u.]" eR°
and m is a positive scalar that represents the total mass of the UAV, J e R’ represents

the positive definite inertia matrix. The vector v(¢) =[v,,, v, v, 1" € R’ represents the

translational velocity, (¢)=[w,,0,,0,]" € R’ represents the angular velocity,

yb>
N.(¢) e R, i=1,2, are the nonlinear acrodynamic effects, u, € R' provides the thrust
along the z-direction, wu, =[u, u,, u,;]" € R provides the rotational torques,
r,=[r},,7;,]" eR°and 7, e R, i=1,2 represents unknown, bounded disturbances such
that||rd ||<TM for all timet, withr,, being a known positive constant. Additionally,
I, €R™is an nxn identity matrix, and 0, , € R"™ represents an mx/ matrix of all
ZEeros. Furthermore, G(R)e®R’ represents the gravity vector defined as
G(R) =mgR" (®)E_ where E_=[0,0,1]" is a unit vector in the inertial coordinate frame,
andg=9.81m/s".

The control inputs to the UAV, u,andu,, represent the thrust and torques,
respectively, generated by the angular speeds of rotors, @, i =1,2,3,4, and are related to the

thrust and drag factors by the following relationship [4]
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4

4 i+
w=—c,y @ , u,=[de(@; -m}), de(@ —@3), ¢,y (D@1 (6)

i=1
whered is a positive scalar representing the distance from the epicenter of the quadrotor

to the rotor axes, c,is a positive scalar representing the thrust factor, and c, is a positive

scalar representing the drag factor.

Remark 1: Once the control inputs to the UAV have been determined, the
relationship in (6) can be used to determine the required rotor speeds in order to achieve
the desired thrust and rotational torques. Several authors, [3] and [6] for example, have
considered the tracking control of the rotors assuming DC motors drive them. However,
in this work, we are concerned with deriving the required thrust and rotational torques as
in [2], [4], [7], and [9], respectively.

The nonlinear effects due to aerodynamic damping, D ,(¢) € R® [7] are modeled

as
(d, +d,|v, 0 0 0 0 0 fv,]
0 dy+dfv,| 0 0 0 0 v,
0 0 dy+d 0 0 0
D,(6)= 5 6V Vi
0 0 0 d,+di|o, 0 0 ®,
0 0 0 0 dy +d |, 0 o,
|0 0 0 0 0 dy, +d|o.|| o, |

whered, ,i=1,2,...12 are the damping coefficients. Additionally, blade flapping effects

are considered which result from differences between the effective velocities of the rotor
relative to the air. As a consequence, a difference in lift between rotors is observed
causing the rotor blades to flap up and down once per revolution. Furthermore, flapping
of the rotor blades tilts the rotor plane away from the direction of motion, thus affecting
the thrust and rotational torques of the UAV and ultimately it’s tracking ability.

Specifically, blade flapping creates a longitude thrust7,, = 7. sina; whereT,is the thrust
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generated at rotor 7 and ¢ is the angle in radians [rad] by which the thrust is redirected at
the rotor and is dependent the translational movements of the UAV as well as the wind
conditions. Further, for stiff rotors which are commonly utilized in a quadrotor UAV,

blade flapping results in a moment being generated at each rotor hub as M, = k ;a, where
k,is the stiffness of the rotor in Newton-meters per radian [N-m/rad]. For complete

details on blade flapping and its full effects, please refer [1].

As shown in (6), the state of each rotor is related to the total thrust and rotational
torques which drive the dynamics of (5). Therefore, in this work the effects of blade
flapping at each rotor will be combined as single nonlinear disturbances to the quadrotor
dynamics (5). For the translational velocities, blade flapping results in thrust being
redirected longitudinally while the lifting force is reduced. Therefore, the disturbances in

the x and y directions are modeled as 7, , =T sina, the reduction in thrust in the z
direction is taken as 7, =T7(1—cosa), and the disturbance to the angular velocity vector
is written asM, =k, whereT =u, and «is the angle at which the total thrust is

redirected, respectively. The total nonlinear aerodynamic effects in (5) are then written

as

[%12((2)} = [%j =D,()—[u;sinad u sina u,(l-cosa) ko kya kﬂa]r c RO (7)

B. Constraints of the Underactuated System

Examining the UAV dynamics (5), it becomes clear that the translational velocity

dynamics form an underactuated system where onlyv_,is controllable through u,.

Ignoring disturbances and the nonlinear dynamics N,(v), the constraints associated with
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the pitch and roll for the underactuated translational velocity dynamics were derived in

[11] by observing v = R" p — S(w)v along with (5) and were found to be
0=atan((c,i+s,7)/(:-g)), p=atan((s,i—c,¥)/(s,c,i+5,5,+c,((-g)) (8)
The above constraints reveal an important property about the UAV during stable

flight conditions. First, note that for certain combinations of X, ¥, Z, andy , the pitch and
roll angles approach +7/2 and thus R and T become singular. Therefore, the UAV
becomes unstable, and it can be concluded that certain maneuvers are not achievable
during stable conditions. These natural constraints will be exploited in the upcoming
development of the virtual control inputs which will allow the UAV to track the desired
trajectory.
C. Neural Networks
In this work, two-layer NNs are considered consisting of one layer of randomly

assigned constant weights V,, € R“" in the first layer and one layer of tunable weights

w, e R in the second witha inputs, b outputs, and L hidden neurons. A compromise is

made here between tuning the number of layered weights with computational complexity.

The universal approximation property for NN's [12] states that for any smooth

function £}, (x, ), there exists a NN such that £, (x,) =W, o(V, x, ) + &, wheree, is the
bounded NN functional approximation error such that|le, [ <e,,, and () : R* — R"is the

activation function in the hidden layers. It has been shown that by randomly selecting the

input layer weights V,, the activation functiono(x,)=o(V, x,)forms a stochastic

basis, and thus the approximation property holds for all inputs, x,, € R“, in the compact
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set S[12]. The sigmoid activation function is considered here. Furthermore, on any
compact subset of R”, the target NN weights are bounded by a known positive value,

W, , such that ||WN || » <W,, [12]. For complete details of the NN and its properties, refer

to [12]. In this effort,

|| and |||| - will be used as the vector and Frobenius norms [12].

Next the definition of the semi-global uniformly ultimately boundedness is introduced.
Definition 1: The equilibrium point x, is said to be semi-global uniformly

ultimately bounded (SGUUB) if there exists a ball centered around the origin with an

arbitrary radius » S(0,7) =S, < R" so that for all x, € S, there exists a bound B > 0 and
a time 7'(B, x,) such that ||x(r)— x| < Bfor all #>7,+T . Further, if S, =%R", the stability

result becomes global uniformly ultimately bounded (GUUB) and holds for all x, € R”

[16].

III. NEURAL NETWORK OUTPUT FEEDBACK TRACKING CONTROL

The overall control objective for the UAV is to track a desired trajectory,
p,=lx,v,,2,] eE‘, and a desired yawy, € E“ while maintaining a stable flight

configuration. The complete knowledge of the UAV dynamics and velocity information
is required to complete the control objective; however, in this work, the translational and
angular velocities are considered to be not measurable and full knowledge of the
dynamics is not available whereas the constant mass and moments of inertia of the UAV
are assumed known similar to [2]-[9]. Therefore, the universal approximation property
of NN is utilized in the design of the observer, virtual controller, and the dynamical

controller. Knowledge of the mass is required for the dynamic control law whereas the
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mass and moments of inertia are needed for the observer. Future effort will seek to relax
these assumptions.

The proposed NN observer estimates the UAV velocity vector which is required
by the control loop. The control loop, which consists of a kinematic controller, NN
virtual controller and a NN dynamical controller, uses the information provided by the
observer to generate the appropriate commands to complete the control objective. To
begin the NN output feedback controller development, the NN observer design is

considered first.

A. NN Observer Design

In this section, a NN observer is designed to estimate the UAV translational and
angular velocity vector without explicit knowledge of the dynamics (5). To begin, define

new augmented variables X =[p” ©"]" eR®and V =[v" »"]" e R® whose dynamics are

given by (1) and (5), respectively, and rewritten as

X =AW +& )
V=f(x)+G+M'U+7,

where & € R°represents bounded sensor measurement noise such that ||§1 || <¢, fora
known constant &,,, f.(x,)=M"(S(@V +[N,(v) Ny(@)]) with x=V, G =M "'G(R)eR®,
= — 177 FT 97 _ Ty -1 1T k¢ and
7y = (74T ) = [r4/m,(J7'7,,)" ] e R an

A= A= [(I); o%ﬁ} . (10)

Remark 2: In [13] and [14], observers were proposed utilizing adaptive fuzzy

logic and a NN, respectively, and by defining a change of variables. In both these



124

approaches, 4 is the identity matrix, while in this work, 4a time varying, nonlinear

matrix as a result of the relationships observed in kinematic equations (1) and (2).

Next, define a change of variable as Z =V, whose derivative with respect to time

Then, define the NN observer estimates of Xand ¥ as X and Z,

is given by (9).
respectively, as well as the observer estimation error X = X — X . The proposed observer

then takes the form of
)_;(:AA+K01)? (11)
Z2=f,+G+K, A" X+M'U

where K and K , are positive design constants. From the definition of the transformation
matrix 4 in (10), it is observed that 4~'can be calculated using R™' = R" and T 'in (4).

Further, there exists a positive constant 4, such thatHA*IHF < A;,. The observer velocity

estimateV is then written as
(12)

V=p" o' =Z+K,A'X

where K, is another positive design constant. Noting Z =V — K03A’1)~( from (12) and

(13)

the definition of Z above, the observer error dynamics of (11) can be formulated as

)? = AV—(KOI _K03)i+ 51
Z = (jpg + (AT - K()3A71 ))}:) - fA;)] - 1(021471)?v - (AT - K()3A71 ))}: + fd

after adding and subtracting (4" — K ,A™' )X .
In (11), the universal approximation property of NN [12] has been utilized to

estimate the unknown function £, (x,)=f,(x,)+(4" =K A")X by constant ideal
and written

0

bounded weights W, ,V" such that HWU HF <W,, for a known constant W,
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as f,,(x,)=Woc(Vx,)+¢e, where ¢ is the bounded NN approximation error such
that”go” <¢&,,for a known constant¢,, . In addition, it was shown in [24] that if the

number of hidden layer neurons is sufficiently large, the reconstruction error can be made

arbitrarily small on a compact set. In practice, the values for W,, and ¢,, are selected

based on properties of the dynamics being approximated and the number of hidden layer

neurons being used. Additionally, the values for W, and ¢,, are not required to be

known for the controller design whereas if the values are available, one can calculate the

error bounds which will subsequently be derived in Theorem I. The NN estimate of
1 (x,) 1s written as J}ol =W'o(V'x,)=W'é, where W'is the estimate of W, and

X,is the NN input written in terms of the observer velocity estimates
ask =[1 X" v X"1".

Moving on and noting/ =V — V=27- K03A"1)~( , adding and
subtractingW o(V'%,), and using (13), the observer estimation error dynamics of (12)
take the form of
V=(f, + (A" =K AK) =W oV 2,)+ W o %) - f, - 4" (K,, K \(K, ~ K )X

—A"X —K, V- AK & +7, (14)
=K,V +f, -4 (K, K (K, ~K NX-A"X+¢&

where £, =W.6,, W.=W.-W,, & =¢ +7,—K A& +W,5, eR® and&, =0, - 6, .

Further, ||§2|| <¢,, where &, is a positive computable constant defined

as &y =&y, + MyTy  +K A&, +2W,, [N, where M, =M™ ||, a computable

constant, N, is the number of hidden layer neurons in the NN, and the
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fact”aU” < \/VO was used. Examining the error dynamics of (13) and (14) reveals that
X =0,V =0, andfol =0 are equilibrium points when ”681” =0 and ||fd|| =0. Next the

following theorem can be stated.
Theorem 1: (NN Observer Boundedness) Let the NN observer be defined by (11)

and (12), respectively, with the NN observer weights be tuned by
Vf/{) = F;)&()‘?T - K()IF;)VIA/O (15)
where F, = F >0andx,, >0are design parameters. Then there exists constant positive

K, andK,, whereK 6 >K,+(2N,)/x,. K,>(2N,)/x,, and

ol > o

design parameters K

ol>

K,=K.(K,-K,) with N, the number of hidden layer neurons, such that the observer

estimation errors X , ¥ and the NN observer weight estimation errors, VIN/O , are SGUUB.

Proof: Consider the following positive definite Lyapunov candidate

V=3 XTX o777 + el E W) (16)

|

whose first derivative is given by 7, =X TX 47T I7+tr{VI~/OTE;IV?{)}. Substitution of the
closed loop observer estimation error dynamics (13) and (14) as well as the NN update
law (15) reveals

Va = _)?T(Kal _Ko3)XNv+)?T§1 _VTK03I7+VT§2 _tr{nN/oT(Oto)?T _OA-OVT _Koll/f/a} :

Recalling |6,|< /N, , |W,|, <W,,, and noting u{# (W, —VIN/())}SHVIN/GHFWMU—HVIN{) ZF V can
then be rewritten as
Vo =R =K T ~KlFT P A I ] PN 7 e (1)

~

X|, andHV , (17) can be rewritten as

Now, completing the squares with respect to HVIN/O‘

Ia b
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01 T 2 7, (18)

°llF

V <_ (Kol _K03) _&
’ 2 Kol

I? K03 _
x| ‘(2 j
wheren, =x, W, + &5, /K, —K,,)+&,, /(2K ;) and is dependant on the bounds of the

sensor measurement errors, NN reconstruction error, disturbances and design parameters.

Finally, (18) is less than zero providedK, > K, + (2N, )/«, .K,>(2N))/x, ,

ol ?

the following inequalities hold:

4n,
O v o PP \/usz/z V) o

Therefore, it can be concluded [12] that Vo is less than zero outside a compact set,
revealing the observer estimation errors X,/ and the NN observer weight estimation
errors, ¥, , are bounded.

Examining the definition of7 , it is clear that the constant terms can be made
arbitrarily small by selecting x,, small, K , large, and K, — K , large. Therefore, since

the initial compact set can be made arbitrarily large by proper selection of gains, the

stability result becomes SGUUB [7].

B. Kinematic Control System

In this section, we derive the terms which will be used by the NN virtual

controller in the following subsection (and illustrated in Fig. 2 shown in Section III-D).

Namely, the desired translational velocity v, =[v,, v, v,.]" € E "is found to ensure the
UAV position converges to the desired trajectory (p — p,). Next, the desired pitch, 6,,
and roll, ¢,, are found to ensure the x- and y- components of the UAV translational

velocity track their respective desired values (v, —»>v,andv, —v, , respectively).
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Then, given the desired orientation, ®,=[d, 6, v,]" €E’, the desired angular velocity

w, € E” is then calculated such that® — @, .

To begin the development of the UAV tracking controller, we first define the
tracking errors for the position and translational velocity. For the position, define
e,=p,—pek”. (20)
Differentiating (20) and substitution of (1) yields the position error dynamics
é,=p,—Rv. (21)
Next, select the desired velocity to stabilize the position error dynamics as
Ve =V vy vl =R (p, +K e,) e E" (22)
where K | =diagik, .k, .k, .} € R*7is a diagonal positive definite design matrix all with
positive design constants. The translational velocity tracking error system is then defined
as
e, =le, e, e.1" =[vy vy vil —[vy vy v, 1" =v,—v. (23)
The desired velocity v, is a virtual control input to (21), and substituting (22) into (21)
while observingv =v, —e, , the closed loop position error dynamics can be rewritten as
e,=—K,, +Re,. (24)
Next, observing v, =-S(w)v, +R"(p, + K ,(p, —Rv)), the translational velocity
tracking error dynamics are formed by differentiating (23), and substituting the

translational velocity dynamics in (5) to obtain

é,=v,—v= —%N,(V)—S(a))ev —%G(R)—%ulEz +R"(p,+K,p, -~ K, R)—7,,. (25)
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Now write (3) in terms of the desired orientation angles,®,, and defineR, = R(®,).
Finally, we add and subtract G(R,)/mandR;(p, + K ,p, — K ,Rv) where v is the observer
estimate of the translational velocity to yield

é, =-S(w)e, — % G(R)+Ry(p,+K,p, —K RV+ [, (x.,)) - %u,EZ -7, (26)
where
fulx,) = Rd(—’LNl(v) —%(G(R) ~GR))+(R-R) (P, +K,p,) —RTKpRv+R§KpR\3j (27)
is an unknown function rewritten as £, (x,)) =[f.,, f.» f.s) €R°. In the next step, we

expand the velocity error dynamics (26) to get

e, _sgd
é, |=—S(@e, —g| Casy (28)
é, CouCoa
CoaCya CoaSya —Sg4 X, + kpxxd —Vau t fon 0
+ 1 840804Cya = CaSya SpaSeaSya ¥ CoaCya SpaCoa || Va T Kpy Ve = Vra + S |- . 0 -7,
C4aS0aCya ¥ SpaSya  CpaS0aSya T SpaCya €4aCoa || 24t Kk, 20 = Vps t+ fos U

where D, = [V, Vp, Vi3]’ =K, RVER’,
Examining (28), the error states,e, ande, , are not controllable by using the

control inputu,. Thus, e, ande, must be controlled through the states that are influenced

> Yvx

by the control inputsu,oru,. In this work, the pitch and roll are used to control the
translational movements of the UAV along x and y directions, respectfully, and thus, the

pitch and roll angles are treated as virtual control inputs to the underactuated portion of

the UAV error dynamics in (28).
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The key step in the development of the virtual control input for the dynamic
system is identifying the desired closed loop velocity tracking error dynamics. For
convenience, the desired translational velocity closed loop system is selected as

é, =—(K, +S(w)e, -7, (29)
where K| = diagik, cos(8,),k, , cos(¢,), k,}1s a diagonal positive definite design matrix
with eachk, >0, i=1,2,3. In the following development, it will be shown that
6,e(—n/2,n/2) andg, € (—x /2,7 /2); therefore, cos(d,) >0 and cos(g,) >0 for all
0,e(-n/2,n/2) andg, € (—x /2,7 /2),respectively.

Moving on, equating (28) and (29) and considering only the first two error states
renders

Xtk X, =V + o

— Sy CoCpu CouSya —Sa | . PR ke.cq | [0
T8l s +ssc C.S . S.8,.8 +C,C, S,C yd+pyyd_vm+f“2+kec 10
™ gd w20 Cyd T C gl yd ¢l e yd ¢d = yd w-ad | o . ~ v2&vy T dd
Zq +kpzzd —Vrs S

(30)

Then, applying basic math operations, the following relations hold.

S&j(éd +k,m2d — V3 _g"‘fcls)zcad (CW (xd +k,atxd Vi +fc11)+sw (j}d +kgf).)d — Vg +fc12)+kvlevx) (3D

Ca(Coa (g Tk 3y = Pas + o) = 8,0 (Fy + Kooy = Vs + [+ ke, )= (32)

S4(gCy —swcw(éd +kpzz'd — Vs + a3) 88,0 (Vg +ij/d — Ve + dz)—sgdcw()'éd +km5cd Vi + 1)

Since the velocity vector is not measurable in this work, the velocity tracking

error (23) cannot be used in the definition of the desired pitch and roll angles. Therefore,
define the estimated velocity tracking error using the observer velocity estimates as

e,=le, e, el =v,—V=v,—(v-V)=¢, +V (33)

where v is the observer estimation error for the translational velocity. Using (33) and

considering (31), the desired pitch angle, 8, , is found to be
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0, = atan(cy/d(id Fhpda =V o) ¥ S Fa Ry Vo =V ¥ Sor) +kvlévxj (34)
d . . A ~,
24 +kpde V3 _g""fcn

where a tan(e) is the arctangent function. Next, using (32), the desired roll angle, ¢, can

be written as

4 =ata|£ C.,d@d +k,qv).)d Vo +fc12)_Syd(jed +kpc'>.cd —Vp + S l)+kv2évy J (35)

86 —Cau(Z, +k,aZ.d Vs +fu13) —=SaS,u(Va +k;y.)‘}d Vg + o) —=SauCa(Xy +kpcxd ~Vp + 1)
In (34) and (35), the approximation properties of NN were utilized to estimate the

cl>’ cl

unknown function £, (x,,) = W o(V/x,)) + £, by bounded target weights W[ ,V| such that

.,

. Wy with#,,, a known constant, ande,, is the NN approximation error that

satisfies ||861||£5MC1 for a constant ¢,,,. The NN estimate of f,, 1is written as

A A

7 5T Ta 5T A T A T a 5T A AT 7 7, > AT T -
Ja =W, O-(Vcl xcl): WaG,=Wii6a War6 Wasoal =1/ Jfan Jfas] where Wcl is the

cl

NN estimate of W1, W' i=1273 is the i"row of W/ andx_ is the NN input written

asx, =[l p! prvie” X'.
Remark 3: The expressions for the desired pitch and roll in (34) and (35),
respectively, can be viewed as virtual control inputs, and they lend themselves very well

to the control of quadrotor UAV. First, the expressions are well defined since
a tan(e) has a domain of R compared to asin(e) which has a domain between -1 and +1.
Second, the expressions in (34) and (35) are naturally saturating and will always produce
desired values in the interval (—z/2,7/2) of the UAV. Finally, the virtual control
inputs provide the types of desired trajectories that can be tracked in the steady state.
Examination of (34) and (35) reveals that there exist desired trajectories which will result

in operating regions near the unstable operating points of the UAV since
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a tan(e) approaches + /2 as the input of a tan(e) increases. Additionally, large values of
k, andk,, can push an UAV toward instability.

Now that the desired orientation of the UAV has been specified, the desired

angular velocity,w,, can be found to ensure the UAV orientation converges to the
desired values (¢ — ¢,, @ > 0,, andy — ) which is considered next.
To begin the development of @, , first define the attitude tracking error as
eo=0,-0ckE" (36)

where dynamics are found using (2) as

¢ =0,-To. (37)
In order to drive the orientation errors (36) to zero, the desired angular velocity, @, , is
selected as
w,=T"'(®, +Kyey) (38)
where K, = diag{ke,, ke,, koss € R is a diagonal positive definite design matrix with
eachky, >0, i=1,2,3. Then, define the angular velocity tracking error as
S (39)

and observingw =w, —e,, the closed loop orientation tracking error system can be
written as

éy =—Kgey +Te, . (40)

Examining (38), calculation of the desired angular velocity requires the

knowledge of ®,; however, ©,is not known in view of the fact thatv and j‘cl are not

available. Further, in the development of u, in the following section, it will be shown
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that @,1s required which in turn impliesxg and fcl must be known. Since these

requirements are not practical, the universal approximation property of NN is invoked to

estimate @, and @, using a NN virtual controller which is considered in the following

subsection.

Remark 4: In [22], the authors use inverse kinematics to define the desired pitch
and roll angles which are found to be arctangents of NN estimates. To implement the
control law derived in [22], a derivative of the NN estimate is required similar to our
work; however, even a single derivative of the NN output is difficult to obtain since
differentiating the NN input often introduces additional unknown dynamics. The effort in
[22] does not provide insight into how this NN derivative is obtained. In contrast, our
approach also defines the desired pitch and roll using the arctangent function whose
argument contains a NN estimate, but the argument of the arctangent function here is
fundamentally different from [22]. Further, the need to differentiate the NN output twice

is avoided in this work by using the NN virtual controller.

C. NN Virtual Control Development
In this section, the information provided by the kinematic controller derived in
Section III-B is used to calculate the desired angular velocity using a NN virtual
controller. To begin the development, we rearrange (38) to observe the dynamics of the
proposed virtual controller when the all dynamics are known as

0, = T(a, - T'Kyey) ) _ (41)
@, =T (O, +Kgeo)+T (O, + Koéy)

For convenience, define a change of variable asQ, = @, — T~'K 4e, , and (41) becomes
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=1, ) (42)
Tﬁl@d + Tﬁ]®d = fa(xo) = fo

0,
Q,
Next, define the estimates of ©,andQ,as O,andQ),, respectively, and the

~

estimation error as ©, =0, —@d. Then, the dynamics of the proposed NN virtual
control inputs become

Qd =7Q, + Km@d (43)
Qd = fm +K92T_l®d

where K, and K, are positive constants. The estimate @, is then written as

@, =Q, +T'Kyeo + Ko, T7'0, (44)
where K ,,is another positive constant.  Observing®, =, —®, =Q, — K,,T C) 4o
subtracting (43) from (42), as well as adding and subtracting T ie) 4 andeT o) 4> the
virtual controller estimation error dynamics are found to be

TNd — (K _Km)@d . (45)

(jjd =
ﬁd - (fQ +TT€)d _KmT_l(:)d) _f91 _KmT_l@d _TT@d +K93T_1@d

In (43), universal approximation property of NN has been utilized to estimate the
unknown function f,, (xy) = fi, +T'0, - Koy0™'®, as fo(xg) =Wl oVlx,)+ &, by target
weights W,V such that HWQHF <w,,for a known constant W,, andé,is the NN
approximation error such that ”89” < &y, for a constant ., . The NN estimate of fis

written as fy,, = Wl o(V ] %,)= W. 6, where W, is the NN estimate of W, and %, is the NN
input written in terms of the virtual control input estimates and the NN observer velocity

estimates. The NN input is selected as %, =[1p, p p) pI @) QL v’ 07" .
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Next, adding and subtracting W,, 6, to the derivative of @, , the estimation error
dynamics of (44) are found to be

&, =Koy, + for =T (Koy = Koy (Ko —Kp3))0, —T70, + &, (46)

where 1, =W, 6,, Wi =W2-Wl, & =c,+W.5,, and &,=0,—8,. Furthermore,

||§Q|| <Eou with Eour a positive computable constant defined

as $oy = Equr +2WMQ\/N_Q where N, is the number of hidden layer neurons and the

fact”o-Q” < \/N_Q was used.

Examination of (45) and (46) reveals @d =0,0, =0, andijQI =0to be
equilibrium points of the estimation error dynamics. In the following theorem, it will be
shown that the NN virtual controller successfully estimates the desired orientation ®,
and angular velocityw,. The stability of the position, orientation and velocity error

systems will be considered in the following section where the dynamical output feedback
control law is designed.
Theorem 2: (Virtual Controller Stability) Let the NN virtual controller be defined

by (43) and (44), respectively, with the NN update law provided by

Wy = Fob,®) — koy Foll, @7)
where F, = F,, >0andx,, > 0are design parameters. Then there exists positive design
constants Ko, > Koy + (N ) Ky » Koy =Koy(Koy —Ko),  and Koy > (2N, )/,
where N, the number of hidden layer neurons, such that the virtual controller estimation
errors ®, , @, and the virtual control NN weight estimation errors, I7,, , are SGUUB.

Proof: Consider the following positive definite Lyapunov candidate
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T~ 1

Vo=50,'8, + 5@, 5, + %zr{WQT FoW,) (48)
whose first derivative with respect to time is given by
V,=0,"0,+a, @, + oW F;W,). Substitution of the virtual control closed loop
estimation error dynamics (45) and (46) as well as the NN update law (47) reveals

. ~ T ~ ~ ~ ~ ~ A ~ A ~ A
Vo ==0, (Ko —Kp)0, =Koy, @, + @, & —1rWg (6,0] = 60@," — KWy}

Observing”é'Q || < \/N_Q , ||WQ|| s <Wyfor a  known constant, W, , and
Wy Wy — W)} < HVIN/QHF Wie — HVIN/Q‘ i V,can then be rewritten as

VQ < _(Km _Km)H@dHZ _KmHa)de +Ha~)dHé:ﬂM +M‘\@d“HWQHF +M\\5d\\“WQ“F (49)

~ ~ 2
| O R A

Now, completing the squares with respect toHWQ‘ I o, and|@,| , (49) can be rewritten as
. Ny 12 (K Ng Vi~ 12 Ko ler |2
Vo < _(Km —Ko; _’(SJ@d _(293_,(;1)(% _%HWQHF T (50)

wheren, =k, Wi + oy / (2K,;) which is dependent on the bounds of the NN
reconstruction errors, target NN weights, and design parameters. Examining,7,, it is
clear that the constant terms can be made arbitrarily small by decreasing x,, and
increasing K, .

Finally, (50) is less than zero provided K, > K, + (N, )/x,, and K, >(2N,)/xq, »

and the following inequalities hold:

o 77 ~ 7 i~ 4n,
H®dH g \/(Km _ng_ NQ/KQI) o deH g (Km/z _QNQ/KQl) o HWQHF g TQT . (51)
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Therefore, it can be concluded using standard extensions of Lyapunov theory [12]

that VQ is less than zero outside of a compact set, revealing the virtual controller

estimation errors, 0 .-®,, and the NN weight estimation errors, WQ, to be bounded.

Examining the inequalities in (51), it is clear that the error bounds can be made arbitrarily
small by proper selection of the gains. In addition, the initial compact set can be made
arbitrarily large by proper selection of the gains, and the stability result becomes SGUUB
[7].

In the following section, the actual control inputs to the dynamics system (5) are

derived.

D. NN Output Feedback Control Law
In this section, the information provided by the NN observer, kinematic
controller, and NN virtual controller are used to derive the actual inputsu, and u, to the
dynamic system (5). The inputs u, andu, are calculated so that the desired lift velocity v,

and desired angular velocity @, are tracked and the overall control objective is met.

First, the thrust control input,u,, will be addressed. Consider again the
translational velocity tracking error dynamics written in terms of the observer velocity
estimates (28). The thrust control input is found by considering the dynamics of the third

error state e, 1in (28) as

u, =mk e, + M(CySpiCoa S gaSya Xy kX4 — Ve + fun) (52)

+m(c¢dS€dSy/d _chy/d)(j}d +kpyyd Vi t fu) +mc¢dc€d(2d +km2d Vet fu3 — &)

A

where[ £, fon, fosl =W 6., Wi,6., Wi.6,1is the NN estimate previously

defined in Section III.B. Next, the closed loop translational velocity tracking dynamics
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are formed by substituting the virtual control inputs (34) and (35) as well as the thrust
(52) into (26) and adding and subtracting R W[ &), to reveal

¢, ==S(@)e, ~K &, + RIWi6}, +&, _ (53)
= ~(S(@)+K,)e, — K7+ RIWI67, +&,

~ A

_ pTyT=T | pT - _
where &, =R, W6, +Rj&, Ty, W, =W

A

and o©,=0,-0,.

cl

Further

'dmax d max

HRdHF‘ =R, .for a known constantR and |£,[<é&,, for a computable

constant& , =R, &, +2I§,mamd\/ﬁs +M,r,, where M, was defined in Section III.A, with

N, is the number of hidden layer neurons.

Remark 5: In the formulation of (53), the expressions for the desired pitch and
roll (34) and (35), respectively, were first written in the form of (31) and (32), so that sine
and cosine of the angles could be substituted as opposed to substituting the arctangent
expressions directly into the sine or cosine function.

Next, the rotational torques,u,, will be addressed. First, the open loop angular
velocity tracking error system is formed by multiplying the angular velocity tracking
error (39) by the inertial matrix J, taking the first derivative with respect to time,

substitute the UAV dynamics (5) and adding and subtracting 7" e, to get

Jé,=Ja, —Jo=(Ja, - S(Jo)o—- N,(@)+T ey)—u,—7,,—T"e, (54)

= fia(x) =ty =7, —T'eq
where £, (x,,) = f., =Ji, — S(Jw)o— N,(w)+T"e, e R’, and unknown. Therefore, the
universal approximation property of NN 1is utilized to estimate the function

fir(x,) =W o(Vix,,)+e,by target weightsw V! such that HVV‘2HF <w,,, for a known

constant W, , and ¢ ,1s the NN functional reconstruction error such that”gd” <&,.,fora
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: : : 7 5T T~ 5T A T
known constante,,,. The NN estimate is given by f,, =W oV }%,,)=W)6., where W,

is the NN estimate of W’ and%_ =[1&" Q!

, eo]"is the NN input written in terms

of the observer and virtual controller estimates. By the construction of the virtual
controller, c?)d is not directly available; therefore, observing (44), the terms QZ , (:)f,T,

and e/ have been included instead.

Similarly to the translational velocity tracking error, the angular velocity tracking
error is not measureable. Thus, the estimated angular velocity tracking error is defined in

terms of the NN virtual control estimate of @, in (44) and the NN observer estimate of &

in (12) and written as

6, =0, —b=e,—@,+@. (55)

Using the NN estimate ]A‘Cz and (55), the rotational torque control input is
calculated as
u, = fo, +K,8,. (56)
Substituting the control input (56) into the angular velocity dynamics (55) as well as

adding and subtracting W&, the closed loop dynamics become

Je,=W'6,-Ke +K,o,-Kad-T e,+&, (57)

@

T T T T~ ~ A
whereW, =W_,-Ww,, ¢,=¢,+W,0,-7,, and o&.,=0,-0,. Further

Se2

<¢&,., for a computable constanté,,, =¢,,., +2W,,.,+/N,, +7,,Where N_,is the

number of hidden layer neurons.
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As a final step, we define an augmented translational and angular velocity error
system as e, =[e! e ]  whose closed loop dynamics are described by (53) and (57),
respectively, and rewritten as

Jeg = Al f. —(Ks +Sg(@))es — KV —T'ey + Ky, + £, (58)
whereJ =[I,, 0,,:0,, J]eR™is a constant, K =[K, 0,.0,, K,]>0eR",
S(0)=[S(®) 0,40, , 0,,]1€ R, e’ S (w)e, =0,V is the velocity tracking error vector
defined previously in the observer development, T =[0,,:0,, T], €, =[0, e5]".

@, =[0,, @)1, & =[£] &1 eR°, and

Se

< ¢, for a positive computable constant

1x

Ee =AJEL +EL, . Additionally, £ =W'6, eR® with 4, =diagiR,,I,,} € R*,

W.=diagW W, and & =[6" &.]". Examining (58) reveals ey,8y,0, andfc to be

cl
equilibrium points of the augmented error dynamics when||§c|| =0. Further, a single NN
is utilized to estimate f, =[f! f71" e R®.
Figure 2 now illustrates a general control structure for the proposed NN output
feedback control law. Examining the figure, five connected systems are observed: the
NN observer, kinematic controller, NN virtual controller, NN output feedback controller,

and the UAV dynamic system.

The external inputs to the system are considered to be the desired position, p,,
and desired yaw,,. Based on the difference between the current UAV position ( p ) and
the desired position, the kinematic controller generates the desired velocity v, to ensure

p — p, . Subsequently, the desired pitch, 8,, and roll, ¢, , are calculated to ensure the x
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A [p\T @T ]T éS
> +le
Y Y -
P < ”1 NN Output
] UAV System Feedback
(Equation (5)) | _ Uy Controller
‘ (Section 11I-D)

Fig. 2. NN output feedback control structure.

and y components of the desired velocity are tracked, respectively. Then, the NN virtual

controller uses the information provided by the NN observer and kinematic controller to

generate the desired angular velocity @, € E” which ensures® — ®,. Then, the NN

output feedback controller calculates the actual control inputs u,andu, based on the

information provided by the kinematic controller, NN virtual controller, and the NN
observer. The control inputs are then applied to the UAV system whose measurable
output vector consists of the UAV position and orientation. The output vector is then fed
back into the kinematic system as well as the NN observer.

In the final theorem, the stability of the entire system which includes position,
orientation, and velocity tracking errors are considered along with the estimation errors of
the observer and virtual controller and the NN weight estimation errors. Considering the

entire system in a single Lyapunov candidate allows us to relax the separation principle.
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Theorem 3: (Quadrotor UAV System Stability) Given the dynamic system of a
quadrotor UAV in (5), let the NN observer be defined by (11) and (12), respectively, with
the NN update law for the observer provided by (15). Given a smooth desired trajectory,
let the desired translational velocity for the UAV to track be defined by (22) with the
desired pitch and roll defined by (35) and (34), respectively. Let the NN virtual
controller be provided by (43) and (44), respectively, with the NN update law given by
(47). Let the dynamic NN controller be defined by (52) and (56), respectively, with the

NN update given by

A n ~\ A

W, =F.6,(4,6,) —x,FIW. (60)
where F, = F| > 0andx,, > 0 are constant design parameters. Then there exists positive

design constants K ,,K ,, K, Kq,,Kq,, Koy, and positive definite design matrices

K, Ky, K,,K,, such that observer estimation errors X , V' and the NN observer weight

estimation errors, W, , the virtual controller estimation errors®,,®, and the virtual

control NN weight estimation errors,WQ, the position, orientation, and translational and

angular velocity tracking errors, e, e, €y, respectively, and the dynamic controller NN

weight estimation errors, Wc , are all SGUUB.

Proof: Consider the following positive definite Lyapunov candidate

=K V +K?

Smax” o S'max

Vo +V.

VUA v

whereV andV,were defined in (16) and (48), respectively, K, is the maximum

S'max

singular value of K, and

1 — ~
ele +—ele, +—elJeg + —tr{W,TFf W,}- (61)
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The  first  derivative of  V,,,  with respect to time 1is  given

by VUAV =K;

S max

V +K:

S max

Vo +V.. In Theorem I, it was found that ¥, could be upper
bounded by (18) while in Theorem 2, the upper bound of ¥, was found to be (50). Now,
observingV, = el ¢, + epéq + €5 Jég + triW) FC*IW'C} , and substitution of the closed loop
error dynamics (24), (40), and (58) yields

V.=-e"K, e +e Re, —elKoeq —elKses — el KoV + el K@, + el +tr {0 (F7'W, +6,(4,e)" )}
after  simplification. Next  defininge, =[e) e5]", IT=[R 0,,;0,,], and
Ky =[K, 0,0, K], and substituting the NN tuning law (60) into V. reveals

Vc = _€1€K1<€1< - egKSeS + eleeS - eSTKSV + eSTKSaj + eST.fc + tr{VIN/CT (o, (al - I7)A; + Kchc)} .

Observing |1, <IT,,,

W, <W,for known constants, IT_ andW,,,

~ 112
WQ_‘ CF’

o=

and (W’ and an upper bound for ¥, is written as

Vo< —Kemnllex | = Ksmnes| +10

D

eK HHeS H + KSmax V HHeS H + KSmax

K min S min max €s HHa)d H + HeS HgMC

~ 2
w

clir

. da.l+ 7

cQ K('l

where K, . and K, . are the minimum singular values of K, and K, respectively, and

K min S'min

||Ad|| » S Ay, for a known constant A4,,. Next, completing the squares with respect

V . and||eS , V, can be upper bounded as
7 K min 1 Hrznax KC T
Vc S _KT eKHZ _ 2(K5min — m - 2JeS2 _ 61 WC F + 77(, (62)

S max

2 AM 2 AdM Nc ? ~ |2
+i[f<m s U N }V [K 3(r)jw
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wherer, = kW, /2+ £ /(2K Finally, combining the results of (18), (50), and

N m1n

(62), the upper bound of ¥, can be written as

Ky —Ky) N,
VLAV - KSde (%

Sz'max (K03 _ 2No 1= 3(A¢1M r)z ]Vz

2
K, K. K

§ max

63)
, Ny \i= 12 . 2N 3(4 w/ N\~ (
= K§max (Km —Kq; - KQQ] jHG)dH - S2 (Km - Kmﬂ -1- dMKémax Ha)dH
K min 2 1 anax 2 K(' 4 Ku K max |17 ||? K szax = |
- K2 HeKH _Z[KSmin - K](min _2]65 H - 61 - 1 4S Wo F - 4S WQHF +77UAV

wheren,,, = K: 1, +K: 1,+n.. The first nine terms in (63) are less than zero

provided the controller gains are selected as

3 Ap N
Kol > Ko3 +— 2N K()B > 2N ( v 2 ) KQl > KQ3 + NQ )
Kol K K KSmax Kgl . (64)
3 A AN 2
KQ3 > NQ ( dM - ) , Ksmin KHmax + 2
KQI K KSmax K min

Therefore, it can be concluded that V,,,, is less than zero provided the controller

gains are selected according to (64) and the following inequalities holds:

U/ & U 21,
Hﬂ‘ \/ Smax (K IzAV)/z N/K) Or®d>\/K2 (Kgl_;/é;_NQ/Knl) o €s>\/(K _HZUA/VKKmin_Z)

S'max Smin max,

N ~ M 77UAV 65
o Pl e s o e (e o e [ 69)

~ 6 4
or [@,]> TTuay or > Tuay or > 77U§1V
KCl K KSmax

K;max( Q3 ZNQ/KQI 1 3(AdM\/7) /(K K;max ) 2
It can be concluded using standard Lyapunov extensions [12] that ¥, is less

w.

c

than zero outside of a compact set revealing that the observer estimation errors X,/ and

the NN observer weight estimation errors,VIN/o, the wvirtual controller estimation

errors O .»0, and the virtual control NN weight estimation errors, WQ, the position,

orientation, and velocity tracking errors, e €05 Cs 5 respectively, and the controller NN
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weight estimation errors,VIN/C , are all bounded. Finally, the initial compact set can be

made arbitrarily large through proper selection of the gains; thus, all signals are SGUUB
[7].

Remark 6: Examining (65) reveals the error bounds can be reduced through the
appropriate selection of the design parameters. The theoretical results of Theorem 3
ensure that the estimation and tracking errors remain bounded in the presence of bounded
disturbances. Further, examining the error bounds in (65), it is observed that the size of
the estimation and error bounds is dependent on the magnitude of the disturbances. As a
result, a very large disturbance will lead to potential large error bounds illustrating the
relationship between the control system performance and the magnitude of the
disturbances.

In the next section, the requirements and considerations for practical

implementation of the proposed output feedback control scheme are presented.

E. Comments on Implementation and Practical Considerations

To implement the proposed output feedback control scheme, it is observed that
three NN are required. Although this appears to be a computationally demanding
algorithm, previous work on the control of spark ignition engines [17] has demonstrated
that three NN can be successfully implemented in hardware simultaneously with
promising results. In fact, it was found that the total time required to compute the
controller calculations was less than 100 gsec [17].

Further, the quantities required as inputs to each NN can be either measured or
calculated using current technologies. The position and orientation of the UAV can be

measured. The position of the UAV can be measured using global positioning systems
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(GPS) enhanced with differential GPS to improve accuracy [18]. Additionally, several
vision based approaches to measuring the UAV position have also been reported [19].
Measurement of the attitude of the UAV can easily be achieved using local
measurements of an onboard attitude heading reference system (AHRS).

As a result of Theorem 3, ® — ©,with small bounded error for t>1¢, + 7.
Recalling ©, in (34) and (35) is defined only within the interval of (-7 /2,—7/2) of the

UAYV, it can be concluded that the UAV maintains a stable flight configuration while in

the steady state provided the desired trajectory p,is feasible. As demonstrated in (8),

certain trajectories are not achievable during stable flight. Thus, in order to guarantee
stability in practice, one or both of the following considerations can be undertaken. First,

applying the results of Theorem 3, the desired trajectory p, should be achievable using

steady state pitch and roll movements which satisfy

01,8, € (712420000 | Kcins 7/ 2= 27000 | Kein) - AAS @ second consideration, the desired

pitch and roll angles can be saturated before they reach +7/2. However, for very
demanding trajectories, restricting the desired pitch and roll angles could result in an
increase in the tracking error bounds.

During the time prior to#,+7, the bounds on e, are potentially larger in

magnitude than the steady state bounds derived in Theorem 3. To counter this fact, the
following simple but effective solution is utilized based on practical observations. In
practice, helicopters do not immediately begin aggressive maneuvers from the grounded
position. They first rise to a safe operating height and then begin their flight pattern.

Mimicking this observation, the desired trajectory can be chosen so that the desired pitch
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and roll are close to zero for #<t,+7. For instance, given a desired trajectory
p, starting at timet,, the trajectory tracked by the UAV could be
p, = p,(1—exp(—r(t—t,))) whereris the decay rate which can be designed limit the
initial aggressiveness of the UAV. Multiplying the desired trajectory p, by the

exponential function limits the initial maneuver, but after a finite time period allows the
UAV to track the original unconstrained trajectory p,,. This approach will be employ in
the following section which presents the numerical simulation results of the proposed

output feedback control law. Using this technique, the results in the following section

demonstrate that the pitch and roll of the UAV remains within the interval (-7 /2,7/2)

throughout the duration of the test.

IV. SIMULATION RESULTS

The quadrotor UAV (5) is now considered in the presence of unmodeled
dynamics such as aerodynamic damping [7] and blade flapping [1], and the effectiveness
of the NN output feedback control law developed in this work is verified. Additionally,
random disturbances are added, and simulations are performed in MATLAB. The

unknown aerodynamic effects are modeled as in (7) where the damping coefficients are

selected as [dl,dz,d3,d4,d5,d6]T = [0.06, 0.1,0.06,0.1,0.06,0.1]" and
[d,,dy,d,,d,y,d,,,d,,] = [0.1,0.15,0.1,0.15,0.1,0.15]" . Further, the blade flapping
parameter k, was selected ask, =0.75 N -m/rad andais taken as zero at the

beginning the simulation. Then, at # =20 seconds, a steps from zero to twenty degrees,

and the robustness of the control law is demonstrated. The sudden increase of « could
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represent an occurrence such as a gust of wind. Additionally, a normally distributed
noise signal with zero mean and variance of 0.01 is added to the UAV dynamics (5)
throughz, .

The inertial parameters of the UAV are taken to be as m=09kg and
J =diag{0.32,0.42,0.63} kg m*. The desired position ([m]) and yaw ([rad]) for the
UAV to track is designated to be
Py =14, cos(@,1)(1-exp(~r>)) A, sin(e,1)(1-exp(~r,)) A (1 -exp(-rT,
v, =A4,sin(o,t) with 4 =4 =10, 0, =0, =027,r, =r, =05, A =-10,r,=0.1,
4,=1, and @, =0.37. Each NN employs 5 hidden layer neurons, and the control
gains are selected to be K, =23, K,=60, K,=20, K, =24 K, =80, K,, =20,
K, = diag{10,10,30}, k, =10, k,=10, k=30, K, = diag{30,30,30}, and
K, =diag{25,25,25} satisfying the constraints mentioned in the theorems. The NN

parameters are selected as F, =10,x,, =0.1,F, =40,x,, =0.1,and F, =20,x,, =0.1.

In the simulation, all tunable NN weights are initialized to 0, while the initial
observer estimates of the position and orientation are set to the UAV's initial position of
XT0)=[p"(0) ©"(0)]" =[-0.3 03 0 0 0 0.1]".

Figure 3 displays the actual trajectory as well as the desired trajectory of the
UAV. Additionally, the vector norm of the position error is also shown. Examining the
trajectory plot, the desired trajectory starts from the origin while the UAV starts from the
initial configuration denoted above, and the UAV quickly converges to the desired course
and tracks with a small bounded as the theoretical results of Theorem 3 suggest. At

t =20 seconds, a small peak in the error plot is observed corresponding to the external
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disturbance being introduced. However, the NN controller quickly adapts to the
changing conditions and the UAV returns to its desired path. The fact that the UAV
successfully tracks the desired trajectory confirms that the orientations generated by the
NN virtual controller correctly steers the UAV along the desired path as the results of
Theorem 2 imply.

Figure 4 displays the tracking errors for the position, orientation, translational

velocity and the angular velocity, respectively, which are each observed to converge to a

Helicopter Trajectory UAV Position Error

—— Actual Trajectory — — Desired Trajectory

5 0 15 20 2 0
Time (sec)
Fig. 3. UAV trajectory tracking.
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Fig. 4. UAV tracking errors.
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small bounded region around the origin. Again, at ¢t =20 seconds, the effect of the
external disturbance is visible, and it is observed that the each tracking error quickly
returns to zero even though the disturbance itself does not vanish. Instead, the NN adapts
so that acceptable tracking performance is regained. The tracking performance of the
translational velocities again reinforce the ability of the virtual controller structure to
calculate the appropriate pitch and roll angles necessary to achieve tracking.

Figure 5 displays the observer estimation errors for the position, orientation,
translational velocities, and angular velocities, respectively, which are observed to
converge to a small bounded region near the origin as the conjecture of Theorem I
suggested. For the observer position estimation errors in Fig. 5, recall that the position of
the UAV is measureable; therefore the initial observer position states are selected as
p(0) = p(0) , and thus, p(0) = p(0) - p(0)=0.

For the remainder of the simulation, the maximum observer position error in Fig.
5 is observed to be less than 0.03. The maximum error of 0.03 is observed in the y-

coordinate

Euler Angle and Angular Velocity Observer Errors

Position and Translational Velocity Observer Errors

Tpp — —Uyp oo Tzp
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P WCap — @y Wb
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-
— —

L L L L L L 1 1 L 1 1
0 5 10 15 0 E3 sl 5 10 15 0 2 30
Time (sec) Time (sec)

Fig. 5. UAV observer estimation errors.
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estimate after introduction of the bounded disturbances. It is observed that the observer
estimation errors initially increase when the unknown nonlinearities are introduced, and
decrease as the NN observer begins to compensate for the nonlinearities. Moreover, the
upper bound of the observer position estimation errors calculated from the simulation is

given by|p(7)| <0.0303. Table | summarized the mean squared error (MSE(s)) and

maximum observed error ( max(abs(e)) ) for each tracking error and observer estimation

error. In each case, the mean squared error is observed to be small. This result is
consistent with tracking and estimation performances observed in Fig. 5. Additionally,
the maximum values observed for both the tracking and observer estimation errors occur
either at the beginning of the simulation or directly after the external disturbance has been

introduced. This phenomenon is also observed in the error plots of Fig. 5.

TABLE I: MEAN SQUARED ERRORS AND MAXIMUM ERRORS

Tracki
]riariofslg e, (m) e, (m) e, (m) e, (mls) e, (mls) e, (mls)
MSE (o) 0.0012 0.0011 7 84x10~ 0.1783 0.0656 0.1851
max(abs(e)) 0.3 0.3 0.0054 0.6061 1.7781 3.2656
Observer | 5 (m) P, (m) D. (m) Vi (mls) | V., (mls) | Vi, (m/s)
Errors
MSE(®) | 422x107°| 5.18x107° | 1.70x107° 0.0047 0.0026 0.0019
max(abs(e))| 0.0112 0.0292 0.0220 0.2188 0.1192 0.2098
Tracking | ¢ (rad) e, (rad) e, (rad) €. € e,
Errors
(rad/s) (rad /s) (rad/s)
MSE (o) 4.94x1074 587%107% 558%107% 0.0845 0.0744 0.0277
max(abs(e))| 0.2784 0.2285 0.1 5.8112 5.3300 2.5508
Observer e n 1/7 (rad) ~ (rad ~ (rad ~ (rad
Deer | g rad) | (rad) o, (") | @, (") | @, (=)
MSE(®) | 3.77x10*| 2.73x107* | 2.59x107* 0.0822 0.0683 0.0746
max(abs(e))| 0.1321 0.0311 0.1828 2.7407 1.5156 2.2353
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Finally, Fig. 6 shows the control inputs of the UAV as well as the time history of
the unmodeled dynamics and the noise signal. Examining the time history of the
unmodeled dynamics, the random noise signal is clearly visible for the entire simulation
while the step disturbance is evident starting at 20 seconds. Additionally, the power of
the NN controller is revealed when examining the control inputs time history. Starting at
20 seconds, the thrust as well as the rotational torques are clearly compensating for the
newly added dynamics. Additionally, the system noise is observed to be most prevalent
in the rotationally torques control inputs.

The simulation results verify that the UAV remains within the interval
(—7/2,7/2) throughout the duration of the test. While the noise and the external
disturbance introduced at 20 seconds is observed in all of the error signals, the
disturbances observed in the angular velocity tracking errors and observer estimation
errors are more apparent since the angular velocities of the UAV generate much of the

UAV's movements. To see this more clearly, recall that the desired velocity is calculated
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Fig. 6. UAV unmodeled dynamics, external disturbances and control signal.
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from measured error values. Then, in order to achieve translational velocity tracking, the
desired roll and pitch are calculated. Next, the angular velocity is found to ensure the
desired orientation of the UAV is achieved. Finally, rotational torques guarantee that the
desired angular velocity is tracked by the UAV. Each stage of the design process
contains a proportional tracking controller, and thus, the disturbance and noise is
amplified at each stage of the backstepping controller design. This phenomenon is also
illustrated in Fig. 6.

As a final assessment of the output feedback control law developed in this work, a
state feedback PID control law was implemented to control the translational and angular

velocities and all NNs were removed. In the simulation, derivatives such as ¢, and ¢, that
cannot be calculated due to uncertainty, were approximated using backward differences

written as e, ~e, (f)—e (t—At)= év where At =107 seconds. The PID control laws

take the form of P, =[P, P, P

evl ©ev2 ev3 Pv:y

=K, e +K, Jeds+K e and

Dv*-y

P, =K,e, +K, _[e ds+K, ¢, and control gains were selected to be K, =diag([5520]},

Do~ w >

=diag{[77 7]}, K,, =diag{[0.50.50.5]}, K,,h =diag{[202020]}, K, =diag{[7 7 71},
and K, 6 =diag{[0.5 0.5 0.5]}. These gains were tuned to ensure acceptable tracking
performance while minimizing the overshoot and undershoot of the error signals. Since
the derivative terms are being approximated and discretized, K, gains less than one

rendered the best performance. All other parameters used in the previous simulation
remained unchanged.
To use the PID control law the desired pitch and roll in (34) and (35),

respectively, and thrust and rotational torques (52) and (56), respectively, must be
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modified by removing the NN estimates and proportional feedback terms and substituting
the PID controllers in their place. For example, the rotational torques (56) becomes

u, = P, while the desired pitch (34) becomes

0,=a tan((cz//d Xy +k Xy —=vp)+58, (Vg kY0 = V) + B ) g+ 2y — Vs — g)) The
desired roll and thrust control input are modified in a similar manner.

Fig. 7 shows the norm of the position tracking error as well as the control effort
used to achieve the tracking performance by a PID controller. Examining the position
tracking error, it is evident that the PID controller achieves acceptable tracking
performance after a significant amount of gain tuning in the presence of unmodeled
dynamics and bounded disturbances. The orientation and the translational and angular
velocity tracking errors are also satisfactory although the plots are not shown. However,
comparing the control signal required to achieve tracking using PID control in Fig. 7 to

the control signal of the NN output feedback controller in Fig. 6, it is clear the PID

controller exerts significantly more effort to track the desired trajectory. It was found
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Fig. 7. UAV position error and control signals using PID control.
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that that the rotational torque control signals u,,u,,,andu,, from the PID controller

where on average 4.3, 5.1, and 4 times larger the signals generated from the NN output
feedback scheme, respectively. On the other hand, the thrust control signal generated by
the PID controller was comparable to the thrust control signal of the proposed scheme.

The reason for the difference in control efforts is due to the fact that the PID gains
were used to dominate the neglected dynamics in order to ensure an acceptable
performance whereas the NN output feedback control law adapted online to learn the
unknown dynamics and perform intelligent compensation. Additionally, significant noise
amplification is observed in the control signal of the PID control law as a result of using
large gains to dominate the UAV dynamics. Thus, the NN output feedback control
renders the tracking of the desired trajectory using less control effort than the
conventional PID control law while keeping the noise amplification small further
demonstrating the effectiveness of the proposed approach. In addition, our approach does
not require significant time to tune the controller gains which becomes necessary when
using a PID controller with changing operating conditions.

Moreover, examining the control rate shown in Fig. 8, the NN approach generated
less than the control rate required by the PID controller. Examining Figs. 6 and 7, noise is
observed to be present in the UAV control inputs for both the proposed NN and the
conventional PID controllers, respectively. Differentiating the noisy signals leads to large
values of the derivatives in both the cases. However, the plots in Fig. 8 reinforce that the
online learning based proposed NN controller performs better than a conventional PID

controller.
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Fig. 8. Control rate of change for the proposed NN controller and a conventional PID
controller.

V. CONCLUSIONS

A new NN output feedback control law was developed for an underactuated
quadrotor UAV which utilizes the natural constraints of the underactuated system to
generate virtual control inputs to guarantee the UAV tracks a desired trajectory. Using
the adaptive backstepping technique, all six DOF are successfully tracked using only four
control inputs while in the presence of unmodeled dynamics and bounded disturbances.
Dynamics and velocity vectors were considered to be unavailable, thus a NN observer
was designed to recover the immeasurable states. Then, a novel NN virtual control
structure was proposed which allowed the desired translational velocities to be controlled
using the pitch and roll of the UAV. Finally, a NN was utilized in the calculation of the
actual control inputs for the UAV dynamic system. Using Lyapunov techniques, it was
shown that the estimation errors of each NN, the observer, virtual controller, and the
position, orientation, and velocity tracking errors were all SGUUB while relaxing the

separation principle. Numerical results confirm the theoretical conjectures, and the
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tracking ability of the UAV in the presence of unmodeled dynamics and bounded

disturbances. The proposed controller outperforms a conventional linear controller.
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4. Leader-Follower Formation Control of Multiple Quadrotor
Unmanned Aerial Vehicles using Neural Networks'

Travis Dierks and S. Jagannathan

Abstract—In this paper, a novel framework for leader-follower formation control is
developed for the control of multiple unmanned aerial vehicles (UAVs) such as
underactuated quadrotor UAVs in three dimensions. Using alternate coordinate system
and a desired separation, angle of incidence, and bearing relative to their leader, a
desired trajectory is generated online for the follower UAVs through an auxiliary
kinematic velocity control thus converting the formation control into an equivalent
tracking problem. Then, novel neural network (NN) based virtual and dynamic control
laws are introduced to learn the dynamics of the UAVs online including unmodeled
dynamics like aerodynamic friction. The NN virtual control input scheme allows all six
degrees of freedom of the UAVs to be controlled using only four control inputs while the
dynamic control input generates the actual control signals for the UAVs in order to fly in
formation. Additionally, the interconnection dynamical effects between the leader and its
followers are explicitly considered and compensated, and the stability of the entire
formation is demonstrated using Lyapunov theory. Numerical results are presented to

verify the theoretical conjectures.

Keywords: Formation Control, Leader-Follower, Quadrotor UAV, Neural Networks,
Lyapunov Stability.

! Research Supported in part by GAANN Program and Intelligent Systems Center. This paper was not presented at any IFAC
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NOMENCLATURE
Denotes a term for the leader UAV

Denotes a term for the follower UAV

Inertial coordinate frame

UAV body fixed coordinate frame
UAV x- coordinate in E*

UAV y- coordinate in E*

UAV z- coordinate in E“

UAV position vector in E“

UAV roll angle in E*

UAV pitch angle in £

UAYV yaw angle in E*

UAV orientation vector in E“

Inertial coordinate frame rotated about v/,
Translational rotation matrix

Rotational transformation matrix

UAV translational velocity vector in £ (b,)
UAV angular velocity vector in £,

UAYV mass and inertia matrix
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mq,,  UAV total mass
Jw ~ UAV moment of inertia matrix

S(e) General form of the skew symmetric matrix

N () UAYV nonlinear aerodynamics effects, k=1,2

T.a External bounded disturbance, k=1,2

U,y UAV thrust control input

U,y UAV rotational torque vector control input

s  Desired separation between the follower and leader
sa  Desired angle of incidence between the follower and the leader
B,  Desired bearing angle between the follower and the leader

S Measured separation between the follower and leader

o,  Measured angle of incidence between the follower and the leader
B, Measured bearing angle between the follower and the leader

X.)y, Desired UAV x- coordinate in E*

Ya Desired UAV y- coordinate in £

Za Desired UAV z- coordinate in E°

Pa Desired UAV position vector in £

$.a Desired UAV roll angle in E°

0.4 Desired UAV pitch angle in E*
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Wa Desired UAV yaw angle in £
0., Desired UAV orientation vector in £
Va Desired UAV translational velocity vector in E, (”_)

@), Desired UAV angular velocity vector in £ (b,)

R,  Auxiliary transformation matrix (function ofy ., )

R,, Desired auxiliary transformation matrix (function of ¥/ ,,, )

E,  Separation transformation matrix (function of & and f3;,)

B, Desired separation transformation matrix (function of « ,, and 5 ,)
€., UAV position tracking error vector

€. UAV orientation tracking error vector
e.,, UAV translational velocity tracking error vector

€., UAV angular velocity tracking error vector

I. INTRODUCTION

In recent years, quadrotor helicopters have become a popular unmanned aerial
vehicle (UAV) platform. The dynamics of the quadrotor UAV are not only nonlinear, but
also coupled with each other and underactuated; characteristics which can make the
platform difficult to control. In other words, the UAV has six degrees of freedom (DOF)
with only four control inputs consisting of thrust and the three rotational torque inputs to
control the six DOF. Recently, the control of single quadrotor UAVs has been undertaken

by many researchers (Timothy, Burg, Xian & Dawson, 2007; Nicol, Macnab &
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Ramirez-Serrano, 2008; Das, Lewis, & Subbarao, 2008; and Dierks & Jagannathan,
2008). However, a team of UAVs working together is often more effective than a single
UAV in scenarios like surveillance, search and rescue, and perimeter security. Therefore,
the formation control of UAVs has been proposed in the literature.

The work by Saffarian and Fahimi (2008) presents a modified leader-follower
framework and proposes a model predictive nonlinear control algorithm to achieve the
formation.  Although the approach is verified via numerical simulations, proof of
convergence and stability is not provided. Van der Walle, Fidan, Sutton, Yu and
Anderson (2008) present a kinematic-based formation control law by assuming each
UAV travels at a constant velocity while ignoring the UAV and the formation dynamics.
Additionally, mathematical proof of stability is not provided. The work of Kingston,
Beard and Holt (2008) offers a stable algorithm for perimeter security although the UAVs
are restricted to travel at constant velocities ignoring UAV and formation dynamics.

By contrast in the work of Fierro, Belta, Desai and Kumar (2001), cylindrical
coordinates and contributions from wheeled mobile robot leader follower formation
control (Desai, Ostrowski & Kumar, 1998) are extended for aircrafts by assuming the
dynamics are known. The work of Gu, Seanor, Campa, Napolitano, Rowe, Gururajan and
Wan (2006) proposes a solution to the leader-follower formation control problem
involving a linear inner and nonlinear outer-loop control structure, and experimental
results are provided. However, an accurate dynamic model is needed and the measured
position and velocity of the leader has to be communicated to its followers. In Xie,
Zhang, Fierro and Motter (2005), the UAVs are assumed to be flying at a constant

altitude, and the authors present two nonlinear robust formation controllers for UAVs.
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The first approach assumes that the velocities and accelerations of the leader
UAYV are known while the second approach relaxes this assumption using robust control
methodologies. In both the designs, the dynamics of the UAVs are assumed to be
available. On the other hand, in the work of Galzi and Shtessel (2006), a robust
formation controller is proposed based on higher order sliding mode controllers in the
presence of bounded disturbances.

To overcome the assumption of known dynamics which are difficult to calculate,
neural networks (NNs) have been considered in several works to control single quadrotor
UAVs (Nicol, Macnab & Ramirez-Serrano, 2008; Das, Lewis, & Subbarao, 2008; Dierks
& Jagannathan, 2008; Voos, 2007; Dunsfied, Tarbouchi & Labonte, 2004; and Puttige &
Anavatti, 2007). On the other hand, in (Voos, 2007; and Dunsfied, Tarbouchi & Labonte,
2004), NN-based control laws are presented where the NN’s are trained offline using
experimentally collected data. A study performed by Puttige and Anavatti (2007)
verified several well-known properties of online learning versus offline training and
concluded that NN’s which are properly trained offline are often robust to small
variations in the system but fail to adapt to larger changes in the system. In contrast, NN
models which learn online quickly adapt to variations in the nonlinear behavior of the
system in real time with no prior knowledge are introduced in (Nicol, Macnab &
Ramirez-Serrano, 2008; Das, Lewis, & Subbarao, 2008; and Dierks & Jagannathan,
2008).

On the other hand, linear models obtained from nonlinear systems are generally
valid near a specific operating point (Lewis, Jagannathan & Yesilderek, 1999) and for the

UAV, the operating point is generally chosen near the hovering configuration (Suh, 2003)
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which may not be acceptable for dynamical outdoor setting with changing wind
conditions. Under these outdoor conditions, more modes of the UAV dynamics will be
excited more of the time (e.g. drag, etc.). As a consequence, an offline trained NN may
not render a satisfactory performance since it is not practical or always possible to collect
training data to account for every scenario the UAV may encounter. Similarly, linear
controllers may not render satisfactory performance.

Therefore, in this work, a new leader-follower formation control framework is
proposed for UAVs based on spherical coordinates where the desired trajectory of a
follower UAV is generated online using a desired- separation, angle of incidence, and

bearing , s,, a,,/f,, respectively, relative to its leader. Then, a new control law for

leader-follower formation control is derived using NNs to learn the dynamics of the UAV
online, including unmodeled dynamics like aerodynamic friction in the presence of
bounded disturbances. Although a quadrotor UAV is underactuated, a novel NN virtual
control input scheme for leader follower formation control is proposed which allows all
six degrees of freedom of the UAV to be controlled using only four control inputs. The
NN utilized in the follower control law compensates not only its own dynamics but also
the formation dynamics. Thus, the framework of this paper effectively converts the
leader-follower formation control for UAVs into a tracking control problem.

Therefore, the contribution of the proposed formation controller include: 1) a
novel nonlinear NN-based controller is developed for follower UAVs and its leader
where the objective of the formation is to achieve hovering or tracking time varying
trajectories that are not near the hovering operating point; 2) explicit knowledge of the

nonlinear dynamics of individual UAV and formation is not required while the linear in
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the unknown parameters (LIP) assumption is not required; 3) the kinematic control law
that translates the desired separation, angle of incidence and bearing into a trajectory
online for successful formation control.

This paper is organized as follows. First, in Section II, the leader-follower
formation control problem for UAVs is introduced, and required background information
is presented. Then, the NN control law is developed for the follower UAVs as well as the
formation leader, and the stability of the overall formation is presented in Section III.
Section IV presents numerical simulations, and Section V provides some concluding

remarks.

II. BACKGROUND
A. Quadrotor UAV Dynamics

Consider the quadrotor UAV shown in Fig 1. with six DOF defined in the inertial
coordinate frame , E“, as [x,7,z,4,0,w] € E° where p=[x,y,z]' € E* are the
position coordinates of the UAV and ® =[¢,0,y]" € E* describe its orientation referred

to as roll, pitch, and yaw, respectively. The kinematics of the UAV can be written as

P =Rv

O=Tw M

where R(®) € R*"is the translational rotation matrix which is used to relate the

translational velocity vector in the body fixed frame to derivative of the position vector in
the inertial coordinate frame defined as (Dierks and Jagannathan, 2008)
c,C

R(®)=R=|c¢ys,

—S, S4Co C4Cy

v S§80C, —C4S,  €4S,C, F S48,

S4SgS, +C4C,  CySpS, —S4C, (2)
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Inertial
Coordinate
Z Frame

Fig. 1. Quadrotor UAV.

where the abbreviations s ,, andc, have been used for sin(e) and cos(e), respectively. It

is useful to note that ||R||F =R, for a known constantR_ , R =R", R=RS(w),

R" = -S(@)R", and S(e) € R**is the general form of a skew symmetric matrix defined

as

0 =7 7
S()=| 7; 0 =71 a7:[71a72:73]T- (3)
=V, N 0

It is important to note that (3) satisfies the skew symmetric property (Lewis,
Jagannathan, Yesilderek, 1999), w'S(y)w=0, for any vector we®’. The rotational

transformation matrix from the fixed body to the inertial coordinate frame is defined as

(Dierks and Jagannathan, 2008)
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L osyt, eyt 1 0 -5,
T®)=T=0 ¢, —s, |, T'=|0 ¢, s,, (4)
0 s,/c, c;/cy 0 -5, cue

where the abbreviation?,,has been used for tan(e). The transformation matrix 7' is
bounded according to ||T ||F <T, for a known constant T, as long as

—(7/2)< 6 <(r/2) (Neff, DongBin, Chitrakaran, Dawson & Burg, 2007). This region
along with the regions —(7/2)< ¢ <(7/2) and — 7 <y <z will be referred to as the

stable operating regions of the UAV.

The translational and angular velocities are expressed in the body fixed frame

attached to the center of mass of the UAV, E”, and the dynamics of the UAV in the body

fixed frame can be written as (Timothy, Burg, Xian & Dawson, 2007)

o5l vl o

M|  |=S(w) |+ + +U+7,, %)
w o] |N,(0) 05,

where U=[0 0 u, u; ]" eR°,

M= ml; 0, RO §(m)= —-mS(®) 0, < RO
0,, J 0, S(Jw)

wheremis a positive scalar that represents the total mass of the UAV
andJ € R’ represents the positive definite inertia matrix. The vector

V(1) =[Vy, v,y V., 1" € R represents the translational velocity,

o(t)= [a)xb,a)yb,a)zb]T € R’ represents the angular velocity, N, (e) e R,k =1,2 ,are the

nonlinear aerodynamic effects, u, € R provides the thrust along the z-direction,

u, =[uy, u,, u,]" €N provides the three rotational torques to control the angular
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velocities, 7, =[z),,7,,]" €R® for 7, e R’, k=1,2 represents unknown, but bounded
disturbances such that”rd ||<2'M for all timer, withz, being an unknown positive

constant. Additionally, 7,, € R™ is an nxn identity matrix, and 0, , € R™ represents

nxn

an mx/ matrix of all zeros. Furthermore, G(R) R’ represents the gravity vector
defined asG(R)=mgR"(®)E. where E. =[0,0,1]" is a unit vector in the inertial
coordinate frame, and g =9.81m/s”.

B. Neural Networks

In this work, two-layer feedforward NNs are considered consisting of one layer of
randomly assigned constant weights ¥, € R“" in the first layer and one layer of tunable
weights W, € R in the second with 4 inputs,soutputs, andzhidden neurons. A
compromise is made here between tuning the number of layered weights with
computational complexity. The wuniversal approximation property for NNs (Lewis,
Jagannathan & Yesilderek, 1999) states that for any smooth function f, (x, ), there exists
a NN such that f,(x,) =W oV ix,)+e, where o():R* - R’ is the activation
function in the hidden layers and ¢, is the bounded NN functional approximation error

satisfying ||€N|| < ¢, for a known constant &,,. It has been shown that by randomly

selecting the input layer weights V,,, the activation function vector o(x,)=c(V, x,)
forms a stochastic basis, and thus the approximation property holds for all
inputs, x,, € R“, in the compact set S (Lewis, Jagannathan & Yesilderek, 1999). The
sigmoid activation function is considered here. Furthermore, on any compact subset

of R”, the target NN weights are bounded by a known positive value,WW,,, such
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that|W, |, <W, . For complete details of the NN and its properties, see (Lewis,

Jagannathan & Yesilderek, 1999). In this effort,

|| and |||| - will be used as the vector and

Frobenius norms (Lewis, Jagannathan & Yesilderek, 1999).

Next the definition of the semi-global uniformly ultimately boundedness is
introduced.

Definition 1: The equilibrium point x, is said to be semi-global uniformly

ultimately bounded (SGUUB) if there exists a ball centered around the origin with an

arbitrary radius r, S(0,7) =S, cR" so that for all x, € S, there exists a bound B > 0 and

atime T(B,x,) such that |x(¢)—x||< Bforall t>¢,+T (Sastry, 1999).

C. A Novel Three Dimensional Leader-Follower UAV Formation Control
Framework

Throughout this leader-follower development, the follower UAVs will be denoted
with a subscript 7’ while the formation leader will be denoted by the subscript 7". To

begin the development of this novel framework, an alternate reference frame denoted by
E is introduced by rotating the inertial coordinate frame E“ about the z-axis by the
yaw angle of follower j, ¥ ,. In order to relate a vector in £“to £, the transformation
matrix is given by

cos(y ;) sin(y;) 0

Raj = _Sin(l:”j) COS(W/) O b
0 0 1

where Rf; =R,
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Fig. 2. UAV leader-follower formation control.

The objective of the proposed leader-follower formation control approach is for

the follower UAV to maintain a desired separation,s,, € R, at a desired angle of
incidence, «,, € E;, and bearing, S, € E}, with respect to its leader. The incidence
angle is measured from the x,—y, plane of follower ; while the bearing angle is

measured from the positive x,, -axis as shown in Fig. 2. It is important to observe that

each quantity is defined relative to the follower j instead of the leader i (Fierro, Belta,
Desai & Kumar, 2001; and Desai, Ostrowski and Kumar, 1998). Additionally, in order to
specify a unique configuration of follower j with respect to its leader, the desired yaw of
follower j is selected to be the yaw angle of leader i, , € E as in (Saffarian & Fahimi,

2008). Using this approach, the relative distance between follower j and

leader i is written as
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Pi=p; = RysE (6)
where
2, =[cos(a,)cos(B;) cos(a,)sin(f,) sin(a, ) (7)
Thus, to solve the leader-follower formation control problem in the proposed
framework, a control velocity for the follower UAV must be derived to ensure

}ijg(sjid —s;)=0, }Lrg(ﬂ_/id -B;)=0,

}Lrg(ajid —a;)=0, }LI{CI(I//jd -y,;)=0

(8)

Throughout the development, the desired separation, angle of incidence and

bearing s, ,a,,and B,,, respectively, will be taken as constants, while it is assumed

that each UAV has knowledge of its own constant total mass, m,,,, where (»is i for the

leader and j for the follower. Additionally, it will be assumed that leader communicates

its measured orientation and angular rate vectors, ®, and @, , respectively, and its desired
states, v, W.,,W.;» Vi,V reliably to its followers. This assumption will be relaxed in

the future.

Further, the benefit of considering the desired instead of the measured states of
the leader to its followers (Gu, Seanor, Campa, Napolitano, Rowe, Gururajan & Wan,
2006) in the design of the follower UAVs’ control laws is significant when compensating
for the formation dynamics which become incorporated in the follower UAVs dynamic
controller design. Finally, communicating the desired states in fact reduces the reliance

on noisy sensor measurements and thus reduces errors due to the noise from propagating
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throughout the formation. Next, contributions from single UAV control will be

considered and extended to the leader-follower formation control of UAVs.

III. LEADER-FOLLOWER FORMATION TRACKING CONTROL

In this work, the formation leader control law is drawn from our previous work in
single UAV control (Dierks & Jagannathan, 2008). The control objective of leader UAV i
is to track a prescribed desired trajectory, and a desired yaw angle while maintaining a
stable flight configuration. The z- component of the translation velocity vector is directly
controllable with the thrust input. However, in order to control the x- and y- components
of translational velocities, the pitch and roll must be controlled, respectively, thus
redirecting the thrust. Complete consideration of the leader’s controller design will be
addressed in Section I1I-B.

To design the follower UAVs’ control laws, frameworks for single UAV control
(Dierks & Jagannathan, 2008) are extended to UAV formation to convert the formation
control objective (8) into a tracking control problem as follows. In the proposed
formation control formulation, the desired separation, angle of incidence and bearing
angle will be utilized to define a desired trajectory of a follower UAV relative to its
leader online while solving the formation control problem (8). Thus, by tracking the
prescribed trajectory, the formation control problem (8) is converted into a tracking
control problem.

Remark 1: The trajectory generated by the follower UAV relative to its leader
should not be confused with the desired trajectory used to control the single UAVs
without formation. For the case of single UAV control, the desired trajectory for the

UAV is typically prescribed offline and can be tracked using only local information. In
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contrast, the desired trajectories for the follower UAVs used in leader-follower formation
control in this work are generated online, changes as a result of leader’s maneuvers in
real-time, in order to maintain the desired separation, incidence and bearing.

Moving on, once the desired trajectory has been specified online for the follower
with respect its leader, a translational control velocity is calculated to ensure that the
current position of the follower converges to its desired position. Then, the desired pitch,
roll, and control thrust for the follower are designed such that the translational velocity of
the UAV approaches the target translational control velocity. Next, given the designed
desired attitude, the desired angular velocity is calculated along with the rotational torque
vector which ensures the orientation and angular velocity of the follower UAV
approaches their designed target values. The follower UAV controller design is

considered next.

A. Follower UAV Control Law

Without loss of generality, it will be assumed throughout the development that
follower j is following its formation leader i. However, in a formation where each UAV
follows the UAV directly in front of it, this need not be the case. To begin the
development of the follower control law, the desired position of the follower UAV is first
defined relative to its leader. Then, the position error dynamics are derived and the
translational control velocity for stabilization is designed.

Given a leader i subject to the kinematics and dynamics (1), and (5), respectively,

define a reference trajectory for follower j to track at a desired separations ;, , a desired

angle of incidence, @, , and bearing, S, relative to the leader by

jid »
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Pja = Pi = Sja R;dE‘jid ©

where

COS(‘//jd ) Sin(‘/’_/d ) O Cos(ajid ) COS(IBﬁd )
R;;dE_/[d = - Sin(‘//jd ) COS(Wjd ) 0 Cos(ajid ) Sin(ﬂjid )
0 0 1 sin(a ;)

Next, using (6) and (9), define the position tracking error as
Tr— T = a
€ip =P —P; =S RyE =Ry Z sy €E (10)
which can be measured using local sensor information. To form the position tracking

error dynamics, it is convenient to rewrite (10) ase,, = p, —p; — R

gaSjiaZ jia and use (1)

to give
. _ 5T —_
Cip =RV =RV, =8 RyuB ju- (11)
. . . . T b
Next, the desired translational velocity of followerj v, =[v,, v, v,.] €E",

selected to stabilize (11) is written as
Via =R Ry =8,1uRy 25 + K e ) (12)

where K, = diagik ..k ,,.k .} € R is a diagonal positive definite design matrix all

i
with positive design constants and v, is the desired translation velocity of leader i. Next,

the translational velocity tracking error for follower j and leader i is defined as
e =lej e €] =vi—v, (13)
and

T
e, =le,, €y e, =v, v, (14)
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respectively.  Applying (12) to (11) while observing v, =v,—e¢;,and v, =v, —¢,,

w

reveals the closed loop position error dynamics to be rewritten as

=-K, e, +Re, —Re,. (15)

€ip ir%ip v

Next, the translational velocity tracking error dynamics for follower j are
developed so that the desired pitch, roll, and control thrust can be found. Differentiating
(13), observing

")jd = _S(a)j )vjd + R]T (RIS(a)l )vid + Rtv Ra]dsjld‘—‘jld ) + Rj]"ij (Rivi - ij Rajdsjtd“‘jtd)
and substituting the translational velocity dynamics in (5) allows the velocity tracking
error dynamics to be written as
é, =V, —v,==S(w,)e, —N,(v,)/m,~G(R,)/m,

jv
_u E]z/m /dl +RT(R S(a) )vzd +Ri‘>id _R(;ds_/idE_jid) (16)
—R K, (R, +Ra,d5,,d-,,d)+R K. Rv,

Jptivi

where 7, =7, /m,. Next, adding and subtracting R K, Rv, to(16) reveals

é, ==S(w;)e,, =N, (v,)/m;, —=G(R))[m,
—uyE,_[m; =7, + R (RS(0,)v,, + Ry — Ry, 1B 1) (17)
~RIK ,(Ryv, +R.;s B, )+RIK Rv, —R'K, Re

Jjpttivid Jp it vi
which can be rewritten as

=-S(w,)e,, ~N,(v,)/m,~GR,)/m; —u,E,_ [m,

_ (18)
T a1 —R ;K Re, +R A,
with
A; =Ry, +RS(@)v, _(Rjj-d +K, RTd)Sﬂd'_‘]ld +K,(Rvy—Rv)). (19)
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Remark 2: Examining the velocity tracking error dynamics (18) of the follower,
it is observed that the derivative of the control velocity, v, , of the leader is required as a
result of using v, in (12). If the measured velocity of the leader, v,, had been used
instead of v,, in (12), the tracking error dynamics (17) would be dependent on v, which
are considered to be unknown by the follower j in this work. In the following
development, a NN is introduced to learn the unknown quantities of (17); however, to
effectively approximate the leader’s dynamics, v,, terms like the leader’s control thrust
and rotational torques would be required to be communicated to each follower in addition
to the leader’s measured linear and angular velocities so that the terms could be included

in the NN input of the follower.

Moving on, we now seek to find expressions for the desired pitch, 8, , and roll,

¢, » required to control the translational velocity components v, and v, , respectively.

Moreover, it is desirable to specify the maximum desired pitch and roll angles,
respectively, to be tracked by the follower UAV.

To accomplish these design objectives, we first define the scaled desired

orientation vector, @jd = [gjd de lyjd]T where gjd =70, /(2(9dmax),
ajd = ¢jd/(2¢dmax), where 6, €(0,7/2) and ¢, . (0,7/2) are design constants
used to specify the maximum desired roll and pitch, respectively. Next, we rewrite the

translational rotation matrix (2) in terms of @_/d, and define R, = Rj((_ajd). Then, add and

subtract G(R,,)/m, and R;,A ; to (18) to yield

éjv = _S(a)j)ejv - G(Rja')/mj +Rde(Aj +fjc1(xq1)) _ulejz/mj ~RiKRe, - z_-jdl (20)

J o jp iy
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where
J1a()=Ry(GR ) [m; =G(R) [m; +(R] =R )A)+ Ry (RIRS(@)v,y =N, (v;)[m;) (21)

. . . . _ 7 3
is an unknown function which can be rewritten as 1, (x,.,)= [ S fren [ /.613] eR’ . In

the forthcoming development, the approximation properties of NN will be utilized to

estimate the unknown function f,,(x,,) by bounded ideal weights W,V such that

jel» " jel

7

. T T
- W, for a known constant W, and written as f,(x;,) =W, o(V,x

Jjel jcl) + gjcl

where ¢, <¢&,, is the bounded NN approximation error where ¢,,,is a known

constant. The NN estimate of f, is writen as f, =W,olVlx,)=W0,

Jjel?¥ jel jel™ jel

T =T T
=WeiGia Wiar0ja W,

Jjel1™ jel Jjel jel3

o] where W is the NN estimate of W[, W/

jel jel» jelk o

k=123is

the i row of wr and X

jel»

is the NN input

Jjel
Xl =[1 ®]T ®IT a)iT Ai Vfd Viiz ‘>de Via ‘/Gd l/“/jd ij Vf efv eij]T-
The key step in designing the desired pitch and roll is identifying the desired

closed loop velocity tracking error dynamics. For convenience, the desired translational

velocity closed loop system is selected as

¢, =-S(w)e, -K, e, —7,,—R K, Re, (22)

wE ot
where K, = diagik cos(gjd )5k o cos((,/?jd ), k 3} is a diagonal positive definite design
matrix with eachk;, >0, k=123. In the following development, it will be shown that
Ejd e(-n/2,x/2), &jd €(—/2,7/2); therefore, it is clear thatK, >0. Then, equating

(20) and (22) while considering only the first two velocity error states reveals
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0 - Sﬁ/d Cﬁjdkjvlejvx
0] 8lc s |Tle k
Coia® g Cgia" jv2€ juy

23
C-. C, . C- S . — 5 Aj1+ jell (23)
i 0jd ~wd 0jd "~ yid 0jd A x
_ g — e e - L 2 TS ez
SgiaSaiaCvia ~ CgaSua SgaSoaSua T CaCua SgaCaa )l A0
/3

Jjel3

where A, =[A; A, A j3]T was utilized. Then, applying basic math operations, the first

line of (23) can be rewritten as
Céjd(cw'd(Ajl +fjc11)+syjd(Aj2 + jc12)+kjvlejvx) =S§jd(Aj3 + jel3 _g) (24)
Similarly, the second line of (23) can be rewritten as

C@d(cw‘d (Ajz +fj512)_SW‘d (Ajl +fjcll)+kjvzejvy) =

(25)
S5a\8Cga S gaCyja (A‘jl +fjcll)_sg7jdsr/4'd (A‘,-z +fj012)_cg_v/d (A(/3 +fjcl3))

Next, (24) is solved for the desired pitchd, while (25) can be solved for the

desired roll ¢, . Using the NN estimates, f o1 » the desired pitch 6, can be written as

2 N
0, =%ata{D—ng (26)

where Ny, = Cw‘d(A_jl +fjcll)+sw'd(Aj2 +fjc12)+kjvlejvx and Dde = Aj3 +fjc13 - 8.

Similarly, the desired roll angle, ¢, , is found to be

by = 2F atan( NW) (27)

V4 D,

where Ny =¢,y (A + f102) =S,a(Njy + fa) +hjney, and Dy, =geg, = 55,6, (A + fr)

~ SgaSya (AJ'Z + fjch) ~Cha (Aj3 + fjc13) .
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Remark 3: The expressions for the desired pitch and roll in (26) and (27) lend
themselves very well to the formation control of quadrotor UAVs. The expressions will

always produce desired values in the stable operation regions of the UAV since a tan(e)

approaches + /2 as its argument increases. Thus, introducing the scaling factors in gjd

and ¢7jd results in 0, €(-0,,,0,.) and ¢,e(-4,..4.,), and the aggressiveness of the

UAVs maneuvers can be managed. Further, if the un-scaled desired orientation vector
were used in the development of (20), the maximum desired pitch and roll would still
remain within the stable operating regions. It is observed that too conservative maximum
values could lead to degraded tracking performance for very aggressive trajectories.

Now that the desired orientation of the UAV has been found, we now derive the
orientation error dynamics and find the stabilizing angular velocity control. Next define

the attitude tracking error as
€o=0,-0, k" (28)

where dynamics are found using (1) to be € :®jd —T,w;. In order to drive the

orientation errors (28) to zero, the desired angular velocity, @, , is selected as
-1,

where K o = diag{k o, k oy, k053 €R™ is a diagonal matrix of positive design

constants. Define the angular velocity tracking error as

~ o, (30)
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and observing @, =w,, —e¢,,, the closed loop orientation error system dynamics can be

written as

o =—Keot+Te,,. (31)

Examining (29), calculation of the desired angular velocity requires knowledge

of ®_jd; however, ®_/d is not known in view of the factA ;and fjcl are not available.

Further, development of u , in the following section will reveal @, is required which in

turn implies A ;,and f o must be known. Since these requirements are not practical, the
universal approximation property of NN is invoked to estimate w,, and@,, by using a

nonlinear virtual control structure.
To begin the NN virtual control development, we rearrange (29) to observe the

dynamics of the ideal virtual controller to be

- -1
®jd :Tj(a)jd _Tj Kj®ej®)

T . (32)
. 1 | )

. . _ _1
For convenience, we define a change of variable as Q, =@, -7, K e, and

the dynamics (32) become

©u=1 ) (33)
Q= Tj_1®jd + Tj_1®jd =fia(X,0) = fia
Defining the estimates of © ,andQ ,to be é.id and Q‘/d, respectively, and the

estimation error © =0, -0 ja» the dynamics of the proposed NN virtual controller

become
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®Jd = Tijd +Kle®jd

; . ~ (34)
- -1
de = ijl(ij)+KjQZTj ®jd
where K, and K ,, are positive constants. The estimate @, is then written as
A A -1 -1
@, =Q,,+T; K geo+K T, 0, (35)
where K ;s another positive constant. Observing
~ A ~ 1
@)y =@ = @jy =Q;y = Kjo; 7570, (36)

with Q = Yo ia» subtracting (34) from (33), as well as adding and subtracting

T jT@ utK jmT_ /."(:) ja » the virtual controller estimation error dynamics are found to be

~

®jd = Tj(?)jd _(ij _KjQ3)@jd

- R - - . (37)
de = fjm(xjg)_fjgl(xjg)_Kjng;l@jd _TjTG)jd +KjQ3Tj7

o))

jd
where £, (x o) = fio + T/ 0, — K ,T,'® , is an unknown function.

In (34), universal approximation property of NN has been utilized to estimate the
unknown function f, (x,,) by bounded ideal weights Wj;,Vj; such that
||W]Q||F <W o for a known constant W, and written as f, (X ) = VV;O‘(V;ZX/Q)+$/Q
where ¢, is the bounded NN approximation error such that Hg P H < &gy for a known

constanté&,,, . The NN estimate of Sfials written as

7 A Y, T T A T A AT . . T A .
fo(Xo)=fa= VV_/.QO'(V_/ijQ ) =W G ,, where W, is the NN estimate of W ,and x , is
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the NN input written in terms of the virtual control estimates, desired trajectory, and the
UAV velocity. The NN input is defined as x ,, =[1 ATj @L Qfd @fd vf a)f]T.

Next, differentiating (36), using (37) as  well as adding and subtracting
W o6 o reveals

QN)‘d = _KjQ35)jd +ijl(‘£jQ)_Tf(:jjd _Tjil(ij _ij(ij _KjQS))(:jjd +§jQ (38)

J!

7 _ T A 7T _ T T _ T~ 5 = 5
where fi, =W 06,0, Wi =W Wy, So=€q+We0,n, ando,=0,,-04.
Furthermore, cij” <Sou With &\ =¢q,, +2W,0\/N,, a computable constant with

N, the constant number of hidden layer neurons in the virtual control NN and the
fact||0'jg|| < N ,q was used. Examination of (30) and (31) reveals that @jd =0,0,=0,
and f}n = ( to be equilibrium points of the estimation error dynamics when”§ jQH =0.

To this point, the desired translational velocity for follower j has been identified
to ensure the leader-follower objective (8) is achieved. Then, the desired pitch and roll

were derived to drive v,, > v, andv,, — v, , respectively. Then, the desired angular

yb Jjdy >

velocity was found to ensure®; — ©,,. What remains is to identify the UAV thrust to

guarantee v, — v, and rotational torque vector to ensure w; — @,,. First, the thrust is

Jjzb
derived.

Consider again the translational velocity tracking error dynamics (20), as well as
the desired velocity tracking error dynamics (22). Equating (20) and (22) and
manipulating the third error state, the required thrust is found to be

A

u;, = mj(cajdsgjdcw +S 508 )(Aj1 + jcll)+n1jkjvzevj3 +mCh Co (Aj3 +fj013 -2)

(39)

+mj(cade§deW~d _S@ucw’d)(Aﬂ + jclz)
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where .f’\jcl is the NN estimate in (21) previously defined. Substituting the desired pitch

(26), roll (27), and the thrust (39) into the translational velocity tracking error dynamics

(20) yields

. T 7T T
e, =—-K,e, +R,W. 0,.,-R K Re,+

v je iptiCh TG et

(40)

Wlth gjcl :]ejzz-igjc _Tjdl s W;cl = I/Vjcl _VVjcl and’ |

Se

<&ua for a computable constant
$ivia =Roaxéria +7)/m;. In the formulation of (40), the expressions for the desired pitch

and roll (26) and (27), respectively, were first written in the form of (24) and (25), so that
sine and cosine of the angles could be substituted as opposed to substituting the
arctangent expressions directly into the sine or cosine function.

Next, the rotational torque vector, u;,, will be addressed. First, multiply the
angular velocity tracking error (30) by the constant inertia matrix.J,, take the first

derivative with respect to time, substitute the UAV dynamics (5) and add and subtract

T
T; e to reveal

Jjéjw =‘]jd)jd _de)j = fch(ijZ)_ujZ _TjTejG) —Tia (41)

. . T
with £, (x,,) =J 0, =S(J,0;)0,=N ;, (@) + T 6.

Examining f.,(x,,), it is clear that the function is nonlinear and contains
unknown terms; therefore, the universal approximation property of NN is utilized to

estimate the function f,,(x,,) by bounded ideal weightsW,,V ,such that

je22 "

7.,

<W,,,for a known constant W, ,. The ideal NN representation is written as
F JMce. JMc

fi2a(X;0) = WioVi,x,))+&,, wheres,,is the bounded NN functional reconstruction
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error such that”gjczu < &, for a known constante,,,. The NN estimate of f)., is given
by fﬂz( @)= JLZO'(V Xi0)=W, j(z "« Where WT is the NN estimate of W;Z and

=1 o] f)fd © de ejo] is the input to the NN written in terms of the virtual
controller estimates. By the construction of the virtual controller, cf)jd is not directly

available; therefore, observing (35), the terms flfd , © de , and efg have been included

instead.

Moving on, the angular velocity tracking error e, cannot be calculated due to its

dependence on the unknown vector . Thus, using the desired angular velocity (35),

we define the estimated angular velocity tracking error as ¢, =, —®,;. Now, using
the NN estimate f and ¢, , the rotational torque control input is written as
U, = fch +Kja)éjw’ (42)

and substituting the control input (42) into the angular velocity dynamics (41) yields

f;cZ f;c2 1aJ jo TTejG_Tde . (43)
Now, adding and subtracting Wczo' and observing ¢,, = e, — @, , the closed

loop dynamics (43) become
J] _Kjweja) + VV]CZUJCZ + Kja)a)jd T'jTejG) + je2 (44)



187

A

where W, =W%, —W’

je2 jc2 je2°

the number of hidden layer neurons.

— r ~
§j02 - gch + ijcZ Jje

Further,

je2 *

<&y, for a computable constant &, =&y, +2W 004N oy +7,, Where N, is

‘fch

As a final step, we define the augmented variables e, =[e}, e;,]",

~ ~ ~
T

T AT 9T ! A A AT
=le, ¢, W =W, 060W,land 6, =[5}, G,

Q>

» el 1". In the following theorem,

the stability of the follower j is shown while considering e,, =0. In other words, the
position, orientation, and velocity tracking errors are considered along with the
estimation errors of the virtual controller and the NN weight estimation errors of each NN

for follower j while ignoring the interconnection errors (e, ) between the leader and its

followers. This assumption will be relaxed in the following section.

Theorem 1: (Follower UAV System Stability) Given the dynamic nonlinear
system of follower j in the form of (5), let the desired translational velocity, pitch and roll
for follower j be defined by (12), (26) and (27), respectively. Let the NN virtual

controller be defined by (34) and (35), respectively, with the NN update law given by

W =Fo600", —koF oW, (45)

J

where F, = F /; >0and x, > Oare design parameters. Let the dynamic NN controller for

follower j be defined by (39) and (42), respectively, with the NN update given by

W.=F.6 (Ad.e,) —x.FW (46)

je je jetje"" je
where 4, =[R; 05,3055 I,,]1€R™, and F, =F]€ >0 andx, >0 are constant design

parameters. Then there exists positive design constants K, K ,, K o;, and positive
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definite design matrices K, ,K o,K,,K,,, such that the virtual controller estimation

errors @ id , 0 i and the virtual control NN weight estimation errors, VIN/J.Q, the position,

orientation, and translational and angular velocity tracking errors, e, ,e,€;,,€,,,

respectively, and the dynamic controller NN weight estimation errors, W, are all

Jje>

SGUUB.

Proof: Consider the following Lyapunov candidate

V=K Vi +Vs 47)

JjoMax" jQ
where K, >0 is the maximum singular value of XK, ,
3 @+t F T
Wq Wjq +Etr{ ol oWl
and

1 1 1 1 1
Vjc —Ee/pelp +2ej®e/® +2elvelv +2elee +2tr{W/€F/C WC}

whose first derivative with respect to time is given by V K JwMaxVJQ +V .

Considering first, V'jQ and substituting the closed loop virtual control estimation error

dynamics (30) and (31) as well as the NN tuning law (45), yields

VjQ = _@fd (ij - K_/m )(:)jd - 5_/dTK_/Q3CT)_/d +
E)_/dT(Tj_l (K_/m (K_/Ql - ij) - K_/QZ )®/d)_ deTTT®_/d + ®,T‘deE)_/d - (48)
_W{W;z&/g (®jd + 5)(/01 ) )+ Kjgt”{ Q} Jd 5,‘9

~ ~

Next, selecting K, =K 3(K o —K,o;) and observing c?;/.f]f@ G)]T ), and

oW o} =triW (W, — W)}, (48) can be upper bounded by
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VjQ S_(K/Ql jQS)HG)/dH 193 |a)/d|| +V JQ HWJQH HGJ“’H
N o 7l 18]+ 0l Pall, W = 5Pl + Nl

Now, completing the squares with respect to HVIN/jQHF, H@ id H and ||67)]d|| allows the

upper bound of V', to be written as

. N o \i~ K, N, O il
D =l el CH e (N D

0 2 Ko

where 77,, =KW MQ+§jQM /(ZK ja3) - Next, considering Vjc, and substituting the

closed loop kinematics (15) and (31), dynamics (40) and (44), and NN tuning law (46)

while consideringe,, = 0 reveals

_ T
V - erKlpe/p 61®K1®e/® ¢; KIVeJ elelwelw+e/pRJeJ

+erKwaJd + e Ph emflcz + l‘I’{VVJCJ]C( jd (ejD ].D)) }+ K. tr{WJCWIC}

Now,  observing HAJ.d (e;p—€p )H =@, 6] <yNu+Na = m ,

W, <W ., for a known positive constant W, , and t-{W [W } = triW (W, -W )},

V. 1s upper bounded by
2
V - KJpMm w” J®Mm 1®|| KJ Minl|€ jv " Klen em" + Ryfer €iplll€m +KJaMax J‘d||||ejwu
ey s +lewlésea + NP @+ 17 7]~ 7.1,
where K, s K jomin s K jymin-and K, i@ the minimum  singular  values of

K, .Ke,K; andK,, , respectively, and greater than zero. Next, completing the squares

with respect to ||e i ||,||e © ||,||e jv||, and”ejw” yields
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. 3R:, . K i K i K\~
Vjcs{zepwin—élKM )|e< [ Kadeolf e, e 2 ey
(50)
ol Kded 7.
4ch 4K/aM 4

where 7, =3k, W2\, + 3500/ K i + 302 ! K i - Now, combining (49) and (50), an

upper bound for y’, is written as

2

N ~ 1 K K. ~ 2

2 Q JoMax™ jQ

V < =Kt (ij_Kfm_ Ko H%H 4 HVVJQHF
J:

2 KjQ3_NQ 3NC _ 3 ~ 2_Kja)Min 2
K/aJMax( 2 KJQ 4K]CK]2a)Max 4Kja)Min j”a)id || 3 ||€ i || (5 1)
3R2 K jvMin K ic |Iy77
(Ko =2 Jeu = Kbt =52 e =P+,
wheren, =7, /4+K ,Z-Q,MMU - Finally, (51) is less than zero provided
N 2N, 3N .. 3 3R;,.
Ko > K g, +é, K o; > Kj; + ys szwMax + 2K K i > —4K;‘:Mm (52)
and the following inequalities hold
1
>
”a)]d || < ij N_jQ 3N B 3
JjoMax 2 Kjg 4K K jsza' 4 K_iji
o el [T o el [
JjpMin 4 Kijin (53)
~ 4n. ~ .
o0 Tl > o 184> —
JoMa e sz'a)Max (K jQl -K JjQ3 K]Qj
o
~ 3n. 3n, 3n,
or 7], > K_]Z or e, [> ij;m or e,|> Kjvz;m
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Therefore, it can be concluded using standard extensions of Lyapunov theory

(Lewis, Jagannathan & Yesilderek, 1999) that Vj is less than zero outside of a compact
set, revealing the virtual controller estimation errors, 0 jd,cT)jd, and the NN weight
estimation errors, VIN/_/.Q, the position, orientation, and translational and angular velocity

tracking errors, €,,:€0:€/,,€ 45 respectively, and the dynamic controller NN weight

~

estimation errors, W

Jje?

are all bounded. Finally, the initial compact set can be made

arbitrarily large through proper selection of the gains; thus, all signals are SGUUB
(Timothy, Burg, Xian & Dawson, 2007).
In the next section, results from our previous work (Dierks & Jagannathan, 2008)

are revisited in the design of the formation leader control laws.

B. Formation Leader Control Law

The kinematics and dynamics for the formation leader are defined similar to (1)
and (5), respectively. In our previous work (Dierks & Jagannathan, 2008), an output

feedback control law for a single quadrotor UAV was designed to ensure the UAV tracks
a desired path, p,, =[x,,,V,,z,] > and desired yaw angle,y,,. Using a similar approach

to (10)-(15), the translational control velocity for leader i was found to be (Dierks &

Jagannathan, 2008)
vid = [vidx vidy vidz ! = RiT (pid + Kipeip) € Eb ’ (54)
and the closed loop position tracking error then takes the form of

éip = —Kipel.p +R; e, (55)
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Then, using the leader’s velocity tracking error (14) and following steps similar to

(17)-(27), the desired pitch angle is given by

2emax Ni
0, = . atan( DI-Z J (56)
where Ny, =c¢; A, +5,,,A, +k,e,,andD,y, = A;—g. Similarly, the desired roll

angle for the leader is found to be

2 N,
b, = Do atan( W] (57)
V4 D,
where Ny, =c, Ay =8,uM +hpe,, and Dy =c; (8=N;3) =558l n = 95,Culy

with A, =X, +kipxxid “Vir +fic1 > M=V +kipyyid ~Viy t fiz> D=2y +kipzZid “Vis T Jiaz

T 7 7 7 T .
Vie = Vit Vira Vsl =K, Ry, and f, =[fii fin fiz) 15 @ NN estimate of the

ip™ i
unknown function f,,(x,,) (Dierks & Jagannathan, 2008). The development of the

desired angular velocity as well as the NN virtual controller for the formation leader
follows similar to (28)-(38), and finally, the thrust and rotation torque vector for the
leader were found to be (Dierks & Jagannathan, 2008)

u, =mk, e, +mi(c¢;ids§idcw +S5.Syia A +mi(c¢;ids5idswd =S54 Cyia )AL,
)

i gid~ 0id

(58)

and

Uy = fin + K8 (59)

i o~ io?

respectively, where j‘ic2 eR’is a NN estimate of an unknown function f,,(x,,) and

é, =o,—o. The closed loop orientation, virtual control, and velocity tracking error

10
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dynamics for the formation leader are found to take a form similar to (31), (37) and (38),
and (40) and (44), respectively (Dierks & Jagannathan, 2008).

A general controller structure for the follower UAV as well as the formation
leader is now shown in Fig. 3 where the subscripts i’ and %’ have been omitted. In the
figure, four connected systems are observed: a kinematic controller, NN virtual
controller, NN dynamic controller, and the UAV dynamic system. The kinematic
controller refers to the calculation of the translational control velocity and desired pitch
and roll (12), (26), and (27), respectively, for the follower and (54), (56), and (57),
respectively, for the leader.

The external inputs to the system are considered to be the desired position, p,, ,
and desired yaw,y,. For the leader, p,andy  are known values. In contrast, the

follower UAV calculates p, according to (9) and receives y, from the leader via wireless

v

/

NN Virtual
Controller

Kinematic
Controller

a
_><j+j>é
S
{ } v u i
; OJR 0 @ UAV System NN Dynamic
L(‘)ds<— o 7 (Equation (5)) zz_ Controller

Fig. 3. Control structure for the follower and leader UAV.
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communication so that the leader-follower formation control problem (8) is effectively
converted into a tracking control problem. Based on the difference between the current
UAV position ( p ) and the desired position, the kinematic controller generates the desired
velocityv, to ensure p — p,. Subsequently, the desired pitch,8,, and roll, ¢,, are
calculated to ensure the x and y components of the desired velocity are tracked,
respectively. Then, the NN virtual controller uses the information provided by the

kinematic controller to generate the desired angular velocity @, € E” which
ensures® — O, . Then, the NN dynamic controller calculates the actual control inputs

u,andu, based on the information provided by the kinematic controller and NN virtual

controller.
Next, the stability of the formation leader is investigated in the following theorem.

Theorem 2 (Formation Leader Stability): Given a smooth trajectory p,, and
desired yaw angle y/,, for the leader i, let control velocity and desire pitch and roll for the

leader be given by (54), (56), and (57), respectively. Let the virtual controller for the
leader i be defined similar to (34) and (35) with the virtual control NN update law defined
similar to (45). Let the thrust and rotation torque vector defined by (58) and (59),
respectively, and let the control NN update law be defined similarly to (46). Then, the
position, orientation, and velocity tracking errors, the virtual control estimation errors,
and the virtual controller and the dynamic controller NN weight estimation errors for the

formation leader i are all SGUUB.
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Proof of Theorem 2 is addressed in the following section where the stability of the
formation consisting of 1 leader and N followers is shown while considering the

interconnection errors between the leader and its followers.

C. Quadrotor UAV Formation Stability

Before proceeding, it is convenient to define the following augmented error

systems. First, the position and translational velocity tracking errors of leader i and N

. T T T T 3(N+1) _r.T T
follower UAVs are written as e, =[e,, ¢, e ejp|j:N] eR and e, =[e, €, .
we,| 1T e R Next, the transformation matrix (2) is augmented as
e

R, =diag{R.,R j.|j:1 uR j|j:N } e RN (60)

with|R|, = Ry, for a computable constant R,,,,, while the NN weights and activation

functions for the translational velocity error system are augmented as W, =

cl

ay

Wi i ...,afd

diag,. W,

Jel

(N-Nje1+Nie1) _ T T
j:N} eR and o, =[0,, o),

T NN +N,
. e R,
= J=N

Now, using the augmented variables above, the augmented closed loop position and

translational velocity error dynamics for the entire formation are written as
ép = _erp + (]3(N+1)x3(N+1) —G)R; e, (61)

and
év = _Kvev + AdFV,VcT&cl o R;KPGFRFev + écl ’ (62)

respectively, where 4. = diag{4,,, Ajd| yeees A fd|j=N} with 4, defined similarly to 4,

J=1

in terms of @,, &£, is an appropriately defined vector consisting of &, 2 & el etc.,

=1
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K, =diagiK,.K |

jplj=1"""

o K

Jv

G, 1s a constant

v?

K| )oK, =diag{K, K|, s

matrix relating to the formation interconnection errors defined as

0 0
G — |: 3x3N “Y3x3 :| c m3(N+l)x3(N+1) (63
d FT 03Nx3 )

and F, € R°™"is a matrix of ones and zeros and is dependent on the specific formation
topology. For instance, in a string formation where each follower follows the UAV
directly in front of it, follower / tracks leader i, follower 2 tracks follower /, etc., and F,
becomes the identity matrix. Further, it is observed that |G .|, = 3N .

Next, augmented variables for the orientation and angular velocity tracking errors
are written as e, =[el e |_;:1"" ef@|j:N]T e WM and

T
e

e jw|j_=N]T eR™V and the rotational transformation matrix (4) is

augmented as TF:diag{ﬂ,Y}L:l, ...,Tj|j_=N}eiR3(N+”’“3(N“). The NN weights and

activation functions for the angular velocity error system are augmented as

oy

W= diag{Wicza W,

je2

.
yeres w.

je2

N:N . ,+N,,
7N} GSR( je2tNie2) and

J=1 J

A N-N, ,+N, . .
e 0;2 ]TEER( M) “and the augmented closed loop orientation
-

A AT AT
oO,=|0., O
c2 [ ic2 je2 =N

and angular velocity error dynamics for the entire formation are written as
éo =—Koeg+Tp e, (64)

and

. ST A T ~
Jea} = _Ka)ea) + I/Vc2o-c‘2 - TF e@) + K{ua)d + c2» (65)
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respectievely, with K, = diag{Kq,K /®|j=1,...,l< j®|j=N}, K, =diagiK,,,

K,

=17 o

j=N} ’

J =diaglJ,,J f|;:1"“"]f|/:N} and &, is an appropriately defined vector consisting of &, ,,

5]1'2

1 Cte The vectors @, and ©, are the augmented virtual control estimation errors

. ~ _r~T ~T ~T
written as o, =, a)jd|j:1...a)jd

T 3(N+1) N e A AT T 3(N+1)
" e RN and @d_[®;,®§d|j=1... e, Irew™.

v .

From (37) and (38), the dynamics of the augmented virtual controller are

@d = TFaN)d - (Km - Kﬂj)@d (66)
and
5d = _K936~’)d + WQT&Q - TFTC:)d + QZQ ’ (67)

respectively, where K, =diagiK, 1y, Ko 1| j:1--K91]3x3| j:N} Koy =diagiKo, 15, Kool j=1
...KQ3I3X3|j=N}, and K,,= K (K, —-K,), and &, = diag{fig,f_l.TQ‘j:l...g&jTQ‘j:N}. The

augmented NN variables for the augmented virtual controller are given by

. A A A (N-N g+Ng) A rAT A T N-N+Ng)
%—dzag{WiQ,WjQ‘j:l,..., WjQ‘j:N}efn 2N and &, =[5, & T e/ Nara)

A

j=1° j=N

As a final step in defining the augmented error systems, we define the augmented

NN weight updates for the virtual control and dynamic controller to be

A

Wo = Fa6o0] — ForW, (68)
and
W, =F.6.(4,6,)" —Fx W, (69)
respectively, where F, = a’z’ag{FiQ,F]Q|j:1 o F jQ|j:N} N, =diag{F Fy| o Fil s
S . LSS 5 A _ [T ATAT T
W, =diagW, W, e W. _;:N}’ o.=lo, 0,], x =diagix.1,x; 1 . ook 1 j:N} ,
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Kq :a’iag{zcigl,ch/QI|J_=1 ...KA]AQ]L_:N} with each I being an appropriately dimensioned
identity matrix, e, =[e/ e’ ] andé, =[e] &é'1".

A general formation controller structure is now shown in Fig. 4 where each UAV
control block contains the controller structure shown in Fig. 3.  Additionally,
communication links have been illustrated. In the figure, each UAV can have multiple
follower UAVs, and local sensors (not shown) are utilized by the follower UAVs to

measure their locations relative to their respective leaders. Starting from the top of the

figure, the formation leader i has P+/ followers and communicates its measured

Formation Leader i
Control Block

[vg vl

e o1

vy Vi i
Leader |

Transciever

Leader i

T e e e

e N e N
Follower/ Follower j+ P
Control Block N Control Block
~
— N
: [y, V], >
% [®/ “’,] D) %
ST g
aa v W Vi Wil =  /
=
FoIIowerj Follower j + P
Transciever Transciever
\ J \ J

~N
J
N
J

Followerj + P +1
Control Block

Follower j+ N
Control Block

Follower j+P+1
Follower j+ N

-

J

-
(N

Fig. 4. Formation control structure.
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orientation and angular rate vectors,®,and®,, respectively, and its desired states,
WV Wys ViV, toeach follower. Next, in the second layer of UAVs, followers j

through j+P become leaders to followers j+P+1 through j+N, respectively.
Note that follower j does not explicitly communicate the states of the leader i to

its followers. However, by construction, the desired statesv ,,and v, contain the states of

the formation leader i. Thus, followers j+P+I through N inherently bring in the
dynamics of leader i by considering the dynamics of followers j through j+P,
respectively.

Now, the following theorem can be stated regarding the stability of the entire
UAYV formation.

Theorem 3: (UAV Formation Stability) Given the leader-follower criterion of (8)
with one leader and N followers, let the hypotheses of Theorem I and Theorem 2 hold.
Then, the position, orientation, and velocity tracking errors, the virtual control estimation
errors and the virtual controller and the dynamic controller NN weight estimation errors
for the entire formation are all SGUUB.

Proof: Consider the following positive definite Lyapunov candidate

VF = Fcle VQ + Vc (70)

wMax

wherel | =y3(N+1) +@RFMM>O and K, >0 is the maximum singular value of K,

Vo =818, + 2,5, + Lo, an
and
1 T le T T T 7T -1
V.==c'e +—L(efe,+ele, +e Je, + tr{WL, F. Wc}) (72)

DR
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where W, = diag{VIN/ic’ ch

7

) Fo=diagiFo,Fg|  .Fg| .}, and F,=diag{F,,

W,

el FN} . The derivative (70) with respect to time is given by V, =K, .V, +V..

Considering V,, and using (66), (67) and (68) while applying similar steps used in the

formulation of (48)-(49) allows ¥, to be upper bounded as

WL +n, (73)

Vo < _(KQImin Ko — &)Héd HZ - (% - ,(]Z—anaw’;d”z B ngnin

where K, i » Kosmin a0d - K i, are the minimum singular values of K, ,K,;, and x,

respectively, K., is the maximum singular value of K,, 7, = /75, + ZL?]_?Q with

N defined similarly to 7, , and N, = \/ N+ ZL N JZ.Q . Next, consideringy, and using
(61), (62), (64), (65), and (69) yields

s T 2T 2T 2T T
V.= _eprep —TegKoey — 16, K e, — T e, K e, + e, (13(N+1)x3(N+1) -Gp)R, e,

+Fczlec€Ka)5d - FczlefR;Kp GFRFev + 1—‘czlevTécl + Fflei‘fcz (74)
+T2 0T (6, (Agep — A,8,) + k)

Next, (74) can be upper bounded as

. — ~ |12
ch < _Kpmin ep"z _KG)minFczl ||€®||2 _Kvminrczl "ev”2 _Ka)minrczl "ew"2 _Kcminrczl VVL F
+||ev||F621§Mcl +||e(u||F621§M02 + 1—‘cl "ev" ep +Kw1naxrczl ||5)d ""elu”
+rczl \/ﬁc VVC F”ew”—}_,{cmaxVV;MFczl VVc F
where K s Ko s K pmin» @and &, are the minimum singular values of K ,K,,K,,

andk,, respectively, |6,]|< N, for a known constantN,, and K, . is the minimum

vmin

singular value of K, =K, + R;KPGFRF with K, selected to ensure K, > 0.
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Now, completing the squares with respect to | .,

sl

W, |, yields

I)c < _(Kpmin - 1 /2')||ep||2 - K@minrc’zl||e®||2 - 1_‘czl (Evmin - 1)”ev "2
LK pin =1+ N 12K o D, |
FCZI (K(,‘mll’l - \' C /2 - Kcmax (75)
K, oloi~p I
+%d" d” +—2 (Kcmax ot & + &)
Next, using (73) and (75), v, is formed as
5 S K min ||157 ||
VF < _Fclea)Max (KQI min Q3max j” H - % WQ HF
2 K min N ~
I Vot
- (Kpmm - 1/2)”6 ||2 - ®m1n CZI ”e@”2 - vmm 1)”6 ” (76)

wmm (1 + Y )/2 a)max /2)"@(0”
_Fcl(’(cmin Y c /2 _Kcmax Nc j;v +77F

wheren, =T

cl

(K, Wiy +Evy +E0 o +2K,,,. 1)/ 2. The first eight terms of (76) are

less than zero provided the augmented gains are selected according to

2 1
KoKy io g 5 2Na K>3 77)

min Qmin
K, .>LK, >0+ N)/2+K, /2
Kcmin>VNc/2+Kcmax/2 ’

and V,.is less than zero provided the gains are selected according to (77) and the

following inequalities hold:
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6, > - N
Fclea)Max (Klein — Koy — 994 j
S0 [ A
or HWQHF > F2 a,MaxKQmin ’ cl vmin
or  |a@)> K N1
rﬁKwMax( ES ,{Qjm _2j 7o
ol @l o el

or ||ea,||>\/ ;

1—‘021(1<a)min _(1+ \/Nc)/z_meax/z)

~

or ‘W

c

> Ui )
r 1_‘czl(K‘cmin_ VNC /Z_Kcmax/z)

Therefore, it can be concluded using standard extensions of Lyapunov theory

(Lewis, Jagannathan & Yesilderek, 1999) that V, is less than zero outside of a compact
set, revealing the augmented virtual controller estimation errors, 3] 4»0,, and the NN
weight estimation errors, WQ , the augmented position, orientation, and translational and
angular velocity tracking errors, e ,eq,€,,¢€,, respectively, and the augmented dynamic
controller NN weight estimation errors, /7, , are all bounded. Finally, the initial compact

set can be made arbitrarily large through proper selection of the gains; thus, the formation
errors are all SGUUB (Timothy, Burg, Xian & Dawson, 2007).

Remark 4: The conclusions of Theorem 3 are independent of any specific
formation topology, and the Lyapunov candidate (70) represents the most general form
required to show the stability of the entire formation. Examining (77) and (78), the
minimum value of the controller gains and the error bounds increases with the number of
follower UAV’s, N. These results are not surprising since increasing the number of

UAV’s will increase the sources of errors propagated throughout the formation.
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Remark 5: Once a specific formation topology has been decided and set in the

form of £, the results of Theorem 3 can be reformulated more precisely. For this case,

the stability of the formation is proven using the sum of the individual Lyapunov

candidates of each UAV as opposed to using the augmented error systems.

IV. SIMULATION RESULTS

A wedge formation of five heterogeneous quadrotor UAVs is now considered in
MATLAB with the formation leader located at the apex of the wedge as shown in Fig. 5

where the abbreviations L, FI, F2, F3, and F4 have been used to denote the formation

Top View of the
Desired Formation

@ @

Bioa = Ps1a = - (rad) Prod = P == (rad)

Desired Formation 1 F4

Viewed from the Front F2 B
a'md =d319 _F? (rad) .J ) L
17
5.2
— =-= — T
% . Aroq = Aygpy T (rad)

........

N

= S10d = S31d = S20d = S42q =2 (M)

Fig. 5. Desired formation topology.
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leader, follower 1, follower 2, follower 3, and follower 4, respectively. In addition, the

leader UAV will be numbered as UAV 0. In the figure, follower 1 should track the leader
while follower 3 should track follower 1 at a desired separations ;,, =2 m, desired angle
of incidence @, =0 (rad), and desired bearing f3,, =73 (rad), respectively. On the right
side of the formation, follower 2 tracks the leader while follower 4 tracks follower 2 at a
desired separations ;,, =2 m desired angle of incidence, «,, =—7/10 (rad), and desired
bearing f,, =—7/3 (rad), respectively.

The desired position ([m]) and yaw ([rad]) for the leader to track is designated to
be p, =[4, cos@,t)(1—exptr.t?)) A, sin(w )(1- exp(—ryz‘2 ) A (1-exp(-7.t))]", and
w, =0 with 4 =4 =10, 0, =0, =017, r,=r,=0.05 4, =-10,and r, =0.25.

The inertial parameters of each UAV in the formation are summarized in Table 1.
In addition, a normally distributed noise signal with zero mean and variance of 0.01 is

added to each UAV’s dynamic model (5) throughz,. Unmodeled dynamics in the form

of aerodynamic friction are also added to each UAV system and modeled as shown below

(Dierks & Jagannathan, 2008)

[d, +d v, 0 0 0 0 0 Vi

0 dy +d,[v.,| 0 0 0 0 Viess

[N 1 (V(.) ) } _ 0 0 ds + de ‘V(O)zb 0 0 0 Vioyzb
N@)| | 0 0 0 d, +dja,,| 0 0 D
0 0 0 0 dy+dya., 0 Dy

| 0 0 0 0 0 dyy +dp|@] | O |
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TABLE I. UAV Dynamic Parameters

Leader F1 F2 F3 F4
d, k=12,..6 [0.06] [0.1 ] [0.09 (0.1 [0.15 ]

0.1 0.9 0.8 0.7 0.3

0.06 0.05 0.07 0.05 0.17

0.1 0.07 0.8 0.07 0.08

0.06 0.07 0.09 0.05 0.1
0.1 | | 0.08] | 0.07] | 0.08 ] 1 0.09
d, k=78, .12 (0.1 ] [0.06] (0.1 T [0.06 [0.1 7

0.15 0.1 0.9 0.3 0.5

0.1 0.06 0.05 0.06 0.15

0.15 0.1 0.07 0.25 0.17

0.1 0.06 0.07 0.06 0.17
10.15 | L 0.1 | 0.08 | | 0.25] | 0.18]

m, (kg) 0.9 1 1.1 1.25 1.15
J ., (kg-nt) 0.3 0.5 0.5 0.5 0.5
diags| 0.4 diag<| 0.5 diagq| 0.6 diag<| 0.5 diagq| 0.6
0.6 0.5 0.7 0.5 0.7

where eachd, ,k=1,2,...12 are the damping coefficients summarized in Table I. At /=10

seconds, a step disturbance is added to the translational and angular velocity dynamics

with magnitudes of 2.5 and 0.25, respectively.
Each NN employed by the leader and its followers consists of 10 hidden layer

neurons, and for each UAV, the control gains are selected to be,
K, =24 K, =80 K, =20, K, = diag{10,10,30%, k, =10, k , =10, k , =30,
Ko =diag{30,30,30}, and K, =diag{45,45,45} based on the theorems. The NN
parameters are selected as,F,, =10,x, =1, and F, =10,x, =0.1, and the maximum

desired pitch and roll values are both selected as 27 /5 for each UAV.
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Fig. 6 displays the quadrotor UAV formation trajectories. Examining the

trajectories in this figure, it is important to recall that the bearing angle, g, is measured in

the inertial reference frame of the follower rotated about its yaw angle. Examining the
figure, each UAV begins from the ground, and quickly tracks its respective leader upon

takeoff.

UAV Formation Trajectories

-7 (m)

o 10 © Y (m)

X (;11)

Fig. 6. Quadrotor UAV formation trajectories.

Comparing the final configuration of the UAVs shown in Fig. 6 to the desired
formation topology shown in Fig. 5, one can see that the desired formation was achieved.
Figures 7 through 16 show the position, orientation and the translation and angular
velocity tracking errors for the leader and its followers. Examining the tracking errors for
the leader and its followers in these figures, it is clear that all states track their desired

values with small bounded errors consistent with the results of Theorem 3. Initially,
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errors are observed in each state for each UAV, but these errors quickly vanish as the
virtual control NN and the NN in the actual control law learns the nonlinear UAV
dynamics. At =10 seconds, a small peak in the error plots of each UAV is observed
corresponding to the external step disturbance being introduced. However, the NN
controllers of the UAVs quickly adapt to the changing conditions and the UAVs return to
track their desired paths with small bounded errors. Additionally, the tracking

performance of the underactuated states v, andy, implies that the desired pitch and roll,

)
respectively, as well as the desired angular velocities generated by the virtual control
system are satisfactory for the leader, and each follower. Further, the tracking

performance confirms the theoretical conjectures derived in Theorem 3.

Leader Position and Orientation Errors

n2r
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o €pe __E'Py """" €py
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€ — —€§ - Eq
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Fig. 7. Leader position and orientation tracking errors.
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Leader Velocity Tracking Errors
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Fig. 8. Leader translational and angular velocity tracking errors.
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Fig. 9. Position and orientation tracking errors for follower 1.
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Follower 1 Velocity Tracking Errors
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Fig. 10. Velocity tracking errors for follower 1.

Follower 2 Position and Orientation Errors
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Fig. 11. Position and orientation tracking errors for follower 2.
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Follower 2 Velocity Tracking Errors
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Fig. 12. Velocity tracking errors for follower 2.

Follower 3 Position and Orientation Errors
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Fig. 13. Position and orientation tracking errors for follower 3.
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Follower 3 Velocity Tracking Errors
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Fig. 14. Velocity tracking errors for follower 3.
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Fig. 15. Position and orientation tracking errors for follower 4.
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Follower 4 Velocity Tracking Errors
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Fig. 16. Velocity tracking errors for follower 4.

Next, we investigate the importance of the formation dynamics by employing the
assumption that the formation is traveling at a constant velocity (Van der Walle, Fidan,
Sutton, Yu & Anderson 2008; and Kingston, Beard & Holt, 2008). In the experiment,
each UAV tracks its respective leader under the assumption that its leader is traveling at a
constant velocity, and thus, each UAV does not account for the formation dynamics.

The resulting formation trajectories are similar to the trajectories shown Fig. 6.
Although the formation is achieved, the importance of the formation dynamics is
observed by examining the velocity tracking errors for the followers. Fig. 17 displays the
dynamic errors for follower 3, and it is observed that the transient response of the errors
not only lasts longer, but the size of the bound on the error has increased when compared
to Fig. 14 as a result of ignoring the formation dynamics. Similar results were observed

for the other follower UAVs.
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Follower 3 Velocity Tracking Errors
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Fig. 17. Velocity tracking errors for follower 3 when the formation dynamics are

ignored.

V. CONCLUSIONS

The proposed framework for quadrotor UAV leader-follower formation control
using NNs for each UAV allows the follower UAVs to track their leader without the
knowledge of its own and formation dynamics. By converting the formation control into
a tracking control problem, and designing a NN virtual control structure, all six DOF of
an underactuated UAV are successfully controlled using only four inputs while in the
presence of unmodeled dynamics and bounded disturbances. Lyapunov analysis
guarantees SGUUB of the entire formation, and numerical results confirm the theoretical

conjectures.
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5. Optimal Control of Affine Nonlinear Discrete-time Systems
with Unknown Internal Dynamics using Online
Approximators’

Travis Dierks and S. Jagannathan

Abstract— In this paper, direct dynamic programming techniques are utilized to solve
the infinite-horizon Hamilton Jacobi-Bellman equation forward-in-time time for the
optimal control of general affine nonlinear discrete-time systems. The proposed
approach, referred normally as adaptive dynamic programming, uses online
approximators (OLA’s) to solve the infinite horizon optimal regulation and tracking
control of affine nonlinear discrete-time systems in the presence of unknown internal
dynamics and a known control coefficient matrix. For both regulation and tracking, the
controller designs are implemented using OLA’s to obtain the optimal feedback control
signal and its associated cost function. Additionally, the tracking controller design
entails a feedforward portion which is derived and approximated using an additional
OLA for steady state conditions. Novel update laws for tuning the unknown parameters
of the OLA’s online are derived. Lyapunov techniques are used to show that all signals
are uniformly ultimately bounded (UUB) and that the approximated control signals
approach the optimal control inputs with small bounded error. In the absence of
disturbances, an optimal control is demonstrated. Simulation results are included to

show the effectiveness of the approach.

! Research Supported in part by NSF ECCS#0621924 and Intelligent Systems Center. Authors are with the Department of Electrical
and Computer Engineering, Missouri University of Science and Technology (formerly University of Missouri-Rolla), 1870 Miner
Circle, Rolla, MO 65409. Contact author Email: tad5x4@mst.edu.
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Index Terms —Online nonlinear optimal control; Hamilton Jacobi-Bellman; tracking;
online approximators

I. INTRODUCTION

Online approximators (OLAs) have been widely used in the controller designs for
discrete time nonlinear systems; however, stability is typically the only consideration for
the resulting control laws [1]. In many cases, it is desirable that the control law not only
stabilizes the system, but also minimizes a pre-defined cost function to achieve
optimality. Traditionally, the optimal control of linear systems accompanied by quadratic
cost functions can be achieved by solving the well known Riccati equation [2]. However,
the optimal control of nonlinear discrete time systems is a much more challenging task
that often requires solving the nonlinear Hamilton-Jacobi-Bellman (HJB) equation.

Although nonlinear optimal control and nonlinear #,, optimal control have been

extensively studied for both discrete and continuous time systems [2]-[6], solving the
HJB and Hamilton-Jacobi-Isaacs (HJI) equations still remain challenges. In practice, the
HJB and HJI equations are more difficult to work with because they involve solving
either nonlinear partial difference or differential equations [7]; therefore, several works in
literature have attempted to solve the discrete time nonlinear optimal regulation problem
using dynamic programming based approaches and neural networks (NN’s) [7]-[8] by
assuming that there are no NN reconstruction errors; however, the optimal solutions are
obtained via offline training of the online approximators such as NN’s.

Specifically, the authors in [7] propose an iterative solution to the generalized
HJB equation and present a nearly optimal state feedback control law for affine nonlinear

discrete time systems derived using a Taylor series expansion. In [8], the authors present
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an iteration-based offline solution with convergence proof to the HIB equation using
heuristic dynamic programming (HDP) [13]. While proof of convergence is shown in [7]
and [8], the NN reconstruction errors are considered negligible in both cases. In addition
to NN’s, Taylor series expansions and Galerkin approximation techniques have also been
used to estimate the solution to the HJI equation [9]-[10].

To overcome the iterative offline training methodology, several online
approximator-based controller designs were presented in [11]-[13], and are often referred
to as forward dynamic programming (FDP) or adaptive critic designs (ACD). The central
theme of the approaches [11] and [12] as well as several works in [13] is that the optimal
control law and cost function are approximated by online parametric structures, such as
NN’s. Although the techniques [11]-[13] are verified via numerical simulations, the
reconstruction or approximation errors are not considered and mathematical proofs of
convergence are not offered.

In addition to the optimal regulation problem, the optimal tracking control
problem has been considered in recent literature through linearization of the tracking
error equations [16], receding horizon optimal control [17], inverse optimal control [19],
and directly calculating the infinite horizon HJB equation via offline scheme [20]. In

[16], the authors consider the H.optimal tracking control by linearizing the error

equations about the origin yielding a locally optimal control law. The effort in [17]
considers the receding horizon optimal tracking control by linearizing the nonlinear error
dynamics about the origin [16].

To extend the results of linear optimal control theory to nonlinear systems, the

state dependent Riccati equation (SDRE) [18] was proposed; however, the optimal
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control is developed under some tight assumptions including the need for full knowledge
of the system dynamics. To overcome linearization, the authors in [20] consider the HIB
equation and employ similar techniques as [8] to find an offline solution to the optimal
tracking control problem via HDP. Besides ignoring the online approximator (OLA)
reconstruction errors, complete system dynamics are needed to implement offline
training.

In this work, a novel direct dynamic programming (DDP) approach to the optimal
regulation of nonlinear discrete-time affine systems is first undertaken to solve the HIB
equation online. Using an initial stabilizing control, an OLA is tuned online to learn the
HIJB equation. Then, a second OLA is utilized that minimizes the cost (HJB) function
based on the information provided by the first OLA. For the regulation problem,
knowledge of the internal system dynamics is not required while the control coefficient
matrix alone is needed. In addition, this novel DDP approach is extended to the optimal
tracking control of affine nonlinear discrete-time systems when the internal dynamics of
the system are unknown using OLA’s. The proposed tracking controller utilized three
OLAs- one for approximating the cost function, a second for generating a feedback
portion of the control input whereas a third OLA is used for approximating the
feedforward part of the control input. It is useful to observe that for both linear and
nonlinear systems, the overall control input for the tracking problem normally contains a
feedback term as well as a feedforward portion. Since the internal dynamics are
considered to be unknown in this work, the third OLA is required to estimate the

feedforward portion of the control input.
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Novel online parameter tuning laws for the OLA’s are derived. Further,
Lyapunov theory is utilized to demonstrate the stability of the system while explicitly
considering the approximation errors resulting from the use of the OLA’s in contrast to
the other works [7], [8], [20]. The OLA’s considered in this work are NN’s although any
nonlinear approximator such as radial basis functions, splines, polynomials, and linear in
the tunable parameter (LIP) adaptive control technique can be utilized.

The near optimal control laws proposed in this work are obtained without
linearizing the equations about the origin [16]-[17] and are accomplished using the
infinite horizon cost function in contrast with [17]. Additionally, the knowledge of the
internal system dynamics are not required in contrast to [7], [8], [16], [18] and [20], and
the proposed approach is solved online and forward-in-time; thus, it does not require
offline NN training as in [7], [8], and [20].

This paper is organized as follows. First, background information for the discrete
time nonlinear optimal regulation problem is presented in Section II. In Section III, the
nearly optimal regulation control law is derived, and the stability is verified using
Lyapunov theory. The nearly optimal tracking control law is developed in Section IV
and the stability of the proposed scheme is verified using Lyapunov theory. Then,
Section V illustrates the effectiveness of the proposed regulation and tracking schemes

via numerical simulations, and Section VI provides concluding remarks.

II. BACKGROUND

Consider the affine nonlinear discrete-time system in the absence of disturbances

described by
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x(k+1) = f(x(k)) + g (x(k)u(x(k))

= F (k) + g(kyu(k) M

wherex(k) e R", f(k)eR", g(k)eR™™ satisfies ||g(k)||-< g, where the Frobenius

norm is applied, and u(k) € R" is the control input. Without loss of generality, assume

that the system is observable and controllable, sufficiently smooth, drift free, with x =0a
unique equilibrium point on a compact set{2. Under these conditions, the optimal
control input for the nonlinear system (1) can be calculated [2]. In order to control (1) in

an optimal manner, select the control sequence u(k)that minimizes the infinite horizon

cost function as [8]

r(k+i):r(k)+ir(k+i+l):r(k)+J(k+1) )

)
i=0 i=0

J(k)

for all x(k), where r(k)=Q(x(k))+u(k)" Ru(k) with O(x(k))>0 andR € R™™ is a
symmetric positive definite matrix. Further, it is required that the control policy

u(k) guarantees that (2) is finite; or u(k) must be admissible.
Definition 1: Admissible Control [7]. A control action u(k)is admissible with

respect to the infinite horizon cost function (2) on a compact set ) provided the control

action u(k)is continuous on a compact set(2, the control u(k) stabilizes (1) onQ with

u(k)| ()= =0 » and J(x(0)) s finite for all x(0) e 2.

The optimal control policy for (1) that minimizes (2) is found by applying the
stationary condition [2]

0J (x(k))

OJ(x(k+1)) _
ou(k) B

=2Ru(k)+g(k)" ax(k+1)

and is shown to be [2]
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r O (x(k +1))

ox(k +1) )

«'(k)=-3 R 'g(h)

whereu”(k)andJ*(e)are the optimal control policy and optimal cost function,

respectively.

Even in the presence of known dynamics, the optimal control (3) is generally
unavailable for nonlinear discrete time systems. To circumvent this problem, several
approaches [7]-[8] find (3) via offline iterative training while others [11]-[13]
approximate (3) using online learning. In the following section, a new approach to online
optimal control is presented which guarantees the optimal control policy (3) for the
nonlinear system (1) is found with small bounded error while ensuring the OLA
parameter estimates remain bounded close to their target values using Lyapunov theory.

The authors in [11]-[13] do not provide these guarantees.

III. NEAR OPTIMAL REGULATION OF NONLINEAR SYSTEMS

The nearly optimal nonlinear regulator design entails two steps: an OLA designed
to learn the HIB equation online and forward-in-time, and a second OLA designed to
learn the control signal that minimizes the cost (HJB) function based on the information
provided by the first OLA. Using the approximation property of OLA’s [1], the cost
function (2), feedback and control policy (3) have OLA representations on a compact set

expressed as
J(x(k)) =@ o(x(k) + e, 4)
and

u(x(k)) = @ 9(x(k) + ¢, ()
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respectively, where ® and® ,are the constant target OLA parameters, ¢, and ¢ , are the
bounded approximation errors, and o(e) and ¥(e) are the vector activation functions for

the cost and control signal OLA schemes, respectively.
The following assumptions which are common in OLA literature [1],[21]
regarding the boundedness of the ideal OLA parameters are required.

Assumption 1. The upper bounds for the ideal OLA parameters are taken as

||CDC|| <®, and ||CDA||F <&, where ®, ,D,, are positive constants [1].
Assumption 2. The approximation errors are upper bounded as |¢,|<¢,, and

”8 A|| <¢&,, whereg,, and ¢,,, are positive constants [1].

Assumption 3. The gradient of the approximation error is upper bounded as
loe. /(6x(k +1))||,, < &, where &, is also a positive constant [21].
To begin the optimal regulator design, the cost function will be approximated
first.
A. Cost Function Approximation for Optimal Regulator Design

The objective of the optimal control law is to stabilize the system (1) while
minimizing the cost function (2). The cost function (2) will be approximated by an OLA

and written as

J(k) = J(x(k)) = D (K)o (x(k)) = D] (K)o (k) (6)
where J (k) represents an approximated value of the original cost functionJ(k), Ci)c is the
vector of actual parameter vector for the target OLA parameter vector,® ,and

o(k)={o,(k)}} is set of activation functions which are each chosen to be basis sets and
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thus are linearly independent. The basis function should satisfy [o(x,)|= 0 for

|x,] = 0withx, € R". Selection of o(e) in this way ensures J(0)=0can be satisfied

[2].

For convenience, define the error in the cost function as

e (k) =r(k=1)+ " (k)o(k) - D (k)o(k —1) (7)
whose dynamics are given by

e (k+1)=r(k)+ ! (k + )(o(k +1) - o(k)). (8)
Next, we define an auxiliary cost error vector as

E (K)y=Y(k-1)+®" (k)X (k—-1) e R 9)
where Y(k-1)=[rk—1) nk-2)...nk—1-j)] and X(k—-1)=[Ac(k) Ac(k-1)...Ac(k—))]
with Ac(k)=o(k)—o(k—1), 0<j<k—-1eN and Nbeing the set of natural real
numbers. It is wuseful to observe that (9) can be rewritten as
E (k)=[e (k|k) e.(k|k—=1)---e.(k|k—j)] where the notation e (k|k—1) means

the cost error e, (k—1) re-evaluated at time k& using the actual cost parameter

matrifo)LT,(k). The dynamics of the auxiliary vector (9) are formed similar to (8) and
revealed to be

Ef(k+1)=YT(k)+XT(k)ﬁ)C(k+1). (10)

Examining the error dynamics (10), it is observed that they closely resemble a

nonlinear affine system with Cf)c(k+1) being the control input, andY" (k) and X" (k)

being nonlinear vector fields. To proceed, the following technical results are needed.
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Definition 2: Linear Independent Functions [14]. A set of functions
o(k)={o,(k)} is said to be linearly independent if ijl c,0,(x)=01implies
thatc, =---=c¢, =0.

Lemma 1. Letu(k)be an  admissible  control  such  that
x(k +1) = f (k) + g(k)u(k) is asymptotically stable. If the set o (k) = {o, (k)} ! is linearly
independent, then the set Ac(k +1) = {o,(k+1)—o,(k)}! is also linearly independent.

Proof: Consider the expression

a(x(0) ~a(x(j) = 2, (o(x(k +1) = a(x(k))). (11)
Since, w(k)is an admissible control x(e0) =0, and thus, o(x()) =0 allowing (11) to be

rewritten as
—o((j) = Y (o(lk+1) - o(x(k))). (12)
Now, suppose that the Lemma [ is not true. Then there exists a nonzero constant
vector C, € R"such that
CY (o(x(k+1) = o(x(k)))=0. (13)
From (12) and (13), we have—C/o(x(j))= ij:j C/ (o(x(k +1)) — o(x(k))) = 0 which
contradicts the hypothesis of linear independence of o(x(j)) so that
Ao(k+1)={o,(k+1)—0o,(k)}, must be linearly independent. m

Now define the cost function OLA parameter update to be

& (k+1)= X ()X ()X (k)Y (. ET (k) =Y (k) (14)
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where 0 < o, <1, and substituting (14) into (10) reveals
E'(k+D)=a,E! (k). (15)
Remark 1: 1t is interesting to observe that the parameter update law (14)
resembles the least squares update rule commonly used in offline ADP [7]-[8]; however,
instead of summing over a mesh of training points [7]-[8], the update (14) represents a
sum over the system’s time history stored in £ (k). Thus, the update (14) uses data
collected in real time instead of data formed offline [7],[8].
Remark 2: As a result of Lemma 1, the matrix X' (k)X(k)is invertible
providedx(k) #0. Observing the definition of the cost function (2) and OLA
approximation (6), it is evident that both become zero only whenx(k)=0. Thus, once

the system states have converged to zero, the cost function approximation is no longer be
updated. This can be viewed as a persistency of excitation (PE) requirement for the
inputs to the cost function OLA wherein the system states must be persistently exiting
long enough for the OLA to learn the optimal cost function.

As a final step in the cost function OLA design, we define the parameter
estimation error to bea)c(k) =d_ - Cf)c(k) , and rewrite (2) using the ideal OLA
representation (4) revealing ® o(x(k))+&, (k) =r(k)+® o (x(k +1))+ &, (k +1)which
can be rewritten as

r(k) =~ Ac(x(k)) - A, (k) (16)
where A¢, (k) = ¢.(k+1)—¢.(k). Substituting (16) into (8) as well as utilizing (7) and
e.(k+1)=a.e (k) from (15) yields

&DLT (k+DAo(x(k))=—a, (r(k-1)+ Cf)f (K)Ao(k—1))—As. (k). (17)
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In a similar manner as (16), we now form
rk—1)= —® Ac(x(k-1))—Ae,(k—1) and substitute this expression into (17)
revealing Ac” (x(k))®, (k +1)=a,Ac” (x(k —1))®_ (k) + a,As,(k—1)—As, (k), and
the OLA parameter estimation error dynamics are revealed to be

&, (k+1) = a.Ac(x(k)(Ac” (x(k)Ac(x(k))) Ac” (x(k —1)®, (k)
+Ac(x(k)(Ac” (x(k)Ac(x(k))) (a,Ac, (k1) - A, (k).

(18)
Next, the boundedness of the cost function error (7) and OLA estimation error
(18) is demonstrated, but first, the following definition is needed.
Definition 3 [1]: An equilibrium point x,is said to be uniformly ultimately

bounded (UUB) if there exists a compact set ScR"so that for all initial states

X, € Sthere exists a boundBand a time7(B,x,) such that ||x(k)—xe < Bfor all

k>k,+T.
Theorem 1: (Boundedness of the Cost OLA Errors). Let u(k)be any admissible

control for the controllable system (1), and let the cost OLA parameter update law be

given by (14). Then, there exists a positive constant, ¢, such that the cost errors (7) and
(18) are UUB with bounds given by |, (k)| <5, and |, (k)|, <bj, -

Proof: Consider the positive definite Lyapunov candidate

Vo(k)=e (k) + Aok, @ (k) (k) (19)

min

where Ac’. is a positive constant given by 1/ HAGT (x(k))Aa(x(k))HSl/ Ao’ The

in *

existence of Ac?

min

>0 is ensured by the PE condition described in Remark 2. The first
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difference of (19) is given by AV.(k)=e, (k+1)> +Ac’ ®" (k+1)D (k) —e, (k) -

min

Ac?

min

@’ (k)D,_ (k) , and using (18) and the fact e_(k +1) = e, (k) from (15) yields

AV (k) =—1-a e, (k) —Acr, @ (k)D. (k)

+A0%, (@, A0” (x(k=1)D, (k) - As, (k) + o, A, (k—1))) x (20)

((AGT (x()AG(x(k))) (@, A0” (x(k—1))®, (k) Ac, (k) +a Az, (k—l)))
Since u(k) is admissible, then x(k)is asymptotically stable, and there exists a computable

positive constant Ao, such that [Ac(x(k —1))| < Ao,, . Then, (20) is rewritten as

AV (k) < ~(1-a)e, (k) ~(Ac2, — 20200 B, (k)] +8(1+a,)? €2, (21)

and selecting
a’ <min{l,Ac’ /(2Ac;)}, (22)

the first two terms of (21) are less than zero. Further, AV.(k) is less than zero provided

the gain is selected according to (22) and the following inequalities hold

8(1+a,)’,

(I-a.)’

8(+a,)’ e,
Ac?

min

le, (k)| > =b,,.

=b/ or HCT)C(k)HF >\/

—-2a’Ao;,
Thus, using standard Lyapunov theory [1], it can be concluded that AV . (k)1s less

than zero outside of a compact set rendering the cost error and cost OLA parameter

estimation errors are UUB. |

Next, the optimal control signal estimation scheme is presented for the optimal

regulator.
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B. Estimation of the Optimal Feedback Control Signal

The objective of this section is to find the control policy which minimizes the
approximated cost function (6). To begin the development of the feedback control

policy, we define the OLA approximation of (5) to be
(k) = a(x(k)) = D7, (k) H(x(k)) (23)
where @ , (k)is the estimated value of the ideal parameter matrix @ , and 9(e) denotes
the basis function.
Next, the optimal control signal error is defined to be the difference between the
feedback control applied to (1) and the control signal that minimizes the estimated cost

function (6), which is denoted as

oo(x(k+1)) »

e, () =B (B)8(x(k) + 5 R ' (8)

and

R'g"(k+1) 0o(x(k +2)) »
: iy, @k @9)

e, (k+1)=®" (k+1)9(x(k +1))+

Similar to (10), the control signal error dynamics resemble a nonlinear affine
system controlled through ® " (k+1). Thus, the control OLA parameter update is defined
to be

8(k)e, (k)

®A(k+1)=‘DA(k)—%W

(26)

where0 < ¢, <1is a small positive design parameter. Substituting the parameter update

(24) into (25) yields
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9" (k)I(x(k +1))
9T (k)H(k) +1
R'g"(k+1) 0o(x(k +2)) ;

T kv DD

e, (k+1)=-a,e, (k) + <i)§ (k)8(x(k +1))

(27)

Since the control policy u(x(k)) in (5) minimizes the cost function (4), from (3) we can

write

os.(k+2)

ox(k +2)

oo(x(k +2)) .
ox(k+2) ¢

Ong(k+1)+%R"gT(k+l) +®@"9(k +1))

| (28)
+§R_1gT(k +1)
Subtracting (28) from (27) along with defining the control OLA parameter estimation

error as @ (k)= @, —d , (k) while recalling ®_ (k+1)=®, —d_(k+1)yields

e, (k+l) =—ae, (k)w —

&,(k+1)
I RAk)+1 (29)
1oy 8gc(k+2)_R’1gT(k+1) oo(x(k+2)) ~ &7
2R g (k+1) ak+2) > ak+2) D (k+1)—D, (k)N x(k +1)).
As a final step, we form the parameter estimation error dynamics as
T
B (k)= (k) +a, 20 E) (30)

909+
Remark 3: To calculate the control signal error (24) and implement the OLA
parameter update (26), knowledge of the input transformation matrix g(k)is required.
However, the internal dynamics f(k)is not required for the cost or control signal OLA
schemes.
In the following theorem, it will be shown that by starting with an initial
stabilizing control, the control OLA update (26) ensures all future control inputs are also

admissible.
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Theorem 2: (Admissibility). Let u,(k)be an initial admissible control input for
the controllable system (1). Then, there exists a positive constant ¢, such that the control

OLA parameter update (26) renders that the future control sequence provides stabilizing
policies for the nonlinear system (1).

Proof: Suppose @ ,,is a constant OLA parameter matrix such that
u,(ky) =@’ ,9(x(k,))is an initial stabilizing control policy starting at time k,, and let
Cf)co (k,)be the corresponding cost function OLA estimate. Using the control OLA
update law (26), the control input at the next time &, +1 can be written as

u, (ky +1) =D (k, +1)I(x(k, +1)) =1, (k, +1)) — o, Au(k,) (31)
with Au(k, ) = (uty (ko) =8 () (kg )y + 1)/ (F (ko )Kky) 1), (ky +1) =Dy Kxhy + 1)),
(k)= —R'g"(k)Vky+1)/2 , and VJ(k, +1) = (o (x(k, +1))/0x(ky + 1D, (k,) .
Observe that ,(k)is bounded as a result of Theorem 1. Next, we evaluate the cost
function (2) at timek, +1 using the stabilizing policy, u,(k,+1), and then using
improved policy (31) where J (o) will denote the cost function corresponding to u,(e)

and J,(e) denotes the cost function corresponding to u,(e), respectively. First, using
u,(k,), we observe

J o (ky +1)=0(x(k, +1))+uy(ky +1)" Ruy (ky +1)+J, (k, +2). (32)
Next, using the policy update (31), the cost function (2) is
J (ky + ) =T, (ky +1) = J, (ky +2) —uy(ky +1)" Ruy(ky +1) +u, (ky +1)" Ry (k, +1)+J,(k, +2). (33)

Now, we manipulate (33) and use (31) to get J,(k, +2)—J,(k, +D=J,(k, +2)—J,(k, + 1)+
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u, (ko +1)" Ruy(ky +1)— (uy (ky + 1) — a, Au(ky))" R(uy(k, +1) — o, Au(k,)), and substituting
(32) yields

AJ (ko +1) =—0(x(ky +1)) —uy(ky + I)T Ruy (ky +1)
—a Au(ky)" RAu(k,y) +2u, (ky +1)" R(a, Au(k,))

(34)
where AJ, (k, +1)=J,(k, +2)—J,(k, +1). Finally, taking the upper bound of (34) and
observing 2u,(k, +1)" R(er, Au(k,)) < uy(ky +1)" Rug(ky +1)+ ol Au(k,) RAu(k,) yields

AJ (ko +1) < =0(x(k, +1)), (35)

and it can be concluded thatAJ,(k, +1)<0. Thus, u,(k,+1)is a stabilizing control.

Now, repeating the process (31)-(35) by starting with the stabilizing control
u,(k, + 1) reveals that u, (k, +2) i1s also stabilizing, and by continuing in this way, it can
be shown that each subsequent control policy is stabilizing for the nonlinear system (1). m

The results of Theorem 2 conclude that by starting with a stabilizing control
policy, each subsequent control policy is also stabilizing. Next the following corollary
can be stated.

Corollary 1: (Boundedness of OLA Basis Functions). Let u(k)be an admissible
control for the controllable system (1). Then, there exists a positive constant
x, = x(0) such that x, > ||x(k)|| for all £>0. Moreover, there exists positive constants
Gy, =l %(x,) || and o,, =[|o(x,) || such that 4,, =||F(x(k))|| ando,, =||o(x(k))| for all
k>0.

Proof:  Proof of Corollary 1 is straight forward using the positive define

Lyapunov  candidate ¥, (x)=|n(x(k))|] whose first difference is given by

AVy(x)=|nxk+D)f-|(x(k)| while considering the separate cases of h(x(k))=x(k),
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h(x(k)) = H(x(k)), and a(x(k)) = o(x(k)) as well as recalling each control input is admissible
(Theorem 2) and applying Definition 1. ]

A block diagram illustrating the proposed optimal regulation scheme is now
presented in Fig. 1. Next, the stability of the cost estimation error, control estimation

error, and the OLA estimations errors are considered.

x(k)
-y
e (k) .. Feedback
foe OLA
R'g (k) ﬁ"<’;>®' ) .
2 - u(k) = @', (k)9 (k)
4 Y
Oj(x(k +1)) x(tk+1)= f(k)+g(k)u(k)
ax(k) Nonlinear System with unknown f(x(k))
O'Vo(x(k+1)
V() v kD)
*J(x(k+1) =
O’ (k)o(x(k +1))| Cost Function

Network

Fig. 1. Near optimal regulator block diagram.

C. Convergence Proof
In this section, it will be shown that the cost error (7), control error (24), as well
as the OLA parameter estimation errors are UUB. Additionally, it will be shown that the

estimated control input (23) approaches the optimal control signal with small bounded
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error which is function of the OLA reconstruction errors &, ande,. If the OLA

approximation errors are considered to be negligible [7]-[8], the estimated control policy
approaches the optimal control asymptotically.

Theorem 3: (Convergence of the Optimal Control Signal). Let u,(k)be any

initial admissible control policy for the nonlinear controllable system (1). Let the OLA
parameter tuning for the cost estimator and the control input estimator be provided by

(14) and (26), respectively. Then, there exists positive constants «, ande«, such that the

cost error (7) and control error (24) along with the cost and control signal OLA parameter

estimates are all UUB for all k>k,+7T with bounds given by |, (k)|<b,.,

[0 ®)] < b b b

Oc >

|E p (k)” <b_, for computable positive constants b

ea (k)H < bea > ea’ ec?

and b_,, respectively. Further, the system (1) is regulated in a near optimal manner.

That is,

u— u*” < ¢, for a small positive constant¢, .

Proof: Consider the following positive definite Lyapunov candidate

Vie(k) =V (k)+V, (k) (36)
whereV.(k)1s given by (19) and
L AGL, N
Vik)=a,0, gz—j’rl ey (K)e, (k) +Aoy,a; 5trid, (k) , (k). (37)

The first difference of (36) is given by AV, (k) =AV.(k)+ AV, (k), and AV (k) is

given by (21). Next, taking the first difference of (37), substituting the control error
dynamics (29), control OLA parameter estimation error dynamics (30), and applying the

Cauchy-Schwartz (C-S) inequality yields
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AV ) <500 2 (grgﬁ"()g(g’gﬂ”j 7 (e, )
+50,02(AG2,. (%, +1))(g§ (k+1)e (k+1)+Hx(k +1)) B , (k)D, (k) Hx(k +1))
5 Ao‘z de.(k+2)" oe,(k+2)

YA iy SRR g ke T

AOfmn r do(x(k+2))" G Oo(x(k+2)) ~ (38)
+Zaa292+1®(k — kD) g+ DR g" (k+1)—="—ZD (k+1)

ax(k+2)
g (k)Ak)e. (k)e, (k) AG 7
A, 0B _ o o2 A% 1ty ik
" (I 0Kk +1) Gl €i(ke,(k)

"'%O‘EAOfnml o {W} )
G (k)Ik)+1

3

Next, using a similar relationship as the one derived in (29) we rewrite the control

error (24) as

€, (k) = = (31~ 3 R " () G (0 -,

(39)
Uy e (k+1)
R e O

Then, substituting (39) into the last term of (38), using CT)C(k +1) from (18), and defining

2, (k)= @29(1{) allows (38) to be rewritten as

I +1 I (k)I(k)+1
—Sa,a AO'mm[ 21 a9 (k)&(k)z] e, (k)||2
58 +1) (9T(k)9(k)+1)
5 Sa,alAar (| Qe +engulR7]) = o
2.9 (h)k)+1 " (k)9(k) +1 A

+§aaAammg§4||R_l||;( A +“5A"ffj\&>

AV (k) < 2% 2A (‘9T(k)9(x(k+1))j .

(40)

I (Jk)+1 9 +1
+§aCA0'mm(2gAM+gCMgM||R )+ 60,2 R

Saa Aa

2 ' min ,2 —1
+5a a AO-mm AM || ||F cM
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where £” =(A¢, (k) +a,As,(k—1))*, g’ <&’, for a positive constant £_,, and o) is a
positive constant such that o}, || Vo(x(k))||. Now combining (21) and (40) reveals

AV, (k) <1 1,8,) ~(1-ad)e, (k) ~TI|®! (k)| ~5a,02A02, Ale, (k)]
5 a,adAo.,, - (41)
29 (k) + T 0o 11 r

where
Mic(8158.) = gacAﬁln(zeAM+e;MgM||R‘||F+10aaeiM>+8<1+ac)zsz
sa a(,’ AG}’ZHIH )~ ’ (42)
s et S R
,Sa, Aol R > 5¢ UMgM” ” 2
[M=Ac, —a. > 92 M” || Ao, —a; [2 9T (N9 1 oy >

_ L a0k (ST(k)S(x(kH))jz and
59y +D ()9 +1) G+ FBKR)+1 )

% (26 4 + g;MgM”R_l”F
9" (k)9(k) +1

It is observed that the last four terms of (41) are less than zero provided the design

parameters are selected according to

0 < acz < min(leCmax )’

(& + D)+ +1)’ +4/5 1
2 ’28AM +g£MgM||R_1||F

O<e, < min{ ,1 (43)

where A, =(B+VB +44 C)/(zA), B=(5a,0,,g,[R" ||§ ) /2 (" (k)Ik)+1)+2A07,
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A=5a,Ao; )/2(191‘24 + l)g/@”R’l”iAafI andC = Ao, . Finally, it is observed that

(41) is less than zero provided the design parameters are selected according to (43) and

the following inequalities hold

ec(k)Z 77(‘9A95c) (T)Zj(k)“z 77(81/4—;86) =b

=h or or
(1 _ af ) ec ‘ Dcec
77(5A 58 ) —_ 77(‘914 7‘9 ) (44)
e (b)> |———2=—=p  or |[E,(k)= £ =b_,.
@) Sa,a’Aai A 210 5 a,aAc,, =
2 9" (k)9(k)+1

Thus, wusing standard Lyapunov extensions [1], it can be concluded

that AV ,.(k)is less than zero outside of a compact set revealing the cost and control
errors as well as the cost and control OLA parameter estimates to be UUB. To
show[ii —u’| <&, , use (5) and (23) to observe d(k)—u" = — @] (k)H(x(k))—¢,. Then,
taking the limit as k — oo and taking the upper bound of (k) —u" shows

Aty —u

S|E (K| + & Sboy+E4 =€, (45)

where b_, is defined in (44). u
Remark 4: 1f the OLA approximation errors ¢, and &, are considered to be

negligible as in [7] and [8], it is clear that (s ,,&,) in (44) and &, in (45) both become

zero. For this scenario, it can be shown that the control and cost estimation errors and the
control and cost OLA parameter estimates converge to zero asymptotically. That is,
u—-u .

Remark 5: The results of Theorem 3 are drawn under the assumption of an initial

admissible control,u (k). This assumption is required to ensure that the initial cost

function evaluated at x(0) is finite. That is, u, (k) ensures J(x(0)) <oo.
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IV. NEAR OPTIMAL TRACKING CONTROL OF NONLINEAR DISCRETE-TIME SYSTEMS WITH
PARTIALLY UNKNOWN DYNAMICS

In the previous section, the optimal regulator design was addressed for affine
nonlinear discrete-time systems. The optimal tracking control problem can be considered
as an extension of the regulation problem consistent with the other works in the literature

[2]. The objective for the infinite-time optimal tracking problem is to find the optimal
control sequence,u”(k), so as to make the nonlinear system in (1) to track a desired
trajectory x, (k) in an optimal manner. To achieve our objective, the infinite-horizon cost

function (2) must be modified accordingly to ensure it remains finite. To begin the

development, define the dynamics of the desired trajectory as

x, (k+1) = £ () + g (e, (K) (46)
= £,00)+ gk, (k)

where f(x,(k)), or simply f,(k) for convenience, is the internal dynamics of the
nonlinear system (1) rewritten in terms of the desired statex,(k),g(k)is the input
transformation matrix presented in (1), and u,(k)is the control input to the desired
system. Next, define the tracking error as

e(k) = x(k) - x, (k) (47)
By using (1) and (46), the tracking error dynamics of (47) are given by

e(k+1)= f(k)+g(kyu(k)—x,(k +1)
= f.(k)+ g(k)u, (k)

(48)
where f, (k) = f(k)— f,(k) and
u, (k) =u(k)—u, (k). (49)

Considering u,(k)as the control input for (48), it can be shown thatu (k)is an

admissible control policy with e(k) =0 being an equilibrium point of (48). To convert
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the nonlinear tracking into a regulation problem, the infinite horizon cost function (2) is

rewritten in terms of e(k)andu, (k) as

J, (k)= ire(k+i) = re(k)+ire(k+i+l) =r,(k)+J,(k+1) (50)

i=0 i=0
where 7,(k)=Q,(e(k))+u, (k)" Ru, (k) with Q,(e(k))>0 andR, € R™™ is positive
definite. Since u, (k) is admissible, (50) is finite. The optimal control input that

minimizes (50) is found by solving &J,(k)/ou,(k)=0as

A s1)
or
)=, (0~ R () D), 52)
The feedforward control input u, (k) obtained from (46) is given by
0,0 = 2 (i, (41) - 1,8 53)

It is observed that the optimal tracking control input (52) consists of a

predetermined feedforward term,u,(k), and an optimal feedback term that is a function

of the gradient of the optimal cost function consistent with the linear control case [2].
Additionally, implementation of the feedforward term requires knowledge of the internal

dynamics f(k)and control coefficient matrix g(k) . In this effort, the infinite horizon

optimal tracking control problem is solved without the knowledge of f(k). Additionally,
in this section it is assumed that there exists a matrix g(k)' e R™ such that

g(k)g(k)' =1 eR"™where I is the identity matrix. Note that when n=m,

g(k)' =g(k)™.
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Before proceeding, the following technical Lemma is needed.

Lemma 1: Let u,(k)be an admissible control policy for the controllable error

system (48). Then, the internal dynamics f, (k) is bounded above satisfying

L <210,k + 5 (DA (R) =23, (54)

where T'>2g;, /A, (R,) is a known positive constant with A _, (R,) being the

minimum eigenvalue of R,, and Q,(e(k))is defined as in (50).
Proof: Consider the positive definite Lyapunov candidate
V(k)=e" (k)e(k)+TJ,(k) (55)
whereJ, (k)is the cost function (50). The first difference of (55) is given by

AV(ky=e"(k+De(k+1) —e"(k)e(k)+TAJ, (k). Using (48) and (50) as well as

applying the CS inequality, an upper bound for AV (k)is

AV (k) < 2| £.(K) = T0.(etk)]| - (T A, (R) = 283 (O =) (56)

Since u,(k)is admissible, the tracking error system (48) is asymptotically stable

andAV (k) <O0. Then, applying this to (56), the bound in (54) results
with AV (k) < —Je(k)|” [22]. n

Moving on, the proposed DDP design for tracking entails three portions: a
feedback system that is designed to produce a nearly optimal portion of the control
signal, a HJB function estimator which evaluates the performance of the error system,
and a feedforward design to produce the feedforward control input (52). Using the

approximation property of OLA’s [1], the cost function (50), feedback control policy
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(51), and feedforward control policy (53) have OLA representations on a compact set

expressed as

J (e(k)) = O 0, (e(k)) + &, (57)
u,(e(k) = )9, (e(k)) + 2., (58)

and
() = g(k) " (xy (k +1)~ Ol h(x, (k) +,) (59)

respectively, where®_,, ©,, and O, are the constant target OLA parameters,&,, €,
ande, are the bounded approximation errors, ando,(e)eR’, 9 (¢)eR’ and

#() € R’ are the bounded vector activation functions for the cost, feedback, and

feedforward control networks, respectively [1].
Next, the following assumptions which are common in OLA literature [1],[21] are
stated regarding the boundedness of the OLA parameters for the tracking problem.

Assumption 4: The upper bounds for the ideal OLA parameters are taken as

0

c

S®cM’

constants [1].

|®A||FS®AM, and ||®d||p <®,, where 0,0, ,and® , are positive

Assumption 5: The approximation errors are considered to be bounded above such
that |&, <. » 6l <&, and|e,|< e, where €,,,6,,, and &, are positive
constants [1].

Assumption 6: Upper bounds for the basis functions are taken as ||o,(¢)|< o, ,

[% (@< 39,,,and |#(e)| < ¢, for known constants o,,, 3,,,and ¢, , respectively [1].
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Assumption 7: The gradient of approximation errors and activation functions are
considered to be bounded according to |[Ce, /(Ce(k+1)), <&,  and
oo, () /(0(e)|, < O,y » respectively, where &), and o, are also known positive
constants consistent with the work of [21].

To begin, the design of the HIB function approximator for the tracking problem
will be considered first.

A. Cost Function Approximator Design for Tracking

The objective of the optimal tracking control law is to stabilize the system (48)
while minimizing the cost function (50). This cost function will be approximated by an

OLA as
J (k) = ] (e(k)) = O7 (K)o (e(k)) = O (K)o, (k) (60)
where C:)c is the approximation for the ideal parameters ®, and o, (k) = {c,,(e(k))} is
set of activation functions selected to be linearly independent. Similarly to the regulation
case, the basis vector o,(e)is selected to satisfy |o,(e,)|=0 for |le,|=0 with e, € R"
to facilitate J,(0)=0.
For convenience, we define the cost error to be
.. (k) =r,(k) + O, (K)o, (k +1) - O] (K)o, (k) (61)
Next, we define an auxiliary cost error vector as
E, (k) =Y,(k)+O[ (k)X (k) e R"") (62)
where Y.(o)=[r.(k) r.(k=)...r.(k—j)]eR" and

X (0)=[Ac,(k+1) Ac,(k)..Ac,(k+1-)]eR"  with  Ac(k+D)=o,(k+1)-0o,(k),
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0<j<k—-1eN and N being the set of natural real numbers. It is useful to observe that
(62) can be rewritten as E, (k) =[e, (k|k) e, (k|k—1)---e,(k|k—j)] where the
notation e, (k |k —1) means the cost error e, (k—1) re-evaluated at time & using the

actual cost parameter matrix @)f (k).

Remark 6: Using a similar approach presented in Lemma I, it can be shown

thatAo,(k+1) is linearly independent if o, (k) is linearly independent. As a result, the
matrix X ,(k)is linearly independent providede(k) = 0. Observing the definition of the

cost function (50), and OLA approximation (60), it is evident that both become zero

whene(k) =0. Thus, once the tracking error has converged to zero, the parameter matrix

associated with the estimator that approximates the cost function can no longer be
updated. This can be viewed as a persistency of excitation (PE) requirement [1] for the
inputs to the OLA that approximates the cost function. That is, the tracking error states
must be persistently exiting long enough for the cost function and optimal control policy
to be obtained. Further, the persistency of excitation condition ensures the existence of a

nonzero lower bound X ,,,,, <|X, (k)|
Moving on, define the OLA parameter update law as
0. (k+1)=0, -a, X E! (63)
where0 < . <1is a small positive design parameter.

Remark 7: In the previous section, the auxiliary cost error (10) was considered to
be a dynamical system whereas the auxiliary cost error (62) is not given dynamics in this
section. Additionally, it is observed that the cost OLA parameter update law (14) used in

the regulation problem is quite different than the cost OLA update utilized for tracking in
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(63). The reason for these differences can be linked to the added uncertainty introduced
by approximating the feedforward term in (52) for tracking. The added complexities
introduced in the stability analysis due to the added uncertainty does not yield a compact
set for which a suitable Lyapunov candidate is less than zero when considering the
auxiliary cost error dynamics (62) in the form of (10). However, the theoretical results of
this section will prove that the cost error (62) remains bounded for all time.

To obtain the OLA parameter estimation error dynamics, rewrite (50) using the
target OLA representation (57) as

O o(e(k)) + £, (k) = r,(k) + O] o, (e(k + 1) + &, (k + 1) (64)
Rearranging (64) renders
1, (k) = 07 Ao, (e(k + 1)) - As,, (k) (65)
where Ae, (k) =¢, (k+1)—¢,.(k). Substituting (65) into (61) results in
e, (k) ==0 (k)Aa(e(k+1)) - As, (k) (66)
where (:)C(k) =0, - (:)C (k) is the cost parameter estimation error. Similarly, (62) can be
rewritten as
E, (k)=-O!(k)X, -V, (k) (67)
where P, (k) =[As,, (k) Ag, (k—1)...Ae,(k—j)] and |¥,(k)|° <¥2,. Now,
observing C:)C(k +)= O, - C:)L, (k+1) and using (63) and (67) results in the OLA
parameter estimation error dynamics to be expressed as
6. (k+1)=(I ~a, X, X[ ()8, (k) ~ar, X, ¥ (k) (68)

where / is the identity matrix of appropriate dimension.



245

The following theorem demonstrates the stability of the OLA cost function

approximator given a fixed admissible control policy, u,, (k) .
Theorem 4 (Cost Function OLA Stability): Let u,(k)be any initial admissible

control input for the system (48), and let the parameter tuning for the cost function OLA

be provided by (63). Then, there exists a positive constant «, such that the OLA

parameter estimation error for the cost function approximator is UUB for all

timek >k, + 7with bounds given by [6](k) Qe X2 W2 + 2 (X2, 20, X, ) Where

X o <X (0|, < X, withX,,,, and X, are known positive constants given by

Remark 6 and Assumption 6, respectively.

Proof: Consider the positive definite Lyapunov candidate

Vo k) = —— @ (0B, (k) (69)

ec

whose first difference is given by

AV, (k) = ai(rr{@f (k+1)®, (k+1)}—1r{O] (k)®, (k)}). (70)

Substituting the closed-loop estimation error dynamics (68) into (70) and applying

some manipulations reveals

AV, 0) = tri(e, X X80+, X, (O (2, X X1B,(0)+ XV () an
2O (k)X X[ O, (k) + X, ¥ (k)

Next, applying the CS inequality renders

.0 +20, X2 P, + 2, (72)

ec“eM "¢

X!
AI/ec(k) < _Xler(l _2’aec XzeM ]

eMin

Examining (72), it can be concluded that AV, (k) <0 provided «,, < X7, /(2X_,) and
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It can be concluded using standard Lyapunov extension [1], thatAV, (k)is less

@Z (k)H > \/(2aechzM\Pc’2M + chzM)/(XezMin - 2aecX:M) :

than zero outside of a compact set so that the cost estimation errors are UUB. ]
Remark 8: Examining the cost error written in (66), it is clear that the

boundedness of the cost parameter estimation error ensures the boundedness of the cost

error. Additionally, the results of Theorem 4, are drawn under the assumption that

thatu,,(k)1s a fixed control policy. This assumption will be relaxed in the following

section.

B. Feedback Control Signal Design for Tracking
The objective of this section is to find the feedback control policy that minimizes
the approximated cost function (60). To begin the development of the feedback control
policy, define the OLA approximation of (58) as
i, (k) =, (e(k)) = O, (k)3, (e(k)) (73)
where @ (k)is the actual OLA parameters with ® , being the target, and the basis
function 4, (e)is the basis function. Further, the PE condition described in Remark 6 also
guarantees the existence of a nonzero lower bound 4, <|4,(k)|.
Next, the feedback control signal error is defined to be the difference between the
feedback control applied to the error system (48) and the control signal which minimizes

the estimated cost function (60), which is denoted as

oo, (e(k +1)) »

NT 1 -1_T
¢ (6) = 0% () 5ek) + 3 R.'g" () =3 2" 0. (h). (74)
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The feedback control parameter update is now defined to be
0, (k+1)=0,(k) ~a,9,(ke,, (k) (75)
where0 < ¢, < 1is a small positive design parameter.

The feedback control policy u,(e(k))in (58) minimizes the cost function (57).

Therefore, it can be deduced that

_ 1o 706 (k+1) 1o 7, 00 (e(k+1))
O=¢,(b)+-R g (k)m—l_@Alge(k)) toRg (k)m@c . (76)
Subtracting (76) from (74) reveals
€, () = =0 (19, (ek) ~5 B¢ (0 TV B, () o )

where © J(k)=0, - ©) (k) 1s the feedback control parameter estimation error, @C(k) is
the cost function parameter estimation error previously defined with ¢ ,.=¢, (k)+
R'g" (k)(@s,.(k +1)/de(k +1))/2 ande, ] < &,4cu -

As a final step, we observe that @)a (k+1)=0, —(:)a (k+1), and using (75) and
(77), the feedback control parameter estimation error dynamics are found to be

O, (k+)=(I-a,3.()3 (k)D (k) a, I (k)e

%g (k)(R;gT(k)M@c (k)jT

2 Be(k +1)

(78)

where 7 is the identity matrix of appropriate dimension.
Next, the stability of the cost and feedback OLA system is presented.

Theorem 5: (Cost and Feedback OLA Stability). Let u,(k)be any initial

admissible control for the nonlinear system (48), and let the parameter tuning for the cost

and feedback control OLA systems be provided by (63) and (75), respectively. Then,
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there exists positive constants ¢, and «,, such that the OLA parameter estimation errors

@)A(k)and@)c(k) are UUB for allk>k,+T with bounds given by H(?)A(k)HSbA and

(:)f (k)HS b. for computable positive constantsb,and b., respectively. In addition,

A * ..
u, —u,|<¢, forasmall positive constante,, .

Proof: Consider the positive definite Lyapunov candidate
Vesc (k) =V (k) + V. (k) (79)

where

Vo) = S 1@ (1), ()} (80)

ea

and V,(k)is defined in (69). Taking the first difference of (79) gives

AV, .(k)y=AV,(k)+ AV, (k). Now, considering AV,, (k) and using (78) yields

AKA(k>=—2aecrr{@Z (k{%(k)&? 0,1+ 8 e + 2L (‘3"8 ek “))j g(k)RJ]}

2 ek +1)
6 r g kDY )
@ [améz(k)ﬂf (R)0,(0)+ et S (0! +=5 S00E). (k)(éemj g(k)ng «| (81
o 9 v Oy (00 (dk+])Y A
(%alge(k)ﬂr (08, + 0, (e +5" S, (& (k 6e(k—|—1)j 2R J

Next, applying the CS inequality to (81), we arrive at

AV, (k)< -, & [l—am3 S )H@)A(k)uz ta,a, 39,8

ec™ eMin 2 ]92 ec "ea eACM
eMin

(82)

1112
3a giRl

2 e [lF || 2 2 2
+aec( o 83, + 1)—2 16,0 o2y + cticar
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Now, combining (72) and (82) shows

4
AV, (k) <-a,5; (La a3§+M]H@A ®f +1.(2.6.)

ec ~ eMin 2 e
eMin

eMin

2 aec 4 3aea 2 gj/[ R‘:l j«“ 2 o 2 (83)
_XeMin I_T 2XeM+ T'geM_'_l To-deM ‘G)c(k)”

where 7,(¢,,,¢,,) =20, X, ¥, +V, + @, & 1cn + 0, 3F € - The first difference of

ec ea

(79) is less than zero provided the tuning parameters are selected according

R

to aea <l962Min/(6'9;M)’ aec < XjMin /(ZX:M + (3a 192 /2 + l)g]%/[

ea ~eM

;O‘jeM/ 2) and the

following inequalities hold:

@Z(ki‘ S (8,06, — = b
\/X[I; Lzrfj g4 OZD
eMi

As a result, it can be concluded using standard Lyapunov extension [1],

(:)A(k)>\/ UACHEA), = ) = p0r

that AV, (k)is less than zero outside a compact set so that the feedback control and cost

parameter estimation errors are UUB. To show “ﬁe - u:“ <g,,observe

ue?’

oo, (k+1)
Be(k +1)

oe, (k+1)

- Lo r
—u' = —R
i, —u = e, () +5R'g" (k) Sekoh

6.0+ 3R " ()
where (57) and (74) were used. Then, using (77), taking the limit as £ — o and the
upper bound of I/Ale —MZ yields

i, =l <@, (0, Ss + £ (84)

FoeM

A * _
or ||ue —ue” <b, 8, € =€ - m
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C. Nearly Optimal Control Input

Recall that the optimal tracking control input (52) to the system (1) is comprised
of an optimal feedback term and a predetermined feedforward term. In the previous
section, the nearly optimal feedback control law was developed. To begin the

development of the feedforward control input, define the OLA representation of (59) as
i, (k)= g(k) " (x, (k+1) - ©;4,) (85)
where © ,(k)is the approximation of the ideal OLA parameter matrix ®,and ¢,is a

linearly independent basis vector. As in the previous cases, it is assumed that there exists

a nonzero lower bound such thatg,, <||¢,|. It is observed that this condition is easily
met with proper selection of the basis function ¢,(x,)since the desired trajectory x,1is
bounded. Now, using (73) and (85), the estimate of the control input (52) is written as
u(k) =1, (k) +u,(k), (86)
and applying (86) to the nonlinear system (1) reveals x(k +1)= f(k) + g(k)(@, (k) +u,(k))
or
e(k+1)= f(k)— O} (k)g, + g(k)i, (k). (87)
Then, adding and subtracting f,(k)and g(k)u,(k)to (87) and recalling the OLA

representations of f, (k) andu, (k) in (59) and (58), respectively, (87) is rewritten as

e(k+1)= £, (k) +g(k)u, (k) + O (k)g, — g(k)O',(k)9(k) + ¢ ,, (88)
where ©,(k)=0, -0,(k),¢,, =&, — g(k)s, and|e | < &,,, . Select the tuning law
for the feedforward estimator as

©,(k+1)= 0, (k) +a, ¢, (e(k +1)—g (k) (k)" . (89)
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As a final step, we calculate the error dynamics of 0 ,(k)as

®, (k+1) = (I ~ 0,4 )0, (k) — oy fx, (kN (k) +,)" (90)
In the following section, the stability of the proposed scheme is investigated, but
first, a block diagram of the proposed near optimal tracking controller design is presented
in Fig. 2 where the cost, feedforward and feedback networks have been labeled

accordingly.

x,(k+1) x, (k)
e[ 1L ™
A A --
e (k) Feedback i " [Feedforward] _
Y1 OLA OLA

folk)=

0. (k)4 (k)

ﬁ:(k)c’ i, (k)= 0L (k)9,(k)
- Y i (k .
S W
LR o | )

X x(k+1) = f(k)+ g(kyu(k)

x(k+1) + )
1 ki)

VOl jtetk+1) = [ cost i

O’ (k)o,(k+1)| Function
Network

Fig. 2. Near optimal tracking control block diagram.

D. Convergence Proof

In this section, the convergence of tracking error (47) and the cost function,

feedback control signal, and feedforward control signal OLA parameter estimation errors
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is demonstrated in the following theorem while explicitly considering the OLA

reconstruction errors &,.,&,,, andég,.

ec®“ed
Theorem 6: (System Stability). Let u (k) be any initial admissible control for the

nonlinear system (48). Let the parameter tuning for the cost OLA and feedforward OLA
be provided by (63) and (75), respectively, and let the tuning law for the feedforward

estimator be given by (89). Then, there exists positive constants «,., o, and I' such

that the tracking error (47) and the OLA parameter estimation errors of the cost function,

feedback and feedforward terms are all UUB for all k =k, + T with bounds given

by”e(k)” S be 4

0, (k)| b

0, (k)| <b,, and|® (k)| <, for computable positive constants

b,, b,,b..andbd’, , respectively. Further, the tracking error system (48) is regulated in a

near optimal manner. That is, |u — u” < ¢, for a small positive constant &, .

Proof: Consider the positive definite Lyapunov candidate
Vik) =V oy (k) +V, (k) +V, (k) o1

where V,,.(k)1s defined in (79),

V.(k)=a,a,a,e" (ke(k)+52+4a,4,,)TJ, (k) (92)
and
V() =22 @] (0)8, ()} (93)

The first difference of (91) is given by AV (k)=AV,,.(k)+AV,(k)+AV (k).
Considering first AV, (k) =(a,,/a,)tr{A®, (k)" A®,(k} —2tr{® (k)A®,(k)}), substituting

(90) as well as applying the CS inequality yields



253

AV, (k)< aea%[l 2a, j"M j\\éd 0+ f.0F @+4a,4,)

dMin
+a,,2e, | 1+2a,85,)

(94)

Next, considering AV (k) =a,a, a e (k+1)e(k+1)— a,a,a e (ke(k)+

ec - ea ec - ea

5(2 +4a,¢;,)TAJ (k) and using the error dynamics (88) and cost function (50) renders

AV;(k) Sczd ec ea5||f (k)” +ad ec eaSgM"u (k)" +ad ec eu5¢dMH® (k)H

+ad ec ea Snggff/IHG (k) +ad ec ea 5||€Ad" ec ea”e(k)” (95)
~5(2+40,8,)T(Q, (e(k)) +u, (k)" R u, (k)

Now, combining (83), (94), and (95) forming AV, (k) reveals

4
AV, (k) <-a, 9 [1—%3;;M JH@A/«)H%adaec @, 583920, (0|

ec ~ eMin 2
eMin

_ 2 _ aec 4 3aea 2 , R;l j’ 2 N 2
XeMm 1 X2 2X€M + 2 eM + 1 2 JdeM HGC (k)H
eMin

—aeam[l—z ¢”’M j\\@ O + e e, 5850, 0|
de

+a O @+da,du)+a,a.e,S|f. (0
+ ad aec ea SgM ”l/l (k)” - 5(2 + 4ad ¢dM )Fﬂ’mm (R )”u (k)” ec ea ”e(k)”
- 5(2 + 4ad ¢dM )rQe (e(k)) + P (gec s€0456y )

2 2 . .
Where 773 (8ec H 8eA 4 Sd ) = 77e (860 s geA ) + aea 28dM (1 + 2ad ¢dM ) + aec ada 5(("AdM Comblnlng

like terms as well as applying the bounds of (54) results in the first difference of the

Lyapunov function as
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AVY(k)_—aeﬂme@ 5 30 + a5 % j\\@ [ (96)
eMin
-1 2

2
3aea Eu R ~
Xesz{l_ X [2)(4 ( 2 l962M jTFo-jeMJJ c
eMin

—aea¢3Mf,,(1—¢—(2¢dM+aecs¢dM j\\@ B ~TE[0. (k)] - .., ek

( mln(R )‘—‘ + 2aeagM (1 + 2ad¢dM ))|U (k)" + 775 (gec b geA ’ gd )

where 2, =10+ 20a,4;, —a,,(1+2a,4;,) - 5a,.a,a,, /2. Finally, AV, (k) < Oprovided

the tuning parameters are selected according to

_12

2
3 R,
<65+, 106,5,). @, X/ [%{Zw 1P cf] o

ad < ¢5Min/ (2¢:}M + aec 5¢5M )

and the following inequalities hold

||e(k)|| > \/ns(‘geAagec’gd) = beOI'

aec ad aea

ns (geA’ ec? gd)
—1 2

>
2
30(w gM Re
X eZMm( XeMm (2)( . ( ) ‘9e2M +1) ) = OfleMD

— It
=bh. or

Héd(k)“> ACHN, = b, or
am¢5M,-,( 7 “(2g),+a, 5¢5M)j
dMin
H(:jA(k)”> 1 N(EoprEues€a) "
a
aeclgj/lin[z_ lgzm (3‘9:M +ad5g}2l4195M)j
eMin

Additionally, selecting the tuning gains according (97) ensures=, > 0. Therefore,

using standard Lyapunov extension [1], it can be concluded that AV (k) is less than zero
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outside of a compact set so that the tracking error (47) and the OLA parameter estimation

errors of the cost function, feedback control signal, and feedforward control inputs are all

UUB. To show Hu — u*H <eg ,weuse (73), (85), (86),(52), and (57) to observe

u—u’=g(k)" (O, +&,)+1, —u. (98)
Then, using (84) and taking the limit as £ — o and the upper bound of (98) shows

o 1,0, 18,00, %+

I i 1 _
< €uPubs + 08 + &y + Eciy =6,

Remark 9: 1f the OLA approximation errors &,,, &,., and &, become negligible

ec?

[20], the term 7 (¢,,,€,.,€,) becomes zero. For this scenario, it can be shown that the

tracking error and each OLA parameter estimation errors converge to zero
asymptotically. That is, u—u".
Remark 10: The results of Theorem 6 are drawn under the assumption of an

initial admissible control, u,,(k). This assumption is required to ensure that the initial
cost function evaluated at e(0) is finite. That is, u, (k) ensures J,(e(0)) <oo. Further,

once the OLA control input (86) is applied to the nonlinear system (1), OLA estimation
errors are introduced into the closed loop system as observed in (88). Thus, the tracking
error vector must be considered in the Lyapunov candidate (91), and assumptions
regarding the stability of the error system cannot be made a priori after the OLA control
input is applied.

Remark 11: In the development of the optimal regulation control problem, the
OLA basis functions were not assumed to be bounded a priori whereas the assumption of

bounded basis functions [1] was asserted during the design of the optimal tracking
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control law. In the optimal regulator design in Section II, it was shown that by starting
with an initial stabilizing control, all future control policies were also stabilizing, and
thus, the OLA basis functions remained bounded. In contrast, as stated above,
assumptions regarding the stability of the tracking error system cannot be made a priori
after the OLA control input is applied. As a result, bounds are placed on the OLA basis

function [1].

V. SIMULATION RESULTS

To demonstrate the effectiveness of the online optimal controllers developed in
this work, first the optimal regulator derived in Section III is considered. The optimal
regulation algorithm developed in this work is first implemented on a linear system since
the results can be easily verified by solving the discrete-time algebraic Riccati equation

(DARE). Consider the linear system whose dynamics are given by

op_[BG=D] [0 o8] . To]
D= k| Tlos s [T R

Using the quadratic cost function (2) with Qbeing the identity matrix andR =1,
the optimal control input is found by solving the DARE and revealed to be
u’(k)=[0.6239 1.2561]x(k) while the optimal cost function is found to be
J" (k) =1.5063x; (k) +2.0098x , (k)x, (k) +3.7879x5(k). The initial stabilizing policy
for the algorithm was selected to be u,(k) =[0.5 1.4]x(k) while the basis functions for

the critic were generated from a sixth order polynomial as

{Xlz,XIXZ,X§,X14,XI3X2,.,,,)626} (99)
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while the action network basis functions were generated based on the gradient of (99). It
is shown in [15] that the gradient of a linearly independent set is also linearly

independent. The design parameters for the critic and action networks were selected
asa, =10°and a, = 0.1 while the critic NN weights were set to zero at the beginning of

the simulation. The initial weights of the action network were chosen to reflect the initial
stabilizing control.
The simulation was run for 240 time steps, and the final values of the critic and

actor weights are

Ci)(, =[1.5071 2.0097 3.7886—0.0082 —0.0015 0.0025 0.0030 —0.0014 0.002(
0.0000 0.0000 0.0008 —0.0003 0.0009 —0.0002]
and

A

@, =[0.6208 1.2586 0.0589 -0.0338 0.0095 0.0092
—0.0049 0.0074 0.0050 0.0075. —0.0054].

Examining the final values for the NN adaptive critic weights, it is clear that they
have successfully learned the optimal values with small bounded error as the results of
Theorem 3 suggested. Additionally, the difference between the optimal control law
obtained from the DARE and the optimal control learned online is shown in Fig. 3 further
demonstrating the effectiveness of the online optimal control scheme. It is observed that
the NN control law converges to the optimal value with small bounded error within the
first 200 time steps as the theoretical conjectures of Theorem 3 suggest. Finally, Fig. 4
illustrates the system state trajectories for the initial stabilizing control and the improved
final optimal control law.

Next, a nonlinear regulation example is examined. Consider a nonlinear system

defined by
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x (k+1 —x,(k)x,(k 0
x(k+1)= (kD , (07, (6) +| k). (100)
x,(k+1) x; (k) +1.8x,(k) -1

The design parameters, activation functions, and initial network weights were
chosen similarly to the linear system example with the initial stabilizing control given by

u,(k)=[-0.4 1.24]x(k). The simulation was ran for 375 time steps, and the time
history of the critic and actor weights are shown in Fig. 5, and the action error (24) is
shown in Fig. 6. Examining Fig. 5, it is clear that all NN weights remain bounded while
Fig. 6 illustrates the action error converges to a small bounded region around the origin
consistent with Theorem 1.

As a comparison, the SDRE algorithm [18],[23] was implemented along with the
offline training algorithm presented in [7]. For the SDRE implementation, the nonlinear
system (100) was parameterized according to

0 —x, (k)| x, (k) 0
x(k+1)= + u(k),
LC] (k) 1.8 }{xz (k):| {_ J

A(x(k)) B




259

and the discrete SDRE P(x(k)) = A(x(k)) [P(x(k)) — P(x(k))B" (R + B" P(x(k))B)™" x
BP(x(k))]A(x(k))+Q was solved at each time step to render a suboptimal feedback
control law [23]

u(x(k)) = ((B" P(x(k)) B + R)™ B" P(x(k)) A(x(k)) Jx(k)
with R=1 and Q=I and where complete knowledge of the internal dynamics A(x(k))is
required.

For the offline training algorithm presented in [7], the training set was generated
from the region x, €[-0.5,0.5] and x, €[-0.5,0.5] with a mesh size of 0.02 [7]. The control
input from [7] is generated according to

u' (k) =~[g" (X)VJ"(0)g(x)+2R] ' g" ()[VJ"(x)+ VI (x)(f(x)-x)]  (101)
where V.J*(x) and V°J"(x) are the gradient and Hessian of the cost function, respectively.
Examining (101), the optimal control law obtained via offline training requires explicit
knowledge of the internal dynamics f(x) [7]. The initial stabilizing control policy and
the basis functions for the critic network for the offline algorithm were taken to be the
same as those used to implement the online algorithm of this work.

Fig. 7 shows the state trajectories when the final optimal control policies learned
online, trained offline, and using the discrete SDRE solution, respectively, are applied to
the nonlinear system (100), and from the plot, it is clear that the resulting state
trajectories for the online learning and offline training solutions are identical. However,
the SDRE solution differs from online and offline HIB based solutions. This result
illustrates that although SDRE is an attractive alternative for nonlinear optimal control,

the resulting control laws are still suboptimal even when the exact dynamics are known.
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Fig. 8 displays the difference between the final optimal control policy learned

online and the final optimal control policy found via offline training [7]. Examining the

plot, the difference between the two control policies is less than 0.015.
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Next, the tracking problem is considered. To demonstrate the effectiveness of the
nearly optimal nonlinear tracking controller, the algorithm developed in Section IV was
implemented on a differentially driven nonholonomic mobile robot whose discretized

nonlinear system is described by [24]

vk +D) | _[ v (k) =
v(k+l)—[VL(IH_D}—[VL(k)}+U(V(k))+TM T (102)

where f(v(k))=-M"'(V(v(k))v(k)+ F(v(k))), = is the control  torque,
ve(k)andv, (k) are the velocities of the right and left wheels of the robot, respectively,

and 7 is the sampling time. Further, M is the inertial matrix given by

r (mb* + ) /(rb*)+1,  r*(mb* —1)/(rb?) }
r*(mb*> —=1)/(rb*) P (mb* +1)/(rb*)+ 1, ’

V' (v(k)) is the nonlinear Coriolis forces matrix given by

{ 0 —(vp(k)—v, (k))rSmcd/(4b2)}
(v (k) —=v, (k) m_d /(4b>) 0

and F'(v(k)) is the nonlinear friction vector which will be modeled as

F(v(k)) = [esign(v, (k) + By, (k) a,sign(v, (k) + v, (k)]
where a;, f, i=1,2, are the coefficients of friction. In addition, the robot parameters
considered in the simulation are the radius of the driving wheels, r, distance between the
driving wheels, 2b, distance from the driving axle to the center of mass, d, mass of the
platform without wheels, m., mass of each wheel, m,,, robot moment of inertia about the
center of mass, /., moment of inertial of the wheel about its axle, /,, and the moment of
inertial of each wheel about its diameters, 7, [24]. Note that m = m. + 2 m,, . The values

ofthe above parameters used in the simulation are »=0.15m, b=0.5m, d =0.2m,
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m =30kg,m, =2kg, I,=15kg-m>, I,=0.005kg-m>, I, =0.0025kg-m>, a,=0.1,
a,=0.15, f,=0.2,and S, =0.2. The sampling time is taken as 7=0.01 seconds.

The objective of the mobile robot is to track a virtual reference cart, and the

desired wheel velocities are generated online according to [24]

vd(k):[vdl(k)}:[l/r b/r}[ v_cos(e; (k) + ke, (k) }

v,(k)| [1/r =bl/r| o +kyv.e(k)+ky, sinle(k))

where v, and @, are the translational and angular velocities of the virtual reference cart,
k,,k,,and k; are positive design constants, and e,,e,, and e,are the position tracking
errors of the wheeled mobile robot as defined in [24]. For this test, the reference
translational ~and angular  velocities were taken as v, =1m/s and
o, =0.5sin(0.27kT ) rad / s .

To implement the control scheme, two-layer NN’s are considered consisting of

one layer of randomly assigned constant weights, v, , in the first layer and one layer of
tunable weights, @, , in the second layer. A compromise is made here between tuning

the number of layered weights with computational complexity. It has been shown that by

randomly selecting the input layer weights v, , the activation function forms a stochastic

basis, and thus the approximation property holds for all inputs in a compact set [1].
Additionally, 10 hidden layer neurons were selected for both the cost function and
feedback control OLA’s while 25 hidden layer neurons were selected in order to estimate
the feedforward signal of the control input. The activation function of the cost function
OLA was selected as hyperbolic tangent squared in order to obtain an even linearly

independent basis function. Conversely, the gradient of the cost function activation
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function was selected as the basis function of the feedback control signal OLA as a result
of the relationship observed in (51). Finally, radial basis functions were selected as
activation functions for the feedforward control estimator.

The initial stabilizing control law was selected as
0.5 0 [ve(k)—v,(k 05 0 |e,(k

o :[ 0 O-S}Lf((k)) —vﬁkﬂ{ 0 O-S}L:Ekﬂ' 1o
To establish a performance baseline, an initial simulation was performed using the
control policy (103) while assuming knowledge of the internal system dynamics, and the
cost associated with the initial control policy was found to be 5.48. Subsequently, the
simulation was performed again while assuming the knowledge of the internal dynamics
were not available using the feedforward estimator of Section IV-C, and the cost
associated with this case was found to be 5.61.

Next, the OLA optimal control scheme was tested. The control gains were

selected asa, =0.1, o, =0.1 and «a, =0.09, and all tunable NN weights were

initialized to zero. The simulation was ran for 10 seconds (1000 time steps), and for the
first 5 seconds, a disturbance with mean zero and variance 0.04 was added to the system
in order to ensure the persistency of excitation condition holds. Recall from Section IV
that the cost and feedback control error signals become zero when the tracking error
reaches zero.

The resulting robot trajectory is shown in Fig. 9. From the trajectory, it is
observed that the robot converges to the path of the virtual cart and maintains the desired
course for the remainder of the test. The time histories of both the cost function and
feedback control signal parameter estimates are shown in Fig 10. Examining the figure,

it is clear that the parameter estimates converge to constant values and remain bounded
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consistent with 7heorem 6. It is observed that the magnitude of the cost function NN

weights are on the order of 10*; however, the proceeding discussion and comparisons
will illustrate that these values are consistent with the magnitude of the actual cost
function being approximated.

The cost function and feedback control errors (61) and (74), respectively, are
shown in Fig. 11. Examining the plots, it is clear that both errors initially incur large
values but then converge to a small bounded value near the origin. Additionally, the
difference between the actual feedforward control term and the estimated feedforward
term is shown in Fig. 12. Here, the estimation error is found to be small and bounded

consistent with the theoretical results of Section IV-D.

Mobile Robot Trajector
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Fig. 9. Robot trajectory. Fig. 10. OLA parameter estimates.
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Next, the final OLA parameter estimates were used to re-evaluate the system
performance using the improved controlz,. The improved control was applied to the
system when the internal dynamics were known and when they were unknown. These

results as well as the results of the initial stabilizing control test are summarized in Table

I. Comparing the costs, it is clear that the OLA-based optimal control input is an

improvement over the initial control policy both when £, and when it is not.

TABLE I. COST VALUE COMPARISONS

Control Cost with f; Cost with f;
policy known unknown
u 3.6451e5 3.3455¢e5

a 3.0192e5 2.9168e5
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VI. CONCLUSIONS

In this work, direct dynamic programming techniques were utilized to solve the
Hamilton Jacobi-Bellman equation in real time for the optimal control of general affine
nonlinear discrete-time systems using online approximators to address the regulation
problem and the tracking control problem. The internal dynamics of the system were
considered to be unknown, and a novel nearly optimal control laws were developed using
OLA’s. Given an initial admissible control policy, OLA’s were utilized to learn the cost
function and nearly optimal feedback control signal for both the regulation and tracking
problems. For the tracking problem, an additional OLA was utilized in the design of a
desired feedforward portion of the control input to render a stable system. All OLA
parameters were tuned online using novel update laws, and Lyapunov techniques were
used to demonstrate the stability of the proposed optimal control schemes. Simulation

results were also provided to verify the theoretical conjectures.
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6. Optimal Control of Affine Nonlinear Continuous-time
Systems using an Online Approximator’

T. Dierks and S. Jagannathan

Abstract—In this paper, a novel single online approximator (SOLA)-based scheme is
designed to solve the optimal regulation and tracking control problems for affine nonlinear
continuous-time systems with known dynamics. The SOLA-based adaptive approach is
designed to learn the infinite horizon continuous-time Hamilton-Jacobi-Bellman (HJB)
equation, and the corresponding optimal control input that minimizes the HJB equation is
calculated forward-in-time. Subsequently, the SOLA architecture is extended to learn the
Hamilton-Jacobi-Isaacs (HJI) equation commonly used in H. optimal control. Novel
parameter tuning algorithms are derived which not only ensures the optimal cost (HJB or
HJI) function and control input are achieved, but also ensure the system states remain
bounded during the online learning process. Lyapunov techniques are used to show that all
signals are uniformly ultimately bounded (UUB) and that the approximated control signals
approach the optimal control inputs with small bounded error. In the absence of OLA
reconstruction errors, asymptotic convergence to the optimal control is demonstrated.

Simulation results are included to show the effectiveness of the approach.

Index Terms— Online nonlinear optimal control; Single network adaptive critic; Hamilton-
Jacobi-Bellman; Hamilton-Jacobi-Isaacs; Tracking; Online approximators.
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[. INTRODUCTION

The stabilization of nonlinear continuous-time systems has been considered by many
researchers [1]-[3] using methods ranging from feedback linearization [1] to the use of
online approximators (OLA’s) [2]-[3]. However, stability is typically the only consideration
for the resulting control laws [1]-[3]. In many cases, it is desirable that the control law not
only stabilizes the system, but also minimizes on a pre-defined cost function to achieve
optimality. Traditionally, the optimal control of linear systems accompanied by quadratic
cost functions can be attained by solving the well known Riccati equation [4]. However, the
optimal control of nonlinear continuous time systems is a much more challenging task that
often requires solving the nonlinear Hamilton-Jacobi-Bellman (HJB) equation or the
Hamilton-Jacobi-Isaacs (HJI) equation when H. optimal control is being considered.

To extend the results of linear optimal control theory to nonlinear systems, the state
dependent Riccati equation (SDRE) [5] was proposed; however, the SDRE yields a sub-
optimal result in most cases [5]. In general, the HIB and HJI equations are more difficult to
work with than Riccati equations because they involve solving nonlinear partial differential
or difference equations [4]. To avoid finding exact solutions to the infinite horizon cost
(HJB or HJI) functions, inverse optimal control [6], Markov decision processes [7]-[8], and
receding horizon control [9] techniques have been applied for nonlinear systems.
Alternatively, neural networks (NN’s) and dynamic programming techniques [10]-[11] have
been used to investigate both the discrete and continuous time nonlinear optimal regulation
problems while attempting to solve the HIB or HJI equations [12]-[14]. However, in each
case the optimal solutions are obtained offline and in an iterative manner, and the NN

reconstruction errors are considered to be negligible. In addition to NN’s, Taylor series
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expansions and Galerkin approximation techniques have also been used to estimate the
solution to the HJI equation [15]-[17].

On the other hand, the optimal tracking control problem has been considered in
recent literature through linearization of the tracking error equations [ 18], model predictive
control with a receding horizon [19], inverse optimal control [20], directly calculating the
infinite horizon HJB equation via offline scheme [21], and online learning-based technique

[22]. In[18], the authors consider the H  optimal tracking control by linearizing the error

equations about the origin yielding a locally optimal control law. To overcome linearization,
the authors in [21] consider the HIB equation and employ similar techniques as [13] to find
an offline solution to the optimal tracking control problem.

In contrast, several online approximator-based controller designs were presented in
[10] and [22]-[25] to overcome the iterative offline training methodology and are often
referred to as adaptive critic designs (ACD). The central theme of several works in [10] is
that the optimal control law and HJB function are approximated by online parametric
structures, such as NN’s and forward-in-time. Although the techniques [10] are verified via
numerical simulations, the approximation errors are not considered and mathematical proofs
of convergence are not offered. Recently, several online methods to solve the continuous
and discrete time HJB and HJI equations were presented in [23]-[25]. In [23] and [24],
online policy iterations based on adaptive control and Q-learning [26] are developed to solve
the continuous HJB and discrete HJI problems, respectively. Although, full knowledge of
the system dynamics is not required, the methods [23]-[24] are only applicable to linear
systems.

For affine nonlinear continuous-time systems, two policy iteration schemes using

NN'’s have been introduced in [25] for optimal control. In each scheme, two NN’s, one



272

referred as critic for approximating the cost function and the second NN to approximate the
optimal control signal and referred to as action NN, are considered to approximate the cost
(HJB) function and the corresponding optimal control policy, respectively. In the first
scheme, discrete-time adaptation of the actor and critic structures is undertaken by training
the cost approximator in discrete time intervals while the second algorithm tunes both the
cost function network and the control policy approximator simultaneously in continuous
time. In addition, proof of convergence for both algorithms is demonstrated using Lyapunov
methods.

In our previous work [22], a novel approach to the optimal regulation and tracking of
nonlinear discrete-time affine systems was undertaken to solve the discrete-time HJB
equation online and forward-in-time. Using an initial stabilizing control, an OLA was tuned
online to learn the HIB equation while a second OLA was utilized that minimizes the cost
(HJB) function based on the information provided by the first OLA. Lyapunov methods
were used to rigorously demonstrate that the approximated control signals approached the
optimal control inputs with small bounded error. Also, in the absence of disturbances and
OLA reconstruction errors, an optimal control was demonstrated. On the other hand, a
single network adaptive critic (SNAC) NN-based optimal control scheme was introduced for
discrete time systems in [28]. However, the SNAC was trained offline, and proof of
convergence for the NN implementation has not been shown in contrast with [22].

By contrast, in this work, affine nonlinear continuous-time systems are considered in
the development of a novel single online approximator-based (SOLA) unified framework to
learn both the HIB and HJI functions online and forward-in-time for the optimal regulation
and tracking control problems in contrast with [22] and [25] where two OLA’s are utilized.

First, using a single online approximator, the HIB equation is approximated online and
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forward in time while the optimal control input is calculated using the parameters of the
approximator. Next, for the HJI problem, the SOLA design is extended to learn the HIJI
equation as well as the minimizing control input and maximizing disturbance term. Novel
online parameter tuning laws for the SOLA are derived that not only ensures the optimal cost
(HJB or HIJI) function, control inputs, and disturbance are achieved, but also ensure the
system states remain bounded during the online learning process. Lyapunov theory is
utilized to demonstrate the stability of the system while explicitly considering the
approximation errors resulting from the use of the OLA in contrast to the other works [12]-
[13], [10], and [21]. Further, the theoretical results in this work show that an initial
stabilizing control is not required in contrast to [22] and [25] where an initial stabilizing
control is necessary for stability. In the absence of the reconstruction errors, asymptotic
stability is demonstrated while achieving optimal control. The OLA’s considered in this
work are NN’s although any nonlinear approximator such as radial basis functions, splines,
polynomials, and linear in the tunable parameter (LIP) adaptive control technique can be
utilized.

The near optimal control laws proposed in this work are obtained without linearizing
the equations about the origin [18] and are accomplished using the infinite horizon cost
function in contrast with [9]. Additionally, the proposed approach is solved online and
forward-in-time using full knowledge of the system dynamics without the need of an initial
stabilizing control while using a SOLA in contrast with [22] and [25] which requires an
initial stabilizing control as well as two OLA’s. In addition, to extend frameworks in [22]
and [25] to learn the HJI equation, a third approximator appears to be required whereas the

HIJI problem solved in this work using only a single network. The assumption on the
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requirement of the dynamics of the continuous-time system can be relaxed by using an
additional OLA [27] which will be relegated as part of future work.

To date, the authors are not aware of a continuous-time SOLA framework that 1)
learns cost function and optimal control input online in the continuous time domain; 2)
explicitly considers OLA approximation errors; 3) provides an explicit proof of convergence
of the OLA parameters and stability of the system states; and 4) can be extended to solve the
HIJI optimal control. This work will address these issues.

This paper is organized as follows. First, background information for the continuous
time nonlinear optimal HJB and HIJI regulation problems are presented in Section II. In
Section III, the nearly optimal HJB regulation control law is derived, and the stability is
verified using Lyapunov theory. Subsequently, the SOLA framework is extended to learn
the HJI function. The nearly optimal tracking control law is developed in Section IV, and
Section V illustrates the effectiveness of the proposed regulation and tracking schemes via

numerical simulations. Section VI provides concluding remarks.

II. NONLINEAR OPTIMAL CONTROL IN CONTINUOUS TIME

A. Hamilton-Jacobi-Bellman Equation

Consider the continuous nonlinear affine system in the absence of disturbances

described by
x=f(x)+g(x)u, (1)
wherex e R", f(x)eR", g(x) e R™ is bounded satisfying g . | g(x)|.<g,.. Where the

Frobenius norm is applied, and u, € R" is the control input. Without loss of generality,

assume that the system is observable and controllable, smooth and drift free, with x =0 a
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unique equilibrium point on a compact set Q € R” with /(0) = 0. Under these conditions,

the optimal control input for the nonlinear system (1) can be calculated [4]. Additionally, the

dynamics f(x)and g(x) are assumed to be known throughout the development of this work.

The infinite horizon HJB cost function for (1) is given by
V() = [ F(x(0), 4, ())d 2)
where r(x(2),u, (1)) = O(x) + ulTRul , O(x) > Ois the positive define penalty on the states, and
R € R™" is a positive definite matrix. Selecting the state penalty Q(x) to be positive definite
ensures that variations in any direction of the state x affects the costV (x(z)) which can be
linked to the observability condition [4]. Moving on, the control input u, is required to be

selected such that the cost function (2) is finite; or », must be admissible [22].

Next, we define the Hamiltonian for the cost function (2) with an associated

admissible control input u, to be [4]

H(x,u) = r(x,u) + V] (0)(f(x)+g(x)u,) 3)
whereV_(x)is the gradient of the V' (x) with respect to x. It is well known that the optimal
control input u, *(x) that minimizes the cost function (2) also minimizes the Hamiltonian (3);

therefore, the optimal control is found by solving the stationary condition 0H (x,u,)/ou, =0

and revealed to be [4]

0 * () =~ R g (1) V(). @)

Substituting the optimal control (4) into the Hamiltonian (3) while observing
H(x,u,*,V.) =0 reveals the HIB equation and the necessary and sufficient condition for

optimal control to be [4]
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0=0(x)+ V. (1) /() - 1T (g (R 'g() V. () )

with?"(0)=0. For linear systems, equation (5) yields the standard algebraic Riccati
equation (ARE) [4].
Before proceeding, the following technical lemma is required.

Lemma 1. Given the nonlinear system (1) with associated cost function (2) and

optimal control (4), let J,(x) be a continuously differentiable, radially unbounded Lyapunov
candidate such that J, (x) = J (x)% = J|" (x)(f (x) + g(x)u; ) < Owith J, (x) being the partial
derivate of J, (x). Moreover, let O(x) e R™ be a positive definite matrix satisfying

|0 (x)|=0o0nly if |x|=0 and O, <[O(*)|< OpexfOr Fumn <M< Xuw for positive

constants Q. ,0.

max /Y min

and y,_ . Inaddition, let O (x) satisfy lim O (x) = o as well as

V.I0(x)J,, = r(x,u*) = 0(x)+u, * Ru, *. (6)

Then, the following relation holds
T (f(x)+ g *) = =J [0 (x)J . . (7)
Proof: When the optimal control (4) is applied to the nonlinear system (1), the cost

function (2) becomes a Lyapunov function rendering
V(@) =V (0% =V ()(f(x) + g0, *) = =0(x) —u, *" Ry * (8)
from (5). After manipulation and substitution of (6), equation (8) is rewritten as

(f )+ *) =~ V. )V (O0x) +u, * Ruy*)
=V Y VIV 0, 9)
=—0(x)J,

Now, multiply both sides of (9) by J/, yields the desired relationship in (7). |
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In [25], the closed loop dynamics f(x)+g(x)u,* were required to satisfy a
Lipschitz condition such that ||f(x) + g(x)u, ¥ < K for a constant K. In contrast, the

optimal closed loop dynamics are assumed to be upper bounded by a function of the system

states in this work such that
1 () + g(x)u, ¥ < 5(x). (10)

The generalized bound &(x)is taken as(x) =4/K |J,,| in this work wherel|J, | can be

selected to satisfy general bounds and K is a constant. For example, if 8(x) = K, || , then

it can be shown that selecting J,(x) = (x"x)®'* /5 with J, (x) = (x"x)®*"? x” satisfies the
bound. The assumption of a time varying upper bound in (10) is a less stringent assumption
than the constant upper bound required in [25].

B. Hamilton-Jacobi-Isaacs Equation

Consider the nonlinear system (1) now in the presence of disturbances and rewritten

as

x=f(x)+g(x)u, +k(x)d

2= Jrn) (11)
where x, f(x), and g(x), are defined as in (1), u, is the control input, k(x) € R™ is bounded
according to [k(x)|, <k, , d €R" is the disturbance, zis a penalty output, and r(x,u,)
similarly to r(x,u,). Assumptions regarding the equilibrium point, controllability, and

observability of system (11) are taken to be the same as those made for the nonlinear system
(1) while the bounds on the optimal closed loop dynamics are taken similarly as (10).

The H_ optimal control problem aims to not only minimize a cost function but also

attenuate a worst-case disturbance [29]. Thus, the #_ optimal control problem is often
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referred to as a two-player differential game where one player (u, ) tries to minimize the cost

function while the other (d ) tries to maximize it. In [30], dissipativity [31] was employed to

convert the H_optimal control problem into an L,-gain optimal control problem which
requires solving the HJI equation. Therefore, the cost function for the HJI problem is defined
as [14]

V(@) = [ (r(x(e),,(0)) - d(2)" Pd(0) )z (12)

where P € R"™"is a constant positive definite matrix, y > 0is a constant, and where u, is

required to be admissible.

The Hamiltonian for the HJI problem is written as [14]
H,(x,u,,d) =r(x,u,) — y’d" Pd+ V. (x)(f(x) + g(x)u, +k(x)d) (13)
whereV, (x)is the gradient of the 7, (x) with respect to x. Then, applying the stationary
conditions 0H , (x,u,,d)/0ou, =0 and 0H ,(x,u,,d)/0d = 0reveals the optimal control and

disturbance to be
* _ 1 -1 T *
u, *(x) = =5 R g(0)" V5. ()

| . ’
2, P k(x)" V()

(14)
d*(x)=

Now, substituting (14) into (13) reveals the HJI equation as
* 1 *' — * 1 * — *
0=0(x)+V, (x)f(x)- ZVdXT(X)g(X)R () V() + e Ve (ORGP k() Vo (x) (15)

with¥, (0) = 0. For linear systems, equation (15) yields the game algebraic Riccati equation

(GARE) [24]. Before proceeding, the following technical results are required.
Definition 1: L,-Gain [30]. The nonlinear system (11) is said to have an L, -gain less

thany if
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joTzz(r)dr - joTr(x(r),u2 ()dz <7 jonT(r)Pd(r)dr (16)

forall T >0.
Lemma 2 [30],[32]: Ifthe nonlinear system (11) with d =0 is asymptotically stable
and in addition has an L, -gain less thany, and if the cost function (12) is smooth, then the

closed loop dynamics
i= () + %(y—ﬂk(x)P*k(x)f - (R g2’ ]mx) (17

are asymptotically stable.

In the next section, a SOLA-based optimal control scheme will be introduced.

III. SINGLE ONLINE APPROXIMATOR-BASED OPTIMAL CONTROL SCHEME

Traditionally, adaptive critic based methodologies generate the optimal control using
two OLAs [13], [22], [25]. In this work, the adaptive critic is realized using only one OLA
and in an online fashion. First, the SOLA-based scheme will be designed to learn the HIB
cost function (2) and then extended to include the HJI function (4) for generating optimal
control inputs (12) and (14) respectively.

A. SOLA to Learn the HJB Function

To begin the development, we rewrite the cost function (2) using an OLA

representation as

V(x)=0"¢(x)+e(x) (18)
where ® € R" is the constant target OLA vector, ¢(x):R" — R"is a linearly independent
basis vector which satisfies ¢(0) = 0, and £(x) is the OLA reconstruction error. The target

OLA vector and reconstruction errors are assumed to be upper bounded according to
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[©]<®,, and |&(x)| < &,,, respectively [3]. In addition, it will be assumed that the gradient

of the OLA reconstruction error with respect toxis upper bounded according to

loe(x)/éx|| = |V, &(x)| < &), [33]. The gradient of the OLA cost function (18) is written as

oV (x)
ox

=V,(x) = VIg(0)O+V &(x). (19)
Now, using (19), the optimal control (4) and HIB function (5) are rewritten as

0 * () == R () VIO R () V 6(x) 0)

and
H*(x,0)=0(x)+ 0"V ¢(x) f(x) - % OV HxX)DV (x)O+&,, =0  (21)

where D = g(x)R'g(x)" >0 is bounded such that D, < ||D|| <D, for known constants

D _. and D and

min max °

Epp = VXET(f(X) —%g(x)ng(x)T(quﬁ(x)@ +V. e)+ %ngTg(x)ng(x)Tng

=V._ " (f(x)+g(x)u*) + %VXETDVXS
is the residual error due to the OLA reconstruction error. Asserting the bounds for the
optimal closed loop dynamics (10) along with the boundedness of g(x) and V ¢, the residual
error £,,,, is bounded above on a compact set according tole,, ;| < £},5(x) + & D, ... In

addition, it has been shown [25] that by increasing the dimension of the basis vector ¢(x),

the OLA reconstruction error decreases.

Moving on, the OLA estimate of (18) is now written as

V(x)=0"g(x) (22)
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where © is the OLA estimate of the target parameter vector ®. Similarly, the estimate of the

optimal control (20) is written in terms of Oas

,() = -3 R 'g() VI4()0. (23)

In the development of this work, it will be shown that an initial stabilizing control is
not required to implement the proposed SOLA-based scheme in contrast to [22] and [25]
which require initial control policies to be stabilizing. Moreover, Lyapunov theory will
show that the estimated optimal control input (23) approaches the real optimal control input
(4) with small bounded error. As a result, the proposed online scheme is not required to
provide an initially stabilizing control input whereas the proposed OLA parameter tuning
law described next ensures that the system states remain bounded and that (23) will become
admissible.

Now, using (22) and (23), the approximate Hamiltonian can be written as
A1(x,6) = 0(x) + 07V 4(x) /(x) ~; 67V Jx)DVI ()6 (24)

Remark 1: Observing the definition of the OLA approximation of the cost function

(22) and the Hamiltonian function (24), it is evident that both become zero when x| =0.

Thus, once the system states have converged to zero, the cost function approximation can no
longer be updated. This can be viewed as a persistency of excitation (PE) requirement for
the inputs to the cost function OLA [25], [22]. That is, the system states must be persistently
exiting long enough for the OLA to learn the optimal cost function.

Remark 2: The control of unknown continuous-time nonlinear systems has been
undertaken by many researchers using OLA’s [3] where objectives often include regulating

the system states or tracking errors to zero while ensuring the OLA parameter estimates
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remain bounded. In contrast, the objective of the proposed online optimal control scheme is
to drive the OLA parameter estimates toward their ideal values while ensuring the system
states or tracking errors remain bounded. Once the OLA parameter estimates have
converged to their ideal values and the Hamiltonian (24) has converged to a small

neighborhood around the origin, the requirement of ||x|| > 0 can be removed and the system
states are allowed to converge zero.

Recalling the HIB equation shown in (5), the OLA estimate ©should be tuned to
minimize A (x, @) . However, tuning to minimize H (x, @) alone does not ensure the stability

of the nonlinear system (1) during the OLA learning process. Therefore, the proposed OLA
tuning algorithm is designed to minimize (24) while considering the stability of (1) and

written as

A _ o) T _l N T ~
0=t 5o (Q(x>+® Vg f ()~ © Vx¢<x>Dvx¢(x>®j

2)
(i) SV, H0)(OR g S, ()

where 6 =V ¢ (x) - Vx¢(x)DV§¢(x)@ /2, a, > 0anda, > 0 are design constants, J, (x)1is

described in Lemma 1, and the operator X(x,#,)is given by

S(x,d,) = {? (i){hei‘f;i(s?x = JT (X))~ 2R g(x) V(x)0/2) <0 26

The first term in (25) is the portion of the tuning law which seeks to minimize (24)
and was derived using a normalized gradient descent scheme with the auxiliary HIB error
defined as

1 ~ N
E,, =§H(x,®)2. 27)
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Meanwhile, the second term in the OLA tuning law (25) is included to ensure the
system states remain bounded while the SOLA scheme learns the optimal cost function. The
form of the operator shown in (26) was selected based on the Lyapunov’s sufficient
condition for stability (i.e. if J,(x) > 0 and J (x)=J] (x)x <0, then the states x are stable).
From the definition of the operator in (26), the second term in (25) is removed when the
nonlinear system (1) exhibits stable behavior, and learning the HIB cost function becomes
the primary objective of the OLA update (25). In contrast, when the system (1) exhibits
signs of instability (i.e.J/ (x)x > 0), the second term of (25) is activated and tunes the OLA
parameter estimates until the nonlinear system (1) exhibits stable behavior. This approach
will be shown to render guaranteed performance in the following Lyapunov proof. In
addition, the numerical examples presented in Section V' will illustrate that system stability is
lost and the OLA fails to learn the cost function if the second term in (25) is removed while

including the second term renders satisfactory performance.
Remark 3: The first portion of the OLA tuning law ®in (25) utilizes (676 +1)

instead of the traditional (6" & +1)used for normalization. This modification was also

utilized in [25] for the critic update. However, the update (25) is different from the critic
update proposed in [25] since two networks were utilized in [25] whereas only one network
is used in this work.

Remark 4: For the case ofZ(x,u,) =1, the update (25) is observed to have
equilibrium points at H (x, (:)) =0andJ, (x)=0. Thus, (25) is updated in order to minimize
(27) as well as to drive the system states to zero (since J, (x)=0 only whenx=0).

However, the tuning law (25) cannot be implemented with X(x,#, ) = 1 for all time because it
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would prevent the optimal cost function from being learned since the OLA would continue

to update even after H (x, ©)=0. In addition, if stability were the only objective of the

controller design, the tuning law (25) could be rewritten as @=a,V_#x)g(x)R " g(x)" J,.(x)/2,

and the stability of the system states and parameter vector © could be shown using
Lyapunov theory. For this case, the control law (23) would stabilize (1) but not in an
optimal manner.

Moving on, we now form the dynamics of the OLA parameter estimation error
©=0-0. Observing Q(x) = -0O"V _¢(x) f(x) + O'V_¢(x)DV §(x)®/ 4 - &,,,, from(21),
the approximate HJB equation (24) can be rewritten in terms of © as

O'V,4(x)DV.4(x)0
4

A(x,6) =87V () /() + 5 &'V H) DV 4()0 Fun- (29)

Next, observmg@ = —(i) andé =V _@(x)(x, + DV _&/2)+ Vx¢(x)DVf¢(x)@/2 where

%, = f(x)+ g(x)u, , the error dynamics of (25) are written as

< . Vg VAV J00Y ~ . Ve 1 &
Yo

~2(xi) SV Jg(IR g, (x) (29)

where p = (676 +1). Next, the stability of the SOLA-based adaptive scheme for optimal

control is examined along with the stability of the nonlinear system (1). First, the following
definition is required.

Definition 2 [3]: An equilibrium point x, is said to be uniformly ultimately bounded
(UUB) if there exists a compact set S < R" so that for all x,, € S there exists a bound B and a

time T(B,x,) such that |x(¢)—x,|<Bforall t>¢,+T.
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Theorem 1: (SOLA-based scheme convergence to the HJB function and System

Stability). Given the nonlinear system (1) with the target HIB equation (5), let the tuning

law for the SOLA be given by (25). Then, there exists computable positive constants b,
and b, such that the OLA approximation error ®and |J,, (x)| are UUB forall ¢ > t, + T with

ultimate bounds given ||/, (x)|< b, and”@” < b,. Further, under OLA reconstruction

(g * A .. .
errors, |V — Vﬂ <¢g, and H”l —uIH < ¢, for small positive constants € , and ¢, , respectively.

Proof: Consider the following positive definite Lyapunov candidate
J s = 00, (X) + %(?)T@) (30)
whose first derivate with respect to time is given by
Jop= ] (x)%+ 070 31)
where J,(x) and J, (x) are given in Lemma 1. To begin, observe that if|x| =0, then
Jp(x) =070/2 withJ,,, (x) = 0, and the parameter estimation errorHC:)H remains constant

and bounded [3]. On the other hand, to successfully accomplish the online learned objective,
the system states are required to satisfy |x| > Oas described in Remark 1. Therefore, the
remainder of this proof considers the case of |x|>0 (i.e. online learning is being

performed). Then, substituting the nonlinear dynamics (1) with control input (23) applied

along with the OLA estimation error dynamics (29) into (31) reveals
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D=0 £ 3R () Vi |- &9, g s + 5%
Yo,

2
- v 3a ~ . - -
2 (B MDY IHIBS BV, 5+ O, DV B
0 p
= * DV ~ ~
—%@Tvx;zs(x)(xl ¥ ngjem - 20;2 &'V, (DY (x)Os,,,

O < ;
—Z(Xaul)sz)Tvxﬂx)g(x)R 'g(0)" I ().
Next, completing the squares with respect to O’V ¢(x)DV #(x)® and

o’ V_@(x)x; + DV _&/2 and taking the upper bound yields

Tun <), (x)(f(x) —% gOR'g(x) V] ¢(x)é>j - 4’% ((:)Tvxqﬁ(x)(xl* ; szej]

3a O~ _
3 2p2 (®TV ¢(X)DVT¢(X)®) 2p12 i —E(x,ul)f(@Tchfﬁ(X)g(x)R 'g(x0)" I, (%)

<a,Jy, (X)(f ()~ % gR"g(x)"V; ¢(X)@)j —2(x, 1) % O’V Hx)g@R " g(x)" I}, (x)

2|, DV

3
X, + L g?

—— & p
2p2 HIB

[0, 00| D+ 2267, 1)
o,

322

~ 2
Now, completing the square with respect H@T Vx¢5(x)H renders

Jun S 0] S~ OR (o) VIO |2 S 6, HIBIR g T2

a0 [0V 4] 16, DV
@TV min X X
o4 Pt CAC) [HNS > { SR 3
a,256 5 DV el 3051 >
,02 D2 " 2 Erp

SazJu(x)(f(x)——g(x)R g(0)'V! ﬂx)éj—x(x,ﬁaﬁ OV, Kx)g()R'g(x)" I (x)
a1256 . DV &l 3a1 22

|| 2 HJB

@Tv A D2,

Next, observing the bound in (10) and applying the Cauchy-Schwarz inequality, J,,, is

upper bounded according to
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Juns et} (x)[f(x) SR ) VA0 -2x) FEV AR e I ()

q ) (32)
H@ﬂ B+ 2n<a>+—ﬂ25 (x)

)/ 25

max

with, =Vg' D. /64,3, =1024/ D’ +3/2,andn(s)=64/D. +3(e)} +&i D
1 min min 2 min 77 min

and 0< V¢

min

<|V@(x)|is ensured by || > 0 for a constant V¢

min *

Now, the cases of X(x,u4,)=0andZ(x,u,)=1will be considered. First, for

2(x,u,) =0, the first term in (32) is less than zero by the definition of the operator in (26).

Recalling &(x) = 4/KJ,,]| and observing|1/ p||<1, (32) is rewritten as

HJB—_(aZ Xin — 0 K XJIX(X)”_%”arﬁI +%77(5), (33)

and (33) is less than zero provided a, /@, > 8,K" /%, and the following inequalities

hold

i (x)" > ( , HHE) n=by or ”a‘ >ﬂ% = bey.- (34)

X iy — 4 K )
Note that |x| > 0and the operator (26) ensure the existence of a constant x,, satisfying
0<%, <|x|. According to standard Lyapunov extensions [3], the inequalities above

guarantee that./,, , is less than zero outside of a compact set. Thus, as well as the

Ix

OLA parameter estimation error H@)H remain bounded for the case (x,#%,) = 0. Recalling the

Lyapunov candidate J, (x) is radially unbounded and continuously differentiable (Lemma 1),

the boundedness of ||J . (x)” implies the boundedness of the system states, |x||. Next, we
consider the case of 2(x,#,) = 1 which implies the OLA based input (23) may not stabilizing.

To begin, add and subtract a,J/ (x)D(VIg(x)®+V _£)/2 to (32) to get
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T <] <x)[f(x ——D(VT¢<x)®+Ve)j S mN.e= A8 ke + % o o

= ] )+ () + S L DV, =@+ )+ B, |
P P P

Next, using Lemma 2 and recalling the boundedness of D, .J,,,, is rewritten as

(x)H n %[ i Oﬁﬂzlf* ]
ap

JHJBS_%QrmrJ Jlx(x)H _%HQ‘A‘A +ﬁ2 7€)
Y P

where Q,,, > 0 satisfies 0,,, <||O(x)| and is ensured by the condition |x|>0. As a final

step, complete the square with respect to ||J I (x)”2 to reveal

< %Qmin
2

JHJB—_

Jl 2_ﬁw4 : 06 maxM OqzﬁZZKQ 35
O & 4+ ’7(5“ 0y @pOy o

and J we < 0provided both of the following inequalities hold

o) > B zZXgM =1, and q>4/'7/<;) EZZQ =By (36)

According to standard Lyapunov extensions [3], the inequalities in (36) guarantee that J s 1S

less than zero outside of a compact set.

as well as the OLA parameter

1x

estimation error estimation error”(:)u remain bounded for the case Z(x,#,) = 1. Recalling the

Lyapunov candidate J, (x) is a radially unbounded and continuously differentiable (Lemma

1), the boundedness of”J 1X(x)” i . The

overall bounds for the cases £(x, 4, ) = 0and =(x,,) = 1 are then given by |J, (x)| < b, and
H(?)H < b, for computable positive constants b, =max(b,,,b,,) and by = max(by,,by, ).

Note that b, , and b, in (34) and (36), respectively, can be reduced through appropriate

selection of ¢, and «, .
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To complete the proof, subtract (22) from (18) and (23) from (20) to reveal
V() =V (x) = 07 g(x) +&(x)

i * ()=, () =~ R 'g() VIO R 'g()V,(x)

Next, observing that the boundedness of the system states ensures the existence of positive

constants ¢,, and ¢, such that ||| < ¢,, and||V 4| < ¢,, , respectively, and taking norm and the

limit as # — oo when X(x,,) = Oreveals

[7*@)-7)| < u(?)u||¢(x)|| +e, < b®¢M + gM =¢,
e, * (x) = 22, ()] <

-1

max

2 max
/Imax(R )gM ®¢M+2 max(R )gMgM =8

2
1
2
Remark 5: For the case of 2(x,#,) = 0, the bounds in (34) reveal that J,,,, <0 for

H@)H >bg, OF |[J,,(x)|>b,,. However, recalling the requirement of ||x| >0 described in

Remark 1, the system states are required to be bounded away from zero in order to learn the

HIB equation. Thus, the condition of ||/, (x)| > b,, can be satisfied through the condition

I~ >0,

0| can become arbitrarily small, and J we < 0 1s still satisfied. In contrast, for the
case of 2(x,i,) = 1, the bounds of (36) reveal that .J,,,, <0 provided |J ,(x)|>b,, and
H(:)H > by, . Similarly to the case of Z(x,#,) = 0, the inequality |J ,(x)| > b,,, can be satisfied
through the requirement of |x|> 0. In addition, the inequality H@H > by, is not surprising

since X(x,u,) =1 implies © has not provided a stabilizing control input for the nonlinear
system (1), and it is known the target OLA parameter ® provides a stabilizing control input

for (1). Thus, when © does not provide a stabilizing control, one would expect HC:)H to be
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bounded away from zero. This relationship is also depicted in Fig. 1. The actual

convergence region is a subset of the regions determined by (34) and (36), respectively, [3].

N |©(,)

]

b@l
S(x,0,)=1

b@o ”“”&

s
ﬁ% e

2(x,u,)=0

) H'].ﬂ H

Jx
Fig. 1. Graphical representation of the convergence region.

Remark 6: The results of Theorem I indicate that the system states and OLA

parameter estimation errors are UUB even when © does not provide a stabilizing control
input. This result implies that an initial stabilizing control is not required for implementation
of the proposed SOLA design. Further, Theorem I illustrates that the estimated control input
(23) approaches the target optimal control input (4) with small bounded erroras¢ — . Asa
result, the OLA tuning law (25) ensures that the system states remain bounded and that (23)
will become admissible during the online learning if it is not initially stabilizing. The

simulation results in Section V also support this claim.
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Next, the stability of the SOLA-based optimal control scheme is examined when
there are no OLA reconstruction errors as would be the case when standard adaptive control
techniques [2] are utilized. In other words, when a NN is replaced with a standard linear in
the unknown parameter (LIP) adaptive control, the parameter estimation errors and the states
are globally asymptotically stable according to Corollary 1.

Corollary 1: (Ideal SOLA-based Optimal Control Scheme Convergence). Let the

hypothesis of Theorem I hold in the absence of OLA reconstruction errors. Then, the OLA
approximation error © and system states x are globally asymptotically stable (GAS) and
V>V andil, > u, .

Proof: Consider the Lyapunov candidate (30) whose first derivative is found using
similar methods as those described in (32)-(33) withe = ¢,,,, =0 and V_& =0 . For the case
of X(x,u,)=0, the first derivative of (30) is written similarly to (33) with7n(e)=0.

Therefore, J,,, is less than zero provided a, /e, > B,K" /%, , and ||J 1x(x)” as well as the

min ?

OLA parameter estimation error H@H converge to zero asymptotically.

Next, whenZ(x,u,) =1, J,,, isupper bounded similarly to (35) with 7(¢) = ¢}, =0,

andJ,,,, < 0 provided the following inequalities hold

o> [APKT s ALK
B0 B0,

Note that the above bounds can be made arbitrarily small through proper selection of ¢, and

a,. As in Theorem 1, it is not surprising that H@H>0for Y(x,u,) =1 since the case

of X(x,u,) =1 implies © has not stabilized (1). Therefore, whenX(x,u,) =1, the secondary

tuning algorithm in (25) is activated until J,' (x)x < 0. Then, once the system is stabilized,
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the case of 2(x,#,) = O applies and asymptotic convergence of the parameter estimation error
is observed. Since (30) is radially unbounded, the result holds globally. To complete the

proof, observe that when & =0 andV & = 0, the cost function and control error bounds from

Theorem 1, ¢ ,and ¢, , respectively, also become zero. Thus, using similar methods as those

used in Theorem 1 shows that? — V" andii, — u,” when (x,4,) =0.
In the following section, we extend the SOLA-based design scheme to include the

HIJI used in H, optimal control.

B. SOLA-based Scheme to Learn the HJI Function
To begin the HJI SOLA-based scheme development, we assume that the cost
function (12) can be represented as
V,(x)=®"3(x)+¢&,(x) (37)
where @ € R™ is the target OLA vector, H(x):R" — R"is a linearly independent basis
vector, and €, (x) is the OLA reconstruction error while the target OLA vector and OLA
reconstruction error are considered to be wupper bounded according to
@, <D, and|e, ()| < &, , respectively [3]. In addition, it will be assumed that the
gradient of the OLA reconstruction error with respect to x is upper bounded according
tol|oe, (x)/ x| =V, &, (x)| < &), [33].
The gradient of the HJT SOLA-based cost function (37) can be written similarly to
the gradient of the HJB cost function shown in (19). Now, using the gradient of the HJI
SOLA cost function, the optimal control and disturbance (14) and HJI function (15) are

rewritten as



293

Uy () = —2 R g(x) (VI 9(x)D + V&, (x)
2 (38)

d*(x) = — P k(x)" (V{9(x)@ +V &,(x))

2y°

and

H,(x,®)=0(x)+®"V _9(x)f(x) - %@Tvxg(x)DdeS(x)(D +&,;, =0 (39
where D, =g(x)R"g(x)" —k(x)P"'k(x)" /y* and
ey =V &) (f(x)+g(x)u*+k(x)d *)+ % V.&e'DV &,(x)
is the HJI residual error due to the OLA reconstruction error. Additionally, it is required
thaty be selected such that D, > 0. It is assumed that the optimal closed loop dynamics for
the HJI problem satisfy a bound defined similar to (10). As aresult, the residual error g, 1s
upper bounded on a compact set similarly to &, .
Moving on, the HJI SOLA-based estimate of (37) is now written as
Va(x) =07 9(x) (40)
where @ is the OLA estimate of the target parameter vector @ . Similarly, the estimate of the

optimal control and worst case disturbance (38) is written in terms of ® as

i,(0) =~ R 'g() V19()b o

1 B ~
- P7k(x)" VI 9(x)D
2y

d(x) =
Similarly to #,(x) and the HIB equation, ,(x(¢,)) is not required to be initially
stabilizing for the HJI problem. Now, using (40) and (41), the approximate HJI Hamiltonian

can be written as

A,(5,0) = 0() + 67V §(x) /() 3 BTV, 8(x)D, VT 9(x) 42)
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Similarly to the HIB SOLA-based optimal controller design, the tuning law for the
HIJI-SOLA seeks to minimize the approximate Hamiltonian (42) while ensure the nonlinear

system (11) remains stable. The portion of the tuning law which seeks to minimize (42) is
derived from normalized gradient descent using the auxiliary HJl error E,,, = H . (x, D) /2

while the stabilizing portion of the tuning law is derived from Lyapunov theory. Observing

the similarities of (42) and (24), the tuning law for the SOLA to solve the HJI problem is

found to be
2 a0, 27 l -7 T 2
Q=" 0(X)+ DV Ix)f(x) -7 PV, Ix)D,V, Ix)D
6,6, +1) 4 (43)
Z:2 (xaug ad)a4 ng(x)Ddx

where &, = V_9f (x) - ®'V_H(x)D, V' I(x)® /2, a, and e, are positive a design constants,
and where

1.d)y=10 if J5 + i+ k(x)d) <0
Zz(x,uz,d)_{l étherévi(s?(f(x) g(xX)i+k(x)d) < (44)

where J ,(x)is the partial derivative of a continuously differentiable, radially unbounded
Lyapunov candidate J, (x) for the nonlinear system (11) which satisfies similar properties as
those described in Lemma I for J, (x).

The region for Zz(x,ﬁz,c;’ ) =0was determined based on Lemma 2. Noting the

similarities between (43) and (25), the OLA estimation error dynamics CT) =P Ci) = —Cf) can

be written as

33:% (Vx S(x)(xj 4;)"?8“’ )+V"‘§(X)D3Vx &xﬁI(T)T v, S(x)(ié R )+CDTV" .S(x)4Dde 'qx)q)wm]

2
=2, (5,11, d) 5V H)DJ . (43)
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where x5 = f(x)+ g(x)us + k(x)d and p, = 3" 9+1. Now the following theorem can be

stated.
Theorem 2: (SOLA-based Control Scheme Convergence to the HJI function and
System Stability). Given the nonlinear system (11) with the target HJI equation (15), let the

tuning law for the OLA be given by (43). Then, there exists computable positive constants

B, and b, such that the OLA approximation error ® and

sz(x)” are UUB for all

t > t, + T with ultimate bounds given “J xz (x)” <B, and”éf)u < b, . Further, in the presence of

OLA reconstruction errors,

Vd _Vd H S 8’,3 )

A * 3 *
U, —u, H <¢,,and Hd -d H <¢, for small

positive constants € ;,&,,and €, .

Proof: Consider the positive definite Lyapunov candidate

a l =7~
J 274J2(x)+§(13T<D (46)

whose first derivative is given by J,,, = a,J 7, (x)x + @’ o,

Noting the similarities between the OLA error dynamics (45) and (29), proof of
Theorem 2 is shown using identical steps used to prove Theorem I. In addition, the global
asymptotic convergence of the OLA estimation errors and system states can be demonstrated
for the HJI problem just as was shown in Corollary I for the HIB optimal control problem. m

A block diagram of the SOLA-based design is now presented in Fig. 1 where the HJI

design is shown. The block diagram becomes the HIB optimal control design by taking
k(x) = 0and after appropriate modifications to reflect ¢(x), 0, (x),and u,, respectively.

We have just shown how a SOLA framework can be designed to solve the HIB and

HII optimal control problems. In the following section, the SOLA-based design will be
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extended to include the tracking problem by effectively converting the tracking problem into

a regulation problem.

Lx
Single Online
Approximator
— %(Q(x) + 'V, 9(x) £ (x) - lé’")ﬁ’j
. 4

’ 3 k(x)P"k(x)Tj
ST v e

3, %(g(x)l%‘lg(x)
U de (x)

RO 2

V. (x) No | Yes

~ RG] |y Pk

u d

Y 2 Y

%= f(x)+g(x)i, +k(x)d

A A

AN
™M

Xv
Fig. 2. SOLA for HJI regulation design.

IV. ConNTtmNnuous TIME SOLA-BASED SCHEME FOR NEAR OPTIMAL TRACKING

The optimal tracking control problem will be considered as an extension of the
contributions presented in the previous section. The following optimal tracking development
will consider the nonlinear system (11) and the HJI optimal tracking problem; however, the
resulting theoretical results are easily extended to solve the HJB optimal tracking problem by

taking k(x) =0 in(11). Additionally, in this section it is assumed that there exists a matrix
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g(x)" e R™" suchthat g(x)g(x)" =1 € R™ where [ is the identity matrix. Note that when

n=m, g(x)" =gx)".
The objective for the infinite time optimal tracking problem is to design the optimal

control u, * to ensure that the nonlinear system (11) tracks a desired trajectory x,(¢)in an

optimal manner in the presence of the worst case disturbanced * . To achieve our objective,
the cost function (12) must be modified accordingly to ensure it remains finite. To begin the

development, define the desired trajectory to be [18]

X, = f(x,)+ g, (x,) (47)
where f'(x,)1s the internal dynamics of the nonlinear system (11) rewritten in terms of the
desired statex,, g(x)is the same input transformation matrix in (11), and u,(x,)1is the
control input to the desired system. Next, define the state tracking error as

e=x-x,, (48)
and using (11) and (47), the tracking error dynamics of (48) are
e=f(x)+gxXu+k(x)d—-x,=f,(e)+g(k)u, +k(x)d (49)
where f,(e) = f(x)— f(x,)and
U, =u—1u,. (50)
In order to control (49) in an optimal manner, it is required to select the control

policy u,that minimizes the infinite horizon HJI cost function [29]

Vi(e) = [ (n(e(e)u, () ~72d(2) Pd(z))dz (51)
where P, e R is a constant positive definite matrix, y, >01s a constant, r,(e(z),u,(r)) 1S

defined similarly to »(x(z),u,(r)) with x(r) and u, (z) replaced with e(zr) andu,(r) , respectively,
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and where u,1s required to be admissible. The Hamiltonian for the HJI tracking problem is

now written as
H(eu,,d)=r,(eu,)~y.d" Pd+V;,()(f.(e)+g(u, +k(x)d) (52)
where V;, (e)is the gradient of the V. (e) with respect to e.
Now applying the stationary conditions o0H,(e,u,,d)/ou,=0 and

OH ;(e,u,,d)/od = 0 reveals the optimal control and disturbance for the tracking problem to

be
u, *(x) = =5 Rg(x) Vi (e)
1 ) . (53)
d*(x)=——5 P k(x)"Vp(e)
Now, substituting (53) into (52) reveals the HJI equation for the tracking problem
as

0=0.()+7; (@) £.()~ 3 il (2R ' () Vr(e) + ﬁ VT @@ P k) V(e) (54)

e

with ¥, (0) = 0where Q,(e) and R, are defined similarly to Q(x) and R presented in Section

111, respectively. Next, we observe that the optimal control input in (53) can be rewritten as
u =u, —%R‘Ig(x)TVT*e(e). (55)
Note that the expression for the desired control input u, is obtained from (47) and written as
u,(x,)=g(x)" (¥, = f(x,)) (56)

It is observed that the optimal control input (55) consists of a predetermined

feedforward term, u,, , and an optimal feedback term that is a function of the gradient of the

optimal cost function (51). Thus, to implement the optimal control (55), the SOLA based
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control scheme designed in Section III-B is utilized to learn the optimal feedback tracking
control term after appropriate modifications to reflect (51)-(53).

Further, the Theorem 2 results are applicable to the HJI optimal tracking control
problem since the cost function (51) effectively converts the tracking control problem into a
regulation problem [22],[29]. Moreover, by taking k(x) =0, the previous development
becomes the HJB optimal tracking problem, and the theoretical results of Section I1I-A and
Theorem 1 derived for the HIB problem are utilized to learn the optimal feedback tracking

control term after appropriate modifications to reflect (51)-(30).

e A 4
Single Online Approximator
for Tracking
b, = %% (Qc(e) +®!V,9.(e)f.(e)~ l(f):'DT(i)ej
Pe2 4 )
+zazw(g(mggmr M) L
4 5 A
I:Ze \ 4 Vl(e) d Z
Y.i(*) :
O e AT
Vv’/’e (e) No YeS
A
Y v ~
| . 1 1<e e}
—5 R gl 5 P k() o
iie
12 A 4 dA
&= f(x)+g(x)i, +k(x)d
¥
>*

e
v
Fig. 3. SOLA design for HJI optimal tracking.
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The block diagram of the SOLA-based design for HJI tracking is presented in Fig. 3.

The diagram become the HJB optimal control designs by taking k(x)=0 and after

appropriate modifications to reflect I}e(e), and,,(e), respectively.

V. SIMULATION RESULTS

To demonstrate the effectiveness of the SOLA-based designs of this work, several
examples are now offered. First, three optimal regulator designs are presented for a linear
system and two nonlinear systems. Then, the optimal tracker is implemented for the optimal
formation control of nonholonomic mobile robots. To implement the online SOLA-based
designs, a linear in the parameter (LIP) NN is utilized as the OLA. In addition, in each
example, J, () =J,(y) = y" y/2 so that J,,(¥)=J,,(y) =y in(26) and (44), respectively.

For regulation, y = x while y = e for tracking.

A. Linear HIB Example
Consider the linear system given by

X -1 -2 1
x=|. |= X+ u
X, 1 -4 -3
accompanied by the HIB cost function (2) with R =1 and Q(x) = x” x . For linear systems
with quadratic cost functions, the optimal control is found by solving the ARE, and the
optimal cost function is found to be V*=W,xx, +W,x; +W.x; whereW, =-0.1162,

*

W, =0.3199, and W, =0.1292, respectively [34].

The basis vector for the SOLA-based implementation was selected as

Ax)=[xx, x/ x| while the tuning parameters were selected as ¢, =200anda, =0.01.

The initial conditions of the system states were taken as x(0) =[2 —2]" while all NN weights
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were initialized to zero. That is, no initial stabilizing control was utilized for implementation
of this online design.

Figure 4 illustrates the time history of the OLA weights since it is approximating the
cost function. Examining the trajectories, it is observed that the NN weights begin from zero

and converge to constant values as the results of 7heorem I predicted. The final values of
the OLA weights were W, = -0.1300, W,, =0.3269 , and 7., = 0.1193 which illustrates

the convergence of the approximated cost function to the optimal cost function with small
bounded error which is again consistent with the theoretical results derived in this work.
Since the SOLA-based design uses only one OLA, convergence of the critic weights ensures

the convergence of the control input to the optimal control.

OLA Weights for Linear HJB Example
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% é'“..tn..n.. AR AT s A TSR IR E R W A AT NI AN IR R AR AR AR
%
I

02} % .

-0.3 . :
0 5 10 15 20

Time (sec)
Fig. 4. OLA weights for example 1.
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The time history of the system states is shown in Fig. 5. To satisfy the PE condition
discussed in Remark 1 in Section 11, probing noise was added to the nonlinear dynamics (1).

After 15 seconds, this signal was removed and the system states were allowed to converge

to zero.

System States for Linear HIB Example

Probing noise 2
for PE condition

PE condition removed|

et (T

System States

0 5 10 15 20
Time (sec)
Fig. 5. System states for example 1.

B. Nonlinear H/B Example

Consider the nonlinear system in the form of (1) withx =[x, x,]",

Xy

f(x)= _xl(zﬂanl(sm)_ Sy, |andg()=[0 3
2 2(1+25x7)
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Using the HIB cost function (2) with Q(x) = x; and R = 1, the optimal cost function
is givenby V,*=W,x; +Wx tan’ (5x,)+Wx; withW, = /2, W., =1 and W, =1[35]. The
basis vector for the SOLA-based scheme implementation was selected as
Ax)=[x, x, xx, x, % x tan'(5x,) x| while the tuning parameters were selected as
a, =200anda, =0.01. The initial conditions of the system states were taken as
x(0) =[4 —4]" while all NN weights were initialized to zero. That is, no initial stabilizing

control was utilized for implementation of this online design for the nonlinear system.
Figure 6 depicts the evolution of the OLA weights during the online learning.

Starting from zero, the weights of the online OLA are tuned to learn the optimal cost

function, and the final values of the OLA weights are found to be WC . =1.5838, Wcs =1,

OLA Weights for Nonlinear HJB Example
16 . . . :

141

121

"]_

0.8

06}

Weights

04+t

02}

0

-02¢

-04

0 200 200 500 300 1000
Time (sec)
Fig. 6. OLA weights for example 2.
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and W, =1, with [W, W, W, W,]=[-0.0213 —0.0038 0.0076 0.008]. Again, the online

SOLA design was observed to converge to the actual optimal cost function with small
bounded error as the theoretical results suggested.

The system states are shown in Fig. 7, and probing noise is added similarly to the
linear case to ensure the PE condition is satisfied. After 850 seconds, the PE condition was
no longer required and was thus removed. To illustrate the importance of the secondary term

in the tuning law in (25), the online OLA design is attempted with X(x,#) = 0. That is, the

learning algorithm only seeks to minimize the auxiliary HIB residual (27) and does not

consider system stability. Fig. 8 shows the results of not considering the nonlinear system’s

System States for Nonlinear HJB Example
4

Probing noise PE condition
,| for PE condition removed
W
2
8
W
E -
2
W
= -
w
_____ )(1
FF i
— N
-8 1 1 1 1
0 200 400 g00 800 1000

Time (sec)
Fig. 7. System states for example 2.
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stability while learning the optimal HIB function. From this figure, it is clear that the system
state quickly escape to infinity, and the SOLA-based controller fails to learn the HJIB
function. Thus, the importance of the secondary term in (25) which ensures the stability of

the system is revealed.

System States for Nonlinear HJB
QMOS Example Without Stabilization Term

System States

_14 1 1 1 1
0 1 2 3 4 5

Time (sec)
Fig. 8. Divergence of the system states when the stabilizing OLA update is removed
(Z(x,1,)=0) for example 2.

C. Nonlinear HJI Example
Next, consider the nonlinear system in the form of (11) withx =[x, x,]",

29x, +87x,x;  2x, +3x,x]
- - 1 0
S(x)= 8 4 , g(x) = {0 3} ,and k(x)=[0.51]".

2
X+ 3x,x)

4
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The above dynamics were derived using the converse optimal control method [36] using the

HII cost function (12) withR=1, P=y =1, and
O(x)= 2((2)61 +6x,x7)° +(4x, +6x7x,)’ )
The optimal cost function was then found to be
V3 () = Wi + Wy + W oox i x;
with W, =1, W, =2 and W, =3. The basis vector for the HJI SOLA implementation was

selectedas dx) =[x, x, x,x, ¥, x; x;x; x | while the tuning parameters were selected as

o, =200anda, =0.01. The initial conditions of the system states were taken as

x(0) =[4 —4]" while all NN weights were initialized to zero. That is, no initial stabilizing

control was utilized for implementation of this online design for the nonlinear system.
Figure 9 shows the OLA weights during the online learning. Starting from zero, the

weights of the online OLA are tuned to learn the optimal HJ function, and the final values of

the OLA weights are found to be Vf/c4 =1.0007, WcS =2.0003, and Wcﬁ =2.9944 | with

Py

7, W, W, W,]=[0.0001 0.0000 0.0006 0.004]. As in the previous examples, the online
SOLA design was observed to converge to the actual optimal cost function with small
bounded error as the Theorem 2 ensured. The convergence of the OLA parameters or critic
NN weights ensures the convergence of the control input and approximated worst case
disturbance to the optimal control and disturbance, respectively.

The system states are shown in Fig. 10, and probing noise is added similarly to the
linear case to ensure the PE condition is satisfied. After 4750 seconds, the PE condition was

no longer required as convergence of the OLA weights was observed. To reiterate the

importance of the secondary term in the tuning law in (43), the online SOLA design is
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OLA Weights for Nonlinear HJI Example
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Fig. 9. OLA weights for example 3.

System States for Nonlinear HJI Example
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Fig. 10. System states for example 3.
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attempted with =, (x,i,,d)=0. That is, the learning algorithm only seeks to minimize the

auxiliary HJI residual and does not consider system stability. Fig. 11 shows the results of
not considering the nonlinear system’s stability while learning the optimal HJI function.
Similar to the observations of Fig. 8, the state trajectories shown in Fig. 11 show that the

system states diverge resulting in a failed HJI learning session.

System States for Nonlinear HJI Example
Without Stabilizing OLA Update

20

ook i

A0 i

B0F | e ¥ -

System States

&80k _— ;

_100 1 1 1 1 1 1 1 1
0 0z 04 0.6 0.8 1 1.2 14 16 1.8

Time (sec)
Fig. 11. Divergence of the system states when the stabilizing OLA update is removed
(Z, (x,ﬁz,é’) =0) for example 3.

D. Optimal Tracking Control of Nonholonomic Mobile Robot Formations

To demonstrate the effectiveness of the proposed optimal tracker, the HIB equation is
solved online for leader-follower based formation control of nonholonomic mobile robots.

First, a brief overview of nonholonomic mobile robots [37] and leader-follower based
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formation control [38] is provided. The dynamics of a nonholonomic mobile robot are

written as [37]

v=f({@)+gr, (57)
where f(V)=-M "V, (q¢,g)v—M 'F(v), g=M"'B,and v =[v w]" is the velocity vector
with vbeing the translational velocity and o the robot angular velocity. In addition, M is a

constant positive definite inertia matrix, ¥, is the bounded centripetal and coriolis matrix,

m

F is the friction vector, B is a constant, nonsingular input transformation matrix, and 7 is
the control torque vector [37]. For complete details on the robot dynamic equation above,
see [37].

The objective of separation-bearing leader-follower formation control [38] is for each
robot to maintain a desired separation distance and bearing angle with respect to a designated
leader as shown in Fig. 12 where the leader is denoted with a subscript i’ and the follower is
denoted by the subscript . In our previous work [38], an auxiliary velocity control input,

v,.(t), was found to ensure that lim(Z;, —L,;) =0 and }Lrg(\l’lj s —¥,;)=0 whereL; and ¥, are
the measured separation and bearing of the follower j with respect to leader i while L, and
'V, represent the desired distance and bearing. Then, the control torque 7 was calculated to

ensurev — v, (¢) . In [38], system stability was the only design criterion.

In contrast, using the optimal control framework proposed this work, the control

torque 7 is now re-designed to ensure the control velocity v (¢) of our previous work [37] is

tracked in an optimal manner. A formation of identical nonholonomic mobile robots is

considered where the leader's trajectory is the desired formation trajectory as shown in Fig.
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>

X
Fig. 12. Leader-follower formation control. Fig. 13. Desired formation.

13 where L,F1,F2,F3,and F'4 denote the leader, follower 1, follower 2, follower 3, and

follower 4, respectively. Additionally, the robot parameters used in the simulation are as
described in [37] where the robots have the same physical dimensions including masses and
moments of inertial, but different coefficients of friction.

For implementation of the OLA based SOLA tracker, the HIB equation written in the

form similar to (59) is considered withQ_(e)=e"Q.e, O, =50, R, = I and where [ is the

identity matrix. The tuning parameters were selected as &, =200 and , =0.01. As in the

previous examples, all tunable weights were initialized to zero. That is, no initial stabilizing
control was utilized for implementation of the online tracker design. For this example, we
specify the gradient of the activation function instead of the activation function itself since
the gradient of activation function is required for the SOLA implementation and not the
actual activation function. This type of dynamic programming is often referred to as dual
heuristic dynamic programming [10] where the gradient of the cost function is approximated

instead of the actual cost function. In the previous examples, the optimal cost functions were
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observed to contain terms that were also present in the internal dynamics ( f(x)) of the
nonlinear systems. Therefore, the gradient of the activation function is selected based on the

terms one would expect to find in f, (e). That is, the gradient of the activation function is

selected to be

Ve 0
V.9 =
0 V4

where

V4=V, =
[e, e, ee, (sgn®)—sgn(v,)) (sgn@)-sgnlv,,)) (sgn@)—sgnlv,,))x(sgnt)—sgn@,,))
e (sgn@)—sgni,,)) e/ (sgnf)—sgn@v,,)) e, (sgnd)—sgn(v,,)) e,(sgn@)—sgn@,,))I -

During the online learning, the virtual reference cart for the formation leader traveled
a constant translational velocity, v, =1m/s while the reference angular velocity was
selected as @, =0.1sin(0.25¢). The results of the SOLA algorithm for the leader and its
followers are shown in Figs. 14 through 19. First, Figs. 14 through 16 display the SOLA
weights for the leader, follower 1, and follower 3, respectively. In each case, the weights are
observed to converge to constant values as the theoretical results of Section IV predicted.
The SOLA weights for followers 2 and 4 were observed to be similar to those of followers 1
and 3, respectively. The slight differences in the SOLA weights for each robot are linked to
differences in the coefficients of friction for each robot and the use of the sign(e) function in
the gradient of the activation functions. In addition, the dominant weights in Fig. 14-16 are

observed to correspond to the e, and e, termsin V 9, .
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Fig. 16. OLA weights for follower 3.

Figures 17 and 18 depict the velocity tracking errors for the leader and follower 1.
For the leader tracker errors in Fig. 17, probing noise is introduced to satisfy the PE
condition and subsequently removed after 225 seconds. Similarly, the tracking errors of
follower 1 are shown in Fig. 18 where probing noise was removed after 275 seconds. In
addition, the effect of the leader’s probing noise signal on the followers is also observed in
Fig. 18 when the PE condition is removed for the leader at 225 seconds illustrating the
effects of the formation dynamics on the follower robots. Similar results were observed for
the other followers although not shown. In all cases, the velocity tracking errors converged
to a small bounded region around the origin after the probing noise was removed as the

theory suggested.
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Fig. 17. Velocity tracking errors for the formation leader.

F1 Velocity Tracking Error

Probing noiseto  [———m e, (mis)
satisfy PE condition

Leader PE condition
5t removed -

Velocity Tracking Error

PE condition removed
for follower 1

_10 1 1 1 1 1
] 50 100 150 200 250 300

Time (sec)
Fig. 18. Velocity tracking errors for follower 1.

314



315

Next, Fig. 19 show the Hamiltonian approximation for the formation leader, and
examining the figure, it is observed that as the approximate Hamiltonian converges to a
small bounded region containing the origin as the leader’s OLA parameters converge to
constant values. This illustrates that the OLA weights are indeed minimizing the

Hamiltonian even when the velocity tracking errors are not zero.

Approximate Hamiltonian for the Leader

20 b
15 b

10 b

Fas

A(e,®)
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0 50 100 150 200 250 300
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Fig. 19. Approximate Hamiltonian for the formation leader.

In contrast to the previous examples for regulation, converse optimal control
techniques do not provide insight as to what the real optimal cost function and control input
should be. Therefore, a comparison in terms of cost will be used to evaluate the performance

of the proposed optimal tracker with the cost defined by

Vo(e() = [(rn(e(@),u,(2)dz
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wherer, (e(7),u,(7)) is defined similarly to r(x(7),u, (7)) with x(7) andu, (7) replaced with
e(r) andu,(7), respectively, and where u, is required to be admissible.

As a baseline test, the control input (55) is applied to the robot systems (57) when the

feedback control signal is not optimal. That is,
r=u,-g (Ke+ £,(0)) (58)

where u, is given by (56) with x, =v_, f,(e) is defined as in (49), K >0 is a constant

design matrix, and e = [e, e,]" is the robot velocity tracking error. Substituting (58) into the

robot dynamics (57) reveals the closed loop robot velocity tracking error dynamics to be
e=—Ke.

It can be shown that the control input (58) guarantees the velocity tracking error to converge

to zero exponentially. For the comparison, K was selected as K = diag{10,10} .
For the comparisons, the virtual reference cart for the formation leader traveled a

constant translational velocity, v, = 1m /s while the reference angular velocity was selected
as w, =0.1sin(0.25¢). The formation trajectories when the control input (58) is applied for

the leader and its followers is shown in Fig. 20 where the robots start in the bottom left
corner of the figure and travel towards the top right corner. Similar robot trajectories were
observed when the learned SOLA control law was applied.

Next, the cost associated with the non-optimal feedback control input of (58) and the
cost associated with the learned SOLA control input was calculated and compared for the
leader and its followers. Figure 21 shows the resulting costs for the formation leader while
Fig. 22 shows the costs for follower 1. In each case, the costs associated with the SOLA

control inputs which were learned online were less than the costs associated with the non-
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optimal control input (58) illustrating the effectiveness of the online optimal controller.

Similar trends were observed for the other followers although they are not shown.
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VI. CONCLUSIONS

In this work, a single OLA was utilized to design a single network adaptive critic to
solve both the Hamilton Jacobi-Bellman and Hamilton Jacobi-Isaacs equations in real time
for the optimal control of general affine nonlinear continuous-time systems. In the presence
of known dynamics, the optimal regulation and tracking control problems were undertaken.
The SOLA based design was utilized to learn the cost function and nearly optimal feedback
control signal for the HIB optimal control problem and the cost function, nearly optimal
feedback control signal, and optimal disturbance of the HJI optimal control problem. All
OLA parameters were tuned online using novel update laws, and Lyapunov techniques were
used to demonstrate the stability of the proposed optimal control schemes. Simulation results

were also provided to verify the theoretical conjectures.
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SECTION

2. CONCLUSIONS AND FUTURE WORK

In this dissertation, the control of nonholonomic mobile robot formations and
UAYV formations was undertaken while addressing many of the common assumptions and
simplifications of existing approaches. The dynamics of the individual agents and the
formation were explicitly considered and compensated using NN’s and online weight
tuning. The tracking performance of the overall formation was guaranteed by
compensating the formation dynamics either explicitly through communication or
implicitly via decentralized control schemes. For the quadrotor UAV, the derived
formation control laws were independent of a specific operating point and without the use
of small angle approximations. In addition, the infinite horizon HJB equation was solved
online and forward-in-time, for both discrete-time and continuous-time systems, while
the infinite horizon HJI equation was solved online for continuous time systems to
achieve near optimal control.

In the first paper, the asymptotically stable NN tracking controller for leader-
follower based formation control considers the dynamics of the leader and the followers
using the backstepping technique with RISE feedback. The benefit of the feedback
control scheme is that asymptotic stability of the formation is guaranteed even when the
dynamics of the followers and their leader are unknown since the NN learns them all
online, and the RISE ensures robustness in the presence of unmodeled dynamics and
disturbances provided they are upper bounded by known functions. The numerical
simulations also illustrated the strength of asymptotic stability over a uniformly ultimately

bounded (UUB) controller of our previous work. Although superior tracking over



323

existing controllers was demonstrated, the RISE feedback technique is observed to have
several drawbacks. First, the RISE feedback scheme requires that the upper bounds on
the disturbances and unmodeled dynamics to be well known. In addition, the RISE
feedback relies on the integral of a high gain term, which was observed to have negative
effects on the transient response of the formation. In practical applications of the
NN/RISE control scheme, better overall performance may be observed by initially
applying the control law with the RISE feedback portion of the controller disabled. The
NN controller would drive the tracking errors into the compact set guaranteed by the
UUB stability result, and then the RISE feedback portion of the control input could be
enabled to regain the asymptotic steady-state tracking performance observed in paper 1.

A NN output feedback tracking controller for leader-follower based formation
control was presented in the second paper. Each robot had many challenging
uncertainties to overcome including limited communication, immeasurable velocity
vectors, unknown dynamics, and bounded disturbances. These challenges were
overcome by using a novel NN observer and controller and enabled the leader-follower
formation control objective to be completed without the need of the separation principle.
The impact of the leader’s states on the control laws of the followers was also illustrated
in the simulation results since the formation tracking errors were not observed to
converge until convergence of the followers’ observer estimates of their leaders’ velocity
vectors was achieved.

In addition, the first two papers consider the stability of the formation in the
presence of obstacles. The obstacle avoidance control laws were shown to be effective in
both a static and dynamic obstacle environment. Further, by treating robots in the

formation as obstacles, collisions within the formation were guaranteed not to occur. The
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proposed obstacle avoidance scheme is observed to have potential limitations. Since the
scheme only considers the closest obstruction, it is possible that in a highly cluttered
environment there may be more than one obstacle within the robot's safety zone; one of
which could potentially be another robot in the formation. In this case, the follower may
exhibit an oscillatory behavior between multiple obstructions located within the safety
zone which is not ideal; however, the goal of the obstacle avoidance scheme is still
achieved in that collisions are avoided.

The control of a quadrotor UAV was considered in paper three where a NN output
feedback control law was developed and the separation principle was relaxed. Despite
being underactuated, adaptive backstepping techniques were utilized to control all six
DOF in the presence of unmodeled dynamics and bounded disturbances. The dynamics
of the UAV were not required to be known since the neural networks learned the
complete UAV dynamics online. Numerical simulations confirmed that the proposed
nonlinear NN controller outperformed a conventional linear controller which used state-
feedback. In the comparison, large control gains were required by the linear controller to
achieve the same tracking performance observed when the proposed NN output feedback
controller was applied. Further, the use of large control gains in the linear controller led
to significant noise amplification while the proposed controller did not rely on noisy
velocity measurements by using output feedback. A drawback of the proposed scheme is
that three NN’s were required for implementation.

Subsequently, the fourth paper proposed a framework for quadrotor UAV leader-
follower formation control by converting the formation control problem into a tracking
control problem. The state feedback scheme did not require explicit knowledge of the

UAV or formation dynamics since NN’s learned the complete UAV and formation
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dynamics online while in the presence of bounded disturbances. The importance of
considering the formation dynamics was illustrated in the simulation results by ignoring
the formation dynamics in the followers’ controller design, and in the experiment, the
formation was observed to exhibit poor tracking when the dynamics were ignored. In
contrast, acceptable steady-state tracking was observed when the proposed controller was
applied. A potential draw back of the proposed NN scheme is the transient response
observed in the simulations. Although brief, several large spikes were observed in the
follower UAV velocity tracking error signals which is undesirable.

In paper five, the Hamilton Jacobi-Bellman equation was solved in real time for
the optimal regulation and tracking control of affine nonlinear discrete-time systems
using online approximators. Knowledge of the system’s internal dynamics was not
required, and novel nearly optimal control laws were developed using OLA’s to address
the regulation problem and the tracking control problems. All OLA’s were tuned online
in contrast to offline methods which exist in the literature, and convergence to the
optimal control signal was rigorously demonstrated while explicitly considering OLA
reconstruction errors which is also not typical of most current approaches. Although the
simulation results illustrated the effectiveness of the proposed approach, a drawback of
the scheme is the need of an initial stabilizing control and the fact that the system states
must to be persistently exiting (PE) while the OLA’s learn the optimal HJB function and
optimal control signal. That is, we cannot simply apply the proposed scheme to a
nonlinear system and expect the optimal control to be learned by the time the system
states have reached zero. To satisfy the PE condition, system noise was added to the

nonlinear system dynamics. Thus, the proposed optimal control scheme is still being
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trained albeit in an online fashion and without full knowledge of the system dynamics.
Offline training traditionally requires full knowledge of the system dynamics.

Finally, paper six addressed the optimal control of affine nonlinear systems in
continuous time. In contrast to paper five, the approach solved the optimal control
problem online using a single OLA (SOLA) in continuous-time, and the SOLA was
shown to solve both the HIB and HJI equations in real time in the presence of known
dynamics. The SOLA-based design was utilized to solve the optimal regulation and
tracking control problems, and all OLA parameters were tuned online using novel update
laws.  Simulation results illustrated that by using a secondary tuning law, an initial
stabilizing control policy was not required to ensure the HIB or HJI functions were
successfully learned. In fact, it was shown that by removing the secondary tuning law,
system stability was lost and the OLA’s failed to learn the HIB and HJI cost functions. A
drawback of the proposed SOLA-design is the need for full knowledge of the system
dynamics and the need for the PE condition on the system states. In addition, the choice
of the probing noise signal added to the nonlinear system dynamics to satisfy the PE
condition was found to have an impact on the learning ability of the SOLA-based optimal
control scheme, and the best overall performance of the SOLA-based adaptive approach
was observed by satisfying the PE condition using square waves.

Future applications of the RISE feedback scheme should focus on extending the
method to include output feedback control. In addition, robust adaptive control methods
could be used to relax the requirement on known upper bounds on the uncertainties and
disturbances. Also, a more comprehensive obstacle avoidance scheme for leader-
follower formation control could be considered in future work. This work would focus

on alleviating the observed limitations of the current obstacle avoidance scheme so that
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multiple objects and more complex environments can be navigated while completing the
leader-follower formation control objective.

In the context of optimal control, future work should include relaxing the
requirement of a known input coefficient matrix for the discrete-time optimal control
development. In contrast, efforts in the continuous-time optimal control framework
should include relaxing the requirement of known internal dynamics and subsequently
the requirement of a known input coefficient matrix. In addition, the design of the
feedforward term in the optimal tracker could be redesigned to include optimality for
steady state and transient performance tracking. Finally, the optimal control using
nonlinear approximators should be extended to other classes of nonlinear systems such as

strict feedback and others.
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