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Abstract

The rapid demographic changes worldwide are expected to increase the overall aging

population significantly in the coming decades. These alterations in population indi-

cate that more older people would require government support in the form of medical

care, nursing facilities, social services, and other relief systems. This can further lead

to a disproportionate transfer of money from the working group of the taxpayers to

the elderly. At present, a shortage in labor supply owing to an aging population in

developed nations, such as Japan and Italy, is hampering industrial efficiency, pro-

ductivity, and economic growth. These socio-economic problems can be avoided by

maintaining the necessary size of the labor force through intelligent robots.

In recent years, several organizations have adopted robots to replace humans in dan-

gerous jobs, automate industrial processes, and overcome labor shortages. Particu-

larly, mobile robots are used for infrastructure health monitoring, disaster response,

tour guiding purposes, planetary exploration, and numerous other situations. As

modern societies are designed and built for humans, humanoid robots (robots with a

human-like shape) are considered to better assist humans than other types of robots.

For instance, humanoid robots can use the same tools that are designed for humans,

climb stairs, and assist people in nursing facilities and hospitals similar to humans.

However, humanoid robots are bulky and slow owing to their multiple joints, high

energy consumption, and highly complex motion control system.

Recently, wheel-legged robots have been increasingly researched in the robotics

community because of their humanoid-shape factor, agility, and simple motion con-

trol system in comparison with humanoid robots. Wheel-legged robots have the



advantages of humanoid robots and are faster, energy-efficient, and simpler in de-

sign than humanoid robots. However, they are vulnerable to falls owing to the

self-balancing, underactuation, and nonlinear coupling of the system states. To ad-

dress the challenges of instability and robustness, this study presents the develop-

ment of several balance controllers for wheel-legged robots that are underactuated

and non-holonomic in nature. The objective is to begin with widely used linear mo-

tion controllers, such as a linear quadratic regulator (LQR) based on the linearized

model of the robot and gradually augment this baseline controller with a nonlinear

model-based or robust adaptive controller. This study performed different tests in the

Gazebo simulator and on an actual robot to demonstrate the validity and effectiveness

of these controllers.

This dissertation initially focuses on the development of a mathematical model of a

wheel-legged robot (named Igor) using the Euler–Lagrange formulation. For simpli-

fication, the robot is assumed to be a two-wheeled inverted pendulum, wherein the

center of mass (CoM) height can be changed by simultaneously varying the knee and

hip joint angles. Based on this dynamic model, I developed an LQR controller to

balance, steer, and move the robot in the horizontal plane. Particularly, I performed

motion stability analyses of the wheel-legged robot under different conditions, such

as system modeling errors, sensor noise, and external disturbances.

Subsequently, I developed a model-based nonlinear computed torque controller for

the wheel-legged robot. However, uncertainties in the modeling parameters, such as

friction coefficients, inertia matrices, and position of CoM, generally cause deteri-

orating effects on the performance of model-based motion controllers. To alleviate

such degradation in the robot’s performance, this study proposes combining the feed-

back LQR with the feedforward computed torque controller. Contrary to the simula-

tion results, the actual experiments on the robot indicated a steady-state error in the

translational position tracking of the robot regardless of the motion controller, which

included LQR, computed torque, and the combination of LQR and computed torque.

To further improve the robustness of the robot’s motion controller with respect to un-



known external disturbances and parameter uncertainties, the LQR controller of the

underactuated wheel-legged robot was augmented with a state-of-the-art L1 adaptive

controller. Various simulations and experiments that include external disturbances,

uncertainties in system parameters, and changes in ground friction demonstrate the

superior performance of the proposed augmented LQR adaptive controller compared

to the baseline LQR.

Most previous studies on wheel-legged robots focused on lower body stabilization.

Therefore, motivated by the human ability to maintain balance in laborious activities

by actively articulating the arm, this study explored and analyzed the active arm con-

trol along with the wheel-legged system to assist in balance recovery during external

pushes and disturbances. The centroidal moment pivot (CMP) is used as a key metric

to quantitatively evaluate the effect of the active arm usage on the balance stability

improvement of the robot. This concept forms the basis for a wheel-legged biped

robot with an active arm for dual purposes; one for carrying objects and the other for

increasing balance stability.
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Chapter 1

Introduction

1.1 Background

With technological advances in medical care, improved social welfare services from

governments, and declining birthrates, particularly in developed countries, the aging pop-

ulation is increasing worldwide. This demographic change can cause a slump in produc-

tivity and economic growth, thus impacting society. According to the prediction of the

United Nations, the number of elderly people older than 60 years of age is currently more

than 1 billion worldwide, which is expected to double by 2050 [6]. The situation is ex-

tremely severe in Japan, wherein the official data from the Ministry of Internal Affairs

estimated that the number of people aged 65 or more reached a record of 29.1% of the

country’s total population in 2021 [7]. Consequently, the global shortage of productive

age groups is considered a serious socio-economic challenge of the 21st century.

A 2018 United Nations’ report on the ratio of the aged population to the working

population states that Japan and Italy have the highest percentage of 46.2% and 37.8%,

respectively, among the G20 countries (Figure 1.1) [1]. Another negative impact of the

aging population is that a considerable portion of the tax money obtained from a shrink-

ing working generation is utilized for elderly care programs because of the universal

social security policies. In Japan, the proportion of social security benefits for the el-

1



1.1. BACKGROUND

Figure 1.1 Ratio of aged population to working population in year 2015 [1].

derly is approximately two-thirds of the total social security benefits [8]. This trend of

transferring a large sum of money from the working population to the elderly care may

challenge the concept of joint social/inter-generational responsibility and undermine the

socio-economic stability. Therefore, both developed and developing nations need to rec-

ognize and determine the consequences of the aging population. Furthermore, new poli-

cies should be devised to alleviate its harmful impacts on the economy and society.

Factory automation is one method that can overcome labor shortages; however, robots

can be more useful in increasing work efficiency, helping humans in physically tough

jobs, assisting the senior and disabled population, and interacting with people socially. In

the last century, robotics significantly contributed to the improved efficiency of factories

through industrial automation. Although industrial robots have been commonplace for

decades, mobile robots are not yet widely accepted in modern society despite their poten-

tial benefits. Nevertheless, several companies, such as Amazon robotics (Figure 1.2a)[9]

and JD logistics in China [10], have recently begun using autonomous mobile robots for

warehouse automation.

The widespread use of the Internet has increased online shopping and food ordering,

2
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(a) Robots in an Amazon warehouse [9]. (b) Amazon delivery drone [11].

(c) A Starship Technologies food delivery robot [12].

Figure 1.2 Autonomous mobile robots.

which involves logistic transportations. The last-mile delivery in logistic transportations

is the final step in which the package arrives at the customer’s door [13]. This is the most

time-consuming and expensive part of the shipping process. Amazon has announced the

use of delivery drones in the coming years for faster and efficient last-mile deliveries

(Figure 1.2b) [11]. Several companies are testing autonomous ground vehicles (AGVs) to

solve the efficiency problem of last-mile deliveries. Recently, Starship Technologies in the

United States developed and tested a six-wheel robot for the last-mile delivery of groceries

and food (Figure 1.2c) [12]. Similarly, a Japanese company, ZMP Inc., is developing an

autonomous delivery robot called DeliRo that can carry a maximum load capacity of 50kg

[14]. However, owing to local laws, privacy, safety, and reliability concerns, these robots

have not been widely used.

3
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Figure 1.3 ASIMO humanoid robot by Honda Motor.

In recent decades, commercial companies have introduced multi-purpose consumer

robots, such as vacuum cleaning robots (Roomba from iRobot [15]), service robots (Pep-

per from SoftBank Robotics [16]), and pet robots (AIBO from Sony Corporation [17]).

Additionally, humanoid robots have fascinated both researchers and the general public for

a long time. Recently, the bipedal humanoid robot named Atlas (Boston Dynamics) [18]

has acquired the ability to run and perform incredible parkours. These feats require signif-

icant computational power and highly customized hardware, such as hydraulic actuators.

Despite decades of research, most bipedal humanoid robots remain bulky and slow, such

as ASIMO by Honda (Figure 1.3) [19]. Alternatively, human-like mobile robots, which

are referred to as wheel-legged robots with two independent driving wheels rather than

feet, are increasingly investigated. Despite simple dynamics based on linear inverted pen-

dulum (LIP) models, these robots are more agile and energy-efficient than the humanoid

robots owing to the presence of wheels.

4
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1.2 Challenges of Controlling Wheel-legged Robots

Underactuated robotic systems comprise fewer control inputs than degrees of freedom

(DoFs). In other words, these systems include certain generalized coordinates that are not

directly actuated [20]. However, these unactuated coordinates are indirectly controlled by

actuated generalized coordinates owing to dynamic coupling. Wheel-legged robots are

underactuated robotic systems controlled by only two wheels and three DoFs, namely the

translational position, pitch angle, and yaw angle. In this case, the translational position

and pitch angle are dynamically coupled; this coupling is nonlinear. The resulting dy-

namic constraints generated by the nonlinear coupling, also referred to as non-holonomic

constraints, are non-integrable. Owing to these underactuated DoFs and non-holonomic

constraints of wheel-legged robots, the implementation of conventional control methods

is difficult.

It is well established that higher maneuverability in underactuated non-holonomic

wheel-legged robots is obtained at the expense of instability and complex control systems.

Fall prevention is vital for self-balancing robots because falls can damage these expen-

sive systems and pose danger to nearby humans or other agents. Therefore, ensuring that

the robot follows the desired reference commands despite the influence of external dis-

turbances, parametric uncertainties, and modeling errors is a critical challenge for control

designers of such systems. For instance, the viscosity coefficients of mechanical actuators

change over time owing to the varying abrasion and friction between the wheels and floor

based on the terrain. Another difficulty occurs when these self-balancing robots need to

carry a payload from one point to another in real-world applications. As the mass and

inertia of these payloads are often unknown, the robot must adapt and adjust its balance

accordingly.

Typically, wheel-legged robots are intended to be deployed in multiple environments,

such as search and rescue, smart warehouses, and homes to assist humans. Therefore, it

is difficult to model human–robot interactions in various scenarios a priori, and it requires

a robust control framework for safety-critical real-time systems.

5
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1.3 Literature Review

A wheeled inverted pendulum (WIP) system is basically a robot with a base of two

independently driving wheels and a body on top of it that acts as an inverted pendulum

(see Figure 1.4). These WIP robots can be categorized into two major classes: with

legs and without legs. A segway (Figure 1.5c) is an excellent commercial product of

the latter type, which is commonly used to transport humans in the bustling city centers

of the modern world. However, WIP robots with legs, also referred to here as wheel-

legged robots, are relatively new. In 2017, Boston Dynamics, a robotics company in

Massachusetts, USA, introduced its first wheel-legged robot called Handle for warehouse

pick and place operations [21]. However, the control algorithms used by the company are

largely unknown to the research community.

Early examples of pitch balance and trajectory control of a WIP robot were introduced

by Yuta et al. [22][23]. Tani et al. used WIP robots in the cooperative transportation of

objects while satisfying three main requirements: attitude stability of the robot against ex-

ternal disturbances, applying an appropriate force on the transported object, and following

the given path [24].

Rufer et al. developed a prototype of a two-wheeled vehicle at EPFL, Lausanne and

named it JOE (Figure 1.4) [2]. They implemented two independent state-space model-

based controllers to balance the robot and control its orientation. The control interface

of the vehicle consists of power-on and emergency switches. The robot is controlled by

a human pilot who sends a desired translational velocity and turning rate through a radio

control unit. Furthermore, the control unit is able to safely turn off the vehicle if the pitch

angle becomes more than 100 deg/s.

Parent et al. proposed an intelligent two-wheeled vehicle that could provide on-

demand urban taxi services [25]. The control system is designed to perceive the human

passenger motion as an external disturbance to be rejected, unlike the motion control sys-

tem of a Segway that generates a longitudinal acceleration when the rider leans forward,

6
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Figure 1.4 JOE robot from EPFL [2].

thus preventing the passenger from falling. The equations of motion for the robot were

derived using the Lagrangian method, model parameters such as friction coefficient of the

robot wheels were identified, and lastly, an LQR was designed to control the vehicle.

In another study, Agrawal et al. investigated the partial feedback linearization and

controllability properties of a WIP robot [26][27]. The study further proved that the three

degrees of freedom (translational position, pitch angle, and yaw) nonlinear WIP robot

system is strongly accessible (see [28] for details). After the partial feedback linearization,

a two level velocity controller is designed to track a reference pitch angle and heading

trajectory. However, the proposed control scheme is only validated in simulations and not

on a real robot.

A team from Carnegie Mellon University developed a unicycle Ballbot robot capable

of balancing itself on a single spherical ball (Figure 1.5a) [29]. One major advantage of

such a robot over two-wheel platforms is that it does not need to turn before moving in a

particular direction. To balance and control the robot an LQR controller is designed and

7
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implemented. Nevertheless, this simple controller proved far from robust in the presence

of disturbances likely due to the over simplification of the friction model.

A group of researchers at Fukushima University, Japan developed the first human

assistant wheel-legged biped robot called I-PENTAR and applied a linear quadratic regu-

lator (LQR) for its steering and pitch control [30] [31]. Furthermore, robot successfully

performed sitting and standing motions while keeping its balance. In a later study, the

authors developed an extended state observer to estimate and mitigate the external dis-

turbances on the robot during task execution such as a standing up motion [32]. In this

study, the robot has only two degrees of freedom (pitch control and translational motion)

instead of three for the sake of simplicity.

Gloss et al. added a humanoid torso on top of a WIP for mobile manipulation (Figure

1.5b)[33]. The main objective of the robot is to manipulate objects and maneuver in

indoor environments. The novel design enabled the robot to autonomously transform

from a statically stable robot where its center of mass is within the support polygon of

the base to a dynamically stable one standing on its two wheels. The robot is capable of

lifting a maximum mass of 120 kg while balancing itself dynamically on two wheels. The

motion control framework consists of different modules to control the subsystems of the

robot. For example, balance and locomotion are achieved by a cascade of PID controllers

with minimal dynamical modeling of the system. On the other hand, the torso and arms

are controlled directly by controlling the actuator torques.

1.3.1 Sliding-mode Control of WIP

The application of nonlinear sliding-mode controllers to WIP robots has also been

extensively studied and reported by the research community. For example, Sekiyama et

al. implemented two sliding-mode controllers with a novel sliding surface to stabilize a

WIP and remove steady-state tracking errors resulting from parameter uncertainties [34].

Lee et al. applied a novel integral sliding-mode controller (ISMC) on a two-wheeled

inverted pendulum robot that successfully rejected the matched uncertainties and balanced

8
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(a) Ballbot robot [29]. (b) Golem Krang robot [33]. (c) A modern segway.

Figure 1.5 Different wheeled inverted pendulum systems.

itself on an inclined plane [35]. In the proposed ISMC, an integral-type sliding surface

is defined and the controller is based on Lyapunov theory. ISMC has a nominal linear

controller part, and a switching term that rejects matched uncertainties perfectly. Finally,

the proposed controller is compared with existing control methods such as fuzzy traveling

and position controller (FTPC) and conventional sliding-mode controller.

In another study, Liu et al. identified the friction parameters of the drive mechanism in

a WIP robot and implemented sliding-mode control to manage the balancing and yaw mo-

tions [36]. Before dynamical modeling of the robot, the friction parameters of wheel joints

are identified using the Stribeck friction and the Coulomb plus viscous friction models.

It is reported that both friction models give similar results, and finally, the Coulomb plus

viscous friction model is chosen for real-time experiments on a physical robot. Despite

the nonlinear coupling between the two states, two sliding-mode controllers are designed

to control the pitch and yaw angle of the robot independently.

1.3.2 Whole-body Control of WIP

Recently, whole-body control of WIP robots with a humanoid torso and manipulator

has also become a subject of interest for the research community. These types of robots

9
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(a) A WIP robot with torso [38]. (b) Alter-Ego WIP humanoid robot [39].

Figure 1.6 WIP robots with torso.

perform multiple tasks such as dynamic balancing, end-effector manipulation, and main-

taining a specific pose in three-dimensional space simultaneously. Furthermore, joint

angle and torque limits set constraints on the control system. The whole-body control

framework enables these multiple tasks to be performed simultaneously while respecting

the constraints of the physical system.

Christensen et al. introduced the whole-body control of a WIP humanoid with a ma-

nipulator [37]. They performed operational space control of the manipulator by isolating

its dynamics from the wheelbase. This enabled the authors to treat the planar horizontal

motion of the robot as any other task by the task prioritizing scheme used for the robot

manipulator. The proposed whole-body controller is then validated on a 5 DoF planar

robot in a simulation environment.

Theodorou et al. further worked on a hierarchical optimization for whole-body control

of the WIP robot and successfully tested it in simulations [38]. The proposed scheme

is based on a low-level controller for the robot’s joints and a high-level controller that

produces the center of mass trajectory for the low-level controller. Manipulator dynamics

of the robot (shown in Figure 1.6a) have been isolated from the wheel-base dynamics as

suggested in [37]. Finally, a quadratic programming (QP) optimization algorithm is used
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Figure 1.7 Humanoid robot on a Segway with views from the robot’s cameras on right bottom [3].

for the low-level controller, while the high-level controller used model-predictive control

(MPC) and differential dynamic programming (DDP) for the trajectory optimization of

robot’s center of mass.

Similarly, Yueyang et al. proposed a whole-body control of a WIP robot based on

a distributed dynamic model that consisted of the torso model, wheel-leg model, and

contact force constraint between the wheels and ground in simulation [40]. However, this

robot did not include upper limb arm usage. The proposed control scheme included four

sub-modules namely, Torso controller, Torque solver, Slippage predictor, and an online

trajectory generator. It is believed that with the distributed whole-body control method, it

would be easy to add and control arm manipulators or other limbs on the robot in future.

In another engaging simulation study, Tsagarakis et al. explored the question of

whether a humanoid robot can ride a Segway type WIP robot [3]. To accomplish this

difficult task, they applied quadratic optimization to generate whole-body joint torques

for the humanoid robot to ride a WIP platform. On the other hand, to control the WIP

base, its dynamics are decoupled in two independent subsystems; translational and pitch

motion in the sagittal plane and yaw motion of the base in the transverse plane. Lastly, two

11
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Figure 1.8 Ascento wheel-legged robot from ETH [4].

independent state-feedback controllers are designed to achieve self-balancing and steer-

ing of the base. Simulation results verified the balancing of a 29 DoF humanoid robot on

top of a WIP base, as seen in Figure 1.7.

More recently, Siegwart et al. from ETH Zurich developed a WIP jumping robot

(see Figure 1.8) that used a whole-body controller augmented with an LQR for its pitch

balance [41]. The mechanical design of the Ascento robot results in open kinematic loops,

and therefore its dynamical modeling is a non-trivial task. The authors derived the closed-

form rigid-body dynamics of the wheeled bipedal robot by considering the kinematics

loop open and then close it through appropriate dynamical constraints. Moreover, a rolling

constraint was also added using rotation matrices to increase robot’s robustness against

curves and lateral disturbances. The roll angle reference is dynamically computed during

curve driving in such a way that the zero moment point (ZMP) of the robot stays in the

center of the line of support (LoS).

1.3.3 Nonlinear Control of WIP

Whole-body control of WIP robots uses online optimization tools to satisfy various

constraints of the system, however, these tools are computationally intensive. To counter

this problem, researchers have explored other nonlinear control methods that are compu-
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Figure 1.9 A wheel-legged robot from Tencent [5].

tationally simple yet more effective than the nominal linear feedback controllers such as

LQR.

Caporale et al. demonstrated strong inertial coupling between the wheelbase and

pitch dynamics of a humanoid WIP robot (shown in Figure 1.6b) and utilized a nonlin-

ear computed-torque controller in quasi-velocities for stabilization [39]. Different distur-

bances such as static, dynamic, and opening/closing of a drawer were applied on the robot

body without using any disturbance observer. The simulation results showed an improved

performance of the proposed controller over a conventional LQR.

Kwon et al. presented a nonlinear optimal control design based on the state-dependent

Riccati equation (SDRE) [42]. The proposed control framework is a nonlinear form of

the LQR and demonstrated better performance than a conventional LQR in controlling

the forward position, pitch, and yaw of a two-wheeled inverted pendulum mobile robot.

The state-dependent coefficient (SDC) matrix is used as a design parameter that decides

the performance, optimality, and stability of the closed-loop system.

Similarly in a more recent study, Ming et al. proposed a new SDRE controller design

scheme for WIP robots [43]. The study analyzed the SDRE method from a computational

perspective, improving the online computational performance by avoiding too many solv-

ability inspections of the algebraic Riccati equations.
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(a) Free-body diagram of J4.α [45]. (b) uBot-7 [46].

Figure 1.10 WIP robots with arm manipulators.

1.3.4 Machine Learning Methods

To overcome the weaknesses of model-based control methods, machine learning tech-

niques are recently getting attention for balancing and control of wheel-legged robots.

Model learning of a WIP robot where a simulation model is learned first and then the

difference model to reduce the sim-to-real gap has been reported recently [44]. The robot

has three states, pitch angle, pitch rate, and linear acceleration, whereas the control input

is the wheel torques. To reduce the computational cost, a sparse Gaussian process (GP)

method is used to learn the robot difference model as it requires less data than the typical

GP method. After learning the robot model, an optimal control policy is obtained using a

reinforcement learning algorithm.

In a very recent study, Jiang et al. proposed a novel data-driven value iteration algo-

rithm that generates a balancing controller for a wheel-legged robot with a small amount

of data (Figure 1.9) [5]. The given method solves the optimal balance control problem of

WIP robots in the absence of accurate modeling using reinforcement learning and adap-

tive dynamic programming. Experiments on a real WIP robot validated the performance

of the data-driven optimal adaptive controller that can compensate for the parameter vari-
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Motion Control Schemes for WIP Robots

Nonlinear Control
Schemes

Sliding-mode
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[42].
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7. Gloss et al.
[33].

Figure 1.11 An overview of various control schemes for WIP Robots.

ations in real-time.

Chao et al. developed a self-balancing wheeled robot called J4.α that uses a deep

convolutional neural network for socially compliant navigation in indoor environments

(Figure 1.10a) [45]. The proposed navigation system has two modules; a topological

localization module (TLM) to recognize the nodal locations along the trajectory and an

auto-steering module (ASM) that determines specific tasks to execute at or between nodes.

The robot is also equipped with a manipulator and a dynamic mass on top of it. During

a manipulation task, the dynamic mass is employed to keep the robot in a steady place.

A combination of different controllers including Q-learning is used in an 11 DoF self-

stabilizing wheeled robot by Grupen et al. [47]. The robot can achieve four basic postures;

a prone posture where the robot lies flat on the ground, a push-up posture where it changes
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its arms configuration such that its both hands and wheels touch the ground, a 3-point

posture where it removes one hand from the ground in order to transit from the push-up

posture to the self-stabilizing standing posture, and finally a 2-point balancing where the

robot is balanced on its two wheels. An LQR controller is used to stabilize the robot in

standing posture, while Q-learning is used to perform knuckle-walking mobility mode.

The group further improved the manipulation and mobility of the robot by adding three

more degrees of freedom and using series elastic actuators (SEAs) (Figure 1.10b)[46].

1.4 Motivation

As discussed earlier, robots have traditionally been used to perform repetitive, dan-

gerous, and unsanitary jobs. Although robots successfully perform a few of these jobs,

predominantly in factories and warehouses, mobile robots are not yet broadly employed

in the real world despite decades of research and development. This can be primarily at-

tributed to the lack of reliability, robustness, and safety of mobile robots. The robustness

problem generates from the presence of model uncertainties and external disturbances.

For instance, unlike industrial robots, mobile robots must operate and interact with dif-

ferent environments; consequently, their control systems are vulnerable to unavoidable

uncertainties and external forces.

Typical self-balancing wheel-legged robots provide higher maneuverability, faster

speed, and a smaller footprint than bipedal humanoid robots. These unique characteris-

tics make them appealing for indoor environments, such as hotel lobbies, banks, hospitals,

restaurants, and warehouses. However, several ongoing research challenges exist in terms

of system modeling, stability analysis, path planning, and motion control owing to their

self-balancing nature and non-holonomic constraints of the differential drive. It is for

these reasons that wheel-legged systems have attracted significant interest from academia

and commercial sectors in recent years. A common commercial application of wheeled

self-balancing robots is the modern Segway, which helps commuters avoid rush-hour city

congestion.

16



CHAPTER 1. INTRODUCTION

Several challenges, such as the aging population driving labor shortages worldwide

and the ever-increasing natural disasters caused by the rapid climate change, can be over-

come by mobile robots. As explained earlier, coupling the immense potential of wheel-

legged robots for indoor and outdoor environment applications, this thesis primarily ex-

plores various balance control approaches to ensure that the safety-critical underactuated

wheel-legged robots are safer and robust in real-world scenarios.

1.5 Research Objectives

The objectives of this research are divided into general and specific objectives, as

follows.

1.5.1 General Objectives

• To review and summarize the state of the art of wheeled inverted pendulum (WIP)

robots

• To perform mathematical modeling and synthesize a robust motion controller for a

three-DoF underactuated wheel-legged robot

• To perform stability and robustness analyses of the robot considering modeling

uncertainty, sensor noise, and external disturbances

1.5.2 Specific Objectives

Chapter 2 : First Objective

We begin by laying the foundation for the development of a simulation model of

the robot and further analyze its behavior under sensor noise, model uncertainties, and

external disturbances. The primary objective is to evaluate the feasibility of a wheel-

legged robot under different disturbances that can potentially occur when using the robot
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around humans. Additionally, the limitations of the linear assumption can be compensated

by combining the model-based nonlinear computed torque controller with LQR.

Chapter 3 : Second Objective

The primary objective of this chapter is to explore the possibilities of implementing

a state-of-the-art adaptive controller for wheel-legged robots. It is clear that model-based

linear and nonlinear controllers along with model-free machine learning approaches have

been implemented in WIP robots; however, to the best of the author’s knowledge, no

adaptive controller has been designed for a bipedal wheel-legged robot thus far. There-

fore, an L1 adaptive controller is augmented with a full state-feedback LQR owing to its

fast adaptation ability and robustness against modeling uncertainties and external distur-

bances.

Chapter 4 : Third Objective

Inspired by humans and other animals, such as cats, who actively use limbs to main-

tain their balance, we use the arm manipulator of the self-balancing robot to enhance its

stability. The purpose of this study is to develop a novel control strategy that elevates the

balance recovery ability of the conventional lower-body controller of wheel-legged robots

by actively using an upper-body arm manipulator. Furthermore, we adopt centroidal mo-

ment pivot (CMP), which is a key criterion for quantifying the stability of legged hu-

manoid robots, to quantitatively analyze the effectiveness of the proposed control method.

1.6 Organization of the thesis

This thesis is structured as follows,

Chapter 1: Introduction

Chapter 1 introduces the study. It summarizes the shortage in labor supply, economic

stagnation, and a possible reduction in productivity worldwide caused by the aging pop-
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ulation. Furthermore, we discuss the potential applications of wheel-legged biped robots

and the need for their robust control. A detailed literature review is also presented to

provide a general idea of the state-of-the-art control strategies for WIP robots.

Chapter 2: Towards Robust Wheel-Legged Biped Robot System: Combining

Feedforward and Feedback Control

Chapter 2 begins by deriving the mathematical model of a three-DoF wheel-legged

robot and designing a full state-feedback controller for the system. Subsequently, an op-

timal LQR and a nonlinear computed torque method are combined in a newly proposed

control framework for stabilizing the wheel-legged biped robot. All these control strate-

gies are implemented in simulations and in an actual robot to demonstrate the proposed

method improving the stability of the robot.

Chapter 3: An L1 Adaptive augmented LQR Control for Wheel-Legged Robots:

Design and Experiments

This chapter provides some background on adaptive controllers and proposes an L1

adaptive augmented control for the wheel-legged robot. An L1 adaptive controller is

designed for the pitch control of the self-balancing wheel-legged robot, and the proposed

control framework is validated via simulations and by applying it to an actual robot. The

combination of the L1 adaptive controller with LQR demonstrates the robot overcoming

modeling uncertainties, such as errors in parameter values and external disturbances.

Chapter 4: Balance Stability Augmentation for Wheel-legged Biped Robot through

Arm Acceleration Control

This chapter explains the design, mathematical modeling, and control strategy for the

arm manipulator of the wheel-legged robot. The model-based resolved acceleration con-

trol method is used to control the position, velocity, and acceleration of the manipulator’s

end-effector in the Cartesian space. Additionally, a finite-state machine defines the be-

havior of the arm’s end-effector based on the linear acceleration and rotational velocity of

19



1.6. ORGANIZATION OF THE THESIS

the robot. The simulation results indicate that the active arm control strategy effectively

increases the robustness of the robot against external forces.

Chapter 5: Conclusion and Future Work

Finally, Chapter 5 concludes the thesis with a summary of the results obtained in this

study and further addresses the possible future research directions for wheel-legged biped

robots.

Although an effort has been made to maintain consistent mathematical notations through-

out the thesis, notation conventions should be considered chapter-specific.
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Chapter 2

Towards Robust Wheel-Legged Biped

Robot System: Combining Feedforward

and Feedback Control

2.1 Outline

In this chapter, we start by dynamic modeling of the wheel-legged robot which in-

corporates non-holonomic constraints due to the differential drive of the robot. After

linearizing the equations of motion, we synthesize a linear state feedback controller and

also an optimal linear quadratic regulator (LQR) to control the three degrees of freedom

(DoF) of the robot. The performance of the two controllers under sensor noise and ex-

ternal disturbances is compared. Later, we present the design and implementation of a

nonlinear feedforward controller together with feedback LQR to control the robot on a

flat surface. Furthermore, an Extended Kalman Filter (EKF) is implemented to reduce

the sensor noise, fuse the data from various sensors, and estimate the system states of the

real robot. We perform motion stability analyses of the wheel-legged robot under differ-

ent conditions such as system modeling errors, sensor noise, and external disturbances.

Results validate that the linear quadratic regulator (LQR) combined with the nonlinear

computed torque controller improves the overall stability of the robot.
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(a) Real robot. (b) 3D model in ROS Rviz.

Figure 2.1 View of the Igor wheel-legged robot.

2.2 Robot Modeling

Before designing the controller, we present the system dynamic model of the wheel-

legged robot (Figure 2.1). In our dynamic modeling of the robot, we assume a simplified

inverted pendulum, where the body of the robot acts as a point mass. The origins of the

robot-fixed frame ΣR and body-fixed frame ΣC are coincident and placed at the midpoint

of the wheel axle. For pitch rotation β and wheel torques, the forward direction of the

robot is considered positive; whereas for yaw rotation α, counterclockwise motion is

assumed positive. The three-dimensional model of the robot is represented in Figure 2.2,

whereas Table 2.1 shows all the modeling parameters of the system.

2.2.1 Equations of Motion

We use the Euler-Lagrange formulation to derive the equations of motion for the

wheeled biped robot under the following important assumptions.

• There is no slip between the wheels of the robot and ground.

• The wheels are rigid nondeformable disks.
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Parameters Description Value Unit

mc Mass of the robot body 7.5 Kg
mw Mass of the robot wheel 0.35 Kg
l Height of the CoM from the origin

of ΣR

0.5914 m

Ixx Moment of inertia of the robot body
in X

0.0878 Kg.m2

Iyy Moment of inertia of the robot body
in Y

0.0347 Kg.m2

Izz Moment of inertia of the robot body
in Z

0.0632 Kg.m2

Iwa Moment of inertia of the robot
wheel about the wheel axis

0.0018 Kg.m2

Iwd Moment of inertia of the robot
wheel about its diameter

0.000929 Kg.m2

Ima Moment of inertia of the motor ro-
tor about its axis

1.04E − 7 Kg.m2

Imd Moment of inertia of the motor ro-
tor about its diameter

0.0 Kg.m2

g Gravitational acceleration constant 9.81 m/s2

rw Wheel radius 0.1016 m
b Distance between the origin of ΣR

and the center of the wheel
0.2150 m

γ Gear reduction ratio 1
cr, cl Viscosity coefficients of left and

right wheels
0.17 Nm

(rad/sec)

I1 Moment of inertia of the arm link-1 0.018 Kg.m2

I2 Moment of inertia of the arm link-2 0.0339 Kg.m2

l1 Length of the arm link-1 0.3 m
l2 Length of the arm link-2 0.3 m
lg1 Distance of CoM of the arm link-1

from its origin
0.3 m

lg2 Distance of CoM of the arm link-2
from its origin

0.3 m

m1 Mass of the arm link-1 0.6 Kg
m2 Mass of the arm link-2 1.13 Kg

Table 2.1: Robot Parameters.

• The structure of the robot is symmetrical.

• The legs of the robot are massless.

The first two assumptions provide the necessary conditions for the kinematic modeling of
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the differential drive base of the robot. Nevertheless, the affects of these assumptions on

robot’s performance would be presented in our future study by comparing the simulation

results with the real robot.

We now begin by writing equations for the position of the center of mass (CoM)

in inertial frame ΣI . A left subscript is used from here onwards to clearly specify the

coordinate frame of the vector quantities. The equations are

Ixc = Ixr + l cos(α) sin(β),

Iyc = Iyr + l sin(α) sin(β),

Izc = rw + l cos(β).

(2.1)

We obtain the translational velocity vector of the CoM of the robot simply by taking the

time derivative of the above equations:

IVc =


I ẋr + l

(
β̇ cos(α) cos(β)− α̇ sin(α) sin(β)

)
I ẏr + l

(
β̇ sin(α) cos(β) + α̇ cos(α) sin(β)

)
−lβ̇ sin(β)

 . (2.2)

The rotational velocity of the robot frame ΣR with respect to inertial frame ΣI is given as

IΩR =


0

0

α̇

 . (2.3)

We take the rotational velocity of the CoM in the body-fixed ΣC frame to get a diagonal

inertia matrix and simplify our kinetic energy equation:

CΩc =


−α̇ sin(β)

β̇

α̇ cos(β)

 . (2.4)
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Figure 2.2 Model of the robot with generalized coordinates.

The translational and rotational kinetic energy of the CoM is calculated as

Tc =
1

2
mc IV

T
c IVc +

1

2
CΩ

T
c Ic CΩc

=
1

2
mc

[
I ẋ

2
r + 2 I ẋrl

(
β̇ cos(α) cos(β)− α̇ sin(α) sin(β)

)
+ I ẏ

2
r + 2 I ẏrl

(
β̇ sin(α) cos(β) + α̇ cos(α) sin(β)

)
+ (lβ̇)2 + l2α̇2 sin2(β)

]
+

1

2

(
Ixxα̇

2 sin2(β) + Iyyβ̇
2 + Izzα̇

2 cos2(β)
)
.

(2.5)

The translational and rotational kinetic energy of the two wheels is given by

Tw =
1

2
mwr

2
wθ̇

2
r +

1

2
mwr

2
wθ̇

2
l

+
1

2

(
Iwa + Imaγ

2
)(
θ̇2r + θ̇2l

)
+
(
Iwd + Imd

)
α̇2.

(2.6)

The potential energy of the wheel is considered zero, as we assume the wheel remains in

contact with the ground everywhere. Consequently,

Uw = 0. (2.7)

The potential energy of the CoM is
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Uc = mcgl cos(β), (2.8)

where g is the gravitational acceleration constant.

Rayleigh’s dissipation function relating to viscous forces is given by

F =
1

2
cr
(
θ̇r − β̇

)2
+

1

2
cl
(
θ̇l − β̇

)2
. (2.9)

The Lagrangian of a mechanical system is described by taking the difference between

kinetic and potential energies of the system:

L = K.E − P.E

= Tc + Tw − Uc.

The equations of motion are then calculated by solving

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
+

∂F

∂q̇i
= Qi, (2.10)

where qi represents generalized coordinates and Qi generalized forces.

For the wheel-legged robot, we choose the generalized coordinate vector q = [Ixr Iyr α β θr θl]
T .

After solving Eq. (2.10) by substituting for L and F , motion equations of the robot are

expressed in familiar matrix form as

M(q)q̈ + V q̇ +H(q, q̇) +G = Eτ , (2.11)

where M(q) ∈ R6×6 is the inertia matrix, V ∈ R6×6 is a square matrix of viscous friction

terms, H(q, q̇) ∈ R6 is a vector of Coriolis and centrifugal terms, G ∈ R6 is a vector of

the gravitational force, E ∈ R6×2 is the torque selection matrix, and τ ∈ R2 is the vector
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of control torques. These are expressed as

M(q) =



mc 0 −c4 c5 0 0

0 mc c3 c6 0 0

−c4 c3 c1 0 0 0

c5 c6 0 Iyy +mcl
2 0 0

0 0 0 0 c2 0

0 0 0 0 0 c2


,

V =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 cr + cl −cr −cl

0 0 0 −cr cr 0

0 0 0 −cl 0 cl


,

H(q, q̇) =



−(c3α̇
2 + c3β̇

2 + 2c6α̇β̇)

−(c4α̇
2 + c4β̇

2 − 2c5α̇β̇)

c7α̇β̇

− c7
2
α̇2

0

0


,
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G =



0

0

0

−mcglsin(β)

0

0


,

E =



0 0

0 0

0 0

−1 −1

1 0

0 1


, τ =

τ r

τ l

 ,

where c1, c2, . . . , c7 are

c1 = 2
(
Iwd + Imd

)
+ Ixx +

(
Izz − Ixx −mcl

2
)

cos2(β)

+mcl
2,

c2 = mwr
2
w + Iwa + Imaγ

2, c3 = mcl cos(α) sin(β),

c4 = mcl sin(α) sin(β), c5 = mcl cos(α) cos(β),

c6 = mcl sin(α) cos(β), c7 =
(
Ixx +mcl

2 − Izz
)

sin(2β).

2.2.2 Non-holonomic Constraints

It is well known that Eq. (2.11) is only valid for a system without non-holonomic con-

straints. Therefore, before any standard state-space based control design can be applied,

an alternative approach is needed to represent the motion and constraints of the system

[48].
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Figure 2.3 Top view of differential drive robot.

Under rolling and no-slip conditions that engender non-holonomic constraints, the

kinematic equations of the differential drive robot shown in Figure 2.3 are [?]

I ẋr sin(α)− I ẏr cos(α) = 0 (2.12)

I ẋr cos(α)− I ẏr sin(α) = rw
2

(
θ̇r + θ̇l

)
(2.13)

α̇ =
rw
2b

(
θ̇r − θ̇l

)
(2.14)

The above three equations can be written in matrix form as J(q)q̇ = 0, where

J(q) =


sin(α) − cos(α) 0 0 0 0

cos(α) sin(α) b 0 −rw 0

cos(α) sin(α) −b 0 0 −rw

 . (2.15)

Once we have equations for the constraints of the system, Eq. (2.11) is modified to ac-

count for k kinematic constraints as

M(q)q̈ + V q̇ +H(q, q̇) +G = Eτ + J(q)Tλ, (2.16)

where λ ∈ Rk is a vector of Lagrange multipliers. The term J(q)Tλ represents the vector

of reaction forces at the generalized coordinate level.
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We now use the standard method to remove the Lagrange multipliers from Eq. (2.16)

as elaborated in [49]. We first define a full-rank matrix S(q) ∈ Rn×m that lies in the null-

space of matrix J(q); here, m = n − k, and n is the number of generalized coordinates.

It is noted that the choice of matrix S(q) is not unique.

S(q) =



cos(α) 0 0

sin(α) 0 0

0 1 0

0 0 1

1
rw

b
rw

0

1
rw

−b
rw

0


. (2.17)

A new vector u ∈ Rm of pseudo-velocities is defined such that

q̇ = S(q)u. (2.18)

In the literature, Eq. (2.18) is mentioned as the kinematic model of the constrained me-

chanical system. In this study, we select u = [v α̇ β̇]T so that the controller design can be

achieved rather simply. Differentiation of the above equation leads to

q̈ = Ṡ(q)u+ S(q)u̇. (2.19)

The substitution of Eqs. (2.18) and (2.19) into Eq. (2.16) yields

M(q)Ṡ(q)u+M(q)S(q)u̇+ V S(q)u+H(q, q̇) +G

= Eτ + J(q)Tλ.
(2.20)

Finally, the Lagrange multipliers can be eliminated by premultiplying both sides of Eq.

(2.20) by S(q)T for the reason that S(q)J(q) = 0, and we get the reduced dynamic model
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of m differential equations:

M̂(qr)u̇+ V̂ u+ Ĥ(qr, u) + Ĝ = Êτ , (2.21)

where M̂(qr) = S(q)TM(q)S(q) is positive definite, V̂ = S(q)TV S(q), Ĥ(u) = S(q)T
[
M(q)Ṡ(q)u+

H(q, q̇)
]
, Ĝ = S(q)TG, qr = [p α β]T , and Ê = S(q)TE.

Equation (2.21) is a set of nonlinear equations that cannot be used in designing a linear

controller, and we thus have to linearize Eq. (2.21) about the equilibrium point (β = 0).

Making a small-angle approximation results in

sin(∗) ≃ (∗),

sin2(∗) ≃ 0,

cos(∗) ≃ 1,

(∗̇)2 ≃ 0,

(∗̇)(∗̇) ≃ 0.

By virtue of the above conditions, Ĥ is eliminated from Eq. (2.21) and we finally get

M̂u̇+ V̂ u+ Ĝ = Êτ , (2.22)

where M̂ and Ĝ have linearized elements. Furthermore, the above equation implies that

u̇ = M̂−1
[
Êτ − V̂ u− Ĝ

]
= −M̂−1

(
V̂ u+ Ĝ

)
+ M̂−1Êτ .

(2.23)

It is noted that θr and θl are completely decoupled from other state variables. Additionally

we find θ̇r and θ̇l given the forward velocity v = rw
2
(θ̇r + θ̇l) and Eq. (2.14). We can

therefore now reduce the order of the system and define a configuration vector qr =

[p α β]T as an actual control variable, where p = Ixr cos(α) + Iyr sin(α).
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2.2. ROBOT MODELING

2.2.3 State-space Representation
State-space modeling is generally adopted to convert N th-order system dynamics to a

system of N first-order differential equations. We can formulate the state-space model as

we have already obtained linearized equations of motion for the wheel-legged robot. A

general linear-time-invariant state-space model is represented as

Ẋ = AX +BU

Y = CX +DU,
(2.24)

where X ∈ Rn is called the state vector, Y ∈ Ri is the output vector of the system, and

U ∈ Rp is the system input. The constant matrices A, B, C, and D are respectively

called dynamics, input, output, and feedforward matrices. In this study, we define the

state vector as

X =

qr
u


6×1

and the control input as U = τ . The state-space model of the robot is therefore given by

Ẋ =

q̇r
u̇

 =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 H1

D1

−H2

D1

H3

D1

H4

D1

0 0 0 b a5
D2

−b2 a4
D2

−brw
a5
D2

0 0 H5

D3

H6

D3

−H7

D3

−H8

D3


X

+



0 0

0 0

0 0

e1 e1

e2 −e2

e3 e3


τ ,

(2.25)
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where

a1 = Iwa + Iraγ
2 +mwr

2
w,

a2 = Ird + Iwd + 0.5Izz +mwb
2,

a3 = Iwa + Iraγ
2, a4 = cr + cl,

a5 = cl − cr, a6 = Iyy +mcl
2 +mclrw,

a7 = 2a3 + r2w(mc + 2mw) +mclrw,

e1 =
a6rw
D1

, e2 =
brw
D2

, e3 = −a7rw
D3

,

D1 = 2a1
(
Iyy +mcl

2
)
+ Iyymcr

2
w,

D2 = 2
(
a2r

2
w + a3b

2
)
,

D3 = 2rw
[
Iyy(a1 + 0.5mcr

2
w) + a1mcl

2
]
,

H1 = −g(mclrw)
2, H2 = a4a6,

H3 = a5a6b, H4 = a4a6rw,

H5 = gmclrw[2a3 + r2w(mc + 2mw)], H6 = a4a7,

H7 = a5a7b, H8 = a4a7rw.

For a full-state-feedback system, the matrix C is an identity matrix and D = 0 if the

system has no feedforward.

2.3 State Feedback Control

After defining the state space model, our objective is to stabilize the robot in vertical

equilibrium position (β = 0) along with controlling its translational motion p. First,

we use linear state feedback controller to control our robotic system. State feedback

controller is a powerful MIMO (Multiple Input Multiple Output) control method that uses

system’s state vector X to compute the necessary control action. It can be formulated as,

U = ref −KsfX, Ksf ∈ Rp×n (2.26)
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Where ref is the reference signal, U is the control input, and Ksf is the state feedback

gain vector. If ref = 0, the state feedback controller is usually called a state feedback

regulator.

The state feedback controller manipulates the system dynamics matrix A by using

gain matrix Ksf to stabilize the system. After replacing U in (2.24) by equation (2.26) we

obtain,

Ẋ = AX +B(ref −KsfX)

= (A− BKsf )X +B(ref) = AclX +B(ref)
(2.27)

Here Acl represents the dynamics matrix of the closed-loop system. Since we can manip-

ulate the closed-loop dynamics matrix Acl by an appropriate Ksf , we can change the pole

positions of our system to desired locations in the s-plane.

For a system with n number of poles, we find the appropriate gain vector Ksf by

solving equation (2.28) for Ksf .

det(sI − Acl) = (s+ a1)(s+ a2) . . . (s+ an) (2.28)

Where a1, a2, . . . , an are the desired system poles locations in the complex s-plane. This

technique is also known as pole placement method.

To determine feedback gain Ksf for which our system is stabilized, we develop the

state-space model in MATLAB. After putting the parameters of the robot (Table-2.1) in

MATLAB model, we compute the poles of the open-loop system. All the four poles

lie on the imaginary-axis of the s-plane, therefore making the system marginally sta-

ble. For stabilizing our system, we choose new poles at [−12.8775,−0.5127,−0.7705 +

0.4525i,−0.7705 − 0.4525i] in the s-plane. We use MATLAB’s place command to find

the feedback gain Ksf corresponding to the newly chosen poles.
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��

Figure 2.4 State-feedback Control Scheme.

2.3.1 Linear Quadratic Regulator (LQR)

In a simple state-feedback controller, we choose the closed-loop poles of a system by

trial and error; however, these pole locations usually do not provide the optimal control

performance. To overcome this problem, we design an LQR controller for our system,

which allows us to find the optimal feedback gain vector Klqr. The LQR places the poles

in such a way that the closed-loop system optimizes the cost function

Jlqr =

∫ ∞

0

[X(t)TQX(t) + U(t)TRU(t)] dt, (2.29)

where XTQX is the state cost with weight Q, while UTRU is the control cost with weight

R [50]. The optimal state-feedback law is then given as

U = ref −KlqrX. (2.30)

Where as before, ref is the reference signal. Here the necessary condition for optimality

is

Klqr = R−1BTP, (2.31)

where P is calculated by solving the algebraic Riccati equation (ARE) [50]

0 = ATP + PA+Q− PBR−1BTP. (2.32)
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This leads to the following closed-loop system,

Ẋ =
(
A− BR−1BTP

)
X (2.33)

Furthermore, the following theorem has been proved.

Theorem 2.1

If there exists a symmetric solution P to the ARE (2.32) for which A − BR−1BTP is

a stable matrix, then the feedback control law U = ref − KlqrX, ∀t ≥ 0 minimizes the

LQR cost function,

Jlqr =

∫ ∞

0

[X(t)TQX(t) + U(t)TRU(t)] dt.

It is also important to choose Q and R matrices carefully to get the best possible results.

We use the well-known Bryson’s method [51], which gives a simple and reasonable choice

to determine Q and R as

Q =



w1
2

(x11)2max
0 . . . 0

0 w2
2

(x22)2max
. . . 0

0 0
. . . ...

0 0 . . . wn
2

(xnn)2max


, (2.34)

where (xii)max denotes the largest desired response for that component of the state vector.

R is determined as

R = ρ



b1
2

(u11)2max
0 . . . 0

0 b2
2

(u22)2max
. . . 0

0 0
. . . ...

0 0 . . .
bj

2

(ujj)2max


. (2.35)
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Here, (ujj)max is the maximum desired control input for the system and ρ is used as the

last relative weighting between the control and state penalties. Furthermore, wi and bi are

respectively the weights for each state and control input. We define wi and bi according

to

n∑
i=1

wi
2 = 1,

j∑
i=1

bi
2 = 1.

Even though Bryson’s method usually yields satisfactory results, it is often just the be-

ginning of a trial-and-error iterative method of obtaining the desired closed-loop system

response. Using Bryson’s rule and then making alterations, we have Q = diag([0.78 6.37

39.06 0.25 0.19 11.11]), ρ = 1, and R = diag([0.03 0.03]) which leads to the satisfactory

reference tracking of the system states. Finally, the optimal feedback gain

Klqr =

−2.8284 1.4142 −19.4797 −4.8849 0.4032 −4.7839

−2.8284 −1.4142 −19.4797 −4.8849 −0.4032 −4.7839

 .

is acquired using lqr command in MATLAB (Mathworks Inc., Natick, MA, USA) with

system parameters listed in Table 2.1. As the robot steers its heading using a differential

drive mechanism, we note that the corresponding gain values for α and α̇ states in Klqr

have opposite signs.

2.3.2 Numerical Simulation Results

Simulation Setup

With the purpose of simulating our wheeled biped robot in the Gazebo simulator [52],

we modeled our robot in URDF (Universal Robotic Description Format) using the dimen-

sions of the Igor robot as shown in Figure 2.1. The URDF model includes all the physical

constraints of the real robot, such as joint limits, static friction, and damping coefficients,

and the actuator’s torque-speed characteristics. Gazebo is an open-source simulator that
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(a) LQR step response and translational push of 12 N.

(b) Manually tuned controller vs. LQR.

Figure 2.5 Translational position step response.

uses ODE [53] as its physics engine. ROS (Robot Operating System) is used to implement

the control algorithm in C++, thus controlling the robot in Gazebo. The ROS-Gazebo sim-

ulation runs at a frequency of 500 Hz with a motion controller steering the wheeled biped

robot in the desired direction while keeping the robot in an upright position at the same

time.

Results and Discussion

A series of tests are conducted to validate the effectiveness of the designed controller.

Simple reference trajectories comprising step and sinusoidal signals are chosen for the

robot. Given that an off-the-shelf robot employs a simple proportional-integral-derivative

(PID) controller for balancing, we considered it necessary to compare the designed LQR
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Mass Change Noise σ = 0.0 Noise σ = 0.02

perr αerr βerr perr αerr βerr

-20% 13.72E-3 19.33E-5 73.77E-5 17.84E-3 9.11E-5 74.98E-5
-10% 25.25E-3 18.94E-5 23.91E-5 28.27E-3 21.7E-5 48.87E-5
0% 36.54E-3 22.49E-5 18.11E-5 36.63E-3 18.6E-5 39.15E-5
+10% 42.07E-3 25.04E-5 54.38E-5 44.97E-3 21.28E-5 68.07E-5
+20% 50.11E-3 28.74E-5 86.19E-5 52.19E-3 29.02E-5 92.32E-5

Table 2.2: Steady-state errors in the presence of model uncertainties and Gaussian noise.

with a manually tuned state-feedback controller of gain

Ksf =

−1.09 0.51 −21.37 −0.87 0.03 −8.26

−1.09 −0.51 −21.37 −0.87 −0.03 −8.26

 .

This is an important point of the study since the off-the-shelf robot is not using the LQR

controller, thus by this comparison, we can check how much the disturbance rejection

capability of the current robot can be potentially improved for the future use. Results of

ROS-Gazebo simulations are presented in Figures 2.5 and 2.6.

Figure 2.5a shows the translational reference position, step response of the LQR, pitch

angle, and system’s recovery from a force of 12 N applied in the frontal plane at the CoM

of the robot body. One can see that the robot leaned backwards because of the strong push

but the controller brought the robot back to the reference point smoothly while keeping

the pitch angle below 0.25 rad.

In another test, the results of which are shown in Figure 2.5b, we compare the trans-

lational position step response of the optimal controller with the manually tuned state-

feedback control method. It is clear from the simulation results that the LQR controller

has a shorter settling time than the state-feedback controller. Most importantly, the LQR

has no overshoot or oscillations, which is essential for human-robot interaction. Although

state-feedback and LQR control laws have the same theoretical basis and one can argue

that the state-feedback controller would perform better with some further fine tuning, the

sole purpose of the comparison here is to determine how well our designed LQR performs
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(a) Forward and backward push during translational motion.

(b) Counterclockwise and clockwise moment during yaw tracking.

Figure 2.6 LQR tracking and disturbance rejection.

against non-optimal off-the-shelf robot controllers.

To ensure the robustness of the LQR controller against the model uncertainties and

sensor noise, various tests are performed and the results are summarized in Table 2.2.

To account for model uncertainties, we change the masses of the body mc and wheel

mw along with the corresponding moment of inertia by ±10% and ±20%. Two series

of tests are conducted, namely tests without sensor noise and tests including Gaussian

white noise with standard deviation σ = 0.02. Finally, steady-state errors for reference

positions pr = 2 meters, αr = 0.78 rad, and βr = 0 rad are determined.

The results clearly show that regardless of sensor noise, the steady-state error for

the translational position tracking decreases as the mass of the system is reduced. This
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External Force
Mass Change = 0% Mass Change = -20%

LQR Manual Tuning LQR Manual Tuning∫
|ev|dt tr

∫
|ev|dt tr

∫
|ev|dt tr

∫
|ev|dt tr

12 N 1.660 2.8 4.117 5 1.597 3 4.782 6
8 N 1.038 2.6 2.664 4 1.169 3 3.093 5.9
4 N 0.549 2.4 1.439 3.4 0.620 2 1.517 4.8

External Torque
∫
|eα|dt tr

∫
|eα|dt tr

∫
|eα|dt tr

∫
|eα|dt tr

21 N.m 0.578 1.6 N/A N/A 0.582 1.6 N/A N/A
14 N.m 0.362 1.5 4.873 4 0.356 1.5 N/A N/A
7 N.m 0.206 1.2 2.772 2.8 0.206 1.3 2.924 2.8

Table 2.3: Disturbance rejection comparison of the LQR and manually tuned controller. Forces

and moments are applied at the CoM of the body during forward motion and sinusoidal yaw

tracking, respectively. ev, eα, and tr are respectively the linear velocity error, yaw angle error, and

recovery time. N/A indicates that the robot fell as a result of an external disturbance.

should not come as surprise because it is conventional behavior of a proportional feedback

control method. We also find that the pitch angle (β) tracking is sensitive to the model

irregularities and the steady-state error can increase by a factor of 4 with a mere change

of ±20% in the system mass. Meanwhile, we observe that yaw tracking of the robot

improves as we reduce the mass and inertia of the system; however, this difference is not

large.

Figure 2.6 depicts the robot’s recovery from rather strong external disturbances during

translational and rotational movements. Figure 2.6a shows the application of two external

forces on the body while the robot is moving at constant linear velocity v = −0.5 m/s.

The first force is applied in the robot’s direction of motion while the second force is

applied in the direction opposing the robot’s direction of motion. Similarly, Figure 2.6b

shows the application of external torques about the z-axis of the robot body as rotational

disturbance. Different disturbances are applied on the system and we find that the peak

translational and rotational push that the robot can sustain with the current LQR is 12 N

and 23 N.m, respectively.

The values in Table 2.3 are used to quantitatively demonstrate the disturbance rejec-
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Figure 2.7 Igor performing a slalom in the Gazebo simulator.

tion of the LQR and compare it with the disturbance rejection of the manually tuned

state-feedback controller. All errors are taken as the area under the curve from the time

a disturbance is applied till the moment the robot recovers to its steady state. The table

shows that the LQR has smaller errors and a shorter recovery time than the state-feedback

controller. Additionally, the LQR endures much higher external torques as compared

with the manually tuned controller. Furthermore, we have also tested the system’s distur-

bance rejection capability in case of overestimation of the mass and inertia values during

controller design process. As system becomes lighter, it gets more prone to external dis-

turbances. Simulation results point out that the error, and recovery time increase slightly

in case of translational disturbances for the LQR as compared to the manually tuned con-

troller, where the change is more significant. On the other hand, alterations in the mass

and moment of inertia did not effect the performance of the controllers during rotational

disturbances.

Finally, to check whether the LQR controller can handle the translational and rota-

tional accelerations simultaneously, we perform a slalom maneuver as shown in Figure

2.7. We observe that the robot can carry out the slalom easily at peak forward velocity of

1 m/s.
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2.4 Feedforward-Feedback Controller

In this section, we propose a simple control framework for the wheel-legged robot that

combines nonlinear Computed Torque control with the linear LQR feedback controller,

as shown in Figure 2.8. In the real world, not only actuators have different friction coef-

ficients but they also change over time because of abrasion and other factors that cannot

be modeled beforehand. More importantly, a slight mismatch of these parameters in a

differential drive robot severely deteriorates its performance.

Our main motivation is to implement a computationally simple yet robust controller

that may compensate for such model uncertainties and external disturbances. Through

combining the model-based nonlinear computed torque controller with the linear LQR,

the limitation of linear assumption can be compensated. Its performance was verified in a

physics-engine based Gazebo simulator and also with the real robot experiments to reveal

the characteristics of the controllers: feedback LQR, feedforward Computed Torque, and

the combination.

2.4.1 Computed Troque Control

The Computed Torque method is the simple model-based nonlinear control law that

computes input torques based on the manipulator dynamics equation of the system [54].

We rewrite nonlinear Eq. (2.21) as

τ = Ê−1
(
M̂(qr)u̇+ V̂ u+ Ĥ(qr, u) + Ĝ(qr)

)
. (2.36)

To get the desired configuration vector qr = [p α β]T , we design the acceleration u̇ as

u̇ = u̇d +Kv(ud − u) +Kp(qrd − qr), (2.37)

where u̇d, ud, qrd are the desired acceleration, velocity, and position vectors respectively,

whereas Kv and Kp are the diagonal gain matrices for the respective velocities and posi-

tions.
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Figure 2.8 Combined LQR and Computed Torque control scheme.

By putting Eq. (2.37) back in Eq. (2.36) we get

U1 = τ = Ê−1
[
M̂(qr)

(
u̇d +Kv(ud − u) +Kp(qrd − qr)

)
+ V̂ u+ Ĥ(qr, u) + Ĝ(qr)

]
.

(2.38)

With some experimentation we find the position gains

Kp =


−9.1 0 0

0 −25 0

0 0 −61.75

 ,

and the velocity gains

Kv =


−2.65 0 0

0 −3 0

0 0 −13

 .
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2.4.2 Robot Localization

To localize the real robot and estimate its pose, we use the kinematic model of the

differential drive to obtain wheel odometry, and inertial measurement unit (IMU) sensors

for linear accelerations and angular velocities. Each actuator of the real robot shown in

Figure 2.1a includes an IMU, however, we only use two IMUs of the left and right hip

actuators for the localization purposes. Finally, linear accelerations and angular velocities

from the IMUs are fused with the wheel odometry data through an extended Kalman filter

to obtain the pose of the robot.

Wheel Odometry

In this section, we derive the forward kinematics equation of the differential wheel

drive of the robot shown in Figure 2.3. We rewrite the rolling and no-sliding constraint

equations from section 2.2.2 in matrix form. Rolling constraints are given by,

1 0 b

1 0 −b




I ẋr

I ẏr

α̇

 =

rw 0

0 rw

θ̇r
θ̇l

 (2.39)

No-sliding constraints equations are given as below,

0 −1 0

0 −1 0




I ẋr

I ẏr

α̇

 =

0
0

 (2.40)

Now we combine Eq. (2.39) and (2.40) in the form,


1 0 b

1 0 −b

0 −1 0

0 −1 0




I ẋr

I ẏr

α̇

 =


rw 0

0 rw

0 0

0 0


θ̇r
θ̇l

 (2.41)
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To find the robot’s linear velocities and yaw angle on the horizontal plane, we rewrite Eq.

(2.41) as,


I ẋr

I ẏr

α̇

 =


1 0 b

1 0 −b

0 −1 0

0 −1 0



† 
rw 0

0 rw

0 0

0 0


θ̇r
θ̇l

 (2.42)

where † represents the pseudo inverse of the matrix. Solving Eq. (2.42) leads to the final

result for the forward differential kinematics as,


I ẋr

I ẏr

α̇

 =


rw
2

rw
2

0 0

rw
2b

− rw
2b


θ̇r
θ̇l

 (2.43)

Therefore, forward velocity of the robot is,

I ẋr = rw
(θ̇r + θ̇l)

2
,

and no-sliding

I ẏr = 0,

and finally yaw velocity is

α̇ = rw
(θ̇r − θ̇l)

2b
.

Extended Kalman Filter (EKF)

To filter and fuse the wheel odometry with the multiple IMUs signals, we use an

Extended Kalman Filter (EKF). The conventional Kalman filter assumes that the system

is described in linear state-space form and the measurements are also linear functions
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of the system states. However, most of the real world systems operate in a nonlinear

environment, and hence the linear assumptions of the Kalman filter become invalid. EKF

is the extension of the Kalman filter that models the environment by a set of nonlinear

differential equations or

ẋ = g(x) + w (2.44)

where x is a vector of the system states, g(x) is a nonlinear state transition function, and w

is the Gaussian process noise. The vector x consists of 12 states i.e. robot’s 3D location,

3D orientation, and their respective velocities. Eq. (2.44) can be written in discrete time

form as follows,

xk = g(xk−1) + wk−1 (2.45)

The process noise covariance matrix is given by

Qp = E(wwT )

where E is the expectation operator. Additionally, the nonlinear measurement equation is

given by

z = h(x) + v (2.46)

where, h(x) is a nonlinear function that maps states into measurement space and v is the

Gaussian measurement noise. Eq. (2.46) can be given in discrete time as

zk = h(xk) + vk. (2.47)

The measurement noise covariance matrix is then defined as

Rm = E(vvT )
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Rm is a matrix of variances of each measurement noise source.

Since the functions g(x) and h(x) are nonlinear, a first-order approximation is used.

Now, the prediction step of the Kalman filter algorithm in discrete time form is given as,

x̂k = g(xk−1) (2.48)

P̂k = GPk−1G
T +Qp (2.49)

where Pk is the covariance matrix of the estimate errors and G is the Jacobian of the

nonlinear function g(x),

G =
∂g(x)

∂x

∣∣∣
x=x̂

Next the correction step of the Kalman filter algorithm is given by,

K = P̂kH
T
(
HP̂kH

T +Rm

)−1 (2.50)

xk = x̂k +K(zk −Hx̂k) (2.51)

Pk =
(
I−KH

)
P̂k

(
I−KH

)T
+KRmK

T (2.52)

where H is the Jacobian of h(x) that is given as,

H =
∂h(x)

∂x

∣∣∣
x=x̂

2.4.3 Numerical Simulations and Real-Time Experiments

In this section, we report the results of three different tests to characterize the motion

controllers for the self-balancing wheel-legged robot. First and foremost is the forward

position step response of the robot. Another essential factor to consider for indoor robots

is the human-robot interaction, therefore the second test is used to check the external

push rejection of the system. Finally, the third test is applied to inspect the sinusoidal yaw

tracking of the robot. To validate and assess all of the three controllers, these tests have
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(a) Translational position step response. (b) Translational position evolution against an

external push.

(c) Yaw angle tracking of the three controllers.

Figure 2.9 ROS-Gazebo simulation results.

been performed first in the simulation and then on a real wheel-legged robot. Figure 2.8

illustrates the motion control framework that combines both; the nonlinear feedforward

Computed Torque and the linear feedback LQR controller. The motion control loop in

simulation as well on the real robot runs at the rate of 500 Hz. It is also important to

mention that all these tests are carried out on a flat and non-slippery surface to keep the

modeling assumptions valid as far as possible.

Numerical Simulation Results

First, we started with the forward position step response for all the three controllers

which can be seen in Figure 2.9a. A step of 0.5m is applied at the 10th second of the
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simulation. It is clear from the results that the combined FF-FB controller outperforms

the other two controllers in overshoot and settling time. Although, the difference between

the step responses of LQR and FF-FB is negligible.

In the second test, we applied a linear force of 15N for the entirety of 1 second on the

body of the robot as shown in Figure 2.9b. In spite of the fact that the FF-FB controller

can uphold an external push of up to 20N in the simulator, we chose a force that can be

sustained by all of the three controllers under consideration in this study. This test also

validates that the FF-FB controller handles this external disturbance better than the other

two controllers. Moreover, it is evident that the Computed Torque controller gives the

highest oscillatory reaction to the disturbance.

The third and final test is carried out to observe the yaw tracking performance of

the robot. As seen in Figure 2.9c, a sinusoidal reference signal of π/4 rad amplitude is

applied to the system. However, it is clear that all three controllers have identical results.

This implies that the inertial effect by the body rotation task is smaller compared to the

inertial effect by the body translation task.

Real-Time Experiments

For real robot experiments, a wheel-legged biped robot from Hebi Robotics company

[55] is employed, which is shown in Figure 2.1a. The robot’s series elastic actuators are

equipped with IMUs, and hence it eliminates the need of using any external IMU on the

robot. Furthermore, reading and writing commands to the actuators can be sent from any

computer using a Wi-Fi connection. To fuse the data from multiple sensors and have a

better estimate of the robot’s states, we used the Extended Kalman Filter (EKF). Finally,

forward position (p), yaw angle (α), pitch angle (β), and their corresponding rates of

change are estimated successfully using the wheel odometry and IMU data from the two

hip actuators of the robot.

All three tests that are carried out in simulations are repeated on the real robot as

well and these results are presented in Figure 2.10. The forward position step response is
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(a) Translational position step response. (b) Translational position evolution against ex-

ternal pushes.

(c) Yaw angle tracking of the three controllers.

Figure 2.10 Real robot experimental results.

shown in Figure 2.10a, where the robot moves from a standstill position to 0.5m in the

forward direction. It can be seen that all of the three controllers give a small steady state

error, however, the FF-FB controller evidently gives a more stable response.

Since the real robot lacks force sensors, we have applied manual force on the robot

body multiple times to find out the average response of the control system against external

pushes. During these experiments, we tried to apply the disturbances of the same mag-

nitude; however, it must be noted that all these pushes were applied by a human and are

not repeatable. It is also clear from the results in Figure 2.10b that the combined FF-FB

control law is better in rejecting these disturbances.

In Figure 2.10c, yaw angle (α) tracking of the real robot is presented. All the three
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controllers have different sinusoidal reference tracking signals, which start at 10 seconds.

It is apparent from the results that all the three controllers perform very similar when it

comes to yaw tracking on the real robot as well.

In the final test, we give a sinusoidal reference trajectory for the translational motion

p of the robot, and the results are presented in Figure 2.11. Lateral drift is commonly

observed when mobile robots transverse over a long period of time without any absolute

localization sensor such as a GPS. This lateral drift usually cannot be noticed just by the

step response of the system, therefore, we observed the robot’s translational motion for

about 2 minutes. It is clear from the results that the robot started drifting away in all three

cases as time passes; however, in the case of the model-based computed torque controller

the lateral drift is about 0.6 meters in 110 seconds, more than the other two controllers.

Whereas, this lateral drift in the case of the LQR and the proposed feedforward-feedback

controller is about 0.4 meters for the same time period, as shown in Figures 2.11a and

2.11c, respectively. It is clear that the feedback nature of LQR compensated lateral drift

better than the model-based computed torque controller that heavily depends on the sys-

tem modeling.

2.4.4 Discussion

This section deliberates over the results of the feedforward-feedback controller and

the LQR obtained in various experiments. It becomes clear from the experimental results

that all three control methods achieve satisfactory performance during trajectory tracking

and external disturbance rejections. However, the combination of the linear feedback

LQR and nonlinear Computed Torque control method surpasses the other two controllers

in most of the measured metrics as expected.

While there are no steady state errors during the forward position step response in

the simulations, yet the real robot experimental results expose this behavior for all of the

three control methods. These steady state errors of about less than 0.1m arise because of

the obvious discrepancy between the mathematical model of the robot and the real sys-
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(a) Translational trajectory following with LQR. (b) Translational trajectory following with

Computed Torque controller.

(c) Translational trajectory following with FF-FB

controller.

Figure 2.11 Real robot translational trajectory following.

tem. Furthermore, steady-state errors in multi-input-multi-output (MIMO) underactuated

systems occur due to the nonlinear coupling of different states and may require advanced

control strategies such as partial feedback linearization to overcome such problems. One

naive approach to overcome this problem is to raise the corresponding translational posi-

tion gains of the motion controllers higher, however, due to the fact that the robot’s pitch

angle (β) is highly coupled with its translational position (p), the robot becomes unstable.

During the second test (translational pushes) on the real robot, it is particularly clear

that not only the proposed feedforward-feedback controller keeps the translational posi-

tion error smaller than the other two control methods but also the pitch angle β as well.
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During these tests, the maximum pitch angle observed for the combined feedforward-

feedback controller is 0.111 rads, while it is 0.135 and 0.132 rads for the Computed Torque

and LQR, respectively.

Another merit of the combined feedforward-feedback controller becomes clear during

the translational position sinusoidal trajectory tracking of the real robot. Given that the

viscous friction coefficients of the real actuators cannot be equal, a lateral drift is observed

during the straight translational motion of the robot. As expected, the feedforward Com-

puted Torque controller does the least to compensate for these modeling errors and drifts

about 0.6m in 2 minutes. On the other hand, both the feedback LQR and the combined

feedforward-feedback controller keeps the lateral drift less than 0.4m during the same

time period.

All in all, the differences between the simulation and the real robot results have re-

vealed that the model-based nonlinear Computed Torque controller or the linear feedback

LQR is inadequate to compensate for the modeling errors and other uncertainties that

cannot be modeled. However, the combination of the two control methods perfectly com-

plements the overall performance without any extra mathematical intricacies and compu-

tational resources.

2.5 Conclusion

In this chapter, we performed dynamic modeling of a self-balancing robot using the

Euler-Lagrange method to control the translation, rotation, and pitch of the robot. Fur-

thermore, non-holonomic constraints due to the differential-drive wheel system were in-

tegrated into the mathematical model of the robot. A linear quadratic regulator based on

the mathematical model was then designed for the motion control of the robot. Instead

of relying on differential-equation based MATLAB simulations to verify our controller

of choice, we used the physics-engine based Gazebo simulator because it includes rigid-

body dynamics, collision detection, and friction and thus provides a better approximation
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of the real physical system. One advantage of our approach is the immediate application

of it on the off-the-shelf Igor robot. Several simulation test runs were carried out in the

presence of model uncertainties, external disturbances, and sensor noise to quantitatively

investigate the robustness of the motion controller in detail. Later, a manually tuned state-

feedback controller was designed and compared with the LQR. As a result, it became

clear that the robot with the LQR endures almost twofold stronger external torques than

with the simpler manually tuned controller. Thanks to the LQR controller, the robot can

track reference trajectories within a short time period. Also, the robot performs extremely

well under the sensor noise, and external translational and rotational perturbations of up

to 12 N and 21 N.m, respectively.

To further improve the performance of the robot, we finally presented a computation-

ally simple yet robust control of the three degrees of freedom namely translational position

(p), steering or yaw angle (α), and pitch angle (β). From the nonlinear equations of mo-

tion of the robot, a nonlinear Computed Torque controller is derived. It is demonstrated

through real robot experiments that modeling discrepancies and uncertainties deteriorate

the performance of model-based nonlinear feedforward controller as well as the linear

feedback LQR, and hence a combination of both controllers performed better in the real

world.
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Chapter 3

An L1 Adaptive augmented LQR

Control for Wheel-Legged Robots:

Design and Experiments

3.1 Outline

In this chapter, we propose the augmentation of an L1 adaptive controller with a feed-

back Linear Quadratic Regulator (LQR) to control a wheel-legged biped robot. The per-

formance of linearized model-based controllers, such as LQR, depends on the accurate

knowledge of model parameters, a priori information about input and output disturbances,

and other unforeseen conditions. However, as robots are required to operate in real-world

dynamic environments, robust adaptive control strategies need to be adopted in order

to compensate for parameter uncertainties, modeling errors, and external disturbances.

We propose a hybrid scheme where an L1 adaptive controller is combined with LQR to

compensate for matched uncertainties and other disturbances related to the environment

change such as friction conditions of the floor. The proposed control scheme is able to

keep the robot stable under model uncertainties and external disturbances through a series

of validation scenarios including simulations and real-time experiments.
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3.2 Introduction

In the previous chapter, we developed a hybrid control scheme that combines the

LQR controller with the nonlinear computed torque controller. However, both the non-

linear computed torque and the LQR controllers depend on the system model and hence,

underperform in real life where the robot parameters and operating environments are not

known perfectly. To further improve the stability of the wheel-legged biped robot, we

introduce a new control framework that combines LQR with the state-of-the-art L1 adap-

tive controller. One significant advantage of the L1 adaptive controller over the other

adaptive control schemes such as Model Reference Adaptive Controller (MRAC) is that

it decouples the adaptation from the robustness of the controller and therefore enables

high adaptation gains.

To design a motion control system for autonomous robots, which are capable of per-

forming challenging maneuvers under uncertain conditions, has gained a lot of interest

recently. In real-world conditions, extra sensor placements and the addition of the pay-

load changes the center of mass (CoM) position of the robot, which may result in the

overall instability of the robot. Furthermore, the environmental conditions change; for

example, an autonomous car has to track the road lane markings in nominal conditions

as well as in sand or snowstorm when visibility becomes poor. Similarly, indoor mo-

bile robots have to adapt to different floor and illumination conditions. For these reasons,

adaptive controllers play an important role to avoid significant degradation in the system’s

performance by compensating for the external disturbances through self-tuning.

Model reference adaptive control (MRAC) architecture remained the theoretical ba-

sis of the earlier adaptive controllers. One of the major advantages of this architecture

is that it does not depend on the system dynamics model. DesForges et al. designed an

MRAC for a 3-DoF robotic manipulator [56]. The control scheme consisted of a PD con-

troller with online adjustable gains, and the coupling between the manipulator joints was

ignored. The proposed adaptive controller achieved excellent performance despite geo-

metric nonlinearities of the manipulator and different characteristics of the manipulated
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objects. In a later study, Tomizuka et al. proposed an MRAC controller for mechanical

manipulators that compensated for the nonlinear dynamics and coupling among the joints

[57]. However, the proposed controller could not be implemented on real-time applica-

tions due to its large number of estimation parameters.

In another study, Slotine et al. suggested a new adaptive control algorithm for robot

manipulators that consists of a PD feedback loop and a full dynamics feedforward part

[58]. The controller estimated the manipulator and payload parameters online without

knowing the joint accelerations. Other advantage of the proposed algorithm was that it

was computationally simple and could be applied directly in Cartesian space. A major

drawback of the proposed algorithm was to obtain an optimal adaptation gain matrix to

avoid excitation of high frequency dynamics. The author further extended this method to

accurately control the attitude of a spacecraft carrying some unknown mass [59].

Annaswamy et al. introduced an adaptive controller for the plants with unknown

parameters and demonstrated the robustness of the controller in the presence of bounded

external disturbances through various simulations [60][61]. It was also observed that the

high adaptation gain of the controller deteriorates the system stability; on the other hand,

a small adaptation gain reduces the rate of convergence.

Adaptive control methods are significantly popular among the underwater robotics

community because these robots are constantly exposed to the inherent nonlinearities of

hydrodynamics which are difficult to model. For example, Fossen et al. proposed a hybrid

control scheme that combined an adaptive controller with a sliding mode controller to

control a six DoF underwater mobile robot [62].The uncertainties in the input matrix term

due to the nonlinear thruster hydrodynamics were compensated by the switching term of

the sliding mode controller. In a separate study, Antonelli et al. proposed a new adaptive

controller for underwater mobile robots that compensated for the generalized restoring

forces and the ocean currents [63].

It is clear from previous studies that MRAC architecture couples the control loop with

59



3.2. INTRODUCTION

the estimation loop, and hence a high adaptation gain brings the closed-loop system to-

wards instability. It happens mainly because the adaptive gain in MRAC controller archi-

tecture behaves as a feedback gain and therefore, a trade-off has to be made between the

rate of adaptation and the robustness of the closed-loop system. To address the coupling

problem between the adaptation rate and robustness, Naira et al. introduced a low-pass

filter in MRAC architecture to attenuate high-frequency components of the control signal

that arise due to the high adaptation gain and named it the L1 adaptive controller [64].

In recent years, the L1 adaptive controller has gained significant interest among the

robotics and control communities due to its advantages over the conventional MRAC.

For example, Bennehar et al. proposed an L1 adaptive controller for a parallel kinematic

manipulator with 4-DoF [65]. To enhance the performance of the L1 adaptive controller,

they also added a model-based adaptive feedforward term based on the system’s nonlinear

dynamics. Where L1 adaptive controller term was responsible for compensating uncer-

tainties such as frictions, external disturbances, and other residual nonlinearities, whereas,

model-based adaptive feedforward term compensated modeling uncertainties.

Maalouf et al. proposed an L1 adaptive controller to control the pitch and depth of an

underwater robot for the first time (Figure 3.1a) [66]. The proposed L1 adaptive control

scheme was compared with a well-proven Adaptive Nonlinear State Feedback (ANSF)

controller. Three different experimental scenarios were devised namely control in nomi-

nal conditions, punctual external disturbance rejection, and robustness towards parameter

uncertainty. It was observed that both controllers performed in a similar manner during

nominal conditions. In the external disturbance experiments where a push was applied to

cause a depth error, the L1 adaptive controller performed better in stabilizing the depth of

the robot, on the other hand, the ANSF controller did well to keep the pitch error small. In

last, during the parameter uncertainty experiment, both controllers demonstrated robust

performance, however, the ANSF took more time than the L1 adaptive controller to adapt

to these parameter uncertainties.

Another study by Xuan et al. proposed a cascaded PID and an L1 adaptive balancing
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controller for a three-axis spacecraft simulator [67]. First modeling of the automatic bal-

ancing system is performed and a cascaded PID is designed with the help of the Ziegler-

Nichols method. Also, an L1 adaptive controller is developed and implemented in MAT-

LAB’s Simulink environment. After nominal case testing, mass and moment of inertia

of the system are changed to observe the robustness of the controllers. Simulation re-

sults validated the better performance of the L1 adaptive controller under uncertainties

and external disturbances.

Singh et al. used an L1 adaptive autopilot to control the depth and pitch angle of

a submarine using only its bow and stern hydroplanes [68]. A detailed mathematical

model of the submarine that includes hydrodynamic nonlinearities is provided, later the

L1 adaptive controller is designed. Various simulation tests were conducted to validate

and compare the proposed controller against other control methods. These experiments

demonstrated the effectiveness of the L1 adaptive controller under random disturbances,

parameter uncertainties, and model nonlinearities.

A multi-rate output-feedback L1 adaptive controller has been proposed for the security

of MIMO cyber-physical systems [69]. A sufficient condition on the sampling time of the

digital controller is derived that guarantees stability of the overall closed-loop system.

The controller can detect and mitigate attacks on the actuators. The proposed scheme

is tested on a small quadrotor, and experimental results demonstrated that the controller

successfully recovered the system stability in case of zero-dynamics actuator attacks.

More recently, Lee et al. proposed an L1 adaptive output feedback controller for

underactuated multi-input multi-output (MIMO) missile system [70]. The proposed con-

troller worked as an augmentation to an existing baseline three-loop autopilot for the

missile systems and compensated for the system nonlinearities to achieve nominal per-

formance. For the first time, Schoellig et al. combined an L1 adaptive controller with an

iterative learning control (ILC) to achieve high trajectory tracking for a quadrotor under

unknown dynamic disturbances [71]. While the L1 adaptive part of the control framework

achieved the nominal performance under uncertainties and disturbances, the ILC part im-
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(a) Underwater ROV [66] (b) CrazyFlie quadrotor with visual

markers [72].

Figure 3.1 Mobile robots with L1 adaptive controller onboard.

proved the trajectory tracking further by learning from previous iterations over time. The

proposed framework was validated on a real quadrotor, and results demonstrated signifi-

cant performance improvements compared to stand-alone ILC and non-adaptive PD-ILC

methods.

3.3 Motivation

It is clear from the previous discussion that both linear and nonlinear motion con-

trollers have been designed to balance and control WIP robots. Commonly used model-

based controllers depend on system parameters which may change over time, and other

assumptions to simplify the system for modeling purposes. Moreover, linear motion con-

trollers such as LQR are mainly based on linearized models of the system and hence

relevant for only a small region around the operating point. We believe an adaptive con-

trol mechanism is essential for the wheel-legged system under the assumed circumstances.

Accordingly, we propose a new control scheme based on the combination of an LQR feed-

back controller and an L1 adaptive controller to compensate for modeling errors, external

disturbances, and other eventual uncertainties. To the best of the authors’ knowledge, it is

the first time that an adaptive control scheme has been proposed for a wheel-legged robot
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Figure 3.2 Structure of the proposed augmented L1 adaptive controller.

with experimental validation on a real system.

3.4 Proposed Control Scheme

This section introduces the proposed control method to stabilize the wheel-legged

robot that is inherently unstable in nature. The proposed L1 adaptive augmented con-

trol framework combines the LQR controller with the state-of-the-art L1 adaptive control

method, as represented in Figure 3.2. For the sake of completeness, please read the section

about LQR that has been presented in detail in chapter 2.

3.4.1 Background on L1 Adaptive Control

This section describes the design of an adaptive control system for the pitch angle (β)

stabilization of the wheel-legged robot. For a safety-critical system like a self-balancing

robot, keeping it in the upright position is of utmost importance to avoid any accident, and

damage of the robot and its environment. Accordingly, we introduce the method where

an L1 adaptive controller is augmented with an LQR controller in order to keep the robot

stable in unforeseen circumstances.

In adaptive control, the estimates of unknown parameters are adjusted in a way to

minimize the error between the reference system output and the actual system. In litera-

ture, there are two commonly used methods to estimate the parameters in adaptive control,
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namely, direct method and indirect method. The implementation of these methods is dif-

ferent, however, both the approaches give the same error dynamics if provided with the

same initial conditions. In the indirect method, parameters are estimated implicitly and

can be compared with online system identification, on the other hand, the direct method

explicitly estimates the controller parameters.

It is well known that the closed-loop system’s performance depends on the actuator

bandwidth and the dynamics of the plant. However, mechanical systems commonly have

slow dynamics and for this reason, high-frequency signals to the plant affect the overall

system stability and robustness. To overcome this problem, the L1 adaptive control uses

a low-pass filter (first-order or second-order) to limit its frequency response and meet

robustness requirements. The low-pass filter must be designed and tuned so that its fre-

quency response is compatible with the actuator’s frequency response.

The L1 adaptive controller follows the indirect adaptive control architecture. The

decoupling between adaptation and robustness ensured by the L1 adaptive control archi-

tecture makes it an ideal adaptive controller for real-time applications. High adaptation

gains for achieving fast convergence can be used without introducing a high frequency

signal in the control input. The control scheme proposed in this section is based on the L1

adaptive control theory for systems with time-varying parameters and disturbances along

with uncertain system input gain [73].

The L1 adaptive control consists of an adaptation and a prediction stage as illustrated

in Figure 3.3. The adaptation phase is used to predict the unknown and/or time-varying

parameters and other uncertainties including external disturbances, whereas the prediction

stage is used to get the ideal required performance of the system. Furthermore, a low pass

filter is incorporated in the closed-loop to remove high frequencies from the control signal

that may occur due to high adaptation gains, as explained earlier.
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Let us consider the inverted pendulum model that is extracted from (2.16) in the form

ẋ(t) = Apx(t) + Bp(Ωuad(t) + θT (t)x(t) + σ(t)),

y(t) = Cpx(t)
(3.1)

where Ap is the known R2×2 matrix that describes the linear dynamics of the inverted pen-

dulum, x(t) = [β β̇]T ∈ R2 is the state vector, Bp ∈ R2 and Cp ∈ R2×2 known matrices,

θ(t) ∈ R2 vector of time-varying unknown parameters, σ(t) ∈ R models eventual distur-

bances and unmodeled dynamics, Ω ∈ R is an unknown positive constant and uad(t) ∈ R

is the adaptive control input.

It is assumed that the unknown parameters θ, σ, and Ω meet the following three con-

ditions,

• θ(t) ∈ Θ, |σ(t)| ≤ δ0, ∀ t ≥ 0, where Θ is a known convex compact set and

δ0 ∈ R+ is a known conservative bound of σ(t). This assumption is named as the

uniform boundedness of unknown parameters.

• θ(t) and σ(t) are continuously differentiable with bounded derivatives i.e.∥∥∥θ̇(t)∥∥∥ ≤ dθ < ∞, |σ̇(t)| ≤ dσ < ∞, ∀ t ≥ 0.

• Partial knowledge of uncertain system input gain Ω,

Ω ∈ Ω0 , [Ωl0 ,Ωu0 ], where 0 < Ωl0 < Ωu0 are known lower and upper bounds on

Ω.

State Predictor

To develop a full-state feedback controller so that the system output y(t) tracks the

reference signal r(t), we consider a state predictor of the form

ˆ̇x(t) = Amx̂(t) + Bp(Ω̂(t)uad(t) + θ̂Tx(t) + σ̂(t)),

ŷ(t) = Cpx̂(t)
(3.2)
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Figure 3.3 Block diagram of L1 Adaptive Control.

here Am = Ap − BpKm ∈ R2×2 is a user defined Hurwitz matrix, whereas θ̂, σ̂, and Ω̂

are the estimates of θ, σ, and Ω, respectively. In this research, we chose

Am =

 0 1

−150 −430

 , (3.3)

and Bp is,

Bp =

 0

−0.4


Adaptation Law

The estimations of the parameters are governed by the following projection-based

adaptive laws

˙̂
θ(t) = Proj(θ̂(t),−Γθx̃

T (t)PaBpx(t)), θ̂(0) = θ̂0,

˙̂σ(t) = Proj(σ̂(t),−Γσx̃
T (t)PaBp), σ̂(0) = σ̂0,

˙̂
Ω(t) = Proj(Ω̂(t),−ΓΩx̃

T (t)PaBpuad(t)), Ω̂(0) = 1,

(3.4)

where ΓΩ > 0, Γσ > 0, and Γθ > 0 are the adaptation gains, x̃(t) = x̂(t) − x(t) is the

prediction error, and Pa = P T
a > 0 is the solution of Lyapunov equation AT

mPa+PaAm =

−Qa for an arbitrary symmetric matrix Qa = QT
a > 0. The above given projection-
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based adaptive laws guarantee that the adaptation remains within the feasible region of

parameter space. Using (3.3) and

Qa =

1 0

0 1

 ,

we obtain the solution of above mentioned Lyapunov equation as,

Pa =

1.6089 0.0033

0.0033 0.0012

 .

Furthermore for fast convergence of the estimation parameters, the adaptation gains are

selected as Γθ = 5000, Γσ = 10000, and ΓΩ = 10000.

Projection Operator

A projection operator is used for updating the parameters θ̂, σ̂, and Ω̂ smoothly and

confining them within the required set [68]. This helps in faster adaptation while guaran-

teeing the closed-loop stability of the system at the same time. Furthermore, the projection

operator Proj(z, ϕ) ensures that z stays locally Lipchitz continuous even if ϕ is piecewise

continuous.

The algorithm of the projection operator Proj(z, ϕ), used in (3.4) for a parameter z,

is described as follows,

Algorithm : Projection Operator

Inputs : ϵ, z, ϕ, zmax, zmin

1 : compute fd = (zmax − zmin)
2;

2 : compute fz =
−4∗(zmin−z)∗(zmax−z)

ϵ∗fd
;

3 : compute fż = 4∗(zmin+zmax−2∗z)
ϵ∗fd

;
4 : define output = ϕ;
5 : if (fz <= 0 and fż ∗ ϕ < 0) then

output = ϕ ∗ (fz + 1);
6 : return output;

here, 0 < ϵ < 1 is a constant that sets the steepness of the curve of the projection at the
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maximum values. The parameter ϵ should be chosen in a way that the parabolic curve of

the projection operator is steep enough to capture the highest expected error [74]. zmax

and zmin are respectively the maximum and minimum values delimiting the admissible

range of the parameter z.

Adaptive Control Law

According to the block diagram of Figure 3.3, the adaptive control input uad for the

inverted pendulum system (3.1) is given in Laplace domain as follows;

uad(s) = −KfD(s)
(
η̂(s)−Kgr(s)

)
, (3.5)

where Kg is the feedforward gain, r(s) = [βd, β̇d]
T is the reference signal, Kf > 0 is the

feedback gain, and D(s) is a user defined low-pass filter that has a strictly proper transfer

function such that

C(s) =
ΩKfD(s)

1 + ΩKfD(s)
, (3.6)

is strictly proper stable transfer function with DC gain C(0) = 1. Furthermore,

η̂(t) = Ω̂uad(t) + θ̂T (t)x(t) + σ̂(t).

To ensure the stability of the resulting closed-loop system, the design of the feedback gain

Kf and the low-pass filter D(s) should satisfy the following L1-norm condition

∥G(s)∥L1
L < 1, (3.7)

where G(s) = H(s)
(
1− C(s)

)
, H(s) =

(
sI− Am

)−1
Bp, and L = max

θ∈Θ
∥θ∥1, here Θ is

a known convex compact set. In this study, we chose Kg = −375, Kf = 1 and D(s) as a
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first-order filter,

D(s) =
50

s+ 50

The particular structure of the adaptive controller that is given in (3.5) decouples the

control loop from the estimation loop of the adaptive controller and hence allowing for

arbitrarily high adaptation gains without compromising the closed-loop robustness. The

reader is encouraged to refer to [73] for detailed proofs of stability and performance anal-

ysis.

The feedback gain Kf is very influential in the whole L1 control architecture and must

be set low enough to block high-frequency signals to the actuators, on the other hand, high

enough to meet the L1 norm condition given in (3.7).

Another real challenge of the L1 adaptive controller is to implement its low-pass filter

D(s) in discrete time on a real micro-controller. It is well noted that failures of early

adaptive controllers happened because of a poor understanding of closed-loop system

robustness. Furthermore, identification of the parameters needs to be faster than the plant

variation time scale [75]. The control loop for our robot runs at 500 Hz, which is much

faster than the robot dynamics. We use a digital Bi-Quad filter to implement the low-pass

filter in discrete time with sampling time of Ts = 0.002 secs.

Bi-Quad Filter

A digital bi-quad filter is a recursive second-order filter that provides an accurate and

straightforward way to implement a low-pass filter. It uses a finite impulse response (FIR)

and an infinite impulse response (IIR) and thus has four memory blocks in total. It is well

known that higher order IIR filters are very sensitive to the quantization errors that can

easily lead to instability. In practice, this problem is resolved by implementing higher

order filters as a series of cascaded bi-quad filter blocks. To ensure the stability of the

overall filter, the two poles of the bi-quad filter must be inside the unit circle in the Z-

domain.
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Figure 3.4 Architecture of Bi-Quad filter in Direct Form I.

The output of the bi-quad filter shown in Figure 3.4 is

y = b0x+ b1xz
−1 + b2xz

−2 − a1yz
−1 − a2yz

−2 (3.8)

here x is the filter input, y is the filter output, b0, b1, b2 are the coefficients determine

the position of the zeros, a1, a2 are the coefficients determine the position of the poles,

and z is the Z-domain variable. Eq. (3.8) results into a discrete form normalized transfer

function as,

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(3.9)

This form of the bi-quad filter is called as direct form I and is the most straightforward

architecture. A continuous-time model or transfer function of the filter is converted into

the Z-domain by bilinear transformation in form of (3.9) first, and then implemented as a

bi-quad filter. It is clear from (3.8) that this form of the filter uses four memory blocks,

two for the input and two for the output. However, by rearranging a few terms we can

reduce the memory blocks to two without losing any information. The new form is called

direct form II and has two equations,

y = b0w + b1wz
−1 + b2wz

−2 (3.10)
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Figure 3.5 Architecture of Bi-Quad filter in Direct Form II.

where

w = x− a1wz
−1 − a2wz

−2

The block diagram of the direct form II is given in Figure 3.5. In this research, we simply

used MATLAB to do the continuous to the discrete time transformation of D(s) and an

open-source C++ library of bi-quad filters by Tom Lankhorst that uses the direct form II

at the back end [76].

3.5 Simulation Results

This section provides an overview of the simulation setup used in this study as well

as the corresponding obtained results. The wheel-legged robot Igor was defined in the

Unified Robotic Description Format (URDF) and simulated in Gazebo simulator using

the Robotic Operatic System (ROS). We used C++ programming language to implement

the proposed motion control algorithm for better portability and efficiency. The control

loop runs at a frequency of 500Hz. The nominal parameters of the system are summarized

in TABLE 2.1. To validate the proposed augmented adaptive control scheme qualitatively

as well as quantitatively, we conducted two different tests and results are shown in Figure

3.6. The main motivation behind these scenarios is to compare the input torques of both
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controllers, and the pitch angle (β) and pitch rate (β̇) subject to external disturbances and

model uncertainties.

In the first scenario, we used the nominal parameters of the robot and compare the

augmented control scheme against the model-based LQR. The obtained results from this

simulation are depicted in Figure 3.6a. We applied a linear force of 20N on the robot body

at t = 10s for a duration of 1s, and hence producing a significant linear acceleration. As a

result, the robot is pushed back from its reference position but slowly returned back while

maintaining its balance. The given plots clearly indicate that the augmented controller

keeps the pitch angle (β) and rate (β̇) smaller than those of the LQR. More specifically,

the error in the pitch angle (β) over this 20s period is about 50% less compared to the LQR

controller. It is further noted that the settling time of the pitch angle for the proposed

controller is about 2.5s against 6s for LQR. We observe that the faster response of the

augmented controller is due to the fast adaptation of the L1 adaptive controller to external

disturbances.

In the second scenario, to introduce a modeling uncertainty we propose to change

the value of the viscous friction coefficient of the wheel actuators from its nominal value

cr = cl = 0.17 to cr = cl = 0.34 (i.e. +100%). The change in the friction coefficients also

changes the dynamical behavior of the system, and for this reason model-based controllers

are expected to perform poorly under such circumstances. Furthermore, we know that

determining these friction coefficients in the real world is near impossible as they change

over time due to abrasion and other factors. In case of the model-based LQR as shown in

Figure 3.6b, it is evident that the impact of inaccurate friction coefficients can be highly

risky for a self-balancing robot as it could not recover from the translational push of 20N .

On the other hand, the proposed augmented controller successfully kept the robot around

its vertical upright position. It becomes clear from the estimated parameters graph in

Figure 3.6 that the unknown input gain Ω and the unknown parameter σ have greater

influence on the L1 adaptive control input.

TABLE 3.1 summarizes the quantitative difference between the LQR and the proposed
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Simulations

LQR Augmented Controller Percent Change

Nominal
case

∫
|β|dt 0.6157 0.3070 50.1%∫
|τ |dt 6.3441 3.6355 42.7%

Uncertain
case

∫
|β|dt 11.5773 0.5006 95.7%∫
|τ |dt 18.0505 16.2275 10.0%

Real-time Experiments

LQR Augmented Controller Percent Change

Tile
floor

∫
|β|dt 0.6624 0.2700 59.2%∫
|τ |dt 13.5188 8.8440 34.6%

Carpet
floor

∫
|β|dt 0.5160 0.3283 36.3%∫
|τ |dt 10.9857 10.9037 0.75%

Table 3.1: We use area under the curve of the pitch angle and the wheel torque to quantify the

performance of the given controllers. The smaller these values are the better the corresponding

controller performs in terms of settling time, overshoot, and energy consumption. The percent

change indicates the percentage reduction of these areas in the case of augmented controller w.r.t

the LQR.

augmented controller in different settings. By integrating the torques over time, which is

also known as angular impulse, we found that in the nominal case, it is 6.3441 N.m.s

against 3.6355 N.m.s for the LQR and the proposed augmented controller, respectively. It

is clear that the augmented controller uses upto 42.7% less torque and hence less energy

than the LQR in keeping the robot balanced in the nominal case. Besides it is worth to

note that the proposed augmented control scheme can endure a linear push of up to 30N

i.e. 50% more force than the maximum of 20N for the LQR.

3.6 Real-Time Experiments And Results

For the real-time control of the Igor robot, we used ROS with C++ to run the motion

control algorithms. The control loop runs on an intel core i7 microprocessor at a frequency

of 500Hz and the torque commands are transmitted to the robot actuators through a wifi

connection. Besides, for the robot localization we used an extended kalman filter (EKF)

to filter and fuse the data from multiple IMUs and the wheel odometry.
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20N

(a) Nominal case.

20N

(b) Uncertain case, ∆cr = ∆cl = +100%.

Figure 3.6 Validation in simulation: Temporal evolution of pitch angle, pitch rate, wheel torque,

and the estimated parameters of the augmented L1 adaptive controller during a push of 20N force.
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We performed a couple of experiments on the real Igor robot to compare the stability

performance and energy efficiency of the two controllers in different operating conditions.

The controllers have the regulation task to keep the robot balanced β ≈ 0 in the presence

of the external pushes. Since the real robot lacks a force sensor, we applied manual

pushes repeated three times to take the average result. The first experiment is performed

on a normal tiled floor with less friction between the floor and the wheels of the robot,

while the second experiment is performed on a carpet floor with a better friction between

the robot wheels and the ground. Also a lidar sensor of mass 1Kg is attached to the bottom

of the Igor body for emulating modeling uncertainties. This extra mass is not included

in the dynamic model of the robot and the LQR controller. The obtained results of these

real-time experiments are displayed in Figure 3.7 and further summarized quantitatively

in TABLE 3.1.

Figure 3.7a provides the evolution of the pitch angle β, pitch rate β̇, wheel torque τ ,

and the estimated parameters of the augmented L1 adaptive controller versus time for the

tiled floor test. It is clear that the pitch angle remains significantly smaller (about 59%)

for the proposed augmented controller case compared to the LQR case. Furthermore, this

enhancement in the robot stability in case of the proposed controller also comes with the

benefit of a reduced wheel torque of about 34.6%. However, it is worth to note that even

with model uncertainties, the LQR feedback controller successfully achieves the nominal

performance by balancing the robot.

For comparison, we repeated the same tests on a carpet surface in the second exper-

iment as shown in Figure 3.7b. It is noted that with similar pushes, the deviation of the

pitch angle from the given reference point stays smaller for the proposed augmented con-

troller than for the LQR. However, this difference is reduced from 59.2% to 36.3% in the

case of carpet floor. Furthermore, due to high friction between the carpet floor and the

robot wheels, both controllers give the similar torque profiles to keep the robot balanced

against the applied external pushes.
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3.7 Discussion

To demonstrate the effectiveness of the L1 adaptive controller, various experiments

are performed both in simulations and on the real robot. The overall reduction in the

pitch angle error of the robot, which is more profound in the tiled floor case proves the

advantage of the augmentation of an L1 adaptive controller with the baseline LQR. How-

ever, there remain many other situations that are not taken into account in this chapter

and can be the subject of future studies. For example, the effect of time delay can be of

catastrophic nature for safety-critical systems and therefore must be part of closed-loop

stability analyses.

In this study, we only applied L1 adaptive controller to stabilize the pitch angle,

whereas the LQR is used to control all the 3 DoFs of the robot. The main reason is that

L1 adaptive control theory has not been fully developed for controlling the underactuated

MIMO (multi-input-multi-output) systems. We know from the equations of motion of the

robot that it is an underactuated system with its pitch angle (β) and translational position

highly coupled with each other. It is expected that an L1 adaptive controller design to

control all the three DoFs of the robot will handle the coupling of states implicitly and

hence improving the overall robustness of the system.

Lastly, choosing an optimal low-pass filter systematically for the L1 adaptive con-

troller is still an open research question [73]. It is clear from (3.7) that the closed-loop

system stability depends on the choice of C(s), which decides the trade-off between ro-

bustness and performance. The low-pass filter design of L1 adaptive controller can be

formed as an L1-norm optimization problem. Kevin et al. designed an optimal low-pass

filter for the L1 adaptive controller by forming the trade-off between the performance im-

provement and the maximization of time-delay margin as a convex optimization problem

[77]. A linear matrix inequality approach was used to optimize one objective function

while keeping the desired bound on the other. In another study, Naira et al. proposed the

D-K iteration method to find an optimal filter for the L1 adaptive controller [78]. More

recently, quadratic programming is used to solve the optimal filter problem as a convex
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optimization [72]. The trade-off between the performance and the robustness is solved by

optimizing a mixed L1/H2-norm problem. The optimal filter is obtained in discrete-time

first and then converted into continuous-time domain. The obtained L1 adaptive controller

with optimized filter is implemented and tested on a small quadrotor (Figure 3.1b) for pre-

cision trajectory tracking. However, one drawback of this method is that because of small

time-steps in the discretization, high-order filters are obtained. Lee et al. proposed the fil-

ter design based on the H∞ optimization framework by taking the stability specifications

of the system in frequency domain [79].

3.8 Conclusion

This chapter shows the development of a linear quadratic regulator augmented with

an L1 adaptive controller to stabilize a wheel-legged robot. First, a state-of-the-art L1

adaptive controller is derived in detail for stabilizing the pitch angle β and pitch rate β̇

of the wheel-legged robot. Furthermore, an algorithm to keep the estimation parameters

of the adaptive controller within the required set is also provided. It is shown through

different simulations and real-time experiments that the proposed augmented controller

was successfully able to compensate for the model uncertainties and external disturbances

and clearly outperforms the model-based LQR controller.
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(a) Tile floor case.

(b) Carpet floor case.

Figure 3.7 Validation in real-time experiments: Temporal evolution of pitch angle, pitch rate,

wheel torque, and the estimated parameters of the augmented L1 adaptive controller subject to

external pushes.
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Chapter 4

Balance Stability Augmentation for

Wheel-legged Biped Robot through

Arm Acceleration Control

4.1 Outline

A self-balancing wheel-legged robot provides higher maneuverability and mobility

than legged biped robots. For this reason, wheel-legged systems have attracted enormous

interest from academia and commercial sectors in recent years. Most of the past works in

this field including ours mainly focused on lower body stabilization. Motivated by the hu-

man ability to maintain balance in laborious activities by articulating the arm actively, we

explore and analyze the active arm control on top of the wheel-legged system to assist in

its balance recovery during external pushes and disturbances. This chapter presents a con-

trol framework to improve the stability and robustness of an underactuated self-balancing

wheel-legged robot using its upper limb arm. Furthermore, we use the centroidal moment

pivot (CMP) as a key metric to quantitatively evaluate the effect of the active arm usage

on the balance stability improvement of the robot in the ROS-Gazebo environment. The

difference from the case of nonusage of arm is verified to clarify the impact of the ac-

tive arm quantitatively. This concept would lead to the wheel-legged biped robot with an
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active arm for dual purposes, one is for carrying objects, another is for increasing the bal-

ance stability. This point is important for future application in a real-world environment

with human-robot interactions.

4.2 Motivation

In the previous chapters, we discussed the importance of robust stability for the self-

balancing wheel-legged robots and proposed different controllers including a state-of-the-

art adaptive control framework. Although these motion controllers are capable enough to

stabilize the robot in different scenarios, we can further improve the overall stability of

the robot by the use of its arm manipulator that is shown in Figure 4.1.

Recent studies suggest that humans extensively use upper-body movements in addi-

tion to the ankle and hip joints to dynamically balance during challenging tasks [80]. It

is revealed that at the time of performing difficult balancing tasks, humans intuitively use

their upper body more than their lower body to stay balanced. Similarly, many verte-

brate animals use tails to control their equilibrium, for example, a cat swings its tail to

change its center of gravity [81]. Inspired from such studies, Minamizawa et al. from

Keio University designed a robotic tail for assistive rehabilitation applications [82]. This

anthropomorphic tail continuously estimates the user’s center of gravity and provides ac-

tive stability by swinging the tail. Furthermore, it has a weight adjustable design so that

it can be used by people of different weights.

Balancing of WIP robots is of foremost importance for the safety of the agents around

the robot and smooth human-robot interaction. It is clear from the previous discussions

that most of the past work in this field focused only on the lower body stabilization of WIP

systems. In this study, we propose a novel balance recovery method for a wheel-legged

robot with active usage of an arm manipulator on top of the lower limb. Furthermore,

we evaluate the real effect of the upper limb motion of the robot on its stability during

external disturbances. For this reason, the centroidal moment pivot (CMP), a key criterion
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(a) Top View. (b) Perspective View.

Figure 4.1 Wheel-legged robot with manipulator arm.

for measuring the stability of humans (also known as the zero rate of angular momentum)

is applied to this study [83][84].

4.3 Arm Manipulator Modeling and Control

The manipulator arm is decoupled from the rest of the robot body and modeled sepa-

rately from the lower body of the robot. We used the resolved acceleration control method

to manipulate the end-effector position and acceleration in the Cartesian plane [85].

A schematic of the manipulator is shown in Figure 4.2. For simplification purposes,

we assumed that the masses of the links act as point masses and are located at the end

of each link. Furthermore, the CoM of each link was located at the far end of the corre-

sponding link. In addition, friction was considered negligible. The rigid-body dynamics

equation for a two-link arm can easily be derived using the Lagrangian formulation and

is generally presented in the following form:

τm = M(θ)θ̈ + h(θ, θ̇)+ g(θ), (4.1)

where τm is the vector of the joint torques τ 1 and τ 2, θ is the vector of the joint angles θ1
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Figure 4.2 Schematic of the arm manipulator on top of the lower limb of the wheel-legged robot.

and θ2, h(θ, θ̇) is the vector of the Coriolis and centrifugal forces, g(θ) is the vector of

the gravitational forces, and M(θ) is the inertia matrix that is symmetric, positive definite,

and always invertible.

M(θ) =

M11 M12

M21 M22


where

M11 = I1 + I2 +m1l
2
g1

+m2

(
l21 + l2g2 + 2l1lg2 + 2l1lg2 cos(θ2)

)
M12 = M21 = I2 +m2

(
l2g2 + l1lg2 cos(θ2)

)
M22 = I2 +m2l

2
g2

The manipulator works in the horizontal plane, so the gravity term is exactly equal to zero

and (4.1) reduces to:

τm = M(θ)θ̈ + h(θ, θ̇), (4.2)

The vector of the Coriolis and centrifugal forces is:

h(θ, θ̇) =

−m2l1lg2θ̇2
(
2θ̇1 + θ̇2

)
sin(θ2)

m2l1lg2θ̇
2
1 sin(θ2)


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Figure 4.3 Arm Manipulator control scheme.

4.3.1 Resolved Acceleration Control

To control the end-effector position, velocity, and acceleration in the Cartesian plane,

we must transform (4.2) from joint-space variables to Cartesian space variables. This is

achieved by using the Jacobian matrix that relates the joint velocities of the manipulator

to the Cartesian velocities of the end-effector, as follows:

ṙ =

Aẋee

Aẏee

 = J

θ̇1
θ̇2


where the closed-form Jacobian matrix is denoted as:

J =

−l1 sin(θ1)− l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)

l1 cos(θ1) + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)


Equation (4.2) then becomes:

τm = M(θ)J−1
(
r̈ − J̇ θ̇

)
+ h(θ, θ̇) (4.3)

83



4.4. FINITE-STATE MACHINE FOR ACTIVE ARM USAGE

Figure 4.4 State machine flowchart for active arm usage.

Equation (4.3) can be used to design a simple controller that reduces the error between

the desired and actual position, velocity, and acceleration of the end-effector. Here, we

choose a simple proportional derivative (PD) control scheme that results in:

τm = M(θ)J−1
[
r̈d +Kv(ṙd − ṙ) +Kp(rd − r)− J̇ θ̇

]
+ h(θ, θ̇)

(4.4)

where r̈d is the vector of desired accelerations in the Cartesian plane, ṙd is the vector of

the desired velocities, rd is the vector of the desired positions, and Kp and Kv are the PD

controller gains for the position and velocity, respectively. Suitable PD controller gains

were obtained through trial and error in the simulations. Figure 4.3 presents the overall

controller scheme for the manipulator arm of the robot.

4.4 Finite-State Machine for Active Arm Usage

In simple words, a finite-state machine (FSM) is a computational model to execute

sequential logic. Due to their flexibility, low computation requirements, and simplicity,

FSMs are commonly used in games, traffic light systems, and other artificial intelligence
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applications.

To control the end-effector acceleration and position to cancel out or mitigate the

external disturbances on the robot, we design a finite-state machine, as shown in Figure

4.4. First, we check the translational acceleration of the robot, and if it is greater than

a certain threshold ath, then the end-effector accelerates in the opposite direction of the

robot’s translational acceleration with some proportional gain Kx.

Second, when the robot traverses a curve, it rotates the end-effector toward the center

of the curvature to deal with outward inertial forces such as centrifugal force. However,

to distinguish whether the robot is traversing a curve or it is merely a small rotation, we

take the time-weighted average of the reference yaw velocity (α̇ref )TWA over the period

of a half-second. If (α̇ref )TWA is zero, which indicates that the robot is not traversing a

curve, then the end-effector remains at its home position.

In this manner, if the robot rotates in the clockwise direction, the end-effector moves

toward the right side of the robot, and when the robot rotates in the counterclockwise

direction, the end-effector shifts toward the left side.

4.5 Centroidal Moment Pivot

Goswami and Herr independently introduced the centroidal moment pivot (CMP) as

a useful criterion for the analysis and posture stability measure of biped robots [86][87].

CMP is derived from the rate of change of the angular momentum ḢG, which is applica-

ble only when a robot is walking on a planar surface. The loss of balance in biped robots

simply means that ḢG is non-zero. We used this key stability criterion for the first time

for a biped wheel-legged robot.

CMP is defined as the robot’s CoM projection point on the ground along the resultant

ground reaction force [88][89]. In other words, it is the point where the reaction force

needs to be applied to result in zero ḢG. Thus, the amount of CMP deviation from the

body center can indicate the intensity of the whole-body balance instability, and hence
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it is used to evaluate the resultant balancing stability in this study. CMP (pf ) is derived

from the position of the CoM of the robot, ground reaction force vector, and a normal

vector, as follows:

pf =
(p0 − c) · n

f · n
f + c (4.5)

where c is the position of the CoM, n is the normal vector to the ground plane, f is the

vector of the ground reaction forces, and p0 is the ground level.

There are no sensors available to measure the ground reaction force directly from the

robot, so we approximately calculate f as follows:

f = m(c̈− g) (4.6)

where c̈ is the acceleration of the CoM, m is the total mass of the robot, and g is the

vector of gravitational acceleration.

For a planar surface, (4.5) can be reduced to:

pf =
p0 − cz

fz
f + c (4.7)

where cz and fz are the vertical components of the CoM position and ground reaction

force, respectively.

4.6 Simulation Validation and Results

In this section, we present the details of the simulation setup and experimental results.

The bipedal wheel-legged robot was designed and simulated using the Gazebo simulator,

and the robot operating system (ROS) was used to implement the control framework in

C++ [52][90]. The lower body and manipulator controls of the robot were decoupled from

each other, so they were implemented separately. In all experiments, the robot carried a

can of cola in its manipulator hand to simulate a real-world example, as shown in Figure
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(a) 27N force push.

(b) 31.5N force push.

Figure 4.5 Temporal variation of the centroidal moment pivot (CMP) point under the translational

disturbances while the robot is holding a typical can.

4.1b. The stretched arm of the robot was 0.6 m in length, and in all experiments the initial

arm posture remained at the home configuration (Axee = 0.3, Ayee = 0) to hold an object

in front of the robot body and to allow ample room for arm motion.

4.6.1 Translational Disturbance

We began by applying translational pushes to the robot in the −XC direction, and the

arm is actively used to cancel these external disturbances as shown in Figure 4.6. Multiple

experiments were performed to characterize the effects of arm acceleration on the CMP

stability of the robot. Additionally, to statistically improve the results, each experiment

was performed five times and the mean errors and standard deviations were computed.

The results are presented in Table 4.1 that compares the fixed arm cases and the active

arm cases together with percentage differences information. As force was applied to the
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sagittal plane of the robot, errors were measured as time integration in its translational

direction to measure the overall amount of instability over the time. Furthermore, to

observe the implications of object mass on system stability, we divided the experiments

into two categories. The first set of tests was performed with endpoint mass of 360g

assuming that the robot is holding a typical canned drink. In the second set of experiments,

we doubled the endpoint mass to 720g and its respective moment of inertia.

In the first experiment, we used the threshold force of 20 N that could activate the

arm acceleration to cancel the external translational disturbances. The linear force was

applied to the robot body at time t = 10s of the experiment, first in the fixed arm posture

and then with the end-effector acceleration control. The results demonstrate that the arm

acceleration to cancel the effects of the external push reduced the CMP mean error by

more than 12% over the fixed arm configuration. This difference is more pronounced in

the case of the heavy can, where the CMP error was reduced by over 18%.

In the second experiment, the external force applied was 23 N. When the robot was

carrying a typical can the CMP error decreased from 2.2044 m.s to 1.8885 m.s thanks to

the active arm usage. Likewise, when the can mass was doubled, the CMP error decreased

further from 2.2098 m.s to 1.7901 m.s. In the typical and doubled examples, the errors

were reduced by 14.33% and 18.99%, respectively.

Likewise, the same experiments were repeated for 25 and 27 N forces. The results

of the 27 N force experiment, in which the robot is holding a typical can, are shown in

Figure 4.5a for both the fixed arm case and arm acceleration method. It is clear that the

robot successfully maintains a small CMP error while using its arm compared to when

the arm is fixed. We found that without using the end-effector acceleration(the fixed

arm configuration) the robot could only sustain the maximum translational push of 27 N.

However, the end-effector acceleration could increase its ability to maintain balance for a

push of up to 31.5 N for a typical can and 32.5 N when the can mass was doubled. Figure

4.5b demonstrates the CMP of the robot when a force of 31.5 N was applied to the front

of its body.
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(a) Top view of the robot during frontal push.

(b) Perspective view of the robot during frontal push.

Figure 4.6 Wheel-legged robot reacting to the frontal push of 27N with active arm acceleration

control. In the first scene, the disturbance is applied to the robot’s front side. The arm starts

to make extension action as it is reacting actively to cancel this disturbance. The blue sphere

shows the total robot CoM and the pink sphere shows the CMP point. Just after the push, the

mismatch between the CMP and the ground projected CoM is large due to the external disturbance.

However, after making the arm extension action, this mismatch is disappeared in a few scenes,

which demonstrates the balance recovery.

4.6.2 Rotational Disturbance

We define rotational disturbance as an external moment applied about the robot’s ver-

tical axis. During human-robot interactions, such type of strong external forces can desta-

bilize the robot and pose the risk to humans and/or other nearby objects. For the purpose

of measuring the effectiveness of the arm compensation to mitigate external moments,

we applied a 16 Nm torque about the Z-axis of the robot body, as seen in Figure 4.7.

To compensate for the sudden rotation as a result of external torque, the robot moves its

end-effector in the opposite direction of the robot’s rotation to generate a counter angular

acceleration.

It is clear from the plot that the yaw angle stays small when active arm compensation

is used. Furthermore, the settling time for the yaw angle is also shorter than the without

arm compensation case. However, these differences are negligible and may not make

significant difference in real-world situations. A major reason for this behavior could be
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Figure 4.7 Rotational disturbance.

that we put limitations on the arm joints i.e. −π/2 ≤ θ1 ≤ π/2, this limits the arm’s

ability to generate adequate angular motion.

4.6.3 Lateral Disturbance

When a body moves around a fixed point in a circular path, an inertial force acts

radially outwards on the body, called the centrifugal force. This force, along with external

lateral forces, can cause rollover accidents on roads if vehicles try to navigate sharp curved

paths at higher speeds. However, this phenomenon is not limited to road vehicles, as

modern mobile robots are equally susceptible to these forces. To counter the effects of

centrifugal force on a wheel-legged robot in circular trajectories, Siegwart et al. proposed

regulating the roll angle of the robot using its knee joints as a function of the zero-moment

point [41].

When humans ride a bike over a sharp curvature, they anticipate the potential centrifu-

gal force in order to increase the stability margin. Inspired by this fact, we propose active

arm usage for traversing curved trajectories by the wheel-legged robot. In this section, we

present the results of the proposed method in which the robot uses its manipulator arm to

move its CoM and to shift the balance point toward the center of the circular path, thereby

improving its robustness against lateral forces.

Figure 4.8 shows the experiment in which the robot traverses an infinity-loop shape
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External
Force

Endpoint Mass 360g

Fixed Arm Active Arm Percent
Change∫

|ex|dt
∫
|ex|dt

20N 1.9582±0.0062 1.7076±0.0042 12.7948%
23N 2.2044±0.0161 1.8885±0.0019 14.3302%
25N 2.3469±0.0083 2.0213±0.0102 13.8746%
27N 2.4931±0.0226 2.0539±0.0164 17.6137%
31.5N N/A 2.2887±0.0221 -

Endpoint Mass 720g

Fixed Arm Active Arm Percent
Change∫

|ex|dt
∫
|ex|dt

20N 1.9778±0.0073 1.6207±0.0008 18.0554%
23N 2.2098±0.0120 1.7901±0.0067 18.9938%
25N 2.3529±0.0078 1.9139±0.0072 18.6565%
27N 2.4983±0.0045 2.0401±0.0123 18.3414%
32.5N N/A 2.2160±0.0136 -

Table 4.1: Balance stability indicated by the time integrated CMP errors as a result of the forces

applied to the robot body, along with the standard deviations. The smaller CMP errors indicate

higher balance stability. ex denotes the CMP error in the robot’s sagittal plane. In contrast, N/A

implies that the robot falls over as a result of the corresponding external force. For all cases, the

active arm usage improves the balance stability as indicated by the percentage change compared

to the fixed arm case.

trajectory at different speeds. We chose the infinity-loop shaped trajectory because it

provides a good combination of linear and circular paths. First, we start with the normal

speed in which the maximum translational velocity is 0.3m/s and maximum yaw velocity

is 0.3 rads/s. Figures 4.8a and 4.8b show the experiments in a ROS-Gazebo environment

for the fixed arm and active arm cases, respectively. We can clearly see that the robot

follows the target trajectory completely in both cases when it is moving rather slowly.

However, it is evident from Figure 4.8b that by moving the arm towards the center of the

curvature, the CMP not only remains inside the loop but also has a bigger margin from

the target trajectory than in the fixed arm case (Figure 4.8a).

In the second experiment, we enhanced the maximum translational velocity of the

robot to 0.7 m/s and the maximum yaw velocity to 0.6 rads/s. The inertial forces on
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(a) Fixed arm at vmax = 0.3 m/s and α̇max =

0.3 rads/s.

(b) Active arm at vmax = 0.3 m/s and α̇max =

0.3 rads/s.

(c) Fixed arm at vmax = 0.7 m/s and α̇max =

0.6 rads/s.

(d) Active arm at vmax = 0.7 m/s and α̇max =

0.6 rads/s.

Figure 4.8 Infinity-loop trajectory tracking with the wheel-legged robot. By increasing motion

speed, we observe the balance point indicated by CMP is going outward against the target tra-

jectory for the fixed arm case. In contrast, by articulating the arm, this balance point can be

manipulated toward the inside even at high speeds, which allows increasing balance stability mar-

gin even if there is outward centrifugal force during a curved trajectory tracking.

the robot increased as the robot speed increased on the curves. Additionally, the CMP

moved radially outwards, as seen in Figures 4.8c and 4.8d. Furthermore, in both cases it

is clear that the robot does not closely follow the target trajectory and its path diverges

from the goal trajectory because of the increased speed and consequential inertial forces.

Nevertheless, Figure 4.8d suggests that the robot has a higher stability margin for the

lateral disturbances as the CMP remains inside the target trajectory and closer toward the

center of the curvature.

4.7 Discussion

The simulation results clearly demonstrate that the proposed arm acceleration control

improves the overall translational and lateral stability of the wheel-legged self-balancing
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robot. However, this approach depends on the mass and inertia of the object carried by the

end-effector and the initial configuration of the end-effector itself. The video demonstra-

tion of the presented experiments is available at https://youtu.be/KQ1mbQeLFtc

Figure 4.6 shows the motion of the robot arm during a frontal push of 27 N. We can

observe that the robot starts to accelerate its end-effector towards the forward position as

soon as the force is applied, and once it returns to its reference position the end-effector

also returns to the home configuration. The first part of Table 4.1 shows how the arm

acceleration with holding a typical can reduces the errors as the external force increases on

the robot. However, it is also clear from the second part of the table that when the can mass

is doubled the errors cannot be reduced after a certain level. This ascertains a fundamental

limit on reducing the effects of external forces through the use of a manipulator arm.

Indeed, this is a similar situation to the human movement. Humans use their arms to

increase balance stability, but there is a certain limit related to the mechanical dynamics

condition where the arm mass portion is limited against the total whole-body mass.

In addition, the use of the arm can increase the robot’s maximum tolerance to the

external linear push from 27 to 31.5 N with the typical can carrying task and 32.5 N

when the mass of the can is doubled, an increase of 16.67% and 20.37% compared to the

fixed arm case, respectively. This makes a significant contribution to the overall system

stability. This concept would lead to the wheel-legged biped robot with an active arm for

dual purposes, one is for carrying objects, another is for increasing the balance stability.

This point is important for the future application of wheel-legged biped robots in a real-

world environment with complex interactions.

4.8 Conclusion

In this chapter, we proposed and validated a novel scheme to improve the stability

of a wheel-legged biped robot with active usage of its arm manipulator. To assess the

system stability, we also used the CMP as an evaluation metric, which is commonly used
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for humanoid robots but had not been previously used for wheel-legged biped robots.

Through several experiments, it was shown that the proposed method improved stability

against translational disturbances and centrifugal and lateral forces when traversing curves

at high speeds.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This dissertation addresses the stability and robustness problem of self-balancing

wheel-legged robots that are underactuated and nonlinear in nature. Several motion con-

trol strategies are developed and tested to control a three degrees of freedom (DoF) wheel-

legged robot called Igor on a horizontal plane.

In chapter 2, we derived the equations of motion of the robot using the famous Lagrange-

Euler method by assuming it as a wheeled inverted pendulum. During the mathematical

modeling of the system, we also considered the viscous friction of the wheel joints and

non-holonomic constraints due to the differential drive. The nonlinear equations of mo-

tion of the robot are then linearized about the equilibrium point of the pitch angle (β ≈ 0).

After state-space modeling of the robot, we developed a linear state-feedback controller

using the pole-placement method and a linear quadratic regulator (LQR). Both controllers

were tested in the Gazebo simulator under sensor noise and external translational and ro-

tational disturbances. These results confirmed the advantages of the optimal LQR over a

manually tuned state-feedback controller. Lastly, we developed a nonlinear model-based

Computed Torque controller and combined it with the LQR. The simulations and exper-

imental results on the real robot suggested that the combined controller is more robust
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against the model uncertainties and outperforms the linear LQR and the nonlinear Com-

puted Torque controller.

In chapter 3, we developed a state-of-the-art L1 adaptive controller to stabilize the

robot’s pitch angle. The L1 adaptive controller is adopted because it gives a predictable

transient response and guarantees the robustness of the closed-loop system. Furthermore,

it decouples the estimation loop from the control loop and hence enabling high adaptation

gains without compromising system stability. The proposed control scheme combines the

L1 adaptive controller with the full state-feedback LQR to improve the robot’s robust-

ness against the system modeling errors, parameter uncertainties, and unknown external

disturbances. Simulation results showed that the proposed L1 augmented LQR controller

kept the robot balanced against a big translational push even when the viscous friction co-

efficients of the wheel joints were set inaccurate. Similarly, the proposed control scheme

and the standalone LQR were tested on the real robot under external disturbances and

different ground friction scenarios. The real-time experiments also validated the effec-

tiveness of the proposed L1 augmented LQR controller that achieved accurate control

under uncertain conditions due to its fast adaptation.

In the end, inspired by the humans’ and other animals’ ability to use their limbs to

improve their body balance, chapter 4 proposed a novel control scheme that uses an arm

manipulator on top of the wheel-legged robot to mitigate external disturbances and en-

hance the overall stability. Furthermore, we used the centroidal moment pivot (CMP)-a

key criterion to determine stability in humans for a wheel-legged robot. The two-link arm

manipulator is controlled by the resolved acceleration control method while the lower

body is stabilized by the LQR. A finite-state machine is designed to determine the be-

havior of the arm’s end-effector when the robot is under the influence of certain linear or

rotational accelerations. Several simulation tests proved that the robot successfully atten-

uated the effects of external forces and also improved its stability while traversing curved

paths by the use of an active arm.
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5.2 Future Work

Due to higher speed, maneuverability, and agility, wheel-legged robots have the po-

tential to be used in a variety of environments such as homes, smart warehouses, hospitals,

hotel lobbies, etc. However, these robots are prone to fall over due to their dynamic bal-

ancing and underactuated nature. In this study, we developed different control strategies

to improve the stability and robustness of these robots, nonetheless, there remain many

challenges to be solved in the future. For example, in this study we assumed a flat ground

on which the robot is operating, however, in reality, this is seldom the case. One poten-

tial solution to overcome this assumption is to use impedance control for the knee and

hip joints. It will mitigate the effects of uneven surfaces as the robot will adjust its legs

accordingly instead of keeping the leg configuration rigid.

Second, we augmented an L1 adaptive controller with the LQR, since the L1 adaptive

control theory is lacking for the underactuated MIMO systems, for this reason, we de-

signed L1 adaptive control to stabilize the pitch angle of the robot only. Future work can

be extended to develop an L1 adaptive controller to stabilize and control all three degrees

of freedom of the robot. Furthermore, as discussed in section 3.7, the design of the low-

pass filter of the L1 adaptive controller determines the performance of the closed-loop

system. A systematic approach to design an optimal low-pass filter for the L1 adaptive

controller is still required.

We believe machine learning approaches will be critical in improving the stability and

robustness of the underactuated wheel-legged robots. As yet these data-driven methods

have not been widely explored and implemented on real wheel-legged robots
(
[5] being

the exception
)

because of the challenges of sim-to-real transfer and underactuation in the

sense of input-output of these robots. Therefore, another possible future research direction

is to develop learning-based control methods for nonlinear wheel-legged robots.
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Appendix A

Experimental Wheel-legged Robot Igor

In this appendix, we present the details of the experimental wheel-legged robot Igor

used in this research. Igor as seen in Figure A.1 is a modular wheel-legged robot with

14 degrees of freedom designed by Hebi Robotics, a spin-off company from Carnegie

Mellon University in the United States [55]. The primary advantage of this robot is that

it is modular and its configuration can be adapted according to one’s needs. Since in

this research we are only concerned with the lower body dynamics and motion control,

robot arms are not used. Excluding the robot’s arms that are usually used for object

manipulation, its degrees of freedom are reduced to six, three on each leg.

The robot’s maximum height is about 1 meter, and simple hollow steel tubes are used

as its legs. Each leg consists of two parts i.e. upper leg (0.35 meters in length) and the

lower leg (0.30 meters in length). Also, the distance between the centers of the two wheels

is about 0.50 meters. Igor comes with a PD controller, and therefore can be controlled via

its joystick or mobile phone app. Even though the battery life of the robot is 1− 2 hours

but it has the ability to hot-swap the batteries for longer usage.

A.1 Robot Modules

The Igor robot is consist of five main modules,
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Figure A.1 A fully assembled 14 DoF Igor robot.

• Main chassis that includes an Intel computer that runs a Linux-based Ubuntu oper-

ating system, an Ethernet switch, and a WiFi module for wireless connectivity.

• Two Grin Tech’s LiGo batteries of 98 Wh capacity each to power the whole robot.

• Hip, knee, and wheel actuators.

• Two gas springs to support the load on robot’s knees.

• 8-inch diameter wheels.
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(a) Front of the chassis. (b) Back of the chassis.

Figure A.2 Main chassis of Igor robot.

A.1.1 Robot Chassis

Igor has a squared 12 × 12 inches chassis that includes a computer and batteries as

shown in Figure A.2. The Intel NUC computer works as the central processing unit of

the robot and all the actuators are connected to it. Intel NUC is equipped with a Core

i3 processor that can clock up to 3.60GHz with 4M of cache memory, 8GB of RAM,

and 256GB of SSD. Furthermore, to connect other peripheral devices such as a monitor,

keyboard, Lidar, etc. with the computer, it has an open Ethernet port, four USB ports, and

an HDMI port. A power converter is used to convert the 36 volts of the batteries to 12

volts for the NUC computer board.

A.1.2 Actuators

The Hebi robotics’ X-series actuator modules are smart series elastic actuators (SEAs)

that combine BLDC motor, spring, geartrain, and electronic control unit in a compact

casing. Every actuator module is equipped with an Ethernet port for high-speed commu-

nication and multiple sensors like IMU, torque sensor, encoder, etc. Furthermore, each

actuator module runs a real-time operating system (RTOS) to collect and filter the data

from these sensors. These actuator modules provide simultaneous control of position, ve-
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Figure A.3 Hebi Robotics’ X-Series actuator module.

locity, and torque at a rate of up to 1 kHz. Three different types of actuators are employed

for hips, knees, and wheel actuation based on the joint’s torque requirements.

• The X5-9 model is used for hip joints because of its relatively little torque needs.

This module is capable of generating about 9 N.m of torque at a lower speed.

• Robot knee joints bear most of its load and hence require powerful actuators. The

X8-16 model is therefore deployed for knee joints. This actuator module can pro-

duce up to 16 N.m of torque at lower speeds.

• To balance the robot, its wheels need to have a higher speed. For this reason, the

X8-3 model is used for wheel joints which can run up to 80 RPM at lower torques.
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