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Abstract

The work in this thesis is concerned with the development. of a novel and practical col-
lision avoidance system for autonomous underwater vehicles (AUVs). Synergistically,
advanced stochastic motion planning methods, dynamics quantisation approaches,
multivariable tracking controller designs, sonar data processing and workspace repre-
sentation, are combined to enhance significantly the survivability of modern AUVs.

The recent proliferation of autonomous AUV deployments for various missions such
as seafloor surveying, scientific data gathering and mine hunting has demanded a sub-
stantial increase in vehicle autonomy. One matching requirement, of such missions is
to allow all the AUV to navigate safely in a dynamic and unstructured environment.
Therefore, it is vital that a robust and effective collision avoidance system should be
forthcoming in order to preserve the structural integrity of the vehicle whilst simul-
taneously increasing its autonomy.

This thesis not only provides a holistic framework but also an arsenal of compu-
tational techniques in the design of a collision avoidance system for AUVs. The
design of an obstacle avoidance system is first addressed. The core paradigm is the
application of the Rapidly-exploring Random Tree (RRT) algorithm and the newly
developed version for use as a motion planning tool. Later, this technique is merged
with the Manoeuvre Automaton (MA) representation to address the inherent disad-
vantages of the RRT. A novel multi-node version which can also address time varying
final state is suggested. Clearly, the reference trajectory generated by the aforemen-
tioned embedded planner must be tracked. Hence, the feasibility of employing the
linear quadratic regulator (LQG) and the nonlinear kinematic based state-dependent
Ricatti equation (SDRE) controller as trajectory trackers are explored.

The obstacle detection module, which comprises of sonar processing and workspace
representation submodules, is developed and tested on actual sonar data acquired
in a sea-trial via a prototype forward looking sonar (AT500). The sonar processing
techniques applied are fundamentally derived from the image processing perspec-
tive. Likewise, a novel occupancy grid using nonlinear function is proposed for the
workspace representation of the AUV. Results are presented that demonstrate the
ability of an AUV to navigate a complex environment.

To the author’s knowledge, it is the first time the above newly developed method-
ologies have been applied to an AUV collision avoidance system, and, therefore, it is
considered that the work constitutes a contribution of knowledge in this area of work.
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Chapter 1

Introduction

1.1 Motivation

It is surprising to know that approximately 80% of the Earth bound organisms are in
the ocean and the oceans constitute 99% of the living space on the planet. Thereby,
supporting the fact that oceans play a vital role in sustaining the Earth’s ecology
(MarineBio 1998). Even with current technology advancement, the surfaces of Mars,
Venus, and the Moon are much better mapped than Earths’s ocean floors (Smith
2004). One obvious reason is that the exploration of this environment is extremely
difficult to perform, however it is still desirable for the advancement of economic,

political, scientific and military purposes.

Consequently, over the last few decade there has been an exponential growth in the
applications of unmanned underwater vehicles (UUVs), particularly in the field of
science, the offshore industry and the military. Cost reductions and the mitigation
of the risk of human life have become the impetus for UUV exploitation. UUVs can
be used for sea bottom exploration, repairing, surveying, policing exclusive economic
zones, mine-hunting, seabed mapping and scientific data, and intelligence gathering.
In this context, the term ‘unmanned underwater vehicle’ is considered as a generic
expression to describe both an autonomous underwater vehicle (AUV) and a remotely
operated vehicle (ROV). ROVs are human operated via an umbilical cable and are

highly manoeuvrable underwater vehicle. However, this does severely limit its oper-
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ating range. Unlike the ROV, the AUV without, the restraint of an umbilical, is a free
swimming vehicle of higher autonomy, capable of performing missions that require
longer operating ranges without human intervention. For clarity of exposition, the
term AUV will be used for the remainder of the thesis because of its more challenging
and rigid requirements. Nonetheless, the ideas discussed are still applicable to a wide
range of vehicles. It is worth reviewing the recent trends in AUV applications, to

better appreciate their contributions.

The offshore and scientific communities, who are especially sensitive to financial con-
straints, were quick to seize the opportunity in exploiting the potential of AUVs.
Some of the commercial AUVs for offshore survey are Hugin (Norway) (Vestgard
1999), Aqua Ezplorer 1000(Japan) (Kato et al. 1993) and Theseus(Canada) (But-
ler and Hertog 1993). These has been reinforced by the recent placing of orders
to purchase AUVs by Fugro-Geos Ltd, C&C Technologies and Racal Survey Ltd
(Anon 1999). In the case of the scientific community, AUTOSUB (Griffiths et al.
1999) (Fig 1.1) and Theseus AUV (Ferguson et al. 1999) (Fig 1.2) have demonstrated
their ability to navigate under polar ice caps while the Autonomous Benthic Ezplorer
(ABE) (Yoerger et al. 2000) (Fig 1.3) has performed a fine-scale sea floor survey in
a rugged deep-ocean terrain. All of these have been achieved at significant financial
cost saving. These impressive achievements further strengthen the belief that AUV
applications will continue to escalate as the realisation of the importance of ocean

resources unfolds.

Recently, the military has shifted its focus from blue-water to brown-water warfare.
This was instigated by the increase propensity for littoral water operations and the
attendant. focus on amphibious power projection (Foxwell 2000). Technically, the
littoral zone is a subdivision of the benthic province that lies between the high and
low tide marks and can be considered as an extension of the shoreline to 600 ft (183
m) out into the water. The importance of accessing the littoral zone is critical if
a successful amphibious launch is to be achieved. The littoral zone is an intricate
area to navigate by default, with unpredictable nature’s effects such as biolumines-
cence!, iniernal waves, coastal currents, changing beach profile, reefs and artificial

objects. This is made increasingly difficult by the proliferic deployment. of cheap un-

'Refers to the light producing ability of certain surface organisms. Any provocation of the
organisms will cause them to emit light. Thus to maintain stealthiness, AUVs must take extra
precautions when travelling on or near the surface.
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lacking is an authority who can implement these instituted rules. One reason for the
absence of interest in enforcing these rules is probably due to insufficient risk justi-
fication, especially the risk to human life. Unlike an UAV, which shares the same
civil airspace with commercial aircraft, an AUV normally conducts its mission under
the water where the chance of encountering another AUV or submarine is extremely

unlikely at the moment.

In spite of this, the current scenario is about to change as there is a sudden surge of
interest in the field of multi-agent underwater robots. By working cooperatively and
via mutual information sharing, these AUVs will be able to complete missions such
as oceanographic sampling (Chappell et al. 1997) and mine hunting with substantial
reduction in both operational time and cost. This, as a result, necessitates a set of

proper ‘Rules of the Road’ to safely and successfully conduct a multi-AUV mission.

In the forthcoming text several notions such as configuration space, holonomic system,
nonholonomic system and underactuated system, will be used pervasively. Therefore

it is felt that an explanation of these notions is in order.

Configuration space (C-space) is a fundamental tool introduced in the late seventies
to address the basic motion planning problem (Lozano-Perez and Wesley 1979). C-
space is a set of all possible configurations of a robot or, to be more precise, a vehicle
in this case. The dimensionality of a C-space is equivalent to the number of degrees
of freedom (independent parameters) of the vehicle. For instance, Fig 1.5 shows a
4-wheel vehicle constrained to plane movement. One can describe the vehicle config-
uration using 3 variables; (z,y, ), two translations and one rotation, concluding that
this is a 3 dimensional C-space. Unlike a workspace, in a C-space the vehicle shape
is ‘patched’ to the obstacles. Subsequently, the vehicle can be represented as a point
which has the effect of simplifying the path planning process. In general, the high
dimensionality of the C-space of nontrivial devices is perceived as the principle reason

behind the complexities of a motion planning problem (Hwang and Ahuja 1992).

A system is considered to be holonomic or fully actuated when it has the same number
of independent inputs as the configuration variables. Elsewhere, a nonholonomic
system arises when the system has less control inputs than its configuration variables.
These are generally characterised by nonintegrable constraint equations involving the

time derivatives of the system configuration variables. As stated in the configuration
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Figure 1.5: A diagram showing a 4-wheel vehicle configuration variables and control
inputs

space section, the 4-wheel vehicle has only two independent control inputs (v, speed
and, ¥, angular velocity) contrasting to three configuration variables, which results in
a nonholonomic system. A first order nonholonomic relation can normally be written

in the form of a time-invariant ordinary differential equation (ODE),
x = f(x(t), u(t)) (1.1)

that deals with only nonintegrable velocity. Where x is the state vector, and u is
the input vector. On the other hand, the second order nonholonomic relation, can be

written as,
% = f(x(t),%x(t),u(t)) (1.2)

which deals with nonintegrable acceleration. This type of problem is also known as
a kinodynamics problem (Amato and Wu 1996, LaValle and Kuffner 1999} and is
frequently found in underactuated systems such as surface vessels, spacecraft, manip-
ulators and underwater vehicles. Suffice to say that controlling and motion planning
for these systems is significantly more challenging than for the holonomic cases. A
thorough review of nonholonomic controls and planning can be found in Laumond
(1998).
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1.2 Aim and Objectives of the Research

The overall aim of this research is to design and develop a collision avoidance system
for AUVs. This encompasses the obstacle detection and the obstacle avoidance sub-
systems. Both simulations and implementation are investigated. As for the proof of
concept, implementations are sought wherever possible, however, due to the unavail-
ability of certain critical sensors, hardware and facilities, this is not always feasible.
The simulations must be conducted as realistic as possible using accurate nonlinear
dynamics of AUVs. It should be stressed that to formulate a meaningful and realistic
thesis research project, there should be limitations on the scope of the research to
make the problem manageable. Thus in keeping this research focus, the reflexive
techniques, navigation and multiple target tracking topics have been omitted. The

objectives of this research are provided as follows:

a. Critically review the current collision avoidance techniques, with a special em-

phasis on UUV applications.

b. Analyse, adopt and enhance a potential motion planning scheme for the AUV

implementation.

c. Design a novel motion planner which can generate system dynamic compliant

and near-optimal trajectories whilst remaining computationally attractive.

d. Develop a robust, multivariable trajectory tracker for underactuated vehicles
such as AUVs.

e. Critically assess the suitability of various trajectory tracking controllers.

f. Evaluate the proposed obstacle avoidance technique’s performance in simula-

tions for various scenarios.

g. Employ suitable techniques and the AT500 sonar to develop a functional obsta-

cle detection system.

h. Conduct a sea trial to check the viability of the proposed sonar data processing

and workspace representation schemes.
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Objective (a) is detailed in Chapter 2. Likewise, Objectives (b) to (e) are discussed
within Chapters 4 to 6. These objectives pertain to the design of the obstacle avoid-
ance module of an AUV. Specifically, the work within Chapter 5 details the results
concerning objective (c). Chapter 6 documents work satisfying the objectives (d)
to (f) whilst objectives (g) and (h) are accomplished in Appendix A. The last two
objectives detail the development of obstacle detection techniques with a particular
emphasis on the AT500 sonar application.

1.3 Thesis Overview

Accordingly, the thesis is structured as follows, Chapter 2 elaborates upon the related
research and technologies employed for the collision avoidance purpose, particular for
those that are being applied in AUVs. Due to the complexity of the topic, the survey
has been divided into two distinct parts, the obstacle detection and the obstacle
avoidance. Subsequently, Section 2.1 surveys control architecture and Section 2.2
deals with system architecture. The detection system, both software and hardware,
are explored in Section 2.3. The remaining section focuses on a plethora of motion
planning and reflexive techniques. This detailed technology survey has culminated to
the publication of two papers (Tan et al 20045, Tan et al. 2004c).

Chapter 3 elaborates regarding the system and disturbance modelling. Clearly, in
order to run a realistic simulation, an accurate mathematical description of both
the plant and the disturbances must be available. The rigid body dynamics of an
underwater vehicle are briefly explained hefore being presented with two models of
AUVs, the Remus and the AUTOSUB. The Remus model is employed only for RRT
simulation in Chapter 4. Owing to the absence of proper surge dynamics, the more
realistic and complex model of AUTOSUB is preferred and adopted for the rest of
the simulation runs. The modelling of both exogenous and endogenous disturbances

which correspond to underwater current and sensor noise are also being treated herein.

With the knowledge gained through the aforementioned survey, it is decided that this
research will focus on the RRT algorithm. lts intriguing properties coupled with its
strong potential for practical implementation rendered it a worthy topic of research.

As a motion planning algorithmn, the RRT algorithm is used to find the feasible control
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inputs that can take the vehicle from the initial state to the final state. Hence,
Chapter 4 is reserved to detail the RRT mechanism, properties, algorithm, and its
implementation. An enhanced version of the RRT algorithm is proposed and applied
to a 3-DOF, nonlinear, Remus AUV model, where the results are also compared and
discussed.

Chapter 5 combines the RRT algorithm with Manceuvre Automaton (MA) approach,
to ameliorate the former algorithm performance. In essence, MA transforms the
continuous time nonlinear AUV model into a hybrid model. Effectively, this lowers
the computational requirement and provides higher level of abstraction in solving
the motion planning problem. Since, RRT solutions are inherently suboptimal, one
exploits the linear programming optimisation algorithm to obtain a near-optimal
trajectory instead. Also, for the case of performance betterment, the pseudo-random
generator is replaced by a quasi-random generator. A novel multi-node version of

RRT which can also cater for the case of time varying target is proposed.

Nonetheless, in practice, applying only the control inputs found by the trajectory
planner, RRT in this case, to the vehicle will not be sufficient to guarantee that it
will arrive at the desired final state. This is true since even with very small internal
and external disturbances, the vehicle will diverge from the predefined trajectory.
Therefore, it is crucial that a trajectory tracking controller be designed to address
this issue. Chapter 6 investigates and compares two candidate multivariable track-
ing controllers, one is the popular Linear Quadratic Regulator (LQR), another a less
well-known but still a highly effective, nonlinear controller known as State-Dependent
Riccati Equation {SDRE) controller. Simulation results are also presented and dis-
cussed. A few remarkable features of the proposed SDRE controller are: it is AUV
dynamics independent, considerably robust, and very simple to tune. Indeed, a highly

pragmatic solution to AUV tracking control problems.
Conclusions, achievements to date and future work are condensed in the Chapter 7.

Appendix A documents an additional and original work carried out on the topic
of sonar data processing and workspace representation. These two submodules, in-
cluding the multiple-target tracking submodule constitute a modern, generic, AUV
obstacle detection module. All the data presented in this chapter were acquired using
an AT500 sonar (Robinson et al. 2003) from J&S Marine Ltd, during a sea-trial at
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Coxside, Plymouth. This prototype forward looking sonar was designed especially
for AUV'’s obstacle avoidance purposes. The raw data supplied by the sonar is pro-
cessed within the context of image processing theory. The extracted information is
later transformed into an efficient workspace representation structure known as the
occupancy grid. Simulations demonstrate how an AUV navigates the environment.
Additionally, Appendix B provides the author’s published work, and Appendix C
outlines the AT500 specifications.

1.4 Contributions of the Thesis

The major contributions of this work are seen as:

e Providing an up-to-date, comprehensive review of the current collision avoid-
ance techniques, with special attention to UUVs. As a sign of keen maritime
community interest, a section of this review has been republished in Oceanology
Today (Tan et al. 2005a).

e A true 6-DOF nonlinear SIMULINK model of the AUTOSUB model was de-
veloped. The original model provided by QinetiQ) Ltd lacks surge dynamics.

e An enhanced RRT algorithm, based on the ‘reconnection’ concept was devised.
The algorithm optimization is based on a prescribed cost function, in this ex-

ample, the shortest distance criterion is employed.

e A novel multi-node version of RRT+MA which can also cater for the case of
time varying target is proposed. To author’s knowledge, this is the first study

of an AUV implementation of this particular technique.

e Performed a detailed study between the LQR and SDRE controller, with the
objective to select a potential candidate as the tracking controller. It was dis-
covered that the SDRE controller performance is substantially superior com-
pared to LQR in this case and is suggested for future AUV applications. It is
shown that it provides a flexible and yet simpler alternative to other underlying

multivariable controllers.
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e Sonar data processing and workspace representation techniques have been con-
ducted by employing the prototype AT500 sonar. This was achieved with col-
laboration with J&S Marine Ltd. Here, the emphasis is on practicability of the
techniques.



Chapter 2

Related Research and Literature

Survey

A survey of the current state-of-the-art algorithms and methodologies has been pur-
sued with the aim of identifying the most suitable technology to address the AUV
collision avoidance problem considered in this thesis. For clarity of exposition, the
structure of this chapter commences with an generic AUV control architecture, Sec-
tion 2.1, and immediately followed with the system architecture in Section 2.2. As
suggested by the section titles, control architecture and system architecture are inex-
orably linked. Control architecture pertains to a framework which manages the sen-
sorial and actuator system in order to enable an AUV to undertake a user-specified
mission. On the other hand, a system architecture defines the interconnection map

of vital modules to allow the proper functioning of an AUV.

Section 2.3 elaborates upon the detection system, both software and hardware are
discussed. A detection system functions as the ‘eye’ of an AUV, an essential module
for a collision avoidance system. This is then accompanied by Section 2.4, ‘Rules of
the Road’, Section 2.5 on motion planning techniques and Section 2.6 on reflexive
techniques. Although, motion planning and reflexive avoidance techniques share the
same objective, which is to avoid any collisions from occurring, compared to the re-
flexive avoidance techniques, the motion planning techniques are more comprehensive
and utilised more information related to the environment and obstacles. This allows

the motion planning techniques to function in an complex environment without being

14
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trapped in a local minima. Conversely, reflexive avoidance techniques are ad hoc in
nature, and able to function with minimal environmental information and computa-
tional resources while ensuing fast reaction. Generally speaking, the majority of the
techniques are also adopted by a few land and air research vehicles. However, in this
case emphasis shall be given to those techniques that are potentially useful to AUVs.

Finally, concluding remarks are provided in Section 2.7.

2.1 AUV Control Architecture

A control architecture is a framework which manages the sensorial and actuator sys-
tem in order to enable an AUV to undertake a user-specified mission. This is a major
topic of research and different approaches to AUV control architectures are discussed
in the literature (Ridao et al. 1999, Valavanis et al. 1997, Caccia et al. 1995b). This

section intends to elaborate on three major types of control architecture.

2.1.1 Deliberative architecture

This architecture is also known as a top down, structured, symbolic, goal-driven,
model-based, hierarchical or sense-plan-act approach. Deliberative architecture al-
ways maintains internal representations of its surroundings and this allows it to make
reasoning, prediction and inferencing concerning the environment. The information
flow direction is depicted in Fig 2.1(a). This scheme represents a well-defined tightly
coupled structure thus simplifying the process of designing, debugging and evaluating
the system. However, the amount of information flow from sensors to the centralised
computing resources can be significant. Exacerbating the situation is the synchro-
nisation difficulty of workspace representations and the environment. Owing to the
computationally intensive nature of the architecture, there is a tendency to exhibit
unresponsive or erratic behaviours in unpredicted situations. This architecture is
employed in the FAVE (Blidberg et al. 1990) and the OTTER (Rock et al. 1995).
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2.1.2 Reactive architecture

Also known as a bottom up, sensor-driven, layered, forward inferencing, subsumptive,
heterachical, behavioural and reflexive or sense-react approach. The theory of reac-
tive architecture was initiated by Arbib (1981) and implemented by Brooks (1986). It
is based on a parallel structure where each individual sensor is used to sense the envi-
ronment, providing its own perception and activating its own behaviour, refer to Fig
2.1(b). A global behaviour is produced by coordinating the parallel execution of in-
dividual behaviour. Its performance is excellent particularly in unforeseen situations.
Furthermore this scheme is known for its flexible and modular nature. However, its
propensity to demonstrate elusive behaviour when subjected to conflicting sensor in-
formation is a major concern. Also, its nondeterministic nature does not lend itself
to a straight-forward performance evaluation. Lastly, its deficiency in global map-
ping and in relation to workspace objects often results in simplistic behaviours which
tend to get trapped in certain cases. This architecture is employed in the Sea Squirt
(Bellingham et al. 1990) and the Twin Burger AUV (Fujii and Ura 1996).

2.1.3 Hybrid architecture

In the search for a superior architecture than the two previously discussed, the hy-
brid architecture was born through the amalgamation of both the above architectures.
Generally, it is decomposed into three task specific layers: deliberative, reactive and
execution layer, refer to Fig 2.1(c). In military parlance, it is called the strategic,
tactical and execution layer. Abstraction and real-time responsiveness varies corre-
spondingly at each level. The deliberative layer is in charge of high level planning
(non time critical) while the reactive layer is responsible for real-time issues. The
execution layer acts as supervisor to facilitate inter-layer interactions. Due to its ap-
parent advantages, most recent AUVs have employed a variant of this architecture.
The Garbi (Ridao et al. 2001), the SAUVIM (Yuh and Choi 1999) and the Phoeniz
AUV (Healey et al. 1995) are examples that exploit this architecture.
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Figure 2.1: Types of control architecture (a) Generic deliberative control architecture
(b) Generic reactive control architecture (c) Generic hybrid architecture

2.2 Collision Avoidance System Architecture

As stated previously, pure deliberative and reactive architecture do not function ad-
equately for a collision avoidance task. As hybrid control architecture provides an
ideal platform for integrating the functionality of the individual submodules, it is
not surprising that it is applied in the majority of the proposed obstacle avoidance
architectures (Hyland 1989, Arinaga et al. 1996, Antonelli et al. 2001, Moitie and
Seube 2000, Lane and Trucco 2000). Before proceeding to an in depth discussion
pertaining to the individual submodules, it would be more enlightening to provide
a simple description of the collision avoidance process to better elucidate the utility
of each submodule. A typical collision avoidance task can be considered like this.
First and foremost, a target must be acquired by a forward looking sonar. Clas-
sification of static or dynamic targets are then performed. Depending on the types
of object, their information will then be fused with AUV navigation data such as
velocity, depth and altitude in order to represent the object in a digital map. From
the digital map, a motion planning technique is employed to steer the AUV safely
to its predefined goal or subgoal. Motion planning is computationally expensive and
not very suitable for tackling unexpected objects. Therefore, the reflexive obstacle
avoidance submodule is employed to provide the AUV with a time critical, in situ
response to an unexpected object. Once the obstacle has been successfully avoided,
the AUV should resume its preplanned mission. The bolded phases denote critical
processes in collision avoidance. These processes are highly dependent, particularly

the one in the lowest of the process chain such as motion planning. For this reason,
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a method of designing an eflicient, optimal and practical collision avoidance system
requires the perfect integration of these processes. On the whole, a collision avoid-
ance system can be decomposed into two principal functional modules; the obstacle
detection module and the obstacle avoidance module, where both of them comprise

of further submodules.

Obstacle detection module

1. Forward looking sonar
2. Sonar data processing submodule
3. Navigation submodule

4. Map builder (Workspace representation submodule)

Obstacle avoidance module

1. Motion planner and waypoint generator
2. Trajectory tracker. (Autopilot and actuator controller)

3. Reflexive submodule

A detail discussion of aspects of obstacle avoidance is given in the Section 7?. Fig
2.2 illustrates the interconnection of the submodules of a generic collision avoidance
system. The arbiter is used to coordinate the activation and inhibition of various

submodules.

Forward Looking Sonar

Forward looking sonar is frequently used for AUV obstacle detection. Recently, the
advent of digital signal processing (DSP) technology has increased the popular usage

of cost effective, high resolution, electronic beamformed sonar for obstacle detection
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Figure 2.2: Generic collision avoidance architecture

purposes. Besides providing adequate bearing and range resolution, its rapid scanning
rate {frame rate) also permits temporal information extraction, which is vital for

motion planning in a dynamic environment.

2.2.1 Sonar Data processing submodule

Although, acoustic sensor performance is unprecedented in underwater applications,
obtaining high quality and reliable sonar data is still problematic. Reverberation,
reflection, refraction and scattering tend to corrupt the data and cause [requent false

alarms hence subsequent processing of the data is required. This submodule is re-
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sponsible for object discrimination, verification and tracking,.

2.2.2 Navigation submodule

A navigation submodule typically comprises of an inertial measurement unit, digital
compass, depth sensor, altimeter, and a GPS unit {when surfaced). When submerged,
the AUV is deprived of any global frame of reference and dead reckoning is the only
viable method for localisation.

2.2.3 Map builder

Deprived of any global frame of reference, it is critical to have an online map which
is incrementally developed to assist an AUV in navigating the unknown terrain. A
digital map is also required for localisation and motion planning processes. Clearly,
there are numerous methods of representing the AUV environment; three well known
methods are cell decomposition, geometrical representation and topology representa-

tion.

2.2.4 Motion planner and waypoint generator

A motion planner is used to assist an AUV in navigating through an unstructured
and unknown environment via the generation of a time-parameterised path, whilst
simultaneously taking into account several factors such as AUV safety, kinematics,
dynamics and energy constraints. It is true that motion planners are intimately
related to guidance techniques (Lin 1991, Tan et al. 2003). Both attempt to furnish
the AUV with corresponding continuous configuration variables, or states as to guide
the AUV to the designated destination. The only subtle but significant dissimilarity
here is that the guidance techniques assume that the environment is obstacles free.
However, sometimes the term guidance tends to be abused and used to pertain to

motion planning.
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2.2.5 Trajectory tracker

A trajectory tracker should not be confused with the term autopilot, a commonly used
controller despite that their functions are inexorably linked. In essence, trajectory
tracker primary responsibility is to ensure that the AUV output follows the desired
input. The actuators to be controlled can be a rudder, hydroplane or motor. This
is not a trivial assignment when one needs to take into consideration the effect of
the vehicle dynamics, modelling uncertainty, sensor noise and external disturbances.
Presently, this area is a major area for research. On the contrary, the autopilot does
not track a trajectory but only require to maintain the vessel heading given a reference
one. This form of controller is significantly simpler to design, owing to the less degree
of freedom. Examples of autopilots implemented in Hemmerhead AUV can be found
in Naeem (2002) and Naeem et al. (2003).

2.2.6 Reflexive submodule

A reflexive submodule function is similar to a backup system in the unfortunate event
of motion planner failure. The failure can either be a system malfunction or a failure
to meet the predefined time constraint which is a more common occurrence than the
former. Unlike the motion planning submodule, this submodule is highly capable of
responding to unforeseen circumstances. This submodule is activated when an object
intersects a predefined virtual boundary (Hyland 1989, Zanoli and Affaitati 1999).

2.3 Obstacle Detection Module

As previously outlined, an obstacle avoidance module comprises of a forward looking
sonar, a navigation submodule and a map builder. The navigation submodule will
not. be reviewed since this has been provided by Loebis et al. (2002). The primary
function of an obstacle detection module is to detect, discriminate and represent the

object information into a digital map for disposal by the obstacle avoidance module.
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2.3.1 Forward looking sonar

In the underwater domain, radiowaves and vision suffer from inherent limitations.
Radiowaves are virtually useless underwater due to its high attenuation while vision
effectiveness is restricted to a range of a few meters, and highly dependent on the
turbidity of the water. This is caused by the scattering effect of light by suspended
matter. Obviously, one method is to employ a higher intensity light source to offset

the light attenuation, but this only results in a massive power drain.

Unlike radiowaves and optical energy, sound transmission is the single most effective
means of directing energy transfer over long distances in sea-water. Consequently,
an acoustic sensor in the form of sonar, is largely employed underwater. There are
numerous sonar types such as bathymetric sonar, side scan sonar, tow-array sonar, etc,
which are all applications specific. One type that is commonly employed for obstacle
detection is the forward looking sonar. The main purpose of a forward looking sonar
is to provide spatial information such as the range, bearing and size of an object via

some processes of signal processing and data fusing.

A forward looking sonar is required to detect objects at the longest range possible
in order to allow for further information processing before an avoidance manoeuvre
can be initiated. However, at moderate ranges of several hundred meters, sonar
paths can be distorted significantly because of continuous refraction from sound speed
variation caused by changes in water temperature, salinity, and pressure. To aggravate
the situation, sonar range is also highly frequency-dependent, thus for long range
detection, a low frequency sonar is required. Nonetheless, low frequency results in
poor acoustic resolution. In the case of shallow water (200 m or less) and when an
AUV is cruising near to the sea bed {pipe tracking or terrain following), this issue
is exacerbated by the combined effect of boundary reverberation noise, multi-path
returns and bottom clutter (Nussbaum et al. 1996). Increasing the acoustic resolution
on the other hand, can significantly enhance an AUV ability to perform boundary
reverberation discrimination while obtaining a more precise bearing on echo returns.
Besides, high acoustic resolution is also critical for the purpose of map building and
optimal path generation (Henriksen 1994). For this reason, there is a constant trade
off between operating range and acoustic resolution, proper selection should be based

on the AUV mission. Some of the desired qualities of an AUV sonar are listed below:
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e Low power consumption

e High resolutions with adequate detection range (depending on the AUV ma-

noeuvrability)
e High scanning rate
e Low cost
o Adaptive thresholding/clustering logic (Optional)

¢ Embedded static and dynamic objects tracker (Optional)

2.3.2 Types of forward looking sonar

A detail review of different types of forward looking sonars can be found in (Loggins
2001). Lately, the advent of DSP technology has culminated in the development of
high performance, low cost electronic beamform sonar. In principle, beam-forming
(Veen and Buckley 1988, Curtis and Ward 1980) is a process of listening to or trans-
mitting energy (sound in this case) from an array at selected angles. The core concept
is to sum the incoming signal such that those that are coming from a given direction
are added coherently resulting in maximum magnitude response, while those signals
arriving from other directions are attenuated as a result of the self-destructive inter-
ference effect. The two main approaches in beamforming are the time domain and
the frequency based methods. Typically, a number of fixed directional receiver beams
are formed simultaneously to cover the ensonified region in order to obtain better
directional resolution while maximising the scanning rate (Nussbaum et al. 1996).
One obvious advantage of this sonar is its high scanning rate (frame rate), rendering
it less susceptible to platform motion disturbance. Besides, the high scanning rate
can be exploited for temporal and spatial information (Lane et al. 1998). The lack of

mechanical moving parts also increases the reliability of the sonar.

There are several types of sonar that are based on slightly different. operational prin-
ciples. Neglecting this distinction, one can as a whole, categorise them into a 1-D,
2-D and 3-D sonar. For clarification, the most primitive form of sonar is a 1-D sonar
such as an echo-sounder or depth-sounder, which is capable of only providing range

(altitude) information. Two examples of 2-D sonar, with different configuration are
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Segmentation, a process of regioned pixel extraction, is applied to enhance object
background discrimination in order to increase the robustness and accuracy of the
tracking process. The most popular and simple is the thresholding technique also
known as binarisation. In principle, thresholding is a process of defining a limit so
that any colour above the limit will be converted into black while those below the limit
will be converted into white. It is effective when the intensity levels of the objects
fall squarely outside the range of levels in the background. A more sophisticated
version, called the adaptive threshold technique, uses a switching function-integration
to provide improved results (Lane et al. 1989). The use of a unsupervised hierarchical
Markov random field (MRF) model together with contextual information has also
been reported {Mignotte et al. 2000). Simulated annealing has also been attempted,
but the algorithm was applied to segmentation of synthetic aperture radar images
(Stewart et el. 2000) and not sonar. Both the algorithms are very computationally

intensive, making real-time implementation very difficult.

Segmentation processes can be very costly in terms of computational requirement, as
such some authors advocate using selective, multirate/multidepth filtering and data
compressing techniques. In the selective approach, the static and dynamic part of
the image is discriminated using a frequency domain method (one dimensional Fast
Fourier Transform (FFT)) or a time domain method (moving average) (Dai et al.
1995). Once the dynamic object is detected, it will be tracked and segmented only
at the particular region of interest. For a static object, only new objects need to be
segmented. In contrast, the multirate/multidepth technique tries to redistribute the
computational load by sampling the area at various rates depending on the degree
of their importance (Henriksen 1994). Clearly, those regions adjacent to the AUV
are more critical and deserve a higher sampling rate. Instead, Zanoli and Affaitati
(1999) attempted to compress the sonar data before filtering, significantly reducing

the processing requirement.

Feature extraction

Feature extraction is a process that is intimately linked with object classification
(Lane et al. 1989, Lane et al. 1988). In the case of image processing, feature extrac-
tion entails accurate measurement of object features. Ideally, the feature selected

should be invariant under various circumstances while extracting maximum informa-
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tion regarding the object. Such features can be object size such as area, perimeter,
surface and centre of mass which can be easily obtained by counting pixels of the ob-
ject, or more complicated parameters such as moments, mean, variance, and median
used to describe statistical distributions.

Tracking

In this context, tracking is a process where object attributes such as position velocity
and estimation confidence level are estimated and recorded. In video processing,
one tries to correlate a predetermined feature with subsequent frame features and
noting their difference. Tracking is typically a forward-looking process, requiring a
computer to anticipate the object position and velocity ahead of time. The accuracy
of the predicted target attributes play a critical part in characterising its behaviour.
Hence, making it indispensable for the motion planning process. Lane et al. (1996)
applied an optical low with an associative searching trees technique while Moran
et al. (1993) advocated using a multiple hypothesis for object tracking. Multiple
hypothesis is effective in cases where multi-modal representation is required, such as in
the presence of background clutter, self-occlusions and complex dynamics. However,
both these pixel based schemes are very computationally expensive thus precluding
their application in time-critical applications.

Alternatively, the classical Kalman filter (Kalman 1960), has been applied with suc-
cess in sonar tracking systems (Williams et al. 1990, Henriksen 1994, Ruiz et al.
1999, Trucco et al. 2000). To simplify the analysis and lighten the computational re-
quirement, Williams et al. (1990) employed two different Kalman filters for tracking
dynamic and static objects while Henriksen (1994) preferred using separate Kalman
filters, a total of five, to track the corresponding states. However, this is not without,
problems. One inherent limitation of the Kalman filter, due to its derivation, is the
assumptions of a linear model, Gaussian white noise, and uni-modal representation.
Although, the extended Kalman filter can be adopted to address the non-linear model
case, extreme precaution must be taken to avoid divergence issues (Bizup 2003). In
addition, if certain discrepancies exist between the process description of the ideal
case and practical case then its effectiveness can be greatly affected. These issues will

be reserved for future research.



CHAPTER 2. RELATED RESEARCH AND LITERATURE SURVEY 29

2.3.4 Map building (Workspace representation)

Knowledge representation is one of the key elements that determines the capabilities
and performance of machine intelligence. This is particularly true for map building
or workspace representation processes, which can be defined as a process of gener-
ating models that represents the vehicle environment via sensor measurements. The
generated model or digital map, other than containing metric information, can also
be embedded with supplementary user defined information to better characterise the
environment. This information is vital for motion planning, obstacle avoidance and

localisation processes.

The condensed information is more suitable for high-level symbolic manipulation
and model inference. Therefore, the aggregate of discarded information and sensor
induced errors, can be considered as noise, and is detrimental to the overall system
performance. In the case of an AUV, the sensor drift in a dead-reckoning scheme
tends to degrade the map reliability after a certain time period. Whilst increasing
the model-fidelity will definitely enhance the system performance, but at the expense

of memory and computational requirements.

For this purpose, map building can be considered as a trade-off between model-
fidelity, memory requirement, robustness, computational efficiency, implementation
simplicity and expansibility (Dudek and Jenkin 2000). There are three fundamental
schemes in workspace representation; metric based spatial decomposition, geometry

representation and non-metric based topological representation.

Spatial decomposition

Spatial decomposition is a scheme of representing space via a discrete sampling pro-
cess; division of space into non-overlapping cells. Either only the free space is taken
into account, or only objects are mapped and free space is found by implication.

There are various variants of the spatial decomposition method.

The most conceptually simple and yet prevalent scheme in the field of mobile robotics

is where the environment space is partitioned into uniform, non-overlapping grids or



CHAPTER 2. RELATED RESEARCH AND LITERATURE SURVEY 30

cells in a spatial lattice (Fig 2.6(a)). Each cell can be allocated with user defined
attributes such as confidence of obstacle presence, terrain geometry and safety factor.
This scheme conventionally employs probabilistic sensor interpretation models to up-
date the cell value (Movarec and Elfes 1985). Due to its popularity, it is known by
different names, such as evidence grids, probability grids, certainty grids and occu-
pancy grids. Hyland (1989) and Allison et al. (1989) have implemented this scheme
in their AUV simulations. One overriding constraint concerning this approach is the
high memory requirement. One must understand that the number of cells employed
to approximate a model are finite, hence decreasing the cell size will definitely improve
the model fidelity but at the expense of escalating the cells quantity. This problem is
intensified for cases of higher dimensional space. As a resuit, various researchers have
resorted to dual resolution maps; each map using different resolution. Ridao et al.
(2000) describe using a high resolution map to record sonar echoes for the SAUVIM
AUYV. Only echoes that have not expired after a preset time interval are recorded into
a coarser map, and used for path planning. Fundamentally, the high resolution map
is functioning like a low pass filter to eliminate false alarms. Similarly, Moitie and
Seube (2000} employed a low resolution map for global path planning and a more

detailed local map when executing local motion planning.

To circumvent the inherent memory and computational inefficiency of a uniform cell
map, a type of multi-resolution algorithm has been proposed (Kambhampati and
Davis 1986). It is known as a quadtree and octree in their 2-D and 3-D forms re-
spectively (Fig 2.6(b)). A quadtree is fundamentally a recursive data structure with
a hierarchical representation property. It tries to exploit the occupancy of adjacent
cells by clustering them much like a data compressing algorithm. It adaptively subdi-
vides into smaller cells in order to improve the modelling accuracy while the minimum
cell size determines the depth of the tree and the accuracy of the mapping. Fig 2.7
shows how it is represented in the form of a tree to facilitate quick searching. Its ef-
ficiency is much superior than the former method particularly for environments that
are sparsely populated with objects (Yahja et al. 1988). However, its performance
suffers significantly for the case of a dynamic object due to constant tree structure

changes.

Another efficient workspace representation scheme (Naylor 1993), highly popular in
the computer graphic domain, is the binary spatial partitioning (BSP) scheme. A BSP

tree is a hierarchical representation structure, that exploits the recursive subdivision
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(a) (b)

(c) d

Figure 2.6: Diagram showing: (a) Workspace (b) Uniformed grid (c) Quadtree rep-
resentation and (d) Binary spatial partitioning

by hyperplanes (Fig 2.6(d)). Since there is no restraint on the types of hyperplane
used, exact polyhedra and polygon representations are possible. All of this informa-
tion is then compactly encoded in the form of a binary tree structure, as shown in (Fig
2.7(b)), ready for subsequent implementation of path finding algorithms. Unlike the
quadtree, the BSP tree structure is preserved by affine and perspective transforma-
tions, which result in its capability to incorporate dynamic objects without resorting
to changing the tree structure. This scheme has been exploited by Arinaga et al
(1996) for the Umihico AUV workspace representation.

Geometric map

Probably the oldest of the workspace representation method is the geometric map.
As suggested by the name, the geometric map tends to use geometric primitives such

as points, lines, polygons, polyhedrals and polynomial functions to characterise the
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Figure 2.7: A tree representation of (a) Quadtree (b) Binary spatial partitioning

environment. One of the compelling advantages of a geometric map, assuming appli-
cation of appropriate modelling primitives, is its capability to model complex objects
with a very low memory requirement. This concise mathematical representation also

facilitates a rapid and accurate collision checking process (Lin et al. 1996).

The simplest primitives such as point and line are rarely used in isolation but as a
preliminary form of model inference. Leal (2003) employed points in what he referred
to as the Sampled Environment Map (SEM) scheme. Unlike a uniform grids represen-
tation, here the environment is divided into discrete point locations. Then a decision
theoretic scheme is used to adapt a geometrical model from the sampled environment
distribution. Brutzman et al. (1992) employed this scheme to trace incrementally
the obstacle contour by aggregating piecewise, linear lines into polygons. Caccia et
al. (1995a) and Moran et al. (1993) developed modules to process and classify sonar
data into corresponding geometrical features. The systems, however, are constrained
to function only in a partially man-made environment since it is more geometrically
distinctive compared to the non-homogeneous features found in nature. Of all the
polygons, the circle or sphere have particularly interesting attributes such as simple
formulation, orientation invariance, convex shape and ease of manipulations, thus
explaining its popularity. This method of representation is employed by Fox et al.
(2000), Garcia (1997) and Wang and Lane (1997). Others prefer to approximate the
obstacles as polygons, particularly convex types (Mckendrick 1989, Liu et al. 2000).
Convex attributes are vital in simplifying the implementation of various motion plan-

ning algorithms while fostering faster convergence.
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Unsatisfied with the limitation of simple polygonal representation, Lane et al. (1998)
resorted to using a constructive solid geometry(CSG) method, a technology exten-
sively used in the CAD industry. The CSG method allows explicit representation of
objects using simple primitives such as spheres and cuboids via boolean operators:
subtraction, intersection and union. One key attribute is the lack of ambiguity be-
tween the inner and outer part of the object. To ease the implementation of the
optimisation algorithm, Wang and Lane (1997) restricted themselves to using only
sphere and ellipsoid primitives. Alternatively, one can try to approximate the seabead

surface using a surface modelling technique (Subramaniam and Bahl 1995).

Notwithstanding the above advantages, one of the obvious shortcomings of the geom-
etry map is its difficulty in making inference from noisy measured sensor information
which has a great impact on its reliability. Furthermore, a stochastic model can rarely
be described in a simple parameterised, geometric manner. Attempts to do so have
achieved limited success. Other problems are also encountered such as lack of stabil-
ity and lack of expressive power to model the object (Dudek and Jenkin 2000). Lack
of stability is due to parameters that are sensitive to variation, causing additional
erratic model shape changes. On the other hand, lack of expressive power is caused
by using oversimplified geometric models which severely restrict their approximating

capability.

Topological map

Topology is concerned particularly with the global connectivity of an object by consid-
ering how the object is connected locally. A topology map represents the environment
as graphs, where nodes correspond to distinct places {landmarks), and arcs represent
adjacency or orientation. Fig 2.8 illustrates a hypothetical workspace with landmarks
and (b) the topology representation of the workspace. The orientation regions (OR)
are used for localisation. In a sense, this information can be considered as a qualita-
tive type. The key to topological representation is its compactness and high immunity
to noise since it is less dependent on metric information. This compact representation
also facilitates high-level symbolic reasoning for map-building, navigation, planning,

and communication.

Since this scheme is not especially susceptible to noise, one obvious application of this
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terrain representation. A data reduction scheme is introduced to convert the pre-
vious map into a contour like map, with significant memory saving. Nevertheless,
the transformed contour map lacks flexibility for further modification. Zanoli and
Affaitati (1999) adopted spatial decomposition techniques for local map building, but
all AUV obstacle avoidance tasks are conducted using a geometry model of the envi-
ronment. To conclude, hybrid representation provides the user with better flexibility,
simplicity and robustness that is difficult to achieve using an individual type repre-
sentation, however extra precautions are required in synchronising and maintaining

the data integrity in between different representations.

2.4 Rules of the Road Relevant to an AUV

The ‘Rules of the Road’ for AUVs pertain to a set of protocols or regulations applied
to assist in tackling a collision predicament. Ironically, both marine vehicles and
aircraft employ very similar regulations. The idea of incorporating these rules into
an automatic collision avoidance system is not entirely new and has been essayed by
various researchers (Pietzykowski 2002, Tran et al. 1997). Even so, their implemen-
tations are restricted to surface vessels. These selection of guidelines, as presented
below, are derived from the International Regulations for Preventing Collisions at Sea
(Brown 1983, Cockcroft and Lameijer 2001).

e Rule 2 Responsibility, requires that “due regard shall be given to all dangers
of navigation and collision”. This rule allows an AUV to depart from all the

rules as necessary to avoid the immediate danger of collision.

e Rule 4 Look-out, requires that “every vessel shall at all times maintain a proper
lookout by all available means appropriate in the prevailing circumstances so as
to make a full appraisal of the situation and of the possible risk of collision.”
This is the primary task of the obstacle detection unit, where the primary look-
out sensor employed is the sonar. There is even a suggestion that future AUVs
shall be equipped with a system similar to the identify friend or foe (TFF) unit

commonly used in military aircraft.

e Rule 6 Safe Speed, requires that “every vessel shall at all times proceed at a

safe speed so that she can take proper and effective action to avoid collision
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and be stopped within a distance appropriate to the prevailing circumstances
and conditions.” The speed of an AUV will be determined by these factors:
the detectability, traffic density, manoeuvrability of the vessel with special ref-
erence to stopping distance and turning ability, the state of the sea, current,
and proximity of navigational hazards. Slow speed, however, can affect the
manocuvrability of AUVs.

e Rule 7 Risk of Collision, states that “every vessel shall use all available means
to determine if risk of collision exists; if there is any doubt, assume that it does

exist.”

e Rule 8 Action to Avoid Collision, states that “changes in course and speed shall
be large enough so as to be readily apparent to the other vessels. If necessary to
avoid collision or allow more time to assess the situation, a vessel shall slacken
her speed or take all way off by stopping or reversing her propulsion. A vessel
which is required not to impede the passage of another vessel shall take early
and substantial action to allow sufficient sea room for the passage of the other
vessel.” Stopping and reversing the propulsion can, however, be problematic
for a majority of AUVs which are underactuated and not neutrally buoyant, for
example the loss of rudder effectiveness in low speed can induce higher collision
risk instead.

e Rule 14 Head-On Situation, states that “vessels which are approaching head-
on shall alter course to starboard (right-hand-side) so each will pass port (left-

hand-side) to port.”

¢ Rule 15 Crossing Situation, states that “when two vessels are crossing so as to
involve risk of collision, the vessel which has the other vessel on her starboard
side shall keep out of the way, and shall, if the circumstances of the case admit,

avoid crossing ahead of the other vessel.”

Note that for rules 8, 14 and 15, the general right-of-way rule states that the least
manocuvrable vessel has the right-of-way. For the case of a surface vessel, it is ap-
parent that these manoeuvres occur in the planar domain. Whilst AUVs operate in
a 3-D domain, and for the moment, their avoidance manoeuvres are still limited to
only planar motion owing to the restriction imposed by the conventional 2-D obstacle
avoidance sonar. The airline industry is currently employing the Traffic Alert/Col-

lision Avoidance System (TCAS). The concept is to create a virtual bubble around
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the aircraft and alerting the pilot if there is any incursion to the protected zone
around the aircraft. The most primitive system, TCAS 1 only alerts the pilot on
incoming threats and is referred as a tactical advisory (TA) system. TCAS II incor-
porates further feature enhancement to actually propose resolution advise (RA) in
order to synchronise the vertical avoidance manoeuvre of both aircraft (Abdul-Baki
et al. 1999). This is attained by transmitting and receiving of interrogating signals,
using a transponder, with the nearby aircraft. The latest, TCAS III, provides the
pilot. with a horizontal manoeuvre resolution advisory capability. The airline TCAS
implicates the importance of a system or regulations that can propose complementary
manoeuvres as such that a collision can be avoided. Hence to be truly effective, a

consensus of these rules need to be implemented in all AUVs.

2.5 Motion Planning Techniques

Both motion planning and path planning can be defined as a problem of the form:
Given a configuration space, find a continuous sequence of configurations that leads
from a start to a goal configuration while respecting certain constraints. However,
the distinction is that, motion planning tends to denote the generation of time pa-
rameterised solutions (trajectories) while, on the other hand, path planning neglects
the time parameter. Simply stated, path planning does not take into consideration
the vehicle dynamics. Both these terms will be used alternately depending on their

suitability in a different context.

Owing to the inclusion of differential constraints, motion planning can also be con-
sidered as a search in a state space for a control input that can bring a system from
an initial state to a goal state. Employing this perspective, one can directly associate
a motion planning problem to a control engineering problem. Indeed, this promotes
better problem assimilation and understanding. There is no dearth of literature re-
garding the theory of motion planning (Latombe 1991, Fujimura 1991, Laumond et
al. 1999, LaValle 2005). Thus, only a limited number of motion planning techniques
that are associated with AUVs will be surveyed. Broadly speaking, motion planning
approaches can be classified into three fundamental categories: Cell decomposition,
roadmap, and potential fields.
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2.5.1 Cell-decomposition

One of the most popular motion planning schemes is the cell-decomposition. It is
strictly related to the spatial decomposition scheme for workspace presentation. The
fundamental idea is to represent the adjacent relation between the free cells with
efficient structures such as a connectivity tree or a graph. They are then searched
from the start to the goal state to find a sequence of states (path), that connects both
the start and the goal state together. Various search algorithms that are based on
dynamic programming exist for performing this routine. A few of the prevalent ones
are; breadth-first search, depth-first search, best-first search, A*, single source shortest
distance algorithm (Dijkstra’s algorithm) (Dijkstra 1959) and unlimited variants.

The breadth-first search entails searching the neighbourhood cells, and expanding the
list as it goes. While the depth-first search keeps probing in one path until an end is
met, before trying the alternatives. Both search algorithms are exhaustive (complete),
which means ultimately, all free space will be searched for solutions. For cases where
multiple solutions exist, and optimality (shortest distance) is not a concern, the depth-
first search tends to have a lower memory requirement while providing a quicker
answer. However, a depth-first search can be deceived into searching long list of cells,
or states, even when the goal may be very near. The Dijkstra’s algorithm shares some
resemblances with a breadth-first search, but unlike a breadth-first search, all the cells
are encoded with distance from the goal which assists it in finding the shortest path.
This search algorithm was applied in complement with a binary spatial partitioning

scheme for the global path planning of the Umihico AUV (Arinaga et al. 1996).

Nonetheless, in most circumstances, searching the entire free space can be too com-
putationally demanding. Unsatisfied with the performance of the former systematic
search algorithms, some heuristically enhanced versions have been devised. Heuris-
tic information is normally encoded in an evaluation function (cost function). The
distance to the Euclidean path (line-of-sight) from start to goal state is chosen as
in the case of a best-first search. This scheme is efficient and fast when a proper
evaluation function is provided, but for cases when this cannot be found, then its
performance degrades significantly. The best-first search tends to provide suboptimal
solutions since it neglects the cost of the solution path. The A* (Hart et al. 1968) is
a combination of the best-first search and the breadth-first search, which attempts to

find a solution that minimises the total length of the solution path. The A* method
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takes into account both the distance from the cell in question to the finish, and also
the total distance taken from the start to the current cell. The evaluation function

can be written as below:
f(node) = g(node) + h(node) (2.1)

Where f(node) is the total cost, which is the evaluation function, g(node) is the path
cost to the current cell and h(node) is an estimate of the remaining cost to the goal
state. A* is guaranteed to find the shortest path if the h(node) does not overestimate

the cost to the solution.

Hyland (1989) incorporated a three dimensional A* path planner with a reflexive
obstacle avoidance module in his AUV simulation. The entire path is replanned by
the path planner every time the vehicle completes a flat turn manoeuvre. Also, Hy-
land (1990) provided a detail comparison between the breadth-first and the A* search
method for an AUV obstacle avoidance task. However, the results were inconclusive,
as neither the A* nor the breadth-first search showed any significant advantages in
this case. Others like, Allison et al. (1989) proposed a sensor-based exploration ap-
proach where a 3-valued occupancy grid is coupled with the A* algorithm evaluation
function that is biased to search the unexplored region. It must be noted that these
algorithms mentioned above, do not function optimally for cases when the environ-
ment is dynamic, partially known or unknown. The D*, alsoc known as Dynamic
A* (Stentz 1994), has been developed to address these issues. Owing to the nature
of the problem, a substantial difference in performance can be obtained if one sets
the initial search point as the start or the goal. Hence, some authors (Arai et al.
1998) prefer to use a bidirectional motion planning approach. Arinaga et al. (1996)
adopted this method for local path planning of the Umihico AUV. Their method
involved moving the real AUV forward at the start point and a virtual AUV back-
ward at the goal point simultaneously. Upon meeting, the real AUV is assigned to
track the sequence of configurations created by the virtual AUV. Their method does

necessitate a reflexive module for obstacle avoidance.

One of the apparent limitation of these search algorithms is the unrealistic computa-
tional requirement as the number of cells increase, a phenomenon known as the ‘curse
of dimensionality’ or ‘combinatorial explosion’. This might be caused by the increase

of configuration space dimensionality or the scene complexity. For an heuristically
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enhanced algorithm like the A*, its performance is highly dependable on the selected

evaluation function, which can be difficult to define for complicated problems.

2.5.2 Potential field

The potential field method utilises a very interesting approach. In essence, an artificial
potential field is defined to emulate the space structure surrounding the vehicle {Krogh
and Thorpe 1986). It consists of representing the goal with an attractive field and
the obstacles with a repulsive field, as shown in Fig 2.9. A new field emerges through
the interaction of both the former fields. Eventually, the vehicle is required to just

follow the local gradient of the new field to reach the goal.

The mathematical equations pertaining to the potential field method can be found
below. The equations below are used to generate the simulation results as illustrated
in Fig 2.9. The related mathematical definitions are listed as follow (Khatib 1986):
The field of artificial forces F (g) in configuration space, C is produced by a differen-
tiable function U : Cfr.e — R, with:

F(g) = -VU(q) (2.2)

U(g) = Uan() + Urepl) (2.3)

where V denotes the gradient operator, Uy, is the attractive potential associated with
the goal configuration, ¢gea and Uy, is the repulsive potential associated with the
C-obstacle region.

The attraction field can be formulated as below:

Uaula) = 5000’ (@) (2.4

The attraction force can be formulated as below:

FaLL(Q) = _E(q - qgoa!) (25)

where £ is a positive scaling factor, p is the Euclidean distance function, ¢ is the

current configuration and ggeq is the goal configuration.
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The repulsion field can be formulated as below:

Ufep(q) = (2.6)
0 if p(q) > po
The repulsion force can be formulated as below:
i ¥ 1 S . <
Freplq) = { K (p(.,) m) i Vela) if pla) < po -
0 if p(g) > po

where 7 is a positive scaling factor, p(q) is the distance to the obstacle and py is the

distance of influence.

Fig 2.9(a) shows a simulated workspace representation of the vehicle. Using Equation
2.4, an attractive field for the corresponding goal is simulated in Fig 2.9(b). Notice
that the goal is the global minima, which is true for an ideal case. Using Equation 2.6,
Fig 2.9(c) shows the repulsion field exerted by the obstacles. Ultimately, Fig 2.9(d)
illustrated the combined repulsive and attractive potential field as stated in Equation
2.3. One major advantage of this method is its low computational requirement. which

makes it very suitable for real-time implementation.

Yoerger et al. (2000) applied a potential field local planner in the Benthic Ezplorer
for a fine-scale rugged sea-floor surveying mission. The implementation is restricted
to using an asymmetric potential field to alter the vehicle's forward and vertical
speed. One problem which is inherent to the potential field method is its tendency
to get trapped in a local minima. For this reason, it is normally used only as a local
path planner, and in most implementations, it is combined with another global path
planner that will be invoked when trapped. Its performance is also strictly linked
to suitable definitions of heuristic potential functions, and this is not easily found
when confronted with natural obstacles and differential constraints. Warren (1990)
proposed a hybrid method that involves two major stages. The first stage generates
a preliminary straight path from current to goal configuration. Then in the second
stage, a method of path relaxation is introduced, the path is iteratively modified under
the influence of the adjacent potential field in order to produce a feasible path. Warren

argued that by considering the problem in such a global approach, the tendency
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desired path (Kamon et al. 1995)(Fig 2.10).

Fundamentally, the algorithm constitutes of only two modes: (1) moving to the goal
and (2) circumnavigating the obstacle. Note that this algorithm does not need any
e priori information regarding its environment. Furthermore, it is guaranteed to
find a solution if it exists. This makes the bug algorithm suitable for dealing with
unknown environments. Bennet and Leonard (2000) implemented the algorithm in
the Phoeniz AUV. A forward looking sonar is used to detect the obstacle boundary,
then it is approximated by aggregating piecewise linear lines before applying the
bug algorithm. Alternatively, Cornforth and Croff (2000) applied a wall-following
algorithm in the Autolycus with the help of a side-facing sonar. Unfortunately, their
current results were unsatisfactory but they anticipated further improvement can be
realised by empirically tuning the controller gain. They envisaged using the Autolycus
in environment-sensitive navigation. Better still, Laubach and Burdick {1999) devised
a more memory cfficient approach that utilises only obstacle boundary endpoints.
Their concept, however, is exemplified in a planetary exploration rover and not an
AUV. This algorithm, although simplistic in concept, is extremely difficult to be
implemented in practice. Firstly, the influence of sensor drift in a dead reckoning
system tends to limit its effectiveness. In addition, this algorithn also assumes that
the vehicle is holonomic and operating in a static environment which is not entirely

true for the case of an AUV.

Circumnavigation
Maoving to goa!

AUV /S
Line ot Sight

Obstacle

Qs

Figure 2.10: An AUV employing the bug algorithm to navigate the environment.
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2.5.4 Evolutionary computation (EC)

Evolutionary computation encompasses several types of heuristic and stochastic op-
timisation schemes that are fundamentally based on the concept of natural selection.
Some of the proposed schemes are the evolutionary algorithm {EA), genetic algo-
rithm (GA), evolutionary programming, evolutionary strategy and artificial life. The
EC has shown significant capability in solving complicated, highly constrained, large
scale optimisation problems that have discontinuities on the response surface. Unlike
the potential field method, EC is known to be highly resistant to becoming trapped
in local minima. Another exceptional attribute of EC is its ability to offer solutions

whenever it is interrupted.

Schultz (1991) proposed using the GA for on-line collision avoidance and local nav-
igation of an AUV. Promising simulation results of an AUV successfully navigating
through both a static and dynamic minefield are presented. Similarly, Fogel and
Fogel (1990) simulated 2-D optimal routing of multiple AUVs using a EA. Their
simulations, although confined to only two dimensional routings, still managed to
demonstrate intriguing results. The AUV exhibited very intelligent behaviour by try-
ing to avoid the detection region and, if that was not possible, the AUV proceeded
at slower speeds to remain stealthy and speed up when it was a distance away from
the detection site. Multiple AUVs cases are also addressed. They argued that sophis-
ticated genetic operators such as crossover tends to disrupt the link between parent
and offspring as coding structures become large. Sugihara (1998) suggested a local
GA 3-D path planner that is capable of functioning in a partially known environ-
ment for the SAUVIM AUV. He employed a method of discretisation, where the 2-D
maps are partitioned into cells, and each corresponding cell is then encoded with a
binary string as a sequence of pairs of direction and distance. Then, the three 2-D,
sequences of connected cells (paths), one in each respective plane, zy-plane, zz-plane

and yz-plane, are merged via projection, into a single 3-D path.

There have been several attempts to hybridise evolutionary computation with other
algorithms. Dozier et al. (1998) combined fuzzy inference along with tournament
selection to select the best candidate paths based on several criteria. They claimed
that the methodology does not only provide significant performance enhancement, but
also obviates the need of explicit multi-objective evaluation function development.

Instead, Vadakkepat et al. (2000) endeavoured to merge a potential field planning
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algorithms, as elaborated in the cell decomposition section, can be used to find the
shortest path. Unfortunately, one obvious disadvantage of using a visibility graph
is the assumption that all of the obstacles are known. Furthermore, a visibility
graph has the tendency to generate paths that are very close to the obstacles edges.
One simple solution is to ‘patch’ the obstacles in order to take into account of the
vehicle geometry. However, this is not a trivial process if the vehicle considered is
underactuated. Mckendrick (1989) applied a visibility graph method in an unknown
2-D environment with convex polygonal obstacles. To be realistic, the AUV was
simulated with a limited sensor range. An exploration phase is then required for
information acquisition. The simulation demonstrated that the path is highly non-
optimal, taking long detours and as such a simple bug algorithm easily surpasses its

performance.

2.5.6 Probabilistic roadmap planner (PRM)

This is still a relatively new approach to path planning, where the construction of
the roadmap is done probabilistically instead of deterministically. The main concept
is to generate a number of nodes (vertices) randomly, eliminate those nodes in the
obstacles, and then, connect all the adjacent nodes with straight lines. The primary
reason that only adjacent nodes are connected is to avoid saturating the configuration
space with too many paths. Later, the resulting roadmap is searched from the start
point to the goal point for the shortest path (Fig 2.12).

Unlike other motion planning methods, its randomised nature tends to make its
performance less susceptible to the effect of configuration space dimension (Overmars
2002). However, it does compromise solution optimality for enhanced robustness.
Consequently, this method generally produces suboptimal solutions. PRM is also
notoriously known for its long running times and difficulty in finding a path in a
configuration space that has a small passage. Therefore, some heuristically enhanced
PRMs such as visibility PRM (Simeon et al. 2000), lazy PRM (Bohlin and Kavraki
1998), obstacle based PRM (Amato et al. 1998) and Gaussian sampling PRM (Boor
et al. 1999) have been recommended to improve the generic PRM performance. These
methods mostly differ from their sampling strategies. Fox et al. (2000) and Garcia

(1997) suggested an enhanced PRM that shares some similarity with the lazy PRM.
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Cases of differential constraints can easily be incorporated, thus extending its applica-
tion into fault-tolerant and reconfigurable systems for an AUV {Perrault and Nahon
1999, Sutton et al. 2001).

Most systematic search algorithms do not function well in high-dimensional space.
This has prompted the introduction of the RRT (LaValle 1998, LaValle and Kuffner
2000), which can be considered as an incremental form of PRM and is designed to
search efficiently non-convex high-dimensional spaces. It possesses a few fascinating
properties: (a) It is biased to the freespace and exploits a probabilistic search method,
(b) It has also been proven to be probabilistically complete (Cheng and LaValle 2002),
(¢) The simplistic nature of the algorithm facilitates performance analysis and lastly,
(d) It allows one to take into account both algebraic and differential constraints
simultaneously, which is vital for motion planming. A detail explanation of RRT

operation from an algorithmic viewpoint can be found in Section 4.3.

Cheng et al. (2000) applied the RRT to optimise the trajectories of autonomous auto-
mobiles and spacecraft. The simulations show the viability of the method. Toussaint
(2000) tried to combine motion planning using the RRT with nonlinear control em-
ploying the H* technique for an underactuated vehicle. He utilised an H* flter
for improving the planned motion of the vehicle and also addressed multiple vehicles
planning problems. But the simulations are limited to planar motion. The RRT has
also been applied to solve nonlinear control problems in hybrid systems. Frazzoli et
al. (2002) provided some realistic simulations of unmanned helicopter motion plan-
ning that employed the RRT. Unlike other path planning algorithms, he mentioned
that the RRT is capable of exploiting fully the manoeuvrability of the helicopter.

Nonetheless, the RRT is not without problems. Firstly, as a novel algorithm, its capa-
bility is still not well characterised. Furthermore, its performance is highly sensitive
with respect to the chosen metric. An incorrect metric will substantially deteriorate
its performance. Cheng and LaValle (2001) described a technique to render the RRT
less sensitive to the metric effect. In all of the experiments and simulations above, a
known environment is assumed, and this is unrealistic for AUVs. Hence, supporting

the fact that there is still room for further improvement.



CHAPTER 2. RELATED RESEARCH AND LITERATURE SURVEY 49

2.6 Reflexive Avoidance Techniques

Reflexive avoidance techniques provide an AUV with a failsafe mechanism in the case
of motion planner failure. The failure can either be a system malfunction or a failure
to meet the predefined time constraint, which is a more common occurrence than the
former. Technically, these techniques are fundamentally based on the reactive control
approach (Brooks 1986), where the information from the sensors is sent directly to the
actuator without passing through the high-level modules. This makes them amazingly
fast and capable of handling dynamic environments especially in cases where in situ
response is needed. Unfortunately they suffer from the identical problems that can
be found in reactive control systems. Some of the problems are, highly non-optimal
action, non-deterministic performance and lastly they are prone to get trapped in a

canyon like environment.

2.6.1 Neural network

The neural network approach has been intensively researched over the last 20 years,
and it still ongoing. The core of the neural network concept is based on a mathemati-
cal emulation of simplified human brain mechanisms. One obvious benefit of the neu-
ral network, is its intrinsic ability to model a very complex, multi-input-multi-output,
and strongly coupled nonlinear system such as an AUV. It is also highly renowned for
its ’generalisation’ capability. Unlike other algorithms that are programmed, a neural
network ! is trained by exposing it to related input/output data. Properly trained,
the neural network can provide an elegant solution to a very challenging problem.
DeMuth and Springsteen (1990) proposed a neural network based obstacle avoidance
controller for an AUV. They used two neural networks, one for a static object and
another for a dynamic object classification. Then, a Boolean combiner is employed to
reconcile the appropriate manoeuvre to be taken. Paradoxically, their neural network
controllers were not trained but the weights were heuristically determined. Clearly,
this is only applicable for a very simple case. In trying to exploit the adaptive nature
(training ability) of a neural network, Sayyaadi et al. (2000) applied a stochastic real

value reinforcement learning method to the collision avoidance controller of the Twin

'The majority of neural networks such as the popular multi-layer perceptron and radial basis
networks do require supervised training.
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Burger. They divided the obstacle avoidance mission into a targeting behaviour and
an avoiding behaviour. Nonetheless, no tangible results were given concerning the

avoiding behaviour performance as the research is still at a premature stage.

Interestingly, one tends to find more neural network applications in low-level con-
troller design than at the higher level (Ishii et al. 1995, Wettergreen et al. 1999).
This could be caused by the black box characteristic of neural network, which pre-
cludes vital information extraction that can be crucial for problem understanding.
Furthermore, high-level controller typically exerts more influence over the entire sys-
tem performance where small error tends to amplify quickly. This in turn demands
a transparent system for analysis purpose which is not offered by such a network.
The training processes can also be very time consuming, depending much on the
’suitableness’ of the selected training data. To foster rapid convergence, another data
pre-processing stage is also found to be compulsory.

2.6.2 Virtual force field (VFF)

The virtual force field method tries to simulate an artificial force field which can be two
or three-dimensional, surrounding the vehicle. Thus any contact with neighbourhood
objects will cause deformation to the force field. The aim here is to minimise these
deformations by locally modifying the control vector. Its computational efficiency
and fast reaction make it a valuable technique in a dynamic environment. Recalling
the fact that the TCAS employed by the aviation industry also utilises a form of
virtual bubble which is a variant of VFF. Zapata and Lepinay (1996) addressed the
collision avoidance and bottom following problems of an AUV using a VFF scheme.

Their results, however, are confined to only computer simulations.

VFF shares some similarity with the potential field method. Both trying to simu-
late the interaction of an artificial field between objects and the vehicle. However,
VFF only considers the forces in a limited neighbourhood domain thus it is highly
susceptible to being trapped in local minima, worst still it can also lead to unstable
behaviour of the vehicle when surrounded with obstacles or travelling in a narrow

passage. To solve this problem, a high level planner is usually introduced.
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2.6.3 Vector field histogram (VFH)

The vector field histogram (Borenstein and Koren 1991} was developed to solve some
of the problems of the VFF algorithm concerning detail spatial distribution informa-
tion loss. The VFH is a data reduction process algorithm that can be decomposed into
three distinct phases. The first phase entails representing the vehicle workspace as a
two dimensional grid. The second phase involves constructing the vehicle surrounding
into local polar histogram form where each sector represents obstacle density. The
last phase involves a selection of the sector of the lowest obstacle density and align-
ment of vehicle heading to the selected sector. Its performance in most circumstances
is better than the VFF (Koren and Borenstein 1991).

Williams et al. (1990) advocated a three-dimensional collision avoidance controller
that has the intrinsic functionality of VFH. They exploited a merit function that
defines a field that takes into account obstacle bearing and distance as well as the
vehicles own heading, depth and the goal direction. For the three dimensional case,
a data reduction process is performed to transform the presentation into an image
showing different obstacle density. Consequently, the vehicle is just required to align
its heading vector to the lowest obstacle density area. Antonelli et al. (2001} sought to
integrate the VFF and geometrical approach proposed by Hyland (1989), and imple-
mented it in the RALS AUV. This approach takes into account the polar information
instead of only the Cartesian, making the algorithm very similar to VFH. They also
employed a high level path planner to detect the high risk area that can trap an AUV.

The VFH tends to take into account of the workspace Cartesian information, hence
it is less affected by the local minima entrapment problem as suffered by the VFF
method. However, this does not mean that it is impervious to local minima entrap-
ment. Furthermore, by discarding all explicit distance information and representing
them implicitly, the vehicle is sometimes deceived into assuming that there is no clear

sectors when it is surrounded with only distanced ohstacles.
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2.6.4 Fuzzy logic

Fuzzy theory was introduced by Zadeh (1965) as an alternative technique for tack-
ling complicated problems that are difficult to solve using conventional differential
equation based approaches. In essence, fuzzy logic is a rule based, multi-value logic
inference system that attempts to take into account the uncertainty and imprecision
of the real world. Its intrinsic operational principle bears substantial resemblance
with human cognition. In fact, the fuzzy logic ability to quantified abstract expert
knowledge has made it a choice in solving complicated systems. Consequently, the
control cecisions of an expert can be formulated into an algorithm to control the
desired plant. One example of fuzzy rule base in a collision avoidance context is :

I¥ Target Direction is Left AND Target Range is Very Near THEN Heading is Hard
Right.

Clearly, the rule above is self-explanatory which facilitates problem understanding.
As such, a set of rules can be promptly constructed without resorting to complex
mathematical techniques. Its transparent nature and excellent immunity to both
noise and error also contributes to its popularity.

Shinjo and Graeme (1995) suggested a collision avoidance system that is based on
a combination of sensor-based navigation and fuzzy logic control. The fuzzy logic
inference system provides a mapping framework to transform the acquired object
information such as range, position, and size, into the respective control commands
for heading and vertical movement of the vehicle. A short-term memory is also
used to store successive obstacle avoidance processes with the objective to reduce
abrupt changes or chattering of the control command outputs. This is achieved via
reducing the degree of membership of the last executed fuzzy conclusion in order to
reduce its dominance. The analysis of the algorithm was performed on a full six-
degrees of freedom Ocean Voyager AUV simulator. Instead of encoding the problem
directly as in former approach, Vasudevan et al. (1995) attempted a hybrid reasoning
scheme by aggregating fuzzy rule sets and case-based reasoning to function as a
high-level dynamic path selector. In what was called Reasoning from Fuzzy Indexed
Cases Scheme (REFIC), it fundamentally exploits the a prior: information such as
the prestored cases to assist in determining a promising vehicle heading and also in
selectively activating a subset of navigational behaviours. The simulated example
proved to be very robust in navigating in the presence of noisy sensor data and

cluttered obstacle distributions.
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Liu et al. (1999) tried to tackle AUV navigation in an unknown environment by cre-
ating a virtual boundary and incorporating some heuristic rules via fuzzy logic. The
vehicle emergence behaviour turns out to be very similar to the bug following algo-
rithm. However, the effects of local minima and sea current were neglected in the
simulation. Ridao et al. (2001) applied a collision avoidance controller in the Garbi
AUV using a combination of VFF and fuzzy logic behavioural encoding technigues.
The implementation is however limited to the horizontal plane. The vehicle is sur-
rounded with several circular force fields of varying radii and each particular region is
then mapped into the corresponding behaviours such as goto, spin, avoid, keep depth
and avoid bottom. A simulation study has verified that the vehicle is able to exhibit
‘intelligent’ manoceuvres such as circumnavigating and escaping from a canyon like
trap.

Although, many praises can be made regarding a fuzzy logic system, there are also
an equivalent amount of criticisms. Owing to the heuristic method which the fuzzy
logic paradigm is fundamentally based upon, a multitude of incoherent and diverse
viewpoints exist regarding the types and fuzzy operators used. The lack of a solid
framework also tends to make fuzzy logic appear to be an ad hoc approach to finding
a solution. Although, a fuzzy systein is renowned for its transparency property, it is

virtually mathematically intractable and can complicate analysis.

2.7 Concluding Remarks

This chapter presented several a myriad of techniques for the design of a collision
avoidance system for AUVs. An overview of AUV control architectures and indi-
vidual collision avoidance system submodules have been presented. The obstacle
detection module can be divided into four distinctive subunits; a forward looking
sonar, a signal processing submodule, a map builder and a navigation submodule.
On the other hand, the obstacle avoidance module comprises of the reflexive, motion
planning and trajectory tracking subunits. Again, to reiterate, it should be stressed
that to formulate a meaningful and realistic thesis research project, there should be
limitations on the scope of the research. For this reason, the reflexive, navigation and

multi-target tracking submodules have been omitted.
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Techniques employed in the ocean, land and aerospace domains were explored. Their
advantages and disadvantage were cutlined. It has been shown that the collision

avoidance system plays the vital role in bringing autonomy to the whole system.

In regards to the motion planning context, the majority of the motion planning
methodologies mentioned are, in fact, considered to be path planning methodologies.
They do not take into account the dynamics of an AUV. Systematic search techniques,
although, extremely popular in the robotics community. Unfortunately, they do not
function well in higher-dimensional search space which is found so commonly in most
practical systems since they suffered from the state-explosion effect. The above dis-
cussion hinted that the recently developed probabilistic based algorithms, with their
strong immunity to state-explosion effect, could provide an interesting topic of re-
search. This resulted in the formulation of enhanced RRT algorithm in Chapter 4.
In Chapter 5, the following algorithm is further improved by combining it with the

technique that is based on system dynamic quantisation.

Since the motion planning algorithm is, in essence, a feedforward planner, any pertur-
bations to the system, inevitable in practice, will aggravate the system performance.
This strongly suggests that a robust trajectory tracker is needed. Therefore, it pro-
voked an investigation into the feasibility of using a linear quadratic regulator or a
nonlinear state dependent Riccati controller as a trajectory controller. Details can be
found in Chapter 6.

The one major problem with the contemporary forward looking sonars is that they
are not specifically designed for the AUV obstacle avoidance purpose. Most of these
sonars employed by AUVs are 2-D mechanical scanning variants commonly employed
by surface vessels. Numerous 3-D sonars exist but their costs are prohibitive. As
such, the development of a novel, cost-effective, energy-efficient obstacle avoidance
sonar should be forthcoming in order to address this critical issue. This study will
employs the AT500 sonar (Robinson et al. 2003) from J&S Marine, that is especially
designed to cater for this task. The sonar data processing and workspace represen-
tation submodules will be developed to cater especially for this sonar, nonetheless,
the techniques must remain sufficiently flexible to be transferrable to other forward

looking sonars. These techniques are detailed in Appendix A.

In conclusion, it is anticipated that with the fusion of these different methodologies,
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a robust and computationally efficient collision avoidance system can be realised.
In designing such a system, one must consistently bear in mind that an effective
collision avoidance system derives its success through the synergistic interaction of
submodules, and not because of a particular submodule functionality. Similarly, the
application of these methodologies could also offer potential technological advances
in the field of AUV collision avoidance while simultaneously benefiting the marine
industry. The next chapter will delve upon the mathematical modelling of the AUV

and environmental effect for computer simulation and performance evaluation.



Chapter 3

System Modelling

This chapter describes the mathematical models employed in the computer simulation
studies herein in order to acquire deeper insights and to evaluate the suitability of
the proposed algorithms and controllers. Computer simulation studies allow one to
investigate various ‘what if’ scenarios applied to the model without the need of a
physical model. This makes it highly attractive in terms of time and monetary cost
aspects. More importantly, some of the tested scenarios can be considered to be

highly dangerous and risky to human lives if proved in real time with hardware.

To evaluate properly the system performance, a holistic approach must be sought.
One not only requires a plant model that can replicate the system dynamic behaviour
as close as possible but also the possibility of evaluating the impact of disturbances to
the plant. The disturbances might be induced by the environment and sensor noise.
Hence, this chapter is partitioned into two sections, AUV modelling and disturbances
modelling. The latter section includes sea currents disturbance and sensor noise

disturbance modelling.
Notwithstanding the above, a note of caution here is made as regardless of how

promising the simulation results appear to be, one should never underestimate the

significance of & physical plant test.

o6
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3.1 Mathematical Modelling of an AUV

Underwater vehicles inherently possess very complex dynamics such as nonlinearities,
cross coupling, numerous degrees of freedom and underactuated behaviour. These
factors arise owing to the effect of the body-medium (vessel-water) interactions and

partly due to the physical design of the vessel.

There exists an abundance of literature pertaining to the mathematical modelling of
underwater vehicles. As a matter of fact, and not coincidental, most of the AUVs
are very similar in terms of shapes and actuation configurations such that it allows
the generalised underwater vehicle model to be exploited. Regretfully, to utilise the
generalised model, it is necessary to estimate first the body and hydrodynamic coefli-
cients. The evaluation of these coefficients of which there can be more than 100, is a
nontrivial process (Healey and Lienard 1993). Certain coefficients, such as the mass
coeflicients can be obtained simply via a direct measuring process. Others require
extensive experiments to be conducted in a test tank with a full-scale physical model
of the vehicle equipped with relevant sensors (Prestero 2001). Lately, the use of com-
putational fAuid dynamics (CFD) analysis for coefficients estimation has also become
increasingly popular (Sayer and Fraser 1998). As a last resort, an estimated guess
of the coefficient value can be derived from a library of generic shapes, or coefficient
scaling from another AUV {Ahmad and Sutton 2003).

In essence, AUVs are vehicles that operate in a 3-D physical space. This implies that
an AUV needs a total of six configuration variables to describe fully its configuration,
hence the term six degrees of freedom (DOF). Three of the variables are for linear
displacements and another three for angular displacements. In order to describe
completely the AUV dynamics, six more variables corresponding to the linear velocity

and the angular velocity for each dimension are also needed.

Briefly, the generalised six degree of freedom rigid body equations of motion in vec-
torial form given by Fossen (1994), can be written as

Mppv + Cru(V)y = Trp (3.1)

Here v = [u v w p q 7|7 is the body-fixed linear and angular velocity vector and

e = [X Y Z K M NJ|" is a generalised vector of external forces and moments
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acting on the vehicle in body-fixed coordinate system. Please refer to Fig 3.1 for
a clearer presentation of the related variables mentioned. Similarly, this thesis, if
not mentioned, employs the North-East-Down (NED) Earth-fixed coordinate system.
With reference to Fig 3.2, the NED coordinate convention is popular amongst the
aerospace, marine, and navigation communities {Fig 3.2(a)). On the other hand, the
robotics community and mathematicians prefer the ENU coordinate convention (Fig
3.2(b)). If one adopts the NED Earth-fixed coordinate convention, one should accord
to use ‘marine’ body-fixed coordinate (Fig 3.2(c)) for the rigid body of interest to

avoid confusion.

u(surge) X

Earth-fixed frame (Inertial)
of reference

Figure 3.1: The inertial, Earth-fixed non-rotating reference frame X.Y,Z. and the
body-fixed rotating reference frame XyYpZo. The NED coordinate convention is
employed here.

The assumption here is that the hydrodynamic forces and moments on a rigid body
can be linearly superposed. The parameterisation of the rigid-body inertia matrix

M is unique and it satisfies:
MRB = M’-]’;B > 0; MRB =0 (32)

Referring to Equation 3.2, the elements in Mpgp, are mass and moment of inertia
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+X(North) +Z (Down)

+Y(East)

+Y(East) +X(North) +Y(Starport)
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Figure 3.2: (a) North-East-Down (NED) Earth-fixed coordinate (b) East-North-Up
(ENU) Earth-fixed coordinate (c) Aerospace and marine body-fixed coordinate

that correspond to the individual axis. These variables cannot have negative values.
Assuming that the mass and the moment of inertia of the vehicle are constant through
time, which is true for most AUVs without buoyancy depth control, as a corollary
the time derivative of the inertia matrix should be 0.

The matrix Cgp corresponds to the Coriolis and centripetal forces and moments that

can be parameterised to be a skew symmetric matrix i.e.
Cra(v) = —Crp(v)

The Coriolis and centripetal forces and moments, are virtual forces that arise because
of the formulation of the dynamic equations with reference to the AUV body which is a
non-Newtonian frame. These terms only come into effect when the vessel is executing
some kind of rotational motion and they contribute nothing when the vessel is in

straight line motion. Likewise, Tpp can be expressed as
TRE=TH +TE+ T (3.3)

| where 7y is the radiation induced forces and moments which includes added inertia,
| hydrodynamic damping and restoring forces. 7g describes the environmental forces
such as ocean currents, waves and wind. Obviously, in this context, assuming that
the AUV is travelling at least 30 metres below the ocean, then only ocean currents are
applicable to the AUV. Finally, 7 is the propulsion forces from thrusters and control

surfaces. The derivation of these forces and moments is not included, please refer to

O
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Fossen (1994) for further details. Alternatively, Equation 3.1 can be put into a more
insightful form as
Mo + Cv)v + D)y + g(n) = 7 + 7 (3.4)

where
M = M‘RB + MA; C = CRB(V) + CA(_II) (35)

Refer to the nomenclature in the beginning of the thesis for more detail of the in-
dividual notation used. Here, the suffix A denotes the added mass version of the
particular matrix. Added mass is caused by the mass of water moving with the AUV.
D(v) is the damping matrix. g(n) is the gravitational and buoyant forces vector and
n=|ryzde¢8 P]" is the vector of position and Euler angles in earth-fixed frame
of reference. Conceptually, the above formiila is analogous to a simple mass-spring-
damper system. The spring behaviour is contributed by the g(n) while the M and
D(v) represent the mass and damper effects, respectively.

The matrix M is needed for explaining the kinetic energy of the total ambient vessel-
water system, which is larger than the AUV rigid-body kinetic energy. The kinetic
energy is contributed by the fluid motion as the fluid moves aside and close behind the
AUV. The D(v) can be attributed to the effects of potential damping, skin friction,
vortex shedding and wave drift damping. These forces make the system dissipative,
ensuring that the system states are bounded for bounded inputs. The g(n) term
cannot be neglected if the AUV has a low metacentric height. Those AUVs that have
low hydrostatic restoring compared to the inertia forces have the propensity to start

rolling and pitching when the actuators are utilised.

Equation 3.1 can also be expanded to yield

mli — vr +wg — Zc(q® + %) + Yo(pg — 7 + 26(pr +q))] = X
m[v — wp + wr — ye(r® +p?) + 2¢(gr — p+ zglgp+7))] = Y
mw —uq 4+ wp— 2¢(p? +q*) + ze(rp— g+ yclrg+p))] = 2
Lop + (L: — Ip)ar — (¢ + pa)Ie; + (2 = @)Ly, + (pr — §) 1y
+mlye(w —ug +vp) — 26((¥) —wp+wr)] = K (3.6)

L4+ (lzz — Lz)gr — (P + QT')Izy + (,’p2 - 7'2)12:!: + (gp — 7)1y,
' +mlzg(w — vr + wq) — ze((w) —ug+wvp)] = M

Lot 4 (Iyy — Loe)rp — (G + )My + (@° — p2) Loy + (rq — D) Loz
+mlzg(v — wp +uwr) — ye({(@) —vr +wq)] = N
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The first three equations represent the translational motion while the last three equa-
tions represent the rotational motion. Equation 3.6, also known as the general rigid-
body equations of motion can be simplified in two ways. The first method is to take
the origin of the body fixed reference frame to coincide with the centre of gravity,
another way is to choose the origin such that the inertia tensor is diagonal. Referring
to the former method, it implies that 7¢ = [0 0 0]F and I = diag{fizc Iyye Lizc}-
However, the disadvantage with this approach is that the new coordinate system will
differ from the longitudinal, lateral and normal symmetry axes of the vehicle. Subse-
quently, in practice, the second method is preferred. Diagonalisation of the body-fixed
inertial tensor is achieved by applying the Parallel Axes Theorem. Both the Remus
and AUTOSUB AUV model, as will be mentioned later, adopt this approach.

It must be noted here that velocity vector » in the body coordinate frame cannot be
directly integrated to obtain the position coordinates in earth-fixed reference frame,

rather, they are related by the transformation matrix J(7) which is given by:

Ji (7?2) Osyx3
J(n) = 3.7
(77) [ Ozx3 Jz('ﬁz) j| ( )
where
el —siped + cpsBsed  ssd + cedst
Ji(m) = | sl ccd + spslsyy  —cpsd + sBspcd (3.8)
—sf clsd clcg
1 s¢tf  cotd
o) = | 0 cop—s5¢ —s¢ (3.9)
0 s¢/cb cofch
and

T2 = [¢ 0 d’]T

In the above transformations, s- = sin(-), ¢ = cos(-), t- = tan(-) and Ojyx3 is a null
matrix. This gives the vector 7
7= J(n)v (3.10)

which can be integrated to get the position coordinates in earth-fixed frame of ref-
erence. Equation 3.10 is also known as the kinematic equation. In fact, the set of

all displacements or the set of all such matrices in 3.10 with the composition rule

of standard multiplication operation between matrices, is called SFE(3), the special
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Euclidean group of rigid body displacements in three dimensions. Together with
Equation 3.6, they can be used to describe compactly the behaviour of the six DOF
AUYV. Notice that Equation 3.8 is a matrix that details spherical displacements, and
is a subgroup of SE(3). It is also called the special orthogonal group in three di-
mensions, or simply SO(3). It is clear that one can also derive other subgroups from
SE(3).

Before proceeding further, the rudder deflection convention should be clarified. The
convention adopted here is in accordance to the one employed by the marine commu-
nity. A positive rudder deflection, defined to have the same sense as the yaw angle,
causes a negative yaw perturbation, and a very small positive sway perturbation as

exemplified by Figure 3.3.

Vessel Mation

TR >
\\‘}5 =+ve / u
~

Figure 3.3: Rudder deflection convention

3.2 Three DOF AUV Model (Planar motion)

As aforementioned, a complete description of the dynamics behaviour of an AUV
necessitates a set of six DOF kinematic and dynamic equations. Fortunately, due to
certain practical constraints which will be detailed later, and the ease of implemen-
tation, the dynamics can be decoupled so that only a three DOF dynamic model is

required.

The majority of the AUV missions such as mine hunting, seabed surveying, pipeline

tracking, scientific data collecting entail diving to a certain depth and commencing to
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meander within some predesignated area whilst maintaining a constant depth. Some
specific missions do however require the AUV to hug the terrain whilst preserving the
distance from the seabed. In the latter missions, a planar motion collision avoidance
manoeuvre is executed when a preset terrain gradient or obstacle size threshold is
triggered.

One crucial contributing factor in supporting the interest in the AUV planar motion is
due to the hardware limitation. The 3-D forward looking sonar is still in its infancy.
It is excessively expensive, bulky and has high power consumption, thus limiting
wide adoption in AUVs. This explains the fact why there is such ubiquitous usage
of 2-D forward looking sonars in AUVs. Typically, a forward looking sonar has the
configuration as depicted in Fig 2.3(a) to increase the horizontal detection envelope.
In this specific configuration the discrimination of object depth is very limited thus

making 3-D manoeuvres unsafe to be performed.

Another substantial factor is related to the computational efficiency consideration.
The search space in 2-D is clearly smaller than in 3-D case. The majority of motion
planning algorithms time complexity are of O(a®) type, where a is a real value con-
stant and d is the number of states. Reducing the state dimension drastically lowers
the computational requirement which propagates to smaller, cheaper hardware and

lower energy consumption, a set of highly desirable features for AUVs.

Herein, the kinematic formulation is presented first since it is generic for all types of
planar motion vehicles. From Equation 3.7 and taking ¢ = 0, # = 0 while neglecting
the depth, z dimension, the kinematic transformation matrix from body to Farth-

fixed coordinate becomes

i cp —syp 0 u
yl=1s¢¥ cp 0O v (3.11)
P 0 0 1|~

There is no singularity problem for this trivial case but this effect will need to be
considered if the Euler angle formulation is expressed and operates in SE(3). By
combining both Equation 3.11 and the reduced state Equation 3.6, one yields a

longitude-latitude-yaw model where the state vector becomes [u v r z y ¥]”.

Two types of AUV models are employed in this thesis.
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e Remus, a small, agile AUV, latitude-yaw only model (no surge dynamics)

e AUTOSUB, a large AUV with nonlinear dynamics at different speeds

3.2.1 Remus AUV model

Remus AUV was developed by Alt and Grassle (1992) at the Oceanographic Systems
Laboratory at the Woods Hole Oceanographic Institution. Remus is a low cost,
modular vehicle. The nominal dimensions of the vehicle are 1.4 m in length and 0.3 m
in diameter. Its missions range from autonomous docking, long-range oceanographic
survey, and shallow-water mine reconnaissance (Alt et al. 1994). Remus currently uses
the classical field-tuned PID controller. Although simple, nevertheless, it functions
very well. Controller retuning is necessary when the payload or length are altered
to cater for different missions. The versatility of Remus was proven in the 2003 Iraq

conflict (Jordan 2003) where it was deployed primarily for mine-hunting missions.

A six DOF Remus model is provided by Prestero (2001). However, in conducting the
experiment, the speed was kept constant at 1.54 m/s via the use of a speed controller.
Consequently, this limits the model to be only true around this regime. The latitude-
yaw only model, assuming the speed is fixed, is adopted for the Chapter 4 simulation
study. This model was employed by Fodrea and Healey (2003). Note that the pitch

and roll effects are neglected.

In matrix form, the linear three DOF dynamics equations of the vehicle can be defined

as -
m — Yi, 0 0 v
0 L,-N; 0 o
0 0 1
: v (3.12)
Y'u }/'r - mUo 0 v }/‘5
N, N, 0 r + | N5 | o:(¢)
0 1 0 0 0

Remus has a maximum rudder deflection of £13.6° and a rudder rate limit of 18°/s.
Embedding these two components into the model resulted in a nonlinear system. The
related coefficients are provided by Prestero (2001).
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3.2.2 AUTOSUB AUV model

The AUTOSUB AUV is the brainchild of the National Oceanography Centre. In
contrast to the small size Remus, AUTOSUB is a very large torpedo shaped vehicle.
Dimensicnally, the vehicle is 7 7 long, and approximately 1 m in diameter and has a
nominal displacement of 3600 kgs. It is used for conducting under ice and deep sea
surveying. Its normal cruising speeds are from 1 m/s to 2.2 m/s, with a top speed of
5 m/s. The detailed six DOF, nonlinear model of the AUV model was supplied by
QinetiQ Ltd, formerly DERA (Marshfield 1992).

This model is more complex and realistic compared to the Remus model. Owing to
its large size, the AUTOSUB is equipped with numerous actuators to increase the
control authority. This indirectly accentuates the already severe cross-coupling effect
inherent in the AUV. It is also equipped with two z-axial thrusters, which welcome

the use of differential thrust control strategy at low speed.

In most underwater vehicles travelling at speeds in excess of approximately 0.5 m/s
control surfaces are employed in preference to thrusters. The hydrodynamic forces
acting upon the rudders and hydroplanes of the vehicle at such speeds provide much
greater manoeuvring potential than the use of auxiliary thruster mechanisms, and
are thus a more efficient means of controlling the vehicle motion (Cowling 1996).
Additionally, it is a well known phenomenon that low speed control using rudders
and hydroplanes is subject to reversal effects. Referring to the AUTOSUB AUV,
the more appropriate means of achieving yaw control is via the use of locked upper
and lower canard rudders. Employing these actuators in this manner leads to a
cancellation of the rolling moment normally produced by the use of an individual
rudder or differential main z-axial thruster strategy (Cowling and Corfield 1995).
The stern upper and lower rudders are relegated to sway control, hence neglected
in this thesis. The upper and lower canard rudders are used in locked formation
throughout the remainder of the simulation studies. Furthermore, the cross-coupling
effects in roll and pitch are neglected, assuming that they have been stabilised by

some low-level controllers.

Unfortunately, the surge dynamic is not modelled in the six DOF model provided

by QinetiQ Ltd. Tt was assumed that a constant speed can be maintained with the

built in speed controller. To add realism to the simulation, the surge dynamics were
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Figure 3.4: The complete control authority of AUTOSUB AUV

added to the AUTOSUB model. Therefore, an estimate of the value of the propulsion
coefficient, X,,p, is required.

Neglecting the interactions from sway, heave, roll, pitch and yaw suggests that the
speed equation is given by Fossen (1994) as

(m — Xa)i = Xpplulu + (1 — )T + Xew (3.13)

Here it is assumed that quadratic damping is the dominating dissipative effect. Fur-
thermore n represents the propeller revolution, u is the surge velocity, Xz, is external
disturbances due to waves and current and £ is the thrust deduction number t. Thrust

equation can be expressed as
T= Tinhz + T'[n|Va,|n|Va (314)

where T is the developed thrust and V, is the advance speed at the propeller (speed
of the water going into the propeller). A common method is to design an inner
loop PI control to regulate the desired revolution, where revolution can be measured
using a tachometer, or encoder. In the remaining study, the dynamics of the thruster
are neglected assuming that it is much faster compared to the surge dynamics of
the vehicle. This is true for a large AUV like AUTOSUB. Clearly, the forward and
backward thrust will be non-symmetrical in practice but is again neglected in the

simulation.

For simplicity, it is assumed that 7}, = 0 (affine system). Introducing ,the notation
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Xinjn = (1 — t)Tinjn, finally yields:
(m— Xu)u = Xpnlule + Xppelnn + Xexe (3.15)

Equation 3.15 is clearly nonlinear because of both the v and n quadratic term. A
control allocation unit can be employed to ‘remap’ the inputs such that it is affine

again with reference to the model.

Accordingly, the nonlinear three DOF AUTOSUB dynamic model can be expressed

as

(m — Xa)t = Xopglulu + (mo + Xor + Xy + mXg)r + Xpropn®

(m = Y3)0 + (mX, — Y:)i = (Yoilv] + Yeu)v + (Yer) — mu + Yoou)r + w?Ysér

(mX, — Np)o + (I, — Ni)# = Nyyv + (N + mXgu)r + u?Ng, ot

(3.16)

A SIMULINK model of Equation 3.16 is illustrated in Fig 3.5. The AUTOSUB has
a rudder deflection limit of +25.2° and a slew rate of 9.9°/s. The maximal thrust
available for this set of actuators is £450 N. In the remaining study, the AUTOSUB
cruising speed is taken to be 2.0 m/s when the motor is running at 140 rpm. Xprep
is taken as 0.006810 after consulting the dynamics of the NDRE-AUV (Jalving and
Stgrkersen 1994) and NPS AUV II (Healey and Lienard 1993).




CHAPTER 3. SYSTEM MODELLING 68

Figure 3.5: A nonlinear SIMULINK model of AUTOSUB AUV

The following parameters describe the AUV moclel used herein:

W =358316 N B=33316 N L=70m m = 3600 kg
p=1025.2 kg/m® I, =0kgms® I, =0kgms* IL,=0 kgms*
I, = 8304 kgms® I, =0 kgms* I,,=0kgms* g=9.8lm/s’
o =034 m yo=0m zg =0.02 m Xprop = 0.006810

Table 3.1: Important parameters of AUTOSUB AUV. The rest of the hydrodynamic
coeflicients (not shown) are property of QinetiQ Ltd.

An open-loop AUTOSUB response of a saturated step input on the locked canard
rudders is shown in Fig 3.6 and Fig 3.7. Fig 3.6 shows the path the AUV is initiating,
which is not a perfect circle. True circle turning manoeuvre requires the AUV to hold

the surge and sway velocity constant.

Fig 3.7 illustrates clearly the cross-coupling effect of the longitude-latitude-yaw AU-

TOSUB model. Notice that as the vessel commences the turning manoeuvre, the
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Figure 3.6: The z-y trajectory of the AUV when subjected to a saturated step input
on the locked canard rudders in the open loop.
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Figure 3.7: The cross-coupled motion of the AUV when subjected to a saturated step
input on the locked canard rudders in the open loop.
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surge velocity (Fig 3.7(a)) drops drastically due to the higher induced drag. The
surge velocity converges gradually until the system thrust and drag are in a state of
equilibrium. Fig 3.7(b) depicts that the sway velocity increases rapidly before it set-
tles down. This behaviour is typical of non-holonomic vehicles which always exhibit a
constant sway velocity when making a turning manoeuvres. The reason is the vehicle
z-axis, body-fixed-frame of reference is not tangent to the arc the vehicle is executing.
Note that the step input injected into the canard rudders as shown in Fig 3.7(c) will

not directly effect the system because of the limitation imposed by the slew-rate.

3.3 Disturbances

A disturbance can be defined as a form of an undesirable effect injected into a plant.
It has the propensity to perturb the normal behaviour of the plant, or to be precise,
to deviate the plant from the expected response. It is an undeniable fact that distur-
bances are to be found in practice. One of the criteria in assessing a good a controller
performance is with regards to its disturbances attenuation capability. This type of

controller is termed as a regulator.

In the course of acquiring a better understanding of the subject, researchers have
categorised disturbances into various types with regards to their frequency content
such as high (HF) or low frequency (LF), the disturbance source either if it is endoge-
nous or exogenous, and the effect to the plant model, additive or multiplicative, and
lastly if the disturbances are zero-mean type. Two types of disturbances that are of
interest here are the one induced by the environment and the one embedded in sensor

measurements.

3.3.1 Environmental disturbances

For surface vessel, environmental disturbances include wind, waves and ocean cur-
rents. The ocean currents flow in complex patterns affected by wind, the water salin-
ity and heat content, bottom topography, and the Earth’s rotation. In the context of

an AUV which is travelling below 30 m, one can safely ignore the sea surface effects
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such as waves and winds. For most marine control applications, the ocean currents
effect can be approximated as additive to the plant dynamics. The ocean currents
are also considered to be of the low frequency type and are non zero-mean in nature.
The AUV will suffer from drifting effect if the current effect is not taken into account.
Elimination of this phenomenon can be achieved by introducing an integrating con-
troller. Or better still, if an accurate mathematical model of the system exists, then

currents and waves can be explicitly estimated using an observer (Torsetnes 2004).

The velocity magnitude of the ocean currents vary from 0 m/s to 2.5m/s depending on
the depth and region considered. The fastest current is the Gulf Stream which tends
to move at above 1.5 m/s with peak velocity reaching 2 m/s at the surface {Coble
et al. 1996, Gross 1990). Gross (1982) reported that the speeds of deep currents vary
from 0.02 - 0.25 m/s in deep water. Other currents such as the one in the narrowest
point. of the Florida Straits which has water masses in a cross section approximately
70 km wide and 200 m deep, move forward at a speed of more than 1 m/s (Gaskell
1973).

According to (Fossen 1994), ocean current velocity can be simulated by using a first
order Gauss-Markov Process. For instance V,(t) can be described by the following

differential equation:
V() + poVi(t) = w(t) (3.17)

where w(t) is a zero mean Gaussian white noise sequence and pg > 0 is a constant.
Typically, it is possible to use pp > 0 which simply corresponds to a random walk.
Clearly, the process must be bounded such that V;, < V. < V0 to preserve the
fidelity of the ocean currents simulation. The associated pseudocode can be found in
Algorithm 3.1.

Algorithm 3.1 (CURRENTS). The following algorithm simulates a current with

bounded velocities.
Require: Vi, Vonas, T, AT

1V, — M {initialise the V}

2: for k from 0 to T do

3 Vi(k+1) « Vy(k) + ATV,(k) {Euler Integration}
4:  if Vo(k+ 1) > Vs or Vo(k+1) < Vgnin then

5: Vo(k + 1) «— V,(k) — ATV, (k)

6: end if

7: end for

8: return V,
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is to treat the data by passing over a low pass filter before it is conveyed to the
controller. Various filters can be adopted for this purpose, such as the Butterworth,
Finite Impulse Response (FIR) to the more sophisticated Kalman filters. Care must
be taken since the incorporation of the filters into the system also introduces lag which
degrades the gain margin and phase margin of the system, thus rendering the closed-
loop system more susceptible to instability. This thesis assumes that such filtering is

taken care of, hence HF noise influence is neglected.

Certain sensors such as the Inertia Measurement Unit (IMU) tends to suffer from
LF non-zero mean disturbances. To elaborate, IMU is critical in providing the im-
portant measurements to locate the vehicle in a 3-D space. This is attained through
integration and transformation of the acquired linear acceleration and angular rate
measurements. Unfortunately, the integration process accumulates the errors which

become unbounded in a very short finite time interval.

A simple and yet insightful experiment was conducted to assess the drifting behaviour
of a low cost IMU. The IMU employed is of a low cost miniature, strapped down,
Altitude and Heading Reference System (AHRS) type, model MT9-B from the com-
pany Xsens. In the following experiment, the unit was left in a stationary position
before the reference frame is reset. Local magnetic field distortion calibration was ini-
tiated through the software. The sampling rate was set at 40 Hz. Fig 3.10 illustrates
the acceleration data of each axis acquired from the MT9-B for a time duration of
60 s. Notice that both z-axis and y-axis reveal zero-mean data but there is a mean
of approximately 9.72 m/s? for the z-axis due to the gravity effect. Using the Euler
integration technique, one may obtain the velocity and displacement quantities as
depicted in Fig 3.11. 1t is apparent from the Fig 3.11(a) that the velocity data suffer
from a drifting effect which is rather pronounced in the y-axis. One can also discern
the sinusoidal distortion of the data which is suspected to be induced by the minute
fluctuation of the angular rate measurements. Alternately, the Fig 3.11(b) shows the
3-D plot. The displacement data (Fig 3.11(c) and Fig 3.11(d)) do not exhibit the
periodical behaviour but demonstrate severe drifting instead. A displacement drift of
approximately 15 m in 60 s will render the data unusable for displacement estimation
in practice. Furthermore, one can extrapolate from this experiment that the severity

of drifting effects will accentuate when the vehicle is in motion.

The above experiment demonstrated that a periodic global reference frame reset is
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of the candidate controllers.

3.4 Conclusions

Details with regards to modelling of AUVs and disturbances to be used for the remain-
ing of the thesis have been presented. The mathematical modelling of the AUVs were
discussed based on a generalised model. Two specific AUVs mathematical models,
the three DOF Remus and the AUTOSUB were outlined, followed by the appropriate

assumptions.

It is critical to simulate the disturbances that will be endured by the AUV in or-
der to assess its performance in real-life. Herein, two forms of disturbances, ocean
currents and low frequency bias sensor noise were emphasised. Experiments were
conducted to demonstrate the characteristics of the latter type of disturbance. With
this understanding in mind, this completed the system modelling chapter and one

shall commence with a novel motion planning technique in the next.



Chapter 4

The Rapid Exploring Random Tree

This chapter presents a novel motion planning technique based on the rapid-exploring
random tree (RRT) algorithm (LaValle 1998), which is then applied to an AUV model
in order to assess its viability. The enhanced version of the aforementioned algorithm
is proposed to ameliorate the optimality of the returned solution. Furthermore, in-
sights acquired from the study pertaining to the RRT behaviour, are thoroughly
discussed. Some solutions to eliminate or failing that, extenunate the negative effects
are proposed and addressed. As a consequence of this in depth analysis, a paper Tan

et al. (2004a) was presented in an international conference.

4.1 Background

This chapter shall commence by investigating the prevailing issues suffered by most
classical motion planning and path planning algorithms. It has been shown in Section
2.5 that the majority of the proposed techniques (Hyland 1990, Fogel and Fogel 1990,
Arinaga et al. 1996, Arai et al. 1998, Sugihara 1998, Fox et al. 2000) do not explicitly
take into account the dynamics of the vehicle. Secondary smoothing methods such
as spline interpolation, are often employed to manipulate the path into conforming
the vehicular dynamics. Without this interpolation process, one cannot ascertain
that the paths are executable in practice. Frequently, rather conservative constraints

are imposed on the derivatives of the flight path in order to avoid violating the low-

78
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level feedback controller operating regime. To simplify further the process, the AUV
body geometry is neglected by shrinking it into a point via the application of the
configuration space concept. This assumption is valid if the vehicle considered is
operating in a sparse environment. This trend is fast changing as AUVs are now
being deployed in littoral waters, an environment densely populated by obstacles.
The dynamic and unpredictable elements of littoral waters render it crucial for an

AUV to exploit its dynamics to navigate.

Section 2.5 articulates that the approximate cell-decomposition methods such as A*,
dynamic programming and breadth-first search are highly susceptible to the curse of
dimensionality. Therefore, it is reasonable for one to concentrate on randomised al-
gorithms (Branicky et al. 2002). These algorithms do not have the completeness and
optimality properties of the previous algorithms. However, their robustness to state
explosion effects tends to make them preferable in practical and real-time applica-
tions. One interesting randomised algorithm is the RRT (LaValle 1998, LaValle and
Kuffner 2000), which can be considered as an incremental form of Probabilistic Road
Map (PRM) method and is designed to search efficiently nonconvex high-dimensional

spaces. It possesses a few fascinating properties as outlined below:

1. It is biased to the unexplored space via a probabilistic search method. The free
space bias property is vividly depicted in Fig 4.1. Both Fig 4.1(a) and Fig 4.1(b)
indicate an identical tree but in different representations to assist exposition.
From left to right, Fig 4.1(a) shows the gradual growth of the tree starting
from gin;; extending to the free space (largest Voronoi regions). Alternatively,
Fig 4.1(b) highlights the nodes of the tree and the relevant space partitions
correspondingly. This form of representation is termed as a Voronoi diagram.
Fundamentally, the Voronoi diagram displays the locus of all points that are no

nearer to one point than another.

2. Although the RRT algorithm is nondeterministic, it has been mathematically
proven to be probabilistically complete (LaValle and Kuffner 2000). This implies
that given a sufficient amount of time, the algorithm will find a solution to
any configuration problem if such a solution exists. This property is highly
appealing in an algorithmic perspective, however, its usefulness in real-time
implementation is questionable, as the run-time required to discover a solution

can be intolerable. Nonetheless, The RRT algorithm run time is usually much
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faster than the dynamics of AUVs.

3. The simplistic nature of the algorithm also facilitates performance tuning, since
only the metric and bias parameters need to be tuned. The RRT performance

is actually rather sensitive to a prescribed metric as elaborated in Subsection
444.

4. It is capable of accommodating both algebraic (global) and differential con-
straints simultaneously, a vital feature for solving motion planning problems.
In addition, algebraic constraints are induced by the static and dynamic ob-
stacles in the environment whereas differential constraints are inherent in any
dynamical systems. It must be noted that the terms algebraic and global con-
straints will be used interchangeably in this thesis. Strictly speaking, concurrent
solving of both constraints is also realisable via classical cell decomposition al-
gorithms. Even so, their susceptance to state explosion effects precludes their

applications in time critical and high-dimensional problems.

4.2 Problem Description

Before looking into the details of the RRT algorithm, perhaps it is helpful to elaborate
upon a general motion planning problem. Herein, the class of problems considered in

this study can be formulated in terms of @ components:

1. X, state Space: An n-dimensional closed and bounded manifold, X ¢ R*. A

set of continuous variables of R™, on which the dynamics of the system occur.

2. Xinit, < boundary conditions: x;,;; € X is the initial state vector and
init> <* goal 1 inil Jree

Xgoal C Xpree Is 2 set of goal state vectors.

3. D, collision detector: A function, D : X — true, false, that determines
if the global constraints are satisfied for a given state. In an algorithmic per-
spective; If D(z) = true, hence it denotes that the state X satisfies the global

constraints.
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and represents the differential constraints of a system. The equation can be

nonlinear and time varying.

9. 4t , dynamic equation time increment: Time increment used by the nu-
merical integration routines (Euler, Runge-Kutta, Predictor etc) to solve the
dynamic equation. The Euler integration formula is given by x((t) + At) =
x(t) + f(x(), u(t))At.

In essence, the kinodynamic planning problem is to find a trajectory m : [to,ts] —
Xfree from an initial state X;,;; to a goal state X,oy € Xgpas Or goal region within
the tolerance A\. A trajectory is defined as a time parameterised continuous path
that satisfies both the algebraic and differential constraints. However, it can also be
formulated in a way as a problem to find an input function u : [t,tf] — U that results
in a collision free trajectory connecting both Xin; and Xgeq. As with most physical
systems, input saturation and rate limit will also need to be taken into account. In
some cases, it is also appropriate to select a path that optimises certain cost functions,
such as the time to reach Xy, or the control effort which corresponds to the energy
consumption of the system. Due to its randomised nature, the generated path will

be suboptimal.

4.3 RRT Operation

To better appreciate the RRT, one needs to understand the basic operation of the
algorithm: Starting from an initial state, x;,i, a tree is grown through a process of
adding edge and vertex in each time step (iterations) (Algorithm 4.1). The following
step is to call a function to extend the tree edge (Algorithm 4.2). This function

constitutes several important subroutines.
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(@ (b) (c)

Figure 4.2: RRT Operations (a) Shows a simplified representation of a partial RRT
with its initial state, x;,;; (b) Shows the inclusion of random state, X,4,q and selection
of the nearest state, Xneqr (¢) Shows the addition of new state, X,,e,, and its connection

to near state, Xnear-

Algorithm 4.1 (BUILD_RRT). The following algorithm constructs an RRT, T,
with K nodes
Require: X

1: call T.init(x;,;) {initialise tree, 7'}

2: for k=1to K do

3. Xrand «— RANDOM._STATE(S) {extend T, see Algorithm 4.3.}

4: call EXTEND_RRT(T, Xrang) {extend T, see Algorithm 4.2.}

{If x is within the goal tolerance.}

5  1f Xpew € A then
6: break

7. end if

8: end for

9: return T

Algorithm 4.2 (EXTEND_RRT). The following algorithm extends a tree, T', to-
wards x by taking a fixed step from the closest node in 7" towards x.
Require: T, X,;qna
1: Xpear «— NEAREST NEIGHBOUR(x,T) {Find the nearest node in T to x, see
Algorithm 4.4.}
2: Upeqt, SUCCESS, Xpew +—— SELECTINPUT(T, Xpear, Xrana) {Finding the ‘best’ con-
trol input,see Algorithm 4.5.}
{Checking for global constraints (collisions).}
if D(xpew)= TRUE then
call ADD_VERTEX(T, x;eu)
call ADD_EDGE(T, Xnew)
end if
return T’
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Assuming that one has a partial RRT as shown in Fig 4.2(a), the subsequent step is to
introduce a random state into the configuration space, X,qna (Fig 4.2(b)) (Algorithm
4.3). The nearest-neighbour function (Algorithm 4.4) determines the ‘nearest’ state
to the random state, X,4nq to be extended. Here, the term ‘nearest’ is typically defined
by a metric.

Algorithm 4.3 (RANDOM _STATE). This algorithm adopts an approach where
the probability is slightly bias to returning the goal state.
Require:

1: v +— RANDOM]0, 1] {RANDOM is a standard uniform random number gener-
ator function.}
if v > g then

return RANDOM_STATE()

else

return Xgoo!
end if

Algorithm 4.4 (NEAREST_NEIGHBOUR). This algorithm uses a naive
method to check all z in T in order to find X, Which is nearest to X;qna.
Require: T, X404

1: dpin +—— 00

2: for all x in T do
3:  de— p(X,Xrana) {Find the nearest node in T to z.}
4:  if d < dpin then
o dmin —d
6
7

anﬂT —
end if
8: end for
9: return Xcar

As shown in Fig 4.2(c), a new state, X,ew, that is E-distance away from Xpeqr is then
computed. E is a Minkowsky distance metric. The computation is required to find a
suitable input ., that is applied for a time increment, /At so that it can bring X, eqr
t0 Xuew (Algorithm 4.5). In essence, the computation is achieved by using a suitable
numerical integration function. Before one proceeds to adding u,., to the tree, it
is necessary to check if x,,, satisfies the global constraints or reaches the goal state

(Algorithm 4.2). The process is then repeated until either the maximum number of

iterations or the goal is reached.
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Algorithm 4.5 (SELECT_INPUT). The following algorithm evaluate, U of X,eqr
and select the optimal control, u.,; with reference to the metric p, that can grow
Xear ClOSest’ tO Xyqng-
Require: T, X,cor; Xrand

1: dmin — OO)

2: success «—— false

{Test all inputs of X,eer.}
3: for all u in U do
4 Xpew +— NEW_CONFIGURATION(T, Xpear, u, At) {Integrate the equation
using Euler or Runge-Kutta method.}

5 if D(Xpew)= TRUE then
G: d— P(xnew: xrand)

T if d < d;;, then

8: dmin —d

9: success «—— lrue

10: Upest ¢— U

11: end if

12 end if

13: end for

14: return Uges, SUCCESS, Xpew

4.4 RRT Performance Enhancement

4.4.1 Bias

RRT performance can be significantly improved by the introduction of certain biasing
techniques. One such technique is to employ a Gaussian distribution function such
that the expected value is located at the goal state as approached by Kim and Os-
trowski (2003). Likewise, one can use a function to return either the goal state or a
random state depending on a preset bias parameter as implemented in this study. The
accompanied pseudocode is given in Algorithm 4.3. Basically, the bias parameter, 3,
with value ranges from zero to one is tuned to improve its searching performance. A
low value near to zero will emphasise the free-space exploration, random search char-
acteristic. Conversely, a high value near to one, transforms the RRT into a form of
‘greedy’ algorithm, a search directed to the goal direction. Understandably, a compro-
mise between these two characteristics must be struck, and deducing from numerous

experiments, a value from 0.05 to 0.2 has shown to provide adequate performance for

most problems.
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Interestingly, the Hammersley sequence has been proven to possess better dispersion
properties in a technical measure such as the discrepancy, but suffers from one glar-
ing issue which precludes its wide spread adoption. Unlike the Halton sequence, the
quantity of generated points must be known a priori before commencing the compu-
tation. For instance, if one has computed a Hammersley sequence of length 100, and
would like to compute a Hammersley sequence of length 200, one must discard the
current values and restart the whole process again. By contrast, if one computes 100
points of a Halton sequence, and then 100 more, and the result will be identical as

computing the first 200 points of the Halton sequence in a single calculation.

Experiments were conducted to inspect the performance difference between the quasi-
random generator based on the Halton sequence and the pseudo-random sequence
when applied in RRT. The pseudo-random sequence is provided by a built-in C func-
tion, purported to be a linear congruential generator (LCG) (I{nuth 1997). Despite
the fact that the quasi-random sequence merit has been proven for the PRM method
(Branicky et al. 2002), the results obtained for the RRT case are nonconclusive. In
fact, the results are in concordance to that reported by Levine (2004). Therefore, the

remaining simulations shall adopt the pseudo-random number generator.

4.4.3 Computational bottlenecks

Perusing through the algorithm sequence, one will notice that the two significant
bottlenecks of the RRT algorithm are the nearest-neighbour (NN} subroutine and the

collision detection subroutines.

Nearest-neighbour

The naive nearest-neighbour (NN) version which requires all of the nodes to be
scanned, is the most computationally intensive. In this basic NN implementation,
a search takes a time complexity of O(dn), where d is the configuration space dimen-
sion and 7 is the number of nodes in the tree. Clearly, the performance of this linear
version algorithm degrades substantially as the tree expands. A more efficient data

structure, implemented in a form of a template by Andrews (2001) is recommended
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for faster query. It is claimed that the algorithm can query the nearest neighbour
in O(lgnlgd)) time, where lg denotes log,. To cater for real-time motion planning
in fast mobile robots, Bruce and Veloso (2002) adapted the kD-tree, a form of data
structure for fast searching, into the RRT algorithm. By embedding some additional

novel features, they then christened the new algorithm as the execution extended
RRT (ERRT).

Since exact query result from the NN search is not compulsory for the proper func-
tioning of the RRT, this robust characteristic can be exploited by substituting the cor-
responding search with the approximate nearest neighbour (ANN) algorithm (Arya et
al. 1998) or the approximate kD-Tree (Greenspan and Yurick 2003) that yields better
computational efficiency. The ANN algorithm is expected to run in O(a(d, €) log n)
time, where a(d,¢) < d[1 + 6d/¢|?, and ¢ € R. The queried node will be bounded
within a distance of (1 + ¢€) from the actual nearest neighbour. The following simu-
lations, however, only employ the naive version of the NN search, since the primary
objective herein is to examine the viability of RRT to solve the AUV motion planning

problem. Algorithm efficiency issues shall be relegated to future research thereof.

Collision detection

Collision detection in this context pertains to a subroutine for detecting if two or more
models are intersecting. The collection of these subroutines also known as an engine
is predominantly used in games and CAD softwares. Regretfully, the computational
demand frequently escalates as the dimension and complexity of the cbstacle model
are increased. Additionally, nonconvex obstacle models also compound the complex-
ity of the calculations. For cases like this, high quality collision detection libraries are
necessary to minimise the computational demands (Lin 1999). The following simula-
tions avert the above mentioned problems by replicating the obstacles as rectangles

and circles only, both are nonconvex polygons.
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4.4.4 Metric sensitivity

It has been mentioned before that a suitable metric plays an important function in
the operation of RRT. To add, in fact the intrinsic operation of RRT is fundamentally
based upon Voronoi region bias (free space), which in effect depends predominantly
on the embedded metric used. A metric, sometimes also known as a norm, is a
simple and yet elegant mathematical method for assessing the ‘closeness’ between

two elements. It is analogous to the concept of distance.

An appropriate metric, nevertheless, is indeed problem specific. The ideal metric is
the optimal cost-to-go, which is the cost to move [rom one state to another state
under the optimal trajectory. Interestingly, having knowledge of a perfect metric
implies having knowledge of an optimal solution, which is the solution to the motion
planning problem itself. From the discussion above, it can be inferred that a useful
metric will be the one that can closely approximates the perfect metric. One near
ideal metric is the quadratic performance index. To be precise, it is the ideal metric
if the system dynamics are linear and there exists no global constraints. The metric

p in the form of cost function or performance index is expressed with respect to u as

p* = min (qb[x(if), te] + ! E[x(¢), u(t),t]dt) (4.3)

. to

while satisfying the differential constraint,
Elbx(8), u(t), ] - x(8)] = 0

where p is a function of (Xpear, Xrana, ). Note that Equation 4.3 assumes an obstacle-
free environment, hence no global constraints are being imposed. It has been discov-
ered that RRT performance tends to degrade as p and p* diverge (LaValle and Kuffner
1999). In essence, the problem outlined above is an optimal control problem. The
solution, frequently solved using numerical methods, can be time consuming since it
entails solving a two-point boundary-value problem. The cost might be the distance
travelled, system response performance, energy consumed, time elapsed during the

execution of the trajectory, or any combination.

Therefore, the most popular metric utilised for most applications is the weighted
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Euclidean distance. It is a compromised solution between solution optimality and
computation issues. The metric in a two dimensional case can be expressed as
\/m. The two constant coefficients @; and ay are weighting coeflicients.
This metric functions adequately in most problems and can be easily generalised
to any number of dimensions. In fact, the Euclidean distance is a special case
of the Minkowski L,, distance metric. For any integer m > 1, the L,, distance

between points p = (p;,p2,-..,pa)) and ¢ = (q1,92,.-.,¢3) in R? is defined as

'{/ZLI |pi — gi|™. In the limiting case where m = oo, this is equivalent to max;<i<q |pi—
¢:l. The L, L, and L., metrics are known as the Manhattan, Euclidean, and max
metrics, respectively. Levine (2004) reported that a combination of Euclidean and
Manhattan metrics function very well for a hybrid system. Then again, understanding

each of these metrics potential is still a much researched subject.

For holonomic path planning problems in RRT based planners, the Euclidean metric
usually produces excellent results. However, in an environment with global con-
straints, Euclidean metric can yield incorrect information. With reference to Fig 4.4,
one can observe how incorrect the Euclidean metric is in accessing the true cost-to-go
in an obstacles filled environment. Node x5 is considered closer to x; than x5 to x;.
Understandably, this is an error as if one refers to the correct cost-to-go, %, is in
reality nearer to x,.

Further aggravating the situation is the problem involving differential constraints
and control saturations. Here again, the Euclidean metric has the propensity to
provide misleading information, which consequently degrades the RRT performance.
Fig 4.5 illustrates how node x5 is considered to be nearer to the X454 {(distance B),
hence being selected for expansion in the direction of X,.,q- However, the differential
constraints inherent in the AUV’s dynamics impose limitation to the AUV’s turning
radius. The AUV is then coerced into executing a turning manoeuvres to arrive at
Xrand, Dut unable to do so completely. If node x; is selected instead, in spite of having
a longer distance to X,q,q4, the AUV will arrive at node x,,4 not only in a shorter time
duration but via a less complex path. Also, depending on the structure of the AUV’s
dynamics, incorrect tuning of the weighting coefficients of the Euclidean metric can

introduce unwanted bias into the RRT, diverging the search from the terminal state.

Figure 4.6 is used to better elucidate the above issue. It portrays an RRT simulation

run using a simple kinematic car. The car model is given by Laumond {1998). The










CHAPTER 4. THE RAPID EXPLORING RANDOM TREE 93

Exploration Information

The crux of the concept here is to acquire exploration information of each node to
avoid node duplication and collision checking of the particular used state. Each node
status concerning its input is recorded as either expanded or not expanded (Algorihtm

4.6). The expanded input will be excluded from the search space.

Constraints Viclation Frequency (CVF)

The second method is to extract the enviromment information pertaining to the ob-
stacles by recording the state collision tendency. This information is kept in the form
of constraint violation frequency (CVF). The objective here is to avoid expanding the
state in the region where a collision is bound to happen, hence biasing the search to
the free space. Figure 4.7 is provided to assist the following exposition. When a child

node of a state, x4 in this case, has collided (violated), a value of ;1,—1 will be added

A1
g

to it. The CVF of the parent state, x. will then be increased by this process
propagates through the whole tree until it meets the initial state x* with the CVF
of 'n—:;; The CVF is a monotonic increasing quantity, it starts from zero, but when a
collision occurs, it is recorded and added to the existing CVF. A CVF of zero denotes
that the all the child states are free to extend, diametrically, a CVF of one means
no expansion is possible. Hence states with less CVF will be given more priority to
expand since they are more likely to evade the obstacles. A more detail explanation

is given by Cheng and LaValle (2001).
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Algorithm 4.7 (SELECT_INPUT2). This algorithmm records the status of the
inputs to avoid state duplications.
Require: T, Xnear, Xrand

1: din ¢ 00;

2: success +— false

3: for alluin U do

4:  if Ju of U are not EXPANDED then

5: Xnew ¢+— NEW_CONFIGURATION(T, Xpear, u, At.)
6: if D(X,ew)= TRUE then

(8 d p(xneunxrand)

8: if d < d,pi, then

9: dmin —d

10: success «— true

11: Upest —— U

12: end if

13: else

14: mark u as EXPANDED

15: call UPDATE_TREECVF(T, Xpeqr)
16: end if
17:  end if

18: end for

19: mark ., as EXPANDED
20: return Upeg, SUCCESS, Xpew

Algorithm 4.8 (UPDATE_TREECVF). The following algorithm updates the
CVF value of the tree using a recursive backtracking method.
Require: T, Xneqr
depth «— 2
R«— $
6(Xnear) «— 0(Xnear) + R {o(z) is a variable that records the CVF of z.}
R—
X1 & Xnear
{Recursive trace back only 10 edges deep}
while x; # X, and depth < 10 do
Xg +— parent(x,)
a(xg) — o(x2) + R
depth «— depth + 1
10: R«— mﬁ%ﬁ-
11: Xy +— X2
12: end while

© LN
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Another interesting characteristic of the single tree RRT is its tendency to grow a few
major branches at the initial state thus making connection with the terminal state
very problematic. In obviating this problem, one method is to introduce another start
tree, with a different time increment and metric when it is at the proximity of the
goal states, thus improving the probability of connection (Kim and Ostrowski 2003).
Bruce and Veloso (2002) devised a technique that utilises waypoint cache, a collection
of feasible states from previous runs, for efficient replanning. Here the tree is bias
using a parameter not only to the goal and free space, but also to the previous states.
In essence, this technique attempts to reuse the information gathered in the previous

run for a faster trajectory search.

4.4.6 Hybrid planner

Recalling from Section 4.4.4, the RRT tends to degrade as the p and p* diverge. One
promising technique initiated by Frazzoli et al. (2002) is to combine an optimal plan-
ner with the RRT. The optimal planner which exploits the precomputed trajectory
primitives is used to plan an obstacle free path and the RRT attempts to reroute
the path if there are obstacles. Detail simulation studies using a nonlinear dynamic
model of a small helicopter has been presented. This technique is indeed very promis-
ing and is adopted herein. A more detail exposition of this novel method is presented
in Chapter 5. Other researchers prefer to merge RRT with collocation and nonlinear
programming (Karatas and Bullo 2001). The trajectories obtained via simulation
studies show substantial improvement compared to the individual methods. Alter-
natively, Toussaint (2000) combined motion planning using the RRT with nonlinear
control employing the H* technique for an underactuated vehicle. Not only did he
utilise a H* filter for improving the planned motion of the vehicle but he also ad-

dress multiple vehicles planning problems. His simulations, however are limited to

only planar motions.
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4.5 Reconnection

This study proposes a process termed as reconnection where the algorithm is ini-
tially executed to obtain a feasible trajectory which is then trimmed at a certain
point and reexecuted again. This method exploits two inherent properties of RRT:
(1) Its propensity to grow a few major branches from the initial point where these
major branches are potential suboptimal trajectories. {2) Reconnecting the RRT en-
tails recycling some of the residual branches thus achieving certain computational
advantages compared to initiating a new tree. Certainly, two components need to
be addressed: (1) the location of the trimming point and (2) the number of reruns

required.

Strictly speaking, this method is a variation of tree pruning methods recommended
by a number of researchers (LaValle and Kuffner 1999, Levine 2004). The novelty
of the concept here is, instead of using this technique to assist in finding the goal, it
is employed for optimising the trajectory with regards to a prescribed performance

index.

In principle, a simple explanation of the algorithm flow is as follows: Once the first
feasible trajectory is found, it is backtracked to the initial point. The trimming point
is selected from 0.4 to 0.7 of the trajectory length. A value of 1.0 is equivalent to
starting a new run since the whole core branch is trimmed. A too high value will
risk destroying important branches and a too low value will not provide substantial
improvement as the RRT will attempt to just reconnect the trimmed branch. Several
experiments conducted by the author have indicated that two to three runs are suf-
ficient to obtain a reasonable suboptimal trajectory. Additional runs will apparently
deliver better solutions, but the improvement obtained is marginal, hence this effort
is not being pursued to reduce any extra computing effort. Algorithm 4.9 is given

below.

Algorithm 4.9 (TRIM). The following algorithm constructs an RRT, T, with K

nodes
Require: T,x, X,

1: traj «— BACKTRACK(T, x)) {Backtrack from x to X;p;, T'}
2. T «— TRIM(0.5  traj)

3: return T
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Algorithm 4.10 (BUILD_RRT2). The following algorithm constructs an RRT, T,
with K nodes
Require: x;,;:, K, M
1: m «— 0 {initialise m, a global variable}
2: call T.init(X;y;) {initialise tree, 7.}
3 fork=1to K do
4 Xpgnd —— RANDOM_STATE(S) {extend T, see Algorithm 4.3.}
5. call EXTEND_RRT2(T, X,4nq) {extend T, see Algorithm 4.11.}
6 me—m+1
{If x is within the goal tolerance.}
7. if Xpew € A then
& T2 TRIM(T, X, Xini)
9: T2 — BUILD_RRT2(x, K)
10: if T2 > T then

11: Thest — T
12 end if
13: end if

{if maximum iteration limit is reached.}
14:  if m = M is TRUE then

15: break
16: end if
17: end for

18 return T

Algorithm 4.11 (EXTEND_RRT2). The following algorithm extends a tree, T,
towards z by taking a fixed step from the closest node in T" towards .
Require: T, X,qnq4
1: Xpear — NEAREST_NEIGHBOUR(x, T} {Find the nearest node in T to z, see
Algorithm 4.6.}
2! Upegy, SULCESS, Xpeyw —— SELECT INPUT(T, Xpear, Xrana) {Finding the ‘best’ con-
trol input,see Algorithm 4.7.}
{ Checking for global constraints (collisions)}
if D(Xpew)= TRUE then
call ADD_VERTEX(T, Xpew)
call ADD_EDGE(T, Xnew)
end if

return T
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4.6 Simulation Results and Discussion

For these simulations, the sampling space was set to 200 m x 200m in dimension,
slightly bigger than the environment, as illustrated in Fig 4.5. Here, one assumes
an ideal case where e priori information of the environment has been catered and
there is no external disturbance imposed by the environment. Admittedly, these two
assumptions are not entirely true as far as practicability is concerned. The effect of
an external disturbance will be addressed in Chapter 6. The Remus AUV model,
as delineated in Section 3.2.1, was employed. The case of incremental sensing where

only partial environment information is relegated to future work.

The convention here is to take the heading angle to start from the z axis (inertial)
and positive when turn counter clockwise. The algorithms were all written in C on a
2.1 GHz Pentium IV machine, with 512 MB of RAM and running Windows XP. The
algorithms were implemented in Matlab initially, before being ported to C language.
Significant performance improvement in terms of running time, approximating 10
times the speed gain was observed after the language migration. Nonetheless, the
codes were programmed without performance optimisation as a priority, clearly con-

siderable speed increment can be expected if this is pursued.

The subsequent simulations were run with 2000 maximum nodes and 4000 itera-
tions, terminating when either criterion is reached or if a solution is found. The
AUV was assumed to be cruising at 1.5 m/s. The AUV configuration variables were
set to [0 O 1], and the goal state to [150 100 «] according to the following format

[z(m) y(m) ¥(rad)]. Whereas, x denotes a variable (unconstrained).
The Euclidean distance metric was employed for all the cases.

During preliminary simulation studies, all three configuration variables, z, v and
1) were used in the Euclidean metric but additional studies indicated adverse RRT
behaviour. Upon further inspection, it was discovered that the RRT is indeed very
sensitive to the weighting of the Euclidean metric, namely some states have been
supplying contradictory information. For example, in an underactuated vehicle case,
such as when an AUV is travelling in a straight path to a target, the configuration

variables are in fact coupled. The AUV needs to align its heading and body such that
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it coincides with the line of sight to the destination. More predictable behaviour was
observed when the 1 variable is omitted. This is acceptable since the priority here is
collision avoidance. However, if the final heading of the AUV is deemed important,
then the heading state should be incorporated into the RRT algorithm.

The goal tolerance was defined as a 5m radius. This accuracy can easily be achieved
via a modern GPS equipped with a WAAS or EGNOS when the AUV surfaced. Alter-
native one can utilise the SLAM technology instead. The time increment and dynamic
equation time were set to 3s and 0.1s respectively. The Runge-Kutta method was
used to propagate the dynamic equation. The rudder deflection input was discretised
into 7 elements of input. Instead of assuming a constant input for Af, the input
was linearly interpolated as it propagates through the state equations. This method
allows one to employ a larger time increment while easily taking into account the
input rate constraint. All the plots shown are considered to be of an enhanced RRT

unless stated otherwise.

Two forms of the RRT algorithms, the generic algorithm (LaValle 1998) and the
enhanced algorithm, as given in Algorithm 4.1 and Algorithm 4.10 respectively, will
be thoroughly compared. In order to verify the algorithm performances several testing
scenarios must be appropriately designed. One shall rank the RRTs performance

mainly using the four criteria as listed below,

1. The time where the first feasible trajectory is given. (Critical in real time

applications.)

2. The quality of the trajectory reference to minimum distance travelled. (Recon-

nection)

3. The time required in providing a ‘better’ solution. (Applicable only to the
enhanced RRT.)

4. The frequency of failure. (Unable to find a solution giving the require time or

number of node constraints.)
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4.6.4 Disadvantages

The above appraisal has furnished plenty of in depth information pertaining to the
RRT behaviour. Despite that the RRT based algorithm is endowed with various
appealing characteristics, nonetheless a few of its critical deficiencies should not be
overlooked.

One apparent drawback of RRT is the requisite for a comprehensive environment
information, which is frequently not achievable in practice. Sonar equipped AUVs
can only perform incremental sensing of the environment, gradually establishing and
constructing the surrounding information. Bruce and Veloso (2002), however, have
argued that the fast computational response time of the RRT allows one to rerun the
program once a new target is confirmed or when an obstacle intersects the prescribed

safety threshold of the AUV. Future investigation upon this issue is warranted.

Also, the RRT performance degrades drastically in a trapped environment such as
those that have a small orifice or inlet. This symptom has been acknowledged by
LaValle and Kuffner (1999). Figure 4.21 shows a trapped naive RRT tree.

Conversely, Fig 4.22 depicts a successful trajectory found using the enhanced RRT
algorithm. Nonetheless, this particular simulation utilises 11071 iterations and 3091
nodes. A failure percentage of 78% is not encouraging even though it is much better
than the generic RRT version which attained only 91%. There is little doubt that
the accumulation of inputs and CVF information assist in making the enhanced RRT
behaves more intelligently. Figure 4.23(b) and (¢) which show the CVF plot superim-
posed with the trajectories in different perspective. A cluster of high magnitude CVF
can be detected, in fact the increase in the CVF magnitude when the nodes collide
with the obstacles is self evident, hence delivering erucial local information for the
RRT success. The corresponding input history pertaining to the feasible trajectory
found is plotted in Fig 4.23(d).

Another less obvious failing of the RRT, is its dependency on a system dynamic
model, to be precise, an AUV dynamic model in this context. Exacerbating this
problem is, the majority of commercial AUVs do not have an existing mathematical
description of their dynamics. As remarked in Chapter 3 the process of extracting

the mathematical model is rather time consuming and financially unattractive short













Chapter 5

The Manoeuvre Automaton and
The RRT

Chapter 4 discussed and demonstrated the inherent ability of RRTs when applied to
the motion planning problem of an AUV. It was noted that the preceding technique,
even though highly appealing and promising, still elicits several drawbacks which are
not conducive for practical implementation. In the light of this complication, this
chapter focuses on a novel formulation, known as the Manoeuvre-Automaton (MA),
a method based fundamentally on system dynamic quantisation. The MA when fused
with the RRT is not only capable of addressing a few of the inherent deficiencies of
RRT but greatly extends the algorithm functionality and versatility. This algorithm
is then extended to the multiple-nested node version and also to cater for the case of

a varying terminal state (Tan et al. 2005b).

5.1 Background

Here, one seeks a technique that can encode a set of finite behaviours of a dynamic
system into a formal language or compact transcription for solving complex prob-
lems and of particular interest is the motion planning problem. This process is also
termed as system behaviour quantisation or discretisation. Through this process, one

derives a computational-efficient algorithm in the form of an embedded planner for
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the generation of feasible trajectories, satisfying the required boundary conditions
and differential constraints on the states and control inputs. Notice that here, one
excludes the global constraints that are induced by surrounding obstacles, rather this
will be tackled using the RRT paradigm. As an added benefit, it will be highly
beneficial in practice if the feasible trajectory can be optimised based on meaningful

measures such as time, distance and control effort.

Through the judicious application of the aforementioned technique, a distinct sepa-
ration between the low-level and high-level control of a system is ensured. In other
words, it introduces a form of abstraction to facilitate problem solving of high-level
tasks. The ensuant high-level commands will automatically comply to the inherent
behaviour of the system, and are guaranteed to be executable by the system. In
addition, this permits the processor to allocate its resources to the more vital and
challenging tasks, tasks that define the ‘intelligence’ of the system, as opposed to the
low-level controls.

Such a form of a system behaviour gquantisation as a whole reduces the complexity
of the control task, but bounds to restrict the admissible responses of the system
or limits the vehicle performance envelope when compared to the original one. This
being a sacrifice that one must pay for adopting this method. Therefore, special
care must be taken in conducting the quantisation process such that it captures the
predominant behaviour of the system. This will ensure that when applied in practice,

the difference between the quantised and the original is negligible.

In fact, the aforesaid technique is not entirely new and can be traced from the research
conducted by Dubins (1957), and Reeds and Shepp (1990). They have shown that
the minimum length paths for a kinematic car are comprised solely of straight line
segments and tangential circular arcs of minimum radius, which implies that the
problem can be recast as an optimisation problem. Alternatively, if one considers
each of the paths can be symbolically represented, then a feasible path, which consists
of a myriad of line segments can then be described by a series of symbols with the
associated syntax, hence the term language. Unfortunately, for the case above the
path curvature is related to the front wheels, and the car must stop at the path
interconnection to reorient its front wheels thus rendering it unviable for practical
usage. This research has been extended by Fraichard and Scheuer (2004) to obviate

the requirement of intermittent stops at the interconnection of the line segments and
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arcs. Their solution is, however, restricted to the domain of only car-like vehicles.

Behavioural robotics is a branch of robotics that does not use an internal model of
the environment. It was instigated by Brooks (1986) and has received considerable
attention even today (Arkin 1998). The gist of the concept is to develop a robot that
would react to external stimuli, mimicking the behaviour of insects. Later, it was
discovered that the exhibited behaviours are rather temporal, unpredictable, difficult
to analyse and aimless. The situation is being further aggravated by the fact that
the software are machine-specific and not reusable. This prompted the development
of a language known as the ‘Motion Description Language’ (MDL) (Brockett 2000)
(Manikonda et al. 1995), which was later extended to the ‘Motion Description Lan-
guage extended’ (Hristu et al. 2000), that can provide a formal basis for programming
behaviours and at the same time permit the incorporation of kinematic and dynamic
models of robots in the form of differential equations. Indeed, the language provides

a hierarchal approach to solve complex motion planning problems.

Deriving from the knowledge and experience gained from these previous studies, Fraz-
zoli et al. (1999) introduced a method of state quantisation in the design of control
systems, known as the ‘Manoeuvre Automaton’. Instead of quantising time, the state
or the control input values, the proposed technique is based on quantisation of the
system’s dynamics. Their approach is to select a finite number of state and control
trajectories, termed as motion primitives, and concatenate them to generate feasible
trajectories. From another perspective, it transforms a high dimensional, complex,
nonlinear system into a hybrid system, which is more amenable in terms of compu-
tational and communication requirements. Their approach is capable of exploiting
the symmetries properties found in most human ‘enginecred’ vehicles. A detailed

exposition of this technique is given in Section 5.2.

In a similar vein, purportedly in an independent study, Saimek and Li (2004) applied
an almost identical method as the one proposed by Frazzoli et al. (1999) to the motion
planning and control of an aquatic vehicle. The optimised motion plans are regulated
by a controller that consists of a cascade of LQR, input-output feedback linearisation
and sliding mode control. The novelty of their implementation is with respect to the
use of time-scalable motion primitives. Experimental results which pertain only to
the speed changing capabilities of the vehicle were presented, since turning behaviours

have not been designed.
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5.2 The Manoeuvre Automaton

The Manoeuvre Automaton, a form of finite state machine, was devised by Frazzoli
et al. (1999) as a unified framework for formalising the control of high dimensional,
nonlinear systems with symmetries. The principal idea here is to generate a complete
trajectory via sequential combination of the copies of motion primitives from a library
set. The main assumption behind the proposed method is that the vehicle dynamic
equation must be time-invariant, and has a form that remains unchanged or in math-
ematical terms, invariant after the action of a certain class of transformation (group
action) with respect to the states. Indeed, the later property is explicitly linked to
the existence of symmetries. An avid reader is directed to the book authored by Bullo
and Lewis (2004) for a more detailed exposition of symmetries in mechanical systems.
Similarly, Frazzoli et al. (2004) advocated a mathematical rigourous approach to this

subject with a special emphasis on its utility in the MA.

The MA method relies primarily on two distinct types of motion primitives known as
trim trajectories and manoeuvres. Belore delving into the details, it should be clear
that herein, one is interested only on the planar motion of the vehicle. Subsequently,
this resulted in the group SF(2) acting on the configuration variables of the vehicle.
The reasons behind these restriction have been stressed in Section 3.2. The generation
of longer motion primitives from shorter ones can be accomplished through sequential
combination or concatenation of the individual elements. Based on this assertion, a
feasible trajectory is just a collection of repeatable motion primitives in a proper

order.

5.2.1 'Trim trajectories

Trim trajectories, also known as the relative equilibria for Lagrangian systems, cor-
responds to the steady state trajectories of a system, a vehicle in this context, where
the velocities in the body-axes of the vehicle and the inputs are constants. Interest-
ingly, trim trajectories are an intrinsic characteristic of human engineered vehicles,
and include trivially all equilibrium points of a system. Since, each equilibrium point

can be considered as a trim trajectory, it becomes the simplest form of a motion

primitive.
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Most vehicles are designed to have this property in mind. Imagine that when driving
a car in a flat plane, once the vehicle speed is constant, very few control inputs are re-
quired from the driver to preserve the condition. The algebraic sum of the forces such
as drag, friction and thrust acting on the vehicle is zero, hence the term equilibrium.
Extra inputs are merely required to counter the effect of external perturbations. This
condition, however, is nullified at the moment of driving up a hill, where the gradient
varies. The gravity component acting on the vehicle destroys the symmetry in the
pitch direction. Nonetheless, if the gradient is constant then a trim trajectory can
always once again be found. Briefly speaking, trim trajectories are the composition of
a constant rotation, in two dimensional space and screw motion (helix with a constant
sideslip angle) in three dimensional space, where the group SFE(2) and SE(2) x (R, +)
acting on the configuration variables respectively for each case, assuming that gravity

acts in the direction of z.

Frazzoli et al. (2004) also defined a trim primitive as a strongly repeatable motion
primitive such that all of its non-trivial prefixes and suffixes are also strongly repeat-
able. As mentioned above, the control input must be constant, and the state flow is
time-invariant. Trim primitives can be parameterised using a non-negative scalar 7,
the coasting time which determines the duration to spend in executing a trim prim-

itive. In other words, the system flows along the corresponding left-invariant vector
field.

Mathematically, trim trajectories can be expressed in the Lie algebra form. The Lie

algebra elements £ € SE(2) are represented as matrices in R3*3 of the form:

0 —'gb Uy
=149 0 v (5.1)
0 o 0

where v is the body fixed velocities with relative to the = and y axis respectively and
W is the angular velocity.

In this case, the group exponential coincides with the matrix exponential and for

a special case of w = 0, one yields a simple equation to describe the configuration
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change after 7 length of time in trim trajectory.

1 0 vt
exp" = | 0 1 w,r (5.2)
0 0 1

and if w # 0,

cos(wr) —sin(wr) ¢ + rcos{wr + by)
exp(€7) = | cos(wr) —sin(wr) ¢ +7cos{wr + 6p) (5.3)
0 0 1

where r = | /v2 + v2/w is the (signed) radius of curvature, and (cz, ¢;) = (—7 cos(6p),
—rsin(fp)) is the centre of rotation, with tanfy = —wv,/v,. For the planar motion

case, the group SE(2) acts on the configuration variables of the vehicle.

5.2.2 Manoeuvres

Manoeuvres are defined as a type of non-trivial motion primitive which can be se-
quentially combined at either end with the trim trajectories. Note that the initial and
final conditions of the system are always assumed to lie on the trim trajectories. They
are repeatable and can be sequentially combined. However, unlike a trim trajectories,

their combination are confined by certain prescribed rules.

Manoeuvres are in fact a superset of trim trajectories or conversely, trim trajectories
are manoeuvres that possess one unique property with their velocities and inputs
being kept constant. As remarked, this excuses the slight abuse of the terms motion
primitives and ‘manoeuvres’. Both are frequently used interchangeably and their
definition will be clear in the context. A manoeuvre is comprised of a complex
connection of several motion primitives. They do not suffer from the restriction
of constant input and constant velocity, implying that their state flows are not time-
invariant. This allows manoeuvres to exhibit very complex behaviours in contrast to

trim trajectories.

One invariant characteristic of manoeuvres is their group displacement. A planar

underwater vehicle moving on a horizontal plane in a isotropic medium is invariant
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with respect to rigid-body motions on the plane, SE(2). The group SE(2) can be
identified within the space of a 3 x 3 matrix of the form:

cosy —sinyY =
g=| siny cosy y (5.4)
0 0 1

This condition is violated if there exists constant currents, hence invalidating the
isotropic assumption. The reason is that the symmetry about the vertical axis has
been broken, rendering the system to be invariant to translations only. This can be
extended to a three dimensional case when the medium is homogeneous, the system
is then invariant with respect to SE(2) x (R, +), assuming that gravity acts in the

direction of z.

5.2.3 Hybrid formulation

In another perspective one can also recast the MA transcription into a hybrid form as
given by Schouwenaars et al. (2003). The hybrid formulation provides a more elegant
way of describing behaviour of the system. Similar to a differential or difference
equation, the MA transcription describes a dynamic system, differing only in that
it has hybrid elements in both its control inputs (7, p), and state vector (x,q). MA
evolves in a so-called ‘dense time’ by either continuous flows or discrete transitions.
Consequently, at each particular moment, the system is constrained to be either in
a trim condition ¢ or performing a manoeuvre p. MA can be pictorially depicted as
a direct graph MA(gq, p) as shown in Fig 5.1, where ¢ are vertices (trim trajectories),
and p are edges (manoeuvre). Instead, the system bchaviour can also be explicitly
formulated as below.

Steady cruise Steady turn

Figure 5.1: A simplified MA representation
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e An MA system H starting at state vector (x;,¢;) in trim trajectories, evolve
according to fy(-) as determined by the length of the 7;, which can be infinite.
Where f,(-) is the governing differential equation at the specific discrete state
qx- The hybrid state then evolves as:

Xkp1 = Xi + Tkkq (55)
Tr+1 = Gk (5.6)
b1 = b + Tk (5.7)

where X, is the time rate of change of the vehicle’s continuous state variables
and £k is the ‘stage’ number.

e In the case of performing a manoeuvre p, the vehicle leaves the trim trajectory
q, for a finite length of time before settling to the trim trajectory ¢,. Mathemat-
ically, the manoeuvre is initiated by the control action p, which is discrete, and
is described by a fixed duration At, and displacement Ax, in the continuous
state space, as illustrated in Fig 5.2 for a SE(2) case. In reality, the control
history of the continuous state-space system is implicitly encoded in the control

action p. As such, when manoeuvering, the hybrid state evolves as:

Xe41 = Xi + AX, (5.8)
Qrt1 = G2 (5.9)
1 =t + Atp (5.10)

Although, the hybrid control input at instant £ can be described by a vector (7, p)x,

however only one input, either T or p can be active at any moment.

By having the AUV continuous behaviour encoded as a discrete state g, its configu-
ration can be described by an element of the Lie group G of rigid motions in R? or
R3, called SE(2) or SE(3), respectively.

5.2.4 Motion plan

The sequential combination of motion must be performed in order, to be more pre-

cise, it must abide to certain rules. The rules are synonymous to the grammar of
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matically comply to the system dynamics. Furthermore, there is no approximation
involved in the transformation from a nonlinear continuous system into a hybrid sys-
tem via the MA approach. Nonetheless, it does restrict the admissible dynamics of

the original system.

5.2.5 Optimisation

The MA transcription is highly suitable for an optimisation process. This is true,
for certain cost function that shares the symmetry properties of the system, such
as minimum time, minimum length (distance) or minimum control effort. Nonlin-
ear optimisation and randomised techniques are possible candidates but their high
computational demand impedes their use in this context. These techniques include
sequential quadratic programming (SQR), genetic algorithm (GA) and simulated an-
nealing (SA). Reformulation of the above problem into Ricatti equation is not possible
either, as the dynamic equations are not continuous but hybrid instead. Similarly,
pure gradient based optimisation fails because of the discontinuity in the hybrid equa-
tions. One should not forget the fact that the main idea of recasting the dynamic
equations from continuous form to hybrid form is to render it amenable for compu-
tation. Given this situation, dynamic programming (DP), linear programming (LP},

and mixed integer linear programming (MILP) have the most potential.

Dynamic Programming

The DP technique was invented by Bellman (1957) to solve the optimal control prob-
lems. The gist of the concept here is to store the cost-to-go map of the optimisation
problem that is performed a priori and then exploit a look-up subroutine to find the
subsequent optimal states in real-time. Interestingly, it can be applied to both lin-
ear and nonlinear optimisation problem alike without any alteration. Frazzoli (2001)
has adopted this technique for solving the MA problems. It was later extended by
Schouwenaars et al. (2003) to the design of a more robust system. They used the

standard deviation of each manceuvre to quantify the uncertainties.

Regretfully, the DP suffers from the notorious state explosion effect, and the gen-
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eration of the cost-to-go map is rather time consuming, taking a few hours to days
depending on the state dimensions of the problem in hand. This technique is not
conducive for the implementation of fault tolerant systems. As in the unlikely event
of any system’s actuator malfunction when conducting mission, it is imminent that
the system dynamics will change, and the cost-to-go must be recalculated. The time
required to do this can be intolerable. To circumvent this problem, neuro-dynamic
programming has been suggested by Bertsekas and Tsitsiklis (1996) as a promising

substitute.

Linear Programming

Indeed, for the unique case when w = 0, such that when all the trim trajectories
are translations, the cost is linear relative to the coasting variables 7, thus one can
employ the linear programming method instead {Frazzoli 2002a). The configuration
variables change in trim trajectories can be described using Equation 5.2, without
the transcendental functions as in Equation 5.3. For the specific case of a minimum

time cost functional, one can formulate it as below:

N
i Al + To 5.12
min E( p(k) + Tk) (5.12)

such that Equation 5.11 is satisfied and 7 > 0. An extension to the minimum length
and minimum control effort cases is trivial. Unlike the aforementioned DP, in LP the
optimisation process operates in real-time. It does not require a lookup-subroutine to
find the subsequent state based on an cost-to-go map performed e priori. This ensures
that any dynamic alteration of the system can be accommodated by the optimisation

algorithm, assuming that the appropriate motion primitives are provided.

To elaborate, a linear program is a problem of minimising, or maximising depending
on the problem formulation, a linear function over a convex polyhedron. The feasible
region is a convex polyhedron because both the objective function and the constraints
are linear. Moreover, the optimal solution is always found at the boundary point of

the feasible region. This optimisation problem can be expressed in a standard form
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as follows:

minimise ex (5.13)
subject to Ax =b (5.14)
x>0 (5.15)

where x is the vector of variables to be solved for, A is a matrix of known coefficients,
and ¢ and b are vectors of known coefficients. Equation 5.13 is the objective function
and the Equation 5.14 and Equation 5.15 are the constraints. In certain cases, where
A has more columns than rows, the constraints will be under-determined, and this
provides significant latitude in the choice of x with which to minimise the objective
function. Clearly, all these entities must be in consistent dimensions for the program

to function.

Two families of solution techniques, the simplex and the interior point, are frequently
employed today. The simplex method is very efficient and functions well for most
practical problems. It solves LP problems by constructing an admissible solution at
a vertex of the polyhedron, and then progressively visits the vertices that possess
improving values of the objective function, via the edges of the polyhedron. Nonethe-
less, it has a poor worst-case behaviour for certain problems which require exponential
number of steps with reference to the problem size to obtain the solution. The interior
point method, on the other hand, can move through the interior of the feasible region

rendering it impervious to the worst-case behaviour but not as efficient.

LP solvers are widely used in industry and can be considered as a well established
field. For this reason, an abundance of high-quality software libraries, both free and
commercial versions, are available. In view of its benefits, this method is adopted

into the proposed algorithm.

Mixed Integer Linear Programming

It is worth mentioning that there are unique cases where the problems encountered
require some or all of the unknown variables to be integers. These problems are known
as integer programming (IP) and mixed integer programming (MILP). In contrast to
LP, these form of problems are much more difficult to solve. Of the two, MILP
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is particularly intriguing and is well suited to solve problems cast in hybrid form,
because the non-convexity and logic of the problem can be explicitly encoded using
integers. It has been demonstrated recently by Richards et al. (2003) that MILP has
significant application potential in real-time control and motion planning problems.
In addition, Schouwenaars et al. (2005) implemented MILP in a guidance system
for an unmanned aerial vehicle. Both of the studies attempt to fuse the receding
horizon technique with MILP to solve the motion planning and guidance problems.

Nonetheless, this promising technique will be reserved for future research.

5.3 System Quantisation

In this section, the AUV model and techniques for synthesising the motion primitives
are presented. This is done, in order to convert the continuous system model into
the MA representation. The AUV model employed is the AUTOSUB AUV. Figure
5.4 shows the MA representation of the AUTOSUB dynamics. Both 2 m/s and
5 m/s of cruising speeds are illustrated. However, the following simulations were
limited to only one speed regime, selected to be 2 m/s to avoid the state explosion
effect, to facilitate analysis, and partly due to the research time constraint imposed.
The selection of states and manoeuvres are arbitrary and quite system dependent.
Essentially, one needs to extract the predominant dynamics of the system whilst
maintaining a sufficiently low numbers of motion primitives in order not to overload

the computational requirements.

Once the MA representation of the vehicle under consideration has been dictated,
the subsequent task will be to compile a repertoire of motion primitives that can
exploit the vehicle operational envelope. A motion primitive can be acquired merely
by applying an arbitrary piecewise-continuous control law to the vehicle in question,
starting from arbitrary initial conditions for a finite time interval and storing the
ensuing state and control trajectory. This can be attained by integrating the system
state equation or running an experiment on a physical system. The extraction of

motion primitives, especially the trim trajectories, is alleviated if the vehicle is velocity

augmented. The next section explains this process.
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Quick Stop

Figure 5.4: AUTOSUB dynamics in the MA representation

5.4 Velocity Augmentation

For the purpose of generating trim trajectories, a velocity augmentation loop must
first be designed onto the AUV. To put differently, the system requires a set of inner
loop controllers to be designed and incorporated such that the velocities, both linear
and angular, can be directly controlled. This technique of control is not entirely
new, and has been ubiquitously employed by the aerospace community for solving
guidance problems (Corban et al. 2003). A diagrammatic representation pertaining
to the overall system control structure is depicted in Fig 5.5. Notice that the velocity
augmentation is connected to the AUV in the innermost loop while the outer loop
is relegated to the tracking controller, which will be expounded in Chapter 6. The
centre loop is occupied by the manoeuvre generator. The broken lines indicate that

its usage is temporary and is removed during normal operating mode.

One positive implication that ensued from a stable, velocity augmented system, is

the ease for manual control. Understandably, it is more intuitive for the system to be
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Figure 5.5: Overall Controller Structure

controlled by human operator since one can easily relate to the concept of speed. This
permits the recording of complicated and aggressive manoeuvres via direct human
inputs, obviating the need for time consuming task of designing a control law through

controller synthesis.

In the subsequent simulations, the AUTOSUB model as set forth in Section 3.2.2 was
discretised using the zero-order hold and the sampling frequency set to 10 Hz. The
sampling rate was selected such that it is sufficiently fast to capture the dynamics of
the AUV but also remain low enough not to overload the processing requirements.
Two controllers were designed, one for the surge and another for the yaw rate. A
proportional-integral (PI) controller was selected for this case. The integrator elimi-

nates offset caused by the non-zero mean external disturbances acting on the vehicle.

To avoid confusion with the tracking time constant notation frequently employed
by the industry, the following standard expression for the controller parameters is

adopted.
k

u(k) = Kpe(k) + Ki Y e(a)AT (5.16)

a=(k-1)
Where AT is the sampling time, k is the index, e is the error: the difference of
the reference and measurement values, K, is the proportional parameter, K; is the

integral parameter and u is the controller output.

The introduction of an integrator, however, incited a negative effect known as the

integrator windup. This phenomenon is induced when the actuator output saturates.
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Figure 5.6: The PI controller with back-tracking anti-windup unit

At that exact moment, the error is integrated continuously, resulting in a very large
integral term. Once it happens, a long period of large opposite sign error is needed to
neutralise the effect and reverting the system back to normal. Thus, large transients
are to be expected for a system equipped with integrator action and when the actuator

saturates.

The windup phenomenon can also be explained by the nonlinearities that existed in
all actuators. When the actuator saturates, reaches its limits, the feedback loop is
broken and no longer applies. The system becomes open loop because the actuator
will remain at its limit independent of the process output. The integral action, if

presence, will integrate the error unceasingly.

Fortunately, a few techniques exist to address the integrator windup issue. This
dissertation focuses on the back-tracking or back-calculation anti-windup scheme. A
block diagram of the PI controller and back-tracking anti-windup unit is depicted in
Figure 5.6. The primary idea is to recompute the integral term so that its new value
gives an output at the saturation limit when the output saturates. It is advantageous
not to reset the integrator instantaneously but dynamically with a coeflicient K.
Instant reset, can eliminate beneficial integral action and create a longer settling time.
One can obtain a starting point for K, using the following formula, K(,, = 2(K;/K,)
(Astrom and Hagglund 1995). The actual formula was given in the tracking time

constant format but has been recast to this form for consistency.
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5.4.1 Surge controller design

The surge controller gains, K, and K; were empirically determined. The AUV propul-
sion dynamics is nonlinear due to the added mass and the thrust exerted by the
propeller, which are proportional to the square of its rotation speed. The gains of
K, = 5 and K; = 10 have been found to function favourably in a regime of 3 m/s to
1 m/s. It is imperative that the effect of integral wind up is studied as it frequently
occurs when the thruster saturates, as subjected to constant velocity sea currents.
Figure 5.7 shows a test current of magnitude 1 m/s, at direction 0° with reference to
Earth fixed frame, being injected to the AUV to assist in selecting the appropriate

anti-windup coefficient, K.
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Figure 5.7: Current velocity and time plot

Figure 5.8 reveals the control laws with the corresponding K, elicit by the PI con-
troller. A constant value of 140 rpm is required to maintain the AUV at a cruising
speed of 2 m/s. The initial downward pointing triangular pattern in Fig 5.8 is in-
duced by slew-rate limits of the motor. Actuator rate saturation is less detrimental
compared to the output saturation. Nonetheless, it can still initiate the windup

phenomenon.
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Figure 5.8: Controller output response with different K,

The effects of different values of anti-windup coefficient and their ensuant responses
are vividly depicted in Fig 5.9. One can deduce from the figure that the higher the
value of anti-windup coefficient, the shorter the rise time but the longer the settling
time. Understandingly, a high value of the anti-windup coefficient tends to mitigate
the effect of error integration, resulting in a shorter rise time. On the other hand, a
low value shows a damped behaviour because of the winding and unwinding effects
of the integral term. A value of 0.3 was chosen as it provides a compromise solution

between the two behaviours.
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5.5 Motion primitives generation

The motion primitives or manoeuvres should encompass the crucial performance en-
velope of the AUV. As aforementioned, their generation can be attained via an human

operator or controller inputs. The latter method was selected for the following study.

The AUV’s rudder elicits an integrator term in the yaw dynamics of the AUV. The
behaviour is discernable when the AUV is injected with a step input, and as expected
the AUV will execute a turning manoeuvre continuously, an evidence of an in-built
integrator. For this reason, a proportional-derivative (PD) autopilot was designed so
that one can extract the manoeuvres by inputting step inputs. It was then discovered
that the derivative term, even with small coefficient, introduces excessive damping be-
haviour to the heading response. Proportional gain was increased to counter the slug-
gishness induced by the incorporation of the derivative term. Hitherto, this increases
the rudder deflection rate until it violates the slew rate limits. This phenomenon
is undesirable, furthermore, small amount of control authority must be reserved for
the proper functioning of the tracking controller. Later, it was felt that adequate
performance can be attained by using only a proportional controller. Clearly, a more
advanced controller such as the LQR can be used as a substitute to extract a better
heading response from the AUV.

The rudder rate limit was prescribed to +6.8°/s compared to the actual physical
one of +£12.8°/s prior to generating the manoeuvres. Likewise, the rudder saturation
was defined to be £20° instead of £25.2° as in the original model. This process will
impose virtual bounds to the generated control law, in the meantime relegating the
remnant control authority for tracking the prescribed trajectory. This controller is
labelled as the manoeuvre generator in Fig 5.5. This controller is used solely for
manoeuvres generations and its function is inhibited during a normal AUV operating

mode.

Referring to Fig 5.4 again, it shows clearly the AUTOSUB’s MA that constitutes a
manoeuvre set of 15°, 30°, 60°, 120° and the opposite direction ones. A tabulation
of the corresponding proportional gains and manoeuvres are given in Table 5.1. The

suffix of p indicates the heading degree.
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Pindez | Kp
P15 0.25
P30 (.30
Peo 0.30
P20 | 0.30

Table 5.1: Heading controller proportional gain, ¢ = 2 m/s

Table 5.1 lists all the right turn manoeuvres with their associated execution time
duration and displacements. The z, ¥ and % presented are all rounded to the nearest
integer, although internally, the computation is performed using the accurate floating
point variables to avoid truncation error. In practical implementation, the z and y
displacement, variables accuracy should be further relaxed as it is impossible to obtain
within +£3m accuracy without the help of GPS, LBL, or SBL.

Referring to Table 5.2 again, notice that for some manoeuvres, the headings have been
clipped before reaching the desired set-points, this is aimed to reduce the manoeuvre
time. Exactness is not compulsory for the proper functioning of the system as the
primary objective is to capture only the primary behaviours of the vehicle. A pictorial
representation pertaining to the effect of executing the associated manoeuvres is given
in Fig 5.15. Similarly, Fig 5.16 and Fig 5.17 shows the heading response and the

rudder reflection of each manoeuvres, respectively.

It is true that the heading responses are asymptotic, and an infinite amount of time is
required to reach the set-point. But in practice, the responses are clipped when they
reached a predefined range, like 2% or 5% within the set-point. Frequently, the vari-
ance of the measurement data are used to delineate the clipping range. This clipping
process will create a discontinuity at the interconnection of the motion primitives.
Referring to Fig 5.17, notice that the rudder inputs do not reach zero at the end as

it should in theory. This issue shall be addressed by the tracking controller.
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Figure 5.15: z-y displacement plot of the associated manoeuvres

Pindes | AT(s) | Az(m) | Ay(m) | Agp(e)
P15 9.9 196 2 15
P30 13.9 26 7 30
760 19.9 31 20 59

P120 24.9 17 32 119

Table 5.2: Manoeuvre library, ¢ = 2 m/s
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Figure 5.16: Heading response plot for the
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Figure 5.17: Rudder deflection history for the associated manoeuvres
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5.5.2 Motion planning algorithm

Frazzoli (2002b) advocated enhancing the RRT algorithm by fusing it with the MA
to solve motion planning problems with obstacles. The algorithm assumes that one
has an embedded planner, that can plan an optimal trajectory in an obstacle free

environment between two arbitrary states.

However, the approach in employed in this thesis is that of multiple nested nodes.
Since every state in a trim trajectory can be considered as a starting point of a
manoeuvre. This algorithm generates child nodes at every connection point between a
trim trajectory and manoeuvre. This method improves the RRT branching capability
by increasing the probability of finding a solution. The number of child nodes to
generate are arbitrary, but in this algorithm, one child node is generated at the mid-
point of each trim trajectory. Too many child nodes will saturate and slow down the
computation. Additionally, the case for a time varying final state is also addressed
with this newly developed algorithm. The forthcoming algorithm is an aggregation of
the MA method and the RRT algorithm as detailed in Chapter 4. A brief explanation

of this enhanced algorithm with reference to Fig 5.20 is outlined below:

1. Check to see if a direct connection to the goal from the initial states based on
the minimum time criterion is possible. If this is attained then the algorithm

terminates.

2. Failing that, generate a subgoal, R1 using the quasi-random generator and at-
tempt to connect to it using the embedded planner, again based on the minimum

time objective function.

3. If there is no collision, then generate an edge with new vertices at all inter-
connecting points of trim trajectories and manoeuvres. Explicit connection to
the goal is attempted from all the new vertices (Greedy algorithm). If this is

successful, the algorithm terminates.

4. If failed, generate another random subgoal, R2. Sort the shortest time trajecto-
ries from all vertices to R2 in an ascending order and attempt to connect to R2.
Apply this to only the first few near-optimal trajectories to avoid vertices sat-
uration. In this algorithm, only the first 3 near-optimal trajectories are stored

and tesied.
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5.5.3 Error mitigation

A few researchers have expressed their concern regarding the prescribed error gener-
ated by RRT algorithm. Due to the discretised nature of the inputs in the original
RRT algorithm, when the input history is applied, there will exist some errors in the
final states. Hence, Kim and Ostrowski (2003) attempt to circumvent the problem
by introducing a subconnection process. Similarly, Cervern et al. (2004) introduce an
error mitigation scheme to reduce the error caused by the concatenation effects. Both
of these techniques rely on ‘integrating’ the dynamic model with the input history to
obtain the final state. However, in practice, unless RRT is applied in a disturbance
free environment, the external disturbance effect should be of more a concern. One
disadvantage, in this approach is the requirement of an accurate dynamic model of the
system. This might not be true in practice, due to model complexity, or nonexistence
of a mathematical model. This error can be considered as a form of disturbance,
hence a tracking controller (outer loop) is required to assist in tracking the nominal
trajectory. Frazzoli (2001) designed an invariant tracker which capable of preserving
the open-loop symmetries, in the closed-loop mode. The design of a tracking con-
troller is non-trivial, due to the multi-input-multi output (MIMQO) and highly coupled
dynamics of the AUV and as such it will be addressed in Chapter 6.

5.5.4 Time-varying final state

There is an increasing interest, in the use of AUVs as force multipliers for a submarine
in support of maritime expeditionary operations. Aggravating the problem is the lim-
ited battery technology of an AUV, which does not. provide adequate servicing range.
Likewise, the high bandwidth data transmission requirement for most surveillance
tasks makes it compulsory for an AUV to upload its data intermittently. What is
more, with the recent, advanced sensors equipped AUVs, it is not deemed economi-
cally variable to make them disposable. Thus, the concept for an AUV docking with
a station/submarine for recharging, downleading data or even servicing purposes is

an attractive proposition.

An AUV retrieval manoeuvre can be partitioned into two distinct phases, which are

interception and docking. The retrieval manoeuvre problem had been addressed by
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(Tan et al. 2003). In the paper, the interception phase employs the popular pro-
portional navigational guidance (PNG) algorithm, whereas the docking phase utilises
fuzzy logic, which is activated when the AUV reaches a prescribed circumference of

acceptance of the target.

In the previous simulations, environmental obstacles were not included thus it would
be interesting to substitute the previous PNG guidance system with the MA+RRT
algorithm instead. The novel algorithm must however be extended to cater for the
case of a time-varying terminal state. The problem of addressing a time-varying final
condition using RRT was first pursued by Cervern et al. {2004). Their approach was
based on embedding the time variable into the system state vector. Evidently, the

immediate ensuant effect is the increase of state vector dimension.

A simpler solution proposed here is to adopt an iterative subroutine popularly known
as the false-position method. Fundamentally, assuming that the target is moving
at a constant velocity, the concept is to use a predict-correct process to converge
within a tolerance of the final state. The procedure is simple, first the initial target
position is employed and a trajectory search is executed. If that is successful, the
time consumed obtained from the trajectory found is reinserted into the equation to
anticipate the future position of target. The process is iterative, and terminates when
predefined tolerance of the final state is achieved. Nonetheless, there is no guarantee

of convergence, thus an upper bound to the iteration count is needed to terminate

the loop as a contingency.
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5.6 Simulation Results and Discussion

The sampling space was set to 300m x 300m in dimension for the remaining simula-
tions. Again, one assumes an ideal case where a priori information of the environment
has been catered and there is no external disturbance imposed by the environment.
The AUTOSUB AUV model was employed. Here, owing to the limited time span of
this research, the case of incremental sensing where only partial environment infor-

mation is acquired will not being accommodated.

All the conventions herein, follow that outlined in Chapter 3. The remanding simula-
tions were hosted in MATLAB 6.5 /SIMULINK environment, on a 2.1 GHz Pentium
IV machine, with 512 MB of RAM and running Windows XP. This dissertation em-
ploys the GNU Linear Programming Kit ver. 4.4 (GLPK)!. To facilitate communica-
tion with MATLAB, a MEX-interface known as GLPKMEX? provided by Girogetti
(2004) was used.

The simulations were run with 200 maximum nodes and 300 iterations, terminating
when either criterion is reached or if a solution is found. The AUV initial configuration
states was set to [1 1 0.1] (angle in radian), and the goal state to [170 139.4 k]
where x denotes a variable (unconstrained). The minimum time criterion was used
throughout. Goal tolerance was defined to be 7m radius. 1 variable is omitted to
increase the probability of finding a feasible trajectory. This is acceptable since the
priority here is collision avoidance. However, if the final heading of the AUV is deemed
important, then the heading state should be incorporated into the algorithm. It is
recommended that inequality constraints be employed on the i variable, with the

aim to introduce some ‘slackness’ to ease in finding a sclution.

'Obtained from http://www.gnu.org /software/ glpk/ glpk.html
20btained from http://www.dii.unisi.it/ giorgetti/downloads.html






















CHAPTER 5. THE MANOEUVRE AUTOMATON AND THE RRT

260 25 |
240 .
2
zm-.
1.5}
g
2001 1E
1801 ] §
>
05
180}
19 VA of------------1 e
\\_I
120 R . . A . . 05 A N R . . .
[ 20 0 & 80 100 120 20 40 60 80 100 120
(a) (b)
2% v 10 :
m.
B.
15}
- ] sk
g 10 3
§ i E
2 ]
5 1
® o
= g
H 187
g i
k-]
3 . -
[ 4
_z-
25 R . . L N \ 4 . R . . . L
0 2 40 & 80 100 120 0 20 40 a0 80 100 120
Tima {s) Tima (s}
(c) {d)

Figure 5.27: Inputs and states history {environment with static and dynamic obsta-
cles) (a)rpm-time plot (b)Velocities-time plot (c)Rudder deflection-time plot (d)Yaw

rate-time plot

160















CHAPTER 5. THE MANOEUVRE AUTOMATON AND THE RRT 165

5.6.4 Performance statistics comparison

Given the probabilistic nature of the algorithm, a sample of 30 simulations are run to
compile the statistics (Table 5.3) for each scenario. The appraisal is conducted based

fundamentally on three criteria as listed below:

1. Computational time needed to provide a solution
2. The quality of the trajectory with reference to the minimum time criterion.

3. The frequency of failure. (Unable to find a solution giving the require time or

number of node constraints.)

The simulations were run with 200 maximum nodes and 300 iterations, terminating
when either criterion is reached or if a solution is found. Additionally, a maximum

time of 4 s was also added to limit the run-time of the program.

Table 5.3: Statistics from 30 sample runs

Statistics Static [ Dynamic | Time-varying
Computational time(mean, ) 1.22 0.68 2.39
Computational time(std, s) 0.91 0.54 0.76
Computational time (median, s) 1.35 0.53 2.48
Trajectory time (mean, s) 159.18 127.25 251.19
Trajectory time (std, s) 37.07 9.80 60.99
Trajectory time (median,s) 148.20 125.25 242.00
Percentage of failures 21% 15% 64%

The above collected descriptive statistics of the algorithm run-time convey some im-
portant information regarding the performance of the MA+RRT algorithin for each
scenario. Comparing their median statistics, it is observed that the solution time are
within two seconds except the time-varying final state case. Unlike the RRT case,
the mean and median are actually very close and both can be used as estimators. A
significant improvement in run-time performance is to be expected if it is ported into
C language.
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In this case, the dynamic environment scenario is deemed to be easiest for the algo-
rithm, as evidenced by the low failure rate and low computation time median value.
But when the obstacle adjacent to the AUV was altered, to travel in the direction of
North-West, the algorithm failed completely. Upon careful analysis, it was concluded
that the dynamics of the AUV, the constant 2 m/s cruising speed, is the primary
constraint. One simple solution in obviating this problem is to expand the sampling
space, hence allowing the AUV to execute a full-circle turn in order to allow the ob-
structing object to pass before progressing to the goal. A more complicated MA that
encompasses a near full performance envelope of the AUV will increase the chances

of finding a feasible trajectory.

Again referring to Table 5.3, it reveals that the failure rate for the varying-final state
case is the highest, as to be expected. This issue is partly attributed by the ‘false-
position’ algorithm. One interesting anomaly arose during this experiment, as in
some cases, the AUV will engage the target head-on instead of the more favourable
tail-chase fashion. This is not a desirable trajectory for docking purposes. This
phenomenon is to be anticipated with hindsight since the final state heading for the
AUV is not explicitly taken in account in the algorithm settings. It can be prevented
by wrapping the heading angle and constraining the final state heading in the linear

program.

Deducing from several trajectory plots as presented above, one can conclude that
the feasible trajectories acquired from the MA+RRT method are smooth in contrast
to the one from the RRT algorithm, which is rather erratic. In essence, a smooth
predictable trajectory is appealing in several aspects, not only is it beneficial to the
actuator lifespan and energy cost but also indirectly functioning as a sub-technology
that underpins an embryonic field, known as cooperative robotics. The idea here is
to employ multiple AUVs, working collectively to complete a mission in the most
efficient manner. In cooperative robotics, effective communication is of paramount
importance due to the synchronisation requirements. A communication protocol in
the form of a compact symbolic language facilitates robot synchronisation. Consider-
ing this, if an AUV motion, is comprised of only a few predictable time-profiles, this
can be expressed succinctly using a compact symbolic language, thus lowering the
communication bandwidth requirement as a result. A highly desirable trait derived

from the adoption of MA representation.
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5.7 Concluding Remarks

The primary objective of this chapter is to verify the feasibility of employing MA
representation and RRT algorithm to an AUV to solve motion planning problem.
Its very short computational time makes it an ideal algorithm for real-time applica-
tions. Additionally, simpler algorithm for solving time-varying final state has been
proposed. Notwithstanding that, the algorithm is also able to addressed the chatter-
ing inputs problem that plagues the RRT algorithm. As far as the author’s knowledge
is concerned, this is the first attempt in employing the MA and RRT in an AUV.

As the algorithm is inherently a feedforward controller, a robust low-level feedback
controller is needed to track the prescribed trajectory when subjected to external
disturbance. Chapter 6 is reserved for this interesting topic. In addressing the case
of navigating in an unknown environment, a sensor-based motion planning method is

needed.



Chapter 6

The Trajectory Trackers

So far in this thesis, the development of the trajectory planner has been described
in detail. Chapter 4 concentrated on the application of the RRT algorithm whilst
Chapter 5 expanded the topic further by incorporating it with the MA representa-
tion. Both of the chapters are substantiated with extensive simulation studies. This
chapter, on the other hand, deals with the development of trajectory tracking con-
trollers for an AUV. Together with the trajectory planner, they complete the obstacle

avoidance module of an AUV.

As aforementioned, the trajectory generated by the RRT+MA algorithm when sup-
plied to the controller with the corresponding states and inputs is fundamentally a
feedforward control law. Understandably, a feedforward system does not function
well in the presence of internal and external perturbations. Ocean currents and sen-
sor noise are prime examples of the common perturbations encountered in practice.
A small deviation from the prescribed trajectory, if not corrected, will propagate and
diverge the system from the desired states. Exacerbating the circumstances, a large
trajectory deviation will increase the propensity of collision with the environmental

obstacles, which could result in a catastrophic consequence if that happens.

Therefore, deducing from this exposition, it is imperative that the deviation from
the reference trajectory be minimised at all time. In other words, one requires to
find a control law such that when applied to the AUV, it can achieve asymptotic

stabilisation on the reference trajectory. This issue can be resolved via the application

168
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of a trajectory tracker hence leading to the main theme of this chapter. Herein, two
variants of state-feedback trajectory trackers, the popular full-state feedback linear
quadratic regulator (LQR) and the more advanced nonlinear state dependent Riccati
equation (SDRE) controller are examined to evaluate their viability for trajectory
tracking purposes in an AUV. Their individual advantages and disadvantages are
highlighted and discussed.

It is true that the selection of a particular controller for an AUV is related to several
factors. Some of them are

Robustness to modelling errors (plant parameter variations)

Disturbance handling characteristics

Set. point tracking and trajectory following

Stability characteristics

Application to linear and nonlinear plants

Simplicity in implementation

The requirement for a system model

These important factors must be borne in mind as one proceeds to evaluate more
appropriate controller for the task in hand.

6.1 Preliminaries

An AUV, similar to the majority of ocean vehicles, is inherently an underactuated
system. Briefly, an underactuated vehicle is also considered to be a second order
nonholonomic system. This happens when the vehicle has less independent actuators
than state variables to be tracked. Mathematically speaking, it is defined that the
dimension of the space spanned by the control vector is less than the dimension

of the configuration space. Furthermore, the system states are highly coupled and
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the non-minimum phase behaviour of an AUV renders controller designs non-trivial
(Toussaint 2000).

In reducing the problem complexity of dealing with numerous states, an established
technique but very popular amongst the industrial community is to redefine the out-
put space from a three degrees of freedom variable, assuming a planar motion, to a
reduced two degrees of freedom variables. This is easily achieved through the use of
a guidance control law where the z, y, 1 configuration variables are map into 7, 6,
the range and line-of-sight angle respectively. The resulting controllers are called
course-keeping controllers (CKC), also commonly referred to as autopilots (Fossen
1994).

The crux of the technique is to employ a simple PID controller to generate a control
law and assign it to the AUV rudder in order to maintain the desired reference course,
which is the course between AUV’s current position and the prescribed waypoint.
The heading reference commands are frequently catered by an independent guidance
system, the line-of-sight scheme remains the most popular (Lin 1991). Static set-
points or waypoints for short, are utilised as intermediate ‘milestones’ or subgoals
to assist the AUV in reaching the actual destination. Unfortunately, owing to its
dependency upon static set-points, the AUV is susceptible to constant environmental
disturbances such as winds, waves and currents, causing the AUV to drift from the
ideal course. For this reason, frequent course correction is compulsory to ensure
that the AUV arrives at the desired destination. One must also be aware that the

separation of guidance and autopilot functions may not yield stability.

Owing to the immense popularity of the aforementioned technique, there are no dearth
of articles reporting the implementation and supremacy of various types of autopilot.
These autopilots are based on the classical, modern (Naeem et al. 2003) to soft-
computing (Craven 1999, Zirrili et al. 2000) control theories. Hybrid approaches have
also been reported to be very successful indeed (Kwiesielewicz et al. 2001, Akkizidis
et al. 2003, Naeem et al. 2004).

Recalling from the above, the waypoint guidance scheme, in principle, focuses pri-
marily to ensure that the AUV arrives at the predefined destinations (waypoints)
without much consideration with regards to the trajectory undertaken. Obviously,

this is not acceptable in a collision avoidance context, as the ability of an AUV to
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arrive at a destination and to conform to a predefined trajectory are equally essential
in order to prevent a collision and to preserve the structural integrity of the AUV.
Therefore, a trajectory tracker is deemed mandatory for the simultaneous attainment
of the above objectives. Comparing to autopilots, the design of trajectory trackers
are more challenging partly to the multivariable nature and underactuated behaviour
of the system. Moreover, the vehicle also exhibits complex nonlinear, hydrodynamic
effects that must necessarily be taken into account during the controller design phase.

These vehicles also exhibit sway velocity that generate non-zero angles of sideslip.

6.1.1 Types of motion control

Before proceeding to the detail design of the trajectory tracker, it would be more
edifying to understand the nature of motion control problem one will be dealing with.
As a matter of fact, the problem of motion control can be predominantly partitioned
into three distinct classes, in accordance to the difficulty they impose and the way

they are solved (Encarnacao and Pascoal 2002).

1. Point stabilisation, where the objective is to stabilise a vehicle at a given point

with a desired orientation (static setpoint).

2. Trajectory tracking, where the vehicle is expected to track a time parameterised

reference trajectory.

3. Path following, where the vehicle is required to converge to and follow a pre-

scribed path, neglecting any temporal constraints.

The point stabilisation problem remains the most challenging amongst the three men-
tioned, especially when the vehicle being investigated has nonintegradable constraints.
In fact, according to the celebrated Brockett’s necessary condition for stability, there
is no continuous differentiable, static state-feedback control law that can asymptoti-
cally stabilise an underactuated system to the equilibrium (a trajectory that degener-
ates into a single point) (Brockett 1983). In circumventing this difficulty, researchers
have offered two techniques: smooth time-varying control laws (Murray and Sastry
1990, Samson 1991) and discontinues feedback laws {Canudis de Witt and Sgrdalen
1991, Zhang and Hirschorn 1997).
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Aggravating this situation is that an AUV is always required to function in the pres-
ence of unknown ocean currents. Interestingly, if the desired orientation does not
coincide with the direction of the current, conventional control laws will yield one of
two possible behaviours: 1) the vehicle will diverge from the intended target posi-
tion, 2) the vehicle controller will keep the vehicle moving around a neighbourhood
of the desired position, attempting to move persistently to the given point, and con-
sequently inducing an oscillatory behaviour. Unsurprisingly, such behaviours can be
anticipated since most AUVs are non-minimum phase systems which possess unstable

zero dynamics.

Aguiar and Pascoal (2002) addressed the problem of dynamic positioning an AUV in
horizontal plane in the presence of unknown, constant ocean currents by dropping the
specification on the final desired orientation and using this extra degree of freedom
to force the orientation of the vehicle such that it is aligned with the direction of
the current. This ‘weather-vane’ like property is very well-known and has also been
exploited by Pettersen and Fossen (2002). They developed a time-varying feedback
control law including integral action that can exponentially stabilise both the positions
and the orientation of the ship. The integral action is required to eliminate the

oscillatory stationary errors.

The trajectory tracking problem entails the design of feedback control laws that can
force the vehicle to reach and track a time parameterised inertial trajectory (a curve
in the state-space with an associated timing law). This technique is very important
in an environment with dynamic obstacles. Here, the temporal specifications must be
strictly complied to avoid a collision. The majority of tracking controller schemes for
underactuated marine vehicles employ the classical approaches such as local lineari-
sation and decoupling of the multivariable mode! to steer as many degrees of freedom
as the available control inputs (Repoulias and Papadopoulos 2005). This is frequently
achieved by linearisation of the vehicle’s error dynamics about trimming trajectories
before proceeding to applying a state-feedback controller (Walsh et al. 1994, Divelbiss
and Wen 1997, Toussaint 2000). Again, similar to most linearised models, the validity
of these solutions is only limited about a small neighbourhood around the selected
operating points.

A nonlinear Lyapunov-based technique has been shown to be a rather promising
approach (Silvestre et al. 1995). Frazzoli (2001), on the other hand, implemented
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a robust nonlinear controller based on backstepping approach on an autonomous
helicopter. Logic-based switching control was proposed by Aguiar and Hespanha
(2004). Notwithstanding the modern control theory approach, Vukic et al. (2001)
preferred a soft-computing paradigm and they employed a neurocontroller instead.
Wettergreen et al. (1999) applied an evolving neurocontroller based on Q-learning for
a visual servoing task in the Kambara AUV. Strictly speaking, this is not a trajectory
tracker per se, but a path tracker. In addition, Jiang et al. (2005) advocated the use of
a predictive fuzzy logic controller. Nonetheless, the short-supply of rule-based fuzzy
logic techniques being applied to this problem can be attributed to the multivariable

nature of the problem which tends to cause state-explosion of the fuzzy rules.

The path following problem requires the vehicle to follow a path without complying to
any temporal specifications. One clear advantage derived from this approach, is that
the vehicle forward speed need not be controlled as rigorously when following the path
since it is sufficient to act on the vehicle orientation to drive it to the path, therefore
ensuring a smoother convergence to a path. As a consequence, the control signals are
less likely to be pushed to saturation when compared to the performance obtained
with trajectory tracking controllers (Hindman and Hauser 1992). Path following
systems for underactuated vehicles especially of the marine type can be found in (Do
et al. 2002, Aguiar and Hespanha 2004, Aguiar et al. 2005).

Unfortunately, by abrogating the temporal specifications, the solutions become less
versatile and cannot be applied in an environment populated by dynamic obstacles.
In fact, successful collision avoidance cannot be guaranteed in this context. Distinctly,
this also precludes its usage in multiple-AUV rendezvous and cooperative missions,
missions where the manoeuvre synchronisation of the AUVs are critical. For these
reasons, the path following problem is considered to be less interesting, which explains
the lack of attention it is receiving.

6.2 The Proposed Approach

Again, recalling from above that the Brockett’s condition imposes a certain amount of
difficulty to the point stabilisation problem. Therefore, it will be prudent if, instead

of concentrating on a point stabilisation problem, one diverts the attention to stabil-
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isation about a prescribed reference trajectory as adopted in this chapter. Note that
the trajectory in this context must not degenerate to a point, implying that the surge
velocity of the AUV must be nonzero. The problem is also made more complicated by
the very fact that the underactuated vehicles such as the AUVs. As a consequence,
this rules out any attempt to design a feedback only controller that would rely on its

kinematic equations.

Nonetheless, this shortcoming can be addressed by the introduction of a feedforward
unit. In fact, the use of a dedicated feedforward unit in the trajectory tracking case
is not entirely new. Nieuwstadt (1997) has shown that substantial performance im-
provement can be derived from a system equipped with a feedforward unit compared
to a feedback only controller. A feedforward unit is also beneficial to systems that suf-
fer from large transport delays, in essence it evokes a forn of anticipatory behaviour.
One can conclude that feedback control is reactive but feedforward control is proac-
tive. In spite of the advantages, feedforward control can only respond to known kinds
of disturbances, but cannot do much with novel disturbances. As a matter of fact,
great care must be taken in the design of such a unit, since it has the propensity to
destabilise a system. Consequently, feedforward units are rarely employed alone and
must be combined with feedback units. Merging the two units creates a two degrees

of freedom controller as depicted in Fig 6.1.

Contextual speaking, the reference trajectory is consisted of the desired inertial po-
sition and the corresponding velocities. The reference trajectory must not only be
consistent with the dynamics of the vehicle but also freed from environmental obsta-
cles. A trajectory satisfying these two conditions is termed as a feasible trajectory.
Clearly, the location of the obstacles must also be known a priori to a certain extend

for that to be achieved.

Trajectory
penerator Plant
Sonar, IMU inputs
Controller
xrer

Figure 6.1: Controller structure
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With that in mind, the trajectory tracking technique proposed can be defined as such:
Given that a feasible trajectory for an underactuated system is generated
by an open-loop planner, one can then compute the linearisation of the
system about this nominal trajectory. For this particular case, the open-loop
planner pertained is no other than the novel MA4-RRT algorithm developed in Chap-
ter 5. Moreover, if the linear time-varying system acquired through the linearisation
process is completely controllable in a certain sense, one can then define a linear
time-varying feedback law that forces the tracking errors to a neighbourhood of zero
that can be reduced arbitrarily. To describe another way, it locally stabilised the
system about this nominal trajectory. The control laws proposed herein were derived
by solving the celebrated Riccati equation, in accordance with the spirit of optimal
control. Such a controller, if properly designed should also be able to reject many
types of disturbance including noise in the sensors, initial condition errors, and errors

injected along the trajectory.

Even so, the closed-loop dynamics of the AUV can yield instability if it diverges too
far from the neighbourhood of the reference trajectory since the errors introduced
by the linearisation process becomes too large to be neglected. Consequently, it is

crucial to define a state-space tube or manifold as mentioned in Subsection 5.5.2 be
defined.

6.3 Motivation of Using Optimal Control

Amongst all the high performance, multivariable control methodologies, the optimal
control framework brings forth the best balance between successful practical imple-
mentation, optimal system performance and mathematical tractability. In fact, the
optimal control paradigm encompasses the LQR, model predictive control (MPC),
H-infinity control and so forth. It is not surprising that it has been a preferred
choice amongst controls academicians and engineers for tackling multivariable, high

performance system control.

In the optimal control paradigm, the problem is cast into a minimisation or maximi-
sation problem for which an objective function is defined, and the control law found

nmust also satisfy the dynamics equation of the system. In most of the cases, the
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objective function or performance index is a function of the design parameters or
states to optimise. The use of these physical related quantities facilitates the tun-
ing process. According to Burl (1998), a general requirement for the selection of a
suitable objective function is (1) it should accurately reflect the designer’s concept of
good performance and (2) the control moves should be computed with a reasonable
amount of effort. The latter requirement can actually be relaxed due to the recent

availability of abundance and inexpensive computing power.

The traditional pole placement (pole assignment) approach works by placing the poles
at designer’s chosen location to attain some design specifications such as overshoot,
rise time, settling time or bandwidth. However, a critical disadvantage of using this
technique is that the pole locations must be worked out in advance. Moreover, the
controller obtained by this method is not always optimal and a trial and error proce-
dure is adopted until the system performance coincides with the desired specification.

This difficulty is amplified if the system is of a multivariable type.

Optimal control theory suggests the poles at points should be placed such that the
resulting controller is optimal in some sense. Furthermore, the knowledge of the pole
locations prior to the design is not needed. The designer is needed to only decide what
merit to use and achieve the design specifications by tuning the weighting coefficients
contained in the objective function. The best pole locations to attain the desired

response is then relegated to the algorithm.

Mathematically, optimal control system design can be defined as such: given the
constraints U on control functions u(t) that form the set of admissible controls u(t) €
U for all t € [tg, t] and the constraints X on the state trajectories x(¢) that form the
set of admissible trajectories x(t) € X for all ¢ € [tg, t;], the optimal control problem

is to find an admissible control function u(t) that forces the continuous-time system
x = f(x(t), u(t),t) (6.1)
or discrete-time control system

x(k+ 1) = f(x,u(k)) (6.2)
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to follow an admissible trajectory x(¢) while minimising the performance objective of
ty
J = S(x(t),ts) + f L(x(t), u(2), 1)dt (6.3)

t=to

whereas in discrete-time performance criterion is

J = S(x(N))+ Y L(x(k), u(k)) (6.4)
If the solution to the optimal control problem can be found in the continuous form of
u(t) = u(x(t), ¢ (6.5)

or in discrete form
u(k) = u(x(k)) (6.6)

then if the control is said to exist in the closed-loop form, is refereed to as the optimal

control law.

6.4 Linear Quadratic Regulator Design

The crux of the LQR is to find a linear stabilising feedback control law for the plant in
question. It is an optimal controller which is derived on the basis of a linear model of a
plant and a quadratic cost function to be optimised, hence the term ‘linear quadratic’.
Fig 6.2 depicts a simplified block diagram of an LQR, where x is the state vector and

u is the input vector.

LQR Controller

u x (Plant states)
Process Model -

A 4
=

Figure 6.2: A block diagram of a generic LQR
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Plainly, a linearised time-varying plant can written in a state-space form as

x(t) = A(t)x(t) + Bu(t) (6.7)
and quadratic cost functions,
S = xT(t;)Mx(t;) (6.8)
and
L =x"()Qx(t) + u” (t)Ru(t) (6.9)

Matrices M, Q, and R must be square; M and Q must have a length equal to the
number of states; and R must corresponds in dimension to the number of inputs.
Additionally, to ensure that the solution is unique and finite, matrices M and Q

must be positive semidefinite, whereby matrix R must be positive definite.

A definite requirement. of the LQR controller is that the plant must be pointwise
controllable and that the matrix A is nonsingular. When this is true then there
exists a constant feedback gain matrix K, that allows the eigenvalues of the closed-
loop system to be assigned arbitrarily. This is mathematically stated by forming a

controllability matrix S in terms of the matrices A and B given by
S — [ B AB AB ... A"“B] (6.10)

Then the system is said to be pointwise controllable if the matrix S has rank n.
Nonetheless, in practice, this requirement can be too restrictive and commonly re-
laxed, a less demanding requirement called stabilisable is frequently preferred. A
system is stabilisable if the states that are not controllable are stable. These states

are explicitly ignored and a new state transfer matrix is defined.

It is now required to evaluate the contents of K. or in other words, the state feed-
back gain, such that a performance index is minimised whilst subjected to satisfying
Equation 6.7. It should be observed that the state vector sequence x(t) and the input
sequence u(t) are not independent variables that can be arbitrarily chosen to min-
imise J. Nonetheless, prior to finding K., one has to proceed to find a symmetric
positive semi definite matrix P which is the solution to the matrix riccati equation.
It is worth mentioning that, there exists two families of the problem that called for

different approaches. They can be classified as the finite planning horizon problem
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and the infinite planning horizon problem.

For the specific case of finite planning horizon, f < oo, linear-quadratic optimal
control problems are solved by finding the symmetric positive semi definite P matrix
that satisfies the matrix Riccati equation {MRE):

P(t) +A)TPt) + Q(t)z + P(t)A(t) - P(t)BR()'BTP(t) + M =0, P(t;)=M
(6.11)
Conversely, for the infinite horizon problem, where ¢ = oo, one must satisfy the

algebraic Riccati equation (ARE):
PA+ AP +Q-PBR'B'P =0, (6.12)

Algebraic Riccati Equation is actually a unique case of the more general MRE where
P=0and M=0.

Once P(t) is found, it can be substituted into equation below to obtain the state

feedback gain matrix as given by
K. = [R+B7PB|'BTPA (6.13)

Then with K., upon substitution into Equation 6.14 provides the required control
effort. The LQR output can be defined as

u(k) = —K.x(k) (6.14)

For set point tracking or trajectory following cases, a feedforward unit must be added
to eliminate the offset error. The LQR also assumes the availability of full state-
feedback and the states measured are not corrupted by noise. In practice, this is ad-
dressed by introducing a Kalman filter to reconstruct the unavailable or noisy states.
The resulting controller is termed as Linear Quadratic Gaussian (LQG) controller
since it is optimal for processes contaminated with Gaussian noise. Augmenting a
Kalman filter for state estimation seriously degrades the excellent stability margins
available for an LQR controller.
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6.4.1 Selection of weighting matrices

Control systems are often designed to specifications that involve the settling time,
damping ratio and bandwidth constraint. They are also subjected to constraints on
the maximum output error, state error and the maximum control input. Violating
these constraints will induce actuator saturation, which also renders the linearised
system nonlinear and invalidating the optimal control law. To achieve the specifica-
tions, one employs a trial and error selection of the weighting matrices P, Q and R
in the objective function defined in Equations 6.8 and 6.9.

The size of the weighting matrices is altered to yield a desired settling time or some
other performance criterion. Through this tuning process, a tradeoff between speed
of response and control effort can be accomplished. In the case of ‘expensive’ control,
when R > Q, assuming that both the matrices have been normalised, the cost
function is dominated by the control effort u, and so the controller minimises the
control action itself, ensuing an energy efficient, albeit sluggish response. Conversely,
in the case of ‘inexpensive’ control, when R <« Q, the cost function is dominated
by the state errors, and there is no penalty for using large inputs, hence affording
a more agile response. The control effort magnitude is actually limited by actuator
saturation and its slew rate, therefore an excessively responsive closed-loop system has
the inclination to cause actuator saturation. Similarly, the terminal state’s weighting

coefficient M, determines how close to the desired final state the system will be at ;.

A good starting point for trial and error selection of the state weighting matrix is
to set the various state contributions approximately equal as given by the Bryson’s
rule (Bryson and Ho 1975). In principle, the rule scales the variables that appear
in matrices Q, R, and M such that the maximum acceptable value for each term
is unity. In other words, it ‘normalises’ the variables such that each of them has
equal contribution. This is particularly important when there is a large discrepancy
between the range of the variables such as in the case of different units. The different
elements in of u and x make the values for these variables numerically very different

from each other.

In the Bryson’s rule, the diagonal Q, R, M are selected with the following normali-
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sation;

1

Qii = maxiinum acceplable value ofT? (XS 1: 21 v e:

1 .
Rjj = maximum acceplable value of u? JE 17 2’ Tt e’ (615)
My, = 1 kel,2,...¢,

maximum acceptable value of y(t;)?

Although Bryson’s rule usually gives a satisfactory results, often it is just the starting
point to a trial and error iterative design procedure aimed at obtaining desirable

properties for the closed-loop system.

6.4.2 State error model and linearisation

LQR is a form of regulator, and its intrinsic nature is to drive all the states, assuming
controllable, to zero. When all the states reach zero then the controller output will be
equated to zero. Thence before pursuing with the linearisation process, one needs to
recast the formulation into state error form. To put mathematically, the state error

is expressed as below,

Xerror — Xmeasured — Xref (616)

For all the LQR problems, one can safely assume that the x is actually X.pror. Given
the fact that one is actually dealing with a tracking problem, one must also introduce
a feedforward unit to ensure proper set point tracking. It can be conciuded that
when all the states reach zero, this implies that the system is exactly at the desired

trajectory. A block diagram pertaining to this controller is given in Fig 6.3.

Feed Forward Loop

H v+
ir u, u, AUV Output

|—> MA + RRT —-—+ » LQR by > Dynamics »

Sonar, IMU Inputs R T
Feedback loop

Figure 6.3: The LQR. with a feedforward unit in an AUV

Referring to Fig 6.3, notice that the net control input supplied to the vehicle is the
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sum of the controller and the feedforward unit outputs as expressed below,
u, = uc+u” (6.17)

It is evident from Fig 6.3 that the tracking controller and the feedforward unit are
operating independently. Indeed, as will be explained later, this deficiency of ‘infor-

mation interaction’ has a propensity to induce instability.

In the LQR. design, a linearised model is necessary. The parameters X |r|, mX Yy,
and Y}y in Equation 3.16 are neglected since their quadratic products are too small.
For the sake of mathematical clarity, it is frequently preferable to convert the non-
linear model into a standard form for underactuated vehicles before transforming the
equations into state error equations. The standard form describing an underactuated

vehicle executing planar motions can be expressed as (Toussaint 2000):

% = m,ur — d,u + au; + wy (6.18)
U = myur — dyv + bug + wy (6.19)
T =myuv — d;r + cup + w3 (6.20)

& = ucos(y) — vsin(y) (6.21)
¥ = usin(¢) + v cos(¢) (6.22)
$=r (6.23)

Again, deducing from the above equation, the control inputs are not only coupled
to the vehicle dynamics but also not affine since it is dependent on the square of
the surge velocity. One must also set the operating point to linearise the equations.
Herein, the surge velocity is set at 2 m/s, corresponding to the normal cruising speed
of the AUTOSUB. The variables a, b and ¢, are constants. The variables w, are used
to model external disturbances acting of the vehicles but they are assumed to be zero
for this case, as the LQR assumes no noise corruption. These terms would be required
for Hy, control.

Accordingly, one defines the current states using error states and desired states (ref-
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erence state) as,
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(6.24)

Referring to Equation 3.16, where m is the inertia matrix with the associated states

[u v r ¥]F, one can define a new matrix below;

mn
0
0
0

0 0 0
™Moy gz 0
maz ™33 0O

0 1 0

(6.25)

Using a Taylor’s series, the linearised model of AUTOSUB’s dynamic equations can

be reformatted as below;

- - —

U,

L . L

2m ity Ty 0 0 mgug O
Mytg + My Mypllg 0 0 meug 0
cos(zy) —sin{eg) 00 0 O
sin(y) costy 0 O O O
mavg+merg  mgug 0 0 moug 0
0 0 00 1 0

where m(.) are defined as follows;

M, = My

3
&
I

3
Il

= m22}/uv + m‘23Nuv
mgg(ym— —_ m) + m23(Nur + ng)

my = Tn‘SQYMT + mBBNur

me = Ma2(Yir — m) + maz( Ny, — mX)

a= 140"Yp1'0‘p
b= 8Y5r
C = 8N5,

o O O O O K

o o o O

(=R

(6{26)

(6.27)

Equation 6.26 contains a time-varying state transfer matrix A(t). Different trajecto-

Uye

Uge
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ries will have different values due to the time-varying nature of variables uq4, vq and
4. This is essentially a finite horizon problem since tf # oo. A(t), however, will
revert into a time-invariant matrix if the trajectories are restricted to only rectilinear

motions.

6.5 Solving the Matrix Riccati Equation

Several numerical methods exists in solving the MRE, since analytical methods are
rather limited. Darling (1997) proposed a technique where the MRE of matrix n x n
size is transformed into a system of n{n+1)/2 linear second order ordinary differential

equations, also known in differential geometry as the Jacobi equation.

As aforementioned, the problem one is dealing here is of a finite horizon variant.
Herein, the approach recommended by Lewis (1986) is adopted. The optimal feedback
control gains are computed backward in time according to the following recursive

equations;

K(k) = [BTP(¥)B + R(k)]'BTP(k + 1)A(k) (6.28)
P(k) = AT(k)P(k + 1)[A(k) — B(k)K(K)] -+ Q(k) (6.29)

Where P(N) > 0, is the end configuration weighting matrix, Q(k) > 0 is the config-
uration weighting matrix, and R(k) > 0 is the control weighting matrix. The Riccati
equation is always solved in reverse time order. The P(N) = M, Q(k), and R(k)
matrices are diagonal and can be chosen to be time-invariant for best performance. A
detailed exposition pertaining the tuning of these weights is delineated in Subsection
6.5.1.

One must also bear in mind that for every sampling interval of Equation 6.29, one
requires a new state transfer matrix A(k) due to its time-varying nature. On the other
hand, the input matrix B(k) is time-invariant for this specific case. Furthermore, the
original Equation 6.26 is in continuous form. This suggests that a transformation from
a continuous-time system to discrete-time approximation is necessary. A plethora of
algorithms such as the Euler’s method, the zero-order hold approximation, the bilinear

transformation, the impulse invariant approximation can be accessed but two of the



CHAPTER 6. THE TRAJECTORY TRACKERS 185

more popular approximation methods are Euler’s method and the zero-order hold

approximation.

The zero order hold method was chosen in this context, as it provides a mean of
generating discrete-time state equation for systems that are time-varying and non-
linear. Whereas, the zero-order hold approximation is more suitable for linear, time
invariant systems. In the Euler's method, it is critical that the sampling time be
sufficiently short that the finite-time derivative is an accurate approximation of the
true derivative (Burl 1998).

A discrete-time state equation can be obtained from the continuous state equation

using Euler's method of approximating the derivative:

x(kT + T) — x(kT)
T

~ %(kT) (6.30)

Hence, in computational form, a difference equation for the state can be explicitly
expressed as

x(kT + T) = x(kT) + T(Az(kT) + Bu(kT)) (6.31)

x(k + 1) = x(k) + T(Az(k) + Bu(k)) (6.32)

6.5.1 Tuning of the LQR weighting matrices

The tuning of the parameters M, Q, and R is nontrivial. The following weighting

matrices had been chosen experimentally and employed in the remaining simulations.

Q = diag([40 40 0.1 0.1 50 3000]) (6.33)
R = diag([62.5 1000)) (6.34)
M = diag([400 1000 4 4 100000 1000]) (6.35)

Notice that there is a large range difference between the elements of the matrix, this is
caused by the variety of units employed. The system response is very sensitive to the

element values. Again, the weighting matrices above are time-invariant, exploitation
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of time-varying version is expected to improve the controller performance but will
definitely make the tuning process even more challenging, owing to the increase degree
of freedom. Several factors contributed to the tuning problem above: 1) There are
too many tuning parameters, 2) The coupling between the states and 3) The states z
and y are based on Earth-fixed frame. These states change according to the particular
trajectory, which implies that the controller is trajectory-dependent, making retuning
a compulsory process for each different trajectory. Clearly, there is a great need for
future research in this particular area. Once the gain matrix, K is found, the net

control effort is obtained by a simple substitution into Equation 6.14.

6.6 State Dependent Riccati Equation (SDRE) Con-

trol

There are a myriad of nonlinear control techniques that are applicable to complex
systems. Amongst the more attractive ones are the state feedback linearisation,
adaptive control, model predictive contro! (receding horizon control), sliding mode,
recursive backstepping, neural network, fuzzy logic, SDRE and so forth.

An excellent review of SDRE techniques can be found in Cloutier (1997). The very
idea. of using state-feedback Riccati equation based linear control methods for non-
linear systems was originally proposed by Pearson (1962) and later Cloutier et al.
(1996) attempted to revitalised the interest. Coupled with the rapid advancement of
microprocessor technology, which guarantees the availability of low cost and abun-
dance computing power, this has made SDRE control a promising candidate for the

control of nonlinear systems.

For instance, SDRE based designs have been used in advanced guidance law devel-
opment for high performance aircraft and missiles (Cloutier et al. 1996, Wise and
Sedwick 1997, Menon et al. 2004). Likewise, Parrish and Ridgely (1997) employed it
for altitude control of & satellite. From a practical viewpoint, results of a real-time
experiment using a two-link underactuated robot, which is a highly nonlinear fourth
order system was also presented by Erdem (2001). In addition, SDRE control with

nonlinear feedforward compensation for a small unmanned helicopter has been at-
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tempted by Bogdanov et al. (2003). The helicopter successfully conducted various
aggressive preprogrammed acrobatic manoeuvres.

Mathematically, the SDRE controller shares a great deal of similarity with the LQG
controller, then again, its formulation and operation bear striking resemblance to
the MPC. Unlike the LQR with infinite horizon case, instead of using a set of fixed
weighting matrices, both the parameters Q(x) and R(x) can vary as a function of
states. In other words, the state transfer matrix A(x) and B(x) can be defined such
that they are dependent on the states per se. The ability to vary the Q and R ‘on-the-
fly’, allows one the flexibly to expand the performance envelope of the plant. There
is also a possibility to impose hard bounds on the control, control rate, and control
acceleration to avoid actuator saturation (Cloutier et al. 1996, Mracek and Cloutier

1998). These two features render the SDRE controller a nonlinear controller.

A note worthy aspect of SDRE control which is similar to the MPC is that it runs
the algebraic Riccati equation (ARE) solver at every sampled time, implying online
optimisation. The SDRE control is able to accommodate for large state errors issue
by implicitly assimilating them into the A(x) and B(x) matrices thus ensuring the
system is able to react favourably against large external disturbance effects. Moreover,
the SDRE controller does not not cancel beneficial nonlinearities. In principle, SDRE
control possesses respectable robustness characteristic borrowed from the LQR. Better
still, SDRE H,, control formulation has also been proposed by Cloutier et al. (1996).
Despite of the aforesaid characteristics, it has been shown that the SDRE regulator
is locally asymptotically stable and suboptimal (Banks and Manha 1992, Cloutier et
al. 1996). Owing to the nonlinear characteristic of SDRE control, global asymptotic
stability cannot be guaranteed. This is still an open issue which warrants further
research.

On the aspect of optimality or lack thereof, SDRE control obtained is not usually the
optimal one that minimises the performance index. The reason for this is becausec of
the non-uniqueness of the parametrisation of f(x) = A(x)x (Erdem 2001). Although,
it is possible for the SDRE control to match the optimal one if a ‘suitable’ A(x) is
chosen, but the task of finding it can arduous. Giving the apparent benefits of the

design flexibility of SDRE control, one can welcome it as a tradeoff to optimality.
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6.7 SDRE Formulation

The formulation of SDRE is actually quite straightforward and applicable to a wide
range of nonlinear dynamic systems. The problem considered herein, is the infinite-
horizon regulation of general autonomous nonlinear system affine in the input. As-

suming a nonlinear system that can be expressed as such:
x = f(x) + g(x)u (6.36)
and a performance index
0]
J= / (xTQ(x)x + uTR(x)u)dt (6.37)
0

which allows for trading-off state error x versus control input u, via the weighting
matrices Q(x) > 0, R{x) > 0Vx, respectively, where x € R*, u € R™ f(x), g(x),
Q(x) and R(x) € C*, with £ > 1. Assuming that f(0) = 0 and g(x) # 0Vx, it
is desired to find a feedback control law u(x) which will regulate the system to the
origin for all x. It is quite obvious here that, there is a striking similarity between
the SDRE and LQR formulation.

First and foremost, the nonlinear system equation, Equation 6.36 must be converted

into the ‘linear extended’ form of
x = A(x)x + B(x)u (6.38)

where f(x) = A(x)x, (A(x) can be non-unique) and g(x) = B(x). The former
parametrisation is possible if and only if £(0) = 0 and f(x) is continuously differen-
tiable. An extended linearisation technique is defined as one in which the nonlinear
system equations are factored in a linear like form A(x)x +B(x)u, and linear control
techniques are used to obtain a closed-loop system which has a pointwise Hurwitz
coefficient matrix (Erdem 2001).

Again, under the condition that the pair (A(x), B(x}) is pointwise stabilisable, the

nonlinear state feedback control law can be constructed as

u(x) = -K(x)x = -R™'BT(x)P(x)x (6.39)
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where P(x) > 0 is obtained by solving the state-dependent Algebraic Riccati equation
AT(x)P(x) 4+ P(x)A(x) + Q(x) — P(x)B(x)R~(x)BT (x)P(x) =0 (6.40)

pointwise at each state x. Nonetheless, finding a proper pointwise stabilisabe (A(x),

B(x)) pair, can be nontrivial for higher order systems.

In implementing SDRE control, the most desirable option is to solve the state de-
pendent Riccati equation analytically. This is only possible for lower order systems,
with special structure. In generally, however, this is not possible and numerical meth-
ods must be adopted, which is rather straightforward with numerical tools such as
MATLAB. The computation can be done online or off-line. The off-line approach has
lower computational cost and is preferable in risk-avert situations, the solutions are

thoroughly analyse to confirm that there are valid before implementation.

In contrast, the online version is computationally more demanding. It is desirable to
compute the feedback control in real-time by solving the SDRE at a relatively high
sampling rate, compared to the dynamics of the system. Real-time control becomes
important when the disturbances or trajectories are not known, or changing from
time to time, such as in the case of AUV obstacle avoidance in an unstructured
environment. It is imperative that the SDRE must be solved at each time step, as a
matter of fact, a sampling interval less than a critical value could lead to instability.
The current available computation power is more than adequate to sustain SDRE
control for systems which have very fast dynamics as demonstrated by Bogdanov et
al. (2003).

6.8 Kinematic Based SDRE Controller Formula-

tion

Instead of explicitly dealing with the dynamic model of the AUV in designing the
SDRE controller, one uses a kinematics model instead, as advocated by Ren and
Beard (2004). One of the main reasons behind this, is that, in practice and for most
cases, one does not have the corresponding model dynamics of the vehicle. This

prevents model-based controllers from being implemented. A noteworthy aspect of
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this implication is that by omitting the need for a dynamic model of the system, one

can extend its application to a more encompassing types of vehicles.

Furthermore, most AUVs and UAVs have built-in controllers to stabilise or main-
tain the velocities. The majority of these controllers are of the PID variety. It will
be shown later that by employing this approach, one can actually build a high-level
tracking controller on top (outer-loop) of the others. In other words, the SDRE con-
troller will act in supervisory mode while leaving the low-level (velocity augmented)
controller intact. In normal operating mode, the high-level controller can be inhibited
so that the low-level controllers and the guidance system can function in a conven-
tional matter, however when the need arises, the high-level controller can be activated

to tackle complex tasks. A pictorial representation of the unified control system can
be found in Fig 6.4.

Y
MA + RRT | | SORE | | velocity | Y|  Auv Output
|_> Controller |’ Controller Dynamics .
21
Sonar, IMU InpUts 1 ]
Velocity Augmented Loop
Z,

Quter Tracking Controller Loap

Figure 6.4: Block diagram of the SDRE controller and feedforward unit of the AUV

Note that unlike the LQR system (Fig 6.3), the feedforward unit is not directly fed
into the AUV actuator, instead it is ‘pre-processed’ by the SDRE controller before
passing to the AUV actuator. This form of interaction renders the system more robust
and stable.

Herein, one commences the formulation of the controller with the assumption that the
AUV is equipped with the appropriate velocity controllers as shown in Fig 6.4. These
controllers are required for the MA representation. Letting (z,y), ¥ and u denote the
inertial position, heading angle and velocity of the AUV respectively. The subscripts

¢ and r denote commanding and reference variables. The velocity augmented AUV’s
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kinematic equations of motion are adequately modelled by

T = u.cos())
¥ = usin(y) (6.41)
1!.) = We

where w, and u,, are the commanded heading rate and velocity to the velocity con-

trollers.

Additionally, the dynamics of the AUV impose the following input constraints

ul = {Ucw wclo < Unin < Ye < Umar, —Wmar <w. < wmam} (642)

The desired trajectory (z,, ¥, ¥r, vy, w,) generated by the trajectory generator also
satisfies Equation 6.41 under the constraints that v, and w, are piecewise continuous

and satisfy the constraints

Urnin + €u S Uy S Umazr — €y (6 43)

Winin + € S Wy S Wmar — €w

where €, and €, are positive control parameters. In fact, the inclusion of ¢, in the con-
straints is to guarantee that there is sufficient control authority to track the trajectory.
In another perspective, as the e, approach zero, the feasible control set vanishes. This
also explains the reason for incurring a virtual bound on the AUV rudder deflection
and slew rate in the MA representation, to reserve some control authority for track-
ing purposes. These input constraints assume cases where no external disturbances
acting on the AUV.

One then transforms the tracking errors from the inertial frame to the AUV frame

and it can be expressed as

Te cos(y) sin(e)) 0 Ir— I
ye | = | —sin{yy) cos(y) O Yy — Y (6.44)
e 0 0 1 P — P

Accordingly, via algebraic substitution with Equation 6.41, Equation 6.44 and differ-
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entiation. The tracking-error model can be represented as

Te = Wele — Ue + Uy cOS(1e)
Yo = —Well, + Uy SIN{20,) (6.45)

Pe = Wy — W,

Following, Equation 6.45 can be simplified as

To = Ug
z, = (w, — up)T2 + U, sin(zo) (6.46)
.’i‘z = —(w, — Uo)il?l + uy
where
(:EOl Iy, $2) = (QSE: Ye, ‘_‘-’Ee) (647)

and ug = w, — w® and u; = v° — v, cos(zg). The input constraints under the trans-
formation become
Up = {uo, w1|w < uo < W, < uy £ T} (6.48)

where W = w, —Wipag, W = Wy + Wnag, ¥ = Umin — Uy €08(Zg ), and T = Uymgr — 1y c08(Zo)
are time-varying. These fransformed constraints are actually with reference to the
medium of the AUV is travelling. Equation 6.44 and 6.47 are invertible transforma-
tions, which means that (z., ye, ¥.) = (0,0,0) is equivalent to (z, e, ¥.) = (0,0, 0),
or in other words (zr,yr,%r) = (z,y,%). Therefore, the original tracking control
objective is converted to a stabilisation objective. The goal here is to find feasible

control inputs ug and u, to stabilise zg, 2, and z,.
To this end, the system Equation 6.46 can be rewritten as

x = A(t, x)x + B(x)u (6.49)
where x = (24, 2}, 29]7, u = [ug, w1}7,

] 0 0

Al,x) = | w8l 0 (1) (6.50)

To

0 we(t) 0
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and
1 0
B(x) = —19 0 (6.51)
I 1

The pointwise controllability matrix is given by S(t,x) = [B(z) A(t,x) B(z) A(t, x)?B(x)].
It can be verified that S(f,x) has full rank when w,(t) # kn,k € Z\ 0. As a result,
(A(t,x), B(z)) is pointwise stabilisable as long as zg # kw,k € Z \ 0. The control
objective is to find feasible control inputs v, and w, such that |z, — z| + |y, — y| +

Wy —~ @) — 0 as t — oo.

Defining a saturation function as

B, a<p
sat(a, B,7) = ¢ o, B<a<y (6.52)

T >y

Since the AUV may be subjected to non-zero mean ocean currents, the control
Uspre = [Uq,us]T may not satisfy the input constraints. The actual control will
be saturated to satisfy the constraints shown in Equation 6.48 according to the fol-

lowing simple projection (Ren and Beard 2004):

= sat(uq, w,w
Uo = sat(tq, , W) (6.53)
uy = sat(up, u, U)

To recap, the algorithm of a SDRE control formulation can be summarised as below:
1. Cast the dynamic equation into an ‘extended linearised’ form.
x = A(x)x + B{x)u (6.54)
2. Tune the Q(x) and R(x) in the performance index
J= / (x"Q(x)x + uTR(x)u)dt (6.55)
0

3. Solve the ARE at every time step. This can be achieved in real-time or prior

to the controller operation via fast and efficient ARE solvers that are available

commercially or freely.
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6.9 Simulations and Discussion

For the simulations, the trajectory as highlighted in Subsection 5.6.1 was selected
as a candidate trajectory, also, the AUTOSUB AUV model was employed. Again,
all the conventions herein, follow the one outlined in Chapter 3. The simulations
were hosted in MATLAB 6.5 /SIMULINK environment, on a 2.1 GHz Pentium IV
machine, with 512 MB of RAM and running Windows XP.

The reference states are the prescribed trajectory consisting of linear and angular
displacements and velocities. Accordingly, the actuator outputs, which correspond to

the reference trajectory is also included in feedforward system implementation.

The AUV was assumed to be equipped with an IMU, which is capable of supplying
velocities and displacements for three-axis, both rectilinear and angular. Conversely,
a Doppler velocity sensor and SLAM unit using sonar, could be employed to mitigate
the positioning drifting effect. Precise absolute angular displacement can be acquired
from a tilt-compensated compass such as the TCM2. Together, these sensors, through
a data fusion process, are capable of catering with full-state measurements, a nec-
essary requirement for proper functioning of the controller. However, in reality, the
measurements will mainly be corrupted by high frequency noise. In this study, one

assutmes that the high frequency noise issue has been dealt with.

Proper evaluation parameters must be dictated to assess the veracity of the controllers

performance. The appraisal will be based on the following criteria.

1. Convergence {asymptotically to the tracking trajectory)
2. Robustness to large initial errors

3. Robustness in terms of external disturbances

4. Resilience to induce unstable (oscillatory) responses

5. Minimal control effort

Before proceeding into the simulation studies, it is interesting to observe the LQR

gains obtained based on the aforementioned trajectory (Fig 6.5). Several of the gains





















































































Chapter 7

Conclusions and Future Work

7.1 Concluding Remarks

This thesis focussed on the investigation of a novel motion planning algorithm, system
dynamic quantisation, trajectory tracking, sonar processing and workspace represen-
tation methods as a solution to the AUV collision avoidance problem. It presented a
repertoire of techniques which can be exploited as a whole to develop a functional col-
lision avoidance system for AUVs. Both the obstacle detection and obstacle avoidance
frameworks presented in this work are based on a computational approach. This work
is the first known use of a partially hybrid technique in the AUV motion planning

and is thus considered as a major contribution in relation to this field.

The feasibility of applying the RRT algorithm as a solution to the AUV motion
planning problem has been intensively studied. Although the algorithm is endowed
with several appealing properties such as robustness to the state explosion effect and
ability to solve kinodynamic problems, it also suffers from a few drawbacks that de-
grade its practical utility. For instance, the randomise nature of the algorithm renders
the solutions highly suboptimal and contains unnecessary micro random manoeuvres.
Further aggravating the condition, its performance is highly sensitive to the metric

definition and it also requires a system dynamic model to function properly.

Instigated by the inherent RRT issues, the Manoeuvre Automaton (MA) represen-

222
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tation was introduced to address some of the deficiencies. This unique framework
builds on the inherent characteristics of the vehicle dynamics to achieve a high level of
computational efficiency, compromising between performance degradation and com-
putational tractability. In quantisation the model, care must be taken not to over
simplified or over complicated the model. The former will constraint the admissible
responses of the original system, resulting in an excessively rigid dynamics character-
istic. In contrast, the latter creates a state explosion effect, causing the model to be
too computational intensive, making the quantisation process a counter productive
one. Through the synergistic combination of the MA representation and the RRT
algorithm, an enhanced performance version has been devised. This novel algorithm
was extended to a multi-node version and for accommodating the time-varying fi-
nal state problem. Simulation studies showed that the novel MA+RRT algorithm

provides an interesting solution to the AUV motion planning problem.

Two controllers have been investigated as a potential candidate trajectory tracker.
It was deduced that the complexity of tuning the Q(t), R(¢) and the M(t) matrices
of the LQR, induced by its multivariable and severe cross-coupling characteristic,
limits its potential application. Additionally, there is a propensity for the LQR to be
unstable when it violates the linearised regime. This phenomenon is accentuated when
it is employed in a two degrees of freedom controller architecture. In contrast, the
nonlinear state dependent Riccati equation (SDRE} controller displayed impressive
performance for the tracking problem. Its characteristic to assimilate the state error
into the R(x) and Q(x) matrices allows it to exhibit a more robust response. Likewise,
the state dependent tuning parameters also significantly expand the performance
latitude of the controller as evidenced by the quadratic state error function employed
in the thesis. Finally, another noteworthy feature of the kinematic based SDRE
controller, is its system dynamics independent characteristic, hence allowing a more

widespread adoption.

The obstacle detection unit of a particular data processing was derived from the im-
age processing methodology. Both the sonar processing and workspace representation
were developed and the veracity of the techniques was tested in a sea trial using a
dedicated forward looking sonar. The sonar, being the ‘eye’ of an AUV, is essential
for a collision avoidance task. This thesis utilised the AT500 sonar for obstacle detec-
tion. It was discovered in the experiment that the sonar has a maximum range of only

40 m. The short detection range limits its usability to only small agile AUVs. Larger
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AUVs such as the AUTOSUB and Theseus require a longer range sonar, due to their
restricted minimum turning radius. Nonetheless, at a very appealing market price of
approximately 5000 pounds a unif, the AT500 is expected to pose a very attractive
and niche solution for cost conscious customers. The occupancy grid exploited in the
workspace representation facilitates data maintenance and implementation. Instead
of a linear function, a quadratic function was used instead to ‘maintain’ and filter
the perceived targets in the workspace representation. Experiment results showed
adequate false object elimination performance. These techniques remain sufficiently
flexible for porting to other forward looking sonars with only a minor tuning require-

ment.

It is important to note that although the computational techniques set forth in this
study were developed for AUVs, but it is not restrictive and can effortlessly be applied
to other autonomous vehicles either on the land and aerospace domains. Therefore,
the algorithms are valuable as generic practical tools for all types of collision avoidance
task. It is felt that major contributions to knowledge are forthcoming from these

techniques.

7.2 Recommendations for Future Research

Several different directions for future research have been highlighted through the
completion of the work within this thesis. The following points provide a summary

of these areas and are not considered to be exhaustive:

7.2.1 Optimal planning in constant currents

It is a common perception to consider a disturbance as a form of nuisance to a system.
This, however is not entirely true. Disturbances such as non-zero mean currents, can
be exploited to provide a beneficial effect to the AUV trajectory. The MA+RRT
algorithm should be extended to accommodate the effect of nonzero-mean currents.
By estimating the current and accommodating for its effect in the resulted trajectory

during the optimisation process, one can extract a trajectory that is more efficient by
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exploiting the intrinsic energy of the current. Simplistically speaking, one can design
a path such as the current will attempt to ‘push’ the AUV to the goal instead of going

against it, expending precious energy as a consequence.

7.2.2 Sensor-based motion planning

Sensor based motion planning is necessary for a system that functions in an unknown
and unstructured environment. The unavailability of a priori information renders
the AUV to depend on the sensor information. Sensor such as the sonar is limited by
the sensor noise, environment and its specification such as resolution, frame-rate and
number of beams. It is known that comprehensive information regarding an envi-
ronment cannot be acquired easily, hence incremental sensing, gradual accumulation
of evidence from sensors is needed for decision making. Furthermore, the optimal
decision from the limited information is not the same from the optimal decision from
having complete information.

7.2.3 Reflexive module

So far in this thesis the reflexive module has been neglected. Instead, of the conven-
tional collision avoidance reflexive behaviour, which are ad hoc by nature, it would be
an interesting proposition, if one is able to evolve the AUV’s behaviour in accordance
to the ‘Rules of the Road’, as remarked in Section 2.4.

7.2.4 Fault tolerant control or reconfigurable system

It is a common knowledge that AUVs are usually employed in hazardous and harsh
terrains such as polar regions and littoral waters. This tends to increase the risk
of failure, particularly of mechanical components as jammed control surfaces. This
incident will certainly alter the dynamic behaviour of the AUV. It was mentioned

previously that the proposed MA+RRT algorithm exploited LP to perform on-line

optimisation of the trajectory. This feature allows one to accommodate easily for any
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dynamics changes of the AUV in question, assuming the manoeuvres are explicitly
designed for this. Consequently, this will make the AUV highly resilient faults, in the

same time improving its survivability rate.

7.2.5 Multi-agent robotics

Higher mission requirements either in terms of time taken, larger operational enve-
lope and cost saving, have become the impetus behind the technology of multi-agent
underwater robots. Clearly, for a successful mission inveolving several AUVs, commu-
nication plays a vital role in the synchronisation of their activities. This leads to a
dedicated communication protocol and also a definition of manoeuvres with unique
properties that can be easily utilised for multiple AUV manoeuvres. The extension
of the MA+RRT algorithm for this task will be crucial for the advancement of this
field.

7.2.6 Multiple-target tracking system

The multiple-target tracking system is essential in a dynamic environment. It allows
an AUV to estimate the target parameters such as velocity, such that proper preemp-
tive action can be taken. In a static environment, tracking of multiple static targets
is advantages for the implementation of the simultaneous localisation and mapping
scheme. Indeed, this subject poses several challenging and yet appealing issues that

warrant further research.

7.2.7 Workspace representation

This thesis uses the occupancy grid method, a variant of the spatial decomposition
scheme for the workspace representation. On the other hand, most of the simulations
are done using a geometry map. This however, will not invalidate the results, since

workspace representation was designed to be ‘isolated’, a form of software abstrac-

tion, from the trajectory planner, through the use of a suitable ‘collision detection’
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function. The geometry map is well suited for small and dynamic target tracking
while the occupancy grid is more efficient for modelling static, unstructured, par-
tially observable objects. In light of this issue, it will be interesting to produce a

hybrid workspace representation, exploiting the merits of the two different schemes.
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Appendix A

Obstacle Detection

Chapters 4 to Chapter 6 have concentrated on the development of a novel, yet func-
tional obstacle avoidance module. The attention is diverted to the design of an
obstacle detection module. The function of this specific module should not be under-

estimated, without it, a complete collision avoidance system cannot be developed.

Before embarking on a detailed exposition of the module, it would be informative to
have an overview perspective of the critical submodules that constitute an advanced
obstacle detection system for an AUV. The exposition here is more specific compared
to Section 2.3. Referring to the block diagram as depicted in Fig A.1, it is apparent
that the three critical elements are the sonar data processing, multiple-target track-
ing (MTT) and workspace representation submodules. All of these submodules are
fed with measurements from various sensors. Although, in the older systems, these
modules tend to function independently, recently, the more advanced versions are
shown to possess complex intermodule-interaction where information is exchanged
[rom different submodules such that the optimal detection criterion is maintained in
spite of changing environmental parameters. In other words, it is a form of adaptive

system.
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Figure A.1: A block diagram of a generic collision detection unit of an AUV.

In essence, each submodule plays an indispensable role of sustaining the overall func-
tioning of an obstacle detection system. Sonar data processing entails processing of
the sonar raw data, which is known for its aberrant, unpredictable and highly noise
infested nature. On the other hand, the MTT submodule is needed for tracking
important targets. Tracking allows the system to anticipate the movement of the
obstacles, and to an extend, quantify the predictability of their motion which is in
fact, intimately linked to the risk of collision. Indeed, this feature is highly beneficial
for the motion planning of an AUV in a dynamic environment. Even static obsta-
cles must be tracked, static obstacles with invariant parameter such as shape, are
potential candidates to be employed as landmarks. The SLAM technique is capable
utilising several reliable static landmarks for localised position calibration (Tomatis et
al. 2001, Rikoski et al. 2002). The final module used is for workspace representation.
The limited detection envelope of the sonar sensor necessitates a scheme to represent

and memorise the environment structure for the purpose of navigation.

This chapter presents and proposes several techniques to be employed in sonar data
processing and workspace representation. It commences with descriptions of the sonar
transducer, sonar data processing, occupancy grid for workspace representation and
finally ends with quasi-simulations using real world data. It is highly unfortunate
that in the aim to ensure that the following study remains in a manageable scope,
one will not consider the design of the MTT submodule. The MTT is a rather chal-
lenging subject in its own right, and has been pursued vigorously by both industry
and academae alike. MTT techniques are used predominantly in radar and sonar

applications. Avid readers are recommended to solicit the following books by Black-
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A.2 Multi-Path Reflection and Reverberation

Two undesired phenomena that occur when using underwater sonar are multi-path
echoes and reverberation (echoes scattering) (Newman and Durran-Whyte 1998).
Multi-path echoes are induced when the ping is deflected by adjacent objects in
such a way that it returns after travelling several paths (Fig A.4). The sonar will
receive simultaneously the target echo and that of its image or images. This image,
befittingly, called a ‘ghost’, is actually non-existent in the physical world. The real
returned ping of the object is typically termed as the ‘principal reflection’. The
consecutive echoes that occur after the principal reflection are multi-path reflections.
The cause of this phenomenon can be attributed to the structure or shape of the
environment. Likewise, it can also be induced when AUV is travelling near to the
surface or seabed (Chevalier 2002). Discrimination of images from real targets is
difficult at best, hence to be safe, it is advised to assume ‘ghosts’ as potential obstacles

instead.

Muiti-Path
Echoes —

Forward looking sonar
Obstruction

First return

Second retum

Amplitude
{Intensity)

Noise

Time (distance}

Figure A.4: Multi-path reflection phenomenon

Reverberation, also known as the clutter in radar terminology, occurs when the ping

hits an object that has a non-uniform texture surface. The surface tends to scatter
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of several steps. A complete flow chart of the procedures required are shown in
Fig A.7. The first step is image acquisition, this has been achieved by employing
a sonar in this case. The second step, involves the preprocessing of the image. A
filter is introduced to attenuate the noise, improving the signal-to-noise ratio and the
chance for correct signal and noise discrimination. The next stage deals with image
segmentation. Image segmentation partitions the data into its constituent parts,
categorising the signal and eliminating the noise according to a predefined threshold.
Subsequently, a morphological process termed as dilation is introduced to improve the
size of the detected target to accommodate the effect of the AUV dynamics, sonar and
navigation sensor inaccuracy. Since the data is still in the native polar coordinate
form, transformation to Cartesian is compulsory, in order to be compatible with
other navigation data. Transformation is then introduced to scale and rotate the
data to facilitate workspace representation. Finally, the data is sent to the workspace

representation module for processing.

Raw sonar data -

'

Image liftering (median filter)

'

Doubte threshold segmentation

'

Dilation

!

Polar to Cartesian conversion

v

Transformation

y

Workspace Representation

Figure A.7: Sonar data processing flow chart




A.3.1 Signal and Noise

Herein, the attention is drawn to understand the nature of signal and noise that
exist in sonar data. The noise in the sonar can be decomposed into two dominant
types. The first one is sensor noise (endogenous) and the other one is reverberation,
as induced by the environment (exogenous). A sonar receiver inherently generates
‘thermal’ noise, the noise is clearly discernible when the gain is amplified or when
the sensor gets warm. The sensor noise can be approximated by an exponential
distribution (Toomay 1989). When a returned signal is received, the convolution
between the signal (pulse type with mean S) and the receiver noise creates a signal
which has a Gaussian distribution at mean S (Fig A.8). Consulting Fig A.8, the crux
of the concept here is to design the transducer such that the .S is always much greater
that NV so that the distortions that result from operating close to the zero point will be
negligible. The signal transmitted can also be distorted in the form of scattering by
the environment. The power of this clutter or scattering may distort target echoes by
multiple folds, and is commonly a dominant noise in the sonar when the AUV travels
near the sea bottom. This noise changes from region to region making estimation of

its characteristic nontrivial.

One can also refer to Fig A.8 to understand more about the probability distribution
of the noise in the sonar context. Here one will use the term detection probability, Py
and false alarm probability, Py,. Ideally, P4 should be maximised while Py, should be
minimised, but without resorting to redesigning the sonar, one is permitted only to
set the threshold so that arbitrary amounts of noise would be rejected. This implies
that the P and Py, are fixed for a particular z, increasing Fy will also increase the

Ppq and vice versa, so a trade-off between the two must be met.
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Figure A.8: Probability of detection and false alarm probability

A.3.2 Filtering

Filtering is normally the first operation applied in image processing. The objective
here is to massage the data such that noise are attenuated to allow better signal-to-
noise ratio for latter signal extraction processes. Two common ones are the median
and Gaussian filters. The median filter evaluates each pixel in the image in turn and
looks at its nearby neighbour, ranks them and decides whether or not it is represen-
tative of its surroundings. The Gaussian smoothing operator is a 2-D convolution

operator that uses a Gaussian ‘bell-shaped’ kernel (Petrou and Bosdogianni 1999).

Using the data acquired from the experimental tank, one can observe in Fig A.9(a)
that the raw data is corrupted with noise. The noise has certain characteristics, they
are of a high signal, scattered, impulse type. Several filters were applied to the data
to check their effectiveness. It was found the median filter with size [3 x 3] is superior
as shown in Fig A.9(b). The outcome of using Gaussian filter with size [3 x 3} and
[7 x 7] is shown in Fig A.9(c) and (d). The median filier provides better filtered
data and simultaneously preserves the signal. Tena Ruiz (2001), however, suggested
using a Gaussian filter owing to the computational saving. This is true, as sorting
and ranking is a time consuming process. On the other hand, the small size of the
median filter and the data used in this study did not create any drastic computational

burden worthy of concern. Hence, the median filter was employed for the remaining

simulations.













The current, state-of-the-art, thresholding algorithm used by the military is of the
adaptive version. One version, is known as the Cell-Averaging Constant False Alarm
(CACFA) algorithm (Drumbheller and Lew 2001). It utilises the mean, variance or
median of the neighbourhood cells to determine the local threshold value, and main-
tains a constant false-alarm rate. This algorithm is rather computationally intensive,
but will be an interesting topic of research. In must also be remembered that unlike
a stationary sonar, the AUV is constantly travelling and its displacements, headings,
and environment are unpredictable, therefore the clutter mapping feature commonly

used in fixed scanning sonar cannot be employed here.

A.3.4 Dilation

Dilation is one of the two basic operators in the area of mathematical morphology, the
other being erosion. The basic effect of the operator on a binary image is to enlarge
gradually the boundaries of regions of foreground pixels. Thus areas of foreground
pixels grow in size while holes within those regions become smaller (Giardina and
Dougherty 1987).

It was found that without the dilation operation, some of the targets are very small
when mapped into Cartesian coordinates, especially those nearer to the receiver. This
distortion effect is implicated by the native polar coordinate to cartesian mapping.
Slight changes in angle (polar coordinate) will effectuate a large discrepancy in the
Cartesian displacement for object located further from the sonar. This distortion is
aggravated the further the target from the sonar. The noise in navigation data can
create jumps in the heading measurement, making positioning the target in werkspace
representation rather difficult. By increasing the apparent size of the target, this
allows them to overlap easily, and is useful in incrementing the value of the occupancy

map.
A structuring element of a disc with a radius of 5 pixel was found to be adequate

for this purpose. Fig A.13 shows the before and after effect of applying dilation

operation. Note that operation is applied to the polar coordinate data.
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The transformation introduce several effects to the data, first the Gaussian noise
distribution is converted into a Rayleigh distribution. Secondly, interpolation for
required at certain cells, causing distortion to the data at times. The process can be
computationally intensive. Two popular methods for polar to Cartesian coordinate

conversion are the polar formatting algorithm and the inverse transformation.

The one preferred by industry is based on polar formatting algorithm. It is very
accurate, less distortional to data, but computationally intensive. It is based on
the concept of the ‘Fourier space of the scene being imaged’ and the fact that the
phase history data represents a surface in this space. The surface is then projected
onto a plane, where it is resampled to a rectangular grid for easy processing by 2-D
FFT algorithms (Wahl et al. 1996). Due to the high requirement demanded by the
military radar and sonar applications, dedicated digital processors for this task have

been implemented.

Another simpler algorithm, yet still very popular, where accuracy is less important
is the inverse transformation. The crux of the idea is that instead of mapping each
bin in the polar scan to a cell in the Cartesian plot, one proceeds to map each cell in
the Cartesian coordinates to the polar coordinates and decides which value it should
take. One can increase the accuracy of the neighbourheod cell by applying sub-pixel

interpolation. A simple pseudocode of the algorithm is given below:

1. Set the size of the Ccartesian plot {(image size)

2. Find la,ngle: tan~'(y, z) and range: /22 + 2

3. Check the value from polar plot for angle and range and put it  and y
4. Go to the next cell

5. Repeat 3 to 5 until the all the cells are calculated

In implementation, the use of transcendental function is very demanding for com-
puters, so a simple way to abrogate this calculation is to use a table. All the values
are mapped into tables and a look up routine is used. Significant improvement is
observed if the data is large. Even with a size of 256 with 256 pixels, a 10 times

speed improvement was recorded. Figure A.14 shows an example of image from a
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A.5 Workspace Representation

The data acquired from the sonar would not be useful unless it could be processed
into a much compact and functional form. Moreover, the sonar measurements were
incremental by nature due to the limited detection envelope. This necessitated a
method to represent the environment for use in motion planning. A more detail

exposition regarding workspace representation is provided in Subsection 2.3.4.

A.5.1 Occupancy map implementation

The approach here was to employ the occupancy grid, a variant of spatial decompo-
sition scheme for workspace representation. In essence, an occupancy grid represents
the environment space by partitioning it into uniform, non-overlapping grids or cells
in a spatial lattice. Each cell can be allocated with user defined attributes such as
confidence of obstacle presence, terrain geometry and safety factor (Movarec and Elfes
1985).

Figure A.23 shows the implication of applying the dilation operation on an occupancy
grid. It must be understood that an occupancy grid functions by maintaining the cells
that overlap. Note that without dilation, Fig A.23(a), a case of inadequate overlap,
it creates a map with small targets. These targets have a tendency to disappear
and reappear, behaving more like noise. The figure is labelled alphabetically that
corresponds to the targets as shown in Fig A.15 and Fig A.16.

Figure A.24 shows the flow chart of the implemented occupancy grid. Unlike, Ridao
et al. (2000) who used only pings that have not expired after a preset time interval
are recorded into a coarser map, and used for path planning. In this study, an
alternate approach was employed, upon detection of a new target, its cell was set
to a heuristically determined, starting value of 6. This value was tuned according
to the confidence of the probability of detection and probability of false alarm of a
particular sonar. An excessive starting value can result in a system that is prone to
accept noise as targets. A value too low will eliminate the target too quickly from

the map, resulting an incomplete view of the surrounding environment.
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Figure A.24: Occupancy grid flow chart

A.5.2 Discussion

A selected sequence of the occupancy grid frames are presented in Fig A.25 and A.26
with their associated frame number labelled below. The white sector represents is
the detection envelop of the AT500 sonar. The heading of the sonar for each frame is
given in Table A.1. For ease of reference, the frame number coincides with the sonar
frames given in Fig A.21 and Fig A.22. Again, one should consult the alphabetical
labels in Fig A.15, Fig A.16 and Fig A.23 for better understanding of the targets

position relative to the NED convention.

From Frame 10 to 17, one can observe that target (c) was detected, but the fast

scanning motion of the sonar, achieved manually, did not allow sufficient time for the
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target to be redetected, this explains its low value (light blue). Similarly, from Frame
14 to 16, target (d) was detected and its value was reinforced as the frame progressed
(changing of the colours to light green). Notice that from Frame 12 to 16, several
false alarms or targets caused by multi-path reflection and noise appear. Beginning
with Frame 17, the direction of scanning of sonar was reversed. At Frame 18, target
(c) was redetected, and its value increased, then it was continuously reinforced from
Frame 18 to 25. Interestingly, a fortuitous event occurred, a vessel (target (e)) was
manoeuvring into the harbour at that particular time. The vessel was detected by
the sonar as shown in Frame 21, it is discernable as a small light blue blip at the
furthest left of the frame. The occupancy grid manages to eliminate the multi-path
reflection and incorrect noise signal discrimination, detected at Frame 12 to 16. These
‘targets’ were then suppressed after Frame 18. Although, impressive and practical,
the occupancy grid only works well if the navigation sensors are reasonably accurate.
Furthermore, without a tracking module, it is unable to predict the target velocity

and trajectory, resulting in deteriorating performance in highly dynamic environment.

It was discovered that the maximum distance of AT500 sonar is 40 m and not 50 m
as stated in the specification. Detection of a moving target is very difficult. The
sonar is very sensitive to the exposed cross section of the target. When the boat was
heading straight to the sonar, the detection is very weak, almost nil. But as the boat
turns to be perpendicular to the sonar, detection probability increases, this can be
explained by the kneel of the boat which provides sufficient large area to reflect the

sonar acoustic energy.
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e The AUV are moving at a cruising speed of 2m/s and the initial position
was set to [300 240 3.1] and the goal is [170 230 ], according to the format
[z(m) y(m) ¥(rad)]. & is a variable. It should be worth mentioning that the
goal, is an element from a collection of the mission waypoints.

e The occupancy grid uses NED convention.

The triangles shown in Fig A.28 and A.29 represent the AUTOSUB AUV, enlarged

twice the original size to improve visualisation.

Discussions

Figure A.28 shows a near optimal trajectory found by the algorithm in 0.11 s, the
AUV avoids the obstacles by moving through the gap in between them. This trajec-
tory might not be a practical one, for a large AUV as the physical size of the AUV
and its slow dynamics, consequently, the AUV has a high chance of colliding with the
nearby obstacle. Nonetheless, this manoceuvre is ideally suitable for small agile AUV
conducting clandestine and reconnaissance missions in a hostile territory. For the
case of a large AUV, and to deter the algorithm from discovering ‘risky’ trajectory, a
dilation operation can be introduced to enlarge the obstacles. This is in fact, similar

to the concept known as configuration-space patching proposed by (Lozano-Perez and
Wesley 1979).

Figure A.29 depicts a similar scenario but using different seeds of the quasi-random
generator. The trajectory was found in 0.46 s. This time, the AUV turns away,
in an aggressive manner from the obstacles. Then, it executes a considerable large
detour before arriving to the target. Qualitatively speaking, this is obviously a safer
trajectory for the AUTOSUB AUV, owing to its size and slow dynamics. As expected,
the trajectory total distance when compared to the former simulation trajectory is

substantially larger, hence this provoked the question of energy efficiency.

Here, one can notice the consequence of dynamics quantisation, which restricted
the admissible dynamics of the original system. A trade-off between computational
efficiency, computational tractability and performance degradation that one must be

willing to pay for the adoption of this approach. Secondly, the AT500 sonar, owing to
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Appendix B

Publications

The work within this thesis has contributed significantly to the underwater research
literature via the following list of publications. This includes all the papers which

have either been published, accepted or under preparation.

Journal Papers

e Tan, C. S., R. Sutton and J. Chudley (2005). CRASH, BANG,AVOIDANCE:
Collision Avodiance Systems. Oceanology today (5),22-23.

e Tan, C. S., R. Sutton and J. Chudley (2004). Collision Avoidance Systems
for Autonomous Underwater Vehicles, Part A: Obstacle Detection. Journal of
Marine Science and Environment, IMarEST (C2), 39-50.

e Tan, C. S., R. Sutton and J. Chudley (2004). Collision Avoidance Systems for
Au- tonomous Underwater Vehicles, Part B: Obstacle Avoidance. Journal of
Marine Science and Environment, IMarEST (C2), 51-62.
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Refereed Conference Papers

e Tan, C. S., R. Sutton and J. Chudley (2005). Quasi-Random Manoetivre-based
Motion Planning Algorithm for Autonomous Underwater Vehicles. IFAC 16th
World Congress, Prague pp. 483-488.

e Tan, C. S., R. Sutton and J. Chudley (2004). An Incremental Stochastic Motion
Planning Technique for Autonomous Underwater Vehicles. /FAC Conference on
Control Applications in Marine Systems (CAMS 2004), ltaly pp. 483-488.

e Robinson, P., C. S. Tan and C. Morris and R. Sutton -(2003). Low Power
Intelligent Sonars for Autonomous Underwater Vehicle Navigation and Collision
Avoidance, In Proceedings of Underwater Defence Technology (UDT) Europe,
UK.

e Tan, C. S., R. Sutton, J. Chudley and S. Ahmad (2003). Autonomous Under-
water Vehicle Retrieval Manoeuvre Using Artificial intelligence Strategy. Proc:
1st IFAC Workshop on Guidance and Control of Underwater Vehicles (GCUV
2003) pp. 143-148.
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