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Abstract 

The work in this thesis is concerned with the development of a novel and practical col­
lision avoidance system for autonomous underwater vehicles (AUVs). Synergistically, 
advanced stochastic motion planning methods, dynamics quantisation approaches, 
multivariable tracking controller designs, sonar data processing and workspace repre­
sentation, are combined to enhance significantly the survivability of modern AUVs. 

The recent proliferation of autonomous AUV deployments for various missions such 
as seafioor surveying, scientific data gathering and mine hunting has demanded a sub­
stantial increase in vehicle autonomy. One matching requirement of such missions is 
to allow all the AUV to navigate safely in a dynamic and unstructured environment. 
Therefore, it is vital that a robust and effective collision avoidance system should be 
forthcoming in order to preserve the structural integrity of the vehicle whilst simul­
taneously increasing its autonomy. 

This thesis not only provides a holistic framework but also an arsenal of compu­
tational techniques in the design of a collision avoidance system for AUVs. The 
design of an obstacle avoidance system is first addressed. The core paradigm is the 
application of the Rapidly-exploring Random Tree (RRT) algorithm and the newly 
developed version for use as a motion planning tool. Later, this technique is merged 
with the Manoeuvre Automaton (MA) representation to address the inherent disad­
vantages of the RRT. A novel multi-node version which can also address time varying 
final state is suggested. Clearly, the reference trajectory generated by the aforemen­
tioned embedded planner must be tracked. Hence, the feasibility of employing the 
linear quadratic regulator (LQG) and the nonlinear kinematic based state-dependent 
Ricatti equation (SDRE) controller as trajectory trackers are explored. 

The obstacle detection module, which comprises of sonar processing and workspace 
representation submodules, is developed and tested on actual sonar data acquired 
in a sea-trial via a prototype forward looking sonar (AT500). The sonar processing 
techniques applied are fundamentally derived from the image processing perspec­
tive. Likewise, a novel occupancy grid using nonlinear function is proposed for the 
workspace representation of the AUV. Results are presented that demonstrate the 
ability of an AUV to navigate a complex environment. 

To the author's knowledge, it is the first time the above newly developed method­
ologies have been applied to an A UV collision avoidance system, and, therefore, it is 
considered that the work constitutes a contribution of knowledge in this area of work. 
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Chapter 1 

Introduction 

1.1 Motivation 

It is surprising to know that approximately 80% of the Earth bound organisms are in 

the ocean and the oceans constitute 99% of the living space on the planet. Thereby, 

supporting the fact that oceans play a vital role in sustaining the Earth's ecology 

(MarineBio 1998). Even with current technology advancement, the surfaces of Mars, 

Venus, and the Moon are much better mapped than Earths's ocean floors (Smith 

2004). One obvious reason is that the exploration of this environment is extremely 

difficult to perform, however it is still desirable for the advancement of economic, 

political, scientific and military purposes. 

Consequently, over the last few decade there has been an exponential growth in the 

applications of unmanned underwater vehicles (UUVs), particularly in the field of 

science, the offshore industry and the military. Cost reductions and the mitigation 

of the risk of human life have become the impetus for UUV exploitation. UUVs can 

be used for sea bottom exploration, repairing, surveying, policing exclusive economic 

zones, mine-hunting, seabed mapping and scientific data, and intelligence gathering. 

In this context, the term 'unmanned underwater vehicle' is considered as a generic 

expression to describe both an autonomous underwater vehicle (AUV) and a remotely 

operated vehicle (ROV). ROVs are human operated via an umbilical cable and are 

highly manoeuvrable underwater vehicle. However, this does severely limit its oper-

1 
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ating range. Unlike the ROV, the AUV without the restraint of an wnbilical, is a free 

swimming vehicle of higher autonomy, capable of performing missions that require 

longer operating ranges without human intervention. For clarity of exposition, the 

term AUV will be used for the remainder of the thesis because of its more challenging 

and rigid requirements. Nonetheless, the ideas discussed are still applicable to a wide 

range of vehicles. It is worth reviewing the recent trends in AUV applications, to 

better appreciate their contributions. 

The offshore and scientific communities, who are especially sensitive to financial con­

straints, were quick to seize the opportunity in exploiting the potential of AUVs. 

Some of the commercial AUVs for offshore survey are Hugin (Norway) (Vestgard 

1999), Aqua Explorer JOOO(Japan) (Kato et al. 1993) and Theseus(Canada) (But­

ler and Hertog 1993). These has been reinforced by the recent placing of orders 

to purchase AUVs by Fugro-Geos Ltd, C&C Technologies and Racal Survey Ltd 

(Anon 1999). In the case of the scientific community, A UTOSUB (Griffiths et al. 

1999) (Fig 1.1) and Theseus AUV (Ferguson et al. 1999) (Fig 1.2) have demonstrated 

their ability to navigate under polar ice caps while the Autonomous Benthic Explorer 

(ABE) (Yoerger et al. 2000) (Fig 1.3) has performed a fine-scale sea floor survey in 

a rugged deep-ocean terrain. All of these have been achieved at significant financial 

cost saving. These impressive achievements further strengthen the belief that AUV 

applications will continue to escalate as the realisation of the importance of ocean 

resources unfolds. 

Recently, the military has shifted its focus from blue-water to brown-water warfare. 

This was instigated by the increase propensity for littoral water operations and the 

attendant focus on amphibious power projection (Foxwell 2000). Technically, the 

littoral zone is a subdivision of the benthic province that lies between the high and 

low tide marks and can be considered as an extension of the shoreline to 600 ft (183 

m) out into the water. The importance of accessing the littoral zone is critical if 

a successful amphibious launch is to be achieved. The littoral zone is an intricate 

area to navigate by default, with unpredictable nature's effects such as biolumines­

cence1, internal waves, coastal currents, changing beach profile, reefs and artificial 

objects. This is made increasingly difficult by the proliferic deployment of cheap un-

1 Refers to the light producing ability of certain surface organisms. Any provocation of the 
organisms will cause them to emit light. Thus to maintain stealthiness, AUVs must take extra 
precautions when travelling on or near the surface. 
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Figure 1.1: Retrieval process of the AUTOSUB (courtesy of National Oceanography 
Centre) 

derwater mines by defending countries which have the effect of retarding or halting 

any military advancement. Consequently, this has prompted a search for the most 

effective countermeasure that culminated with the employment of AUV technology. 

Currently, the US employs the highly portable and cost effective Remus AUV (Fig 

1.4) for mine hunting as illustrated in the recent 2003 Iraq conflict (Jordan 2003). 

Moreover, the design of a more advanced, stealth AUV codename Manta is already 

in progress (Lisiewicz and French 1999) and the Long Term Mine Reconnaissance 

System (LMRS) is also due in service next year. Elsewhere, the UK is using the 

highly modular and reconfigm able Marlin (Tong 2000) that is also submarine-launch 

capable a11d a smaller, more agile, Gambit (Morrison et al. 2003) for mine counter 

measure mission. 

From the aforementioned, the impression may have been given that AUVs are going 

to become the panacea for a number of subsea activities. This is certainly not the 

case as A UV s still suffer from numerous inherent technical difficulties specifically from 

power, sensing, communication, and reliability limitations. The increase exploitation 

of AUVs as mentioned above has also demanded a more robust and autonomous 

capability. One of the areas that needs particular addressing is collision avoidance, 

which is required to maintain the structural integrity of the AUV in a very hostile 
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Figure 1.2: Theseus operating under ice (courtesy of ISE Research Ltd) 

environment. Clearly, once a collision occurs and assuming that the AUV structure 

is breached, then it is inevitable that a catastrophic failure wlll follow. Thus an AUV 

collision in the ocean is intolerable for two main reasons; the recovery process can be 

arduous and the replacement process in terms of cost and time can be prohibitive. 

In this thesis, collision avoidance is defined as the ability of a vehicle to 

detect and avoid colliding with both static and dynamic obstacles, while 

still attempting to accomplish the current mission objective. The processes 

involved also encompass obstacle detection, digital map building (workspace repre­

sentation) , motion planning and reflexive obstacle avoidance. To date AUV collision 

avoidance schemes have been somewhat ad hoc whereby only a simple reflexive module 

is added depending on the customer requirements. The problem with this approach 

is that the resulting AUV system is not fully integrated with its various subsyst ems 

which leads to suboptimal behaviour in terms of manoeuvrability and capability to 

navigate in a dynamic, unknown and unstructured terrain. Moreover under opera­

t ional conditions, this is exacerbated still further by the poor sensor performance and 

highly complex nonlinear dynamic nature of an AUV. Previous AUVs were designed 

as efficient swimmers wit.h very limited manoeuvrability, but some recent AUVs are 



CHAPTER 1. INTRODUCTION 5 

Figure 1.3: Autonomous Benthic Explorer (ABE) being deployed (courtesy ofWHOI, 
www.whoi .edu/home) 

equipped with auxil iary vector thrusters2 to achieve more sophisticated manoeuvres 

such as hovering and pure sway movement. As a consequence, a new collision avoid­

ance system that is capable of addressing all these factors is required. 

Perhaps, before delving deeper into t he technical content , it is worth reviewing briefly 

the history of collisions, both at sea and in the air. Since man's early foray into the 

oceans, mid-sea collision has been a frequent occurrence. The poor navigation tech­

nology at that t ime was partly to be blamed for this situation. Various regulations, 

or 'Rules of the Road', were enacted in the hope to mitigate the occmrence of such 

incidents. The proliferic deployment of radar, a significant technology, in commercial 

vessels at the end of World War Il was hailed a-S the solution to this centuries old 

problem. Yet, much to the surprise of the maritime community even with this inno­

vative technology, regrettably failure to prevent collisions from happening occmred 

as exemplified by the Andrea Doria/Stockhom (Moscow 1959, Cahill1997) disaster in 

1956. It was painfully clear subsequently, that most of t he collision causes were not 

technology related but mostly due to gross human errors, particularly the incorrect 

application of the technology and collision avoidance regulations. fore recently, such 

unfortunate events have also been extended to the air domain as well , as confirmed by 

20 ne example is the novel Acxjble foil propulsor called N eklor· (Hobson et al. 1999). These flexible 
thr usters are capable of maximising AUV agility by t ransforming it into a holonomic vehicle. 
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Figure 1.4: Remus being launched from a boat which clearly demonstrates its porta­
bility and versatility (courtesy from Hydroid Inc) 

the mid-air collision between a DHL Boeing 757 and the Bashkirian Airlines Tupolev 

154 near the Swiss/ Germany border in July 2002 (BBC News 2002, Harro and Fabian 

2002). 

Undeniably every collision either a t the sea or in the air has serious environmental, 

economical, and human life implications. To make matters worse, the current forecast 

indicates an escalating trend in the number of vessels, aircraft and their operations in 

the near futme. This is set to increase the probability of collision as a result. Fortu­

nately, this predicament has not been taken lightly by the Civil Aviat ion Authority 

(CAA) who just published the CAP 722 report (Civil Aviation Authority (CAA) 

2002), outlining some of the regulations pertaining to the legal and safety operations 

of unmanned aerial vehicles (UAVs). NASA, being slightly more pragmat ic, is em­

ploying an UAV named Proteus (Aerotech News and Review 2003) as a testbed for 

state-of-the-art collision avoidance technology. They envisage that Proteus will be 

able to fly reliably and aut onomously in national civil airspace wit hin two years. 

Although there exists some pioneering efforts in establishing certain public laws con­

cerning AUV operations (SUT 2000a, SUT 2000b, SUT 2000c) , what is urgently 
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lacking is an authority who can implement these instituted rules. One reason for the 

absence of interest in enforcing these rules is probably due to insufficient risk justi­

fication, especially the risk to human life. Unlike an UAV, which shares the same 

civil airspace with commercial aircraft, an AUV normally conducts its mission under 

the water where the chance of encountering another AUV or submarine is extremely 

unlikely at the moment. 

In spite of this, the current scenario is about to change as there is a sudden surge of 

interest in the field of multi-agent underwater robots. By working cooperatively and 

via mutual information sharing, these AUVs will be able to complete missions such 

as oceanographic sampling (Chappell et al. 1997) and mine hunting with substantial 

reduction in both operational time and cost. This, as a result, necessitates a set of 

proper 'Rules of the Road' to safely and successfully conduct a multi-AUV mission. 

In the forthcoming text several notions such as configuration space, holonomic system, 

nonholonomic system and underactuated system, will be used pervasively. Therefore 

it is felt that an explanation of these notions is in order. 

Configuration space (C-space) is a fundamental tool introduced in the late seventies 

to address the basic motion planning problem (Lozano-Perez and Wesley 1979). C­

space is a set of all possible configurations of a robot or, to be more precise, a vehicle 

in this case. The dimensionality of a C-space is equivalent to the number of degrees 

of freedom (independent parameters) of the vehicle. For instance, Fig 1.5 shows a 

4-wheel vehicle constrained to plane movement. One can describe the vehicle config­

uration using 3 variables; (x, y, 1/J), two translations and one rotation, concluding that 

this is a 3 dimensional C-space. Unlike a workspace, in a C-space the vehicle shape 

is 'patched' to the obstacles. Subsequently, the vehicle can be represented as a point 

which has t.he effect of simplifying the path planning process. In general, the high 

dimensionality of the C-space of nontrivial devices is perceived as the principle reason 

behind the complexities of a motion planning problem (Hwang and Ahuja 1992). 

A system is considered to be holonomic or fully actuated when it has the same number 

of independent inputs as the configuration variables. Elsewhere, a nonholonomic 

system arises when the system has less control inputs than its configuration variables. 

These are generally characterised by nonintegrable constraint equations involving the 

time derivatives of the system configuration variables. As stated in the configuration 
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y 

X 

Figure 1.5: A diagram showing a 4-wheel vehicle configuration variables and control 
inputs 

space section, the 4-wheel vehicle has only two independent control inputs (v, speed 

and, -J;, angular velocity) contrasting to three configuration variables, which results in 

a nonholonomic system. A first order nonholonomic relation can normally be written 

in the form of a time-invariant ordinary differential equation (ODE), 

X:= f(x(t), u(t)) (1.1) 

that deals with only nonintegrable velocity. Where x is the state vector, and u is 

the input vector. On the other hand, the second order nonholonomic relation, can be 

written as, 

:X= f(x(t),:ic:(t), u(t)) (1.2) 

which deals with nonintegrable acceleration. This type of problem is also known as 

a kinodynamics problem (Amato and Wu 1996, La Valle and Kuffner 1999) and is 

frequently found in underactuated systems such as surface vessels, spacecraft, manip­

ulators and underwater vehicles. Suffice to say that controlling and motion planning 

for these systems is significantly more challenging than for the holonomic cases. A 

thorough review of nonholonomic controls and planning can be found in Laumond 

(1998). 
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1.2 Aim and Objectives of the Research 

The overall aim of this research is to design and develop a collision avoidance system 

for AUVs. This encompasses the obstacle detection and the obstacle avoidance sub­

systems. Both simulations and implementation are investigated. As for the proof of 

concept, implementations are sought wherever possible, however, due to the unavail­

ability of certain critical sensors, hardware and facilities, this is not always feasible. 

The simulations must be conducted as realistic as possible using accurate nonlinear 

dynamics of AUVs. It should be stressed that to formulate a meaningful and realistic 

thesis research project, there should be limitations on the scope of the research to 

make the problem manageable. Thus in keeping this research focus, the reflexive 

techniques, navigation and multiple target tracking topics have been omitted. The 

objectives of this research are provided as follows: 

a. Critically review the current collision avoidance techniques, with a special em­

phasis on UUV applications. 

b. Analyse, adopt and enhance a potential motion planning scheme for the AUV 

implementation. 

c. Design a novel motion planner which can generate system dynamic compliant 

and near-optimal trajectories whilst remaining computationally attractive. 

d. Develop a robust, multivariable trajectory tracker for underactuated vehicles 

such as AUVs. 

e. Critically assess the suitability of various trajectory tracking controllers. 

f. Evaluate the proposed obstacle avoidance technique's performance in simula­

tions for various scenarios. 

g. Employ suitable techniques and the AT500 sonar to develop a functional obsta­

cle detection system. 

h. Conduct a sea trial to check the viability of the proposed sonar data processing 

and workspace representation schemes. 



CHAPTERl. INTRODUCTION 10 

Objective (a) is detailed in Chapter 2. Likewise, Objectives (b) to (e) are discussed 

within Chapters 4 to 6. These objectives pertain to the design of the obstacle avoid­

ance module of an AUV. Specifically, the work within Chapter 5 details the results 

concerning objective (c). Chapter 6 documents work satisfying the objectives (d) 

to (f) whilst objectives (g) and (h) are accomplished in Appendix A. The last two 

objectives detail the development of obstacle detection techniques with a particular 

emphasis on the AT500 sonar application. 

1.3 Thesis Overview 

Accordingly, the thesis is structured as follows, Chapter 2 elaborates upon the related 

research and technologies employed for the collision avoidance purpose, particular for 

those that are being applied in AUVs. Due to the complexity of the topic, the survey 

has been divided into two distinct parts, the obstacle detection and the obstacle 

avoidance. Subsequently, Section 2.1 surveys control architecture and Section 2.2 

deals with system architecture. The detection system, both software and hardware, 

are explored in Section 2.3. The remaining section focuses on a plethora of motion 

planning and reflexive techniques. This detailed technology survey has culminated to 

the publication of two papers (Tan et al. 2004b, Tan et al. 2004c). 

Chapter 3 elaborates regarding the system and disturbance modelling. Clearly, in 

order to run a realistic simulation, an accurate mathematical description of both 

the plant and the disturbances must be available. The rigid body dynamics of an 

underwater vehicle are briefly explained before being presented with two models of 

AUVs, the Remus and the AUTOSUB. The Remus model is employed only for RRT 

simulation in Chapter 4. Owing to the absence of proper surge dynamics, the more 

realistic and complex model of AUTOSUB is preferred and adopted for the rest of 

the simulation nms. The modelling of both exogenous and endogenous disturbances 

which correspond to underwater current and sensor noise are also being treated herein. 

With the knowledge gained through the aforementioned survey, it is decided that this 

research will focus on the RRT algorithm. Its intriguing properties coupled with its 

strong potential for practical implementation rendered it a worthy topic of research. 

As a motion planning algorithm, the RRT algorithm is used to find the feasible control 
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inputs that can take the vehicle from the initial state to the final state. Hence, 

Chapter 4 is reserved to detail the RRT mechanism, properties, algorithm, and its 

implementation. An enhanced version of the RRT algorithm is proposed and applied 

to a 3-DOF, nonlinear, Remus AUV model, where the results are also compared and 

discussed. 

Chapter 5 combines the RRT algorithm with Manoeuvre Automaton (MA) approach, 

to ameliorate the former algorithm performance. In essence, MA transforms the 

continuous time nonlinear AUV model into a hybrid model. Effectively, this lowers 

the computational requirement and provides higher level of abstraction in solving 

the motion planning problem. Since, RRT solutions are inherently suboptimal, one 

exploits the linear programming optimisation algorithm to obtain a near-optimal 

trajectory instead. Also, for the case of performance betterment, the pseudo-random 

generator is replaced by a quasi-random generator. A novel multi-node version of 

RRT which can also cater for the case of time varying target is proposed. 

Nonetheless, in practice, applying only the control inputs found by the trajectory 

planner, RRT in this case, to the vehicle will not be sufficient to guarantee that it 

will arrive at the desired final state. This is true since even with very small internal 

and external disturbances, the vehicle will diverge from the predefined trajectory. 

Therefore, it is crucial that a trajectory tracking controller be designed to address 

this issue. Chapter 6 investigates and compares two candidate multivariable track­

ing controllers, one is the popular Linear Quadratic Regulator (LQR), another a less 

well-known but still a highly effective, nonlinear controller known as State-Dependent 

Riccati Equation (SDRE) controller. Simulation results are also presented and dis­

cussed. A few remarkable features of the proposed SDRE controller are: it is AUV 

dynamics independent, considerably robust, and very simple to tune. Indeed, a highly 

pragmatic solution to AUV tracking control problems. 

Conclusions, achievements to date and future work are condensed in the Chapter 7. 

Appendix A documents an additional and original work carried out on the topic 

of sonar data processing and workspace representation. These two submodules, in­

cluding the multiple-target tracking submodule constitute a modern, generic, AUV 

obstacle detection module. All the data presented in this chapter were acquired using 

an AT500 sonar (Robinson et al. 2003) from J&S Marine Ltd, during a sea-trial at 
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Coxside, Plymouth. This prototype forward looking sonar was designed especially 

for AUV's obstacle avoidance purposes. The raw data supplied by the sonar is pro­

cessed within the context of image processing theory. The extracted information is 

later transformed into an efficient workspace representation structure known as the 

occupancy grid. Simulations demonstrate how an AUV navigates the environment. 

Additionally, Appendix B provides the author's published work, and Appendix C 

outlines the AT500 specifications. 

1.4 Contributions of the Thesis 

The major contributions of this work are seen as: 

• Providing an up-to-date, comprehensive review of the current collision avoid­

ance techniques, with special attention to UUVs. As a sign of keen maritime 

community interest, a section of this review has been republished in Oceanology 

Today (Tan et al. 2005a). 

• A true 6-DOF nonlinear SIMULINK model of the AUTOSUB model was de­

veloped. The original model provided by QinetiQ Ltd lacks surge dynamics. 

• An enhanced RRT algorithm, based on the 'reconnection' concept was devised. 

The algorithm optimization is based on a prescribed cost function, in this ex­

ample, the shortest distance criterion is employed. 

• A novel multi-node version of RRT+MA which can also cater for the case of 

time varying target is proposed. To author's knowledge, this is the first study 

of an AUV implementation of this particular technique. 

• Performed a detailed study between the LQR and SDRE controller, with the 

objective to select a potential candidate as the tracking controller. It was dis­

covered that the SDRE controller performance is substantially superior com­

pared to LQR in this case and is suggested for future AUV applications. It is 

shown that it provides a flexible and yet simpler alternative to other underlying 

multivariable controllers. 
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• Sonar data processing and workspace representation techniques have been con­

ducted by employing the prototype AT500 sonar. This was achieved with col­

laboration with J&S Marine Ltd. Here, the emphasis is on practicability of the 

techniques. 



Chapter 2 

Related Research and Literature 

Survey 

A survey of the current state-of-the-art algorithms and methodologies has been pur­

sued with the aim of identifying the most suitable technology to address the AUV 

collision avoidance problem considered in this thesis. For clarity of exposition, the 

structure of this chapter commences with an generic AUV control architecture, Sec­

tion 2.1, and immediately followed with the system architecture in Section 2.2. As 

suggested by the section titles, control architecture and system architecture are inex­

orably linked. Control architecture pertains to a framework which manages the sen­

sorial and actuator system in order to enable an AUV to undertake a user-specified 

mission. On the other hand, a system architecture defines the interconnection map 

of vital modules to allow the proper functioning of an AUV. 

Section 2.3 elaborates upon the detection system, both software and hardware are 

discussed. A detection system functions as the 'eye' of an AUV, an essential module 

for a collision avoidance system. This is then accompanied by Section 2.4, 'Rules of 

the Road', Section 2.5 on motion planning techniques and Section 2.6 on reflexive 

techniques. Although, motion planning and reflexive avoidance techniques share the 

same objective, which is to avoid any collisions from occurring, compared to the re­

flexive avoidance techniques, the motion planning techniques are more comprehensive 

and utilised more information related to the environment and obstacles. This allows 

the motion planning techniques to function in an complex environment without being 

14 
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trapped in a local minima. Conversely, reflexive avoidance techniques are ad hoc in 

nature, and able to function with minimal environmental information and computa­

tional resources while ensuing fast reaction. Generally speaking, the majority of the 

techniques are also adopted by a few land and air research vehicles. However, in this 

case emphasis shall be given to those techniques that are potentially useful to AUVs. 

Finally, concluding remarks are provided in Section 2.7. 

2.1 AUV Control Architecture 

A control architecture is a framework which manages the sensorial and actuator sys­

tem in order to enable an AUV to undertake a user-specified mission. This is a major 

topic of research and different approaches to AUV control architectures are discussed 

in the literature (Ridao et al. 1999, Valavanis et al. 1997, Caccia et al. 1995b). This 

section intends to elaborate on three major types of control architecture. 

2.1.1 Deliberative architecture 

This architecture is also known as a top down, structured, symbolic, goal-driven, 

model-based, hierarchical or sense-plan-act approach. Deliberative architecture al­

ways maintains internal representations of its surroundings and this allows it to make 

reasoning, prediction and inferencing concerning the environment. The information 

flow direction is depicted in Fig 2.1(a). This scheme represents a well-defined tightly 

coupled structure thus simplifying the process of designing, debugging and evaluating 

the system. However, the amount of information flow from sensors to the centralised 

computing resources can be significant. Exacerbating the situation is the synchro­

nisation difficulty of workspace representations and the environment. Owing to the 

computationally intensive nature of the architecture, there is a tendency to exhibit 

unresponsive or erratic behaviours in unpredicted situations. This architecture is 

employed in the EAVE (Blidberg et al. 1990) and the OTTER (Rock et al. 1995). 
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2.1.2 Reactive architecture 

Also known as a bottom up, sensor-driven, layered, forward inferencing, subsumptive, 

heterachical, behavioural and reflexive or sense-react approach. The theory of reac­

tive architecture was initiated by Arbib (1981) and implemented by Brooks (1986). It 

is based on a parallel structure where each individual sensor is used to sense the envi­

ronment, providing its own perception and activating its own behaviour, refer to Fig 

2.1(b). A global behaviour is produced by coordinating the parallel execution of in­

dividual behaviour. Its performance is excellent particularly in unforeseen situations. 

Furthermore this scheme is known for its flexible and modulru· nature. However, its 

propensity to demonstrate elusive behaviour when subjected to conflicting sensor in­

formation is a major concern. Also, its nondeterministic nature does not lend itself 

to a straight-forward performance evaluation. Lastly, its deficiency in global map­

ping and in relation to workspace objects often results in simplistic behaviours which 

tend to get trapped in certain cases. This architecture is employed in the Sea Squirt 

(Bellingham et al. 1990) and the Twin Burger AUV (Fujii and Ura 1996). 

2.1.3 Hybrid architecture 

In the search for a superior architecture than the two previously discussed, the hy­

brid architecture was born through the amalgamation of both the above architectures. 

Generally, it is decomposed into three task specific layers: deliberative, reactive and 

execution layer, refer to Fig 2.1(c). In military parlance, it is called the strategic, 

tactical and execution layer. Abstraction and real- time responsiveness varies corre­

spondingly at each level. The deliberative layer is in charge of high level planning 

(non time critical) while the reactive layer is responsible for real-time issues. The 

execution layer acts as supervisor to facilitate inter-layer interactions. Due to its ap­

parent advantages, most recent AUVs have employed a variant of this architecture. 

The Garbi (Ridao et al. 2001), the SA UVIM (Yuh and Choi 1999) and the Phoenix 

AUV (Healey et al. 1995) are exantples that exploit this architecture. 
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Figure 2.1: Types of control architecture (a) Generic deliberative control architecture 
(b) Generic reactive control architecture (c) Generic hybrid architecture 

2.2 Collision Avoidance System Architecture 

As stated previously, pure deliberative and reactive architecture do not function ad­

equately for a collision avoidance task. As hybrid control architecture provides an 

ideal platform for integrating the functionality of the individual submodules, it is 

not surprising that it is applied in the majority of the proposed obstacle avoidance 

architectures (Hyland 1989, Arinaga et al. 1996, Antonelli et al. 2001, Moitie and 

Seube 2000, Lane and Trucco 2000). Before proceeding to an in depth discussion 

pertaining to the individual submodules, it would be more enlightening to provide 

a simple description of the collision avoidance process to better elucidate the utility 

of each submodule. A typical collision avoidance task cru1 be considered like this. 

First and foremost, a target must be acquired by a forward looking sonar. Clas­

sification of static or dynamic targets are then performed. Depending on the types 

of object, their information will then be fused with AUV navigation data such as 

velocity, depth and altitude in order to represent the object in a digital map. From 

the digital map, a motion planning technique is employed to steer the AUV safely 

to its predefined goal or subgoal. Motion planning is computationally expensive and 

not very suitable for tackling unexpected objects. Therefore, the reflexive obstacle 

avoidance submodule is employed to provide the AUV with a time critical, in situ 

response to an unexpected object. Once the obstacle has been successfully avoided, 

the AUV should resume its preplanned mission. The bolded phases denote critical 

processes in collision avoidance. These processes are highly dependent, particularly 

the one in the lowest of the process chain such as motion planning. For this reason, 
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a method of designing an efficient, optimal and practical collision avoidance system 

requires the perfect integration of these processes. On the whole, a collision avoid­

ance system can be decomposed into two principal functional modules; the obstacle 

detection module and the obstacle avoidance module, where both of them comprise 

of further submodules. 

Obstacle detection module 

1. Forward looking sonar 

2. Sonar data processing submodule 

3. Navigation submodule 

4. Map builder (Workspace representation submodule) 

Obstacle avoidance module 

1. Motion planner and waypoint generator 

2. Trajectory tracker. (Autopilot and actuator controller) 

3. Reflexive submodule 

A detail discussion of aspects of obstacle avoidance is given in the Section ?? . Fig 

2.2 illustrates the interconnection of the submodules of a generic collision avoidance 

system. The arbiter is used to coordinate the activation and inhibition of various 

submodules. 

Forward Looking Sonar 

Forward looking sonar is frequently used for AUV obstacle detection. Recently, the 

advent of digital signal processing (DSP) technology has increased the popular usage 

of cost effective, high resolution, electronic beamfonned sonar for obstacle detection 
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Figure 2.2: Generic collision avoidance architecture 

purposes. Besides providing adequate bearing and range resolution, its rapid scanning 

rate (frame rate) also permits temporal information extraction, which is vital for 

motion planning in a dynamic environment. 

2.2.1 Sonar Data processing submodule 

Although, acoustic sensor performance is unprecedented in underwater applications, 

obtaining high quality and reliable sonar data is still problematic. Reverberation, 

reflection, refraction and scattering tend to corrupt the data and cause frequent false 

alarms hence subsequent processing of the data is required. This submodule is re-
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sponsible for object discrimination, verification and tracking. 

2.2.2 Navigation submodule 

A navigation submodule typically comprises of an inertial measurement unit, digital 

compass, depth sensor, altimeter, and a GPS unit (when surfaced). When submerged, 

the AUV is deprived of any global frame of reference and dead reckoning is the only 

viable method for localisation. 

2.2.3 Map builder 

Deprived of any global frame of reference, it is critical to have an online map which 

is incrementally developed to assist an AUV in navigating the unknown terrain. A 

digital map is also required for localisation and motion planning processes. Clearly, 

there are numerous methods of representing the AUV environment; three well known 

methods are cell decomposition, geometrical representation and topology representa­

tion. 

2.2.4 Motion planner and waypoint generator 

A motion planner is used to assist an AUV in navigating through an unstructured 

and unknown environment via the generation of a time-parameterised path, whilst 

simultaneously taking into account several factors such as AUV safety, kinematics, 

dynamics and energy constraints. It is true that motion planners are intimately 

related to guidance techniques (Lin 1991, Tan et al. 2003). Both attempt to furnish 

the AUV with corresponding continuous configuration variables, or states as to guide 

the AUV to the designated destination. The only subtle but significant dissimilarity 

here is that the guidance techniques assume that the environment is obstacles free. 

However, sometimes the term guidance tends to be abused and used to pertain to 

motion planning. 
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2.2.5 Trajectory tracker 

A trajectory tracker should not be confused with the term autopilot, a commonly used 

controller despite that their functions are inexorably linked. In essence, trajectory 

tracker primary responsibility is to ensme that the AUV output follows the desired 

input. The actuators to be controlled can be a rudder, hydroplane or motor. This 

is not a trivial assignment when one needs to take into consideration the effect of 

the vehicle dynamics, modelling uncertainty, sensor noise and external distmbances. 

Presently, this area is a major area for research. On the contrary, the autopilot does 

not track a trajectory but only require to maintain the vessel heading given a reference 

one. This form of controller is significantly simpler to design, owing to the less degree 

of freedom. Examples of autopilots implemented in Hammerhead AUV can be found 

in Naeem (2002) and Naeem et al. (2003). 

2.2.6 Reflexive submodule 

A reflexive submodule function is similar to a backup system in the unfortunate event 

of motion planner failure. The failure can either be a system malfunction or a failure 

to meet the preclefined time constraint which is a more common occurrence than the 

former. Unlike the motion planning submodule, this submodule is highly capable of 

responding to unforeseen circumstances. This submodule is activated when an object 

intersects a predefined virtual boundary (Hyland 1989, Zanoli and Affaitati 1999). 

2.3 Obstacle Detection Module 

As previously outlined, an obstacle avoidance module comprises of a forward looking 

sonar, a navigation submodule and a map builder. The navigation submodule will 

not be reviewed since this has been provided by Loebis et al. (2002). The primary 

function of an obstacle detection module is to detect, discriminate and represent the 

object information into a digital map for disposal by the obstacle avoidance module. 
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2.3.1 Forward looking sonar 

In the underwater domain, radiowaves and vision suffer from inherent limitations. 

Radiowaves are virtually useless underwater due to its high attenuation while vision 

effectiveness is restricted to a range of a few meters, and highly dependent on the 

turbidity of the water. This is caused by the scattering effect of light by suspended 

matter. Obviously, one method is to employ a higher intensity light source to offset 

the light attenuation, but this only results in a massive power drain. 

Unlike radiowaves and optical energy, sound transmission is the single most effective 

means of directing energy transfer over long distances in sea-water. Consequently, 

an acoustic sensor in the form of sonar, is largely employed underwater. There are 

numerous sonar types such as bathymetric sonar, side scan sonar, tow-array sonar, etc, 

which are all applications specific. One type that is commonly employed for obstacle 

detection is the forward looking sonar. The main purpose of a forward looking sonar 

is to provide spatial information such as the range, bearing and size of an object via 

some processes of signal processing and data fusing. 

A forward looking sonar is required to detect objects at the longest range possible 

in order to allow for further information processing before an avoidance mru10euvre 

can be initiated. However, at moderate ranges of several hundred meters, sonar 

paths can be distorted significantly because of continuous refraction from sound speed 

variation caused by changes in water temperature, salinity, and pressure. To aggravate 

the situation, sonar range is also highly frequency-dependent, thus for long range 

detection, a low frequency sonar is required. Nonetheless, low frequency results in 

poor acoustic resolution. In the case of shallow water (200 rn or less) and when ru1 

AUV is cruising near to the sea bed (pipe tracking or terrain following), this issue 

is exacerbated by the combined effect of boundru·y reverberation noise, multi-path 

returns and bottom clutter (Nussbaum et al. 1996). Increasing the acoustic resolution 

on the other hand, can significantly enhance an AUV ability to perform boundary 

reverberation discrimination while obtaining a more precise bearing on echo returns. 

Besides, high acoustic resolution is also critical for the purpose of map building and 

optimal path generation (Henriksen 1994). For this reason, there is a constant trade 

off between operating range and acoustic resolution, proper selection should be based 

on the AUV mission. Some of the desired qualities of an AUV sonar are listed below: 
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• Low power consumption 

• High resolutions with adequate detection range (depending on the AUV ma­

noeuvrability) 

• High scanning rate 

• Low cost 

• Adaptive thresholding/clustering logic (Optional) 

• Embedded static and dynamic objects tracker (Optional) 

2.3.2 Types of forward looking sonar 

A detail review of different types of forward looking sonars can be found in (Loggins 

2001). Lately, the advent of DSP technology has culminated in the development of 

high performance, low cost electronic beamform sonar. In principle, beam-forming 

(Veen and Buckley 1988, Curtis and Ward 1980) is a process of listening to or trans­

mitting energy (sound in this case) from an array at selected angles. The core concept 

is to sum the incoming signal such that those that are coming from a given direction 

are added coherently resulting in maximum magnitude response, while those signals 

arriving from other directions are attenuated as a result of the self-destructive inter­

ference effect. The two main approaches in beamforming are the time domain and 

the frequency based methods. Typically, a number of fixed directional receiver beams 

are formed simultaneously to cover the ensonified region in order to obtain better 

directional resolution while maximising the scanning rate (Nussbaum et al. 1996). 

One obvious advantage of this sonar is its high scanning rate (frame rate), rendering 

it less susceptible to platform motion disturbance. Besides, the high scanning rate 

can be exploited for temporal and spatial information (Lane et al. 1998). The lack of 

mechanical moving parts also increases the reliability of the sonar. 

There are several types of sonar that arc based on slightly different operational prin­

ciples. Neglecting this distinction, one can as a whole, categorise them into a 1-D, 

2-D and 3-D sonar. For clarification, the most primitive form of sonar is a 1-D sonar 

such as an echo-sounder or depth-sounder, which is capable of onJy providing range 

(altitude) information. Two examples of 2-D sonar, with different configuration are 
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shown in Fig 2.3(a) and (b) . The Fig 2.3(a) sonar configuration is commonly em­

ployed by most commercial A UV forward looking sonars. Here, range and bearing 

information is acquired but not depth. This makes it suitable for AUVs performing 

mid-sea surveying and mine-searching missions, where the environment is uncluttered 

or sparse. However , discrimination of object dept h can be difficult, example of graph­

ical output from this type of sonar is depicted in Fig 2.4. Taking into account of the 

worst case scenario and assuming that the obstacle is on the same plan e as the AUV, 

this certainly restricts the AUV to perform only planar evasive manoeuvres. A planar 

manoeuvre might not be the most effective in certain circumstances, since a better 

approach is may be t o allow the AUV to climb or dive over the obstacle if possible. 

Anot her advantage of multibeam sonar is its capability to ensonified the illustrated 

region (Fig 2.3(a)) simultaneously in a single ping while the pencil beam sonar is 

limited to scam1ing the ent ire sector incrementally. 

Fig 2.3(b ), shows an alternative sonar configuration which is similar to t he former 

but with the transducers being rotated through 90°. This configuration is commonly 

employed by a surface vessel for collision avoidance pmposes. It provides depth and 

range information at the expense of bearing information. This mode tends t o put 

more emphasis on discriminating objects in t he vert ical direction (terrain) than the 

horizontal (suspended object) . This configuration is also beneficial for an AUV t hat 

is performing terrain hugging manoeuvTes such as in a pipeline tracking and seaftoor 

surveying missions as it needs to estimate t he terrain gradient in advance to facili tate 

a successful manoeuvre. 

The most advance forward looking sonar is of the 3-D type, (Fig 2.3(c)). This is 

(a} (b) (c) 

Figure 2.3: Multibeam sonar type: (a) Horizontal sca1ming 2-D sonar (b) Vert ical 
scanning 2-D sonar (C) Horizontal and vert ical scam1ing 3-D sonar 



CHAPTER 2. RELATED RESEARCH AND LITERATURE SURVEY 25 

Figure 2.4: Reson 6012 multibeam 2D sonar output. ote t he target on t he left side, 
the rest are noises caused by back-scattering of the seabed (courtesy of Reson Ltd). 

achieved using an array of transducers. It possesses the capability to discern an object 

in a spatial domain by providing range, bearing and depth information simultaneously. 

An example of graphical output of t he sonar is shown in Fig.2.5 This type of sonar 

is needed to exploit fully the true capability of some motion planning algorit hms 

in generating optimal, 3-D trajectory. Nevertheless, the cost of this type of the 

sonar can be prohibitive. To circumvent this issue, one method is to utilise the Fig 

2.3(a) configuration, but making the vert ical beam width thinner and steerable in 

the vertical direction , either mechanically or electronically. Assuming a sufficient fast 

steering (sweeping) rate is obtainable, then one can consider it as a pseudo 3-D sonar. 

2.3.3 Sonar data processing 

Owing to the operating principle a nd operating condition of a sonar, t he raw data 

obtained tends to be corrupted with noise. T his imposes further processing stages to 

obtain better representation of the environment . Petillot et al. (1998) reported that 

sonar data processing can be classified into four distinctive processes : 



CHAPTER 2. RELATED RESEARCH AND LITERATURE SURVEY 26 

Figure 2.5: FarSounder 3-D sonar output which depicts a 3-D model of the shore. 
The small windows (right hand side) are maps used for navigation purposes (courtesy 
of FarSounder Inc). 

• Filtering and Segmentat ion 

• Feature Extraction 

• 'I\·acking 

• Map Building (Workspace Representat ion) 

Filtering and segmentation 

The first step in t he sonar data processing typically entails the elimination of noise and 

backscatter of sonar images caused by the scattering and reverberation effect . This 

can be achieved by applying a simple Gaussian , median or mean filter to the image. 

A median filter is the most effective in elimination of ba.ckscatter noise, however the 

Gaussian filter is sometimes used due to its lower computational requirement (Petillot 

et al. 1998). 
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Segmentation, a process of regioned pixel extraction, is applied to enhance object 

background discrimination in order to increase the robustness and accuracy of the 

tracking process. The most popular and simple is the thresholding technique also 

known as binarisation. In principle, thresholding is a process of defining a limit so 

that any colour above the limit will be converted into black while those below the limit 

will be converted into white. It is effective when the intensity levels of the objects 

fall squarely outside the range of levels in the background. A more sophisticated 

version, called the adaptive threshold technique, uses a switching function-integration 

to provide improved results (Lane et al. 1989). The use of a unsupervised hierarchical 

Markov random field (MRF) model together with contextual information has also 

been reported (Mignotte et al. 2000). Simulated annealing has also been attempted, 

but the algorithm was applied to segmentation of synthetic aperture radar images 

(Stewart et al. 2000) and not sonar. Both the algorithms are very computationally 

intensive, making real-time implementation very difficult. 

Segmentation processes can be very costly in terms of computational requirement, as 

such some authors advocate using selective, multirate/multidepth filtering and data 

compressing techniques. In the selective approach, the static and dynamic part of 

the image is discriminated using a frequency domain method (one dimensional Fast 

Fourier 'Ifansform (FFT)) or a time domain method (moving average) (Dai et al. 

1995). Once the dynamic object is detected, it will be tracked and segmented only 

at the particular region of interest. For a static object, only new objects need to be 

segmented. In contrast, the multirate/multidepth technique tries to redistribute the 

computational load by sampling the area at various rates depending on the degree 

of their importance (Henriksen 1994). Clearly, those regions adjacent to the AUV 

are more critical and deserve a higher sampling rate. Instead, Zanoli and Affaitati 

(1999) attempted to compress the sonar data before filtering, significantly reducing 

the processing requirement. 

Feature extraction 

Feature extraction is a process that is intimately linked with object classification 

(Lane et al. 1989, Lane et al. 1988). In the case of image processing, feature extrac­

tion entails accurate measurement of object features. Ideally, the feature selected 

should be invariant under various circumstances while extracting maximum informa-
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tion regarding the object. Such features can be object size such as area, perimeter, 

surface and centre of mass which can be easily obtained by counting pixels of the ob­

ject, or more complicated parameters such as moments, mean, variance, and median 

used to describe statistical distributions. 

Tracking 

In this context, tracking is a process where object attributes such as position velocity 

and estimation confidence level are estimated and recorded. In video processing, 

one tries to correlate a predetermined feature with subsequent frame features and 

noting their difference. Tracking is typically a forward-looking process, requiring a 

computer to anticipate the object position and velocity ahead of time. The accuracy 

of the predicted target attributes play a critical part in characterising its behaviour. 

Hence, making it indispensable for the motion planning process. Lane et al. (1996) 

applied an optical flow with an associative searching trees technique while Moran 

et al. (1993) advocated using a multiple hypothesis for object tracking. Multiple 

hypothesis is effective in cases where multi-modal representation is required, such as in 

the presence of background clutter, self-occlusions and complex dynamics. However, 

both these pixel based schemes are very computationally expensive thus precluding 

their application in time-critical applications. 

Alternatively, the classical Kalman filter (Kalman 1960), has been applied with suc­

cess in sonar tracking systems (Williams et al. 1990, Henriksen 1994, Ruiz et al. 

1999, Trucco et al. 2000). To simplify the analysis and lighten the computational re­

quirement, Williams et al. (1990) employed two different Kalman filters for tracking 

dynamic and static objects while Henriksen (1994) preferred using separate Kalman 

filters, a total of five, to track the corresponding states. However, this is not without 

problems. One inherent limitation of the Kalman filter, due to its derivation, is the 

assumptions of a linear model, Gaussian white noise, and uni-modal representation. 

Although, the extended Kalman filter can be adopted to address the non-linear model 

case, extreme precaution must be taken to avoid divergence issues (Bizup 2003). In 

addition, if certain discrepancies exist between the process description of the ideal 

case and practical case then its effectiveness can be greatly affected. These issues will 

be reserved for future research. 
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2.3.4 Map building (Workspace representation) 

Knowledge representation is one of the key elements that determines the capabilities 

and performance of machine intelligence. This is particularly true for map building 

or workspace representation processes, which can be defined as a process of gener­

ating models that represents the vehicle environment via sensor measurements. The 

generated model or digital map, other than containing metric information, can also 

be embedded with supplementary user defined information to better characterise the 

environment. This information is vital for motion planning, obstacle avoidance and 

localisation processes. 

The condensed information is more suitable for high-level symbolic manipulation 

and model inference. Therefore, the aggregate of discarded information and sensor 

induced errors, can be considered as noise, and is detrimental to the overall system 

performance. In the case of an AUV, the sensor drift in a dead-reckoning scheme 

tends to degrade the map reliability after a certain time period. Whilst increasing 

the model-fidelity will definitely enhance the system performance, but at the expense 

of memory and computational requirements. 

For this purpose, map building can be considered as a trade-off between model­

fidelity, memory requirement, robustness, computational efficiency, implementation 

simplicity and expansibility (Dudek and Jenkin 2000). There are three fundamental 

schemes in workspace representation; metric based spatial decomposition, geometry 

representation and non-metric based topological representation. 

Spatial decomposition 

Spatial decomposition is a scheme of representing space via a discrete sampling pro­

cess; division of space into non-overlapping cells. Either only the free space is taken 

into account, or only objects are mapped and free space is found by implication. 

There are various variants of the spatial decomposition method. 

The most conceptually simple and yet prevalent scheme in the field of mobile robotics 

is where the environment space is partitioned into uniform, non-overlapping grids or 
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cells in a spatial lattice (Fig 2.6(a)). Each cell can be allocated with user defined 

attributes such as confidence of obstacle presence, terrain geometry and safety factor. 

This scheme conventionally employs probabilistic sensor interpretation models to up­

date the cell value (Movarec and Elfes 1985). Due to its popularity, it is known by 

different names, such as evidence grids, probability grids, certainty grids and occu­

pancy grids. Hyland (1989) and Allison et al. (1989) have implemented this scheme 

in their AUV simulations. One overriding constraint concerning tills approach is the 

high memory requirement. One must understand that the number of cells employed 

to approximate a model are finite, hence decreasing the cell size will definitely improve 

the model fidelity but at the expense of escalating the cells quantity. Tills problem is 

intensified for cases of higher dimensional space. As a result, various researchers have 

resorted to dual resolution maps; each map using different resolution. Ridao et al. 

(2000) describe using a high resolution map to record sonar echoes for the SA UVIM 

AUV. Only echoes that have not expired after a preset time interval are recorded into 

a coarser map, and used for path planning. F\mdamentally, the high resolution map 

is functioning like a low pass filter to eliminate false alarms. Similarly, Moitie and 

Seube (2000) employed a low resolution map for global path planning and a more 

detailed local map when executing local motion planning. 

To circumvent the inherent memory and computational inefficiency of a uniform cell 

map, a type of multi-resolution algorithm has been proposed (Kambhampat.i and 

Davis 1986). It is known as a quacltree and octree in their 2-D and 3-D forms re­

spectively (Fig 2.6(b)). A quacltree is fundamentally a recursive data structure with 

a hierarchical representation property. It tries to exploit the occupancy of adjacent 

cells by clustering them much like a data compressing algorithm. It adaptively subdi­

vides into smaller cells in order to improve the modelling accuracy while the minimum 

cell size determines the depth of the tree and the accuracy of the mapping. Fig 2.7 

shows how it is represented in the form of a tree to facilitate quick searching. Its ef­

ficiency is much superior than the former method particularly for environments that 

are sparsely populated with objects (Yahja et al. 1988). However, its performance 

suffers significantly for the case of a dynamic object clue to constant tree structure 

changes. 

Another efficient workspace representation scheme (Naylor 1993), highly popular in 

the computer graphic domain, is the binary spatial partitioning (BSP) scheme. A BSP 

tree is a hierarchical representation structure, that exploits the recursive subdivision 
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Figure 2.6: Diagram showing: (a) Workspace (b) Uniformed grid (c) Quadtree rep­
resentation and (d) Binary spatial partitioning 

by hyperplanes (Fig 2.6(d)). Since there is no restraint on the types of hyperplane 

used, exact polyhedra and polygon representations are possible. All of this informa­

tion is then compactly encoded in the form of a binary tree structure, as shown in (Fig 

2. 7(b)), ready for subsequent implementation of path finding algorithms. Unlike the 

quadtree, the BSP tree structure is preserved by affine and perspective transforma­

tions, which result in its capability to incorporate dynamic objects without resorting 

to changing the tree structure. This scheme has been exploited by Arinaga et al. 

(1996) for the Umihico AUV workspace representation. 

Geometric map 

Probably the oldest of the workspace representation method is the geometric map. 

As suggested by the name, the geometric map tends to use geometric primitives such 

as points, lines, polygons, polyhedrals and polynomial functions to characterise the 
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(a) (b) 

Figure 2. 7: A tree representation of (a) Quad tree (b) Binary spatial partitioning 

enviromnent. One of the compelling advantages of a geometric map, assuming appli­

cation of appropriate modelling primitives, is its capability to model complex objects 

with a very low memory requirement. This concise mathematical representation also 

facilitates a rapid and accurate collision checking process (Lin et al. 1996). 

The simplest primitives such as point and line are rarely used in isolation but as a 

preliminary form of model inference. Leal (2003) employed points in what he referred 

to as the Sampled Environment Map (SEM) scheme. Unlike a uniform grids represen­

tation, here the environment is divided into discrete point locations. Then a decision 

theoretic scheme is used to adapt a geometrical model from the sampled environment 

distribution. Brutzman et al. (1992) employed this scheme to trace incrementally 

the obstacle contour by aggregating piecewise, linear lines into polygons. Caccia et 

al. (1995a) and Moran et al. (1993) developed modules to process and classify sonar 

data into corresponding geometrical features. The systems, however, are constrained 

to function only in a partially man-made environment since it is more geometrically 

distinctive compared to the non-homogeneous features found in nature. Of all the 

polygons, the circle or sphere have particularly interesting attributes such as simple 

formulation, orientation invariance, convex shape and ease of manipulations, thus 

explaining its popularity. This method of representation is employed by Fox et al. 

(2000), Garcia (1997) and Wang and Lane (1997). Others prefer to approximate the 

obstacles as polygons, particularly convex types (Mckendrick 1989, Liu et al. 2000). 

Convex attributes are vital in simplifying the implementation of various motion plan­

ning algorithms while fostering faster convergence. 
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Unsatisfied with the limitation of simple polygonal representation, Lane et al. (1998) 

resorted to using a constructive solid geometry(CSG) method, a technology exten­

sively used in the CAD industry. The CSG method allows explicit representation of 

objects using simple primitives such as spheres and cuboids via boolean operators: 

subtraction, intersection and union. One key attribute is the lack of ambiguity be­

tween the inner and outer part of the object. To ease the implementation of the 

optimisation algorithm, Wang and Lane (1997) restricted themselves to using only 

sphere and ellipsoid primitives. Alternatively, one can try to approximate the seabead 

surface using a surface modelling technique (Subramanian1 and Bahl 1995). 

Notwithstanding the above advantages, one of the obvious shortcomings of the geom­

etry map is its difficulty in making inference from noisy measured sensor information 

which has a great impact on its reliability. F\uthermore, a stochastic model can rarely 

be described in a simple parameterised, geometric manner. Attempts to do so have 

achieved limited success. Other problems are also encountered such as lack of stabil­

ity and lack of expressive power to model the object (Dudek and Jenkin 2000). Lack 

of stability is due to parameters that are sensitive to variation, causing additional 

erratic model shape changes. On the other hru1d, lack of expressive power is caused 

by using oversimplified geometric models which severely restrict their approximating 

capability. 

Topological map 

Topology is concerned particularly with the global connectivity of an object by consid­

ering how the object is connected locally. A topology map represents the environment 

as graphs, where nodes correspond to distinct places (landmarks), and arcs represent 

adjacency or orientation. Fig 2.8 illustrates a hypothetical workspace with landmarks 

and (b) the topology representation of the workspace. The orientation regions (OR) 

are used for localisation. In a sense, this information can be considered as a qualita­

tive type. The key to topological representation is its compactness and high immunity 

to noise since it is less dependent on metric information. This compact representation 

also facilitates high-level symbolic reasoning for map-building, navigation, planning, 

and communication. 

Since this scheme is not especially susceptible to noise, one obvious application of this 
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Figure 2.8: (a) Landmarks in workspace (b) Topology representation of the workspace 

scheme would be on the problem of simultaneous localisation and mapping (SLAM) 

(Tomatis et al. 2001) to assist an AUV to navigate uncharted waters. In spite of 

this, its effectiveness is currently being outperformed by a metric approach using 

an extended Kalman filter (EKF) . This scheme is also known as stochastic mapping 

(Rikoski et al. 2002, Carpenter 1998). 

In reality, the topology mapping scheme performance is far from outstanding, hence 

explaining its unpopularity. One particular downfall is its excessive dependence on 

the presence of landmarks. A landmark can be defined as an individual or a cluster 

of objects that have distinctive feature relationships. Other desirable criteria are ease 

of identification, uniqueness and repeatability. Zimrner (2000) advocated embedding 

local metrical map patches with a globally consistent topological map. Then again, 

the results t end to be biased as it was simulated using a land based robot in an indoor 

environment where proper landmarks can easily be identified. These landmarks are 

particularly difficult to find in a non-homogeneous and 'noisy ' environment where an 

AUV operates, thus severely limiting its usage. 

Hybrid representation 

Owing to their apparent advantages and disadvantages of each method of representa­

t ion, some researchers resorted to using hybrid representations such as a combination 

of metric based and topological paradigms (Simhon and Dudek 1998, Tomatis et al. 

2001, Zimmer 2000). Hino (1989) utilised an uniform grid scheme for preliminary 
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terrain representation. A data reduction scheme is introduced to convert the pre­

vious map into a contour like map, with significant memory saving. Nevertheless, 

the transformed contour map lacks flexibility for further modification. Zanoli and 

Affaitati (1999) adopted spatial decomposition techniques for local map building, but 

all AUV obstacle avoidance tasks are conducted using a geometry model of the envi­

ronment. To conclude, hybrid representation provides the user with better flexibility, 

simplicity and robustness that is difficult to achieve using an individual type repre­

sentation, however extra precautions are required in synchronising and maintaining 

the data integrity in between different representations. 

2.4 Rules of the Road Relevant to an AUV 

The 'Rules of the Road' for AUVs pertain to a set of protocols or regulations applied 

to assist in tackling a collision predicament. Ironically, both marine vehicles and 

aircraft employ very similar regulations. The idea of incorporating these rules into 

an automatic collision avoidance system is not entirely new and has been essayed by 

various researchers (Pietzykowski 2002, Tran et al. 1997). Even so, their implemen­

tations are restricted to surface vessels. These selection of guidelines, as presented 

below, are derived from the International Regulations for Preventing Collisions at Sea 

(Brown 1983, Cockcroft and Lameijer 2001). 

• Rule 2 Responsibility, requires that "due regard shall be given to all dangers 

of navigation and collision". This rule allows an AUV to depart from all the 

rules as necessary to avoid the immediate danger of collision. 

• Rule 4 Look-out, requires that "every vessel shall at all times maintain a proper 

lookout by all available means appropriate in the prevailing circumstances so as 

to make a full appraisal of the situation and of the possible risk of collision." 

This is the primary task of the obstacle detection unit, where the primary look­

out sensor employed is the sonar. There is even a suggestion that future AUVs 

shall be equipped with a system similar to the identify friend or foe (IFF) unit 

commonly used in military aircraft. 

• Rule 6 Safe Speed, requires that "every vessel shall at all times proceed at a 

safe speed so that she can take proper and effective action to avoid collision 
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and be stopped within a distance appropriate to the prevailing circumstances 

and conditions." The speed of an AUV will be determined by these factors: 

the detectability, traffic density, manoeuvrability of the vessel with special ref­

erence to stopping distance and turning ability, the state of the sea, current, 

and proximity of navigational hazards. Slow speed, however, can affect the 

manoeuvrability of AUVs. 

• Rule 7 Risk of Collision, states that "every vessel shall use all available means 

to determine if risk of collision exists; if there is any doubt, assume that it does 

exist." 

• Rule 8 Action to Avoid Collision, states that "changes in course and speed shall 

be large enough so as to be readily apparent to the other vessels. If necessary to 

avoid collision or allow more time to assess the situation, a vessel shall slacken 

her speed or take all way off by stopping or reversing her propulsion. A vessel 

which is required not to impede the passage of another vessel shall take early 

and substantial action to allow sufficient sea room for the passage of the other 

vessel." Stopping and reversing the propulsion can, however, be problematic 

for a majority of AUVs which are underactuated and not neutrally buoyant, for 

example the loss of rudder effectiveness in low speed can induce higher collision 

risk instead. 

• Rule 14 Head-On Situation, states that "vessels which are approaching head­

on shall alter course to starboard (right-hand-side) so each will pass port (left­

hand-side) to port." 

• Rule 15 Crossing Situation, states that "when two vessels are crossing so as to 

involve risk of collision, the vessel which has the other vessel on her starboard 

side shall keep out of the way, and shall, if the circumstances of the case admit, 

avoid crossing ahead of the other vessel." 

Note that for rules 8, 14 and 15, the general right-of-way rule states that the least 

manoeuvrable vessel has the right-of-way. For the case of a surface vessel, it is ap­

parent that these manoeuvres occur in the planar domain. Whilst AUVs operate in 

a 3-D domain, and for the moment, their avoidance manoeuvres are still limited to 

only planar motion owing to the restriction imposed by the conventional 2-D obstacle 

avoidance sonar. The airline industry is currently employing the Traffic Alert/Col­

lision A voidance System (TCAS). The concept is to create a virtual bubble around 
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the aircraft and alerting the pilot if there is any incursion to the protected zone 

around the aircraft. The most primitive system, TCAS I only alerts the pilot on 

incoming threats and is referred as a tactical advisory (TA) system. TCAS li incor­

porates further feature enhancement to actually propose resolution advise (RA) in 

order to synchronise the vertical avoidance manoeuvre of both aircraft (Abdul-Baki 

et al. 1999). This is attained by transmitting and receiving of interrogating signals, 

using a transponder, with the nearby aircraft. The latest, TCAS Ill, provides the 

pilot with a horizontal manoeuvre resolution advisory capability. The airline TCAS 

implicates the importance of a system or regulations that can propose complementary 

manoeuvres as such that a collision can be avoided. Hence to be truly effective, a 

consensus of these rules need to be implemented in all AUVs. 

2.5 Motion Planning Techniques 

Both motion planning and path planning can be defined as a problem of the form: 

Given a configuration space, find a continuous sequence of configurations that leads 

from a start to a goal configuration while respecting certain constraints. However, 

the distinction is that, motion planning tends to denote the generation of time pa­

rameterised solutions (trajectories) while, on the other hand, path planning neglects 

the time parameter. Simply stated, path planning does not take into consideration 

the vehicle dynamics. Both these terms will be used alternately depending on their 

suitability in a different context. 

Owing to the inclusion of differential constraints, motion planning can also be con­

sidered as a search in a state space for a control input that can bring a system from 

an initial state to a goal state. Employing this perspective, one can directly associate 

a motion planning problem to a control engineering problem. Indeed, this promotes 

better problem assimilation and understanding. There is no dearth of literature re­

garding the theory of motion planning (Latombe 1991, Fujimura 1991, Laumond et 

al. 1999, LaValle 2005). Thus, only a limited number of motion planning techniques 

that are associated with AUVs will be surveyed. Broadly speaking, motion planning 

approaches can be classified into three fundamental categories: Cell decomposition, 

roadmap, and potential fields. 
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2.5.1 Cell-decomposition 

One of the most popular motion planning schemes is the cell-decomposition. It is 

strictly related to the spatial decomposition scheme for workspace presentation. The 

fundamental idea is to represent the adjacent relation between the free cells with 

efficient structures such as a cmmectivity tree or a graph. They are then searched 

from the start to the goal state to find a sequence of states (path), that connects both 

the start and the goal state together. Various search algorithms that are based on 

dynamic programming exist for performing this routine. A few of the prevalent ones 

are; breadth-first search, depth-first search, best-first search, A*, single source shortest 

distance algorithm (Dijkstra's algorithm) (Dijkstra 1959) and unlimited variants. 

The breadth-first search entails searching the neighbourhood cells, and expanding the 

list as it goes. While the depth-first search keeps probing in one path until an end is 

met, before trying the alternatives. Both search algorithms are exhaustive (complete), 

which means ultimately, all free space will be searched for solutions. For cases where 

multiple solutions exist, and optimaJity (shortest distance) is not a concern, the depth­

first search tends to have a lower memory requirement while providing a quicker 

answer. However, a depth-first search can be deceived into searching long list of cells, 

or states, even when the goal may be very near. The Dijkstra's algorithm shares some 

resemblances with a breadth-first search, but unlike a breadth-first search, all the cells 

are encoded with distance from the goal which assists it in finding the shortest path. 

This search algorithm was applied in complement with a binary spatial partitioning 

scheme for the global path planning of the Umihico AUV (Arinaga et al. 1996). 

Nonetheless, in most circumstances, searching the entire free space can be too cmn­

putationaJly demanding. Unsatisfied with the performance of the former systematic 

search algorithms, some heuristically enhanced versions have been devised. Heuris­

tic information is normally encoded in an evaluation function (cost function). The 

distance to the Euclidean path (line-of-sight) from start to goal state is chosen as 

in the case of a best-first search. This scheme is efficient and fast when a proper 

evaluation function is provided, but for cases when this cannot be found, then its 

performance degrades significantly. The best-first search tends to provide suboptimal 

solutions since it neglects the cost of the solution path. The A* (Hart et al. 1968) is 

a combination of the best-first search and the breadth-first search, which attempts to 

find a solution that minimises the total length of the solution path. The A* method 
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takes into account both the distance from the cell in question to the finish, and also 

the total distance taken from the start to the current cell. The evaluation function 

can be written as below: 

!(node) = g(node) + h(node) (2.1) 

Where f(node) is the total cost, which is the evaluation function, g(node) is the path 

cost to the current cell and h(node) is an estimate of the remaining cost to the goal 

state. A • is guaranteed to find the shortest path if the h( node) does not overestimate 

the cost to the solution. 

Hyland (1989) incorporated a three dimensional A* path planner with a reflexive 

obstacle avoidance module in his AUV simulation. The entire path is replanned by 

the path planner every time the vehicle completes a fiat turn manoeuvre. Also, Hy­

land (1990) provided a detail comparison between the breadth-first and the A* search 

method for an AUV obstacle avoidance task. However, the results were inconclusive, 

as neither the A* nor the breadth-first search showed any significant advantages in 

tllis case. Others like, Allison et al. {1989) proposed a sensor-based exploration ap­

proach where a 3-valued occupancy grid is coupled with the A* algorithm evaluation 

function that is biased to search the unexplored region. It must be noted that these 

algorithms mentioned above, do not function optimally for cases when the environ­

ment is dynamic, partially known or unknown. The D*, also known as Dynamic 

A* (Stentz 1994), has been developed to address these issues. Owing to the nature 

of the problem, a substantial difference in performance can be obtained if one sets 

the initial search point as the start or the goal. Hence, some authors (Arai et al. 

1998) prefer to use a bidirectional motion planning approach. Arinaga et al. (1996) 

adopted this method for local path planning of the Umihico AUV. Their method 

involved moving the real AUV forward at the start point and a virtual AUV back­

ward at the goal point simultaneously. Upon meeting, the real AUV is assigned to 

track the sequence of configurations created by the virtual AUV. Their method does 

necessitate a reflexive module for obstacle avoidance. 

One of the apparent limitation of these search algorithms is the umealistic computa­

tional requirement as the number of cells increase, a phenomenon known as the 'curse 

of dimensionality' or 'combinatorial explosion'. This might be caused by the increase 

of configuration space dimensionality or the scene complexity. For an heuristically 
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enhanced algorithm like the A*, its performance is highly dependable on the selected 

evaluation function, which can be difficult to define for complicated problems. 

2.5.2 Potential field 

The potential field method utilises a very interesting approach. In essence, an artificial 

potential field is defined to emulate the space structure surrounding the vehicle (Krogh 

and Thorpe 1986). It consists of representing the goal with an attractive field and 

the obstacles with a repulsive field, as shown in Fig 2.9. A new field emerges through 

the interaction of both the former fields. Eventually, the vehicle is required to just 

follow the local gradient of the new field to reach the goal. 

The mathematical equations pertaining to the potential field method can be found 

below. The equations below are used to generate the simulation results as illustrated 

in Fig 2.9. The related mathematical definitions are listed as follow (Khatib 1986): 

The field of artificial forces F(q) in configuration space, C is produced by a differen­

tiable function U : Cfree --+ R, with: 

F(q) = -VU(q) (2.2) 

U(q) = Uatt(q) + Urep(q) (2.3) 

where "\7 denotes the gTadient operator, Uau is the attractive potential associated with 

the goal configuration, {}goal and Urep is the repulsive potential associated with the 

C-obstacle region. 

The attraction field can be formulated as below: 

1 2 
Uatt(q) = 2_~Pgoal (q) (2.4) 

The attraction force can be formulated as below: 

(2.5) 

where ~ is a positive scaling factor, p is the Euclidean distance function, q is the 

current configuration and Qgaal is the goal configuration. 
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The repulsion field can be formulated as below: 

The repulsion force can be formulated as below: 

if p(q) :0:::: Po 

if p(q) > Po 

{( I 1)1-
;3 ( ) _ Tf p(q)- {JO P'(q) Vp(q) if p(q) :0:::: Po 
rrep q -

0 if p(q) > Po 

(2.6) 

(2.7) 

where Tf is a positive scaling factor, p(q) is the distance to the obstacle and p0 is the 

distance of influence. 

Fig 2.9(a) shows a simulated workspace representation of the vehicle. Using Equation 

2.4, an attractive field for the corresponding goal is simulated in Fig 2.9(b ). Notice 

that the goal is the global minima, which is true for an ideal case. Using Equation 2.6, 

Fig 2.9(c) shows the repulsion field exerted by the obstacles. Ultimately, Fig 2.9(d) 

illustrated the combined repulsive and attractive potential field as stated in Equation 

2.3. One major advantage of this method is its low computational requirement which 

makes it very suitable for real-time implementation. 

Yoerger et al. (2000) applied a potential field local planner in the Benthic Explorer 

for a fine-scale rugged sea-floor surveying mission. The implementation is restricted 

to using an asymmetric potential field to alter the vehicle's forward and vertical 

speed. One problem which is inherent to the potential field method is its tendency 

to get trapped in a local minima. For this reason, it is normally used only as a local 

path planner, and in most implementations, it is combined with another global path 

planner that will be invoked when trapped. Its performance is also strictly linked 

to suitable definitions of heuristic potential functions, and this is not easily found 

when confronted with natural obstacles and differential constraints. Warren (1990) 

proposed a hybrid method that involves two major stages. The first. stage generates 

a preliminary straight path from current to goal configuration. Then in the second 

stage, a method of path relaxation is introduced, the path is iteratively modified under 

the influence of the adjacent potential field in order to produce a feasible path. Warren 

argued that by considering the problem in such a global approach, the tendency 
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Figure 2.9: Potential Field Simulation (a) Workspace (b) Attraction Field (c) Repul­
sive Field (d) Combined Field 

of local mirlimum entrapment is significantly reduced. Instead of the conventional 

gradient descent method, Lane and Trucco (2000) reported using a preliminary tree 

search techillque, to be specific, the best-first search to find the global minima. Local 

minima traps are avoided using the backtracking featme of this algorithm. 

Some researchers encomage the use of a minimum-free function that is based on a 

harmonic potential field. The problem formulation is analogous to solving a fluid 

flow problem such as fluid moving from the somce location to the goal (Li and Bui 

1998, Louste and Liegeois 2000). Nevertheless, this technique is not practical for a 

high dimensional problem as it is too costly in terms of computation demand. 

2.5.3 Bug algorithm 

The bug algorithm, also known as tangent bug or edge follower is a particularly simple 

and yet remarkable path planning scheme. The main principle behind it is to trace 

the obstacle boundary and this is continued until the obstacle no longer blocks the 
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desired path (Kamon et al. 1995)(Fig 2.10). 

Fundamentally, the algorithm constitutes of only two modes: (1) moving to the goal 

and (2) circumnavigating the obstacle. Note that this algorithm does not need any 

a priori information regarding its environment. F\uthermore, it is guaranteed to 

find a solution if it exists. This makes the bug algorithm suitable for dealing with 

unknown environments. Bennet and Leonard (2000) implemented the algorithm in 

the Phoenix AUV. A forward looking sonar is used to detect the obstacle boundary, 

then it is approximated by aggregating piecewise linear lines before applying the 

bug algorithm. Alternatively, Cornforth and Croff (2000) applied a wall-following 

algorithm in the Autolycus with the help of a side-facing sonar. Unfortunately, their 

current results were unsatisfactory but they anticipated further improvement can be 

realised by empirically tuning the controller gain. They envisaged using the Autolycus 

in environment-sensitive navigation. Better still, Laubach and Burdick (1999) devised 

a more memory efficient approach that utilises only obstacle boundary endpoints. 

Their concept, however, is exemplified in a planetary exploration rover and not an 

AUV. This algorithm, although simplistic in concept, is extremely difficult to be 

implemented in practice. Firstly, the influence of sensor drift in a dead reckoning 

system tends to limit its effectiveness. In addition, this algorithm also assumes that 

the vehicle is holonomic and operating in a static environment which is not entirely 

true for the case of an AUV. 

line of Sighl 

Obstacle 

Figure 2.10: An AUV employing the bug algorithm to navigate the environment. 
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2.5.4 Evolutionary computation (EC) 

Evolutionary computation encompasses several types of heuristic and stochastic op­

timisation schemes that are fundamentally based on the concept of natural selection. 

Some of the proposed schemes are the evolutionary algorithm (EA), genetic algo­

rithm (GA), evolutionary programming, evolutionary strategy and artificial life. The 

EC has shown significant capability in solving complicated, highly constrained, large 

scale optimisation problems that have discontinuities on the response surface. Unlike 

the potential field method, EC is known to be highly resistant to becoming trapped 

in local minima. Another exceptional attribute of EC is its ability to offer solutions 

whenever it is interrupted. 

Schultz (1991) proposed using the GA for on-line collision avoidance and local nav­

igation of an AUV. Promising simulation results of an AUV successfully navigating 

through both a static and dynamic minefield are presented. Similarly, Fogel and 

Fogel (1990) simulated 2-D optimal routing of multiple AUVs using a EA. Their 

simulations, although confined to only two dimensional routings, still managed to 

demonstrate intriguing results. The AUV exhibited very intelligent behaviour by try­

ing to avoid the detection region and, if that was not possible, the AUV proceeded 

at slower speeds to remain stealthy and speed up when it was a distance away from 

the detection site. Multiple AUVs cases are also addressed. They argued that sophis­

ticated genetic operators such as crossover tends to disrupt the link between parent 

and offspring as coding structures become large. Sugihara (1998) suggested a local 

GA 3-D path planner that is capable of functioning in a partially known environ­

ment for the SA UVIM AUV. He employed a method of discretisation, where the 2-D 

maps are partitioned into cells, and each corresponding cell is then encoded with a 

binary string as a sequence of pairs of direction and distance. Then, the three 2-D, 

sequences of connected cells (paths), one in each respective plane, xy-plane, xz-plane 

and yz-plane, are merged via projection, into a single 3-D path. 

There have been several attempts to hybridise evolutionary computation with other 

algorithms. Dozier et al. (1998) combined fuzzy inference along with tournament 

selection to select the best candidate paths based on several criteria. They claimed 

that the methodology does not only provide significant performance enhancement, but 

also obviates the need of explicit multi-objective evaluation function development. 

Instead, Vadakkepat et al. (2000) endeavoured to merge a potential field planning 
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method with evolutionary programming to derive an optimal potential field function. 

The resulting algorithm is not only capable of solving the local minima problem but 

also handling dynamic obstacles. 

One glaring weakness inherent in all evolut ionary computation algorithms is their 

high computational requirement. Although, some authors purported to solve it using 

a distributed processing approach, tllis is not applicable in the case of an AUV, 

due to the energy limitation of the batteries. FUrthermore, their long convergence 

t ime, makes them unsuitable for a highly dynamic environment. Other weaknesses 

include difficulty in finding the exact global optimum and their performances are 

highly dependable on how the problem is structured and encoded. 

2.5.5 Visibility graph 

The visibility graph is a subset of t he roadmap approach to path planning. The 

operation of this scheme can be depicted as following: initially, all the vertices of 

all polygonal obstacles including the start and goal, that are in a line-of-sight with 

respect to each other are connected as shown in Fig 2.11. 
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Figure 2.11: An AUV employing the visibility graph technique to navigate the envi­
ronment. 

T his process is simplified if one limits the environment with only convex obstacles. 

Then, by representing the vertices as nodes, and the path as an edge, any tree search 
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algorithms, as elaborated in the cell decomposition section, can be used to find the 

shortest path. Unfortunately, one obvious disadvantage of using a visibility graph 

is the assumption that all of the obstacles are known. FUrthermore, a visibility 

graph has the tendency to generate paths that are very close to the obstacles edges. 

One simple solution is to 'patch' the obstacles in order to take into account of the 

vehicle geometry. However, this is not a trivial process if the vehicle considered is 

underactuated. Mckendrick (1989) applied a visibility graph method in an unknown 

2-D environment with convex polygonal obstacles. To be realistic, the AUV was 

simulated with a limited sensor range. An exploration phase is then required for 

information acquisition. The simulation demonstrated that the path is highly non­

optimal, taking long detours and as such a simple bug algorithm easily surpasses its 

performance. 

2.5.6 Probabilistic roadmap planner (PRM) 

This is still a relatively new approach to path planning, where the construction of 

the roadmap is done probabilistically instead of deterministically. The main concept 

is to generate a number of nodes (vertices) randomly, eliminate those nodes in the 

obstacles, and then, connect all the adjacent nodes with straight lines. The primary 

reason that only adjacent nodes are connected is to avoid saturating the configuration 

space with too many paths. Later, the resulting roadmap is searched from the start 

point to the goal point for the shortest path (Fig 2.12). 

Unlike other motion planning methods, its randomised nature tends to make its 

performance less susceptible to the effect of configuration space dimension (Overmars 

2002). However, it does compromise solution optimality for enhanced robustness. 

Consequently, this method generally produces suboptimal solutions. PRM is also 

notoriously known for its long running times and difficulty in finding a path in a 

configuration space that has a small passage. Therefore, some heuristically enhanced 

PRMs such as visibility PRM (Simeon et al. 2000), lazy PRM (Bohlin and Kavraki 

1998), obstacle based PRM (Amato et al. 1998) and Gaussian sampling PRM (Boor 

et al. 1999) have been recommended to improve the generic PRM performance. These 

methods mostly differ from their sampling strategies. Fox et al. (2000) and Garcia 

(1997) suggested an enhanced PRM that shares some similarity with the lazy PR.M. 
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Obstacle 

Figure 2.12: An AUV using the probabilistic roadmap method to navigate the envi­
ronment. 

They envisaged using it as a generic path planner for an AUV. Their method relies 

on generating a line-of-sight path from the initial point to the goal point. When an 

obstacle intersection occurs, a few points are generated at the obstacles vicinity to 

reroute the path. This process is then repeated until a solution is found or a time­

limit is reached. Their scheme assumes a static environment, thus a reactive planner 

is required for avoiding a dynamic obst acle. 

2.5.7 Rapidly-exploring Random Tree (RRT) 

The majority of path planning algorithms, as mentioned above, only take into ac­

count the algebraic constraints (caused by obstacle) and not differential constraints 

(caused by kinematics and dynamics) . The paths generated are typically rigid with 

abrupt directional changes, making it not viable for vehicle actuator operations due 

to saturation. This becomes an impetus for a search for a scheme that can address 

both the path planning and control issues simultaneously. Several potential benefits 

arise from the integration of the path planning and control process. Assuming no 

disturbance, the paths generated are guaranteed to be reproducible in practice. A 

linked optimisation for both path distance and control effort can also be achieved. 
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Cases of differential constraints can easily be incorporated, thus extending its applica­

tion into fault-tolerant and reconfigurable systems for an AUV (Perrault and Nahon 

1999, Sutton et al. 2001). 

Most systematic search algorithms do not function well in high-dimensional space. 

This has prompted the introduction of the RRT (LaValle 1998, LaValle and Kuffner 

2000), which can be considered as an incremental form of PRM and is designed to 

search efficiently non-convex high-dimensional spaces. It possesses a few fascinating 

properties: (a) It is biased to the freespace and exploits a probabilistic search method, 

(b) It has also been proven to be probabilistically complete (Cheng and LaValle 2002), 

(c) The simplistic nature of the algorithm facilitates performance analysis and lastly, 

(d) It allows one to take into account both algebraic and differential constraints 

simultaneously, which is vital for motion planning. A detail explanation of RRT 

operation from an algorithmic viewpoint can be found in Section 4.3. 

Cheng et al. (2000) applied the RRT to optimise the trajectories of autonomous auto­

mobiles and spacecraft. The simulations show the viability of the method. Toussaint 

(2000) tried to combine motion planning using the RRT with nonlinear control em­

ploying the H 00 technique for an underactuated vehicle. He utilised an H 00 filter 

for improving the planned motion of the vehicle and also addressed multiple vehicles 

planning problems. But the simulations are limited to planar motion. The RRT has 

also been applied to solve nonlinear control problems in hybrid systems. Frazzoli et 

al. (2002) provided some realistic simulations of unmanned helicopter motion plan­

ning that employed the RRT. Unlike other path planning algorithms, he mentioned 

that the RRT is capable of exploiting fully the manoeuvrability of the helicopter. 

Nonetheless, the RRT is not without problems. Firstly, as a novel algorithm, its capa­

bility is still not well characterised. Furthermore, its performance is highly sensitive 

with respect to the chosen metric. An incorrect metric will substantially deteriorate 

its performance. Cheng and La Valle (2001) described a technique to render the RRT 

less sensitive to the metric effect. In all of the experiments and simulations above, a 

known environment is assumed, and this is unrealistic for AUVs. Hence, supporting 

the fact that there is still room for further improvement. 



CHAPTER 2. RELATED RESEARCH AND LITERATURE SURVEY 49 

2.6 Reflexive Avoidance Techniques 

Reflexive avoidance techniques provide an AUV with a failsafe mechanism in the case 

of motion planner failure. The failure can either be a system malfunction or a failure 

to meet the predefined time constraint, which is a more common occurrence than the 

former. Technically, these techniques are fundamentally based on the reactive control 

approach {Brooks 1986), where the information from the sensors is sent directly to the 

actuator without passing through the high-level modules. This makes them amazingly 

fast and capable of handling dynamic environments especially in cases where in situ 

response is needed. Unfortunately they suffer from the identical problems that can 

be found in reactive control systems. Some of the problems are, highly non-optimal 

action, non-deterministic performance and lastly they are prone to get trapped in a 

canyon like environment. 

2.6.1 Neural network 

The neural network approach has been intensively researched over the last 20 years, 

and it still ongoing. The core of the neural network concept is based on a mathemati­

cal emulation of simplified human brain mechanisms. One obvious benefit of the neu­

ral network, is its intrinsic ability to model a very complex, multi-input-multi-output, 

and strongly coupled nonlinear system such as an AUV. It is also highly renowned for 

its 'generalisation' capability. Unlike other algorithms that are programmed, a neural 

network 1 is trained by exposing it to related input/output data. Properly trained, 

the neural network can provide an elegant solution to a very challenging problem. 

DeMuth and Springsteen {1990) proposed a neural network based obstacle avoidance 

controller for an AUV. They used two neural networks, one for a static object and 

another for a dynamic object classification. Then, a Boolean combiner is employed to 

reconcile the appropriate manoeuvre to be taken. Paradoxically, their neural network 

controllers were not trained but the weights were heuristically determined. Clearly, 

this is only applicable for a very simple case. In trying to exploit the adaptive nature 

{training ability) of a neural network, Sayyaadi et al. (2000) applied a stochastic real 

value reinforcement learning method to the collision avoidance controller of the Twin 

1The majority of neural networks such as the popular multi-layer perceptron and radial basis 
networks do require supervised training. 
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Burger. They divided the obstacle avoidance mission into a targeting behaviour and 

an avoiding behaviour. Nonetheless, no tangible results were given concerning the 

avoiding behaviour performance as the research is still at a premature stage. 

Interestingly, one tends to find more neural network applications in low-level con­

troller design than at the higher level (Ishii et al. 1995, Wettergreen et al. 1999). 

This could be caused by the black box characteristic of neural network, which pre­

cludes vital information extraction that can be crucial for problem understanding. 

Furthermore, high-level controller typically exerts more influence over the entire sys­

tem performance where small error tends to amplify quickly. This in turn demands 

a transparent system for analysis purpose which is not offered by such a network. 

The training processes can also be very time consuming, depending much on the 

'suitableness' of the selected training data. To foster rapid convergence, another data 

pre-processing stage is also found to be compulsory. 

2.6.2 Virtual force field (VFF} 

The virtual force field method tries to simulate an artificial force field which can be two 

or three-dimensional, surrounding the vehicle. Thus any contact with neighbourhood 

objects will cause deformation to the force field. The aim here is to minimise these 

deformations by locally modifying the control vector. Its computational efficiency 

and fast reaction make it a valuable technique in a dynamic environment. Recalling 

the fact that the TCAS employed by the aviation industry also utilises a form of 

virtual bubble which is a variant of VFF. Zapata and Lepinay (1996) addressed the 

collision avoidance and bottom following problems of an AUV using a VFF scheme. 

Their results, however, are confined to only computer simulations. 

VFF shares some similarity with the potential field method. Both trying to simu­

late the interaction of an artificial field between objects and the vehicle. However, 

VFF only considers the forces in a limited neighbourhood domain thus it is highly 

susceptible to being trapped in local minima, worst still it can also lead to unstable 

behaviour of the vehicle when surrounded with obstacles or travelling in a narrow 

passage. To solve this problem, a high level planner is usually introduced. 
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2.6.3 Vector field histogram (VFH) 

The vector field histogram (Borenstein and Koren 1991) was developed to solve some 

of the problems of the VFF algorithm concerning detail spatial distribution informa­

tion loss. The VFH is a data reduction process algorithm that can be decomposed into 

three distinct phases. The first phase entails representing the vehicle workspace as a 

two dimensional grid. The second phase involves constructing the vehicle surrounding 

into local polar histogram form where each sector represents obstacle density. The 

last phase involves a selection of the sector of the lowest obstacle density and align­

ment of vehicle heading to the selected sector. Its performance in most circumstances 

is better than the VFF (Koren and Borenstein 1991). 

Williams et al. (1990) advocated a three-dimensional collision avoidance controller 

that has the intrinsic functionality of VFH. They exploited a merit function that 

defines a field that takes into account obstacle bearing and distance as well as the 

vehicles own heading, depth and the goal direction. For the three dimensional case, 

a data reduction process is performed to transform the presentation into an image 

showing different obstacle density. Consequently, the vehicle is just required to align 

its heading vector to the lowest obstacle density area. Antonelli et al. (2001) sought to 

integrate the VFF and geometrical approach proposed by Hyland (1989), and imple­

mented it in the RAIS AUV. This approach takes into account the polar information 

instead of only the Cartesian, making the algorithm very similar to VFH. They also 

employed a high level path planner to detect the high risk area that can trap an AUV. 

The VFH tends to take into account of the workspace Cartesian information, hence 

it is less affected by the local minima entrapment problem as suffered by the VFF 

method. However, this does not mean that it is impervious to local minima entrap­

ment. Furthermore, by discarding all explicit distance information and representing 

them implicitly, the vehicle is sometimes deceived into assuming that there is no clear 

sectors when it is surrounded with only distanced obstacles. 
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2.6.4 Fuzzy logic 

FUzzy theory was introduced by Zadeh (1965) as an alternative technique for tack­

ling complicated problems that are difficult to solve using conventional differential 

equation based approaches. In essence, fuzzy logic is a rule based, multi-value logic 

inference system that attempts to take into account the uncertainty and imprecision 

of the real world. Its intrinsic operational principle bears substantial resemblance 

with human cognition. In fact, the fuzzy logic ability to quantified abstract expert 

knowledge has made it a choice in solving complicated systems. Consequently, the 

control decisions of an expert can be formulated into an algorithm to control the 

desired plant. One example of fuzzy rule base in a collision avoidance context is : 

IF Target Direction is Left AND Target Range is Very Near THEN Heading is Hard 

Right. 

Clearly, the rule above is self-explanatory which facilitates problem understanding. 

As such, a set of rules can be promptly constructed without resorting to complex 

mathematical techniques. Its transparent nature and excellent immunity to both 

noise and error also contributes to its popularity. 

Shinjo and Graeme (1995) suggested a collision avoidance system that is based on 

a combination of sensor-based navigation and fuzzy logic control. The fuzzy logic 

inference system provides a mapping framework to transform the acquired object 

information such as range, position, and size, into the respective control commands 

for heading and vertical movement of the vehicle. A short-term memory is also 

used to store successive obstacle avoidance processes with the objective to reduce 

abrupt changes or chattering of the control command outputs. This is achieved via 

reducing the degree of membership of the last executed fuzzy conclusion in order to 

reduce its dominance. The analysis of the algorithm was performed on a full six­

degrees of freedom Ocean Voyager AUV simulator. Instead of encoding the problem 

directly as in former approach, Vasudevan et al. (1995) attempted a hybrid reasoning 

scheme by aggregating fuzzy rule sets and case-based reasoning to function as a 

high-level dynamic path selector. In what was called Reasoning from F\JZzy Indexed 

Cases Scheme (REFIC), it fundamentally exploits the a priori information such as 

the prestored cases to assist in determining a promising vehicle heading and also in 

selectively activating a subset of navigational behaviours. The simulated example 

proved to be very robust in navigating in the presence of noisy sensor data and 

cluttered obstacle distributions. 
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Liu et al. (1999) tried to tackle AUV navigation in an unknown environment by cre­

ating a virtual boundary and incorporating some heuristic rules via fuzzy logic. The 

vehicle emergence behaviour turns out to be very similar to the bug following algo­

rithm. However, the effects of local minima and sea current were neglected in the 

simulation. Ridao et al. (2001) applied a collision avoidance controller in the Garbi 

AUV using a combination of VFF and fuzzy logic behavioural encoding techniques. 

The implementation is however limited to the horizontal plane. The vehicle is sur­

rounded with several circular force fields of varying radii and each particular region is 

then mapped into the corresponding behaviours such as goto, spin, avoid, keep depth 

and avoid bottom. A simulation study has verified that the vehicle is able to exhibit 

'intelligent' manoeuvres such as circumnavigating and escaping from a canyon like 

trap. 

Although, many praises can be made regarding a fuzzy logic system, there are also 

an equivalent amount of criticisms. Owing to the heuristic method which the fuzzy 

logic paradigm is fundamentally based upon, a multitude of incoherent and diverse 

viewpoints exist regarding the types and fuzzy operators used. The lack of a solid 

framework also tends to make fuzzy logic appear to be an ad hoc approach to finding 

a solution. Although, a fuzzy system is renowned for its transparency property, it is 

virtually mathematically intractable and can complicate analysis. 

2.7 Concluding Remarks 

This chapter presented several a myriad of techniques for the design of a collision 

avoidance system for AUVs. An overview of AUV control architectures and indi­

vidual collision avoidance system submodules have been presented. The obstacle 

detection module can be divided into four distinctive subunits; a forward looking 

sonar, a signal processing submodule, a map builder and a navigation submodule. 

On the other hand, the obstacle avoidance module comprises of the reflexive, motion 

planning and trajectory tracking subunits. Again, to reiterate, it should be stressed 

that to formulate a meaningful and realistic thesis research project, there should be 

limitations on the scope of the research. For this reason, the reflexive, navigation and 

multi-target tracking submodules have been omitted. 
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Techniques employed in the ocean, land and aerospace domains were explored. Their 

advantages and disadvantage were outlined. It has been shown that the collision 

avoidance system plays the vital role in bringing autonomy to the whole system. 

In regards to the motion planning context, the majority of the motion planning 

methodologies mentioned are, in fact, considered to be path planning methodologies. 

They do not take into account the dynan1ics of an AUV. Systematic search techniques, 

although, extremely popular in the robotics community. Unfortunately, they do not 

function well in higher-dimensional search space which is found so commonly in most 

practical systems since they suffered from the state-explosion effect. The above dis­

cussion hinted that the recently developed probabilistic based algorithms, with their 

strong immunity to state-explosion effect, could provide an interesting topic of re­

search. This resulted in the formulation of enhanced RRT algorithm in Chapter 4. 

In Chapter 5, the following algorithm is further improved by combining it with the 

technique that is based on system dynamic quantisation. 

Since the motion planning algorithm is, in essence, a feedforward planner, any pertur­

bations to the system, inevitable in practice, will aggravate the system performance. 

This strongly suggests that a robust trajectory tracker is needed. Therefore, it pro­

voked an investigation into the feasibility of using a linear quadratic regulator or a 

nonlinear state dependent Riccati controller as a trajectory controller. Details can be 

found in Chapter 6. 

The one major problem with the contemporary forward looking sonars is that they 

are not specifically designed for the AUV obstacle avoidance purpose. Most of these 

sonars employed by AUVs are 2-D mechanical scanning variants commonly employed 

by surface vessels. Ntllllerous 3-D sonars exist but their costs are prohibitive. As 

such, the development of a novel, cost-effective, energy-efficient obstacle avoidance 

sonar should be fort.hcoming in order to address this critical issue. This study will 

employs the AT500 sonar (Robinson et al. 2003) from J&S Marine, that is especially 

designed to cater for this task. The sonar data processing and workspace represen­

tation submodules will be developed to cater especially for this sonar, nonetheless, 

the techniques must remain sufficiently flexible to be transferrable to other forward 

looking sonars. These techniques are detailed in Appendix A. 

In conclusion, it is anticipated that with the fusion of these different methodologies, 
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a robust and computationally efficient collision avoidance system can be realised. 

In designing such a system, one must consistently bear in mind that an effective 

collision avoidance system derives its success through the synergistic interaction of 

submodules, and not because of a particular submodule functionality. Similarly, the 

application of these methodologies could also offer potential technological advances 

in the field of AUV collision avoidance while simultaneously benefiting the marine 

industry. The next chapter will delve upon the mathematical modelling of the AUV 

and environmental effect for computer simulation and performance evaluation. 



Chapter 3 

System Modelling 

This chapter describes the mathematical models employed in the computer simulation 

studies herein in order to acquire deeper insights and to evaluate the suitability of 

the proposed algorithms and controllers. Computer simulation studies allow one to 

investigate various 'what if' scenarios applied to the model without the need of a 

physical model. This makes it highly attractive in terms of time ru1d monetary cost 

aspects. More importantly, some of the tested scenru·ios can be considered to be 

highly dangerous and risky to human lives if proved in real time with hardware. 

To evaluate properly the system performance, a holistic approach must be sought. 

One not only requires a plant model that can replicate the system dynamic behaviour 

as close as possible but also the possibility of evaluating the impact of disturbances to 

the plant. The disturbances might be induced by the environment and sensor noise. 

Hence, this chapter is partitioned into two sections, AUV modelling and disturbances 

modelling. The latter section includes sea currents disturbance and sensor noise 

disturbance modelling. 

Notwithstanding the above, a note of caution here is made as regardless of how 

promising the simulation results appear to be, one should never underestimate the 

significance of a physical plant test. 

56 
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3.1 Mathematical Modelling of an AUV 

Underwater vehicles inherently possess very complex dynamics such as nonlinearities, 

cross coupling, numerous degrees of freedom and underactuated behaviour. These 

factors arise owing to the effect of the body-medium (vessel-water) interactions and 

partly due to the physical design of the vessel. 

There exists an abundance of literature pertaining to the mathematical modelling of 

underwater vehicles. As a matter of fact, and not coincidental, most of the AUVs 

are very similar in terms of shapes and actuation configurations such that it allows 

the generalised underwater vehicle model to be exploited. Regretfully, to utilise the 

generalised model, it is necessary to estimate first the body and hydrodynamic coeffi­

cients. The evaluation of these coefficients of which there can be more than 100, is a 

nontrivial process (Healey and Lienard 1993). Certain coefficients, such as the mass 

coefficients can be obtained simply via a direct measuring process. Others require 

extensive experiments to be conducted in a test tank with a full-scale physical model 

of the vehicle equipped with relevant sensors (Prestero 2001). Lately, the use of com­

putational fluid dynamics (CFD) analysis for coefficients estimation has also become 

increasingly popular (Sayer and Fraser 1998). As a last resort, an estimated guess 

of the coefficient value can be derived from a library of generic shapes, or coefficient 

scaling from another AUV (Ahmad and Sutton 2003). 

In essence, AUVs are vehicles that operate in a 3-D physical space. This implies that 

an AUV needs a total of six configuration variables to describe fully its configuration, 

hence the term six degrees of freedom (DOF). Three of the variables are for linear 

displacements and another three for angular displacements. In order to describe 

completely the AUV dynamics, six more variables corresponding to the linear velocity 

and the angular velocity for each dimension are also needed. 

Briefly, the generalised six degree of freedom rigid body equations of motion in vec­

torial form given by Fossen (1994), can be written as 

(3.1) 

Here v = [u v w p q 1Y is the body-fixed linear and angular velocity vector and 

TRB = [X Y Z J( M NJT is a generalised vector of external forces and moments 
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acting on the vehicle in body-fixed coordinate system. Please refer to Fig 3.1 for 

a clearer presentation of the related variables mentioned. Similarly, this thesis, if 

not mentioned, employs the North-East-Down (NED) Earth-fixed coordinate system. 

With reference to Fig 3.2, the NED coordinate convention is popular amongst the 

aerospace, marine, and navigation communities (Fig 3.2(a)). On the other hand, the 

robotics community and mathematicians prefer the ENU coordinate convention (Fig 

3.2(b)). If one adopts the NED Earth-fixed coordinate convention, one should accord 

to use 'marine' body-fixed coordinate (Fig 3.2(c)) for the rigid body of interest to 

avoid confusion. 

Figure 3.1: The inertial, Earth-fixed non-rotating reference frame XeYeZe and the 
body-fixed rotating reference frame XoYoZo. The NED coordinate convention is 
employed here. 

The assumption here is that the hydrodynamic forces and moments on a rigid body 

can be linearly superposed. The parameterisation of the rigid-body inertia matrix 

Mns is unique and it satisfies: 

Mns = M~8 > 0; MnB = 0 (3.2) 

Referring to Equation 3.2, the elements in Mn/3, are mass and moment of inertia 
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+X(North) 
+Z (Down) 

+Y(East) +Y(Starport) 

+Z (Down) +Z(Belly) 

(a) (b) (c) 

Figure 3.2: (a) North-East-Down (NED) Earth-fixed coordinate (b) East-North-Up 
(ENU) Earth-fixed coordinate (c) Aerospace and marine body-fixed coordinate 

that correspond to the individual axis. These variables cannot have negative values. 

Assuming that the mass and the moment of inertia of the vehicle are constant through 

time, which is true for most AUVs without buoyancy depth control, as a corollary 

the time derivative of the inertia matrix should be 0. 

The matrix CRB corresponds to the Coriolis and centripetal forces and moments that 

can be parameterised to be a skew symmetric matrix i.e. 

The Coriolis and centripetal forces and moments, are virtual forces that arise because 

of the formulation of the dynamic equations with reference to the AUV body which is a 

non-Newtonian frame. These terms only come into effect when the vessel is executing 

some kind of rotational motion and they contribute nothing when the vessel is in 

straight line motion. Likewise, TRB can be expressed as 

(3.3) 

where TH is the radiation induced forces and moments which includes added inertia, 

hydrodynamic damping and restoring forces. TE describes the environmental forces 

such as ocean currents, waves and wind. Obviously, in this context, assuming that 

the AUV is travelling at least 30 metres below the ocean, then only ocean currents are 

applicable to the AUV. Finally, T is the propulsion forces from thrusters and control 

surfaces. The derivation of these forces and moments is not included, please refer to 
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Fossen (1994} for further details, Altel'natively, Equation 3.1 can be put into a more 

insightful form as 

Mv + C(v)v + D(v)v + 9(17) = Tt;; + T (3.4) 

where 

(3.5} 

Refer to the nomenclature in the beginning of the thesis for more detail of the in­

dividual notation used. Here, the suffix A denotes the added mass version of the 

pal'ticular matrix. Added mass is caused by the mass of water moving with the AUV. 

D(v) is the damping matrix. 9(17) is the gravitational and buoyant forces vector and 

17 = [x y z c/J B 1/I]T is the vector of position and Euler angles in earth-fixed fraine 

of reference. Conceptually, the above formula is analogous to a simple mass-spring­

damper system. The spring behaviour is contributed by the 9(17) while the M and 

D(v) represent the mass and damper effects, respectively. 

The matrix M is needed for explaining the kinetic energy of the total ambient vessel­

Water system, which is larger than the AUV rigid-body kinetic energy. The kinetic 

energy is contl'ibuted by the fluid motion as the fluid moves aside and close behind the 

AUV. The D(v) can be attributed to the effects of potential damping, skin friction, 

vortex shedding and wave drift damping. These forces make the system dissipative, 

ensuring that the system states are bounded for bounded inputs. The 9(17) term 

cannot be neglected if the AUV has a low metacentric height. Those AUVs that have 

low hydrostatic restor-ing compared to the inertia forces have the propensity to start 

rolling and pitching when the actuators are utilised. 

Equation 3.1 can also be expanded to yield 

m[ti.- vr + wq- xc(q2 + r2
} + Yc(pg- r + zc(pr + q))] = X 

m[v- wp + 1LT- Yc(r 2 + p2
) + zc(q1·- p + Xc(qp + n)J = y 

m[w- uq + vp- zc(p2 + q2) + xc(rp- q + Yc(rq + p))] - z 
lxxP + Uzz - lyy)qr- (r + pq)lxz + (7'

2
- q2 )lyz + (pr- q)lxy 

+m.[yc(w- uq + vp)- zc((v)- wp + ur)] - K (3.6} 

lyyQ + Uxx- lzz)qr- (p + q1·)/xjj + (p2
- r 2}lzx + (qp- 1"}lyz 

+m[zc(ti.- vr + wq)- xc((w)- uq + vp)] - M 

lzz1' + {lyy- lxx)rp- (q + rp)lyz + (q2
- p2 )lxy + (1'q- p}lzx 

+m[xc(v- wp + ur) -yc((ti)- vr + wq)J - N 
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The first three equations represent the translational motion while the last three equa­

tions represent the rotational motion. Equation 3.6, also known as the general rigid­

body equations of motion can be simplified in two ways. The first method is to take 

the origin of the body fixed reference frame to coincide with the centre of gravity, 

another way is to choose the origin such that the inertia tensor is diagonal. Referring 

to the former method, it implies that Tc = [0 0 o]T and le = diag{Ixxc Iyyc Iuc}· 

However, the disadvantage with this approach is that the new coordinate system will 

differ from the longitudinal, lateral and normal symmetry axes of the vehicle. Subse­

quently, in practice, the second method is preferred. Diagonalisation of the body-fixed 

inertial tensor is achieved by applying the Parallel Axes Theorem. Both the Remus 

and A UTOSUB AUV model, as will be mentioned later, adopt this approach. 

It must be noted here that velocity vector v in the body coordinate frame cannot be 

directly integrated to obtain the position coordinates in earth-fixed reference frame, 

rather, they are related by the transformation matrix J(TJ) which is given by: 

where 

and 

[ 

C'ljJcB 

J1 ("rh) = s"lj;cB 

-sB 

-s"lj;crf> + c"lj;sBsrf> s"lj;srf> + C'ljJcrf>sB l 
c"lj;crf> + srf>sBs"lj; -C'IjJsrf> + sBs"lj;crf> 

cBsrf> cBcrf> 

srf>tB 

cif>- srf> 

srf>/cB 

crf>tB l 
-srf> 

crf>/cB 

(3.7) 

(3.8) 

(3.9) 

In the above transformations, s· =sin(·), c· =cos(·), t· =tan(·) and 0 3 x 3 is a null 

matrix. This gives the vector iJ 
iJ = J(17)v (3.10) 

which can be integrated to get the position coordinates in earth-fixed frame of ref­

erence. Equation 3.10 is also known as the kinematic equation. In fact, the set of 

all displacements or the set of all such matrices in 3.10 with the composition rule 

of standard multiplication operation between matrices, is called SE(3), the special 
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Euclidean group of rigid body displacements in three dimensions. Together with 

Equation 3.6, they can be used to describe compactly the behaviour of the six DOF 

AUV. Notice that Equation 3.8 is a matrix that details spherical displacements, and 

is a subgroup of SE(3). It is also called the special orthogonal group in three di­

mensions, or simply S0(3). It is clear that one can also derive other subgroups from 

SE(3). 

Before proceeding further, the rudder deflection convention should be clarified. The 

convention adopted here is in accordance to the one employed by the marine commu­

nity. A positive rudder deflection, defined to have the same sense as the yaw angle, 

causes a negative yaw perturbation, and a very small positive sway perturbation as 

exemplified by Figure 3.3. 

( ___ ) ___________ _ 

'·,_ t5 = +ve 

< 

Figure 3.3: Rudder deflection convention 

3.2 Three DOF AUV Model (Planar motion) 

As aforementioned, a complete description of the dynamics behaviour of an AUV 

necessitates a set of six DOF kinematic and dynamic equations. Fortunately, due to 

certain practical constraints which will be detailed later, and the ease of implemen­

tation, the dynamics can be decoupled so that only a three DOF dynamic model is 

required. 

The majority of the AUV missions such as mine hunting, seabed surveying, pipeline 

tracking, scientific data collecting entail diving to a certain depth and commencing to 
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meander within some predesignated area whilst maintaining a constant depth. Some 

specific missions do however require the AUV to hug the terrain whilst preserving the 

distance from the seabed. In the latter missions, a planar motion collision avoidance 

manoeuvre is executed when a preset terrain gradient or obstacle size threshold is 

triggered. 

One crucial contributing factor in supporting the interest in the AUV planar motion is 

due to the hardware limitation. The 3-D forward looking sonar is still in its infancy. 

It is excessively expensive, bulky and has high power consumption, thus limiting 

wide adoption in AUVs. This explains the fact why there is such ubiquitous usage 

of 2-D forward looking sonars in AUVs. Typically, a forward looking sonar has the 

configuration as depicted in Fig 2.3(a) to increase the horizontal detection envelope. 

In this specific configuration the discrimination of object depth is very limited thus 

making 3-D manoeuvres unsafe to be performed. 

Another substantial factor is related to the computational efficiency consideration. 

The search space in 2-D is clearly smaller than in 3-D case. The majority of motion 

planning algorithms time complexity are of CJ(ad) type, where a is a real value con­

stant and d is the number of states. Reducing the state dimension drastically lowers 

the computational requirement which propagates to smaller, cheaper hardware and 

lower energy consumption, a set of highly desirable features for AUVs. 

Herein, the ki}lematic formulation is presented first since it is generic for all types of 

planar motion vehicles. From Equation 3. 7 and taking cp = 0, B = 0 while neglecting 

the depth, z dimension, the kinematic transformation matrix from body to Earth­

fixed coordinate becomes 

(3.11) 

There is no singularity problem for this trivial case but this effect will need to be 

considered if the Euler angle formulation is expressed and operates in SE(3). By 

combining both Equation 3.11 and the reduced state Equation 3.6, one yields a 

longitude-latitude-yaw model where the state vector becomes [u v r x y 7,bj1'. 

Two types of AUV models are employed in this thesis. 
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• Remus, a small, agile AUV, latitude-yaw only model (no surge dynamics) 

• A UTOSUB, a large AUV with nonlinear dynamics at different speeds 

3.2.1 Remus AUV model 

Remus AUV was developed by Alt and Grassle (1992) at the Oceanographic Systems 

Laboratory at the Woods Hole Oceanographic Institution. Remus is a low cost, 

modular vehicle. The nominal dimensions of the vehicle are 1.4 m in length and 0.3 m 

in diameter. Its missions range from autonomous clocking, long-range oceanographic 

survey, and shallow-water mine reconnaissance (Alt et al. 1994). Remus currently uses 

the classical field-tuned PID controller. Although simple, nevertheless, it functions 

very well. Controller retuning is necessary when the payload or length are altered 

to cater for different missions. The versatility of Remus was proven in the 2003 Iraq 

conflict (Jordan 2003) where it was deployed primarily for mine-hunting missions. 

A six DOF Remus model is provided by Prestero (2001). However, in conducting the 

experiment, the speed was kept constant at 1.54 m/ s via the use of a speed controller. 

Consequently, this limits the model to be only true around this regime. The latitude­

yaw only model, assuming the speed is fixed, is adopted for the Chapter 4 simulation 

study. This model was employed by Fodrea and Healey (2003). Note that the pitch 

and roll effects are neglected. 

In matrix form, the linear three DOF dynamics equations of the vehicle can be defined 

as 

+ [ ~ l O,(t) 

(3.12) 

Remus has a maximum rudder deflection of ±13.6° and a rudder rate limit of 18° js. 

Embedding these two components into the model resulted in a nonlinear system. The 

related coefficients are provided by Prestero (2001 ). 



CHAPTER 3. SYSTEM MODELLING 65 

3.2.2 A UTOSUB AUV model 

The A UTOSUB AUV is the brainchild of the National Oceanography Centre. In 

contrast to the small size Remus, AUTOSUB is a very large torpedo shaped vehicle. 

Dimensionally, the vehicle is 7 m long, and approximately 1 m in diameter and has a 

nominal displacement of 3600 kgs. It is used for conducting under ice and deep sea 

surveying. Its normal cruising speeds are from 1 m/ s to 2.2 m/ s, with a top speed of 

5 mfs. The detailed six DOF, nonlinear model of the AUV model was supplied by 

QinetiQ Ltd, formerly DERA (Marshfield 1992). 

This model is more complex and realistic compared to the Remus model. Owing to 

its large size, the AUTOS UB is equipped with numerous actuators to increase the 

control authority. This indirectly accentuates the already severe cross-coupling effect 

inherent in the AUV. It is also equipped with two x-axial thrusters, which welcome 

the use of differential thrust control strategy at low speed. 

In most underwater vehicles travelling at speeds in excess of approximately 0.5 m/ s 
control surfaces are employed in preference to thrusters. The hydrodynamic forces 

acting upon the rudders and hydroplanes of the vehicle at such speeds provide much 

greater manoeuvring potential than the use of auxiliary thruster mechanisms, and 

are thus a more efficient means of controlling the vehicle motion (Cowling 1996). 

Additionally, it is a well known phenomenon that low speed control using rudders 

and hydroplanes is subject to reversal effects. Referring to the A UTOSUB AUV, 

the more appropriate means of achieving yaw control is via the use of locked upper 

and lower canard rudders. Employing these actuators in this manner leads to a 

cancellation of the rolling moment normally produced by the use of an individual 

rudder or differential main x-axial thruster strategy (Cowling and Corfield 1995). 

The stern upper and lower rudders are relegated to sway control, hence neglected 

in this thesis. The upper and lower canard rudders are used in locked formation 

throughout the remainder of the simulation studies. Furthermore, the cross-coupling 

effects in roll and pitch are neglected, assuming that they have been stabilised by 

some low-level controllers. 

Unfortunately, the surge dynamic is not modelled in the six DOF model provided 

by QinetiQ Ltd. It was assumed that a constant speed can be maintained with the 

built in speed controller. To add realism to the simulation, the surge dynamics were 
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Heave Control 

Pitch and Roll Control 
Thrusters 

Sway Control Yaw Control 

Figure 3.4: The complete control authority of A UTOSUB AUV 

added to the AUTOS UB model. Therefore, an estimate of the value of the propulsion 

coefficient, Xprap• is required. 

Neglecting the interactions from sway, heave, roll, pitch and yaw suggests that the 

speed equation is given by Fossen (1994) as 

(m- X,;)u = Xlulululu + (1- t)T + Xext (3.13) 

Here it is assumed that quadratic damping is the dominating dissipative effect. Fur­

thermore n represents the propeller revolution, u is the surge velocity, Xext is external 

disturbances clue to waves and current and t is the thrust deduction number t. Thrust 

equation can be expressed as 

(3.14) 

where T is the developed thrust and Va is the advance speed at the propeller (speed 

of the water going into the propeller). A common method is to design an inner 

loop PI control to regulate the desired revolution, where revolution can be measured 

using a tachometer, or encoder. In the remaining study, the dynamics of the thruster 

are neglected assuming that it is much faster compared to the surge dynamics of 

the vehicle. This is true for a large AUV like A UTOSUB. Clearly, the forward and 

backward thrust will be non-symmetrical in practice but is again neglected in the 

simulation. 

For simplicity, it is assumed that 71ni 11a = 0 (affine system). Introducing ,the notation 
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Xlnln = (1 - t)1Jnln: finally yields: 

(3.15) 

Equation 3.15 is clearly nonlinear because of both the u and n quadratic term. A 

control allocation unit can be employed to 'remap' the inputs such that it is affine 

again with reference to the model. 

Accordingly, the nonlinear three DOF AUTOSUB dynamic model can be expressed 

as 

(m- Xu)iL = Xuiuduiu + (mv + Xvr + Xrlrl + mX9 )r + Xpropn2 

(m- Y-v)v + (mX9 - Y;-)i = (Yvivdvl + Yuvu)v + (Yrlrl- mu+ Yuru)r + u2Yor0T 

(mX9 - N-v)v + Uzz- N-r)i = NuvV + (NurU + mX9u)r + u2Nor0T 
(3.16) 

A SIMULINK model of Equation 3.16 is illustrated in Fig 3.5. The AUTOSUB has 

a rudder deflection limit of ±25.2° and a slew rate of 9.9°/8. The maximal thrust 

available for this set of actuators is ±450 N. In the remaining study, the AUTOSUB 

cruising speed is taken to be 2.0 m/ 8 when the motor is running at 140 rpm. Xprop 

is taken as 0.006810 after consulting the dynamics of the NDRE-AUV (Jalving and 

St0rkersen 1994) and NPS AUV II (Healey and Lienard 1993). 
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Figure 3.5: A nonlinear SIMULINK model of AUTOSUB AUV 

The following parameters describe the AUV model used herein: 

W = 35316 N 
p = 1025.2 kg/m3 

lzz = 8304 kgms2 

xc = 0.34 m 

B = 35316 N 
lxx = 0 kgms2 

lxz = 0 kgms2 

Yc=Om 

L= 7.0 m 
lxy = 0 kgms2 

lyz = 0 kgms2 

zc = 0.02 m 

m= 3600 kg 
lyy = 0 kgms2 

g = 9.81 m/s2 

Xprop = 0.006810 

68 

Table 3.1: Important parameters of AUTOSUB AUV. The rest of the hydrodynamic 
coefficients (not shown) are property of QinetiQ Ltd. 

An open-loop A UTOSUB response of a saturated step input on the locked canard 

rudders is shown in Fig 3.6 and Fig 3.7. Fig 3.6 shows the path the AUV is initiating, 

which is not a perfect circle. True circle turning manoeuvre requires the AUV to hold 

the surge and sway velocity constant. 

Fig 3. 7 illustrates clearly the cross-coupling effect of the longitude-latitude-yaw A U­

TOSUB model. Notice that as the vessel commences the turning manoeuvre, the 
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Figure 3.6: The x-y trajectory of the AUV when subjected to a saturated step input 
on the locked cru1ard rudders in the open loop. 
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Figure 3. 7: The cross-coupled motion of the AUV when subjected to a saturated step 
input on the locked canard rudders in the open loop. 
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surge velocity (Fig 3.7(a)) drops drastically due to the higher induced drag. The 

surge velocity converges gradually until the system thrust and drag are in a state of 

equilibrium. Fig 3. 7(b) depicts that the sway velocity increases rapidly before it set­

tles down. Tllis behaviour is typical of non-holonomic vehicles which always exhibit a 

constant sway velocity when making a turning manoeuvres. The reason is the vehicle 

x-axis, body-fixed-frame of reference is not tangent to the arc the vehicle is executing. 

Note that the step input injected into the canard rudders as shown in Fig 3.7(c) will 

not directly effect the system because of the limitation imposed by the slew-rate. 

3.3 Disturbances 

A disturbance can be defined as a form of an undesirable effect injected into a plant. 

It has the propensity to perturb the normal behaviour of the plant, or to be precise, 

to deviate the plant from the expected response. It is an undeniable fact that distur­

bances are to be found in practice. One of the criteria in assessing a good a controller 

performance is with regards to its disturbances attenuation capability. This type of 

controller is termed as a regulator. 

In the course of acquiring a better understanding of the subject, researchers have 

categorised disturbances into various types with regards to their frequency content 

such as high (HF) or low frequency (LF), the disturbance source either if it is endoge­

nous or exogenous, and the effect to the plant model, additive or multiplicative, and 

lastly if the disturbances are zero-mean type. Two types of disturbances that are of 

interest here are the one induced by the environment and the one embedded in sensor 

measurements. 

3.3.1 Environmental disturbances 

For surface vessel, environmental disturbances include wind, waves and ocean cur­

rents. The ocean currents flow in complex patterns affected by wind, the water salin­

ity and heat content, bottom topography, and the Earth's rotation. In the context of 

an AUV which is travelling below 30 m, one can safely ignore the sea surface effects 
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such as waves and winds. For most marine control applications, the ocean currents 

effect can be approximated as additive to the plant dynamics. The ocean currents 

are also considered to be of the low frequency type and are non zero-mean in nature. 

The AUV will suffer from drifting effect if the current effect is not taken into account. 

Elimination of this phenomenon can be achieved by introducing an integrating con­

troller. Or better still, if an accurate mathematical model of the system exists, then 

currents and waves can be explicitly estimated using an observer (Torsetnes 2004). 

The velocity magnitude of the ocean currents vary from 0 m/ s to 2.5m/ s depending on 

the depth and region considered. The fastest current is the Gulf Stream which tends 

to move at above 1.5 m/ s with peak velocity reaching 2 m/ s at the surface (Cable 

et al. 1996, Gross 1990). Gross (1982) reported that the speeds of deep currents vary 

from 0.02 - 0.25 m/ s in deep water. Other currents such as the one in the narrowest 

point of the Florida Straits which has water masses in a cross section approximately 

70 km wide and 200 m deep, move forward at a speed of more than 1 m/s (Gaskell 

1973). 

According to (Fossen 1994), ocean current velocity can be simulated by using a first 

order Gauss-Markov Process. For instance Vc(t) can be described by the following 

differential equation: 

(3.17) 

where w(t) is a zero mean Gaussian white noise sequence and fJo ~ 0 is a constant. 

Typically, it is possible to use J1o ~ 0 which simply corresponds to a random walk. 

Clearly, the process must be bounded such that Vmin :S: Vc :S: Vmax to preserve the 

fidelity of the ocean currents simulation. The associated pseuclocode can be found in 

Algorithm 3.1. 

Algorithm 3.1 (CURRENTS). The following algorithm simulates a current with 
bounded velocities. 
Require: Vcmin> Vcmax, T, I:!.T 

1: \!;, +----- Wcmin;Vcmaz) {initialise the Vc} 
2: for k from 0 to T do 
3: Vc(k + 1) +----- ll;,(k) + I:!.TVc(k) {Euler Integration} 
4: if Vc(k + 1) > Vcmax or \l;,(k + 1) < Vcmin then 
5: Vc(k + 1) +----- Vc(k)- I:!.TVc(k) 
6: end if 
7: end for 
8: return Vc 

---------
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Algorithm 3.1 has been translated into MATLAB code for simulation purpose. A 

sample run was executed to obtain the result as illustrated in Fig 3.8. The current 

velocity magnitude was bounded to be in the range of 1 m/ s to 1.5 m/ s. The Euler 

integration algorithm uses a 0.1 s time step with the variance of the Gaussian random 

generator function being set to 0.01 m/ s. Pertaining to Fig 3.8 (a) one can observe the 

unfiltered current, the filtered current is shown in Fig 3.8 (b). The filtering process 

was achieved by employing a simple moving average filter with 10 coefficients where 

each one has a value of 0.1. The aim is to eliminate the HF noise hence making it 

much more realistic. 
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Figure 3.8: A simulated ocean current bounded between 1.0 m/ s to 1.5 m/ s for a 
time span of 50 s. 

The 2-0 simulated current model can be described in terms of the current velocity 

Vc and direction of the current {3 as 

UcjO = Vc cos({3 - 7/J) 

VcjO = Vcsin({3 - 7/J) 

(3.18) 

(3.19) 
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where uc;o and VcJO are current velocity components with respect to the body fixed 

frame of the vessel. The pertinent variables are illustrated in Fig 3.9. On t he other 

hand, Uc/E and Vc/E are the current velocity components with respect to the Earth 

fL'<:ed reference frame. The uc;o and VcjO can be directly added to the vessel velocity 

components for current effect simulation usage. 

X 

y 

Figure 3.9: Variables for transforming the ocean current velocity in Earth- fixed frame 
such that it is coincided with t he vehicle body-fixed frame of reference. 

3.3.2 Sensor noise modelling 

AUVs are equipped with an assortment of dedicated navigational sensors to accom­

plish missions. Sensors such as Doppler velocity sonar , inertia measurement unit 

(IMU) , sonar, TCM and GPS have their own un ique type of noise signature. 

In principle, all sensors data are corrupted by HF zero-mean noise which is affect ing 

almost every data sample. vVhen this noisy data is utilised without proper filtering 

as a feedback to a cont roller , it can induce instability and chattering effect leading 

to actuator wear and tear. Consequently this not only can shorten the life span of 

the actuators but also renders the system not energy efficient . One common solution 
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is to treat the data by passing over a low pass filter before it is conveyed to the 

controller. Various filters can be adopted for this purpose, such as the Butterworth, 

Finite Impulse Response (FIR) to the more sophisticated Kalman filters. Care must 

be taken since the incorporation of the filters into the system also introduces lag which 

degrades the gain margin and phase margin of the system, thus rendering the closed­

loop system more susceptible to instability. This thesis assumes that such filtering is 

taken care of, hence HF noise influence is neglected. 

Certain sensors such as the Inertia Measurement Unit (IMU) tends to suffer from 

LF non-zero mean disturbances. To elaborate, IMU is critical in providing the im­

portant measurements to locate the vehicle in a 3-D space. This is attained through 

integration and transformation of the acquired linear acceleration and angular rate 

measurements. Unfortunately, the integration process accwnulates the errors which 

become unbounded in a very short finite time interval. 

A simple and yet insightful experiment was conducted to assess the drifting behaviour 

of a low cost IMU. The IMU employed is of a low cost miniature, strapped down, 

Altitude and Heading Reference System (AHRS) type, model MT9-B from the com­

pany Xsens. In the following experiment, the unit was left in a stationary position 

before the reference frame is reset. Local magnetic field distortion calibration was ini­

tiated through the software. The sampling rate was set at 40 H z. Fig 3.10 illustrates 

the acceleration data of each axis acquired from the MT9-B for a time duration of 

60 s. Notice that both x-axis and y-axis reveal zero-mean data but there is a mean 

of approximately 9. 72 m/ s2 for the z-axis due to the gravity effect. Using the Euler 

integration technique, one may obtain the velocity and displacement quantities as 

depicted in Fig 3.11. It is apparent from the Fig 3.ll(a) that the velocity data suffer 

from a drifting effect which is rather pronounced in the y-axis. One can also discern 

the sinusoidal distortion of the data which is suspected to be induced by the minute 

fluctuation of the angular rate measurements. Alternately, the Fig 3.ll(b) shows the 

3-D plot. The displacement data (Fig 3.11(c) and Fig 3.11(d)) do not exhibit the 

periodical behaviour but demonstrate severe drifting instead. A displacement drift of 

approximately 15 m in 60 s will render the data unusable for displacement estimation 

in practice. Furthermore, one can extrapolate from this experiment that the severity ' 

of drifting effects will accentuate when the vehicle is in motion. 

The above experiment demonstrated that a periodic global reference frame reset is 
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Figure 3. 10: Acceleration measurements from MTB-9 IMU 

essential if the positioning data is to be remain accurate. In practice, anot her sensor 

capable of providing position measurements with reference to a global frame must be 

applied to reset or to recalibrate the IMU measurements intermittently. The IMU 

and the positioning sensor functions are complementary, IMU provides accurate high 

frequency data crucial for feedback system, while the positioning sensor recalibrates, 

resets the IMU to mitigate the drifting effect. 

A plethora of positioning sensors exist. These sensors can be a GPS, Long Baseline 

(LBL)/Short baseline (SBL) navigation systems and lastly a simultaneous localisa­

tion and mapping (SLAM) unit. The former is the cheapest option whist remaining 

very accurate especially if one is employing the latest Wide Area Augmentation Sys­

tem feature known as VvAAS in t he USA. Essentially, it is a system of satellites and 

ground stations t hat provide GPS signal corrections. An accuracy of better t han 

three meters 95% of the time is attainable by this system. The European counterpart 

of this system is known as the European Geostationary Navigation Overlay Service 

(EGNOS). Even so, one apparent disadvantage is that the posit ioning data from the 
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Figure 3.11: Velocity and displacement measurements from MTB-9 IMU 
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GPS is not accessible when submerged. The LBL and SBL are very accurate and 

yet precise, and have been frequently used for AUV's surveying task but the financial 

cost is prohibitive for the majority of missions. The final option is rather promising, 

the SLA 1 technology allows full AUV autonomy to be exercised but requires a high 

resolution forward looking sonaT and a dedkated processing unit, which can be expen­

sive (Carpenter 1998, Tomatis et al. 2001, Rikoski et al. 2002). Nonetheless, SLAM 

technology is still in a very premature stage in terms of commercial exploitation. 

Assuming that the AUV is armed with a SLAM technology, the access of positional 

measurements may be inhibited for a period of t ime due lo the failure to localise 

any reliable landmarks. Once Lhe SLAM unit recalibrates itself, a large deviation , 

particularly with regards to position measurement, will be observed initially. Similar 

phenomenon can be observed from AUVs that calibrate the IMU using GPS on the 

surface. This effect will be simula ted in this thesis to check the region of attraction 
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of the candidate controllers. 

3.4 Conclusions 

Details with regards to modelling of AUVs and disturbances to be used for the remain­

ing of the thesis have been presented. The mathematical modelling of the AUVs were 

discussed based on a generalised model. Two specific AUVs mathematical models, 

the three DOF Remus and the A UTOSUB were outlined, followed by the appropriate 

assumptions. 

It is critical to simulate the disturbances that will be endured by the AUV in or­

der to assess its performance in real-life. Herein, two forms of disturbances, ocean 

cunents and low frequency bias sensor noise were emphasised. Experiments were 

conducted to demonstrate the characteristics of the latter type of disturbance. With 

this understanding in mind, this completed the system modelling chapter and one 

shall commence with a novel motion planning technique in the next. 



Chapter 4 

The Rapid Exploring Random Tree 

This chapter presents a novel motion planning technique based on the rapid-exploring 

random tree (RRT) algorithm (LaValle 1998), which is then applied to an AUV model 

in order to assess its viability. The enhanced version of the aforementioned algorithm 

is proposed to ameliorate the optimality of the returned solution. F\1rthermore, in­

sights acquired from the study pertaining to the RRT behaviour, are thoroughly 

discussed. Some solutions to eliminate or failing that, extenuate the negative effects 

are proposed and addressed. As a consequence of this in depth analysis, a paper Tan 

et al. (2004a) was presented in an international conference. 

4.1 Background 

This chapter shall commence by investigating the prevailing issues suffered by most 

classical motion planning and path planning algorithms. It has been shown in Section 

2.5 that the majority of the proposed techniques (Hyland 1990, Fogel and Fogel 1990, 

Arinaga et al. 1996, Arai et al. 1998, Sugihara 1998, Fox et al. 2000) do not explicitly 

take into account the dynamics of the vehicle. Secondary smoothing methods such 

as spline interpolation, are often employed to manipulate the path into conforming 

the vehicular dynamics. Without this interpolation process, one cannot ascertain 

that the paths are executable in practice. Frequently, rather conservative constraints 

are imposed on the derivatives of the flight path in order to avoid violating the low-

78 
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level feedback controller operating regime. To simplify further the process, the AUV 

body geometry is neglected by shrinking it into a point via the application of the 

configuration space concept. This assumption is valid if the vehicle considered is 

operating in a sparse environment. This trend is fast changing as AUVs are now 

being deployed in littoral waters, an environment densely populated by obstacles. 

The dynamic and unpredictable elements of littoral waters render it crucial for an 

AUV to exploit its dynamics to navigate. 

Section 2.5 articulates that the approximate cell-decomposition methods such as A*, 

dynamic programming and breadth-first search are highly susceptible to the curse of 

dimensionality. Therefore, it is reasonable for one to concentrate on randomised al­

gorithms (Branicky et al. 2002). These algorithms do not have the completeness and 

optimality properties of the previous algorithms. However, their robustness to state 

explosion effects tends to make them preferable in practical and real-time applica­

tions. One interesting randomised algorithm is the RRT (La Valle 1998, La Valle and 

Kuffner 2000), which can be considered as an incremental form of Probabilistic Road 

Map (PRM) method and is designed to search efficiently nonconvex high-dimensional 

spaces. It possesses a few fascinating properties as outlined below: 

1. It is biased to the unexplored space via a probabilistic search method. The free 

space bias property is vividly depicted in Fig 4.1. Both Fig 4.1(a) and Fig 4.1(b) 

indicate an identical tree but in different representations to assist exposition. 

From left to right, Fig 4.1(a) shows the gradual growth of the tree starting 

from q;nit extending to the free space (largest Voronoi regions). Alternatively, 

Fig 4.1 (b) highlights the nodes of the tree and the relevant space partitions 

correspondingly. This form of representation is termed as a Voronoi diagram. 

Fundamentally, the Voronoi diagram displays the locus of all points that are no 

nearer to one point than another. 

2. Although the RRT algorithm is nondeterministic, it has been mathematically 

proven to be probabilistically complete (LaValle and Kuffner 2000). This implies 

that given a sufficient amount of time, the algorithm will find a solution to 

any configuration problem if such a solution exists. This property is highly 

appealing in an algorithmic perspective, however, its usefulness in real-time 

implementation is questionable, as the run-time required to discover a solution 

can be intolerable. Nonetheless, The RRT algorithm run time is usually much 
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faster than the dynamics of AUVs. 

3. The simplistic nature of the algorithm also facilitates performance ttming, since 

only the metric and bias parameters need to be tuned. The RRT performance 

is actually rather sensitive to a prescribed metric as elaborated in Subsection 

4.4.4. 

4. It is capable of accommodating both algebraic (global) and differential con­

straints simultaneously, a vital feature for solving motion planning problems. 

In addition, algebraic constraints are induced by the static and dynamic ob­

stacles in the environment whereas differential constraints are inherent in any 

dynan1ical systems. It must be noted that the terms algebraic and global con­

straints will be used interchangeably in this thesis. Strictly speaking, concurrent 

solving of both constraints is also realisable via classical cell decomposition al­

gorithms. Even so, their susceptance to state explosion effects precludes their 

applications in time critical and high-dimensional problems. 

4.2 Problem Description 

Before looking into the details of the RRT algorithm, perhaps it is helpful to elaborate 

upon a general motion planning problem. Herein, the class of problems considered in 

this study can be formulated in terms of 9 components: 

1. X, state Space: An n-dimensional closed and bounded manifold, X C Rn. A 

set of continuous variables of Rn, on which the dynamics of the system occur. 

2. x; .. ;1, X goal , boundary conditions: X; nit E X free is the initial state vector and 

X goal C X free is a set of goal state vectors. 

3. D , collision detector: A function, D : X --> tTue, false, that determines 

if the global constraints are satisfied for a given state. In an algorithmic per­

spective; If D(x) = tTue, hence it denotes that the state X satisfies the global 

constraints. 
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Figure 4.1 : RRT propagation (a)(from left to right)An RRT growing from the initial 
state, Qinit , symbolised by a circle, to the unexplored regions. (b )The nodes and 
Voronoi representation of a gradually expanding tree. 

4. U , finite input set: A set , U C ll~m, which specifies the complete set of 

controls; U is independent of the state. Discretisation process is needed for 

cont inuous input . The ui E [uim in, UimaxJ, i = 1, .. . , m denotes an input in U 

t hat has m inputs. 

5. p , metric function: A function p: X x X ~ [0, oo). A weighted Euclidean 

metric is commonly employed. 

6. 6-t , RRT time increment: Time increment used by the algorithm to extend 

the RRT . Do not confuse this with M. 

7. A , goal tolerance : A E JR+, which denotes a threshold or tolerance such as 

lxgoal - xl < A so that a solut ion is reached. 

8. f , dynamic equation: An equation expressed as a set of fiTst order differen­

tial equations, x(t) = f (x (t) u(t)). It characterises the evolution of the state 
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and represents the differential constraints of a system. The equation can be 

nonlinear and time varying. 

9. 8t , dynamic equation time increment: Time increment used by the nu­

merical integration routines (Euler, Runge-Kutta, Predictor etc) to solve the 

dynamic equation. The Euler integration formula is given by x((t) + l'l.t) -

x(t) + f(x(t), u(t))l'l.t. 

In essence, the kinodynamic planning problem is to find a trajectory 1r : [to, t f] --> 

X free from an initial state Xinit to a goal state Xgoal E X goal or goal region within 

the tolerance ,\. A trajectory is defined as a time parameterised continuous path 

that satisfies both the algebraic and differential constraints. However, it can also be 

formulated in a way as a problem to find an input function u : [t0 , t 1] --> U that results 

in a collision free trajectory connecting both Xinit and Xgoal· As with most physical 

systems, input saturation and rate limit will also need to be taken into account. In 

some cases, it is also appropriate to select a path that optimiscs certain cost functions, 

such as the time to reach Xgoal or the control effort which corresponds to the energy 

consumption of the system. Due to its randomiscd nature, the generated path will 

be suboptimal. 

4.3 RRT Operation 

To better appreciate the RRT, one needs to understand the basic operation of the 

algorithm: Starting from an initial state, Xinit, a tree is grown through a process of 

adding edge and vertex in each time step (iterations) (Algorithm 4.1). The following 

step is to call a function to extend the tree edge (Algorithm 4.2). This function 

constitutes several important subroutines. 
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\ 
(a) (b) (c) 

Figure 4.2: RRT Operations (a) Shows a simplified representation of a partial RRT 

with its initial state, Xini! (b) Shows the inclusion of random state, Xrand and selection 

of the nearest state, Xnear (c) Shows the addition of new state, Xnew and its connection 

to near state, Xnear· 

Algorithm 4.1 (BUILD_RRT). The following algorithm constructs an RRT, T, 
with I< nodes 
Require: X;nit 

1: call T.init(xinit) {initialise tree, T} 
2: for k = 1 to ]( do 
3: Xrand <---- RANDQM_STATE(.i3) {extend T, see Algorithm 4.3.} 
4: call EXTEND_RRT(T, Xrand) {extend T, see Algorithm 4.2.} 

{If x is within the goal tolerance.} 
5: if Xnew E A then 
6: break 
7: end if 
8: end for 
9: return T 

Algorithm 4.2 (EXTEND__RRT). The following algorithm extends a tree, T, to­
wards x by taking a fixed step from the closest node in T towards x. 
Require: T, Xrand 

1: Xnear <---- NEAREST_NEIGHBOUR(x, T) {Find the nearest node in T to x, see 
Algorithm 4.4.} 

2: Ubest, success, Xnew <---- SELECT _lNPUT(T, Xnean Xrand) {Finding the 'best' con­
trol input,see Algorithm 4.5.} 
{Checking for global constraints (collisions).} 

3: if D(xnew)= TRUE then 
4: call ADD_ VERTEX(T, xnew) 

5: call ADD__EDGE(T, Xnew) 

6: end if 
7: return T 
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Assuming that one has a partial RRT as shown in Fig 4.2(a), the subsequent step is to 

introduce a random state into the configrnation space, Xrand (Fig 4.2(b)) (Algorithm 

4.3). The nearest-neighbour function (Algorithm 4.4) determines the 'nearest' state 

to the random state, Xrand to be extended. Here, the term 'nearest' is typically defined 

by a metric. 

Algorithm 4.3 (RANDOM_STATE). This algorithm adopts an approach where 
the probability is slightly bias to returning the goal state. 
Require: {3 

1: 'Y t-- RANDOM[O, 1] {RANDOM is a standard uniform random number gener-
ator function.} 

2: if 'Y :::: {3 then 
3: return RANDOM_STATE() 
4: else 
5: return Xgoal 

6: end if 

Algorithm 4.4 (NEAREST _NEIGHBOUR). This algorithm uses a naive 
method to check all x in T in order to find Xnear which is nearest to Xrand· 

Require: T, Xrand 

1: dmin f-- 00 

2: for all x in T do 
3: d t-- p(x, Xrand) {Find the nearest node in T to x.} 
4: if d < dmin then 
5: dmin f-- d 
6: Xnear f-- X 

7: end if 
8: end for 
9: return Xnear 

As shown in Fig 4.2(c), a new state, Xnew, that is E-distance away from Xnear is then 

computed. E is a Minkowsky distance metric. The computation is required to find a 

suitable input Unew, that is applied for a time increment, 6t so that it can bring Xnear 

to Xncw (Algorithm 4.5). In essence, the computation is achieved by using a suitable 

numerical integration function. Before one proceeds to adding Unew to the tree, it 

is necessary to check if Xnew satisfies the global constraints or reaches the goal state 

(Algorithm 4.2). The process is then repeated until either the maximum number of 

iterations or the goal is reached. 
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Algorithm 4.5 (SELECT _INPUT). The following algorithm evaluate, U of Xnear 

and select the optimal control, llbest with reference to the metric p, that can grow 
Xnear 'closest' to Xrand· 

Require: T, Xnear 1 Xrand 

1: dmin <--- 00) 

2: success <--- false 
{Test all inputs of Xnear·} 

3: for all u in U do 
4: Xnew <--- NEW _CONFIGURATION (T, Xnean u, ~t) {Integrate the equation 

using Euler or Runge-Kutta method.} 
5: if D(xnew)= TRUE then 
6: d <--- p(Xnew 1 Xrand) 

7: if d < dmin then 
8: dmin <--- d 
9: success <--- true 

10: llbes! <--- U 

11: end if 
12: end if 
13: end for 
14: return ubest 1 success, Xnew 

4.4 RRT Performance Enhancement 

4.4.1 Bias 

RRT performance can be significantly improved by the introduction of certain biasing 

techniques. One such technique is to employ a Gaussian distribution function such 

that the expected value is located at the goal state as approached by Kim and Os­

trowski (2003). Likewise, one can use a function to return either the goal state or a 

random state depending on a preset bias parameter as implemented in this study. The 

accompanied pseudocode is given in Algorithm 4.3. Basically, the bias parameter, (3, 

with value ranges from zero to one is tuned to improve its searching performance. A 

low value near to zero will emphasise the free-space exploration, random search char­

acteristic. Conversely, a high value near to one, transforms the RRT into a form of 

'greedy' algorithm, a search directed to the goal direction. Understandably, a compro­

mise between these two characteristics must be struck, and deducing from numerous 

experiments, a value from 0.05 to 0.2 has shown to provide adequate performance for 

most problems. 
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4.4.2 Quasi-random 

Low cliscrepancy sequences (quasi-random) such as t he Hammersley (Hammersley 

1960) and the Halton sequences (Halton 1960) have been argued to be more effi­

cient than the pseudo random sequence (Branicky et al. 2002). Theoretically, the 

former sequence possesses certain desirable properties such as low discrepancy or 

improved uniformity over the sampling space. The generation of an element of a one­

dimensional Halton sequence within the interval [0, 1] is calculated using Equation 

4.1 and Equation 4.2. Different prime numbers starting from the smallest , are used 

for the mult i-climensional sampling case. 

00 

""' - k- 1 Xi = L...., nk,iP (4.1) 
k=O 

with i > O,p = 2 and nk,i determined by the following equation: 

00 

i = L nk,iPk ; 0 ::; n k,i ::; p ; nk,i E N (4.2) 
k=O 

Fig 4.3(a) and Fig 4.3(b) show the Voronoi representation of 100 points generated 

by the pseudo-random and quasi-random generators, respectively. Notice that the 

pseudo-random points exhibit pronounced clustering behaviour, whereas the quasi­

random points are more uniformly distributed. 

(a) (b) 

Figure 4.3: Voronoi diagTam interpretation of 150 samples of (a)Pseudo-random and 

(b )Quasi-random point 
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Interestingly, the Hammersley sequence has been proven to possess better dispersion 

properties in a technical measure such as the discrepancy, but suffers from one glar­

ing issue which precludes its wide spread adoption. Unlike the Halton sequence, the 

quantity of generated points must be known a priori before commencing the compu­

tation. For instance, if one has computed a Hammersley sequence of length 100, and 

would like to compute a Hammersley sequence of length 200, one must discard the 

current values and restart the whole process again. By contrast, if one computes 100 

points of a Halton sequence, and then 100 more, and the result will be identical as 

computing the first 200 points of the Halton sequence in a single calculation. 

Experiments were conducted to inspect the performance difference between the quasi­

random generator based on the Halton sequence and the pseudo-random sequence 

when applied in RRT. The pseudo-random sequence is provided by a built-in C func­

tion, purported to be a linear congruential generator (LCG) (Knuth 1997). Despite 

the fact that the quasi-random sequence merit has been proven for the PRM method 

(Branicky et al. 2002), the results obtained for the RRT case are nonconclusive. In 

fact, the results are in concordance to that reported by Levine (2004). Therefore, the 

remaining simulations shall adopt the pseudo-random number generator. 

4.4.3 Computational bottlenecks 

Perusing through the algorithm sequence, one will notice that the two significant 

bottlenecks of the RRT algorithm are the nearest-neighbour (NN) subroutine and the 

collision detection subroutines. 

Nearest-neighbour 

The naive nearest-neighbour (NN) version which reqUires all of the nodes to be 

scanned, is the most computationally intensive. In this basic NN implementation, 

a search takes a time complexity of O(dn), where d is the configuration space dimen­

sion and n is the number of nodes in the tree. Clearly, the performance of this linear 

version algorithm degrades substantially as the tree expands. A more efficient data 

structure, implemented in a form of a template by Andrews (2001) is recommended 
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for faster query. It is claimed that the algorithm can query the nearest neighbour 

in CJ(lgnlgd)) time, where lg denotes log2. To cater for real-time motion planning 

in fast mobile robots, Bruce and Veloso (2002) adapted the kD-tree, a form of data 

structure for fast searching, into the RRT algorithm. By embedding some additional 

novel features, they then christened the new algorithm as the execution extended 

RRT (ERRT). 

Since exact query result from the NN search is not compulsory for the proper func­

tioning of the RRT, this robust characteristic can be exploited by substituting the cor­

responding search with the approximate nearest neighbour (ANN) algorithm (Arya et 

al. 1998) or the approximate kD-Tree ( Greenspan and Yurick 2003) that yields better 

computational efficiency. The ANN algorithm is expected to run in CJ(a(d, e) log n) 

time, where a(d, E) :::; d[1 + 6d/E]d, and E E R The queried node will be bounded 

within a distance of (1 +E) from the actual nearest neighbour. The following simu­

lations, however, only employ the naive version of the NN search, since the primary 

objective herein is to examine the viability of RRT to solve the AUV motion planning 

problem. Algorithm efficiency issues shall be relegated to future research thereof. 

Collision detection 

Collision detection in this context pertains to a subroutine for detecting if two or more 

models are intersecting. The collection of these subroutines also known as an engine 

is predominantly used in games and CAD softwares. Regretfully, the computational 

demand frequently escalates as the dimension and complexity of the obstacle model 

are increased. Additionally, nonconvex obstacle models also compound the complex­

ity of the calculations. For cases like this, high quality collision detection libraries are 

necessary to minimise the computational demands (Lin 1999). The following simula­

tions avert the above mentioned problems by replicating the obstacles as rectangles 

and circles only, both are nonconvex polygons. 
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4.4.4 Metric sensitivity 

It has been mentioned before that a suitable metric plays an important function in 

the operation of RRT. To add, in fact the intrinsic operation of RRT is fundamentally 

based upon Voronoi region bias (free space), which in effect depends predominantly 

on the embedded metric used. A metric, sometimes also known as a norm, is a 

simple and yet elegant mathematical method for assessing the 'closeness' between 

two elements. It is analogous to the concept of distance. 

An appropriate metric, nevertheless, is indeed problem specific. The ideal metric is 

the optimal cost-to-go, which is the cost to move from one state to another state 

under the optimal trajectory. Interestingly, having knowledge of a perfect metric 

implies having knowledge of an optimal solution, which is the solution to the motion 

planning problem itself. From the discussion above, it can be inferred that a useful 

metric will be the one that can closely approximates the perfect metric. One near 

ideal metric is the quadratic performance index. To be precise, it is the ideal metric 

if the system dynamics are linear and there exists no global constraints. The metric 

p in the form of cost function or performance index is expressed with respect to u as 

(4.3) 

while satisfying the differential constraint, 

f[[x(t), u(t), t]- x(t)] = 0 

where pis a function of (xnear> Xrand, u). Note that Equation 4.3 assumes an obstacle­

free environment, hence no global constraints are being imposed. It has been discov­

ered that RRT performance tends to degrade as p and p* diverge (La Valle and Kuffner 

1999). In essence, the problem outlined above is an optimal control problem. The 

solution, frequently solved using numerical methods, can be time consuming since it 

entails solving a two-point boundary-value problem. The cost might be the distance 

travelled, system response performance, energy consumed, time elapsed during the 

execution of the trajectory, or any combination. 

Therefore, the most popular metric utilised for most applications is the weighted 
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Euclidean distance. It is a compromised solution between solution optimality and 

computation issues. The metric in a two dimensional case can be expressed as 

J a 1 xi + a2x~. The two constant coefficients a 1 and a 2 are weighting coefficients. 

This metric functions adequately in most problems and can be easily generalised 

to any number of dimensions. In fact, the Euclidean distance is a special case 

of the Minkowski Lm distance metric. For any integer m 2:: 1, the Lm distance 

between points p = (PbP2, .. ·,Pd)) and q = (q1,q2, ... ,q3) in !Rtd is defined as 

r./"£1=1 lP; - q; I m. In the limiting case where m = oo, this is equivalent to max1s;is;d IP;­
q;j. The L1 , L2 and Loo metrics are known as the Manhattan, Euclidean, and max 

metrics, respectively. Levine (2004) reported that a combination of Euclidean and 

Manhattan metrics function very well for a hybrid system. Then again, understanding 

each of these metrics potential is still a much researched subject. 

For holonomic path planning problems in RRT based planners, the Euclidean metric 

usually produces excellent results. However, in an environment with global con­

straints, Euclidean metric can yield incorrect information. With reference to Fig 4.4, 

one can observe how incorrect the Euclidean metric is in accessing the true cost-to-go 

in an obstacles filled environment. Node x3 is considered closer to x 1 than x 2 to x 1 . 

Understandably, this is an error as if one refers to the correct cost-to-go, x 2 is in 

reality nearer to x 1. 

Further aggravating the situation is the problem involving differential constraints 

and control saturations. Here again, the Euclidean metric has the propensity to 

provide misleading information, which consequently degrades the RRT performance. 

Fig 4.5 illustrates how node x 2 is considered to be nearer to the Xrand (distance B), 

hence being selected for expansion in the direction of Xrand· However, the differential 

constraints inherent in the AUV's dynamics impose limitation to the AUV's turning 

radius. The AUV is then coerced into executing a turning manoeuvres to arrive at 

Xrand, but unable to do so completely. If node x 1 is selected instead, in spite of having 

a longer distance to Xrand, the AUV will arrive at node Xrand not only in a shorter time 

duration but via a less complex path. Also, depending on the structure of the AUV's 

dynamics, incorrect tuning of the weighting coefficients of the Euclidean metric can 

introduce unwanted bias into the RRT, diverging the search from the terminal state. 

Figure 4.6 is used to better elucidate the above issue. It portrays an RRT simulation 

run using a simple kinematic car. The car model is given by Laumond (1998). The 
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Figure 4.4: Euclidean metric giving misleading information with reference to the 
cost-to-go metric. 

Figure 4.5: Euclidean metric differential constraints problem 

heading control authority is via the front wheel and the steering angle is bounded 

to ± 15°, acting as saturation constraints. The speed is held constant. Notice the 

numerous arc-shaped paths branching from the main tree, a clear evidence of the 

above mentioned problem. 

Bruce and Veloso (2002) implemented a technique that is worth mentioning, they 

modified the distance metric to include not only the distance from the nearest state 

to the target st ate, but also from t he root of t he tree, multiplied by some gain values. 

A higher value of the gain value results in shorter paths from the root to the target 
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Figure 4.6: An RRT simulation based on a simple kinematic car model. 

state, but also decreases the amount of exploration of the state space, biasing it near 

to t he initial state . 

One can now conclude that designing a good metric is a difficult problem and re­

quires much knowledge in the problem domain. In addTessing this issue, Cheng and 

La Valle (2001) have devised several methods to alleviate the dependency on the met­

ric by applying information collected dming t he exploration, rendering the RRT less 

metric-sensitive and more robust. Briefly, the first method is to store t he status of the 

'expanded' inputs and the second one is to collect the collision violation frequency in­

formation as the RRT explores. Two of their proposed methods are also incorporated 

into the following simulations. 
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Exploration Information 

The crux of the concept here is to acquire exploration information of each node to 

avoid node duplication and collision checking of the particular used state. Each node 

status concerning its input is recorded as either expanded or not expanded (Algorihtm 

4.6). The expanded input will be excluded from the search space. 

Constraints Violation Frequency (CVF} 

The second method is to extract the environment information pertaining to the ob­

stacles by recording the state collision tendency. This information is kept in the form 

of constraint violation frequency (CVF). The objective here is to avoid expanding the 

state in the region where a collision is bound to happen, hence biasing the search to 

the free space. Figure 4.7 is provided to assist the following exposition. When a child 

node of a state, xd in this case, has collided (violated), a value of ~ will be added 

to it. The CVF of the parent state, Xc will then be increased by n!2 , this process 

propagates through the whole tree until it meets the initial state xk with the CVF 

of ;f... The CVF is a monotonic increasing quantity, it starts from zero, but when a 

collision occurs, it is recorded and added to the existing CVF. A CVF of zero denotes 

that the all the child states are free to extend, diametrically, a CVF of one means 

no expansion is possible. Hence states with less CVF will be given more priority to 

expand since they are more likely to evade the obstacles. A more detail explanation 

is given by Cheng and LaValle (2001). 
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The calculation of the CVF can be computationally taxing if the tree is complex, or 

has a large input set and long input sequences. For each expansion, it is reqllired to 

trace back all the parents until the origin node. It is decided after many experiments 

that ten backtracking depth (stages) are sufficient for practical implementation. The 

corresponding pseudocode is given in Algorithm 4. 7. The corresponding CVF updat­

ing code is outl ined in Algorithm 4.8. 

4 .4 .5 Mult iple trees, subconnection and tree prunning 

Several researchers also advocate using multiple trees and tree pruning techniques 

to ameliorate the RRT performance (Li and Shie 2003). lnde cl, the multiple trees 

RRT version does provide a fast solution but it s effectiveness is limited to problems 

with algebraic constraints and holonomic systems. This is caused by the difficulty 

of connecting the trees without any gap in the presence of differential constraints. 
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Algorithm 4.6 (NEAREST_NEIGHBOUR2). This is an enhanced version of 
Algorithm 4.4. Here the expanded and CVF information are ut ilised. 
R equire : Xrand, T 

1: dmin--- 00 

2: dmin'--- 00 

3: for all x in T do 
4: if 3u of x are not EXPA DED then 
5: d --- p(x, X rand) 

6: if d < dmin' then 
7: dmin' --- d 
8: X near'--- X 

9: end if 
LO: r--- RANDOM[O, 1] 
11: if r > a(x) then 
12: if d < dmin then 
13: dmin--- d 
14: Xnear --- X 

15: end if 
16: end if 
17: end if 
18: end for 
19: if dmin =f:. oo then 
20: return Xnear 

21: else 
22: return Xnear' 

23: end if 
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Algorithm 4.7 (SELECT_1NPUT2). This algorithm records the status of the 
inputs to avoid state duplications. 
Require: T, Xnear> Xrand 

1: dmin f-- oo; 
2: success <-- false 
3: for all u in U do 
4: if 3u of U are not EXPANDED then 
5: Xnew <-- NEW_CONFJGURATJON(T, Xnean U, 1':\t.) 
6: if D(xnew)= TRUE then 
7: d <-- p(Xnew, Xrand) 

8: if d < d,;, then 
9: drnin <-- d 

10: success<-- true 
11: llbest <-- U 

12: end if 
13: else 
14: mark u as EXPANDED 
15: call UPDATE_ TREECVF(T, Xnear) 

16: end if 
17: end if 
18: end for 
19: mark ubest as EXPANDED 
20: return Ubest 1 success, Xnew 

Algorithm 4.8 (UPDATE_TREECVF). The following algorithm updates the 
CVF value of the tree using a recursive backtracking method. 
Require: T, Xnear 

1: depth <-- 2 
2· R <--.!.. . m 

3: a(Xnear) <-- a(Xnear) + R {a(x) is a variable that records the CVF of x.} 
4: R <--...!... m2 

5: X1 <-- Xnear 

{Recursive trace back only 10 edges deep} 
6: while x, # X;nit and depth~ 10 do 
7: x2 <-- pm·ent(xt) 
8: a(x2) <-- a(x2) + R 
9: depth <-- depth + 1 

10: R <-- ma!plh 
11: XJ <-- X2 

12: end while 
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Another interesting characteristic of the single tree RRT is its tendency to grow a few 

major branches at the initial state thus making connection with the terminal state 

very problematic. In obviating this problem, one method is to introduce another start 

tree, with a different time increment and metric when it is at the proximity of the 

goal states, thus improving the probability of connection (Kim and Ostrowski 2003). 

Bruce and Veloso (2002) devised a technique that utilises way point cache, a collection 

of feasible states from previous runs, for efficient replanning. Here the tree is bias 

using a parameter not only to the goal and free space, but also to the previous states. 

In essence, this technique attempts to reuse the information gathered in the previous 

run for a faster trajectory search. 

4.4.6 Hybrid planner 

Recalling from Section 4.4.4, the RRT tends to degrade as the p and p* diverge. One 

promising technique initiated by Frazzoli et al. (2002) is to combine an optimal plan­

ner with the RRT. The optimal planner which exploits the precomputed trajectory 

primitives is used to plan an obstacle free path and the RRT attempts to reroute 

the path if there are obstacles. Detail simulation studies using a nonlinear dynamic 

model of a small helicopter has been presented. This technique is indeed very promis­

ing and is adopted herein. A more detail exposition of this novel method is presented 

in Chapter 5. Other researchers prefer to merge RRT with collocation and nonlinear 

programming (Karatas and Bullo 2001). The trajectories obtained via simulation 

studies show substantial improvement compared to the individual methods. Alter­

natively, Toussaint (2000) combined motion planning using the RRT with nonlinear 

control employing the H 00 technique for an underactuated vehicle. Not only did he 

utilise a H 00 filter for improving the planned motion of the vehicle but he also ad­

dress multiple vehicles planning problems. His simulations, however are limited to 

only planar motions. 
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4.5 Reconnection 

This study proposes a process termed as reconnection where the algorithm is ini­

tially executed to obtain a feasible trajectory which is then trimmed at a certain 

point and reexecuted again. This method exploits two inherent properties of RRT: 

(1) Its propensity to grow a few major branches from the initial point where these 

major branches are potential suboptimal trajectories. (2) Reconnecting the RRT en­

tails recycling some of the residual branches thus achieving certain computational 

advantages compared to initiating a new tree. Certainly, two components need to 

be addressed: (1) the location of the trimming point and (2) the number of reruns 

required. 

Strictly speaking, this method is a variation of tree pruning methods recommended 

by a number of researchers (La Valle and Kuffner 1999, Levine 2004). The novelty 

of the concept here is, instead of using this teclmique to assist in finding the goal, it 

is employed for optimising the trajectory with regards to a prescribed performance 

index. 

In principle, a simple explanation of the algorithm flow is as follows: Once the first 

feasible trajectory is found, it is backtracked to the initial point. The trimming point 

is selected from 0.4 to 0.7 of the trajectory length. A value of 1.0 is equivalent to 

starting a new run since the whole core branch is trimmed. A too high value will 

risk destroying important branches and a too low value will not provide substantial 

improvement as the RRT will attempt to just reconnect the trimmed branch. Several 

experiments conducted by the author have indicated that two to three runs are suf­

ficient to obtain a reasonable suboptimal trajectory. Additional runs will apparently 

deliver better solutions, but the improvement obtained is marginal, hence this effort 

is not being pursued to reduce any extra computing effort. Algorithm 4.9 is given 

below. 

Algorithm 4.9 (TRJM). The following algorithm constructs an RRT, T, with J( 

nodes 
Require: T, x, Xi nit 

1: tmj <---- BACKTR.ACK(T, x)) {Backtrack from x to X;n;t. T} 

2: T <---- TRIM(0.5 * traj) 

3: return T 
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Figm e 4.5 reveals the consequence of applying the reconnection algorithm. Notice the 

first feasible path (grey colour) has been found and trimmed. The trimming coefficient 

is set to 0.5 in this case. The intrinsic RRT property of selecting the nearest node 

resulted in the extension of the longer untrimmed trajectory (dark colour) . Both the 

trajectories are compared to select the shortest amongst the two. One can infer from 

the previous sentence that the current optimisation is in terms of distance, however, 

one can also optimise for minimum time or control effort. Amendments to the RRT 

algorithm are then incorporated to produce Algorithms 4.10 and 4.11. 
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Figure 4.8: Motion planning with RRT in an environment populated with static 
obstacles. The reconnection process is also being depicted. 
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Algorithm 4.10 (BUILD...RRT2). The following algorithm constructs an RRT, T, 
with K nodes 
Require: Xinit, K, M 

1: m <---- 0 {initialise m, a global variable} 
2: call T.init(xinit) {initialise tree, T.} 
3: for k = 1 to K do 
4: Xrand <---- RANDOM_STATE(,B) {extend T, see Algorithm 4.3.} 
5: call EXTEND_RRT2(T,Xrand) {extend T, see Algorithm 4.11.} 
6: m <---- m + 1 

{If x is within the goal tolerance.} 
7: if Xnew E A then 
8: T2 <---- TRIM(T, X, Xinit) 
9: T2 <---- BUILD_RRT2(x, K) 

10: if T2 > T then 
11: T best <---- T 
12: end if 
13: end if 

{if maximum iteration limit is reached.} 
14: if m = M is TRUE then 
15: break 
16: end if 
17: end for 
18: return T 

Algorithm 4.11 (EXTEND...RRT2). The following algorithm extends a tree, T, 
towards x by taking a fixed step from the closest node in T towards x. 
Require: T, Xrand 

1: Xnear <---- NEAREST_NEIGHBOUR(x, T) {Find the nearest node in T to x, see 
Algorithm 4.6.} 

2: Ubest. success, Xnew <---- SELECT _lNPUT(T, Xnear. Xrand) {Finding the 'best' con­
trol input,see Algorithm 4. 7.} 
{Checking for global constraints (collisions)} 

3: if D(xnew)= TRUE then 
4: call ADD_VERTEX(T, Xnew) 

5: call ADD..EDGE(T, Xnew) 

6: end if 
7: return T 
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4.6 Simulation Results and Discussion 

For these simulations, the sampling space was set to 200 m x 200m in dimension, 

slightly bigger than the environment, as illustrated in Fig 4.5. Here, one assumes 

an ideal case where a priori information of the environment has been catered and 

there is no external disturbance imposed by the environment. Admittedly, these two 

assumptions are not entirely true as far as practicability is concerned. The effect of 

an external distmbance will be addressed in Chapter 6. The Remus AUV model, 

as delineated in Section 3.2.1, was employed. The case of incremental sensing where 

only partial environment information is relegated to future work. 

The convention here is to take the heading angle to start from the x axis (inertial) 

and positive when turn counter clockwise. The algorithms were all written in C on a 

2.1 GHz Pentium IV machine, with 512MB of RAM and running Windows XP. The 

algorithms were implemented in Matlab initially, before being ported to C language. 

Significant performance improvement in terms of running time, approximating 10 

times the speed gain was observed after the language migration. Nonetheless, the 

codes were programmed without performance optimisation as a priority, clearly con­

siderable speed increment can be expected if this is pursued. 

The subsequent simulations were run with 2000 maximum nodes and 4000 itera­

tions, terminating when either criterion is reached or if a solution is fmmd. The 

AUV was assumed to be cruising at 1.5 m/ s. The AUV configuration variables were 

set to [0 0 1], and the goal state to [150 100 ... ] according to the following format 

[x(m) y(m) ,P(md)]. Whereas, ,.. denotes a variable (unconstrained). 

The Euclidean distance metric was employed for all the cases. 

During preliminary simulation studies, all three configuration variables, x, y and 

'If were used in the Euclidean metric but additional studies indicated adverse RRT 

behaviour. Upon further inspection, it was discovered that the RRT is indeed very 

sensitive to the weighting of the Euclidean metric, namely some states have been 

supplying contradictory information. For example, in an underactuated vehicle case, 

such as when an AUV is travelling in a straight path to a target, the configuration 

variables are in fact coupled. The AUV needs to align its heading and body such that 
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it coincides with the line of sight to the destination. More predictable behaviour was 

observed when the 'lj; variable is omitted. This is acceptable since the priority here is 

collision avoidance. However, if the final heading of the AUV is deemed important, 

then the heading state should be incorporated into the RRT algorithm. 

The goal tolerance was defined as a 5m radius. This accuracy can easily be achieved 

via a modern GPS equipped with a WAAS or EGNOS when the AUV surfaced. Alter­

native one can utilise the SLAM technology instead. The time increment and dynamic 

equation time were set to 3s and O.ls respectively. The Runge-Kutta method was 

used to propagate the dynamic equation. The rudder deflection input was discretised 

into 7 elements of input. Instead of assuming a constant input for D.t, the input 

was linearly interpolated as it propagates through the state equations. This method 

allows one to employ a larger time increment while easily taking into account the 

input rate constraint. All the plots shown are considered to be of an enhanced RRT 

unless stated otherwise. 

Two forms of the RRT algorithms, the generic algorithm (La V a! le 1998) and the 

enhanced algorithm, as given in Algorithm 4.1 and Algorithm 4.10 respectively, will 

be thoroughly compared. In order to verify the algorithm performances several testing 

scenarios must be appropriately designed. One shall rank the RRTs performance 

mainly using the four criteria as listed below, 

1. The time where the first feasible trajectory is given. (Critical in real time 

applications.) 

2. The quality of the trajectory reference to minimum distance travelled. (Recon­

nection) 

3. The time required in providing a 'better' solution. (Applicable only to the 

enhanced RRT.) 

4. The frequency of failure. (Unable to find a solution giving the require time or 

number of node constraints.) 
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4.6.1 Static environment 

A sample of a feasible trajectory (bold) found by the enhanced RRT algorithm is 

depicted in Fig 4.9. Figure 4.10(a) shows its associated x-y-time plot, while (b) ru1d 

(c) presents two ident ical CVF plot in different perspective for better visualisation. 
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Figure 4.9: A feasible trajectory found in a static environment 

The trimmed trajectory is not shown to avoid cluttering the view. otice that the 

higher magnitude of CVF where the RRT collides with the obstacles. The rudder 

input history is depicted in Fig 4.10 (d) . The chattering behaviour is apparent, and 

is not conducive for actuator life-span. Since the RRT is a randomised algorithm, 

a different run will yield a different result, therefore four unique feasible trajectories 

aTe provided in Fig 4.11 for comparison. 
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Figure 4.10: Static environment case (a)x-y-time plot (b )CVF plot ( c)CVF plot (d) 

Rudder input history 

Figure 4.12(a) shows a histogram plot of 100 simulation samples comparing both 

the enhanced RRT and a generic RRT performance. It is clear from the histogram 

that the enhanced algorithm returns the solution in shorter time, par t icularly for the 

fu·st feasible trajectory. In Fig 4.12(a) , it is observed that the enhanced algorithm 

out performs the generic RRT in terms of t ime response while returning the best 

suboptimal trajectory, shortest distance in this case (Fig 4.12(b)). The two means 

were then compared using at- test , it is significance at t he 0.01 level alpha whilst the 

99% confidence interval for the true difference in means is [36. 7 60.5] . However, one 

must be aware that t rajectory selected remains suboptimal, future extension of the 

algorithm is likely to take this factor into consideration. A detail descriptive statistics 
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comparison of both the algorithms can be found in Table 4.1. The table indicates that 

the generic RRT has a higher failure rate. The failures are caused by the program 

reaching the predefined maximum nodes number or maximum iterations. Once again, 

the enhanced RRT performance is superior in comparison to the generic version. 

Median assessment provides a more unbias comparison for the skewed distributions, 

as evidenced by the histograms. 
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Figure 4.11: Four trajectories in different runs (static environment) 
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Figure 4.12: Histogram results of 100 samples run (static environment) 

Parameters Enhanced RRT Generic RRT (La Valle 1998) 

Number of nodes used(mean) 870.5 1254.5 

Number of nodes used(std) 397.5 515.5 

Computational Time( mean, s) 0.46 0.74 

Computational Time(std, s) 0.25 0.21 

Computational Time (median,s) 0.32 0.86 

Total distance(mean, m) 278.7 327.3 

Total distance(std, m) 23.8 33.0 

Total distance (median, m) 269.3 361.9 

Percentage of failures 6% 39% 

Table 4.1: Descriptive statistics collected from 100 samples run (static environment) 
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4.6.2 D ynamic env ironment 

Figure 4.13 shows a more interesting environment where both the dynamic and st atic 

obstacles are present . The dynamic obstacles were assumed to have constant velocity. 

If required , the uncertainty of their posit ion as time progresses can be replicated by 

expanding the obstacles size through time. Figure 4.14 indicates a feasible trajectory 

(bold) found by the RRT. Again, to assist in visualising the dynamic effect, it is plot­

ted with respect to t ime in t he z-axis (Fig £1. 15 (a) and (b)), in different perspect ive. 

Figure 4.15(c) illustrates a plot of the CVF magnitude. Notice an increase in the CVF 

value of the corresponding node when it collides with an obstacle. This information 

allows RRT to behave in a more 'intelligent ' way by avoiding an extension near to 

the colHsion area. 

0 ~ ~ W 00 100 1~ 1~ 1W 100 200 
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Figure 4.13: An environment with static and dynamic obstacles with t heir related 

parameters 
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The rudder input history reveals an average input that is biased to a negative rud­

der deflection starting at the mid-point of the trajectory till the t erminal state (Fig. 

4.15( c)). Notice, the rudder deflection tends to spend most of the time at approx­

imately go . This outcome is indeed, in conformity with the shape of the feasible 

t rajectory. Examination of the rudder input history illustrates a bang-bang cont rol 

effect , this phenomenon is caused by a large RRT time increment and partly at­

tributed by the nature of RRT which attempts to find the best input that can bring 

the current state nearer to the goal. Lastly, four unique feasible t rajectories plot of 

different run are presented in Fig 4.16. 
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Figm e 4. 14: Feasible trajectory found in an environment with static and dynamic 

obstacles 

Figure 4.17( a) shows a histogram plot of 100 simulation samples comparing both 

the enhanced RRT and the generic RRT performance. As in t he st atic case, the 

enhanced algorithm still returns the solut ion in a shorter time, specifically for the 

first feasible trajectory. But for the overall t ime, both of t hem are more or less 
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equally matched. Nonetheless, as illustrated by Fig 4.17(b), the enhanced algorithm 

still outperforms the generic RRT in terms of minimum distance but t he improvement 

is not as significant as t he case of static environment. 

A detail descriptive statistics comparison of both t he algorithms can be found in Table 

4.2. The table reports that both the RRT algorithms have near identical failure rate. 

It appears that this specific scenario is t rivial for the RRT algorithms as noted from 

the number of nodes, t ime consumed and the failure rate. Once again, the enhanced 

RRT performance is better in comparison to the generic version but not by any 

substantial margin. 
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Figure 4.16: Four feasible trajectories in different runs 
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Figure 4.17: Histogram results of 100 samples run (dynamic environment) 

Parameters Enhanced RRT Generic RRT (La Valle 1998) 

Number of nodes used(mean) 781.1 877.5 

Number of nodes used(std) 284.2 232.3 

Computational Time( mean, s) 0.49 0.47 

Computational Time(std , s ) 0.21 0.22 

Computational Time (median,s) 0.46 0.51 

Tot al dist ance(mean, m) 283.4 301 .3 

Tot al distance(st d , m) 52.2 45.3 

Tot al distance (median, m ) 336.4 370.8 

Percentage of failures 10% 11% 

Table 4.2: Descriptive statistics collected from 100 samples run (dynamic environ­

ment) 
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4.6.3 Fault tolerant 

Recently, there has been a sudden increase of interest in developing systems having 

very high fault tolerant capacity. One of a subcomponent of these systems is the fault 

tolerant control (FTC) system (Perrault and Nahon 1999, Sutton et al. 2001, Tortora 

2002). These systems commonly have high reliability and are important in terms 

of operational cost and mission safety. The control system is designed such that, in 

the event of an actuator failure, the remaining ones can be re-tasked to compensate 

and the mission can be completed. This fault tolerant design, demonstrated on the 

These us and ARC A UV s greatly enhances t he overall reliability of the system. Figure 

4.18 reveals a simulation run of a case where the rudder is partially jammed probably 

due to seaweed and discarded fishing net entanglement or ice built-up. 
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Figure 4.18: Plot showing a feasible trajectory (bold) for a crippled AUV 
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Instead of the normal rudder deflection range of ± 13.6°, it is constrained to operate 

from -0.5° to +13.6°. The effect can be deduced from the shape of the trajectories. 

The enhanced RRT algorithm found the goal in 3930 iterations and 1922 nodes in 

approximately 1.2s. This clearly demonstrates RRT as a promising subunit of a FTC 

system. There is no doubt that the aforementioned system will increase the survival 

rate of AUVs operating in a harsh and unpredictable environment. 
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(d) Rudder input history plot 

Figm e 4.19 (a) and (b) depict the x-y-time plot from an alternate angle. Figure 

4.19(c) shows the CVF plots. Examination of the rudder history (Fig 4.19(d)) shows 
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that the rudder deflection is now being restricted in a limited regime. Actuator 

saturation is detected and it can lead to complications in controller design and imple­

mentation. This can be avoided by prescribing a virtual bound (within the actuator 

saturation regime) in the RRT algorithm. This is required in practice since some 

control authorities must always be reserved in order to allow a proper functioning of 

the trajectory tracking controller. 
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4.6.4 Disadvantages 

The above appraisal has furnished plenty of in depth information pertaining to the 

RRT behaviour. Despite that the RRT based algorithm is endowed with various 

appealing characteristics, nonetheless a few of its critical deficiencies should not be 

overlooked. 

One apparent drawback of RRT is the requisite for a comprehensive environment 

information, which is frequently not achievable in practice. Sonar equipped AUVs 

can only perform incremental sensing of the environment, gradually establishing and 

constructing the surrounding information. Bruce and Veloso (2002), however, have 

argued that the fast computational response time of the RRT allows one to rerun the 

program once a new target is confirmed or when an obstacle intersects the prescribed 

safety threshold of the AUV. Future investigation upon this issue is warranted. 

Also, the RRT performance degrades drastically in a trapped environment such as 

those that have a small orifice or inlet. This symptom has been acknowledged by 

LaValle and Kuffner (1999). Figure 4.21 shows a trapped naive RRT tree. 

Conversely, Fig 4.22 depicts a successful trajectory found using the enhanced RRT 

algorithm. Nonetheless, this particular simulation utilises 11071 iterations and 3091 

nodes. A failure percentage of 78% is not encouraging even though it is much better 

than the generic RRT version which attained only 91%. There is little doubt that 

the accumulation of inputs and CVF information assist in making the enhanced RRT 

behaves more intelligently. Figure 4.23(b) and (c) which show the CVF plot superim­

posed with the trajectories in different perspective. A cluster of high magnitude CVF 

can be detected, in fact the increase in the CVF magnitude when the nodes collide 

with the obstacles is self evident, hence delivering crucial local information for the 

RRT success. The corresponding input history pertaining to the feasible trajectory 

found is plotted in Fig 4.23(d). 

Another less obvious failing of the RRT, is its dependency on a system dynamic 

model, to be precise, an AUV dynamic model in this context. Exacerbating this 

problem is, the majority of commercial A UV s do not have an existing mathematical 

description of their dynamics. As remarked in Chapter 3 the process of extracting 

the mathematical model is rather time consuming and financially unattractive short 
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Figure 4.21: A trapped tree in a challenging environment (Naive RRT Algorithm) 

term wise, hence explaining the apparent lack of industry enthusiasm in this aspect. 

Underst andably, this model dependency issue must be addressed if one expects the 

algorithm to be useful for AUVs. Because of this reason, Chapter 5 is devot ed to an 

interesting and yet pragmatic technique as a solution to t his problem. 

Apart from the above issues, al l of the rudder input histories exhibit severe chatter­

ing behaviour, as evident ly indicated in Fig 4.10(d) and Fig 4.15(d) . Admit tedly, the 

effect has been visually exaggerated by the t ime scale at x-axis of the plot. Even so, 

one cannot disregard t he existence of this negative phenomenon as it is an inherent 

characteristic of all randomised algorithms. This chat tering effect has a propensity 

to reduce the actuator lifespan and increase the energy consumption of AUVs. Mit­

igation of t his effect can be attained by decreasing the time increment of the RRT 

algorit hm. Smoothing of the cont rol inputs with a low pass fi lter might be an alter­

native solution. Nevertheless, t llis will not only alter the trajectory and the terminal 

state, but defeat the RRT paradigm itself, which is to find a feasible trajectory for 
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Figure 4.22: Successful trajectory found in a challenging environment (Enhanced) 
RRT Algorithm 

a dynamic system without any auxiliary processes. Again, Chapter 5 will deal with 

this issue. 

4 .7 Summary 

The objective of this study has been to compare and evaluate the feasibi lity of employ­

ing RRT algorithms in AUV motion planning problems. The chapter also introduced 

an improved version of motion planner for AUVs. The modified algorithm has been 

shown to be capable of generating feasible trajectories, satisfying both the algebraic 

and differential constraints. Its very short computational time makes it an ideal al­

gorithm for real-time applications. The novel reconnection method , proposed in this 

chapter has been demonstrated to provide shorter trajectories. The RRT clrawbacks 
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Figure 4.23: (a) x-y-time plot (b) CVF plot (c) CVF plot (d) Rudder input history 

were delineated and discussed. Certaiu solut ions to these problems are provided in 

the Chapter 5. It must be remembered that the algorithm is inherently a feedforward 

controller , a robust low-level feedback controller is needed to track t he prescribed 

trajectory when subjected to externaJ distmbance, as in practice. The designing of 

the tracking controller is nontrivial and is reserved for Chapter 6. 



Chapter 5 

The Manoeuvre Automaton and 

The RRT 

Chapter 4 discussed and demonstrated the inherent ability of RRTs when applied to 

the motion planning problem of an AUV. It was noted that the preceding technique, 

even though highly appealing and promising, still elicits several drawbacks which are 

not conducive for practical implementation. In the light of this complication, this 

chapter focuses on a novel formulation, known as the Manoeuvre-Automaton (MA), 

a method based fundamentally on system dynamic quantisation. The MA when fused 

with the RRT is not only capable of addressing a few of the inherent deficiencies of 

RRT but greatly extends the algorithm functionality and versatility. This algorithm 

is then extended to the multiple-nested node version and also to cater for the case of 

a varying terminal state (Tan et al. 2005b). 

5.1 Background 

Here, one seeks a technique that can encode a set of finite behaviours of a dynamic 

system into a formal language or compact transcription for solving complex prob­

lems and of particular interest is the motion planning problem. This process is also 

termed as system behaviour quantisation or discretisation. Through this process, one 

derives a computational-efficient algorithm in the form of an embeclclecl planner for 

119 
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the generation of feasible trajectories, satisfying the required boundary conditions 

and differential constraints on the states and control inputs. Notice that here, one 

excludes the global constraints that are induced by surrounding obstacles, rather this 

will be tackled using the RRT paradigm. As an added benefit, it will be highly 

beneficial in practice if the feasible trajectory can be optimised based on meaningful 

measures such as time, distance and control effort. 

Through the judicious application of the aforementioned technique, a distinct sepa­

ration between the low-level and high-level control of a system is ensured. In other 

words, it introduces a form of abstraction to facilitate problem solving of high-level 

tasks. The ensuant high-level commands will automatically comply to the inherent 

behaviour of the system, and are guaranteed to be executable by the system. In 

addition, this permits the processor to allocate its resources to the more vital and 

challenging tasks, tasks that define the 'intelligence' of the system, as opposed to the 

low-level controls. 

Such a form of a system behaviour quantisation as a whole reduces the complexity 

of the control task, but bounds to restrict the admissible responses of the system 

or limits the vehicle performance envelope when compared to the original one. This 

being a sacrifice that one must pay for adopting this method. Therefore, special 

care must be taken in conducting the quantisation process such that it captures the 

predominant behaviour of the system. This will ensure that when applied in practice, 

the difference between the quantised and the original is negligible. 

In fact, the aforesaid technique is not entirely new and can be traced from the research 

conducted by Dubins (1957), and Reeds and Shepp (1990). They have shown that 

the minimum length paths for a kinematic car are comprised solely of straight line 

segments and tangential circular arcs of minimum radius, which implies that the 

problem can be recast as an optimisation problem. Alternatively, if one considers 

each of the paths can be symbolically represented, then a feasible path, which consists 

of a myriad of line segments can then be described by a series of symbols with the 

associated syntax, hence the term language. Unfortunately, for the case above the 

path curvature is related to the front wheels, and the car must stop at the path 

interconnection to reorient its front wheels thus rendering it unviable for practical 

usage. This research has been extended by Fraichard and Scheuer (2004) to obviate 

the requirement of intermittent stops at the interconnection of the line segments and 
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arcs. Their solution is, however, restricted to the domain of only car-like vehicles. 

Behavioural robotics is a branch of robotics that does not use an internal model of 

the environment. It was instigated by Brooks (1986) and has received considerable 

attention even today (Arkin 1998). The gist of the concept is to develop a robot that 

would react to external stimuli, mimicking the behaviour of insects. Later, it was 

discovered that the exhibited behaviours are rather temporal, unpredictable, difficult 

to analyse and aimless. The situation is being further aggravated by the fact that 

the software are machine-specific and not reusable. This prompted the development 

of a language known as the 'Motion Description Language' (MOL) (Brockett 2000) 

(Manikonda et al. 1995), which was later extended to the 'Motion Description Lan­

guage extended' (Hristu et al. 2000), that can provide a formal basis for programming 

behaviours and at the same time permit the incorporation of kinematic and dynamic 

models of robots in the form of differential equations. Indeed, the language provides 

a hierarchal approach to solve complex motion planning problems. 

Deriving from the knowledge and experience gained from these previous studies, Fraz­

zoli et al. (1999) introduced a method of state quantisation in the design of control 

systems, known as the 'Manoeuvre Automaton'. Instead of quantising time, the state 

or the control input values, the proposed technique is based on quantisation of the 

system's dynamics. Their approach is to select a finite number of state and control 

trajectories, termed as motion primitives, and concatenate them to generate feasible 

trajectories. From another perspective, it transforms a high dimensional, complex, 

nonlinear system into a hybrid system, which is more amenable in terms of compu­

tational and communication requirements. Their approach is capable of exploiting 

the synunetries properties found in most human 'engineered' vehicles. A detailed 

exposition of this technique is given in Section 5.2. 

In a similar vein, purportedly in an independent study, Saimek and Li (2004) applied 

an almost identical method as the one proposed by Frazzoli et al. (1999) to the motion 

planning and control of an aquatic vehicle. The optimised motion plans are regulated 

by a controller that consists of a cascade of LQR, input-output feedback linearisation 

and sliding mode control. The novelty of their implementation is with respect to the 

use of time-scalable motion primitives. Experimental results which pertain only to 

the speed changing capabilities of the vehicle were presented, since turning behaviours 

have not been designed. 
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5.2 The Manoeuvre Automaton 

The Manoeuvre Automaton, a form of finite state machine, was devised by Frazzoli 

et al. (1999) as a unified framework for formalising the control of high dimensional, 

nonlinear systems with symmetries. The principal idea here is to generate a complete 

trajectory via sequential combination of the copies of motion primitives from a library 

set. The main assumption behind the proposed method is that the vehicle dynamic 

equation must be time-invariant, and has a form that remains unchanged or in math­

ematical terms, invariant after the action of a certain class of transformation (group 

action) with respect to the states. Indeed, the later property is explicitly linked to 

the existence of symmetries. An avid reader is directed to the book authored by Bullo 

and Lewis (2004) for a more detailed exposition of symmetries in mechanical systems. 

Similarly, Frazzoli et al. (2004) advocated a mathematical rigourous approach to this 

subject with a special emphasis on its utility in the MA. 

The MA method relies primarily on two distinct types of motion primitives known as 

trim trajectories and manoeuvres. Before delving into the details, it should be clear 

that herein, one is interested only on the planar motion of the vehicle. Subsequently, 

this resulted in the group SE(2) acting on the configuration variables of the vehicle. 

The reasons behind these restriction have been stressed in Section 3.2. The generation 

of longer motion primitives from shorter ones can be accomplished through sequential 

combination or concatenation of the individual elements. Based on this assertion, a 

feasible trajectory is just a collection of repeatable motion primitives in a proper 

order. 

5.2.1 Trim trajectories 

TI:im trajectories, also known as the relative equilibria for Lagrangian systems, cor­

responds to the steady state trajectories of a system, a vehicle in this context, where 

the velocities in the body-axes of the vehicle and the inputs are constants. Interest­

ingly, trim trajectories are an intrinsic characteristic of human engineered vehicles, 

and include trivially all equilibrium points of a system. Since, each equilibrium point 

can be considered as a trim trajectory, it becomes the simplest form of a motion 

primitive. 
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Most vehicles are designed to have this property in mind. Imagine that when driving 

a car in a flat plane, once the vehicle speed is constant, very few control inputs are re­

quired from the driver to preserve the condition. The algebraic sum of the forces such 

as drag, friction and thrust acting on the vehicle is zero, hence the term equilibrium. 

Extra inputs are merely required to counter the effect of external perturbations. This 

condition, however, is nullified at the moment of driving up a hill, where the gradient 

varies. The gravity component acting on the vehicle destroys the symmetry in the 

pitch direction. Nonetheless, if the gradient is constant then a trim trajectory can 

always once again be found. Briefly speaking, trim trajectories are the composition of 

a constant rotation, in two dimensional space and screw motion (helix with a constant 

sideslip angle) in three dimensional space, where the group SE(2) and SE(2) x (~, +) 

acting on the configuration variables respectively for each case, assuming that gravity 

acts in the direction of z. 

Frazzoli et al. (2004) also defined a trim primitive as a strongly repeatable motion 

primitive such that all of its non-trivial prefixes and suffixes are also strongly repeat­

able. As mentioned above, the control input must be constant, and the state flow is 

time-invariant. Trim primitives can be parameterised using a non-negative scalar T, 

the coasting time which determines the duration to spend in executing a trim prim­

itive. In other words, the system flows along the corresponding left-invariant vector 

field. 

Mathematically, trim trajectories can be expressed in the Lie algebra form. The Lie 

algebra elements~ E SE(2) are represented as matrices in ~JxJ of the form: 

[ 

0 -'1/J v, l 
~ = '1/J 0 Vy 

0 0 0 

(5.1) 

where v is the body fixed velocities with relative to the x and y axis respectively and 

'1jJ is the angular velocity. 

In this case, the group exponential coincides with the matrix exponential and for 

a special case of w = 0, one yields a simple equation to describe the configuration 
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change after r length of time in trim trajectory. 

and if w =1- 0, 

[ 

cos(wr) -sin(wr) cx+rcos(wr+Bo) l 
exp(~r) = cos(wr) - sin(wr) Cx + rcos(wr + 80 ) 

0 0 1 
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(5.2) 

(5.3) 

where r = Jv; + v~/w is the (signed) radius of curvature, and (er, ey) = ( -r cos(80), 

-rsin(Bo)) is the centre of rotation, with tan80 = -vx/vy. For the planar motion 

case, the group SE(2) acts on the configuration variables of the vehicle. 

5.2.2 Manoeuvres 

Manoeuvres are defined as a type of non-trivial motion primitive which can be se­

quentially combined at either end with the trim trajectories. Note that the initial and 

final conditions of the system are always assumed to lie on the trim trajectories. They 

are repeatable and can be sequentially combined. However, unlike a trim trajectories, 

their combination are confined by certain prescribed rules. 

Manoeuvres are in fact a superset of trim trajectories or conversely, trim trajectories 

are manoeuvres that possess one unique property with their velocities and inputs 

being kept constant. As remarked, this excuses the slight abuse of the terms motion 

primitives and 'manoeuvres'. Both are frequently used interchangeably and their 

definition will be clear in the context. A manoeuvre is comprised of a complex 

connection of several motion primitives. They do not suffer from the restriction 

of constant input and constant velocity, implying that their state flows are not time­

invariant. This allows manoeuvres to exhibit very complex behaviours in contrast to 

trim trajectories. 

One invariant characteristic of manoeuvres is their group displacement. A planar 

underwater vehicle moving on a horizontal plane in a isotropic medium is invariant 
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with respect to rigid-body motions on the plane, S£(2). The group S£(2) can be 

identified within the space of a 3 x 3 matrix of the form: 

[ 

cos 'if; - sin 'if; x l 
g = sin 'if; cos 'if; y 

0 0 1 

(5.4) 

This condition is violated if there exists constant currents, hence invalidating the 

isotropic assumption. The reason is that the symmetry about the vertical axis has 

been broken, rendering the system to be invariant to translations only. This can be 

extended to a three dimensional case when the medium is homogeneous, the system 

is then invariant with respect to S£(2) x (IR, +),assuming that gravity acts in the 

direction of z. 

5.2.3 Hybrid formulation 

In another perspective one can also recast the MA transcription into a hybrid form as 

given by Schouwenaars et al. (2003). The hybrid formulation provides a more elegant 

way of describing behaviour of the system. Similar to a differential or difference 

equation, the MA transcription describes a dynamic system, differing only in that 

it has hybrid elements in both its control inputs (T,p), and state vector (x,q). MA 

evolves in a so-called 'dense time' by either continuous flows or discrete transitions. 

Consequently, at each particular moment, the system is constrained to be either in 

a trim condition q or performing a manoeuvre p. MA can be pictorially depicted as 

a direct graph MA(q,p) as shown in Fig 5.1, where q are vertices (trim trajectories), 

and p are edges (manoeuvre). Instead, the system behaviour can also be explicitly 

formulated as below. 

·· .. 
\ 
! 
: .... 

Figure 5.1: A simplified MA representation 
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• An MA system H starting at state vector (x;, q;) in trim trajectories, evolve 

according to Jq(·) as determined by the length of the Tk, which can be infinite. 

Where Jq( ·) is the governing differential equation at the specific discrete state 

qk. The hybrid state then evolves as: 

qk+! = qk 

tk+! = tk + Tk 

(5.5) 
(5.6) 
(5.7) 

where Xq is the time rate of change of the vehicle's continuous state variables 

and k is the 'stage' number. 

• In the case of performing a manoeuvre p, the vehicle leaves the trim trajectory 

q1 for a finite length of time before settling to the trim trajectory q2 . Mathemat­

ically, the manoeuvre is initiated by the control action p, which is discrete, and 

is described by a fixed duration ~tp and displacement ~xr in the continuous 

state space, as illustrated in Fig 5.2 for a SE(2) case. In reality, the control 

history of the continuous state-space system is implicitly encoded in the control 

action p. As such, when manoeuvering, the hybrid state evolves as: 

qk+! = q2 

tk+i = tk + ~tp 

(5.8) 

(5.9) 

(5.10) 

Although, the hybrid control input at instant k can be described by a vector ( T, p )k> 
however only one input, either T or p can be active at any moment. 

By having the AUV continuous behaviour encoded as a discrete state q, its configu­

ration can be described by an element of the Lie group G of rigid motions in IR2 or 

IR3
, called SE(2) or SE(3), respectively. 

5.2.4 Motion plan 

The sequential combination of motion must be performed in order, to be more pre­

cise, it must abide to certain rules. The rules are synonymous to the grammar of 
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~lflp Manoeuvre: p \ 

/ __ /-~---

Trim trajectory: q1 

y2 

Trim trajectory: q2 

t1t 
p 
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Figure 5.2: Displacement of configuration variables and its time duration for manoeu­
vrep 

a language, and are commonly encoded via a finite state machine (FSM), which is 

called the MA. 

As mentioned before, an MA can be conveniently depicted as a directed graph in which 

vertices represent states (trim primit ives) and edges represent manoeuvres. Figure 

5.3 shows a simplified MA of a hypothetical AUV, operating in a three dimensional, 

homogenous and isotropic medium. All the vertices are trim manoeuvres such as 

cruise, turn left , turn right, climb, dive and stop. Strictly speaking, stop cannot 

be considered as a trim trajectory since most AUVs suffer from degrading control 

authority at low speed and reaching zero control authority at stationary. The edges 

are the manoeuvres t hat must be performed to arrive at particular trim t rajectories. 

The initial and final condit ions for the motion planning problem are such that they 

can be represented as trim primitives. The trim primitives dktate the allowable set 

of manoeuvres that can be performed at a particular moment. 
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Trim Trajectory 

Figure 5.3: MA representation of the dynamics of a hypothetical AUV 

The language generated by the MA is coined as the manoeuvre sequence. The beauty 

of the language is that it allows one to express mathematically the motion plan in 

a compact and precise manner. One can describe the configuration change resulted 

of a manoeuvre p using Equation 5.4. Thus, through the application of the MA 

representation, one can now express the system configuration by concatenating these 

motion primitives. T he equation can be compactly expressed as below: 

{5.11) 

Where g0 and 9! are the initial and final configuration. e((k,rk) and 7Jk represent 

the transformation of applying the k-th trim trajectory and the k-th manoeuvre, 

respectively. One appealing characteristic of this t ranscription for the purpose of 

motion planning is the ability to recover in closed form the complete state of the 

system at any t ime during the execution of a motion plan. 

As shown in Equation 5.11 , this allows one to concentrate on the configuration vari­

ables, which are the most important states in motion planning, instead of the velocity 

states. It behaves like a kinematic map of a robot and produces paths that auto-
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matically comply to the system dynamics. Furthermore, there is no approximation 

involved in the transformation from a nonlinear continuous system into a hybrid sys­

tem via the MA approach. Nonetheless, it does restrict the admissible dynamics of 

the original system. 

5.2.5 Optimisation 

The MA transcription is highly suitable for an optimisation process. This is true, 

for certain cost function that shares the symmetry properties of the system, such 

as minimum time, minimum length (distance) or minimum control effort. Nonlin­

ear optimisation and randomised techniques are possible candidates but their high 

computational demand impedes their use in this context. These techniques include 

sequential quadratic programming (SQR), genetic algorithm (GA) and simulated an­

nealing (SA). Reformulation of the above problem into Ricatti equation is not possible 

either, as the dynamic equations are not continuous but hybrid instead. Similarly, 

pure gradient based optimisation fails because of the discontinuity in the hybrid equa­

tions. One should not forget the fact that the main idea of recasting the dynamic 

equations from continuous form to hybrid form is to render it amenable for compu­

tation. Given this situation, dynanlic programming (DP), linear programming (LP), 

and mixed integer linear programming (MILP) have the most potential. 

Dynamic Programming 

The DP technique was invented by Bellman (1957) to solve the optimal control prob­

lems. The gist of the concept here is to store the cost-to-go map of the optimisation 

problem that is performed a priori and then exploit a look-up subroutine to find the 

subsequent optimal states in real-time. Interestingly, it can be applied to both lin­

ear and nonlinear optimisation problem alike without any alteration. Frazzoli (2001) 

has adopted this technique for solving the MA problems. It was later extended by 

Schouwenaars et al. (2003) to the design of a more robust system. They used the 

standard deviation of each manoeuvre to quantify the uncertainties. 

Regretfully, the DP suffers from the notorious state explosion effect, and the gcn-
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eration of the cost-to-go map is rather time consuming, taking a few hours to days 

depending on the state dimensions of the problem in hand. This technique is not 

conducive for the implementation of fault tolerant systems. As in the unlikely event 

of any system's actuator malfunction when conducting mission, it is imminent that 

the system dynamics will change, and the cost-to-go must be recalculated. The time 

required to do this can be intolerable. To circumvent this problem, nemo-dynamic 

programming has been suggested by Bertsekas and Tsitsiklis (1996) as a promising 

substitute. 

Linear Programming 

Indeed, for the unique case when 'ljJ = 0, such that when all the trim trajectories 

are translations, the cost is linear relative to the coasting variables T, thus one can 

employ the linear programming method instead (Frazzoli 2002a). The configuration 

variables change in trim trajectories can be described using Equation 5.2, without 

the transcendental functions as in Equation 5.3. For the specific case of a minimum 

time cost functional, one can formulate it as below: 

(5.12) 

such that Equation 5.11 is satisfied and T 2: 0. An extension to the minimum length 

and minimum control effort cases is trivial. Unlike the aforementioned DP, in LP the 

optimisation process operates in real-time. It does not require a lookup-subroutine to 

find the subsequent. state based on an cost-to-go map performed a priori. This ensures 

that any dynamic alteration of the system can be accommodated by the optimisation 

algorithm, assuming that the appropriate motion primitives are provided. 

To elaborate, a linear program is a problem of minimising, or maximising depending 

on the problem formulation, a linear function over a convex polyhedron. The feasible 

region is a convex polyhedron because both the objective function and the constraints 

are linear. l'vloreover, the optimal solution is always found at the boundary point of 

the feasible region. This optimisation problem can be expressed in a standard form 
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as follows: 

minimise ex 

subject to Ax = b 

x;:::o 
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(5.13) 

(5.14) 

(5.15) 

where xis the vector of variables to be solved for, A is a matrix of known coefficients, 

and c and bare vectors of known coefficients. Equation 5.13 is the objective function 

and the Equation 5.14 and Equation 5.15 are the constraints. In certain cases, where 

A has more columns than rows, the constraints will be under-determined, and this 

provides significant latitude in the choice of x with which to minimise the objective 

function. Clearly, all these entities must be in consistent dimensions for the program 

to function. 

Two families of solution techniques, the simplex and the interior point, are frequently 

employed today. The simplex method is very efficient and functions well for most 

practical problems. It solves LP problems by constructing an admissible solution at 

a vertex of the polyhedron, and then progressively visits the vertices that possess 

improving values of the objective function, via the edges of the polyhedron. Nonethe­

less, it has a poor worst-case behaviour for certain problems which require exponential 

number of steps with reference to the problem size to obtain the solution. The interior 

point method, on the other hand, can move through the interior of the feasible region 

rendering it impervious to the worst-case behaviour but not as efficient. 

LP solvers are widely used in industry and can be considered as a well established 

field. For this reason, an abundance of high-quality software libraries, both free and 

commercial versions, are available. In view of its benefits, this method is adopted 

into the proposed algorithm. 

Mixed Integer Linear Programming 

It is worth mentioning that there are unique cases where the problems encountered 

require some or all of the unknown variables to be integers. These problems are known 

as integer programming (IP) and mixed integer programming (MILP). In contrast to 

LP, these form of problems are much more difficult to solve. Of the two, MILP 
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is particularly intriguing and is well suited to solve problems cast in hybrid form, 

because the non-convexity and logic of the problem can be explicitly encoded using 

integers. It has been demonstrated recently by Richards et al. (2003) that MILP has 

significant application potential in real-time control and motion planning problems. 

In addition, Schouwenaars et al. (2005) implemented MILP in a guidance system 

for an unmanned aerial vehicle. Both of the studies attempt to fuse the receding 

horizon technique with MILP to solve the motion planning and guidance problems. 

Nonetheless, this promising technique will be reserved for future research. 

5.3 System Quantisation 

In this section, the AUV model and techniques for synthesising the motion primitives 

are presented. This is done, in order to convert the continuous system model into 

the MA representation. The AUV model employed is the A UTOSUB AUV. Figure 

5.4 shows the MA representation of the AUTOSUB dynamics. Both 2 m/s and 

5 m/ s of cruising speeds are illustrated. However, the following simulations were 

limited to only one speed regime, selected to be 2 m/ s to avoid the state explosion 

effect, to facilitate analysis, and partly due to the resemch time constraint imposed. 

The selection of states and manoeuvres are arbitrary and quite system dependent. 

Essentially, one needs to extract the predominant dynamics of the system whilst 

maintaining a sufficiently low numbers of motion primitives in order not to overload 

the computational requirements. 

Once the MA representation of the vehicle under consideration has been dictated, 

the subsequent task will be to compile a repertoire of motion primitives that can 

exploit the vehicle operational envelope. A motion primitive can be acquired merely 

by applying an arbitrary piecewise-continuous control law to the vehicle in question, 

starting from arbitrary initial conditions for a finite time interval and storing the 

ensuing state and control trajectory. This can be attained by integrating the system 

state equation or running an experiment on a physical system. The extraction of 

motion primitives, especially the trim trajectories, is alleviated if the vehicle is velocity 

augmented. The next section explains this process. 
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Figure 5.4: A UTOSUB dynamics in the MA representation 

5.4 Velocity Augmentation 
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For the purpose of generating trim trajectories, a velocity augmentation loop must 

first be designed onto the AUV. To put differently, the system requires a set of inner 

loop controllers to be designed and incorporated such that the velocities, both linear 

and angular, can be directly controlled. This technique of control is not entirely 

new, and has been ubiquitously employed by the aerospace community for solving 

guidance problems (Cm·ban et al. 2003). A diagrammatic representation pertaining 

to the overall system control structure is depicted in Fig 5.5. Notice that the velocity 

augmentation is connected to the AUV in the innermost loop while the outer loop 

is relegated to the tracking controller, which will be expounded in Chapter 6. The 

centre loop is occupied by the manoeuvre generator. The broken lines indicate that 

its usage is temporary and is removed during normal operating mode. 

One positive implication that ensued from a stable, velocity augmented system, is 

the ease for manual control. Understandably, it is more intuitive for the system to be 
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Feed Forward loop 

-o~ Tracking ·,r Velocity AUV Outpu 
.... MA+ RRT 

Controller ----:\. Controller ~· Dynamics ~~ ... 

Sonar, I MU Inputs 
Manoeuvre ~\ 4 Generator Velocity Augmentaled loop 

Outer Tracking Controller loop 

Figure 5.5: Overall Controller Structure 

controlled by human operator since one can easily relate to the concept of speed. This 

permits the recording of complicated and aggressive manoeuvres via direct human 

inputs, obviating the need for time consuming task of designing a control law through 

controller synthesis. 

In the subsequent simulations, the A UTOSUB model as set forth in Section 3.2.2 was 

discretised using the zero-order hold and the sampling frequency set to 10 H z. The 

sampling rate was selected such that it is sufficiently fast to capture the dynamics of 

the AUV but also remain low enough not to overload the processing requirements. 

Two controllers were designed, one for the surge and another for the yaw rate. A 

proportional-integral (PI) controller was selected for this case. The integrator elimi­

nates offset caused by the non-zero mean external disturbances acting on the vehicle. 

To avoid confusion with the tracking time constant notation frequently employed 

by the industry, the following standard expression for the controller parameters is 

adopted. 
k 

u(k) = Kpe(k) + K; 2::: e(a)tlT 
o=(k-1) 

(5.16) 

Where tlT is the sampling time, k is the index, e is the error: the difference of 

the reference and measurement values, K 11 is the proportional parameter, K; is the 

integral parameter and ·u is the controller output. 

The introduction of an integrator, however, incited a negative effect known as the 

integrator windup. This phenomenon is induced when the actuator output saturates. 
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Figure 5.6: The PI controller with back-tracking anti-windup unit 

At that exact moment, the error is integrated continuously, resulting in a very large 

integral term. Once it happens, a long period of large opposite sign error is needed to 

neutralise the effect and reverting the system back to normal. Thus, large transients 

are to be expected for a system equipped with integrator action and when the actuator 

saturates. 

The windup phenomenon can also be explained by the nonlinearities !.hat existed in 

all actuators. When the actuator saturates, reaches its limits, the feedback loop is 

broken and no longer applies. The system becomes open loop because the actuator 

will remain at its limit independent of the process output. The integral action, if 

presence, will integrate the error unceasingly. 

Fortunately, a few techniques exist to address the integrator windup issue. This 

dissertation focuses on the back-tracking or back-calculation anti-windup scheme. A 

block diagram of the PI controller and back-tracking anti-windup unit is depicted in 

Figure 5.6. The primary idea is to recompute the integral term so that its new value 

gives an output at the saturation limit when the output saturates. It is advantageous 

not to reset the integrator instantaneously but dynamically with a coefficient Kw· 

Instant reset, can eliminate beneficial integral action and create a longer settling time. 

One can obtain a starting point for Kw using the following formula, Kw = 2(1<;/ Kp) 

(Astrom and Hagglund 1995). The actual formula was given in the tracking time 

constant format but has been recast to this form for consistency. 
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5.4.1 Surge controller design 

The surge controller gains, KP and K; were empirically determined. The AUV propul­

sion dynamics is nonlinear clue to the added mass and the thrust exerted by the 

propeller, which are proportional to the square of its rotation speed. The gains of 

Kp = 5 and K; = 10 have been found to function favourably in a regime of 3 m/ s to 

1 m/ s. It is imperative that the effect of integral wind up is studied as it frequently 

occurs when the thruster saturates, as subjected to constant velocity sea cmrents. 

Figure 5. 7 shows a test current of magnitude 1 m/ s, at direction oo with reference to 

Earth fixed frame, being injected to the AUV to assist in selecting the appropriate 

anti-windup coefficient, Kw. 

' 

0.8 

~ .s 0.6 
~u 

0.4 

0.2 

oL-~L---~~------~---------L ________ J_ ______ ~ 

0 5 10 15 20 25 
Thne(1) 

Figure 5.7: Cmrent velocity and time plot 

Figure 5.8 reveals the control laws with the corresponding Kw elicit by the PI con­

troller. A constant value of 140 rpm is required to maintain the AUV at a cruising 

speed of 2 m/ s. The initial downward pointing triangular pattern in Fig 5.8 is in­

duced by slew-rate limits of the motor. Actuator rate saturation is less detrimental 

compared to the output saturation. Nonetheless, it can still initiate the windup 

phenomenon. 
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Figure 5.8: Controller output response with different Kw 
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The effects of different values of anti-windup coefficient and their ensuant responses 

are vividly depicted in Fig 5.9. One can deduce from the figure that the higher the 

value of anti-windup coefficient, the shorter the rise time but the longer the settling 

time. Understandingly, a high value of the anti-windup coefficient tends to mitigate 

the effect of error integration, resulting in a shorter rise time. On the other hand, a 

low value shows a damped behaviour because of the winding and unwinding effects 

of the integTal term. A value of 0.3 was chosen as it provides a compromise solution 

between the two behaviours. 
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Figure 5. 9: Surge Response with different Kw 

5.4.2 Yaw rate controller design 

Prior to designing the yaw rate controller , the yaw rate dynamics must be extracted 

from the nonlinear, coupled A UTOSUB model. The dynamics in S transform is given 

by 

(s + 0.156)(s + 0.667) 

0.0189(s + 0.282) 
(5.17) 

The SISO yaw dynamics with a zero-order hold at 10 H z, can be expressed in Z 

transform form as provided below. 

0.0183(z- 0.972) 

(z - 0.985)(z - 0.936) 
(5.18) 

An open-loop Bode plot 5.10 reveals the similarity between the discretised model at 

0. 1 s sampling time and the continuous model at low frequency. The phase response 

for the 0, 1 s sampling time, discretised version drop off quickly after 1 radj s, but that 

is beyond the predominant dynamics of the system. Here one is interested between 

0 rad/ s t o 0.25 rad/ s, t he maximum yaw rate of t he vehicle. Again, referring to 



CHAPTER 5. THE MANOEUVRE AUTOMATON AND THE RRT 139 

the figure, the system response changes drastically if the sampling t ime is changed to 

0.2 s. 
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Figure 5.10: Open loop Bode plot of yaw rat dynamics 

Figure 5.11 was used to assist in the tuning operation of the PI controller. According 

to the rule of thumb, t he recommended gain margin should be within 6 dB to 10 dB 

and a phase margin in the range of 45° and to 60° are considered to have adequate 

stability and robustness propert ies in practice. The notion of gain margin and phase 

margin are inexorably linked to relative stability. The higher the gain margin , the 

more potential the system gain can be increased before instability occurs. vVhereas 

the higher the phase margin , the more impervious the system to t ime delay effe t , 

which can cause system instability. Nonetheless an excessively high gain margin 

and phase margin frequently indicates a sluggish or an unclerperforming system. A 

satisfactory value of Kp, IC , Kw were found to be 5, 2, and 0.8 in the given order. 

The gain margin and phase margin in accordance to the Bode plot are 26.7 db and 

92.9°, respectively. These higher margins are desirable in order to accommodate for 
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the effect of system nonlinearities. 
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A Nyquist plot is shown in Fig 5.12, its locus does not cross over the minus one 

value in the real axis, establishing the fact that the system has a ttained closed-loop 

stability. This method of analysing stability is based on Nyquist Stability Criterion. 

Nyquist plot conveys similar information as the Bode plot but in a different manner. 

It also provides a more powerful method for analysing and quant ifying the robustness 

properties of a system compared to the Bode plot. Such as vector margin, a parameter 

to quantify robustness to combined gain scaling and phase shift perturbation, can only 

be revealed using a Nyquist plot (Ozbay 1999). 
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The unit step response and its control effort of the yaw rate cont roller using the linear 

equation is shown in Fig 5.13. The response will be marginally different with the one 

obtained from the nonlinear model. To obtain the mrudmum yaw rate physically 

achievable by the A UTOSUB cruising at 2 m/ s, a step input of 17.0°/ s was used. 

This value is arbitrary, as long as it is higher than then the maximum yaw rate 

attainable. Figure 5.14 shows the heading rate response. One can conclude that the 

maximum yaw rate is 13.8°/ s. Any other input values exceeding Lhis value will not be 

satisfied by the system. T he yaw rate ceiling can be attributed to the limited rudder 

moment and induced drag when executing a turn. Clearly, it is not a good idea to 

push it over the saturation limit. 
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5.5 Motion primitives generation 

The motion primitives or manoeuvres should encompass the crucial performance en­

velope of the AUV. As aforementioned, their generation can be attained via an human 

operator or controller inputs. The latter method was selected for the following study. 

The AUV's rudder elicits an integrator term in the yaw dynamics of the AUV. The 

behaviour is discernable when the AUV is injected with a step input, and as expected 

the AUV will execute a turning manoeuvre continuously, an evidence of an in-built 

integrator. For this reason, a proportional-derivative (PD) autopilot was designed so 

that one can extract the manoeuvres by inputting step inputs. It was then discovered 

that the derivative term, even with small coefficient, introduces excessive damping be­

haviour to the heading response. Proportional gain was increased to counter the slug­

gishness induced by the incorporation of the derivative term. Hitherto, this increases 

the rudder deflection rate until it violates the slew rate limits. This phenomenon 

is undesirable, furthermore, small amount of control authority must be reserved for 

the proper functioning of the tracking controller. Later, it was felt that adequate 

performance can be attained by using only a proportional controller. Clearly, a more 

advanced controller such as the LQR can be used as a substitute to extract a better 

heading response from the AUV. 

The rudder rate limit was prescribed to ±6.8° Is compared to the actual physical 

one of ±12.8° Is prior to generating the manoeuvres. Likewise, the rudder saturation 

was defined to be ±20° instead of ±25.2° as in the original model. This process will 

impose virtual bounds to the generated control law, in the meantime relegating the 

remnant control authority for tracking the prescribed trajectory. This controller is 

labelled as the manoeuvre generator in Fig 5.5. This controller is used solely for 

manoeuvres generations and its function is inhibited during a normal AUV operating 

mode. 

Referring to Fig 5.4 again, it shows clearly the A UTOSUB's MA that constitutes a 

manoeuvre set of 15°, 30°, 60°, 120° and the opposite direction ones. A tabulation 

of the corresponding proportional gains and manoeuvres are given in Table 5.1. The 

suffix of p indicates the heading degree. 
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Pindex Kp 

Pt5 0.25 

PJo 0.30 

PGo 0.30 

P12o 0.30 

Table 5.1: Heading controller proportional gain, q = 2 m/ s 

Table 5.1 lists all the right turn manoeuvres with their associated execution time 

duration and displacements. The x, y and 7/J presented are all rounded to the nearest 

integer, although internally, the computation is performed using the accurate floating 

point variables to avoid truncation error. In practical implementation, the x and y 

displacement variables accuracy should be further relaxed as it is impossible to obtain 

within ±3m accuracy without the help of GPS, LBL, or SBL. 

Referring to Table 5.2 again, notice that for some manoeuvres, the headings have been 

clipped before reaching the desired set-points, this is aimed to reduce the manoeuvre 

time. Exactness is not compulsory for the proper functioning of the system as the 

primary objective is to capture only the primary behaviours of the vehicle. A pictorial 

representation pertaining to the effect of executing the associated manoeuvres is given 

in Fig 5.15. Similarly, Fig 5.16 and Fig 5.17 shows the heading response and the 

rudder reflection of each manoeuvres, respectively. 

It is true that the heading responses are asymptotic, and an infinite amount of time is 

required to reach the set-point. But in practice, the responses are clipped when they 

reached a predefined range, like 2% or 5% within the set-point. Frequently, the vari­

ance of the measurement data are used to delineate the clipping range. This clipping 

process will create a discontinuity at the interconnection of the motion primitives. 

Referring to Fig 5.17, notice that the rudder inputs do not reach zero at the end as 

it should in theory. This issue shall be addressed by the tracking controller. 
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Pindex flT(s) flx(m) tly(m) tl'lj;(o) 

7115 9.9 196 2 15 

]J3o 13.9 26 7 30 

7'6o 19.9 31 20 59 

P120 24.9 17 32 119 

Table 5. 2: Manoeuvre library, q = 2 m/ s 
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5.5.1 Quasi-random sequence 

Herein, the quasi-random (sub-random) generator based on t he Halton sequence (Hal­

ton 1960) is utilised instead of the pseudo-random generator. Theoretically, the for­

mer generator possess certain desirable properties such as low discrepancy or improved 

uniformity over the sampling space. Different prime numbers are used for the multi­

dimensional sampling case. Strictly speaking, Halton sequence is deterministic hence 

one way of generating a different motion plan for the same environment is to change 

the seeds for each individual simulation. 

The notion of uniformity is made precise wit h the definition of discrepancy. The 

discrepancy of a sequence is low if the number of points falling in to a set B is close to 

the number one would expect from the measure of B. It is imperative to understand 

this intriguing property and its effect to the MA+RRT algorithm. Figure 5.18(a) 

and 5.18(b) show two types ofrandom points contained in [0, 1] sampling space being 

plotted against t ime. The dotted line which connects the two dots in subsequent t ime 

order, is used to highlight t he discrepancy attribute. Notice the quasi-random version 

(Fig 5.18( a)) has a more uniform lines, elicit ing the zigzag pattern. Conversely, the 

pseudo-random version (Fig 5.18(b)) indicates a chaotic pattern instead. 
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A plot of t he distance between t he subsequent random points revealed another in­

sight into t his behav iour. Figure 5. 19 divulged that the quasi-random points have a 

approximated minimum distance of 0.4, the mean distance being 0. 7. Whereas t he 

pseudo-random can have points t hat are very near together. In fact, the distance 

spans from near zero to one, implying that it has high variance. Note t hat t hese 

distances were extracted from the random points in subsequent t ime order, more sig­

nificant clustering behaviour will be detected for t he pseudo-random points if one 

neglects the t ime dimension as shown in Fig 4.3(a). 

Initial experiments with different scenarios conducted on the MA+ RRT algorithm 

demonstrate that an improvement of 11% success rate can be attained if one employs 

quasi-random instead of pseudo-random sequence. It is believed that t he effect of 

different random number sequence is more pronounced in this study, par t ly because 

of the a lgorithm's lower consumption of points. Which means, t hat h igher quality 

points have subst antial effect to t he algorithm outputs. Nonetheless, these ent icing 

results are premature to say the least , and more exhaustive studies are warranted . 

The quasi-random sequence is adopted for the remaining of the simulation studies 

thereof. 
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5.5.2 Motion planning algorithm 

Frazzoli (2002b) advocated enhancing the RRT algorithm by fusing it with the MA 

to solve motion planning problems with obstacles. The algorithm assumes that one 

has an embedded planner, that can plan an optimal t.rajectory in an obstacle free 

environment between two arbitrary states. 

However, the approach in employed in this thesis is that of multiple nested nodes. 

Since every state in a trim trajectory can be considered as a starting point of a 

manoeuvre. This algorithm generates child nodes at every connection point between a 

trim trajectory and manoeuvre. This method improves the RRT branching capability 

by increasing the probability of finding a solution. The number of child nodes to 

generate are arbitrary, but in this algorithm, one child node is generated at the mid­

point of each trim trajectory. Too many child nodes will saturate and slow down the 

computation. Additionally, the case for a time varying final state is also addressed 

with this newly developed algorithm. The forthcoming algorithm is an aggregation of 

the MA method and the RRT algorithm as detailed in Chapter 4. A brief explanation 

of this enhanced algorithm with reference to Fig 5.20 is outlined below: 

1. Check to see if a direct connection to the goal from the initial states based on 

the minimum time criterion is possible. If this is attained then the algorithm 

terminates. 

2. Failing that, generate a subgoal, Rl using the quasi-random generator and at­

tempt to connect to it using the embedded planner, again based on the minimum 

time objective function. 

3. If there is no collision, then generate an edge with new vertices at all inter­

connecting points of trim trajectories and manoeuvres. Explicit connection to 

the goal is attempted from all the new vertices (Greedy algorithm). If this is 

successful, the algorithm terminates. 

4. If failed, generate another random subgoal, R2. Sort the shortest time trajecto­

ries from all vertices to R2 in an ascending order and attempt to connect to R2. 

Apply this to only the first few near-optimal trajectories to avoid vertices sat­

uration. In this algorithm, only the first 3 near-optimal trajectories are stored 

and tested. 
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5. The whole process is repeated from 1 to 4 unt il a feasible trajectory to the final 

state is found, the maximum vertices size or the t ime limit is reached. Figure 

5.20 shows that vertex, ncl has connected successfully to the final state. 

6. For the t ime-varying final state case, the ' false-position' optimisation procedure 

is applied when t rying to connect to the changing final state. 
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Figure 5.20: MA+ RRT Algori t hm operation 

In practice, it is crucial to define a state-space t ube or manifold such that the AUV 

will always be travelling in or near the cent re of the tube a t all times. Once the AUV 

sta te variables exceed t he tube, the generation of a new t rajectory is necessary. As 

a safety measure, a similar tube must also be sp cified to detect t he environmental 

obst a les that intersect the A UV path . The specification of t h manifold is related 

t o t he tracking capability of t he cont roller, t he predictability of th environment and 

the magnit ude of external disturbances. 
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5.5.3 Error mitigation 

A few researchers have expressed their concern regarding the prescribed error gener­

ated by RRT algorithm. Due to the discretised nature of the inputs in the original 

RRT algorithm, when the input history is applied, there will exist some errors in the 

final states. Hence, Kim and Ostrowski (2003) attempt to circumvent the problem 

by introducing a subconnection process. Similarly, Cervern et al. {2004) introduce an 

error mitigation scheme to reduce the error caused by the concatenation effects. Both 

of these techniques rely on 'integrating' the dynamic model with the input history to 

obtain the final state. However, in practice, unless RRT is applied in a disturbance 

free environment, the external disturbance effect should be of more a concern. One 

disadvantage, in this approach is the requirement of an accurate dynamic model of the 

system. This might not be true in practice, due to model complexity, or nonexistence 

of a mathematical model. This error can be considered as a form of disturbance, 

hence a tracking controller (outer loop) is required to assist in tracking the nominal 

trajectory. Frazzoli (2001) designed an invariru1t tracker which capable of preserving 

the open-loop symmetries, in the closed-loop mode. The design of a tracking con­

troller is non-trivial, due to the multi-input-multi output (MIMO) and highly coupled 

dynamics of the AUV and as such it will be addressed in Chapter 6. 

5.5.4 Time-varying final state 

There is an increasing interest in the use of AUVs as force multipliers for a submarine 

in support of maritime expeditionary operations. Aggravating the problem is the lim­

ited battery technology of an A UV, which does not provide adequate servicing range. 

Likewise, the high bandwidth data transmission requirement for most surveillance 

tasks makes it compulsory for an AUV to upload its data intermittently. What is 

more, with the recent, advanced sensors equipped AUVs, it is not deemed economi­

cally vru·iable to make them disposable. Thus, the concept for an AUV docking with 

a station/submarine for recharging, downloading data or even servicing purposes is 

an attractive proposition. 

An AUV retrieval manoeuvre can be partitioned into two distinct phases, which are 

interception and docking. The retrieval manoeuvre problem had been addressed by 
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(Tan et al. 2003). In the paper, the interception phase employs the popular pro­

portional navigational guidance (PNG) algorithm, whereas the docking phase utilises 

fuzzy logic, which is activated when the AUV reaches a prescribed circumference of 

acceptance of the target. 

In the previous simulations, environmental obstacles were not included thus it would 

be interesting to substitute the previous PNG guidance system with the MA+RRT 

algorithm instead. The novel algorithm must however be extended to cater for the 

case of a time-varying terminal state. The problem of addressing a time-varying final 

condition using RRT was first pursued by Cervern et al. (2004). Their approach was 

based on embedding the time variable into the system state vector. Evidently, the 

immediate ensuant effect is t.he increase of state vector dimension. 

A simpler solution proposed here is to adopt an iterative subroutine popularly known 

as the false-position method. Fundamentally, assuming that the target is moving 

at a constant velocity, the concept is to use a predict-correct process to converge 

within a tolerance of the final state. The procedure is simple, first the initial target 

position is employed and a trajectory search is executed. If that is successful, the 

time consumed obtained from the trajectory found is reinserted into the equation to 

anticipate the future position of target. The process is iterative, and terminates when 

predefined tolerance of the final state is achieved. Nonetheless, there is no guarantee 

of convergence, thus an upper bound to the iteration count is needed to terminate 

the loop as a contingency. 
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5.6 Simulation Results and Discussion 

The sampling space was set to 300m x 300m in dimension for the remaining simula­

tions. Again, one assumes an ideal case where a priori information of the environment 

has been catered and there is no external disturbance imposed by the environment. 

The AUTOSUB AUV model was employed. Here, owing to the limited time span of 

this research, the case of incremental sensing where only partial environment infor­

mation is acquired will not being accommodated. 

All the conventions herein, follow that outlined in Chapter 3. The remanding simula­

tions were hosted in MATLAB 6.5 /SIMULINK environment, on a 2.1 GHz Pentium 

IV machine, with 512 MB of RAM and running Windows XP. This dissertation em­

ploys the GNU Linear Programming Kit ver. 4.4 (GLPK) 1
• To facilitate communica­

tion with MATLAB, a MEX-interface known as GLPKMEX2 provided by Girogetti 

(2004) was used. 

The simulations were run with 200 maximum nodes and 300 iterations, terminating 

when either criterion is reached or if a solution is found. The AUV initial configuration 

states was set to [1 1 0.1] (angle in radian), and the goal state to [170 139.4 K-] 

where K. denotes a variable (unconstrained). The minimum time criterion was used 

throughout. Goal tolerance was defined to be 7m radius. 'if; variable is omitted to 

increase the probability of finding a feasible trajectory. This is acceptable since the 

priority here is collision avoidance. However, if the final heading of the A UV is deemed 

important, then the heading state should be incorporated into the algorithm. It is 

recommended that inequality constraints be employed on the 'if; variable, with the 

aim to introduce some 'slackness' to ease in finding a solution. 

10btained from http:ffwww.gnu.org /software/ glpk/ glpk.html 
20btained from http://www.dii.unisi.it/ giorgetti/downloads.html 
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5.6.1 Simulation: static environment 

A sample of feasible trajectory (bold) found by the enhanced RRT algorithm is de­

picted in Fig 5.21. The thinner lines are candidate t rajectories. The solid triangle 

depicts the AUV, enlarged twice for reason of clarity. The squares denote random 

sampling points whereas the asterisks represent nodes. It should be kept in mind that, 

although, the t ime optimal criterion was adopted in the algorithm, a t ime optimal 

trajectory can only be found if there are no obstacles present. Clearly, the trajectory 

found , as in this case is not an optimal one but near optimal. Nevertheless, a few runs 

can always be conducted to select the 'best' trajectory. Figure 5.22 (a) and (b) show 

the associated displacements-time plots, in three dimensions and different perspective 

for better visualisation. The time needed to execute the trajectory being 208.9 s. 
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Figure 5.21: A feasible trajectory {bold) found in an environment with static obstacles 
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The AUV inputs history are depicted in Fig 5.23. In Fig 5.23 (a) one can observe 

that rpm increases when t he AUV is performing a turn. The sudden drop in speed 

can be attributed to the increasing lateral drag thus explaining the gain in rpm. A 

notable increase in sway velocity is detected during t he turning manoeuvre as caused 

by t he side-slip effect which frequently encountered by an underactuated vehicle (Fig 

5.23 (b)). 

Unlike the previous RRT algorithm detailed in Chapter 4, there is no sign of chat­

tering behaviour in the rudder history (Fig 5.23 (c)). Careful analysis of the rudder 

history indicates clipped values at around 20°. This is not to be confused with the 

actuator saturation but a virtual bound that is intent ionally imposed with the aim 

to reserve sufficient control authority for trajectory tracking later. Sudden jumps 

or step discontinuit ies were detected in the propeller and rudder inputs, these small 

discrepancies can be attributed to the effect of clipping the manoeuvTes, and are not 

critical in practice. The yaw rate is smooth and desirable for control (Fig 5.23 (d)). 
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Figure 5.22: x-y-time plots for a feasible trajectory (bold} found in an environment 

with static obstacles 
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The above trajectory can be expressed in symbolic form using Equation 5.11 as follow: 

9! = 9o x Q1 x P - 15 x Q2 x P6o x Q3 x P6o x Q4 x P120 (5.19) 

Where 9o and 9! is the initial and final configuration. q and p are tr im trajectories and 

manoeuvres. The trim trajectories have the following coasting times, Tq1 = 38.1 s, 

Tq2 = 47.8 s, Tq3 = 5.1 s and Tq4 = 43.0 s. All of the variables are encoded in a square 

3 x 3 matrix as in Equation 5.4. The matrix multiplication must be operated from 

left to the right element wise. This form of compact expression is highly suitable 

for the application of cooperative robotics owing to its low bandwidth requirements. 

Since this is a randomise algorithm , different run will yield a different result , therefore 

four unique feasible trajectories are provided in Fig 5.24 for comparison. The four 

trajectories are shorter distance wise than the one discussed. 
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Figure 5.24: Four sample of feasible trajectories {bold) found in an environment with 
static obstacles 
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5.6.2 Simulation: dynamic environment 

A dynamic environment is frequently encountered when there are a few AUVs operat­

ing collectively. Indeed, this is a much interesting scenario. The algorithm extension 

to accommodate dynamic obstacles is straightforward as long as the position of the 

dynamic obstacles are known a priori or can be predicted. Herein, the dynamic ob­

stacles are assumed to have constant velocities. If required, the uncertainty of their 

position as t ime progresses can be replicated by expanding the obstacles size through 

t ime. Figure 5.25 indicates a feasible t rajectory (bold) found by the RRT. Again, to 

assist in visualising the dynamic effect , it is plotted with respect to t ime in the z-axis 

(Fig 5.26 (a) and (b) , in different perspective. 
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Figure 5.26: x-y-time plots for a feasible trajectory {bold) found in an environment 

with static and dynamic obstacles 

The analysis of the inputs history is trivial and very similar to the simulation in 

static environment version. Figure 5.27(d) shows that two turning manoeuvres, one 

15° right turn followed by a more aggressive 60° right turn are requjred to accomplish 

this trajectory. This outcome is indeed, in conformity with the shape of the feasible 

trajectory. The trajectory requires 131.5 s to be completed. 

Again, in accordance to the same notation as exposed in Subsection 5.6.1, the MA 

sequence can be written as follow: 

(5.20) 

The trim trajectory has the following coasting t imes, Tq1 = 45.6 s , Tq2 = 11.9 s and 

Tq3 = 44.0 s. Four other feasible trajectories are provided in Fig 5.28 for comparison. 
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Figure 5.27: Inputs and states history (environment with static and dynamic obsta­
cles) (a)rpm-time plot (b)Velocities-time plot (c)Rudder deflection-time plot (d)Yaw 
rate-time plot 
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Figure 5.28: Four sample of feasible-trajectories {bold} found in an environment with 
static and dynamic obstacles 
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5.6.3 Simulation: time-varying final state 

The AUV and initial goal positions are the same as in previous simulations, but 

the goal is now currently moving at 1 m/ s in the direction of 2.2 rad from x axis 

clockwise, simulating a moving submarine. It is true that a vessel that depends 

on rudder actuation, has to sustain a minimum speed in order not to lose its control 

effectiveness, which explains the reason behind the moving target. Rudder are devices 

which develop large lift forces due to an angle of attack with respect to the oncoming 

fluid . The rudder stalls when the angle of attack reaches a critical value and thereafter 

develops much less lift. 

A sample trajectory is depicted in Fig 5.29. The plot shows that the target is in­

tercepted at position (64 283]. The triangle denotes the moving target. Figure 5.30 

illustrat s the x-y-time plots. 
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Figure 5.30: x-y-time plots for a feasible trajectory {bold) found in an environment 

with t ime-varying final state 

Figure 5.31 reveals the inputs and states history of the AUV. The fA sequence is 

given as: 

g f = 9o X Q1 X P60 X Q2 X P3o X q3 X P60 (5.21) 

The trim trajectory discussed has the following coasting times, Tq1 = 30.9 s, Tq2 = 
8.7 s and Tq3 = 91.1 s. One can deduce from the above MA transcription that 

three trim trajectories and three manoeuvres are required to complete the course. 

The final motion primitive is an aggressive 60° manoeuvre that is not desirable for 

docking pmposes. The ideal manoeuvre will be in a tail-chase fashion. This problem 

can be solved by constrain ing the final heading state of the AUV. T he trajectory takes 

185.1 s to be completed. One can notice that the final manoeuvTe is clipped abruptly 

before it has finished executing. onetheless, it is already near the end-point of the 

manoeuvTe and within the tolerance of the final position state (circle of acceptance). 
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Figure 5.31: Inputs and states history (environment with time-varying final state) 
(a)Tpm-time plot (b)velocities-time plot (c)rudder deflection-time plot (d)yaw rate­
t ime plot 
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5.6.4 Performance statistics comparison 

Given the probabilistic nature of the algorithm, a sample of 30 simulations are run to 

compile the statistics (Table 5.3) for each scenario. The appraisal is conducted based 

fundamentally on three criteria as listed below: 

1. Computational time needed to provide a solution 

2. The quality of the trajectory with reference to the minimum time criterion. 

3. The frequency of failure. (Unable to find a solution giving the require time or 

number of node constraints.) 

The simulations were run with 200 maximum nodes and 300 iterations, terminating 

when either criterion is reached or if a solution is found. Additionally, a maximum 

time of 4 s was also added to limit the run-time of the program. 

Table 5.3: Statistics from 30 sample runs 

Statistics Static Dynamic Time-varying 

Computational time(mean, s) 1.22 0.68 2.39 

Computational time(std, s) 0.91 0.54 0.76 

Computational time (median, s) 1.35 0.53 2.48 

Trajectory time (mean, s) 159.18 127.25 251.19 

Trajectory time (std, s) 37.07 9.80 60.99 

TI·ajectory time (median,s) 148.20 125.25 242.00 

Percentage of failures 21% 15% 64% 

The above collected descriptive statistics of the algorithm run-time convey some im­

portant information regarding the performance of the MA+RRT algorithm for each 

scenario. Comparing their median statistics, it is observed that the solution time are 

within two seconds except the time-varying final state case. Unlike the RRT case, 

the mean and median are actually very close and both can be used as estimators. A 

significant improvement in run-time performance is to be expected if it is parted into 

C language. 
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In this case, the dynamic environment scenario is deemed to be easiest for the algo­

rithm, as evidenced by the low failure rate and low computation time median value. 

But when the obstacle adjacent to the AUV was altered, to travel in the direction of 

North-West, the algorithm failed completely. Upon careful analysis, it was concluded 

that the dynamics of the AUV, the constant 2 m/ s cruising speed, is the primary 

constraint. One simple solution in obviating this problem is to expand the sampling 

space, hence allowing the AUV to execute a full-circle turn in order to allow the ob­

structing object to pass before progressing to the goal. A more complicated MA that 

encompasses a near full performance envelope of the AUV will increase the chances 

of finding a feasible trajectory. 

Again referring to Table 5.3, it reveals that the failure rate for the varying-final state 

case is the highest, as to be expected. This issue is partly attributed by the 'false­

position' algorithm. One interesting anomaly arose during this experiment, as in 

some cases, the A UV will engage the target head-on instead of the more favourable 

tail-chase fashion. This is not a desirable trajectory for docking purposes. This 

phenomenon is to be anticipated with hindsight since the final state heading for the 

AUV is not explicitly taken in account in the algorithm settings. It can be prevented 

by wrapping the heading angle and constraining the final state heading in the linear 

program. 

Deducing from several trajectory plots as presented above, one can conclude that 

the feasible trajectories acquired from the MA+RRT method are smooth in contrast 

to the one from the RRT algorithm, which is rather erratic. In essence, a smooth 

predictable trajectory is appealing in several aspects, not only is it beneficial to the 

actuator lifespan and energy cost but also indirectly functioning as a sub-technology 

that underpins an embryonic field, known as cooperative robotics. The idea here is 

to employ multiple AUVs, working collectively to complete a mission in the most 

efficient manner. In cooperative robotics, effective communication is of paramount 

importance due to the synchronisation requirements. A communication protocol in 

the form of a compact symbolic language facilitates robot synchronisation. Consider­

ing this, if an AUV motion, is comprised of only a few predictable time-profiles, this 

can be expressed succinctly using a compact symbolic language, thus lowering the 

communication bandwidth requirement as a result. A highly desirable trait derived 

from the adoption of MA representation. 
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5. 7 Concluding Remarks 

The primary objective of this chapter is to verify the feasibility of employing MA 

representation and RRT algorithm to an AUV to solve motion planning problem. 

Its very short computational time makes it an ideal algorithm for real-time applica­

tions. Additionally, simpler algorithm for solving time-vaJ·ying final state has been 

proposed. Notwithstanding that, the algorithm is also able to addressed the chatter­

ing inputs problem that plagues the RRT algorithm. As far as the author's knowledge 

is concerned, this is the first attempt in employing the MA and RRT in an AUV. 

As the algorithm is inherently a feedforward controller, a robust low-level feedback 

controller is needed to track the prescribed trajectory when subjected to external 

disturbance. Chapter 6 is reserved for this interesting topic. In addressing the case 

of navigating in an unknown environment, a sensor-based motion planning method is 

needed. 



Chapter 6 

The Trajectory Trackers 

So far in this thesis, the development of the trajectory planner has been described 

in detail. Chapter 4 concentrated on the application of the RRT algorithm whilst 

Chapter 5 expanded the topic further by incorporating it with the MA representa­

tion. Both of the chapters are substantiated with extensive simulation studies. This 

chapter, on the other hand, deals with the development of trajectory tracking con­

trollers for an AUV. Together with the trajectory planner, they complete the obstacle 

avoidance module of an AUV. 

As aforementioned, the trajectory generated by the RRT+MA algorithm when sup­

plied to the controller with the corresponding states and inputs is fundamentally a 

feedforward control law. Understandably, a feedforward system does not function 

well in the presence of internal and external perturbations. Ocean currents and sen­

sor noise are prime examples of the common perturbations encountered in practice. 

A small deviation from the prescribed trajectory, if not corrected, will propagate and 

diverge the system from the desired states. Exacerbating the circumstances, a large 

trajectory deviation will increase the propensity of collision with the environmental 

obstacles, which could result in a catastrophic consequence if that happens. 

Therefore, deducing from this exposition, it is imperative that the deviation from 

the reference trajectory be minimised at all time. In other words, one requires to 

find a control law such that when applied to the AUV, it can achieve asymptotic 

stabilisation on the reference trajectory. This issue can be resolved via the application 
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of a trajectory tracker hence leading to the main theme of this chapter. Herein, two 

variants of state-feedback trajectory trackers, the popular full-state feedback linear 

quadratic regulator (LQR) and the more advanced nonlinear state dependent Riccati 

equation (SDRE) controller are examined to evaluate their viability for trajectory 

tracking purposes in an AUV. Their individual advantages and disadvantages are 

highlighted and discussed. 

It is true that the selection of a particular controller for an AUV is related to several 

factors. Some of them are 

• Robustness to modelling errors (plant parameter variations) 

• Disturbance handling characteristics 

• Set point tracking and trajectory following 

• Stability characteristics 

• Application to linear and nonlinear plants 

• Simplicity in implementation 

• The requirement for a system model 

These important factors must be borne in mind as one proceeds to evaluate more 

appropriate controller for the task in hand. 

6.1 Preliminaries 

An AUV, similar to the majority of ocean vehicles, is inherently an underactuated 

system. Briefly, an underactuated vehicle is also considered to be a second order 

nonholonomic system. This happens when the vehicle has less independent actuators 

than state variables to be tracked. Mathematically speaking, it is defined that the 

dimension of the space spanned by the control vector is less than the dimension 

of the configuration space. Furthermore, the system states are highly coupled and 
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the non-minimum phase behaviour of an AUV renders controller designs non-trivial 

(Toussaint 2000). 

In reducing the problem complexity of dealing with numerous states, an established 

technique but very popular an1ongst the industrial community is to redefine the out­

put space from a three degrees of freedom variable, assuming a planar motion, to a 

reduced two degrees of freedom variables. This is easily achieved through the use of 

a guidance control law where the x, y, '!f; configuration variables are map into r, 9, 

the range and line-of-sight angle respectively. The resulting controllers are called 

course-keeping controllers (CKC), also commonly referred to as autopilots (Fossen 

1994). 

The crux of the technique is to employ a simple PID controller to generate a control 

law and assign it to the AUV rudder in order to maintain the desired reference course, 

which is the course between AUV's current position and the prescribed waypoint. 

The heading reference commands are frequently catered by an independent guidance 

system, the line-of-sight scheme remains the most popular (Lin 1991). Static set­

points or waypoints for short, are utilised as intermediate 'milestones' or subgoals 

to assist the AUV in reaching the actual destination. Unfortunately, owing to its 

dependency upon static set-points, the AUV is susceptible to constant environmental 

disturbances such as winds, waves and currents, causing the AUV to drift from the 

ideal course. For this reason, frequent course correction is compulsory to ensure 

that the AUV arrives at the desired destination. One must also be aware that the 

separation of guidance and autopilot functions may not yield stability. 

Owing to the immense popularity of the aforementioned technique, there are no dearth 

of articles reporting the implementation and supremacy of various types of autopilot. 

These autopilots are based on the classical, modern (Naeem et al. 2003) to soft­

computing (Craven 1999, Zirrili et al. 2000) control theories. Hybrid approaches have 

also been reported to be very successful indeed (Kwiesielewicz et al. 2001, Akkizidis 

et al. 2003, Naeem et al. 2004). 

Recalling from the above, the waypoint guidance scheme, in principle, focuses pri­

marily to ensure that the AUV arrives at the predefined destinations (waypoints) 

without much consideration with regards to the trajectory undertaken. Obviously, 

this is not acceptable in a collision avoidance context, as the ability of an AUV to 
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arrive at a destination and to conform to a predefined trajectory are equally essential 

in order to prevent a collision and to preserve the structural integrity of the AUV. 

Therefore, a trajectory tracker is deemed mandatory for the simultaneous attainment 

of the above objectives. Comparing to autopilots, the design of trajectory trackers 

are more challenging partly to the multivariable nature and underactuated behaviour 

of the system. Moreover, the vehicle also exhibits complex nonlinear, hydrodynamic 

effects that must necessarily be taken into account during the controller design phase. 

These vehicles also exhibit sway velocity that generate non-zero angles of sideslip. 

6.1.1 Types of motion control 

Before proceeding to the detail design of the trajectory tracker, it would be more 

edifying to understand the nature of motion control problem one will be dealing with. 

As a matter of fact, the problem of motion control can be predominantly partitioned 

into three distinct classes, in accordance to the difficulty they impose and the way 

they are solved (Encarnacao and Pascoal 2002). 

1. Point stabilisation, where the objective is to stabilise a vehicle at a given point 

with a desired orientation (static set point). 

2. Trajectory t.racking, where the vehicle is expected to track a time parameterised 

reference trajectory. 

3. Path following, where the vehicle is required to converge to and follow a pre­

scribed path, neglecting any temporal constraints. 

The point stabilisation problem remains the most challenging amongst the three men­

tioned, especially when the vehicle being investigated has nonintegradable constraints. 

In fact, according to the celebrated Brockett's necessary condition for stability, there 

is no continuous differentiable, static state-feedback control law that can asymptoti­

cally stabilise an underactuated system to the equilibrium (a trajectory that degener­

ates into a single point) (Brockett 1983). In circumventing this difficulty, researchers 

have offered two techniques: smooth time-varying control laws (Murray and Sastry 

1990, Samson 1991) and discontinues feedback laws (Canudis de Witt and S0rdalen 

1991, Zhang and Hirschorn 1997). 
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Aggravating this situation is that an AUV is always required to function in the pres­

ence of unknown ocean currents. Interestingly, if the desired orientation does not 

coincide with the direction of the current, conventional control laws will yield one of 

two possible behaviours: 1) the vehicle will diverge from the intended target posi­

tion, 2) the vehicle controller will keep the vehicle moving around a neighbourhood 

of the desired position, attempting to move persistently to the given point, and con­

sequently inducing an oscillatory behaviour. Unsurprisingly, such behaviours can be 

anticipated since most AUVs are non-minimum phase systems which possess unstable 

zero dynamics. 

Aguiar and Pascoal (2002) addressed the problem of dynamic positioning an AUV in 

horizontal plane in the presence of unknown, constant ocean currents by dropping the 

specification on the final desired orientation and using this extra degree of freedom 

to force the orientation of the vehicle such that it is aligned with the direction of 

the current. This 'weather-vane' like property is very well-known and has also been 

exploited by Pettersen and Fossen (2002). They developed a time-varying feedback 

control law including integral action that can exponentially stabilise both the positions 

and the orientation of the ship. The integral action is required to eliminate the 

oscillatory stationary errors. 

The trajectory tracking problem entails the design of feedback control laws that can 

force the vehicle to reach and track a time parameterised inertial trajectory (a curve 

in the state-space with an associated timing law). This technique is very important 

in an environment with dynamic obstacles. Here, the temporal specifications must be 

strictly complied to avoid a collision. The majority of tracking controller schemes for 

underactuated marine vehicles employ the classical approaches such as local lineari­

sation and decoupling of the multivariable model to steer as many degrees of freedom 

as the available control inputs (Repoulias and Papadopoulos 2005). This is frequently 

achieved by linearisation of the vehicle's error dynamics about trimming trajectories 

before proceeding to applying a state-feedback controller (Walsh et al. 1994, Divelbiss 

and Wen 1997, Toussaint 2000). Again, similar to most linearised models, the validity 

of these solutions is only limited about a small neighbourhood around the selected 

operating points. 

A nonlinear Lyapunov-based technique has been shown to be a rather prom1smg 

approach (Silvestre et al. 1995). Frazzoli (2001), on the other hand, implemented 
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a robust nonlinear controller based on backstepping approach on an autonomous 

helicopter. Logic-based switching control was proposed by Aguiar and Hespanha 

(2004). Notwithstanding the modern control theory approach, Vukic et al. (2001) 

preferred a soft-computing paradigm and they employed a neurocontroller instead. 

Wettergreen et al. (1999) applied an evolving neurocontroller based on Q-learning for 

a visual servoing task in the Kambam AUV. Strictly speaking, this is not a trajectory 

tracker per se, but a path tracker. In addition, Jiang et al. (2005) advocated the use of 

a predictive fuzzy logic controller. Nonetheless, the short-supply of rule-based fuzzy 

logic techniques being applied to this problem can be attributed to the multivariable 

nature of the problem which tends to cause state-explosion of the fuzzy rules. 

The path following problem requires the vehicle to follow a path without complying to 

any temporal specifications. One clear advantage derived from this approach, is that 

the vehicle forward speed need not be controlled as rigorously when following the path 

since it is sufficient to act on the vehicle orientation to drive it to the path, therefore 

ensuring a smoother convergence to a path. As a consequence, the control signals are 

less likely to be pushed to saturation when compared to the performance obtained 

with trajectory tracking controllers (Hindman and Hauser 1992). Path following 

systems for underactuated vehicles especially of the marine type can be found in (Do 

et al. 2002, Aguia.r and Hespanha 2004, Aguiar et al. 2005). 

Unfortunately, by abrogating the temporal specifications, the solutions become less 

versatile and cannot be applied in an environment populated by dynamic obstacles. 

In fact, successful collision avoidance cannot be guaranteed in this context. Distinctly, 

this also precludes its usage in multiple-AUV rendezvous and cooperative missions, 

missions where the manoeuvre synchronisation of the AUVs are critical. For these 

reasons, the path following problem is considered to be less interesting, which explains 

the lack of attention it is receiving. 

6.2 The Proposed Approach 

Again, recalling from above that the Brockett's condition imposes a certain amount of 

difficulty to the point stabilisation problem. Therefore, it will be prudent if, instead 

of concentrating on a point stabilisation problem, one diverts the attention to stabil-
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isation about a prescribed reference trajectory as adopted in this chapter. Note that 

the trajectory in this context must not degenerate to a point, implying that the surge 

velocity of the AUV must be nonzero. The problem is also made more complicated by 

the very fact that the underactuated vehicles such as the AUVs. As a consequence, 

this rules out any attempt to design a feedback only controller that would rely on its 

kinematic equations. 

Nonetheless, this shortcoming can be addressed by the introduction of a feedforward 

unit. In fact, the use of a dedicated feedforward unit in the trajectory tracking case 

is not entirely new. Nieuwstadt (1997) has shown that substantial performance im­

provement can be derived from a system equipped with a feedforward unit compared 

to a feedback only controller. A feedforward unit is also beneficial to systems that suf­

fer from large transport delays, in essence it evokes a form of anticipatory behaviour. 

One can conclude that feedback control is reactive but feedforward control is proac­

tive. Jn spite of the advantages, feedforward control can only respond to known kinds 

of disturbances, but cannot do much with novel disturbances. As a matter of fact, 

great care must be taken in the design of such a unit, since it has the propensity to 

destabilise a system. Consequently, feedforward units are rarely employed alone and 

must be combined with feedback units. Merging the two units creates a two degrees 

of freedom controller as depicted in Fig 6.1. 

Contextual speaking, the reference trajectory is consisted of the desired inertial po­

sition and the corresponding velocities. The reference trajectory must not only be 

consistent with the dynamics of the vehicle but also freed from environmental obsta­

cles. A trajectory satisfying these two conditions is termed as a feasible trajectory. 

Clearly, the location of the obstacles must also be known a priori to a certain extend 

for that to be achieved. 
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Figure 6.1: Controller structure 
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With that in mind, the trajectory tracking technique proposed can be defined as such: 

Given that a feasible trajectory for an underactuated system is generated 

by an open-loop planner, one can then compute the linearisation of the 

system about this nominal trajectory. For this particular case, the open-loop 

planner pertained is no other than the novel MA+RRT algorithm developed in Chap­

ter 5. Moreover, if the linear time-varying system acquired through the linearisation 

process is completely controllable in a certain sense, one can then define a linear 

time-varying feedback law that forces the tracking errors to a neighbourhood of zero 

that can be reduced arbitrarily. To describe another way, it locally stabilised the 

system about this nominal trajectory. The control laws proposed herein were derived 

by solving the celebrated Riccati equation, in accordance with the spirit of optimal 

control. Such a controller, if properly designed should also be able to reject many 

types of disturbance including noise in the sensors, initial condition errors, and errors 

injected along the trajectory. 

Even so, the closed-loop dynamics of the AUV can yield instability if it diverges too 

far from the neighbourhood of the reference trajectory since the errors introduced 

by the linearisation process becomes too large to be neglected. Consequently, it is 

crucial to define a state-space tube or manifold as mentioned in Subsection 5.5.2 be 

defined. 

6.3 Motivation of Using Optimal Control 

Amongst all the high performance, multivariable control methodologies, the optimal 

control framework brings forth the best balance between successful practical imple­

mentation, optimal system performance and mathematical tractability. In fact, the 

optimal control paradigm encompasses the LQR, model predictive control (MPC), 

H-infinity control and so forth. It is not surprising that it has been a preferred 

choice amongst controls academicians and engineers for tackling multivariable, high 

performance system control. 

In the optimal control paradigm, the problem is cast into a minimisation or maximi­

sation problem for which an objective function is defined, and the control law found 

must also satisfy the dynamics equation of the system. In most of the cases, the 
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objective function or performance index is a function of the design parameters or 

states to optimise. The use of these physical related quantities facilitates the tun­

ing process. According to Bur! (1998), a general requirement for the selection of a 

suitable objective function is (1) it should accurately reflect the designer's concept of 

good performance and (2) the control moves should be computed with a reasonable 

amount of effort. The latter requirement can actually be relaxed due to the recent 

availability of abundance and inexpensive computing power. 

The traditional pole placement (pole assignment) approach works by placing the poles 

at designer's chosen location to attain some design specifications such as overshoot, 

rise time, settling time or bandwidth. However, a critical disadvantage of using this 

technique is that the pole locations must be worked out in advance. Moreover, the 

controller obtained by this method is not always optimal and a trial and error proce­

dure is adopted until the system performance coincides with the desired specification. 

This difficulty is amplified if the system is of a multivariable type. 

Optimal control theory suggests the poles at points should be placed such that the 

resulting controller is optimal in some sense. Furthermore, the knowledge of the pole 

locations prior to the design is not needed. The designer is needed to only decide what 

merit to use and achieve the design specifications by tuning the weighting coefficients 

contained in the objective function. The best pole locations to attain the desired 

response is then relegated to the algorithm. 

Mathematically, optimal control system design can be defined as such: given the 

constraints U on control functions u(t) that form the set of admissible controls u(t) E 

U for all t E [t0 , tJ] and the constraints X on the state trajectories x(t) that form the 

set of admissible trajectories x( t) E X for all t E [to, t I], the optimal control problem 

is to find an admissible control function u(t) that forces the continuous-time system 

:X= f(x(t), u(t), t) (6.1) 

or discrete-time control system 

x(k + 1) = f(x, u(k)) (6.2) 
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to follow an admissible trajectory x(t) while minimising the performance objective of 

1
tf 

J = S(x(tf ), t1) + t=to L(x(t), u(t), t)dt (6.3) 

whereas in discrete-time performance criterion is 

N-I 

J = S(x(N)) + L L(x(k), u(k)) (6.4) 
k=O 

If the solution to the optimal control problem can be found in the continuous form of 

u(t) = u(x(t), t) (6.5) 

or in discrete form 

u(k) = u(x(k)) (6.6) 

then if the control is said to exist in the closed-loop form, is refereed to as the optimal 

control law. 

6.4 Linear Quadratic Regulator Design 

The crux of the LQR is to find a linear stabilising feedback control law for the plant in 

question. It is an optimal controller which is derived on the basis of a linear model of a 

plant and a quadratic cost function to be optimised, hence the term 'linear quadratic'. 

Fig 6.2 depicts a simplified block diagram of an LQR, where x is the state vector and 

u is the input vector. 

LQR Controller 

u .. x (Pia nt slates) 
-K, Process Model .. , 

Figure 6.2: A block diagram of a generic LQR 
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Plainly, a linearised time-varying plant can written in a state-space form as 

:ic.(t) = A(t)x(t) + Bu(t) (6.7) 

and quadratic cost functions, 

(6.8) 

and 

(6.9) 

Matrices M, Q, and R must be square; M and Q must have a length equal to the 

number of states; and R must corresponds in dimension to the number of inputs. 

Additionally, to ensure that the solution is unique and finite, matrices M and Q 
must be positive semidefinite, whereby matrix R must be positive definite. 

A definite requirement of the LQR controller is that the plant must be pointwise 

controllable and that the matrix A is nonsingular. When this is true then there 

exists a constant feedback gain matrix Kc that allows the eigenvalues of the closed­

loop system to be assigned arbitrarily. This is mathematically stated by forming a 

controllability matrix S in terms of the matrices A and B given by 

(6.10) 

Then the system is said to be pointwise contmllable if the matrix S has rank n. 

Nonetheless, in practice, this requirement can be too restrictive and commonly re­

laxed, a less demanding requirement called stabilisable is frequently preferred. A 

system is stabilisable if the states that are not controllable are stable. These states 

are explicitly ignored and a new state transfer matrix is defined. 

It is now required to evaluate the contents of Kc or in other words, the state feed­

back gain, such that a performance index is minimised whilst subjected to satisfying 

Equation 6.7. It should be observed that the state vector sequence x(t) <md the input 

sequence u(t) are not independent variables that can be arbitrarily chosen to min­

imise J. Nonetheless, prior to finding Kc, one has to proceed to find a symmetric 

positive semi definite matrix P which is the solution to the matrix riccati equation. 

It is worth mentioning that, there exists two families of the problem that called for 

different approaches. They can be classified as the finite planning horizon problem 
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and the infinite planning horizon problem. 

For the specific case of finite planning horizon, t ::; oo, linear-quadratic optimal 

control problems are solved by finding the symmetric positive semi definite P matrix 

that satisfies the matrix Riccati equation (MRE): 

P(t) + A(tfP(t) + Q(t)x + P(t)A(t)- P(t)BR(tt1BTP(t) +M= 0, P(t1) =M 
(6.11) 

Conversely, for the infinite horizon problem, where t = oo, one must satisfy the 

algebraic Riccati equation (ARE): 

(6.12) 

Algebraic Riccati Equation is actually a unique case of the more general MRE where 

P = 0 and M= 0. 

Once P(t) is found, it can be substituted into equation below to obtain the state 

feedback gain matrix as given by 

(6.13) 

Then with I<c, upon substitution into Equation 6.14 provides the required control 

effort. The LQR output can be defined as 

u(k) = -Kcx(k) (6.14) 

For set point tracking or trajectory following cases, a feedforward unit must be added 

to eliminate the offset error. The LQR also assumes the availability of full state­

feedback and the states measured are not corrupted by noise. In practice, this is ad­

dressed by introducing a Kalman filter to reconstruct the unavailable or noisy states. 

The resulting controller is termed as Linear Quadratic Gaussian (LQG) controller 

since it is optimal for processes contaminated with Gaussian noise. Augmenting a 

Kalman filter for state estimation seriously degrades the excellent stability margins 

available for an LQR controller. 
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6.4.1 Selection of weighting matrices 

Control systems are often designed to specifications that involve the settling time, 

damping ratio and bandwidth constraint. They are also subjected to constraints on 

the maximum output error, state error and the maximum control input. Violating 

these constraints will induce actuator saturation, which also renders the linearised 

system nonlinear and invalidating the optimal control law. To achieve the specifica­

tions, one em ploys a trial and error selection of the weighting matrices P, Q and R 

in the objective function defined in Equations 6.8 and 6.9. 

The size of the weighting matrices is altered to yield a desired settling time or some 

other performance criterion. Through this tuning process, a tradeoff between speed 

of response and control effort can be accomplished. In the case of 'expensive' control, 

when R » Q, assuming that both the matrices have been normalised, the cost 

function is dominated by the control effort u, and so the controller minimises the 

control action itself, ensuing an energy efficient, albeit sluggish response. Conversely, 

in the case of 'inexpensive' control, when R « Q, the cost function is dominated 

by the state errors, and there is no penalty for using large inputs, hence affording 

a more agile response. The control effort magnitude is actually limited by actuator 

saturation and its slew rate, therefore an excessively responsive closed-loop system has 

the inclination to cause actuator saturation. Similarly, the terminal state's weighting 

coefficient M, determines how close to the desired final state the system will be at t1. 

A good starting point for trial and error selection of the state weighting matrix is 

to set the various state contributions approximately equal as given by the Bryson's 

rule (Bryson and Ho 1975). In principle, the rule scales the variables that appear 

in matrices Q, R, and M such that the maximwn acceptable value for each term 

is unity. In other words, it 'normalises' the variables such that each of them has 

equal contribution. This is particularly important when there is a large discrepancy 

between the range of the variables such as in the case of different units. The different 

elements in of u and x make the values for these variables numerically very different 

from each other. 

In the Bryson's rule, the diagonal Q, R, M 8l·e selected with the following normali-
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sation; 

Q;; = 
Rii = 
Mkk = 

maximum accepLable value of yr 
1 

maximum acceptable value of u~ 
1 

maximum acceptable value of y(!Jl1 
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i E 1, 2, ... f, 

j E 1, 2, ... f, (6.15) 

k E 1, 2, ... f, 

Although Bryson's rule usually gives a satisfactory results, often it is just the starting 

point to a trial and error iterative design procedure aimed at obtaining desirable 

properties for the closed-loop system. 

6.4.2 State error model and linearisation 

LQR is a form of regulator, and its intrinsic nature is to drive all the states, assuming 

controllable, to zero. When all the states reach zero then the controller output will be 

equated to zero. Thence before pursuing with the linearisation process, one needs to 

recast the formulation into state error form. To put mathematically, the state error 

is expressed as below, 

Xerror = Xmeasured - Xref (6.16) 

For all the LQR problems, one can safely assume that the x is actually Xerrar· Given 

the fact that one is actually dealing with a tracking problem, one must also introduce 

a feedforward unit to ensure proper set point tracking. It can be concluded that 

when all the states reach zero, this implies that the system is exactly at the desired 

trajectory. A block diagram pertaining to this controller is given in Fig 6.3. 
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Figure 6.3: The LQR with a feedforward unit in an AUV 

y 
Output 

Referring to Fig 6.3, notice that the net control input supplied to the vehicle is the 
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sum of the controller and the feedforward unit outputs as expressed below, 

U8 = llc + UJJ (6.17) 

It is evident from Fig 6.3 that the tracking controller and the feedforward unit are 

operating independently. Indeed, as will be explained later, this deficiency of 'infor­

mation interaction' has a propensity to induce instability. 

In the LQR design, a linearised model is necessary. The parameters XriTI, mXgYvlvl• 

and Yrlrl in Equation 3.16 are neglected since their quadratic products are too small. 

For the sake of mathematical clarity, it is frequently preferable to convert the non­

linear model into a standard form for underactuated vehicles before transforming the 

equations into state error equations. The standard form describing an underactuated 

vehicle executing planar motions can be expressed as (Toussaint 2000): 

iL = m,.vr- d,.u + au1 + w 1 

iJ = mvm·- dvv + lm2 + W2 

r = mr UV - dr T + CU2 + W3 

x = ucos('lj;)- vsin('lj;) 

y = usin('lj;) + vcos(1/J) 

1/J=T 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

Again, deducing from the above equation, the control inputs are not only coupled 

to the vehicle dynamics but also not affine since it is dependent on the square of 

the surge velocity. One must also set the operating point to linearise the equations. 

Herein, the surge velocity is set at 2 rn/ s, corresponding to the normal cruising speed 

of the A UTOS U B. The variables a, b and c, are constants. The variables w* are used 

to model external disturbances acting of the vehicles but they are assumed to be zero 

for this case, as the LQR assumes no noise corruption. These terms would be required 

for Hoo control. 

Accordingly, one defines the current states using error states and desired states (ref-
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erence state) as, 

u Ue UrJ. 

V Ve V a 

X Xe X a 
(6.24) + 

y Ye Ya 

r re TrJ. 

1/J 1/Je 1/Jd 

Referring to Equation 3.16, where m is the inertia matrix with the associated states 

[u v r 1/J]r, one can define a new matrix below; 

mu 0 0 0 

m-1 0 m22 m23 0 
(6.25) 

0 m32 m33 0 

0 0 1 0 

Using a Taylor's series, the linearised model of AUTOSUB's dynamic equations can 

be reformatted as below; 

Ue 2maud ma1'd 0 0 mavd 0 Ue a 0 

Ve mbvd +mcrd mbud 0 0 mcud 0 Ve 0 b 

X cos( 1/Jd) - sin(1/Jd) 0 0 0 0 Xe 0 0 
[ UJe ] 

e 
+ 

Ye sin( 1/Jd) cos 1/Jd 0 0 0 0 Ye 0 0 U2e 

re mdvd +merd m dud 0 0 meud 0 

1/Je 0 0 0 0 1 0 

where m(.) are defined as follows; 

1na =mu 

rnb = m22Y,w + m23Nuv 

me= m22(Yur- m)+ m23(Nur + mX9 ) 

md = m32Y,,r + m33Nur 

me = m32(Yur- m)+ m33(Nur- mX9 ) 

a= 140Xprop 

b = 8Y6r 

C = 8N6r 

re 0 c 

VJe 0 0 
(6.26) 

(6.27) 

Equation 6.26 contains a time-varying state transfer matrix A(t). Different trajecto-
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ries will have different values due to the time-varying nature of variables lld, vd and 

"1/Jd· This is essentially a finite horizon problem since t1 =I oo. A(t), however, will 

revert into a time-invariant matrix if the trajectories are restricted to only rectilinear 

motions. 

6.5 Solving the Matrix Riccati Equation 

Several numerical methods exists in solving the MRE, since analyt.ical methods are 

rather limited. Darling (1997) proposed a technique where the MRE of matrix n x n 

size is transformed into a system of n( n+ 1) /2 linear second order ordinary differential 

equations, also known in differential geometry as the Jacobi equation. 

As aforementioned, the problem one is dealing here is of a finite horizon variant. 

Herein, the approach recommended by Lewis (1986) is adopted. The optimal feedback 

control gains are computed backward in time according to the following recursive 

equations; 

K(k) = [BTP(k)B + R(k)t 1BTP(k + 1)A(k) 

P(k) = AT(k)P(k + 1)[A(k)- B(k)K(k)] + Q(k) 

(6.28) 

(6.29) 

Where P(N) 2: 0, is the end configuration weighting matrix, Q(k) 2: 0 is the config­

uration weighting matrix, and R(k) > 0 is the control weighting matrix. The Riccati 

equation is always solved in reverse time order. The P(N) = M, Q(k), and R(k) 

matrices are diagonal and can be chosen to be time-invariant for best performance. A 

detailed exposition pertaining the tuning of these weights is delineated in Subsection 

6.5.1. 

One must also bear in mind that for every sampling interval of Equation 6.29, one 

requires a new state transfer matrix A(k) due to its time-varying nature. On the other 

hand, the input matrix B(k) is time-invariant for this specific case. Furthermore, the 

original Equation 6.26 is in continuous form. This suggests that a transformation from 

a continuous-time system to discrete-time approximation is necessary. A plethora of 

algorithms such as the Etiler's method, the zero-order hold approximation, the bilinear 

transformation, the impulse invariant approximation can be accessed but two of the 
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more popular approximation methods are Euler's method and the zero-order hold 

approximation. 

The zero order hold method was chosen in this context, as it provides a mean of 

generating discrete-time state equation for systems that are time-varying and non­

linear. Whereas, the zero-order hold approximation is more suitable for linear, time 

invariant systems. In the Euler's method, it is critical that the sampling time be 

sufficiently short that the finite-time derivative is an accurate approximation of the 

true derivative (Bur] 1998). 

A discrete-time state equation can be obtained from the continuous state equation 

using Euler's method of approximating the derivative: 

x(kT + T)- x(kT) ::::::: . (k ) 
T X T (6.30) 

Hence, in computational form, a difference equation for the state can be explicitly 

expressed as 

x(kT + T) = x(kT) + T(Ax(kT) + Bu(kT)) (6.31) 

or 

x(k + 1) = x(k) + T(Ax(k) + Bu(k)) (6.32) 

6.5.1 Tuning of the LQR weighting matrices 

The tuning of the parameters M, Q, and R is nontrivial. The following weighting 

matrices had been chosen experimentally and employed in the remaining sirnulations. 

Q = diag([40 40 0.1 0.1 50 3000)) 

R = diag([62.5 1000]) 

M= diag([400 1000 4 4 100000 1000]) 

(6.33) 

(6.34) 

(6.35) 

Notice that there is a large range difference between the elements of the matrix, this is 

caused by the variety of units employed. The system response is very sensitive to the 

clement values. Again, the weighting matrices above are time-invariant, exploitation 
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of time-varying version is expected to improve the controller performance but will 

definitely make the tuning process even more challenging, owing to the increase degree 

of freedom. Several factors contributed to the tuning problem above: 1) There are 

too many tuning parameters, 2) The coupling between the states and 3) The states x 

and y are based on Earth-fixed frame. These states change according to the particular 

trajectory, which implies that the controller is trajectory-dependent, making retuning 

a compulsory process for each different trajectory. Clearly, there is a great need for 

future research in this particular area. Once the gain matrix, K is found, the net 

control effort is obtained by a simple substitution into Equation 6.14. 

6.6 State Dependent Riccati Equation (SDRE) Con­

trol 

There are a myriad of nonlinear control techniques that are applicable to complex 

systems. Amongst the more attractive ones are the state feedback linearisation, 

adaptive control, model predictive control (receding horizon control), sliding mode, 

recursive backstepping, neural network, fuzzy logic, SDRE and so forth. 

An excellent review of SDRE techniques can be found in Cloutier (1997). The very 

idea of using state-feedback Riccati equation based linear control methods for non­

linear systems was originally proposed by Pearson (1962) and later Cloutier et al. 

(1996) attempted to revitalised the interest. Coupled with the rapid advancement of 

microprocessor technology, which guarantees the availability of low cost and abun­

dance computing power, this has made SDRE control a promising candidate for the 

control of nonlinear systems. 

For instance, SDRE based designs have been used in advanced guidance law devel­

opment for high performance aircraft and missiles (Cloutier et al. 1996, Wise and 

Sedwick 1997, Menon et al. 2004). Likewise, Parrish and Ridgely (1997) employed it 

for altitude control of a satellite. From a practical viewpoint, results of a real-time 

experiment using a two-link underactuated robot, which is a highly nonlinear fourth 

order system was also presented by Erdem (2001). In addition, SDRE control with 

nonlinear feedforward compensation for a small unmanned helicopter has been at-
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tempted by Bogdanov et al. (2003}. The helicopter successfully conducted various 

aggressive preprogrammed acrobatic manoeuvres. 

Mathematically, the SDRE controller shares a great deal of similarity with the LQG 

controller, then again, its formulation and operation bear striking resemblance to 

the MPC. Unlike the LQR with infinite horizon case, instead of using a set of fixed 

weighting matrices, both the parameters Q(x) and R(x) can vary as a function of 

states. In other words, the state transfer matrix A(x} and B(x) can be defined such 

that they are dependent on the states per se. The ability to vary the Q and R 'on-the­

fly', allows one the flexibly to expand the performance envelope of the plant. There 

is also a possibility to impose hard bounds on the control, control rate, and control 

acceleration to avoid actuator saturation (Cloutier et al. 1996, Mracek and Cloutier 

1998}. These two features render the SDRE controller a nonlinear controller. 

A note worthy aspect of SDRE control which is similar to the MPC is that it runs 

the algebraic Riccati equation (ARE} solver at every sampled time, implying online 

optimisation. The SDRE control is able to accommodate for large state errors issue 

by implicitly assimilating them into the A(x} ru1d B(x) matrices thus ensuring the 

system is able to react favourably against large external disturbance effects. Moreover, 

the SDRE controller does not not cru1cel beneficial nonlinearities. In principle, SDRE 

control possesses respectable robustness characteristic borrowed from the LQR. Better 

still, SDRE H00 control formulation has also been proposed by Cloutier et al. (1996}. 

Despite of the aforesaid characteristics, it has been shown that the SDRE regulator 

is locally asymptotically stable and suboptimal (Banks and Manha 1992, Cloutier et 

al. 1996}. Owing to the nonlinear characteristic of SDRE control, global asymptotic 

stability cannot be guaranteed. This is still an open issue which warrants further 

research. 

On the aspect of optimality or Jack thereof, SDRE control obtained is not usually the 

optimal one that minimises the performru1ce index. The reason for this is because of 

the non-uniqueness of the parametrisation of f(x) = A(x)x (Erdem 2001 ). Although, 

it is possible for the SDRE control to match the optimal one if a 'suitable' A(x) is 

chosen, but the task of finding it can arduous. Giving the apparent benefits of the 

design flexibility of SDRE control, one can welcome it as a tradeoff to optimality. 
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6. 7 SDRE Formulation 

The formulation of SDRE is actually quite straightforward and applicable to a wide 

range of nonlinear dynamic systems. The problem considered herein, is the infinite­

horizon regulation of general autonomous nonlinear system affine in the input. As­

suming a nonlinear system that can be expressed as such: 

x = f(x) + g(x)u (6.36) 

and a performance index 

(6.37) 

which allows for trading-off state error x versus control input u, via the weighting 

matrices Q(x) ;::::: 0, R(x) > O'v'x, respectively, where x E Rn, u E Rm,f(x), g(x), 

Q(x) and R(x) E Ck, with k ;::::: 1. Assuming that f(O) = 0 and g(x) -=f O'v'x, it 

is desired to find a feedback control law u(x) which will regulate the system to the 

origin for all x. It is quite obvious here that, there is a striking similarity between 

the SDRE and LQR formulation. 

First and foremost, the nonlinear system equation, Equation 6.36 must be converted 

into the 'linear extended' form of 

x = A(x)x + B(x)u (6.38) 

where f(x) = A(x)x, (A(x) can be non-unique) and g(x) = B(x). The former 

parametrisation is possible if and only if f(O) = 0 and f(x) is continuously differen­

tiable. An extended linearisation technique is defined as one in which the nonlinear 

system equations are factored in a linear like form A(x)x + B(x)u, and linear control 

techniques are used to obtain a closed-loop system which has a pointwise Hurwitz 

coefficient matrix (Erdem 2001). 

Again, under the condition that the pair (A(x), B(x)) is pointwise stabilisable, the 

nonlinear state feedback control law can be constructed as 

u(x) = -K(x)x = -R- 1BT(x)P(x)x (6.39) 

---------·----
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where P(x) > 0 is obtained by solving the state-dependent Algebraic Riccati equation 

AT(x)P(x) + P(x)A(x) + Q(x)- P(x)B(x)R-1(x)BT(x)P(x) = 0 (6.40) 

pointwise at each state x. Nonetheless, finding a proper pointwise stabilisabe (A(x), 

B(x)) pair, can be nontrivial for higher order systems. 

In implementing SDRE control, the most desirable option is to solve the state de­

pendent Riccati equation analytically. This is only possible for lower order systems, 

with special structure. In generally, however, this is not possible and numerical meth­

ods must be adopted, which is rather straightforward with numerical tools such as 

MATLAB. The computation can be done online or off-line. The off-line approach has 

lower computational cost and is preferable in risk-avert situations, the solutions are 

thoroughly analyse to confirm that there are valid before implementation. 

In contrast, the online version is computationally more demanding. It is desirable to 

compute the feedback control in real-time by solving the SDRE at a relatively high 

sampling rate, compared to the dynamics of the system. Real-time control becomes 

important when the disturbances or trajectories are not known, or changing from 

time to time, such as in the case of AUV obstacle avoidance in an unstructured 

environment. It is imperative that the SDRE must be solved at each time step, as a 

matter of fact, a sampling interval less than a critical value could lead to instability. 

The current available computation power is more than adequate to sustain SDRE 

control for systems which have very fast dynamics as demonstrated by Bogclanov et 

al. (2003). 

6.8 Kinematic Based SDRE Controller Formula­

tion 

Instead of explicitly dealing with the dynamic model of the AUV in designing the 

SDRE controller, one uses a kinematics model instead, as advocated by Ren and 

Beard (2004). One of the main reasons behind this, is that, in practice and for most 

cases, one does not have the corresponding model dynamics of the vehicle. This 

prevents model-based controllers from being implemented. A noteworthy aspect of 
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this implication is that by omitting the need for a dynamic model of the system, one 

can extend its application to a more encompassing types of vehicles. 

Furthermore, most AUVs and UAVs have built-in controllers to stabilise or main­

tain the velocities. The majority of these controllers are of the PID variety. It will 

be shown later that by employing this approach, one can actually build a high-level 

tracking controller on top (outer-loop) of the others. In other words, the SDRE con­

troller will act in supervisory mode while leaving the low-level (velocity augmented) 

controller intact. In normal operating mode, the high-level controller can be inhibited 

so that the low-level controllers and the guidance system can function in a conven­

tional matter, however when the need arises, the high-level controller can be activated 

to tackle complex tasks. A pictorial representation of the unified control system can 

be found in Fig 6.4. 

MA+ RRT 

Sonar, IMU Inputs 

L ~. ~-•••-• ••• ••••• •• ••••••• ••••• o ••••••• • •• •• ••• • • o • • • ••• o •• • •• • •••• • •• • • • ••• • • • •• ••• • • ••• ••• •• • • • • • ••• •• • •• • J 

Outer Tracking Controller Loop 

Figure 6.4: Block diagram of the SDRE controller and fceclforward unit of the AUV 

Note that unlike the LQR system (Fig 6.3), the feedforward unit is not directly fed 

into the AUV actuator, instead it is 'pre-processed' by the SDRE controller before 

passing to the AUV actuator. This form of interaction renders the system more robust 

and stable. 

Herein, one commences the formulation of the controller with the assumption that the 

AUV is equipped with the appropriate velocity controllers as shown in Fig 6.4. These 

controllers are required for the MA representation. Letting (x, y), 'If; and u denote the 

inertial position, heading angle and velocity of the AUV respectively. The subscripts 

c and 1' denote commanding and reference variables. The velocity augmented AUV's 
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kinematic equations of motion are adequately modelled by 

i = Uc cos( 'I/!) 

iJ = Uc sin('l/1) 

'1/J=Wc 
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(6.41) 

where We and uc, are the commanded heading rate and velocity to the velocity con­

trollers. 

Additionally, the dynamics of the AUV impose the following input constraints 

(6.42) 

The desired trajectory (x" Yr. '1/ir. v" Wr) generated by the trajectory generator also 

satisfies Equation 6.41 under the constraints that Vr and Wr are piecewise continuous 

and satisfy the constraints 

Vmin + l'v ::=; Vr ::=; Vmax - l'v 

Wmin + l'w ::=; Wr ::=; Wmax - l'w 
(6.43) 

where l'v and l'w are positive control parameters. In fact, the inclusion oft, in the con­

straints is to guarantee that there is sufficient control authority to track the trajectory. 

In another perspective, as the t, approach zero, the feasible control set vanishes. This 

also explains the reason for incurring a virtual bound on the AUV rudder deflection 

and slew rate in the MA representation, to reserve some control authority for track­

ing purposes. These input constraints assume cases where no external disturbances 

acting on the AUV. 

One then transforms the tracking errors from the inertial fran1e to the AUV frame 

and it can be expressed as 

(6.44) 

Accordingly, via algebraic substitution with Equation 6.41, Equation 6.44 and differ-
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entiation. The tracking-error model can be represented as 

Xe = WcYe- Uc + U,. cos(1/Je) 

Ye= -WcUe + Ur sin('ljJ.) 

1/Je = Wr- We 

Following, Equation 6.45 can be simplified as 

where 

Xo = uo 

x1 = (wr- 1to)x2 + u,. sin(xo) 

x2 = -(wr- uo)xl + UJ 
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(6.45) 

(6.46) 

(6.47) 

and u0 = Wr -we and u 1 = vc - Vr cos(x0). The input constraints under the trans­

formation become 

(6.48) 

wherew = Wr-Wmaz,W = Wr+Wmax 1 1!. = Umin-Urcos(xo), aJld u = 'Umax-Urcos(xo) 

are time-varying. These transformed constraints are actually with reference to the 

medium of the AUV is travelling. Equation 6.44 and 6.47 are invertible transforma­

tions, which means that (x., y., 1/l.) = (0, 0, 0) is equivalent to (x., y., 1/Jc) = (0, 0, 0), 

or in other words (xr,Yr,1/lr) = (x,y,'ljl). Therefore, the original tracking control 

objective is converted to a stabilisation objective. The goal here is to find feasible 

control inputs u0 ru1d u 1 to stabilise x0 , XIJ and x2. 

To this end, the system Equation 6.46 can be rewritten as 

x = A(t, x)x + B(x)u 

A(t, x) ~ [ v,(t):;~:') 
0 

0 

Wr(t) 

(6.49) 

(6.50) 
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and 

(6.51) 

The pointwise controllability matrix is given by S(t, x) = [B(x) A(t, x) B(x) A(t, x) 2B(x)]. 

It can be verified that S(t, x) has full rank when wr(t) =f. k7r, k E Z \ 0. As a result, 

(A(t, x), B(x)) is pointwise stabilisable as long as x0 =f. k-rr, k E Z \ 0. The control 

objective is to find feasible control inputs Vc and We such that lxr - xi + IYr - Yl + 
l"ljlr - c;OI ---> 0 as t ---> oo. 

Defining a saturation function as 

{ 

(3, a< (3 

sat(a,fJ,I) = a, (3::::; a::::; 1 

I, a> I 

(6.52) 

Since the AUV may be subjected to non-zero mean ocean currents, the control 

us oRE = [ua, ub]T may not satisfy the input constraints. The actual control will 

be saturated to satisfy the constraints shown in Equation 6.48 according to the fol­

lowing simple projection (Ren and Beard 2004): 

Uo = sat(ua, w, w) 

u 1 = sat(ub,:!!,TI) 
(6.53) 

To recap, the algorithm of a SDRE control formulation can be summarised as below: 

1. Cast the dynamic equation into an 'extended linearised' form. 

:X = A(x)x + B(x)u (6.54) 

2. Tune the Q(x) and R(x) in the performance index 

(6.55) 

3. Solve the ARE at every time step. This can be achieved in real-time or prior 

to the controller operation via fast and efficient ARE solvers that are available 

commercially or freely. 
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6.9 Simulations and Discussion 

For the simulations, the trajectory as highlighted in Subsection 5.6.1 was selected 

as a candidate trajectory, also, the AUTOSUB AUV model was employed. Again, 

all the conventions herein, follow the one outlined in Chapter 3. The simulations 

were hosted in MATLAB 6.5 /SIMULINK environment, on a 2.1 GHz Pentium IV 

machine, with 512 MB of RAM and running Windows XP. 

The reference states are the prescribed trajectory consisting of linear and angular 

displacements and velocities. Accordingly, the actuator outputs, which correspond to 

the reference trajectory is also included in feedforward system implementation. 

The AUV was assumed to be equipped with an Il'viU, which is capable of supplying 

velocities and displacements for three-axis, both rectilinear and angular. Conversely, 

a Doppler velocity sensor and SLAM unit using sonar, could be employed to mitigate 

the positioning drifting effect. Precise absolute angular displacement can be acquired 

from a tilt-compensated compass such as the TCM2. Together, these sensors, through 

a data fusion process, are capable of catering with full-state measurements, a nec­

essary requirement for proper functioning of the controller. However, in reality, the 

measurements will mainly be corrupted by high frequency noise. In this study, one 

assumes that the high frequency noise issue has been dealt with. 

Proper evaluation parameters must be dictated to assess the veracity of the controllers 

performance. The appraisal will be based on the following criteria. 

1. Convergence (asymptotically to the tracking trajectory) 

2. Robustness to large initial errors 

3. Robustness in terms of external disturbances 

4. Resilience to induce unstable (oscillatory) responses 

5. Minimal control effort 

Before proceeding into the simulation studies, it is interesting to observe the LQR 

gains obtained based on the aforementioned trajectory (Fig 6.5). Several of the gains 
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overlapped giving t he impression of insufficient number of gains. The LQR gains were 

attained by solving the Riccati equation off-line. This explains its lack of robustness 

in the presence of external disturbances since large disturbances normally violated the 

model linearity assumption. Different types of trajectories will yield different gains. 
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Figure 6.5: T ime-varying LQR gains 

160 180 200 

\¥hereby, the Q(x) and the R(x) of the SDRE controller , and the input constraints as 

delineated in Equation 6.42 are depicted in Table 6.1. The SDRE controller parameter 

values were acquired experimentally. 

Parameter 

Q(x) 

R(x) 

Umin 

Wmin 

Wmax 

Value 

diag[0.01 , 1, 1] 

diag[80000, 8000]/ j5x5 +xi + x~ + 0.1 

1.5 mjs 

3 mjs 

- 0.173 radj s 

0.173 radjs 

Table 6.1: Kinematic based SDRE parameters and their corresponding values 
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6.9.1 Controller performance study (initial errors only) 

Fig 6.6 depicts an inertial displacement of the AUV from a simulation run . The initial 

configuration variables were set to [-2, - 2, 0.1), denoting [x (m) , y(m) , '!j; (Tad)] 

respectively. The start point of the reference trajectory is set to [1 , 1, 0.1] . Notice 

that employing only the feedforward control law without any tracking controller will 

result in a trajectory that deviates marginally from the reference trajectory (Fig 

6.7(c) . Other than the initial condition effect, the clipping of inputs in the MA 

representation also contributes to Lhe deviation. 

Referring to Fig 6.7(a), initially, the LQR controller attempts to track the trajectory, 

it overshoots and converges again, but later the controller succumbs to instability and 

diverges from the intended trajectory (Fig 6.7(c)). It is believed that the instability 

might be caused by the violation of the linear model, instability in the solution eigen­

values or a combination of both. The SORE controlJer, on the other hand, shows very 

good convergence and tracking of the trajectory for the entire length, the slight dis­

crepancy between the end condit ion is still within an acceptable tolerance in practice 

(Fig 6.7(a), (b) and (c)). Figure 6.7 (d) shows a x- y- t ime plot of the trajectories. 

Attention should be given t hat in the SORE controller, t he reference trajectory states 

are supplied to the controller and explicitly processed. On the contrary the LQR and 

the feedforward system operate independently without any data association, hence 

explairung its inferior tracking performance. 

Figure 6.8 portrays the distance error relative to the reference trajectory. Indeed, 

the SDRE controller elicits gTadual convergence with a bound of less than 2 m after 

20 s, whilst the LQR shows a slight oscilla ting response which is discernable from t he 

ripples before becoming unstable. There is a sudden jump of distance error near the 

end for the SORE controller. This might be caused by the very aggTessive turning 

manoeuvre. Figure 6.9 reveals the heading error of both the controllers. LQR seems 

to behave rather erratically but the SORE controller manages to keep the error less 

than ±5 o for the entire length of the t rajectory. 

The surge velocity time plot of the AUV equipped with the corresponding controllers 

can be seen in Fig 6.10. Notice that both the controllers exhibit a ramping in the 

velocity at beginning part of the manoeuvre to reduce the initial displacement errors. 

At first , the LQR reacts with a very high velocity increase before slowing down 
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and repeating these processes, a clear sign of excessive gains and instability. The 

surge command elicits from the SDRE controller, shows very smooth tracking. The 

difference between the dynamic and kinematic models resulted in slight discrepancies 

between the commanded and output responses. 
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Figure 6.6: x-y position of trajectory plot 
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The heading rate of the SD RE controller , as shown in Fig 6.11 reveals the tracking of 

the reference very well. On the contrary, the rather poor LQR performance is perhaps, 

induced by the very high and low surge velocities. The crossed coupling between 

the surge velocity and yaw dynamics tends to amplify this negative phenomenon. 

Similarly, the feedforward system which lacks interaction with the LQR controller 

also contributes to this effect . 

Figure 6.12 shows that the propeller speed response of the LQR case oscillates ag­

gressively even in t he regime of near constant reference, a clear sign of instability. 

T he rudder responses, Fig (6.13) shows a very drastic pulse like inputs at the corn-



CHAPTER 6. THE TRAJECTORY TRACKERS 198 

mencement of the manoeuvre for both the LQR and SDRE controller. The SDRE 

deflection gradually follows the reference whereas the LQR oscillates and saturated 

at some points. 
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6.9 .2 Controller performance study (initial errors and con­

stant current) 

In t his particular simulation study, a more challenging scenario is envisaged, herein 

the initial configm ation variables of the AUV and reference states are still considered 

the same as the former but with the introduction of nonzero mean ocean cmrent of 

magnitude 0.42 m/ s average and acting at 60° to the AUV with reference to the 

ED world coordinate system. The cmrent t ime plot history is shown in Fig 6. 14. 

Referring to Subsection 3.3.1 , it can be seen that this is a realistic representative of 

underwater current encountered by an A UV. 
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Figme 6.14: A plot of nonzero mean cmrent time history 

This time, due to the external disturbance, employing only t he feedforward control 

law without any tracking controller results in a very different trajectory, as exemplified 

in Fig 6. 15. Worse still , the final states are shifted far from the goal (Fig 6.16(b)). 

Again, referring to Fig 6.15, the LQR seems to have failed miserably in the tracking, 

diverging from the trajectory after the first turning (Fig 6.16(a)). From Fig 6.15 and 

6.16, it is indisputable that the SDRE performance is rather impressive, with only a 

marginal offset from the prescribed trajectory. Figure 6.16(d) shows a x- y-time 
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plot of the trajectories. 
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Figme 6.17 depicts the distance error relative to the reference trajectory. T he SDRE 

controller settles at an approximately 3 m distance offset. A slight increase in distance 

error can be detected when the AUV is conducting aggressive turnings. The LQR 

distance error converges and diverges. It must be remembered that a state-feedback 

controller will not introduce an integrator into the plant, hence it is not able to 

eliminate steady state errors. 

Integrating act ion must be explicitly introduced to increase the plant type. In essence, 

one can consider the state-feedback controller as a linear combination of proportional 

controllers. If the plant is inherently type one or above, then an integrator is not 

required. Fortunately, for most autonomous underwater vehicles, heading and depth 

dynamics are considered to be type 1 model. This is caused by t he effect of rudder 

or hydroplane, where a fixed deflection will generate a constant force that attempts 
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to rotate the AUV. Nonetheless, the AUV is still susceptible to longitudinal and 

latitudinal offsets when acted by nonzero mean currents. 

An alternative method of mitigating this offset is to employ an ocean current or waves 

observer (Torsetnes 2004). The effect of the current on the t rajectory can then be 

explicitly taken into account in the optimisation process. Most of the time, these 

nonzero mean currents can be exploited such that it assist in overall energy saving 

of the AUV. Nonetheless, this technique will not function well when the currents are 

unpredictable. 

One can observe that there is a large surge velocity deviation for the LQR case in Fig 

6. 19. The unstable surge dynamics induces an enatic behaviour in the yaw dynamics 

as illustrated in Fig 6.18 due to the cross-coupling effect. The SORE controller, on 

the other hand, manages to keep the error in bound. Notice that the commanded 

velocity is frequently lower than the measured, this is caused by the relatively small 

velocity increase due to the current components acting on the AUV. The commanded 

velocity is actually relative to the water medium. Again, Fig 6.21 and Fig 6.22 depict 

the unstable propeller speed and rudder outputs. 
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6.9.3 SDRE Controller performance study (various initial er­

rors) 

As a result of the rather impressive performance using the SDRE approach which was 

highlighted by the previous simulations, this controller deserves further inspection. 

Therefore, it is prudent if one concentrates on t he performance evaluation of t he 

SDRE controller whilst neglecting the LQR due to its rather disappoint ing tracking 

performance. Subsequently, five scenarios where each has different initial conditions 

are proposed. All of them include the identical nonzero mean current disturbance 

employed in the former simulations. Their initial configuration variables with specific 

alphabet denoting each particular case are given as follows: 

• a = [-15, - 20, - 0.2] 

• b = [ -40, 5, 0] 

• c = [-10, 20, 0.4] 

• d = [2, 15, 0.3] 

• e _ [15, - 3, 0.1] 

T he initial condit ions were deliberately selected to demonstrate the capabilit ies of 

the controller. Cases a, c and d were chosen such that the initial headings of the 

AUV diverged from the reference trajectory (Fig 6.23). In cont rast, case b has an 

excessively large x-y displacement error. Finally, case e was selected such that the 

initial configuration variables significantly precede the desired trajectory. These cases 

are depict ed in Fig 6.23 and 6.24(a) . In Fig 6.24 (b), one observes that there is a slight 

offset from the of the t racks and end point, just within an accept able tolerance. Slight 

overshoots are discernible from Figure 6.24(c), especially when the AUV is executing 

turning manoeuvres, but the external disturbances also exaggerated t his effect. T he 

displacement-t ime plot is shown in Fig 6.24(d). 
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Evidently, a ll the cases show proper convergence and tracking of the prescribed tra­

jectory as support ed by F ig 6.25 and Fig 6.26. The convergence to below l Om error 

is less than 20 s for case e and d whereas case a and c, a ttained the specification in 

a pproxima tely 30 s. In spite of the very large initial displacement errors, case b takes 

only 40 s to achieve a similar convergence. Large heading errors for all cases except 

case b, were recorded in the beginning of the t racking manoeuvres. The heading error 

transients are d isp layed in Fig 6.26. All of the heading errors converged to within 

± 10° in less than 30 s. 

F igm e 6.27 shows the surge history of d ifferent cases. Attention should be given 

to cases e and d , where t he AUV ini t ial positions are such that they precede the 

prescribed trajectory. Notice that the controller attempts to slow down the vehicle 

such that the trajectory will catch up with the AUV. In the contrary, for the rest of 

t he cases that have their positions behind t he trajectory require some catching up, 

which leads to an initial increase in sm ge velocity. There is an evidence of steady 

state error in the sm ge velocity because of the ocean current effect . Similarly, F ig 

6.28 shows that the head ing rate responses follow the reference adequately after the 
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preliminary transients. There is no sign of saturation in the heading rate responses. 

The propeller speed responses (Fig 6.29) highlighted one case of upper saturation in 

the early part of the manoeuvre. On the other hand, the rudder deflection responses 

(Fig 6.30 shows a few cases of saturation at 110 s, 130 s , and 190 s. Here one sees that 

reserve control authority is being expanded to track the trajectory. The nonlinear 

characteristic of the SORE controller is more robust to saturation effects. 
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6.9.4 SDRE Controllers performance comparisons (different 

weighting matrices) 

It is true that different weighting matrices will have a significant impact on the be­

haviour of the SDRE controller. An incorrectly tuned controller will not function 

properly, worse still, it can induce instability to the feedback system. Indeed, there 

is great flexibility in tuning the parameters Q(x) and R (x) in SDRE control. As a 

benefit , the kinematic based SDRE controller contains only a few tuning parameters, 

which ensure simple tuning. 

In these simulations, the initial conditions, current and trajectory are the same as 

the one outlined in Subsection 6.9.1. Additionally, four different form of weighting 

matrices were used and their performance examined. Herein, the Q (x) is considered 

a constant matrix diag[0.01 1 1] while R{x) is made variable, and defined as: 

• a = R = diag[80000 8000] / )5x~ + x~ + x~ + 0.1 

• b R = diag[800 800]/ Jsx~ + x~ + x~ + 0.1 

• c = R = diag[80000 8000] 

• d = R = diag[80000 8000]/ )5lxol + lxd + !x2! + 0.1 

The R (x) is defined such that the weighting matrix is divided by the state norm. 

In other words, the bigger t he state norm, the smaller t he R (x) , leading to a more 

responsive system behaviour at the expense of large control efforts. Conversely, with 

small state errors, yields loose regulation , with small control effort, rendering the 

system more sluggish but energy efficient. Notice that there is an additional constant 

in the state norm, this term is essential to prevent the R {x) becoming oo where all 

the states converge to zero. 

a uses a state dependent R {x) matrix, with quadratic state norm. One can expect 

the controller to react very quickly to large initial errors, but slowly to the small 

ones. b is a case of inexpensive cont rol, uses a very low values of R (x), A very agile 

closed-loop system is expected for this case, if it does not clestabiJise. c uti lises only a 

fixed R(x) matrix it is used for performance comparisons. d uses an R (x) similar to 
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a but with state Manhattan state norm. This norm grows slower than the quadratic 

norm. 

From Fig 6.31, one can deduce the responses of the AUV by looking at the shape of 

the resultant trajectories. Each trajectory corresponds to a particular case as denoted 

by the legend. Generally, all of the responses were acceptable except b. In case b, 

the AUV performs a very forceful turn to reduce the deviation at the very start of 

the manoeuvre (Fig 6.32(a)) . Nonetheless, later , during other turning manoeuvres, it 

exhibits a tendency to be unstable as evidenced by the sinusoidal shape trajectory (Fig 

6.32(b) and (c)). This is the case of to much emphasises on performance. In a different 

perspective, the displacement-time plot is provided in Fig 6.32(d) for visualisation. 
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Figure 6.33 indicates that the distance error of b converges the fastest but unfortu­

nately becomes unstable later . a and d have very close convergence rate at first unt il 

110 s , after that d djstance error starts increasing and matching c distance error. a 

distance error is superior to the others after 110 s. In t he heading error aspect, as 

displayed in Fig 6.34, case b is clearly unstable. On the other hand , case b and c suffer 

some large errors (± 15°) whereas a shows a better than (± 10°) error. 
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From Fig 6.35, one can deduce that b the surge dynamics has become unstable after 

120 s. a displays a rather aggressive propeller speed increase iliscernable from the saw 

tooth response in the beginning of the response (Fig 6.37). It , however, settles down 

quickly, after 20 s. There is no doubt that the quadratic norm contributes to this 

characteristic. The rest of t he cases, show a more desirable, energy friendly response. 

It would be an interesting idea to tune the weights such that the AUV will have a 

mixture of a and c behaviours. This, however, will be reserved for future research. The 

heading rate, Fig 6.36 and the rudder response (Fig 6.38) convey that b is oscillating 

erratically. The rest of the cases, manages to track t he references adequately. These 

examples illustrates how the design flexibility offered by SDRE control can be use 

to improve the classical state versus input trade-off that is encountered with other 

control methods. 
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Table 6.2 shows the values proportional to the energy expended which corresponds 

to the individual case. The data were extracted by integrating t he actuator output 

time history. In this context, the outputs are the propeller rotation and the rudder 

deflection. The squared value of the aforementioned outputs are directly proportional 

to the force they imparted , hence when integrated in t ime, they become proportional 

to the energy expended . One can observe t hat the energy consumption of case a is 

not the lowest amongst all except for its rudder actuation, but it is still a reasonable 

trade off for the performance achieved. Case b shows the worst energy consumption 

in confirmation to its oscillating trajectory. Case c reveals a very commendable 

performance even without the states dependent norm. On the other hand , case d 

exhibits a low propulsion output energy consumption but a rather high rudder output 

energy consumption. Its tracking performance is not comparable to the case a. 

6.10 

Case RPM ( x 106
) Rudder 

a 

b 

c 

d 

5.70 

10.24 

5.11 

5.32 

3.92 

16.78 

4.09 

4.96 

Table 6.2: Values proportional to the energy expended 

Concluding Remarks 
This chapter completed the design of an obstacle avoidance system for an AUV. To the 

extent of the author 's knowledge, this is the first endeavour to combine the MA+RRT 

planner with the SDRE controller, let alone catering especially for AUVs. Wit h 

regards to t he trajectory trackers performance: the LQR and SDRE controller have 

been analysed in detail and accompanied with simulation results. In this case, the 

LQR clisplayed a very disappointing performance which could be caused by improper 

tuning. The SDRE controller, on the other hand, exhibited quick convergence of the 

tracking errors, smooth transient response, adequate control effort , and robustness, 

even in the case of large initial errors and current disturbances. One merit, pertinent 

to the kinematic based SDRE controller that should not be underestimated is its 

nondependence on system dynamics. This extends its implementation to the majority 

of the AUVs. 



Chapter 7 

Conclusions and Future Work 

7.1 Concluding Remarks 

This thesis focussed on the investigation of a novel motion planning algorithm, system 

dynamic quantisation, trajectory tracking, sonar processing and workspace represen­

tation methods as a solution to the AUV collision avoidance problem. It presented a 

repertoire of techniques which can be exploited as a whole to develop a functional col­

lision avoidance system for AUVs. Both the obstacle detection and obstacle avoidance 

frameworks presented in this work are based on a computational approach. This work 

is the first known use of a partially hybrid technique in the AUV motion planning 

and is thus considered as a major contribution in relation to this field. 

The feasibility of applying the RRT algorithm as a solution to the AUV motion 

planning problem has been intensively studied. Although the algorithm is endowed 

with several appealing properties such as robustness to the state explosion effect and 

ability to solve kinodynamic problems, it also suffers from a few drawbacks that de­

grade its practical utility. For instance, the randomise nature of the algorithm renders 

the solutions highly suboptimal and contains unnecessary micro random manoeuvres. 

Further aggravating the condition, its performance is highly sensitive to the metric 

definition and it also requires a system dynamic model to function properly. 

Instigated by the inherent RRT issues, the Manoeuvre Automaton (MA) represen-

222 
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tation was introduced to address some of the deficiencies. This unique framework 

builds on the inherent characteristics of the vehicle dynamics to achieve a high level of 

computational efficiency, compromising between performance degradation and com­

putational tractability. In quantisation the model, care must be taken not to over 

simplified or over complicated the model. The former will constraint the admissible 

responses of the original system, resulting in an excessively rigid dynamics character­

istic. In contrast, the latter creates a state explosion effect, causing the model to be 

too computational intensive, making the quantisation process a counter productive 

one. Through the synergistic combination of the MA representation and the R.RT 

algorithm, an enhanced performance version has been devised. This novel algorithm 

was extended to a multi-node version and for accommodating the time-varying fi­

nal state problem. Simulation studies showed that the novel MA+RRT algorithm 

provides an interesting solution to the AUV motion planning problem. 

Two controllers have been investigated as a potential candidate trajectory tracker. 

It was deduced that the complexity of tuning the Q(t), R(t) and the M(t) matrices 

of the LQR, induced by its multivariable and severe cross-coupling characteristic, 

limits its potential application. Additionally, there is a propensity for the LQR to be 

unstable when it violates the linearised regime. This phenomenon is accentuated when 

it is employed in a two degrees of freedom controller architecture. In contrast, the 

nonlinear state dependent Riccati equation (SDR.E) controller displayed impressive 

performance for the tracking problem. Its characteristic to assimilate the state error 

into the R(x) and Q(x) matrices allows it to exhibit a more robust response. Likewise, 

the state dependent tuning parameters also significantly expand the performance 

latitude of the controller as evidenced by the quadratic state error function employed 

in the thesis. Finally, another noteworthy feature of the kinematic based SDR.E 

controller, is its system dynamics independent characteristic, hence allowing a more 

widespread adoption. 

The obstacle detection unit of a particular data processing was derived from the im­

age processing methodology. Both the sonar processing and workspace representation 

were developed and the veracity of the techniques was tested in a sea trial using a 

dedicated forward looking sonar. The sonar, being the 'eye' of an AUV, is essential 

for a collision avoidance task. This thesis utilised the AT500 sonar for obstacle detec­

tion. It was discovered in the experiment that the sonar has a maximum range of only 

'10 m. The short detection range limits its usability to only small agile AUVs. Larger 
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A UV s such as the AUTOS U B and Theseus require a longer range sonar, due to their 

restricted minimum turning radius. Nonetheless, at a very appealing market price of 

approximately 5000 pounds a unit, the AT500 is expected to pose a very attractive 

and niche solution for cost conscious customers. The occupancy grid exploited in the 

workspace representation facilitates data maintenance and implementation. Instead 

of a linear function, a quadratic function was used instead to 'maintain' and filter 

the perceived targets in the workspace representation. Experiment results showed 

adequate false object elimination performance. These techniques remain sufficiently 

flexible for porting to other forward looking sonars with only a minor tuning require­

ment. 

It is important to note that although the computational techniques set forth in this 

study were developed for AUVs, but it is not restrictive and can effortlessly be applied 

to other autonomous vehicles either on the land and aerospace domains. Therefore, 

the algorithms are valuable as generic practical tools for all types of collision avoidance 

task. It is felt that major contributions to knowledge are forthcoming from these 

techniques. 

7.2 Recommendations for Future Research 

Several different directions for futme research have been highlighted through the 

completion of the work within this thesis. The following points provide a summary 

of these areas and are not considered to be exhaustive: 

7.2.1 Optimal planning m constant currents 

It is a common perception to consider a disturbance as a form of nuisance to a system. 

This, however is not entirely true. Disturbances such as non-zero mean currents, can 

be exploited to provide a beneficial effect to the AUV trajectory. The MA+RRT 

algorithm should be extended to accommodate the effect of nonzero-mean cmrents. 

By estimating the current and accommodating for its effect in the resulted trajectory 

during the optimisation process, one can extract a trajectory that is more efficient by 
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exploiting the intrinsic energy of the current. Simplistically speaking, one can design 

a path such as the current will attempt to 'push' the AUV to the goal instead of going 

against it, expending precious energy as a consequence. 

7.2.2 Sensor-based motion planning 

Sensor based motion planning is necessary for a system that functions in an unknown 

and unstructured environment. The unavailability of a priori information renders 

the AUV to depend on the sensor information. Sensor such as the sonar is limited by 

the sensor noise, environment and its specification such as resolution, frame-rate and 

number of beams. It is known that comprehensive information regarding an envi­

ronment cannot be acquired easily, hence incremental sensing, gradual accumulation 

of evidence from sensors is needed for decision making. Furthermore, the optimal 

decision from the limited information is not the same from the optimal decision from 

having complete information. 

7.2.3 Reflexive module 

So far in this thesis the reflexive module has been neglected. Instead, of the conven­

tional collision avoidance reflexive behaviour, which are ad hoc by nature, it would be 

an interesting proposition, if one is able to evolve the AUV's behaviour in accordance 

to the 'Rules of the Road', as rernru·ked in Section 2.4. 

7.2.4 Fault tolerant control or reconfigurable system 

It is a common knowledge that AUVs are usually employed in hazardous and harsh 

terrains such as polru· regions and littoral waters. This tends to increase the risk 

of failure, particularly of mechanical components as jammed control surfaces. This 

incident will certainly alter the dynamic behaviour of the AUV. It was mentioned 

previously that the proposed MA+RRT algorithm exploited LP to perform on-line 

optimisation of the trajectory. This feature allows one to accommodate easily for any 
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dynamics changes of the AUV in question, assuming the manoeuvres are explicitly 

designed for this. Consequently, this will make the AUV highly resilient faults, in the 

same time improving its survivability rate. 

7.2.5 Multi-agent robotics 

Higher mission requirements either in terms of time taken, larger operational enve­

lope and cost saving, have become the impetus behind the technology of multi-agent 

underwater robots. Clearly, for a successful mission involving several AUVs, commu­

nication plays a vital role in the synchronisation of their activities. This leads to a 

dedicated communication protocol and also a definition of manoeuvres with unique 

properties that can be easily utilised for multiple AUV manoeuvres. The extension 

of the MA+RRT algorithm for this task will be crucial for the advancement of this 

field. 

7.2.6 Multiple-target tracking system 

The multiple-target tracking system is essential in a dynamic environment. It allows 

an AUV to estimate the target parameters such as velocity, such that proper preemp­

tive action can be taken. In a static environment, tracking of multiple static targets 

is advantages for the implementation of the simultaneous localisation and mapping 

scheme. Indeed, this subject poses several challenging and yet appealing issues that 

warrant further research. 

7.2. 7 Workspace representation 

This thesis uses the occupancy grid method, a variant of the spatial decomposition 

scheme for the workspace representation. On the other hand, most of the simulations 

are done using a geometry map. This however, will not invalidate the results, since 

workspace representation was designed to be 'isolated', a form of software abstrac­

tion, from the trajectory planner, through the use of a suitable 'collision detection' 
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function. The geometry map is well suited for small and dynamic target tracking 

while the occupancy grid is more efficient for modelling static, unstructured, par­

tially observable objects. In light of this issue, it will be interesting to produce a 

hybrid workspace representation, exploiting the merits of the two different schemes. 
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Appendix A 

Obstacle Detection 

Chapters 4 to Chapter 6 have concentrated on the development of a novel, yet func­

tional obstacle avoidance module. The attention is diverted to the design of an 

obstacle detection module. The function of this specific module should not be under­

estimated, without it, a complete collision avoidance system cannot be developed. 

Before embarking on a detailed exposition of the module, it would be informative to 

have an overview perspective of the critical submodules that constitute an advanced 

obstacle detection system for an AUV. The exposition here is more specific compared 

to Section 2.3. Referring to the block diagram as depicted in Fig A.l, it is apparent 

that the three critical elements are the sonar data processing, multiple-target track­

ing (MTT) and workspace representation submodules. All of these submodules are 

fed with measurements from various sensors. Although, in the older systems, these 

modules tend to function independently, recently, the more advanced versions are 

shown to possess complex intermodule-interaction where information is exchanged 

from different submodules such that the optimal detection criterion is maintained in 

spite of changing environmental parameters. In other words, it is a form of adaptive 

system. 
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Figure A.l: A block diagram of a generic collision detection unit of an AUV. 

In essence, each submodule plays an indispensable role of sustaining the overall func­

tioning of an obstacle detection system. Sonar data processing entails processing of 

the sonar raw data, which is known for its aberrant, unpredictable and highly noise 

infested nature. On the other hand, the MTT submodule is needed for tracking 

important targets. Tracking allows the system to anticipate the movement of the 

obstacles, and to an extend, quantify the predictability of their motion which is in 

fact, intimately linked to the risk of collision. Indeed, this feature is highly beneficial 

for the motion planning of an AUV in a dynamic environment. Even static obsta­

cles must be tracked, static obstacles with invariant parameter such as shape, are 

potential candidates to be employed as landmarks. The SLAM technique is capable 

utilising several reliable static landmarks for localised position calibration (Tomatis et 

al. 2001, Rikoski et al. 2002). The final module used is for workspace representation. 

The limited detection envelope of the sonar sensor necessitates a scheme to represent 

and memorise the environment structure for the purpose of navigation. 

This chapter presents and proposes several techniques to be employed in sonar data 

processing and workspace representation. It commences with descriptions of the sonar 

transducer, sonar data processing, occupancy grid for workspace representation and 

finally ends with quasi-simulations using real world data. It is highly unfortunate 

that in the aim to ensure that the following study remains in a manageable scope, 

one will not consider the design of the MTT submodule. The MTT is a rather chal­

lenging subject in its own right, and has been pursued vigorously by both industry 

and academae alike. MTT techniques are used predominantly in radar and sonar 

applications. Avid readers are recommended to solicit the following books by Black-
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man (1986), Bar-Sbarlom and Li (1995) and Blackman and Popoli (1999) for fmtber 

details. All t he experimental resul ts presented herein, were acquired via t he AT500 

sonar. The beading measm ement was provided by the TCM-2, t il t-compensated mag­

netic compass. In practice, AUVs are not able to access the GPS positioning data 

when submerged. For this reason, a SLAM system is essential for the recalibrat ion 

of the posit ion of an AUV wit h reference to a local map in a short term basis. 

A.l The AT500 Sonar 

The AT500 is a type of mult i-beam formed, forward looking sonar especially designed 

for use in an obstacle detection task for an A UV. A detailed specification of t he AT500 

can be seen in Appendix 2. Figure A.2 indicates some important parts of the AT500 

sonar. 

Figllre A.2: The AT500 sonar and its important parts. 

Fundamentally, the sonar produces a ' ping , and the echoes (reflections) are capt ured 

by the receiver. The 'ping' is at a frequency of 500 JcH z. The strength of the echoes 
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(amplitude) are located into a 8 bit resolution bin. The time of the echoes return 

corresponds to the distance of the detected object. The returned t ime is mapped into 

a discrete bin which has a resolution of 8 bit. It must be noted that all t his sensing 

are clone in polar coordinate. The beam formed characteristic of the AT500 allows 

one to consider the sonar as producing 64 beams with a overall horizontal coverage of 

60° (Fig A.3). During the 'pinging' process, the sonar must be inhibited (blinded) for 

a brief period of t ime to avoid detecting ping as a spurious echo returns. This feature 

is achieved in the sonar hardware via a time varying gain (TVG) . This 'blind' (blank) 

time is a function of the duration and strength of the transmit pulse. Currently, t he 

sonar has a 1/ s frame rate, although this might be altered in the future according 

to the manufacturer. The AT500 has two main user parameters, the gain and the 

vertical beam angle. The gain pertains to the sensitivity of the receiver, increasing 

the gain will extend t he sonar capability to detect smaller objects at further range 

but at the expense of increasing noise. The vertical beam angle can be configured 

in real-time either for a 10° or 20° setting. In the experiments, only a 20° setting is 

employed. It is important to note that the larger the vertical beam angle, the higher 

the detection volume. As a result , a small object has less tendency to disappear from 

the sonar detection envelope. However, if the AUV is t ravelling near to t he sea bed, 

then a false detection due to seabecl reverberation will likely to increase. 

Figure A.3: AT500 sonar detection envelope 
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A.2 Multi-Path Reflection and Reverberation 

Two undesired phenomena that occur when using underwater sonar are multi-path 

echoes and reverberation (echoes scattering) (Newman and Durran-Whyte 1998). 

Multi-path echoes are induced when the ping is deflected by adjacent objects in 

such a way that it returns after travelling several paths (Fig AA). The sonar will 

receive simultaneously the target echo and that of its image or images. This image, 

befittingly, called a 'ghost', is actually non-existent in the physical world. The real 

returned ping of the object is typically termed as the 'principal reflection'. The 

consecutive echoes that occur after the principal reflection are multi-path reflections. 

The cause of this phenomenon can be attributed to the structure or shape of the 

environment. Likewise, it can also be induced when AUV is travelling near to the 

surface or seabed (Chevalier 2002). Discrimination of images from real targets is 

difficult at best, hence to be safe, it is advised to assume 'ghosts' as potential obstacles 

instead. 

Amplitude 
(Intensity) 

First return 
Second return 

L_------~~~--~----1~ 
Time (distance) 

ObstrucUon 

Figure A.4: Multi-path reflection phenomenon 

Reverberation, also known as the clutter in radar terminology, occurs when the ping 

hits an object that has a non-uniform texture surface. The surface tends to scatter 
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the return ing acoustic signal in mult iple directions, invoking significant noise in t he 

sonar data. Figure A.5 illustrates a scenario when the reverberation persists. This 

problem can be mitigated, to an extend, by passing the sonar data through a low 

pass filter such as median or Gaussian. Clearly, t he severity of t he reverberation 

depends primarily on the type of the environment. Surroundings t hat have more 

texture such as coral reef and an undulating sea-bottom will increase the occurrence 

of this phenomenon. 

Forward looking sonar 

Amplitude 
(Intensity) 

Sea bed 

Reverberation 

Echoes 

Hidden area 

Shadow 

/ "'"'"''"''" 
Time (distance) 

Figure A.5: Simplistic diagram illustrating the side view of a sonar observing a scene 

and the resul t ing t ime intensity return (Tena Ruiz 2001) 

An experiment was carried in the University of Plymouth 's laboratory tank to evalu­

ate the characteristic of the sonar. Dimensionally, the tank is 2.5 m in length, 1.5 m 

in width and 0.6 m in depth (Fig A.6(b)) . The image returned by the sonar in polar 

coordinate form is depicted in Fig A.6(a) wit h each alphabet corresponds to a par­

t icular item or lack thereof. The objective here is to assess if the sonar can detect 

t he wall of the tank and also a PVC pipe of dian1eter 0.15 m, located approximately 

midway between the sonar and the wall. In this experiment, the sonar was set to 5 
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m range and a gain of 15. Again , referring to Fig A.6(a), it is clear that label (a) 

does not coincide with any actual physical objects. Object (a) is a 'ghost', created by 

multi-path reflection of the walls. Object (b) is also a combination of reflection from 

tank bottom and the large protruding pipe. With careful observation, a ghost can 

be discriminated from the actual target by altering the position and heading of t he 

sonar. Evidently, the data is rather noisy, this is one of t he prevalent characteristics 

pertaining to data acquired from a sonar. 

5.0 
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Beam Number 
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60 

(b) 

Figure A.6: (a) Image acquired by the sonar (b)The experiment facil ity 

Sonar Data Processing 

T he main function of the sonar data processing module is signal-peak detection. It is 

defined as a quantitative way to discriminate t he signal from noise (Kolawole 2002) . 

The underlying paradigm here can be construed as a way to find an appropriate 

threshold, one above which noise pulses seldom rise and below which signal pulses 

seldom fall. However , prior to apply ing the threholding process, certain auxiliary 

processes must be introduced to prepare the data such that it has a higher chance of 

separating the signal from the noise. 

It has been ment ioned before that the approach adopted by t his thesis is based on 

the context of an image processing methodology. The sonar data processing consists 
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of several steps. A complete flow chart of the procedures required are shown in 

Fig A.7. The first step is image acquisition, this has been achieved by employing 

a sonar in this case. The second step, involves the preprocessing of the image. A 

filter is introduced to attenuate the noise, improving the signal-to-noise ratio and the 

chance for correct signal and noise discrimination. The next stage deals with image 

segmentation. Image segmentation partitions the data into its constituent parts, 

categorising the signal and eliminating the noise according to a predefined threshold. 

Subsequently, a morphological process termed as dilation is introduced to improve the 

size of the detected target to accommodate the effect of the AUV dynamics, sonar and 

navigation sensor inaccuracy. Since the data is still in the native polar coordinate 

form, transformation to Cartesian is compulsory, in order to be compatible with 

other navigation data. Transformation is then introduced to scale and rotate the 

data to facilitate workspace representation. Finally, the data is sent to the workspace 

representation module for processing. 

Raw sonar data 

Image littering (median filter) 

Double threshold segmentation 

Dilation 

Polar to Cartesian conversion 

Transformation 

Workspace Representation 

Figure A. 7: Sonar data processing flow chart 
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A.3.1 Signal and Noise 

Herein, the attention is drawn to understand the nature of signal and noise that 

exist in sonar data. The noise in the sonar can be decomposed into two dominant 

types. The first one is sensor noise (endogenous) and the other one is reverberation, 

as induced by the environment (exogenous). A sonar receiver inherently generates 

'thermal' noise, the noise is clearly discernible when the gain is amplified or when 

the sensor gets warm. The sensor noise can be approximated by an exponential 

distribution (Toomay 1989). When a returned signal is received, the convolution 

between the signal (pulse type with mean S) and the receiver noise creates a signal 

which has a Gaussian distribution at meanS (Fig A.8). Consulting Fig A.8, the crux 

of the concept here is to design the transducer such that the S is always much greater 

that N so that the distortions that result from operating close to the zero point will be 

negligible. The signal transmitted can also be distorted in the form of scattering by 

the environment. The power of this clutter or scattering may distort target echoes by 

multiple folds, and is commonly a dominant noise in the sonar when the AUV travels 

near the sea bottom. This noise changes from region to region making estimation of 

its characteristic nontrivial. 

One can also refer to Fig A.8 to understand more about the probability distribution 

of the noise in the sonar context. Here one will use the term detection probability, Pd 

and false alarm probability, Pfa· Ideally, Pd should be maximised while Pfa should be 

minimised, but without resorting to redesigning the sonar, one is permitted only to 

set the threshold so that arbitrary amounts of noise would be rejected. This implies 

that the Pd and P1a are fixed for a particular x, increasing Pd will also increase the 

P1a and vice versa, so a trade-off between the two must be met. 
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Figure A.8: Probability of detection and false alarm probability 

A.3.2 Filtering 

Filtering is normally the first operation applied in image processing. The objective 

here is to massage the data such that noise are attenuated to allow better signal-to­

noise ratio for latter signal extraction processes. Two common ones are the median 

and Gaussian filters. The median filter evaluates each pixel in the image in tmn and 

looks at its nearby neighbour, ranks them and decides whether or not it is represen­

tative of its surroundings. The Gaussian smoothing operator is a 2-D convolution 

operator that uses a Gaussian 'bell-shaped' kernel (Petrou and Bosdogianni 1999). 

Using the data acquired from the experimental tank, one can observe in Fig A.9(a) 

that the raw data is corrupted with noise. The noise has certain characteristics, they 

are of a high signal, scattered, impulse type. Several filters were applied to the data 

to check their effectiveness. It was found the median filter with size [3 x 3] is superior 

as shown in Fig A.9(b ). The outcome of using Gaussian filter with size [3 x 3] and 

[7 x 7] is shown in Fig A.9(c) and (d). The median filter provides better filtered 

data and simultaneously preserves the signal. Tena Ruiz (2001), however, suggested 

using a Gaussian filter owing to the computational saving. This is true, as sorting 

and ranking is a time consuming process. On the other hand, the small size of the 

median filter and the data used in this study did not create any drastic computational 

burden worthy of concern. Hence, the median filter was employed for the remaining 

simulations. 
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Figure A.9: Effect of applying different filters (a)Sonar data (b)Median [3 x 3] 
(c)Gaussian [3 x 3] (d)Gaussian [7 x 7] 

A.3.3 Segmentation (thresholding) 

Once the data has been filtered, thresholding will be applied to extract the signal 

from the noise. Thresholding is a form of segmentation technique, and its effect can 

be global or local. The simplest thresholding hmctions by making all the values above 

the predefinecl threshold one and setting t he lower value to zero, in other words, it 

separates the data into two regions. It also converts the data into a binary form, 

hence an alternative name for this process is binarization. 
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The threshold is normally fixed a priori if the performance characteristic of the sonar 

and environmental effect is known. It can be adaptively change by analysing the 

histogram. A more robust double threshold algorithm is advocated by Tena Ruiz 

(2001) and also applied by Pettilot et al. (2001). 

The idea is to partition t he histogram into three regions using two thresholds, t l , 

high threshold and t2, low threshold , instead of two regions as in the simple threshold 

algorithm. It is at this instance one is allowed to segment the region in between the 

two thresholds, assuming t hat some of the returns are connected to the region > t l. 

An illustration demonstrating a double threshold application to a simple 1-D curve 

is given in Fig A.lO. 

High Threshold 

Low Threshold 

Figure A.lO: Example of application of the double threshold algorit hm to a simple 

ID curve. The regions selected by the algorithm are sectioned. 

Using t he previous sonar data from the tank experiment, a test was conducted to 

check the performance of various thresholding algorithms. The histogram of the 

filtered data was studied to provide a starting point of selecting t l and t2. Figure 

A.ll(a) shows the filtered version and (b) the unfiltered version. Note that the median 

filter eliminate significant amount of noise at intensity 0 to 100. T he results of the 

segmented data are displayed in Fig A .12. The neighbourhood of the double threshold 

algorithm was set to [3 x 3], tl = 130 and t2 = 60. The single threshold algorithm 

uses only one value for segmentation. It is apparent, that the results of a double 

threshold is superior compared to the others. T he objects (pure white) are properly 

segmented. Figure A.l2(c) shows a case of threshold value set too low, result ing in 

noise being categorised as objects. Conversely, when the threshold value is set to 

high, the objects break up and are not distinct (A. l 2(d)). The actual segmented data 

is in binary form, white and black, but the noise is included here for visualisation. 
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Figure A.ll: Image histogram (a) Median filtered (b) Not fi ltered 
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Figure A.l2: Type of different thresholding methods (a)Sonar data (b)Double thresh­

old (c)Low threshold(t = 60) (d)High Threshold(t = 130) 
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The current, state-of-the-art, thresholding algorithm used by the military is of the 

adaptive version. One version, is known as the Cell-Averaging Constant False Alarm 

(CACFA) algorithm (Drumbheller and Lew 2001). It utilises the mean, variance or 

median of the neighbourhood cells to determine the local threshold value, and main­

tains a constant false-alarm rate. This algorithm is rather computationally intensive, 

but will be an interesting topic of research. In must also be remembered that unlike 

a stationary sonar, the AUV is constantly travelling and its displacements, headings, 

and environment are unpredictable, therefore the clutter mapping feature commonly 

used in fixed scanning sonar cannot be employed here. 

A.3.4 Dilation 

Dilation is one of the two basic operators in the area of mathematical morphology, the 

other being erosion. The basic effect of the operator on a binary image is to enlarge 

gradually the boundaries of regions of foreground pixels. Thus areas of foreground 

pixels grow in size while holes within those regions become smaller (Giardina and 

Dougherty 1987). 

It was found that without the dilation operation, some of the targets are very small 

when mapped into Cartesian coordinates, especially those nearer to the receiver. This 

distortion effect is implicated by the native polar coordinate to cartesian mapping. 

Slight changes in angle (polar coordinate) will effectuate a large discrepancy in the 

Cartesian displacement for object located further from the sonar. This distortion is 

aggravated the further the target from the sonar. The noise in navigation data can 

create jumps in the heading measurement, making positioning the target in workspace 

representation rather difficult. By increasing the apparent size of the target, this 

allows them to overlap easily, and is useful in incrementing the value of the occupancy 

map. 

A structuring element of a disc with a radius of 5 pixel was found to be adequate 

for this purpose. Fig A.l3 shows the before and after effect of applying dilation 

operation. Note that operation is applied to the polar coordinate data. 
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Figure A.13: Dilabon operation on sonar data (a)Not ililated Frame 13 (b)Dilated 

Frame 13 (c)Not dilated Frame 15 (d)Dilated Frame 15 

A.3.5 Coordinate transformation 

Sonars similar to radars operat e natively in polar coordinate. It is a convention that 

an area map uses a Cartesian coordinate as this is more intuitive for the human 

but is also more compatible with other navigation measm ements. Therefore, this 

coordinate must finally be transformed to a Cartesian form for further post processing. 
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The transformation introduce several effects to the data, first the Gaussian noise 

distribution is converted into a Rayleigh distribution. Secondly, interpolation for 

required at certain cells, causing distortion to the data at times. The process can be 

computationally intensive. Two popular methods for polar to Cartesian coordinate 

conversion are the polar formatting algorithm and the inverse transformation. 

The one preferred by industry is based on polar formatting algorithm. It is very 

accurate, less distortional to data, but computationally intensive. It is based on 

the concept of the 'Fourier space of the scene being imaged' and the fact that the 

phase history data represents a surface in this space. The surface is then projected 

onto a plane, where it is resampled to a rectangular grid for easy processing by 2-D 

FFT algorithms (Wahl et al. 1996). Due to the high requirement demanded by the 

military radar and sonar applications, dedicated digital processors for this task have 

been implemented. 

Another simpler algorithm, yet still very popular, where accuracy is less important 

is the inverse transformation. The crux of the idea is that instead of mapping each 

bin in the polar scan to a cell in the Cartesian plot, one proceeds to map each cell in 

the Cartesian coordinates to the polar coordinates and decides which value it should 

take. One can increase the accuracy of the neighbourhood cell by applying sub-pixel 

interpolation. A simple pseudocode of the algorithm is given below: 

1. Set the size of the Ccartesian plot (image size) 

2. Find angle: tan- 1(y, x) and range: Jx2 + y2 

3. Check the value from polar plot for angle and range and put it x and y 

4. Go to the next cell 

5. Repeat 3 to 5 until the all the cells are calculated 

In implementation, the use of transcendental function is very demanding for com­

puters, so a simple way to abrogate this calculation is to use a table. All the values 

are mapped into tables and a look up routine is used. Significant improvement is 

observed if the data is large. Even with a size of 256 with 256 pixels, a 10 times 

speed improvement was recorded. Figure A.l4 shows an example of image from a 
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polar coordinate being converted into a Cartesian coordinate format. Notice t hat the 

shape of the object changes with the conversion. 
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Figme A.l 4: Polar-to-Cartesian coordinate image conversion (a)Polar form (b) Carte­

sian form 

A .3.6 Transformation 

Linear t ransformation is a common operation applied to image processing. Here the 

sonar data is down scaled to a [50 x 50] size using the nearest neighbour algorithm. 

This means that each pixel represents a 1 m cell in the real world and gives more 

than adequate resolution and accuracy for collision avoidance purpose. Scaling oper­

ations can also use bilinear and bicubic algorit hms. Although they are more accurate 

and computational intensive t han nearest neighbour algorithm, they have not been 

adopted since their high accm acy is not required herein. Finally, t he image is then 

rotated and displaced according to NED convention in order to be aligned with the 

workspace grid. 
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A.4 Sea Thial Experiment 

This section describes the experiment conducted at the Coxside site of t he University 

of Plymouth. The location recorded by t he GPS with reference to the vVGS84 datum, 

is JV50°21.952', W004°07.922'. The objective of the experiment is to scan t he area, 

store the data, process and use it for environment mapping. It is also a test to assess 

the performance and feasibility of the sonar to be used for collision avoidance purposes 

of AUVs. Figure A.l5 and Fig A.l6 depict the panoramic view of the designated area 

for the experiment. The targets are labelled in the figure alphabetically. The location 

of the sonar can be seen in Fig A.l5 with label (a). Since, it is the usual convention 

to use NED coordinate system for internal workspace representation of t he AUV, a 

conceptual area plan of the targets is illustrated in Fig A.l7 for the sake of clarity. 

The trial was achieved by dipping the sonar using a special made fixture into the sea to 

a depth of 0.5 m. The TCM-2 compass is fixed to t he pole such that the heading can 

be acquired. The sonar scanned by rotating it manually, starting from approximately 

orth-West to South-East and back again to North-West. The sequence was recorded 

by the software, tagged with corresponding heading data (Table A.l). The vertical 

beam of the sonar was set to 20°, the gain to 18 and the range to 50 m. 

Figure A.l5: Sea trial location wit h sonar position shown 
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Figure A.l6: Sea trial location 

Sta~ 295.4" 
sc:annmg 
direction 

N 

o· 

E 

Not to scale 

Figure A.l7: Sketched area plan in NED coordinate 
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Sequence Hea ling (0
) Sequence Heading (0

) 

1 295.4 17 169.8 

2 286.9 18 173.9 

3 274.4 19 192.5 

4 262.6 20 212.6 

5 251.8 21 232.3 

6 236.0 22 242.7 

7 223.3 23 250.8 

8 211.9 24 251.9 

9 203.6 25 261.7 

10 199.1 26 274.1 

11 197.0 27 286.4 

12 188.1 28 295.2 

13 170.9 29 305.8 

14 151.1 30 311.6 

15 135.8 31 319.2 

16 150.3 32 324.7 

Table A.l: Sonar frames and their corresponcling heading for the Coxside t rial 

It was found that the dat a extracted from the trial contained anomalies at the further 

and nearest bin of the range (Fig A.18(a)). This was later informed by J&S Marine 

Ltd that this is an inherent defect of the sensor, causing it to produce high values for 

certain cells . Since t his error is a persistent fault and in fixed location , the data is 

eliminated by forcing it down to zero, assuming no detection. The corrected data is 

shown in (Fig A.18(b)) . 

Figure A.19 shows the histogTams of Frame 15 and Frame 16 of the collected fil­

tered data. The threshold set t ing, t1 and t2 were tuned to the values 154 and 90 

respectively. This setting, achieved heuristically, was a good compromise between a 

reasonable detection probability and a false alarm probability. Figure A.20 reveals 

the difference between unprocessed , raw sonar data and t he processed (segmented ) 

version. T he tru·gets are clearly defined for the latter version. 
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Figure A.19: (a)Trial histogram for Frame 15 (b)Frame 16 
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Figure A.20: (a)Unprocessed data Frame 15 (b)Unprocessed data Frame 15 

(c)Processed data Frame 16 (d)Processed data Frame 16 

A selected sequence of the processed frames with their associated frame number la­

belled below are presented in Fig A.21 and A.22. The rest of the frames are not shown 

because they do not contain any interesting targets. The median fi lt r , size [3 x 3], and 

double thresholding algorithm with settings as mentioned above was applied to the 

frames. The pure white objects are t he segmented targets. The noise in the fTamcs 

are shown here only for clariLy of xposition. It is apparent from this sequence, that 

the sonar data is rather aberrant and noisy by nature, sometimes displaying false 

targets and multi-path phenomenon. 
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A.5 Workspace Representation 

The data acquired from the sonar would not be useful unless it could be processed 

into a much compact and functional form. Moreover, the sonar measurements were 

incremental by nature due to the limited detection envelope. This necessitated a 

method to represent the environment for use in motion planning. A more detail 

exposition regarding workspace representation is provided in Subsection 2.3.4. 

A.5.1 Occupancy map implementation 

The approach here was to employ the occupancy grid, a variant of spatial decompo­

sition scheme for workspace representation. In essence, an occupancy grid represents 

the environment space by partitioning it into uniform, non-overlapping grids or cells 

in a spatial lattice. Each cell can be allocated with user defined attributes such as 

confidence of obstacle presence, terrain geometry and safety factor (Movarec and Elfes 

1985). 

Figure A.23 shows the implication of applying the dilation operation on an occupancy 

grid. It must be understood that an occupancy grid functions by maintaining the cells 

that overlap. Note that without dilation, Fig A.23(a), a case of inadequate overlap, 

it creates a map with small targets. These targets have a tendency to disappear 

and reappear, behaving more like noise. The figure is labelled alphabetically that 

corresponds to the targets as shown in Fig A.l5 and Fig A.l6. 

Figure A.24 shows the flow chart of the implemented occupancy grid. Unlike, Ridao 

et al. (2000) who used only pings that have not expired after a preset time interval 

are recorded into a coarser map, and used for path planning. In this study, an 

alternate approach was employed, upon detection of a new target, its cell was set 

to a heuristically determined, starting value of 6. This value was tuned according 

to the confidence of the probability of detection and probability of false alarm of a 

particular sonar. An excessive starting value can result in a system that is prone to 

accept noise as tru-gets. A value too low will eliminate the target too quickly from 

the map, resulting an incomplete view of the surrounding environment. 
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Figure A.23: Comparison between t he effect of dilation (a) on-dilated and (b )Dilated 
Image 

Also, instead of using a simple linear function to maintain the <life' of t he cells, 

herein , the algorithm used a quadratic function. This implies t hat any cell value will 

be squared if they overlapped with that sonar dat a. This produces an effect that 

frequently overlapped cells will be quickly preserved and maintained. Conversely, 

those t hat do not overlap sufficient ly often their values are decremented by using a 

linear function, at every time step, one unit in every second. Note that a maximum 

bound of a value of 60 was set for t his map. The value from the quadratic function, 

if not bounded would reach an excessively high value in a few scans. Such a high 

value tends to decay very slowly. This value must be set according to the accuracy 

of the vehicle navigation sensors. When submerged, it is necessary for an AUV to 

performs dead reckoning to navigate the environment. Sensor drift tends to cause 

the AUV displacement to be inaccurate. This inaccuracy will then propagate to the 

occupancy grid. AUYs that are equipped with SLAM technology are expected to have 

better performance in t his aspect, therefore allowing a higher maximum occupancy 

grid value to be used. 
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Figure A.24: Occupancy grid flow chart 

A.5.2 Discussion 

A selected sequence of the occupancy grid frames are presented in Fig A.25 and A.26 

with their associated frame number labelled below. The white sector represents is 

the detection envelop of the AT500 sonar. The heading of the sonar for each frame is 

given in Table A.l. For ease of reference, the frame number coincides with the sonar 

frames given in Fig A.21 and Fig A.22. Again, one should consult the alphabetical 

labels in Fig A.l5, Fig A.l6 and Fig A.23 for better understanding of the targets 

position relative to the NED convention. 

From Frame 10 to 17, one can observe that target (c) was detected, but the fast 

scanning motion of the sonar, achieved manually, did not allow sufficient time for the 
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target to be redetected, this explains its low value (light blue). Similarly, from Frame 

14 to 16, target (d) was detected and its value was reinforced as the frame progressed 

(changing of the colours to light green). Notice that from Frame 12 to 16, several 

false alarms or targets caused by multi-path reflection and noise appear. Beginning 

with Frame 17, the direction of scanning of sonar was reversed. At Frame 18, target 

(c) was redetected, and its value increased, then it was continuously reinforced from 

Frame 18 to 25. Interestingly, a fortuitous event occurred, a vessel (target (e)) was 

manoeuvring into the harbour at that particular time. The vessel was detected by 

the sonar as shown in Frame 21, it is discernable as a small light blue blip at the 

furthest left of the frame. The occupancy grid manages to eliminate the multi-path 

reflection and incorrect noise signal discrimination, detected at Frame 12 to 16. These 

'targets' were then suppressed after Frame 18. Although, impressive and practical, 

the occupancy grid only works well if the navigation sensors are reasonably accurate. 

F\1rthermore, without a tracking module, it is unable to predict the target velocity 

and trajectory, resulting in deteriorating performance in highly dynamic environment. 

It was discovered that the maximum distance of AT500 sonar is 40 m and not 50 m 

as stated in the specification. Detection of a moving target is very difficult. The 

sonar is very sensitive to the exposed cross section of the target. When the boat was 

heading straight to the sonar, the detection is very weak, almost nil. But as the boat 

turns to be perpendicular to the sonar, detection probability increases, this can be 

explained by the kneel of the boat which provides sufficient large area to reflect the 

sonar acoustic energy. 
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Figure A.25: lap sequence from 10 to 17 
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The final occupan y grid of Frame 32 was used for t he following motion planning 

simulation (Fig A.27). Note that multi-path refiection and noise have been eliminated 

and what is left are the actual targets. The 3-D plot of the occupancy map is shown 

in (Fig A.27(b)) 
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Figure A.27: (a) Occupancy grid of Frame 32 (b) 3-D plot of the occupancy map 

A.5.3 Quasi-simulation of collision avoidance scenario 

For these simulatious, the sampling space was set to 250 m x 250m , as illustrated in 

Fig A.28. Th remanding simulations were hosted in the !-.IATLAB 6.5 / SIMULI K 

environment on a 2.1 GHz Pentium IV machine, with 512 MB of RAM and running 

\Vindows XP. 

Additionally, the assumptions required arc outlined below : 

• The AUV uses only the occupancy grid ma p of the Frame 32. 

• The AUV has performed a scanning manoeuvres to scan the 'Urrouudings. 

• The AUV model is of AUTOSUB and it use the !-.IA+ RRT algorithm detailed 

in Chapter 5. 
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• The AUV are moving at a crmsmg speed of 2m/ s and the initial position 

was set to [300 240 3.1] and the goal is [170 230 ~~:], according to the format 

[x(m) y(m) 'lj!(md)]. ~~: is a variable. It should be wmth mentioning that the 

goal, is an element from a collection of the mission waypoints. 

• The occupancy grid uses NED convention. 

The triangles shown in Fig A.28 and A.29 represent the AUTOSUB AUV, enlarged 

twice the original size to improve visualisation. 

Discussions 

Figure A.28 shows a near optimal trajectory found by the algorithm in 0.11 s, the 

AUV avoids the obstacles by moving through the gap in between them. This trajec­

tory might not be a practical one, for a large AUV as the physical size of the AUV 

and its slow dynamics, consequently, the AUV has a high chance of colliding with the 

nearby obstacle. Nonetheless, this manoeuvre is ideally suitable for small agile AUV 

conducting clandestine and reconnaissance missions in a hostile territory. For the 

case of a large AUV, and to deter the algorithm from discovering 'risky' trajectory, a 

dilation operation can be introduced to enlarge the obstacles. This is in fact, similar 

to the concept known as configuration-space patching proposed by (Lozano-Perez and 

Wesley 1979). 

Figure A.29 depicts a similar scenario but using different seeds of the quasi-random 

generator. The trajectory was found in 0.46 s. This time, the AUV turns away, 

in an aggressive mmmer from the obstacles. Then, it executes a considerable large 

detour before arriving to the target. Qualitatively speaking, this is obviously a safer 

trajectory for the A UTOSUB AUV, owing to its size and slow dynamics. As expected, 

the trajectory total distance when compared to the former simulation trajectory is 

substantially larger, hence this provoked the question of energy efficiency. 

Here, one can notice the consequence of dynamics quantisation, which restricted 

the admissible dynamics of the original system. A trade-off between computational 

efficiency, computational tractability and performance degradation that one must be 

willing to pay for the adoption of this approach. Secondly, the AT500 sonar, owing to 
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Figure A.28: Collision avoidance simulation 1 

its limited detection range of only 40 m, is not suitable for large AUVs, with sluggish 

dynamics. Their minimum turning radius are too large, and by the time an obstacle 

is detected and confirmed, it will already be too late for any prc-emptive action to be 

taken. 

A.6 Concluding Remarks 

This chapter presented the development of the sonar data possessing and workspace 

representation subsystems of an AUV. T he two submodules play an important role 

in obstacle detection. The sonar data from the AT500 sonar was processed in the 

context of image processing and the occupancy grid was employed for workspace 

representation. An experiment was conducted at the Coxside site of the University 

of Plymouth, to gather real world data for the development of the aforementioned 
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Figure A.29: Collision avoidance simulation 2 

submodules. Since the AT500 is a prototype sonar, this chapter has documented 

original work on its applicat ion. The developed obstacle avoidance system is adequate 

for a static environment case. Later , the t racking module if designed , will result in a 

fully comprehensive obstacle detection system, that can be used in st at ic and dynamic 

environments alike. 
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Publications 
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literature via the following list of publications. This includes all the papers which 
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• Tan, C. S., R. Sutton and J. Chudley (2004). Collision Avoidance Systems 

for Autonomous Underwater Vehicles, Part A: Obstacle Detection. Journal of 

Ma1"ine Science and Envimnment, JMarEST (C2), 39-50. 

• Tan, C. S., R. Sutton and J. Chudley (2004). Collision Avoidance Systems for 

Au- tonomous Underwater Vehicles, Part B: Obstacle Avoidance. Journal of 

Marine Science and Envimnrnent, TMarEST (C2), 51-62. 
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Intelligent Sonars for Autonomous Underwater Vehicle Navigation and Collision 
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CRASH ' BANG 
AVOIDANCE 
Collision avoidance systems for autonomous underwater 
vehicles: A review of obstacle detection 

SINCE MAN'S FORAY INTO Tiffi OCEANS, 

mid sea collision has been a frequent 

occurrence. The poor navigation technology 

at that ticne was paniaUy to blame for the 

situation. Various regulations or "rules of the 

road" were enacted in the hope to mitigate 

the occurre~ of such incidents. 

The prolific deployment of radar, a 

significant technology, in commercial vessels 

at the end of World War ll was hailed as the 

solution to a centuries-old problem. 

However, much to the surprise of the 

maritime community even this innovative 

technology, regrettably, failed to prevent 

collisions from happening and it is painfully 

clear that most of the collision causes were 

not technology related but due to gross 

human errors, particularly the incorrect 

application of the techno logy and collision 

avoidance regulations. Undeniably every 

coUislon at sea has serious environmental, 

economical and human life implications. 

The exploration of the oceans is extremely 

difficult to perform but is desirable for the 

advancement of economic, political, scientific 

g and military purposes. Consequently, over 
0 t the last view decades there has been an 

c; exponential growth in applications of 

-~ unmanned underwater vehicles (UUV's) ., 
:§ particularly Autonomous Underwater 

t- Vehicles (AUVs). Cost reduction and 
'g 
{j mitigation of the risk of human life have 

become the impetus for UUV exploitation. 

~ Despite advances AUV's still suffer from 

~ numerous inherent technical difficulties, 

g specifically from power, sensing, 

~ communication and reliability limitations. 

22 Oceanology Today 

One of the areas that panicularly needs 

addressing, is that of collision avoidance, 

which is requiced to maintain the structural 

Integrity of the AUV in a very hostile 

environment. An AUV collision in the ocean 

is intolerable for two main reasons; the 

recovery process can be arduous and the 

replacement process in terms of cost and 

time can be prohibitive. 

Although pioneering efforts in establishing 

certain public laws concerning AUV 

operations! , 2, 3 have been made what is 

urgently lacking is an authority who can 

implement these instituted rules. One 

reason for the absence of interest in 

enforcing these rules is probably due to 

Insufficient risk justification, especially the 

risk to human life. Unlike an unmanned 

aviation vehicle, which shares the same space 

with civil airspace as commercial aircraft, an 

AUV will conduct its mission under the water 

where the chance of encountering another 

AUV or submarine is extremely unlikely. 

However, the current scenario is about to 

change. By working cooperatively and via 

mutual information sharing these AUV's will 

be able to complete missions such as 

oceanographic sampling and mine hunting 

with substantial reduction in both 

operational time and cost. This, as a result 

necessitates a set of proper "Rules of the 

road" in order to safely and successfully 

condua a multi-AUV mission. 

The Rules of the road pertain to a set of 

protocol applied to assist in tackling a 

collision predicament. Incorporating these 

ideas into an automatic collision system is 

not e ntirely new but implementations have 

historically been restricted to surface vessels. 

These selection of guidelines relevant to 

AUVs are derived from the International 

Regulations for Preventing Collisions at 

Sea.4, 5 

Rule 2 Responsibility, requices that 'due 

regard shall be given w all dangers of 

navigation and collision.' This rule allows an 

AUV to depart from all the rules as necessary 

to avoid the immediate danger of collision. 

Rule 4 Lookout, requires that 'every vessel 

shall at all times maintain a proper lookout 

by all available means appropriate in the 

prevailing circumstances so as to make a full 

appraisal of the situation and of the possible 

risk of collision.' 

This is the primary task of an obstacle 

deteclion unit, where the primary lookout 

sensor employed is the sonar. There is even 

a suggestion that future AUVs shall be 

equipped with a system similar 10 the 

Identify Friend o r Foe (IFF) unit commonly 

used in military aircrafts. 

Rule 6 Safe Speed, requires that 'every 

vessel shall at all times proceed at a safe 

speed so that she can take proper and 

effective action to avoid collision and be 

slOpped within a distance appropriate to the 

prevailing circumstances and conditions.' 

The speed of an AUV will be determined by 

these facto rs: the delectability, traffic density, 

manoeuvrability of the vessel with special 

reference to stopping distance and turning 

ability, the state o f the sea, current, and 

proximity of navigational hazards. Slow 

speed, however, can affect the 
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manoeuvr.Jhility of AUVs. 

Rule 7 Risk of Collis ion , 

s tates that ·every vcs.,cl shall use 

all av-Jilable means tu determine if 

risk of collision exists: if there is 

a n!' do1.1ht, assume that it does exis t. · 

Rule H Anion t<t An >id Collision, s tate s 

that ·changes in o >ursc anti speed sha ll he 

large enou~h so :L' w he rcadil!· 

apparcm to the othe r vessels. If 

necessary w a,·oitl 

collision or allow 

more time !0 a'scs~ 

the s ituation, a vessel 

shall slacken her speed or take 

all \0.-:J)' o fT hy stopping or re vers ing 

her propulsion. A ves~d which b 

required not to imped e.: the 

passage of another vessel sh all 

take early and suhstantial act ion to 

allow suffide m sea r<~om for the passa~e of 

the other vesse l. ' Swppin)( a nd reversing the 

propulsion G ill , however, he pn~1lematk 

for a majority o f AUVs, which ~ re 

under.u:tuated, a m lnot neutr.dly buoyant , 

for example the.: loss o f rudde r 

effectiveness in low ~11ecd can induce hi~he r 

collis ion risk instL~ td . 

Rule 14 licad·On Situatio n , s tates that 

' vessels whic h arc <tpp rnad•ing head-on sh;~ll 

alter rourse to s tarboard (oight·h:tml-., idc) >O 

c;u.:h will pass pt >rl (ld t·hand·sidc ) tu po rt.' 

Rule I ') Cn>.,sin~ Siwation, s tates that 

'when two ves.,eb ~o c tn >.,sing so as tu 

invo lve risk o f collb ion, thc vcs.'d which ha~ 

the other ves.'cl on her starlx >ard side shall 

kee p out of the w;ty, and shall , if the 

circ umstances of the case admit, avoid 

crossing ahead of the other vessel.· 

For 
rules !l, 14 and l 'i the 

general right -of -way rule Mates 

that the leas t ma noeuvrdhle ves'cl has the 

right of way. For the case of a surface vehidc 

11 is appare nt that these manoeuvre.~ occur in 

the p lanar domain. Whi lst Al Ns operate in a 

3-D domain, fo r the mo me nt , their avoidance 

manoe uvres arc still limited w o nly planar 

mo tio n owing to the rcstriuion impo,ed by 

..:onvemional 2-D obs1:1d e avoidance sonar. 

Afly developme nts in coll is ion avoid;~ncc 

,yste ms for Al!V IX.Ith in terms of tktcctk>n 

of 

ohs tad es anti :<voidance 

, ,r '>h., tades can < mly he 

proposed in the expectation tha t 

fonhmmin): AllY'., wil l, ;u least, be compliant 

with these rcgubtio n,, he nce minimis ing the 

o·isk of coll i>ion 

Thi' is taken fro m a tec hnical paper 

puhli, hcd in ·n1c j ournal of Marine Scie nce 

and Environmc nt, Proceedings of the 

I Mar EST, P:;n C2 
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An underlying requirement of an autonomous underwater vehicle (AUV), irrespective of 

the mission plan, is to navigate an unknown, dynamic and unstructured terrain. Usually, the 
AUV is fitted with a variety of advanced and expensive sensor suites dedicated to a par­
ticular mission. For this reason, the loss of an AUV due to collision is unjustifiable both in 

tenns of the replacement cost and time. To prevent the occurrence of such an unfortu­
nate event one requires an effective and robust collision avoidance system which is able 
to preserve the AUV structural integrity. The aim of this paper is to discuss the techniques 
for designing collision avoidance systems and their corresponding advantages and disad­
vantages. The subject material has been divided into two parts for clarity of exposition. 
Here, in Part A emphasis is placed on the description of obstacle detection aspects of col­
lision avoidance systems. Additionally. a brief introduction concerning AUV control archi­
t ectures and their relevant collision avoidance submodules are also presented. 
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INTRODUCTION 

I
t is surprising to k.I1ow that approximately 97% of the 
space for Earthbound organisms are in the oceans, there­
by, supporting the fact that oceans play a vital role in 
sustaining the Earth's ecology. Even with current tech­

nology advancement , less than 5% of the oceans have been 
characterised to the same degree of resolution as the planet 
Mars. One obvious reason is that the exploration of this envi­
ronment is extremely difficult to perform, however it is still 
desirable for the advancement of economic, political, scien­
tific and military purposes. 

Consequently, over the last few decades there has been an 
exponential growth in the applications of unmanned under­
water vehicles (UUVs), particularly in the field of scie nce, 
the offshore industry and the military. Cost reduction and mit­
igation of the risk of human life have become the impetus for 
UUV exploitation. UUVs can be used for sea bottom explo­
ration, repairing, surveying, policing exclusive economic 
zones, mine-hunting, seabed mapping, scientific data, and 
intelligence gathering. In this contex t, the term 'unmanned 
underwater vehicle' is considered as a generic expression to 
describe both an autonomous underwater vehicle (AUV) and 
a remotely operated vehicle (ROV). An ROV can be consid­
ered as a human-operated, highly-manoeuvrable underwater 
vehicle that is connected via an umbilical cable to a surface 
vessel. However, this does severely limit its operating range. 
Unlike the ROV, the AUV without the restraint of an umbili­
cal, is a free swimming vehicle of higher autonomy, capable 
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of performing missions that require longer operating range 
without human intervention. For clarity of exposition, the 
term AUV will be used for the remainder of this paper 
because of its more challenging and rigid requirements. 
Nonetheless, the ideas discussed are still applicable to a wide 
range of vehicles. It is worth reviewing the recent trends in 
AUV applications, to better appreciate their contributions. 

The offshore and scientific communities, who were espe­
cially sensitive to financial constraints, were quick to seize 
the opportunity in exploiting the potential of AUVs. Some of 
the commercial AUVs for offshore survey are Hugin 
(Norway), 1 Aqua Explorer 1000 (Japan) ,2 and These us 
(Canada).3 This has been reinforced by the recent placing of 
orders to purchase AUVs by Fugro-Geos Ltd, C&C 
Technologies and Racal Survey Ltd. •. ln the case of the scien­
tific community, Autosub,5 and Theseus,6 AUVs have demon­
strated their ability to navigate under polar ice caps while the 
Autonomous Beruhic Explorer (ABE),7 has performed a fme­
scale sea floor survey in a rugged deep-ocean terrain. All of 
these have been achieved at significant financial cost saving. 
These impressive achievements further strengthen the belief 
that AUV applications wiU continue to escalate as the realisa­
tion of the importance of ocean resources unfolds. 

Recently, the military have shifted their focus from blue­
water to brown-water warfare. This was instigated by the 
increase propensity for littoral water operations and the 
attendant focu s on amphibious power projection.• 
Technically, the littoral zone is a subdivision of the benthic 
province that lies between the high and low tide marks and 
can be considered as an extension of tl1e shoreline to 600ft 
(183m) out into the water. The importance of accessing the 
littoral zone is critica l if a successful amphibious launch is 
to be achieved. The littoral zone is an intricate area to navi­
gate by default, with unpredictable natural effects such as 
bioluminescence', internal waves, coastal currents, chang­
ing beach profile, reefs and artificial objects. This is made 
increasingly difficult by the prolific deployment, by defend­
ing countries, of inexpensive underwater mines which have 
the effect of retarding or halting any military advancement. 
Consequently, this has prompted a search for the most effec­
tive countermeasure that culminated with the employment 
of AUV technology. Currently, the US employs the highly 
portable and cost-e ffective REMUS AUV for mine hunting 
as illustrated in the recent 2003 Iraq conflict ' Moreover, the 
design of a more advanced, stealth AUV, codename Manta, 
is already in progress,10 and the long-term mine reconnais­
sance system (LMRS) is also due in service soon. 
Elsewhere, tl1e UK is using the highly modular and recon­
figurable Marlin, 11 that is also submarine-launch capable 
and a smaller, more manoeuvrable, Gambit,12 for mine coun­
termeasure mission. 

From the aforementioned, the impression may have been 

• Refers to the light-producing ability of certain surface organisms. Ally provoca­

tion of the organisms will cause them to emit ight Thus to maintain stealthiness, 

AWs must take extra precautions when travelling on or near the surface. 

t One example is the novel flexible foil propulsorcallcd Nektor."These flexi­

ble thrusters are capable of maximising AUV agility by transforming it into a 

holonomic vehide. 

40 

given that AUVs are going to become the panacea for a num­
ber of subsea activities. This is certainly not the case, as 
AUVs still suffer from numerous inherent technical difficul­
ties, specifically from power, sensing, communication, and 
reliability limitations. The increased exploitation of AUVs, as 
mentioned above, has also demanded a more robust and 
autonomous capability. One of the areas that needs particular 
addressing is collision avoidance, which is required to rnain­
tain the structural integrity of the AUV in a very hostile envi­
ronment. Clearly, once a collision occurs, and assuming that 
the AUV structure is breached, then it is inevitable that a cat­
astrophic failure will fo llow. Thus an AUV collision in the 
ocean is intolerable for two main reasons; tlle recovery 
process can be arduous, and the replacement process in terms 
of cost and time can be prohibitive. 

In this paper, collision avoidance is defined as the abili­
ty of a vehicle to detect arid avoid colliding with both .static 
and dynamic obstacles, while still attempting to accomplish 
the current mission objective. The processes involved also 
encompass obstacle detection, digital map building (work­
space representation), motion planning and reflexive obsta­
cle avoidance. To date, AUV coll ision avoidance schemes 
have been somewhat ad hoc whereby only a simple reflex.ive 
module is added depending on the customer requirements. 
The problem with tllis approach is that the resulting AUV 
system is not fully integrated with its various subsystems 
which leads to suboptimal behaviour in terms of manoeuvra­
bility and capability to navigate in a dynamic, unknown and 
unstructured terrain. Moreover, under operational condi­
tions, this is exacerbated still further by t11e poor sensor per­
formance and highly complex non-linear dynamic nature of 
an AUV. Previous AUVs were designed as efficient swim­
mers with very limited manoeuvrability, but some recent 
AUVs are equipped with auxiliary vector tllrusters ' to 
achieve more sophisticated manoeuvres such as hovering 
and pure sway movement. As a consequence, a new collision 
avoidance system that is capable of addressing all these fac­
tors is required. 

To ease comprehension, this paper adopts an approach 
where the pertinent theory and concept are emphasised before 
proceeding to their specific implementations. Each of the 
modules is also presented in accordance to the sequel of the 
collision avoidance process. Starting with the following sec­
tion, a review of concepts and techniques used in designing a 
collision avoidance system for an AUV are provided. It com­
mences by providing a brief outline of different types of AUV 
control architectures. Clearly, this is vital since the control 
architecture functions as a supporting platform for the colli­
sion avoidance mechanism. Various collision avoidance 
architectures are surveyed. Subsequently, several modules 
that form the basis of a generic collision avoidance system are 
highlighted. The third section of this paper delves into the 
obstacle detection module which is comprised of a forward­
looking sonar, a sonar signal processing module and finally a 
map builder module. The theory, principle and implementa­
tion behind each individual submodule are then elaborated 
upon. Then, concluding remarks are given, stressing the lim­
itations of tl1e current techniques. The obstacle avoidance 
aspects of this subject are addressed in the Part B paper which 
follows this paper. 14 
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A control architecture is a framework which manages the sen­
sorial and actuator system in order to enable the AUV to 
undertake a user-specified mission. This is a major topic of 
research , and different approaches to AUV control architec­
tures are discussed in the literature. 15

•
1
"

17 This section intends 
to elaborate on three major types of control architectures. 

Deliberative architecture 
This architecture is also known as a top down, strucnrred, symbol­
ic, goal-driven, model-based, hierarchical or sense-plan-act 
approach. Deliberative architecture always maintains internal rep­
resentations of its surroundings and this allows it to make reason­
ing, prediction and inferencing concerning the environment The 
information flow direction is depicted in Fig l(a). This scheme 
represents a well-defined. tightly-coupled structure thus simplify­
ing the process of designing, debugging and evaluating the system. 
However, the amount of information flow from sensors to tl-.e cen­
tralised computing resources can be significant Exacetbating the 
situation is tl1e synchronisation difficulty of workspace representa­
tions and the environment Owing to the cornputationally inten­
sive nature of the architecture, there is a tendency to exhibit unre­
sponsive or erratic behaviours in unpredicted situations. This 
architecture is employed in the the EAVE,11 and the OTrER!9 

Reactive architecture 
Also known as a botto m up, sensor-driven, layered, forward­
inferencing, subsumptive, reflexive or sense-react approach. 
The theory of reactive architecture was initiated by Arbib,20 

and implemented by Brooks.21 [t is based on a parallel struc­
ture where each individual sensor is used to sense the envi­
ronment, providing its own perception and activating its own 
behaviour, refer to Fig l (b) . A global behaviour is produced 
by coordinating the parallel execution of individual behav­
iour. Its performance is excellent, particularly in unforeseen 
s ituations . Furthennore, this scheme is known for its flexible 
and modular nature. However, its propens ity to demonstrate 
elusive behaviour when subjected to conflicting sensor infor­
mation is a major concern. Also , its nondeterrninistic nature 
does not lend itself to a straightforward pe rformance evalua­
tion. Lastly, its deficiency in global mapping and in relation 
to workspace objects, often results in simplistic behaviours 
which tend to get trapped in certain cases. This architecture is 
employed in the Sea Squirt,12 and the Twin Burger/J AUVs. 

No. C2 2004 ]oumal of Marine Science and Environment 

(c) 

Hybrid architecture 

(b) gene ric 
reactive 
control 
architectu re (c) 
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In the search for a superior architecture than the two previous­
ly discussed, the hybrid architecture was born throug h the 
amalgamation of both the above architectures. Generally, it is 
decomposed into three task specific layers: deliberative, reac­
tive and execution layer, refer to Fig l (c). Ln military parlance, 
it is called the s trategic, tactical and execution layer. 
Abstraction and real-time responsiveness varies correspond­
ingly at each level. The deliberative layer is in charge of high 
level planning (non time-critical) while the reactive layer is 
responsible for real-time issues. The execution layer a cts as 
supervisor to facilitate interlayer interactions. Due to its appar­
ent advantages, most recent AUVs have employed a vari ant of 
this architecture. The Garbi,l• the SAUVJM,25 and the 
Phoenix/" AUVs are examples that exploit this architecture. 

Coll ision avoidance system architecture 
As stated previously, pure deliberative and reactive arc hitec­
tures do not function adequate ly for a collision avoidance 
task. As hybrid control architecture provides an ideal plat­
form for integrating the functionality of the individua l sub­
modules, it is not surprising that it is applied in the majority 
of the proposed obstacle avoidance architectures.n ll 

Before proceeding to an in-depth discussion pertaini ng to 
the individual submodules, it would be more enlightening to 
provide a simple descriptive of a collision avoidance process 
to better elucidate the utility of each submodule. A typical 
collision avoidance task can be considered like this. First and 
fore most, a target must be acquired by the forward-lo oking 
sonar. C lassification of static or dynamic targets are the n per­
formed. Depending on the types of object, their information 
will then be fused with AUV navigation data such as veloci­
ty, depth and altitude in order to represent the object into a 
digital map. From the digital map, a motion planning tech­
nique is e mployed to s teer the AUV safely to its prede fined 
goal or subgoal. Mot ion planning is computationally expen­
sive and not very suitable for tackling unexpected objects. 
There fo re, the reflex ive obstacle avoidance submodule is 
employed to provide the AUV with a time-critical, in situ 
response to an unexpected object. Once the obstacle has been 
successfully avoided , the AUV should resume its preplanned 
mission. The bolded phases denote critical processes in colli ­
sion avoidance. These processes are highly dependent, partic­
ularly the one in the lowest of the process chain such as 
motion planning. For this reason, a method of designing an 
efficient, optimal and practical collision avo idance system 
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requires a perfect integration of these processes. On the 
whole, a comsion avoidance system can be decomposed into 
two principal functional modules; the obstacle detection 
module and the obstacle avoidance module, where both of 
them comprise further submodules. 

Obstacle detection module 
I. Forward-looking sonar 
2. Sonar processing submodule 
3. Navigation submodule 
4. Map builder (Workspace representation submodule) 

Obstacle avoidance module 
1. Motion planner and waypoint generator 
2. Trajectory tracker. (Autopilot and actuator controller) 
3. Reflexive submodule. 

A detailed discussion of aspects of obstacle avoidance is 
given in the Part B paper. Pig 2 illustrates the interconnection 
of the submodules of a generic collision avoidance system. 
The arbiter is used to co-ordinate the activation and inhibition 
of various submodules. 

Forward-looking sonar 
A forward-looking sonar is frequently used for AUV obstacle 
detection. Recently, the advent of digital signal processing 
(DSP) technology has increased the popular usage of cost­
effective, high resolution, electronic beam formed sonar for 
obstacle detection purposes. Besides providing adequate 
bearing and range resolution, its rapid scanning rate (frame 
rate) also permits temporal information extraction, which is 
vital for motion planning in a dynamic environment. 

Sonar processing submodule 
Despite the acoustic sensor performance being unprecedent­
ed in unde~ater applications, obtaining high quality and reli­
able sonar data is still problematic. Reverberation, reflection, 
refraction and scattering tend to corrupt the data and cause 

Fig 2: Generic collision avoidance architecture 

Obstade Avoidance Module 

2 

frequent false alanns, hence subsequent processing of the 
data is required. This sub module is also responsible for object 
discrimination, verification and tracking. 

Navigat ion submodule 
A navigation submodule typically comprises an inertial m eas­
urement unit, digital compass, depth sensor, altimeter, and a 
GPS unit (when surfaced). When submerged, the AUV is 
deprived of any global frame of reference and dead-reck on­
ing is the only viable method for localisation. 

Map builder 
. Deprived of any global frame of reference, it is critical to 

have an online map which is incrementally developed to 
assist an AUV in navigating the unknown terrain. A digital 
map is also required for localisation and motion planning 
processes. Clearly, there are numerous methods of represent­
ing the AUV environment; three well-known methods are cell 
decomposition, geometrical representation and topology rep­
resentation. 

Motion planner and waypoint generator 
A motion planner is used to assist an AUV in navigating 
through an unstructured and unknown environment via the 
generation of a time-parameterised path, whilst simultaneous­
ly taking into account several factors such as AUV safety, 
kinematics, dynamics and energy constraints. An interested 
reader is directed to Part B of this paper,14 for more de tails 
regarding this matter. 

Trajectory tracker 
A trajectory tracker is also popularly known as the autopilot. 
The actuators to be controlled can be a rudder, hydroplane or 
motor. In ~ssence, its main responsibility is to ensure that the 
AUV output follows the desired input. This is not a trivial 
assignment when one needs to take into consideration the 
effect of the vehicle dynamics, modelling uncertainty, sensor 
noise and external disturbances. Presently, this area is a major 
topic of research. 

Reflexive submodule 
A re flexive submodule function is similar to a backup system 
in the unfortunate event of motion planner failure. The failure 
can either be a system malfunction or a failure to meet the 
predefined Lime constraint, which is a more common occur­
rence than the former. Unlike the motion planning submod­
ule, this sub module is highly capable of responding to unfore­
seen circumstances. This submodule is activated when an 
object intersects a predefined virtual boundary.m 2 

OBSTACLE DETECTION MODULE 
Introduction 
As previously outlined, an obstac le avoidance module con­
sists of a forward-looking sonar, a navigation submodule 
and a map builder. The navigation submodule wiU not be 
reviewed since this has been provided by Loebis et aJ.33 The 
primary function of an obstacle detection module is to 
detect, discriminate and represent the object information 
into a digital map for disposal by the obstacle avoidance 
module. 
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Forward-looking sonar 
In the underwater domain, radio waves and vision suffer 
from inherent limitations. Radio waves are virtually useless 
underwater due to its high attenuation, while vision effec­
tiveness is restricted to a range of a few metres, and is high­
ly dependent on the turbidity of the water. This is caused by 
the scattering effect of light by suspended matter. Obviously, 
one method is to employ a higher intensity light source to 
offset the light attenuation, but this only results in a massive 
power drain. 

Unlike radio waves and optical energy, sound transmis­
sion is the single most-effective means of directing energy 
transfer over long distances in seawater. Consequently, an 
acoustic sensor in the form of sonar is largely employed 
underwater. There are numerous sonar types such as batby­
metric sonar, side scan sonar, tow-array sonar and etc, which 
are all applications specific. One type that is commonly 
employed for obstacle detection is the forward-looking 
sonar. The main purpose of a forward-looking sonar is to 
provide spatial information such as the range, bearing and 
size of an object via some processes of signal processing and 
data fusing. 

A forward-looking sonar is required to detect objects at 
the longest range possible in order to allow for further infor­
mation processing before an avoidance manoeuvre can be ini­
tiated. However, at moderate ranges of several hundred 
metres, sonar paths can be distorted significantly because of 
continuous refraction from sound speed variation caused by 
changes in water temperature, salinity, and pressure. To 
aggravate the situation, sonar range is also highly frequency­
dependent. For long range detection, a low-frequency sonar is 
required. Nonetheless, low frequency results in poor acoustic 
resolution. In the case of shaJiow water (200m or less) and 
when an AUV is cruising near to the sea bed (pipe tracking or 
terrain following), this issue is exacerbated by the the com­
bined effect of boundary reverberation noise, multi-path 
returns and bottom clutter.34 Increasing the acoustic resolu­
tion, on the other hand, can significantly enhance an AUV's 
ability to perfonn boundary reverberation discrimination 
while obtaining a more precise bearing on echo returns. 
Besides, high acoustic resolution is a lso critical for the pur­
pose of map building and optimal path generation.35 For tills 
reason, there is a constant trade-off between operating range 
and acoustic resolution; proper selection should be based on 
the AUV mission. Some of the desired qualities of an AUV 
sonar are Listed below: 
e Low power consumption. 
e High resolutions with adequate detection range (depend-

ing on the AUV operating speed). 
e Scanning rate. 

• Cost. 
e Embedded clustering or classification logic (optional). 
e Embedded static and dynamic objects tracker (optional). 

Types of forward-looking sonar 
A detail review of different types of forward-looking sonars 

be found in Loggins.36 Lately, the advent of DSP technol­
gy has culminated in the development of high performance, 
ow cost electronic beam-formed sonar. ln principle, bearn-
ormingH-» is a process of listening to or transmitting energy 
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(sound, in this case) from an array at selected angles. The 
core concept is to sum the incoming signal such that those 
that are coming from a given direction are added coherently, 
resulting in maximum magnitude response, while those sig­
nals arriving from other directions are attenuated as a result 
of the self-destmctive interference effect. The two main 
approaches in beam-fonning are the time-domain and the fre­
quency-based methods. Typically, a number of fixed direc­
tional receiver beams are formed simultaneously to cover the 
ensonified region in order to obtained better directional reso­
lution while maximising the scanning rate.39 One obvious 
advantage of this sonar is its hlgh scanning rate (frame rate), 
rendering it less susceptible to platform motion disturbance. 
Besides, the high scanning rate can be exploited for temporal 
and spatial infom1ation.43 The Jack of mechanical moving 
parts also increases the reliability of the sonar. 

There are several types of sonar that are based on slightly 
different operational principles. Neglecting tlus distinction, 
as a whole they may be categorised into a 1-D, 2-D and 3-D 
sonar. The most primitive form of sonar is a 1-D sonar such 
as an echo-sounder or depth-sounder, which is capable of 
only providing range (altitude) information. Two examples of 
2-D sonar, with different configuration are shown in Fig 3(a) 
and (b). The Fig 3(a) sonar configuration is commonly 
employed by most commercial AUV forward-looking sonars. 
Here, range and bearing information is acquired, but not 
depth. This makes it suitable for AUVs performing mid-sea 
surveying and mine-searching missions, where the environ­
ment is uncluttered or sparse. However, discrimination of 
object depth can be difficult. Taking into account the worst­
case scenario, and assuming that the obstacle is on the same 
plane as the AUV, this certainly restricts the AUV to perform 
only planar evasive manoeuvres. A planar manoeuvre might 
not be the most effective action in certain circumstances, 
since a better approach might be to climb or dive over the 
obstacle if possible. Another advantage of multi beam sonar is 
its capability to ensonify the illustrated region (Fig 3(a)) 
simultaneously in a single ping, while the pencil beam sonar 
is limited to scann ing the entire sector incrementally. 

Fig 3(b) shows an aJtemative sonar configuration which is 
similar to the former but with the transducers being rotated 
through 90deg. This configuration is commonly employed by 
a surface vessel for collision avoidance purposes. It provides 
depth and range information at the expense of bearing infor­
mation. This mode tends to put more emphasis on discrimi­
nating objects in the vertical direction (terrain) than tl1e hori­
zontaJ (suspended object). This configuration is also benefi­
cial for an AUV that is performing terrain-hugging manoeu-

Fig 3: Multibeam sonar type: (a) horizontal scanning 2-D sonar 
(b) vertical scanning 2-D sonar (C) horizontal and vertical 
scanning 3-D sonar 

(a) (b) (c) 
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vres, such as in a pipeline tracking and seafloor surveying 
missions, as it needs to estimate the terrain gradient in 
advance to facilitate a successful manoeuvre. 

The most advanced forward-looking sonar is of the 3-D 
type, (Fig 3(c)). This is achieved using an array of transducers. 
It possesses the capability to discern an object in a spatial 
domain by providing range, bearing and depth information 
simultaneously. This type of sonar is needed to exploit fully 
the true capability of some motion planning algorithms in gen­
erating optimal, 3-D trajectory. Nevertheless, the cost of this 
type of sonar can be prohibitive. To circumvent this issue, one 
method is to utilise the Fig 3(a) configuration by making the 
vertical beam-width thinner and steerable in the vertical direc­
tion. Assuming a sufficiently-fast steering (sweeping) rate is 
obtainable, it can then be extended into a pseudo 3-D sonar. 

Sonar signal processing 
The raw data obtained tends to be corrupted with noise, main­
ly because of the operating principle and operating environ­
ment of a sonar. This imposes further processing stages to 
obtain better representation of the environment. Pettilot et al40 

reported that sonar signal processing can be classified into 
four distinctive processes: 
e Filtering and segmentation. 
e Feature extraction. 
• Tracking. 
e Map building (workspace representation). 

Filtering and segmentation 
The first step in the sonar signal processing typically entails 
the elimination · of noise and backscatter of sonar images 
caused by the scattering and reverberation effect. This can be 
achieved by applying a simple Gaussian, median or mean fil­
ter to the image. A median filter is the most effective in elim­
ination of backscatter noise, however, the Gaussian filter is 
sometimes used due to its lower computational requirement. 40 

Segmentation, a process of regioned pixel extraction, is 
applied to enhance object background discrimination in order 
to increase the robustness and accuracy of the traclcing 
process. The most popular and simple is the thresholding 
technique, also known as binarisation. In principle, threshold­
ing is a process of defming a limit so that any colour above 
the limit will be converted into black, while those below the 
limit will be converted into white. It is effective when the 
intensity levels of the objects fall squarely outside the range 
of levels in the background. A more sophisticated version, 
called the adaptive threshold technique, uses a switching 
function-integration to provide an improved result." The use 
of a unsupervised hierarchical Markov random field (MRF) 
model together with contextual information has also been 
reported.42 Simulated annealing has also been attempted, but 
the algorithm is applied to segmentation of syn thetic aperture 
radar images,43 and not sonar. Both the algoritluns are very 
computationally intensive, malcing real-time implementation 
very difficult. 

Segmentation processes can be very costly in terms of 
computational requirement and, as such, some authors advo­
cate using selective, multi-rate/multi-depth filtering and data 
compressing techniques. In the selective approach, the static 
and dynamic part of tl1e image is discriminated using a fre-

44 

quency domain method (one-dimensional Fast Fourier 
Transform (FFT)) or a time-domain method (moving aver­
age).44 Once the dynamic object is detected, it will be tracked 
and segmented only at the particular region of interest_ For a 
static object, only new objects need to be segmented. In con­
trast, the multi-rate/multi-depth technique tries to red is tribute 
the computational load by sampling the area at variou s rates 
depending on the degree of their importance." Clearly, those 
regions adjacent to the AUV are more critical and deserve a 
higher sampling rate. Instead, Zanoli et al12 attempted to com­
press the sonar data before filtering, significantly reducing 
the processing requirement. 

Feature extraction 
Feature extraction is a process that is intimately linked with 
object classification.4

'·
45 In the case of image processing, fea­

ture extraction entails accurate measurement of object fea­
tures. Ideally, the feature selected should be invariant under 
various circumstances while extracting maximum informa­
tion regarding the object. Such features can be object size, 
such as area, perimeter, surface and centre of mass, which can 
be easily obtained by counting pixels of the object, or more 
complicated parameters such as moments, mean, variance, 
and median used to describe statistical distributions. 

Tracking 
In this context, tracking is a process where object attributes 
such as position, velocity and estimation confidence level are 
estimated and recorded. In video processing, one tries to cor­
relate a predetermined feature with subsequent frame features 
and noting their difference. Tracking is typically a forward­
looking process, requiring a computer to anticipate tl1e object 
position and velocity ahead of time. The accuracy of the pre­
dicted target attributes play a critical part in characterising its 
behaviour, hence making it indispensable for the motion plan­
ning process. Lane et al46 applied an optical flow with an 
associative searching trees technique while Moran et al47 
advocated using a multiple hypothesis for object tracking. 
Multiple hypothesis technique is effective in cases where 
multi-modal representation is required, such as in the pres­
ence of background clutter, self-occlusions and complex 
dynamics. However, both these pixel-based schemes are very 
computationally expensive thus precluding their application 
in time-critical applications. 

Alternatively, the classical Kalman filter has been applied 
with success in sonar tracking systems.35

•
41

•
49.so To simplify the 

analysis and lighten the computational requirement, Williams 
et al41 employed two different Kalman filters for tracking 
dynamic and static objects while Henriksen35 preferred using 
a total of five separate Kalman filters to track the correspon­
ding states, but this is not without problems. One inherent 
limitation of the Kalman filter, due to its derivation, is the 
assumptions of a linear model, Gaussian white noise, con­
stant noise distribution and uni-modal representation. If cer­
tain discrepancies exist between the ideal case and practical 
case, then its effectiveness can be greatly affected. Its per­
formance is also plagued by the 'curse of dimensionality'. In 
o ther words, its real-time perfonnance degrades tremendous­
ly when the number of objects being tracked increases. These 
are a few pertinent problems that need to be addressed in this 

Journal of Marine Science and Environment No. C2 2004 



Collision avoidance systems for autonomous underwater vehicles Part A: a review of obstacle detection 

(a) 

2 

(c) (d) 

Fig 4: Diagram showing: (a) workspace (b) unifonned grid (b) 
quadtree representation and (c) binary spatial partitioning 

research area. 

Map building (workspace representation) 

6 

Knowledge representation is one of the key elements that deter­
mines the capabilities and performance of macl1ine intelligence. 
'Ib.is is particularly lrue for map building or workspace repre­
sentation processes, which can be defined as a process of gen­
erating models that represents the vehicle environment via sen­
sor measurements. 1l1e generated model or digital map, other 
than containing metric information, can also be embedded with 
supplementary user-defined information to betler characterise 
the environment. This infonnation is vital for motion planning, 
obstacle avoidance and localisation processes. 

Nevertheless, the generated models tend to be a simplified 
version of the real environment for three obvious reasons: 
1. This is limited by the AUV sensorial perceptions. 
2. This is to comply with the computational requirement. 
3. The condensed information is more suitable for high-level 
symbolic manipulation and model inference. 

(a) 
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Conversely, the aggregate of discarded information and sen­
sor induced errors, can be considered as noise, and is d etri ­
mental to the overaJJ system performance. In the case of an 
AUV, the sensor drift in a dead-reckoning scheme tends to 
degrade the map reliability after a certain time period, whilst 
increasing the model-fidelity will definitely enhance the sys­
tem performance, but at the expense of memory and compu­
tational requirements. 

For this purpose, map building can be considered as a 
trade-off between model-fidelity, memory requirem ent, 
robustness, computational efficiency, implementation sim­
plicity and expansibility.5

' There are three fundamental 
schemes in workspace representation; metric-based spatial 
decomposition, geometry representation and non-metric­
based topological representation. 

Spatial decomposition 
Spatial decomposition is a scheme of representing space via 
a discrete sampling process; division of space into non-over­
lapping cells. Either only the free space is taken into account, 
or only objects are mapped and free space is found by impli­
cation. There are various variants of the spatial decomposi­
tion method. 

The most conceptually simple and yet prevalent scheme in 
the field of mobile robotics is where the environment space is 
partitioned into uniform, non-overlapping grids or cells in a 
spatial lattice (Fig 4(a)). Each ceU can be allocated with user 
defmed attributes such as confidence of obstacle presence, ter­
rain geometry and safety factor. This scheme conventionally 
employs probabilistic sensor interpretation models to update 
the cell value11

• Due to its popularity, it is known by different 
names, such as evidence grids, probability grids, certainty grids 
or occupancy grids. Hyland27 and Allison et al53 have imple­
mented this scheme in their AUV simulations. One overriding 
constraint concerning this- approach is the high memory 
requirement, such that it can be characterised by the space 
complexity of O(a"), where a is a constant and n denotes the 
dimension. It must be understood U1at the number of cells 
employed to approximate a model are finite, hence, decreasing 
the ceU size will definitely improve the model fidelity but at U1e 

Fig 5: A tree representation of (a) quadtree 
(b) binary spatial partitioning 

(b) 
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expense of escalating the cell quantity. This problem is intensi­
fied for cases of hlgher dimensional space. 

As a result, various researchers have resorted to dual res­
olution maps; each map using different resolution. Ridao et 
al.l4 describe using a high resolution map to record sonar pings 
for the SAUVIM AUV. Only pings that have not expired after 
a preset time interval are recorded into a coarser map, and 
used for path planning. Fundamentally, the hlgh resolution 
map is functioning like a low pass filter to eliminate false 
alarms. Similarly, Moitie et al:JO employed a low resolution 
map for global path planning and a more detailed local map 
when executing local motion planning. 

To solve the memory and computational inefficiency of 
a uniform cell map, a type of multi-resolution algorithm 
has been. proposed.}} It is known as a quadtree and octree in 
their 2-D and 3-D forms respectively (Fig 4(b)). A quadtree 
is fundamentally a recursive data stcucture with a hierarchi­
cal representation property. It attempts to exploit the occu­
pancy of adjacent cells by clustering them much like a data­
compressing algorithm. It adaptively subdivides into small­
er cells in order to improve the modelling accuracy, while 
the minimum cell size determines the depth of the tree and 
the accuracy of the mapping. Fig 5 shows how it is repre­
sented in the form of a tree to facilitate quick searching. Its 
efficiency is much superior to that of the former method, 
particularly for environments that are sparsely populated 
with objects.}6 However, its performance suffers signifi­
cantly for the case of a dynamic object due to constant tree 
structure changes. 

Another efficient workspace representation scheme/ 7 

highly popular in the computer graphic domain, is the binary 
spatial partitioning (BSP) scheme. A BSP tree is a hierarchi­
cal representation structure that exploits the recursive subdi­
vision by hyperplanes (Fig 4(d)). Since there is no restraint on 
the types of hyperplane used, exact polyhedra and polygon 
representations are possible. All of this information is then 
compactly encoded in tl1e form of a binary tree structure, as 
shown in (Fig 5(b)), ready for subsequent implementation of 
path-finding algorithms. Unlike the quadtree, the BSP tree 
structure is preserved by affined and perspective transforma­
tions, which result in its capability to incorporate dynamic 
objects witllout resorting to changing the tree structure. This 
scheme has been exploited by Arinaga et alu for the Umihico 
AUV workspace representation. 

Fig 6: (a) landmarks in 
workspace (b) topology 
representation of the 
workspace 
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(a) 

Geometric map 
Probably the oldest of the workspace representation methods 
is the geometric map. As suggested by the name, the geomet­
ric map tends to use geometric primitives such as points, 
lines, polygons, polyhedrals and polynomial functions to 
characterise the environment. One of the compelling advan­
tages of a geometric map, assuming application of appropri­
ate modelling primitives, is its capability to model complex 
objects with a very low memory requirement. This concise 
mathematical representation also facilitates a rapid and accu­
rate collision-checking process. la 

The simplest primitives, such as point and line, are rarely 
used in isolation but as a preliminary form of model infer­
ence. LeaP9 employed points in what he referred to as the 
sampled environment map (SEM) scheme. Unlike a uniform 
grids representation, here the environment is divided into dis­
crete point locations. Then a decision tlleoretic scheme is 
used to adapt a geometrical model from the sampled environ­
ment distribution. Brutzman et al60 employed this scheme to 
trace incrementally tlle obstacle contour by aggregating 
piecewise, linear lines into polygons. Caccia et al61 and 
Moran et al., developed modules to process and classify sonar 
data into corresponding geometrical features. The systems, 
however, are constrained to function only in a partially man­
made environment since it is more geometrically distinctive 
compared to the non-homogeneous features found in nature. 
Of all tlle polygons, tlle circle or sphere has particularly inter­
esting attributes such as simple formulation, orientation 
invariance, convex shape and ease of manipulations, thus 
explaining its popularity. This method of representation is 
employed by Fox, Garcia,62.6l and Wang et al.64 Others prefer 
to approximate the obstacles as polygons, particularly convex 
types.'"' Convex attributes are vital in simplifying tlle imple­
mentation of various motion planning algorithms while fos­
tering faster convergence.· Unsatisfied with tlle limitation of 
simple polygonal representation, Lane et al39 resorted to using 
a constructive solid geometry(CSG) metllod, a technology 
extensively used in the CAD industry. The CSG method 
allows explicit representation of objects using simple primi­
tives such as spheres and cuboids via Boolean operators: sub­
traction, intersection and union. One key attribute is the lack 
of ambiguity between the inner and outer part of the object. 
To ease the implementation of the optirnisation algorithm, 
Wang et al64 restricted themselves to using only sphere and 
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ellipsoid primitives. Alternatively, one can try to approximate 
the seabed surface using a surface modelling technique.67 

Notwithstanding the above advantages, one of the obvi­
ous shortcomings of the geometry map is its difficulty in 
making inference from noisy, measured-sensor information 
which has a great impact on its reliability. Furthermore, a sto­
chastic model can rarely be described in a simple parame­
terised, geometric manner. Attempts to do so have achieved 
limited success. Other problems are also encountered, such as 
lack of stability and lack of expressive power to model the 
objects• Lack of stability is due to parameters that are sensi­
tive to variation, causing additional erratic model shape 
changes. On the other hand, lack of expressive power is 
caused by using oversimplified geometric models which 
severe!~ restrict their approximating capability. 

Topological map 
Topology is concerned particularly with the global connectiv­
ity of an object by considering how the object is connected 
locally. A topology map represents the environment as 
graphs, where nodes correspond to distinct places (land­
marks), and arcs represent adjacency or orientation. Fig 6(a) 
illustrates a hypothetical workspace with landmarks and (b) 
the topology representation of the workspace. The orientation 
regions (OR) are used for localisation. The key to topological 
representation is its compactness and high immunity to noise 
since it is less dependent on metric information. This compact 
representation also facilitates high-level symbolic reasoning 
for map-building, navigation, planning, and communication. 

Since this scheme is not especially susceptible to noise, 
one obvious application of it would be to the problem of 
simultaneous localisation and mapping (SLAM)68 to assist an 
AUV to navigate uncharted waters. In spite of this, its effec­
tiveness is currently being outperformed by a metric 
approach using an extended Kalman filter (EKF). This 
scheme is also known as stochastic mapping.69,70 

In reality, the topology mapping scheme performance is 
far from outstanding, hence explaining its unpopularity. One 
particular downfall is its excessive dependence on the pres­
ence of landmarks. A landmark can be defined as an individ­
ual or a cluster of objects that have distinctive feature rela­
tionships. Other desirable criteria are ease of identification, 
uniqueness and repeatability. Zimmer71 advocates embed­
ding local metrical map patches with a globally-consistent 
topological map. Then again, his results tend to be biased as 
it was simulated using a land-based robot in an indoor envi­
ronment where proper landmarks can easily be identified. 
These landmarks are particularly difficult to find in a non­
homogeneous and 'noisy' environment where an AUV oper­
ates, thus severely limiting its usage. 

Hybrid representation 
Owing to the apparent advantages and disadvantages of each 
method of representation, some researchers resorted to using 
hybrid representations such as a combination of metric-based 
and topological paradigrns.68,71,72 Hino73 utilised a uniform 
grid scheme for preliminary terrain representation. A data 
reduction scheme is introduced to convert the previous map 
into a contour-like map, with significant memory saving. 
Nevertheless, the transformed contour map lacks flexibility 
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for further modification. Zanoli et aJ32 employed spatial 
decomposition techniques for local map building, but all 
AUV obstacle avoidance tasks are conducted using a geome­
try model of the environment. To conclude, hybrid represen­
tation provides the user with better flexibility, simplicity and 
robustness that is difficult to achieve using an individual type 
representation. However, extra precautions are required in 
synchronising and maintaining the data integrity in between 
different representations. 

CONCLUDING REMARKS 
An overview of AUV control architectures and collision 
avoidance system submodules has been presented. The obsta­
cle detection module has been divided into four distinctive 
sub-units; a forward-looking sonar, a signal-processing sub­
module, a map builder and a navigation submodule. 

The one major problem with the contemporary forward­
looking sonars is that they are not specifically designed for 
AUV obstacle avoidance. Most sonars employed by AUVs 
are 2-D mechanical scanning variants commonly employed 
by surface vessels. As such, the development of a novel, 
cost-effective, energy-efficient, obstacle-avoidance sonar 
should be forthcoming in order to address this critical issue. 
In the aspect of target tracking, the norm today is to employ 
the Kalman filter. Its performance in this particular case 
can be unreliable if certain assumptions are violated. 
Furthermore, the simultaneous tracking of a large number 
of dynamic targets can rapidly overload the system. To cir­
cumvent these disadvantages, a deviation or modification 
from the conventional Kalman filter is envisaged. It is clear 
from the previous discussion, that none of the single work­
space representation methodology is superior in all circum­
stances. Significant improvement in performance can be 
attained by merging both the cell decomposition and geo­
metrical map. Then again, such a hybrid scheme does, 
indeed, necessitate further research, particularly in the 
aspects of data synchronisation. 

Deducing from the preceding discussion, there exists an 
obvious trade-off between energy efficiency, computational 
requirement and performance aspect amongst all the afore­
mentioned submodules. Hence, a balance between all the 
requirements needs to be achieved in order to develop an 
effective AUV obstacle avoidance system. Nonetheless, a 
successful obstacle detection system is not the end of the 
story, it must also be accompanied by prudent evasive 
actions. This is the subject of obstacle avoidance and is deliv­
ered in Part B, which follows. 
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This paper reviews a variety of techniques that can be employed in an autonomous 
underwater vehicle (AUV) obstacle avoidance module. On the whole, there are two 
types of obstacle avoidance schemes. One is the motion planning approach and the 
other is the reflexive technique. Motion planning is employed for the generation of an 
optimal, obstacle-free trajectory. The reflexive avoidance technique, on the other hand, 
tends to be more ad hoc, focusing only on avoiding collisions. Both techniques are indis­
pensable if one intends to realise a truly effective AUV collision avoidance system . The 
paper also includes a short survey concerning the 'Rules of the Road' that may be rele­
vant to AUVs. The significance of these regulations cannot be underestimated, as o ne is 
seeing an increase of multiple AUV operations. 

INTRODUCTION 

I
n the context of an AUV, obstacle avoidance is con­
cerned with the ability to avoid colliding with obstacles 
while navigating along a predetermined track. Unlike 
the term 'collision avoidance' which tends to denote 

both the detection and avoidance process, the obstacle avoid­
ance process neglects the detection aspect as it is considered 
here as a separate process just for clarity of exposition. The 
interested reader should refer to Part A' for further details on 
obstacle detection. Perhaps, before delving deeper into the 
technical content, it is worth reviewing briefly ihe history of 
collisions, both at sea and in the air. 

Since man's early foray into the oceans, mid-sea collision 
has been a frequent occurrence. The poor navigation technol­
ogy at that time was partly to be blamed for this situation. 
Various regulations, or 'Rules of the Road', were enacted in 
the hope to mitigate the occurrence of such incidents. The 
prolific deployment of radar, a significant technology, in 
commercial vessels at the end of World War II was hailed as 
the solution to this centuries-old problem. However, much to 
the surprise of the maritime community even this innovative 
technology, regrettably, fai led to prevent collisions from hap­
pening, as exemplified by the Andrea Doria/Stockhom disas­
ter in 1956.2.1 It was painfully clear subsequently, that most of 
the collision causes were not technology-related but were due 
to gross human errors, particularly the incorrect application 
of the technology and collision avoidance regulations. More 
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recently, such unfortunate events have also been extended to 
the air domain, as confirmed by the mid-air collision between 
a DHL Hoeing 757 and the Bashkirian Airlines Tupolev 154 
near the Swiss/Gerrnan border in July 2002:~ 

Undeniably, every collision either at sea or in the a ir has 
serious environmental, economical, and human life implica­
tions. To make matters worse, the current forecast indicates 
an escalating trend in the number of vessels, aircraft and their 
operations in the near future. This is set to increase the prob­
ability of collision as a result. Fortunately, tl1is predicament 
has not been taken lightly by the UK's Civil Aviation 
Authority (CAA) who just published the CAP 722 report,6 

outlining some of the regulations pertaining to the legal and 
safety operations of unmanned aerial vehicles (UAVs). In the 
United States, NASA, being slightly more pragmatic, is 
employing a UAV named Proteus as a test bed for state-of­
the-art collision avoidance technology.7 It is envisaged that 
Proteus will be able to fly reliably and autonomously in 
national civil airspace within two years. 

Although tl1ere exists some pioneering efforts in estab­
lishing certain public laws concerning AUV operations,u.•o 
what is urgently laclc.ing is an authority who can implement 
these instituted rules. One reason for the absence of interest 
in enforcing these rules is probably due to insufficient risk 
justification, especially the risk to human life. Unlike a UAV, 
which shares the same civil airspace as commercial aircraft, 
an AUV normally conducts its mission under the water where 
the chance of encountering another AUV or submarine is 
extremely unlikely at the moment. 
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In spite of this, the current scenario is about to change as 
there is a sudden surge of interest in the field of multi-agent 
underwater robots. By working co-operatively and via mutu­
al inforrnation sharing, these AUVs will be able to complete 
missions such as oceanographic sampling11 and mine hunting 
with substantial reduction in both operational time and cost. 
This, as a result, necessitates a set of proper 'Rules of the 
Road ' in order to safely and successfully conduct a multi­
AUV mission. Starting with next section of this paper, some 
'Rules of the Road ' relevant to the AUV will be presented. In 
the section following it, different motion planning method­
ologies are surveyed with reference to both their advantages 
and disadvantages, and their implementation in AUVs. 
Motion planning is normally a computationally intensive 
process which explains its propensity to fail in time-critical 
conditions. As a corollary, one proceeds to investigate reflex­
ive avoidance techniques in the penultimate section. Its pri­
mary function is to act as a contingency or backup system in 
the unfortunate event of motion planning failure. The final 
section provides the concluding remarks. 

It is understandable that most of the collision avoidance 
algorithms implemented in an AUV are derived from the field 
of land-based mobile robotics. 1l1is is to be expected since the 
underlying perception is that both systems share significant 
similarities. However, it must be noted that terrain-based 
mobile robots do not suffer as severely from the problems 
that plague underwater vehicles, such as extreme non-linear 
dynamics, high degree of freedom, noisy sensor data, and the 
subjection to an unknown and varying environment. 

In the forthcoming text, several notions - such as configu­
ration space, holonomic system, non-holonomic system and 
under-actuated system- will be used pervasively. Therefore it 
is felt that an explanation of these notions is in order. 
Configuration space (C-space) is a fundamental tool intro­
duced in the late 1970s to address the basic motion planning 
problem. 11 C-space is a set of all possible configurations of a 
robot or, to be more precise in this case, a vehicle. The dimen­
sionality of a C-space is equivalent to the number of degrees of 
freedom (independent parameters) of the vehicle. For instance, 
Fig 1 shows a four-wheeled vehicle constrained to plane move­
ment. One can describe the vehicle configuration using three 
variables; (x,y. q>) , two translations and one rotation, concluding 
that this is a three dimensional C-space. Unlike a workspace, in 
a C-space the vehicle shape is 'patched' to the obstacles. 
Subsequently, the vehicle can be represented as a point which 
has the effect of simplifying the path planning process. In gen­
eral, the high dimensionality of the C-space of nontrivial 
devices is perceived as the principal reason behind the com­
plexities of a motion planning problem.•) 

Generally, a system is considered to be fully actuated 
when it has the same number of independent inputs as the 
configuration variables. Alternatively, the term holonornic is 
used to describe a system that has constraints as a function of 
configuration variables and time. Elsewhere, a non-holonom­
ic system arises when the system has fewer control inputs 
than its configuration variables. These are generally charac­
terised by non-integrable constraint equations involving the 
time derivatives of the system configuration variables. As 
stated in the configuration space section, the four-wheeled 
vehicle has only two control inputs (v, velocity and q,, angu-
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Fig I : Diagram showing a four-wheeled vehicle configuration 
variables and control inputs 

tar velocity) contrasting to three configuration vari ables, 
which results in a non-holonomic system. A first order non­
holonornic relation can normally be written in the form of a 
time-invariant ordinary differential equation (ODE), 

x = f(x(t) , u(t)) ( 1) 

that deals with only non-integrable velocity, where x is the 
state vector and u is the input vector. On the other hand, the 
second-order non-holonornic relation, can be written as, 

x = j(x(t), x(t), u(t)) (2) 

which deals with non-integrable acceleration. This type of 
problem is also known as a kinodynarnics problem14

• •s and is 
frequently found in under-actuated systems such as surface 
vessels, spacecraft, manipulators and underwater vehicles. 
Suffice to say that controlling and motion plarming for these 
systems is significantly more challenging than for the halo­
nomic cases. A thorough review of non-holonomic controls 
and planning can be found in Laumond.'6 

RULES OFTHE ROAD 
RELEVANT TO AN AUV 
As stated earlier, the 'Rules of the Road' of AUVs pertain to 
a set of protocols or regulations applied to assist in tackling a 
collision predicament. Ironically, both marine vehicles and 
aircraft employ very similar regulations. The idea of incorpo­
rating these rules into an automatic collision avoidance sys­
tem is not entirely new and has been essayed by various 
researchers. 11•11 Even so, their implementations are restricted 
to surface vessels. These selection of guidelines, as presented 
below, are derived from the International Regulations for 
Preventing Collisions at Sea. 19

•
20 

• Rule 2 Responsibility, requires that 'due regard shaU be 
given to all dangers of navigation and collision.' This rule 
allows an AUV to depart from all tl1e rules as necessary to 
avoid the irrunediate danger of collision. 
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e Rule 4 Lookout, requires that 'every vessel shall at all times 
maintain a proper lookout by all available means appropri­
ate in the prevailing circumstances so as to make a full 
appraisal of the situation and of the possible risk of colli­
sion. ' This is the primary task of the obstacle detection unit, 
where the primary lookout sensor employed is the sonar. 
There is even a suggestion that future AUVs shall be 
equjpped with a system similar to the Identify Friend or Foe 
(IFF) unit commonly used in military aircrafts. 

e Rule 6 Safe Speed, requires that 'every vessel shaJI at all 
times proceed at a safe speed so that she can take proper 
and effective action to avoid collision and be stopped 
withjn a djstance appropriate to the prevailing circum­
stan((es and conditions. • The speed of an AUV will be 
determined by the~e factors: the delectability, traffic den­
sity, manoeuvrability of the vessel with special reference 
to stopping distance and turning ability, the state of the 
sea, current, and proximity of navigational hazards. Slow 
speed, however, can affect the manoeuvrability of AUVs. 

e Rule 7 Risk of Collision, states that 'every vessel shall use 
all available means to determine if risk of collision exists; 
if there is any doubt, assume that it does exist. ' 

e Rule 8 Action to Avoid Collision, states that 'changes in 
course and speed shall be large enough so as to be readi­
ly apparent to the other vessels. If necessary to avoid col­
lision or allow more time to assess the situation, a vessel 
shall slacken her speed or take all way off by stopping or 
reversing her propulsion. A vessel which is required not to 
impede the passage of another vessel shall take early and 
substantial action to allow sufficient sea room for the pas­
sage of the other vessel. ' Stopping and reversing the 
propulsion can , however, be problematic for a majority of 
AUVs which are underactuated and not neutrally buoyant, 
for ex.ample the loss of rudder effectiveness in low speed 
can induce higher collis ion risk instead. 

e Rule 14 Head-On Situation, s tates that ' vessels which are 
approaching head-on shall alter course to s tarboard (right­
hand-side) so each will pass port (left-hand-side) to port. • 

e Rule 15 Crossing Situation, states that 'when two vessels 
are crossing so as to involve risk of collision, the vessel 
which has the other vessel on her starboard side shall keep 
out of the way, and shall, if the circumstances of the case 
admit, avoid crossing ahead of the other vessel. ' 

Note that for rules 8, 14 and 15, the general right-of-way rule 
states that the least manoeuvrable vessel has the right-of-way. 
For the case of a surface vessel, it is apparent that these 
manoeuvres occur in the planar domain. Whilst AUVs operate 
in a 3-D domain, for the moment their avoidance manoeuvres 
are still limited to only planar motion owing to the restriction 
imposed by the conventional 2-D obstacle avoidance sonar. 

The airline industry is currently employing the Traffic 
Alert/Collision Avoidance System (TCAS). The concept is to 
create a virtual bubble around the aircraft and alert the pilot if 
there is any incursion to the protected zone around the air-
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craft. The s implest system, TCAS [ only alerts the pilot on 
incoming threats and is referred to as a tactical advisory (TA) 
system. TCAS IP1 incorporates further feature enhancement 
to actually propose resolution advice (RA) in order to syn­
chronise the vertical avoidance manoeuvre of both aircraft. 
This is achieved by the transmitting and receiving of interro­
gating signals, using a transponder, with the nearby aircraft. 
The latest, TCAS ID, provides the pilot with a horizontal 
manoeuvre resolution advisory capability. The airline TCAS 
implicates the importance of a system or regulations that can 
propose complementary manoeuvres such that a collision can 
be avoided. Hence, to be truly effective , a consensus o f these 
rules needs to be implemented in all AUVs. 

MOTION PLANNINGTECHNIQUES 
Both motion planning and path plannjng can be defined as a 
problem of the form: given a configuration space, find a con­
tinuous sequence of configurations that leads from a start to a 
goal configuration while respecting certain constraints. 
However, the distinction is that motion planning tends to 
denote the generation of time parameterised solutions (trajec­
tories) while, on the other hand, path planning neglects the 
time parameter. Simply stated, path planning does not take 
into consideration the vehicle dynamics. Both these terms 
will be used alternately depending on their suitability in a dif­
ferent contex.t. 

Owing to the inclus ion of differential constraints, motion 
planning can also be considered as a search in a state space 
for a control input that can bring a system from an initial state 
to a goal state. Employing this perspective, one can directly 
associate a motion planning problem to a control engineering 
problem. Indeed, this promotes better problem assimilation 
and understanding. There is no dearth of li terature regarding 
the theory of motion planning.= Thus, o nly a limited num­
ber of motion planning techniques that are associated with 
AUVs will be surveyed. Broadly speakjng, motion planning 
approaches can be classified into three fundamental cate­
gories: cell-decomposition, road-map, and potential fields. 

Cell-decomposition 
One of the most popular motion planning schemes is the 
ce ll-decomposition. It is strictly related to the spatial 
decomposition scheme for workspace presentation. The fun­
damental idea is to represent the adjacent relation between 
the free cells with efficient structures such as a connectivity 
tree or a graph. They are then searched from the start to the 
goal state to find a sequence of states (path) that connects 
both the start and the goal state together. Various search 
algorithms that are based on dynamic programming exis t for 
pe rforming this routine. A few of the prevalent ones are; 
breadth-first search, depth-first search , best-first search, A*, 
single-source shortest-distance a lgorithm (Dijkstra 's algo­
rithm)2' and the ir unlimited variants. 

The breadth-first search entails searching tl1e neighbour­
hood ceHs, and expanding the list as it goes, while the depth­
first search keeps probing in one path until an end is met, 
before trying the alternatives. Both search algorithms are 
exhaustive (complete), which means ultimately, all free space 
wi ll be searched for solutions. For cases where multiple solu­
tions exist, and optimality (shortest distance) is not a concern, 
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the depth-frrst search tends to have a lower memory require­
ment while providing a quicker answer. However, a depth­
first search can be deceived into searching a long list of cells, 
or states, even when the goal may be very near. The Dijkstra's 
algorithm shares some resemblances with a breadth-first 
search, but unlike a breadth-first search, all the cells are 
encoded with distance from the goal which assists it in find­
ing the shortest path. This search algorithm was applied in 
complement with a binary spatial partitioning scheme for the 
global path planning of the Umihico AUV.25 

Nonetheless, in most circumstances, searching the entire 
free space can be too computationally-demanding. 
Unsatisfied with the performance of the former systematic 
search algorithms, some heuristically-enhanced versions 
have been devised. Heuristic information is normally encod­
ed in an evaluation function (cost function). The distance to 
the Euclidean path (line-of-sight) from start to goal state is 
chosen as in the case of a best-flrst search. This scheme is 
efficient and fast when a proper evaluation function is provid­
ed, but for cases when this cannot be found, then its perform­
ance degrades signiflcantly. The best-flfst search tends to pro­
vide suboptimal solutions since it neglects tl1e cost of the 
solution path. The A*26 is a combination of the best-first 
search and the breadth-flrst search, which attempts to flnd a 
solution that minimises the total length of the solution path. 
The A* method takes into account both the distance from the 
cell in question to the fmish, and also the total distance taken 
from the start to the current cell. The evaluation function can 
be written as: 

/(node) = g(node)+h(node) (3) 

where j{node) is tl1e total cost, which is the evaluation func­
tion, g(node) is the palli cost to the current cell, and h(node) 
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Fig 2: Potential field simulation; (a) workspace (b) attraction 
field (c) repulsive field (d) combined field 

is an estimate of the remaining cost to the goal state. A* is 
guaranteed to find the shortest path if the h(node) does not 
overestimate the cost to the solution. 

Hyland27 incorporated a· 3-D A* path plarmer witl1 a re flex­
ive obstacle avoidance module in his AUV simulation. The 
entire path is replanned by the path planner every time the 
vehicle completes a flat turn manoeuvre. Also, Hylandu pro­
vided a detail comparison between the breadth-flfSt and tl1e A* 
search method for an AUV obstacle avoidance task. However, 
the results were inconclusive, as neither the A* nor the breadth­
first search shows any signiflcant advantages in this case. 
Others, like Allision et al,19 proposed a sensor-based explo­
ration approach where a three-valued occupancy grid is cou­
pled with the A* algorithm evaluation function that is biased to 
search the unexplored region. It must be noted that these algo­
rithms mentioned above, do not function optimally for cases 
when tlle environment is dynamic, partially known or 
unknown. The D*, also known as Dynamic A*10

, has been 
developed to address these issues. Owing to the nature of the 
problem, a substantial difference in performance can be 
obtained if one sets the initial search point as the start or the 
goal. Hence, some authors31 prefer to use a bidirectional motion 
planning approach. Arinaga et al25 employed this method for 
local path plarming of tl1e Umihico AUV. Their method 
involved moving the real AUV forward at tlle start point and a 
virtual AUV backward at the goal point simultaneously. Upon 
meeting, the real AUV is assigned to track the sequence of con­
figurations created by the virtual AUV. Their method does 
necessitate a reflexive module for obstacle avoidance. 
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One of the apparent limitations of these search algorithms 
is the unrealistic computational requirement as the number of 
cells increase, a phenomenon known as the 'curse of dimen­
sionality' or 'combinatorial explosion'. This might be caused 
by the increase of configuration space dimensionality or the 
scene complexity. For a heuristically-enhanced algorithm like 
the A*, its performance is highly dependable on the selected 
evaluation function, which can be difficult to define for com­
plicated problems. 

Potential field 
The potential field method utilises a very interesting 
approach. In essence, an artificial potential field is defined to 
emulate the space structure surrounding the vehicle.ll It con­
sists of tepresenting the goal with an attractive field and the 
obstacles with a repulsive field , as shown in Fig 2. A new 
field emerges through the interaction of both the former 
fields. Eventually, the vehicle is required to just follow the 
local gradient of the new field to reach the goal. 

The mathematical equations pertaining to the potential field 
method can be found in Appendix A. Fig 2(a) shows a simulat­
ed workspace representation of the vehicle. Using equation 
(A.3), an attractive field for the corresponding goal is simulated 
in Fig 2(b). Notice that the goal is the global minima, which is 
true for an ideal case. Using equation (A.5), Fig 2(c) shows the 
repulsion field exerted by the obstacles. Ultimately, Fig 2(d) 
illustrates the combined repulsive and attractive potential field 
as stated in equation (A.2). One major advantage of this method 
is its low computational requirement which makes it very suit-
able for real-time implementation. · 

Yoergefl employed a potential field local planner in the 
Benthic Explorer for a fine-scale rugged sea-floor surveying 
mission. The implementation is restricted to using an asymmet­
ric potential field to alter the vehicle's forward and vertical 
speeds. One problem which is inherent to the potential field 
method is its tendency to get trapped in local minima. For this 
reason, it is normally used only as a local path planner, and in 
most implementations, it is combined with another global path 
planner that will be invoked when trapped. Its perfonnance is 
also strictly linked to suitable definitions of heuristic potential 
functions, and this is not easily found when confronted with nat­
ural obstacles and differential constraints. Warren34 proposed a 
hybrid method that involves two major stages. 1l1e frrst stage 
generates a preliminary straight path from current to goal con­
figuration. Then, in the second stage, a method of path relax­
ation is introduced, the path is iteratively modified under the 
influence of the adjacent potential field in order to produce a 
feasible path. He argued that by considering the problem in such 
a global approach, the tendency of local minimum entrapment 
is significantly reduced. Instead of the conventional gradient 
descent method, Lane et al35 reported using a preliminary tree 
search technique, to be specific, the best-first search to find the 
global minima. Local minima traps are avoided using the back­
tracking feature of this algoritl1m. 

Some researchers encourage the use of a minimum-free func­
tion that is based on a harmonic potential field. The problem for­
mulation is analogised to solving a fluid-flow problem such as 
fluid moving from the source location to tlle goaJ.36.l1 

· Nevertheless, this technique is not practical for a high dimension­
al problem as it is too costly in terms of computation demand. 
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Fig 3: An AUV employing the bug algorithm to navigate the 
environment 

Bug algorithm 
The bug algorithm, also known as tangent bug or edge fol­
lower, is a particularly simple and yet remarkable path plan­
ning scheme. The main principle behind it is to trace the 
obstacle boundary and this is continued until the obstacle no 
longer blocks the desired patl138 (Fig 3). Fundamentally, the 
algorithm constitutes of only two modes: moving to tl1e goal, 
and circumnavigating the obstacle. Note that this algorithm 
does not need any a priori information regarding its environ­
ment. Furthermore, it is guaranteed to find a solution if it 
exists. This makes the bug algorithm suitable for dealing with 
unknown envirorunents. 

Bennett et al39 implemented the algorithm in tlle Phoenix 
AUV. A forward-looking sonar is used to detect the obstacle 
boundary, then it is approximated by aggregating piecewise lin­
ear lines before applying the bug algorithm. Alternatively, 
Comforth and CrofrO applied a wall-following algorithm in tl1e 
Autolycus with tlle help of a side-facing sonar. Unfortunately, 
tlleir current results were unsatisfactory but they anticipated fur­
ther improvement can be realised by empirically tuning the con­
troller gain. They envisaged using the Autolycus in environ­
ment-sensitive navigation. Better still, Laubach et al" devised a 
more memory-efficient approach tllat utilises only obstacle 
boundary endpoints. Their concept, however, is exemplified in 
a planetary exploration rover and not an AUV. This algorithm, 
although simplistic in concept, is extremely diffcult to be imple­
mented in practice. Firstly, tl1e influence of sensor drift in a 
dead-reckoning system tends to limit its effectiveness. In addi­
tion, this algorithm also assumes that tlle vehicle is holonomic 
and operating in a static environment, which is not entirely true 
for the case of an AUV. 

Evolutionary computation (EC) 
Evolutionary computation encompasses several types of 
heuristic and stochastic optimisation schemes that are funda­
mentally based on the concept of natural selection. Some of 
the proposed schemes are the evolutionary algorithm (EA), 
genetic algorithm (GA), evolutionary programming, evolu­
tionary strategy and artificial life . The EC has shown signifi-
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cant capability in solving complicated, highly-constrained, 
large-scale optimisation problems that have discontinuities 
on the response surface. Unlike the potential field method, 
EC is known to be highly resistant to becoming trapped in 
local minima. Another exceptional attribute of EC is its abil­
ity to offer solutions whenever it is interrupted. 

Schultz'2 proposed using the GA for on-line collision 
avoidance and local navigation of an AUV. Promising simu­
lation results of an AUV successfully navigating through both 
a static and dynamic minefield are presented. Similarly, Fogel 
et al43 simulated 2-D optimal routing of multiple AUVs using 
an EA. Their sirnulations, although confined to only two­
dimensional routings, still managed to demonstrate intriguing 
results. The AUV exhibited very intelligent behaviour by try­
ing to avoid the detection region and, if that was not possible, 
the AUV proceeded at slower speeds to remain stealthy and 
speed up when it was a distance away from the detection site. 

ultiple AUV cases are also addressed. They argued that 
'sophisticated' genetic operators such as crossover tends to 
isrupt the link between parent and offspring as coding struc-
ures become large. Sugihara44 proposed a local GA 3-D path 
Ianner that is capable of functioning in a partially known 
nvironment for the SAUVIM AUV. He employed a method 
f discretisation, where the 2-D maps are partitioned into 
ells, and each corresponding cell is then encoded with a 
inary string as a sequence of pairs of direction and distance. 

en, the three 2-D sequences of connected cells (paths), one 
n each respective plane, xy-plane, xz-plane and yz-plane, are 
erged via projection, into a single 3-D path. 

Recently, there have been several attempts to hybridise 
volutionary computation with other algorithms. Dozier et 
45 combined fuzzy inference along with tournament selec­

. on to select the best candidate paths based on several crite­
ia. They claimed that the metl10dology does not only provide 
ignificant performance enhancement, but also obviates t11e 
eed of explicit multi-objective evaluation function develop­
ent. Alternatively, Vadakkepat et al46 endeavoured to merge 
potential field planning metl10d with evolutionary program­
·ng to derive an optimal potential field function. The result-

ng algoritlun is not only capable of solving the local minima 
roblem but also handling dynamic obstacles. 

One glaring weakness inllerent in all evolutionary compu­
ation algorithms is its high computational requirement. 

6 

Although, some authors purported to solve it using a distrib­
uted processing approach, this is not applicable in the case of 
an AUV, due to the energy limitation of the batteries. 
Furthermore, their long convergence time makes them unsuit­
able for a highly dynamic environment. Other weaknesses 
include difficulty in finding t11e exact global optimum and 
their performances are highly dependable on how the prob­
lem is structured and encoded. 

Visibility graph 
The visibility graph is a subset of the road-map approach to 
path planning. The operation of tllis scheme can be depicted 
as following: initially, all the vertices of all polygonal obsta­
cles - including the start and goal - that are in a line-of-sight 
with respect to each other are connected as shown in Fig 4. 
This process is simplified if one limits tlle environment witll 
only convex obstacles. Then, by representing the vertices as 
nodes, and the pat11 as an edge, any tree search algorithms, as 
elaborated in tlte cell-decomposition sub-section of tlus 
paper, can be used to find the shortest path. Unfortunately, 
one obvious disadvantage of using a visibility graph is the 
assumption that all of the obstacles are known. Furthermore, 
a visibility graph has the tendency to generate paths that are 
very close to the obstacles' edges. One simple solution is to 
'patch' the obstacles in order to take into account the vehicle 
geometry. However, this is not a trivial process if the vehicle 
considered is under-actuated. 

McKendriclc'7 applied a visibility graph method in an 
unknown 2-D environment witll convex polygonal obstacles. 
To be realistic, the AUV was simulated with a limited sensor 
range. An exploration phase is then required for information 
acquisition. The simulation demonstrated that tlle path is 
highly inefficient, taking long detours and, as such, a simple 
bug algoritllm easily surpasses its performance. 

Probabilistic road-map planner (PRM) 
This is still a relatively new approach to path phuming, where 
the construction of the road-map is done probabilistically 
instead of deterministically. The main concept is to generate 
a number of nodes (vertices) randomly, eJjminate those nodes 
in the obstacles, and then connect all the adjacent nodes with 
straight lines. The primary reason that only adjacent nodes 
are connected is to avoid saturating the configuration space 
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with too many paths. Later, the resulting road-map is 
searched from the start point to the goal point for the shortest 
path (Fig 5). Unlike other motion planning methods, its ran­
dornised nature tends to make its performance less suscepti­
ble to the effect of configuration space dimension.•• However, 
it does compromise solution optimality for enhanced robust­
ness. Consequently, this method generally produces subopti­
mal solutions. PRM is also notoriously known for its long 
running-times and difficulty in finding a path in a configura­
tion space that has a small passage. Therefore, some heuristi­
cally-enhanced PRMs such as visibility PRM, 49 lazy PRM,so 
obstacle-based PRM," and Gaussian sampling PRM,'2 have 
been proposed to improve the generic PRM performance. 
These methods mostly differ from tl1eir sampling strategies. 
Fox et al'u • proposed an enhanced PRM that shares some 
similarity with the lazy PRM. They envisaged using it as a 
generic path planner for an AUV. Their method relies on gen­
erating a line-of-sight path from the initial point to the goal 
point. When an obstacle intersection occurs, a few points are 
generated at the obstacle's vicinity to reroute the path. This 

Fig 6: RRT ope rations; (a) shows a partial RRT tree with its 
initial state, xinitCb) shows the inclusion of random state, Xrand 

and selection of the nearest state , xnear (c) shows the addi­
tion of new state, X new and its connectio n to near state , X near 

X 
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process is then repeated until a solution is found or a time­
limit is reached. Their scheme assumes a static environment, 
thus a reactive planner is required for avoiding a dynamic 
obstacle. 

Rapidly-exploring random tree (RRT) 
The majority of path planning algorithms, as mentioned 
above, only take into account the algebraic constraints 
(caused by obstacle) and not differential constraints (caused 
by kinematics and dynamics). The paths generated are typi­
cally rigid with abrupt directional changes, making it not 
viable for vehicle actuator operations due to saturation. lltis 
becomes an impetus for a search for a scheme that can 
address both the path planning and control issues simultane­
ously. Several potential benefits arise from the integration of 
the path planning and control process. Assuming no distur­
bance, the paths generated are guaranteed to be reproducible 
in practice. A link optimisation for both path distance and 
control effort can also be achieved. Cases of differential con­
straints can easily be incorporated, thus extending its applica­
tion into fault-tolerant and reconfigurable systems for an 
AUV.'j·" 

Most systematic search algorithms do not function well in 
high-dimensional space. This has prompted the introduction 
of the RRT",j' which can be considered as an incremental 
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form of PRM and is designed to search efficiently non-con­
vex high-dimensional spaces. It possesses a few fascinating 
properties. 
1. It is biased to the free-space and exploits a probabilistic 
search method. 
2. It has also been proven to be probabilistically complete. 59 

3. The simplistic nature of the algoritlun facilitates perform­
ance analysis. 
4. Lastly, it allows one to take into account both algebraic 
and differential constraints simultaneously, which is vital for 
motion planning. 
To better appreciate the RRT, one needs to understand the 
principle of operation behind the algorithm: starting from an 
initial state, X;nit• a tree is grown through a process of adding 
edge and vertex in each time step (iterations). Assuming that 
one has a partial RRT tree as shown in Fig 6(a), the second 
stage is to introduce a random state, x rand• Fig 6(b). The 
EXTEND function determines the ' nearest' state to the ran­
dom state to be extended. The 'nearest' state is typically 
deftned by a metric. As shown in Fig 6(c), a new state, Xnew• 

that is £-distance away from xnear is then computed and 
added into the RRT. The computation is required to fmd a 
suitable input, "new• that is applied for a time increment, At 
so that it can bring Xnear to xnew· Moreover, one is also 
required to determine if Xnew• has reached the goal state, or 
failed to find a suitable state. The process is then repeated. 

Cheng et al60 employed the RRT to optirnise the trajecto­
ries of autonomous automobi les and spacecraft The simula­
tion& show the viability of the method. Toussaint61 tried to 
combine motion planning using the RRT with non-linear con­
trol employing the H. technique for an under-actuated vehi­
cle. Not only did he utilise a H. filter for improving the 
plarmed motion of the vehicle, but he also attempted to 
address multiple vehicles' planning problems. Again his sim­
ulation is limited to only planar motion. The RRT has also 
been applied to solve non-linear control problems in hybrid 
systems. Frazzoli et al62.'1 provided some realistic simulations 
of unmarmed-helicopter motion planning that employed the 
RRT. Unlike other path planning algorithms, he mentioned 
that the RRT is capable of exploiting fully the manoeuvrabil­
ity of the helicopter. 

Nonetheless, the RRT is not without problems. Firstly, as 
a novel algorithm, its capability is still not well characterised. 
Furthermore, its performance is highly sensitive with respect 
to the chosen metric. An incorrect metric will substantially 
deteriorate its performance. Cheng et al64 described a tech­
nique to render the RRT less sensitive to the metric effect. In 
all of the experiments and simulation& mentioned above, a 
known environment is assumed, and this is unrealistic for 
AUVs, hence supporting the fact that there is still room for 
further improvement 

REFLEXIVE AVOIDANCE TECHNIQUES 
Reflexive avoidance techniques provide an AUV with a fail­
safe mechanism in the case of motion planner failure. The 
failure can either be a system malfunction or a failure to meet 
the predefined time constraint, which is a more common 
occurrence tlmn the former. Technically, these techniques are 
fundamentally based on the reactive control approach,65 

where the information from the sensors is sent directly to the 

<;R 

actuator without passing through the high-level modules. 
This makes them amazingly fast and capable of handling 
dynamic environments especially in cases where in situ 
response is needed. Unfortunately they suffer from the iden­
tical problems that plague reactive control systems. Some of 
the problems are; highly non-optimal action, non-determinis­
tic performance and, lastly, they are prone to get trapped in a 
canyon-like environment. 

N eural network 
The neural network approach has been intensively researched 
over the last 20 years, and it still ongoing. The core of the neu-

. ral network concept is based on a mathematical emulation of 
simplified human brain mechanisms. One obvious benefit of 
the neural network' is its intrinsic ability to model a very com­
plex, multi-input/multi-output, and strongly coupled non-linear 
system such as an AUV. It is also highly renowned for its ' gen­
eralisation' capability. Unlike ot11er algorithms that are pro­
grammed, a neural network' is trained by exposing it to related 
input/output data Properly trained, the neural network can pro­
vide an elegant solution to a very challenging problem. 

DeMuth et al" proposed a neural-network-based obstacle 
avoidance controller for an AUV. They used two neural net­
works, one for a static object and another for a dynamic 
object classification. Then, a Boolean combiner is employed 
to reconcile the appropriate manoeuvre to be taken. 
Paradoxically, their neural network controllers were not 
trained but the weights were heuristicaUy determined. 
Clearly, this is only applicable for a very simple case. In try­
ing to exploit the adaptive nature (training ability) of a neural 
network, Sayyadi et al67 applied a stochastic real value rein­
forcement learning method to the collision avoidance con­
troller of tl1e 1\vin Burger. They divided the obstacle avoid­
ance mission into a targeting behaviour and an avoiding 
behaviour. Nonetheless, no tangible results were given con­
cerning the avoiding behaviour performance as the research 
is still at a premature stage. 

Interestingly, one tends to find more neural network appli­
cations in low-level controller design" ·69 than at the higher 
level. This could be caused by the black box characteristic of 
neural network, which precludes vital information extraction 
that can be crucial for problem understanding. Furthermore, a 
high-level controller typically exerts more influence over the 
entire system performance where a small error tends to ampli­
fy quickly. This, in turn, demands a transparent system for 
analysis purpose which is not offered by such a network. The 
training processes can also be very time consuming, depend­
ing much on the 'suitableness' of the selected training data. 
To foster rapid convergence, another data pre-processing 
stage is also found to be compulsory. 

Virtual Force Field (VFF) 
The virtual force field method tries to simulate an artificial 
force field which can be two- or three-dimensional, surround­
ing the vehicle. Thus any contact with neighbourhood objects 
will cause a deformation of the force field. 1l1e aim here is to 
minimise these deformations by locally modifying the control 

• The majority of neural networks such as the popular multi-layer perceptron 

and radial basis network do require supervised training. 
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vector. Its computational efficiency and fast reaction make it 
a valuable technique in a dynamic environment. Recalling the 
fact that the TCAS employed by the aviation industry also 
utilises a fonn of virtual bubble, which is a variant of VFF, 
Zapata et al70 addressed the collision avoidance and bottom 
following problems of an AUV using a VFF scheme. Their 
results, however, are confined to computer simulations only. 

VFF shares some similarity with the potential field 
method, both trying to simulate the interaction of an artificial 
field between objects and the vehicle. However, VFF only 
considers the forces in a limited neighbourhood domain thus 
it is highly susceptible to being trapped in local minima. 
Worse still, it can also lead to unstable behaviour of the vehi­
cle when surrounded with obstacles or travelling in a narrow 
passage . . To solve tllis problem, a high-level planner is usual­
ly introduced. 

Vector field histogram (VFH) 
The vector field histogram71 was invented to solve some of 
the problems of the VFF algorithm concerning detail spatial 
distribution information loss. The VFH is a data reduction 
process algorithm that can be decomposed into three distinct 
phases. The first phase entai ls representing the vehicle work­
space as a two-dimensional grid. The second phase involves 
constructing the vehicle surrounding into local polar his­
togram form where each sector represents obstacle density. 
The last phase involves a selection of the sector of the lowest 
obstacle density and alignment of vehicle heading to the 
selected sector. Its perfonnance in most circumstances is bet­
ter than the VFF. n 

Williarns71 proposed a 3-D collision avoidance controller 
that has the intrinsic functionality of VFH. He exploited a 
merit function that defines a field that takes into account 
obstacle bearing and distance, as well as the vehicle's own 
heading, depth and the goal direction. For the three-dimen­
sional case, a data reduction process is performed to trans­
form the presentation into an image showing different obsta­
cle density. Consequently, the vehicle is just required to align 
its heading vector to the lowest obstacle density area. 
Antonelli et al7

' attempted to integrate the VFF and geometri­
cal approach proposed by Hyland, nand implemented it in the 
RAJS AUV. Their approach takes into account the polar infor­
mation instead of only the Cartesian, making tl1e algorithm 
very similar to VFH. They also employed a high-level path 
planner to detect the high risk area that can trap an AUV. 

The VFH tends to take into account tl1e workspace 
Cartesian information, hence it is less affected by the local 
minima entrapment problem as suffered by the VFF meiliod. 
However, this does not mean tllat it is impervious to local min­
ima entrapment. Furtl1em1ore, by discarding all explicit dis­
tance information and representing tllem implicitly, tlle vehicle 
is sometimes deceived into assuming tllat there are no clear 
sectors when it is surrounded witlJ only distanced obstacles. 

Fuzzy logic 
Fuzzy tlleory was introduced by Zadeh7s in 1965 as an alter­
native technique for tackling complicated problems tllat are 
difficult to solve using conventional differential-equation­
based approaches. In essence, fuzzy logic is a rule-based, 
multi-value logic inference system that attempts to take into 

No. C2 2004 joumal of Marine Science and Environment 

account tlle uncertainty and imprecision of tlle real world. Its 
intrinsic operational principle bears substantial resemblance 
wiili human cognition. In fact, the fuzzy logic ability to quan­
tify abstract expert knowledge, has made it a choice in solv­
ing complicated systems. Consequently, ilie control deci sions 
of an expert can be formulated into an algoritllm to control 
ilie desired plant. One example of fuzzy rule base in a colli­
sion avoidance context is: 

IF Target Direction is Left AND Target Range is Very 
Near THEN Heading is Hard Right. 

Clearly, the rule above is self-explanatory which facilitates 
problem understanding. As such, a set of rules can be prompt­
ly constructed without resorting to complex mathematical tech­
niques. Its transparent nature and excellent inlrnunity to both 
noise and error also contributes to its popularity. 

Shinjo et al76 proposed a collision avoidance system that is 
based on a combination of sensor-based navigation and fuzzy 
logic control. The fuzzy logic inference system provides a 
mapping framework to transform tlle acquired object infor­
mation such as range, position, and size, into ilie respective 
control commands for heading and vertical movement of ilie 
vehicle. A short-term memory is also used to store successive 
obstacle avoidance processes witlJ ilie objective to reduce 
abrupt changes or chattering of the control command outputs. 
This is achieved via reducing tlle degree of membership of 
tlle last executed fuzzy conclusion in order to reduce its dom­
inance. The analysis of the algorithm was performed on a full 
6-DOF Ocean Voyager AUV simulator. Instead of encoding 
tlle problem directly as in the former approach. Vasudevan et 
al77 attempted a hybrid reasoning scheme by aggregating 
fuzzy rule sets and case-based reasoning to function as a 
high-level dynanlic patll selector. In what was called 
Reasmling from Fuzzy Indexed Cases Scheme (REFIC), it 
attempts to exploit tlle a priori information such as the pre­
stored cases to assist in determining a promising vehicle­
heading and also in selectively activating a subset of naviga­
tional behaviours. The simulated example proved to be very 
robust in navigating in the presence of noisy sensor data and 
cluttered obstacle distributions. Liu et al11 tried to tackle AUV 
navigation in an unknown environment by creating a virtual 
boundary and incorporating some heuris tic rules via fuzzy 
logic. The vehicle emergence behaviour turns out to be very 
similar to ilie bug-following algoritlun. However, tlle effects 
of local minima and sea current were neglected in the simu­
lation. Ridao et al79 implemented a collision avoidance con­
troller in ilie Garbi AUV using a combination of VFF and 
fuzzy logic behavioural encoding techniques. The implemen­
tation is, however, limited to the horizontal plane. The vehi­
cle is surrounded witlJ several circular force fields of varying 
radii and each particular region is ilien mapped into the cor­
responding behaviours such as go-to, spin, avoid, keep depth 
and avoid boltom. A simulation study has verified that tlle 
vehicle is able to exhibit 'intelligent' manoeuvres such as cir­
cunmavigating and escaping from a canyon-like trap. 

Although, many praises can be made regarding a fuzzy 
logic system, iliere is also an equivalent amount of criticisms. 
Owing to ilie heuristic method upon which the fuzzy logic 
paradigm is fundamentally based, a multitude of incoherent 
and diverse viewpoints exist regarding the types and fuzzy 
operators used. The lack of a solid framework also tends to 
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make fuzzy logic appear to be an ad hoc approach to finding 
a solution. Although, a fuzzy system is renowned for its trans­
parency property, it is virtually mathematical intractable and 
can complicate analysis. 

CONCLUDING REMARKS 
A review of collision avoidance systems in AUVs, tackled in 
two parts, has been presented. Part A concentrates on the 
obstacle detection aspects, while in Part B the emphasis is on 
the obstacle avoidance techniques. The obstacle avoidance 
module consists of two crucial components, the motion plan­
ning and reflexive avoidance submodules. A motion planning 
submodule is required to generate an 'optimal' path. Strictly 
speaking, the majority of the motion planning methodologies 
mentioned are, in fact, considered to be path planning 
methodologies. They do not take into account the dynamics 
of an AUV. Systematic search techniques, although extreme­
ly popular in the robotics commuruty, unfortunately, do not 
function well in hlgher-dimensional search space which is 
found so commonly in most practical systems. The more­
recent probabilistic techniques are more robust with respect 
to the ilimensionality effect. Then again, their performance is 
erratic and can be unreliable occasionally. Owing to their 
more recent ruscovery, their attributes are not very well char­
acterised, hence vinrucating the need for more in-depth 
research. In terms of reflexive avoidance techniques, tl1e 
fuzzy logic methodology outshines the rest by providing 
transparency, ease of use, flexibility and robustness attributes 
in one complete package. Its inherent rule-based capability 
could be exploited in conjunction with the 'Rules of the 
Road' to achleve a seamless hlgh-level controller integration. 
These rules are proposed in the expectation that the forthcom­
ing AUVs will, at least, be compliant with tl1ese regulations, 
hence minimising the risk of collision. 

In conclusion, it is anticipated that with the fusion of these 
different methodologies, as presented in Part A and Part B, a 
robust and computationally efficient collision avoidance sys­
tem can be realised. In designing such a system, one must 
consistently bear in mind that an effective collision avoidance 
system derives its success through the synergistic interaction 
of submodules, and not because of a particular submodule 
functionality. Similarly, the application of these methodolo­
gies could also offer potential technological advances in tl1e 
field of AUV collision avoidance whlle simultaneously bene­
fiting the marine industry. 
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APPENDIX A 
The potential field method is a very popular tool for motion 
planning. The equations below are used to generate the simu­
lation results as illustrated in Fig.2. The related mathematical 
definitions are listed as follows:10 

The field of artificial forces F(q) in C is produced by a 
differentiable function, U : C "•• ~ R with: 

F(q)= - VU(q ) (A.l) 

U(q) = u .,(q) + u " P(q) (A.2) 

Where UaJI iS the attractive potential associated With the goal 
configuration q8001 and Urep is the repulsive potential associ­
ated with the C-obstacle region. 
The attraction field can be formulated as below: 

I z . 
u ."(q) = 2 eP,oa~ (q) (A.3) 

The attraction force can be formulated as below: 

(A.4) 

where ~ is the positive scaling factor, P is the Euclidean dis­
tance, q is the current configuration and q8001 is the goal con­
figuration. 
The repulsion field can be formulated as below: 

if p(q) ~ Po 

if p(q) > Po 

The repulsion force can be formulated as below: 
(A.5) 

l ( J I ) l if p(q) ~ Po 
f.',ep (q) = 11 p(q ) - OPo pz(q ) V p(q ) 

if p(q) > Po 

(A.6) 
where 11 is a positive scaling factor, p(q) is the distance to 
the obstacle and Po is the distance of influence. 
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Abstract: This paper presents an approach using a hybrid modelling technique 
known as Manoeuvre Automaton (MA) to capture the key dynamics of a nonlinear 
autonomous underwater vehicle (AUV) in such a way that hlgh-level tasks such 
as optimal motion planning can be computationally simplified, while still allowing 
it to perform complicated manoeuvres when the situation arises. With respect 
to motion planning in an obstacle filled environment, an incremental stochastic 
technique derived from the Rapid-exploring Random Thee (RRT) algorithm is 
applied. This paper proposes a multiple nested node version of RIIT and also 
addresses the case of a time varying final state. Simulation results as presented, 
using a 3 degree-of-freedom (DOF) nonlinear AUV model in order to prove the 
viability of the concept. Copyright@ 2005 IFAC 
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l . INTRODUCTION 

In the last few years, AUVs are frequently be­
ing employed for sea bottom exploration, mine­
hunting, scientific data gathering and reconnais­
sance missions. The requirement for the successful 
accomplishment of all the above tasks has mani­
fested itself into an urgent demand for an increase 
in AUV autonomy. In fact, one area that needs 
particular attention is collision avoidance. Due to 
its obvious complexity and the limited length, t his 
paper shall concentrate on addressing o nly the 
motion planning issues of an AUV. 

Lately, there has been a sudden pa radigm shift 
by the scientific communities from AUV deep sea 
exploration missions to deployment in littoral wa­
ters. The littoral zone is important for scientific 

1 The authors would like t o sincerely thank Dr. E .Ft-azzoli , 
for his various enlightening explanations and inputs. C . 
S. Tan is partly supported by IMarEST Stanley Gray 
FeUowship Award. 

research since it houses the bulk of ocean based or­
ganisms. Likewise, the navies have demonstrated 
a keen interest in exploiting AUV technology as a 
potential force multiplier to complement their am­
phibious power projection plans. Obviously, one 
can envisage numerous important military mis­
sions such as port infiltration and mine-hunting, 
where it is crucial for an AUV to be able to 
navigate in an unknown and hostile terrain. 

Several inherent characteristics of an AUV par­
ticularly its highly nonlinear coupled dynamics, 
underactuated, non-driftless, non-minimum phase 
behaviour and its subjection to unpredictable 
exogenous disturbances makes controller design 
nontrivial. The last attribute is especially rele­
vant for small, lightweight AUVs such as Remus 
(Prestero, 2001) . Typically, a few linearised mod­
els are utilised for the AUV controller design, thus 
artificial operational constraints must be imposed 
to avoid violation of the linearity assumption. 
Consequently, this introduces additional restric-



tion to the system performance envelope. Alterna­
tively, a more preferable approach is to "quantise" 
the AUV dynamics, transforming a continuous 
dynamic model governed by complex nonlinear 
differential equations into a hybrid model which 
not only possesses higher levels of abstraction but 
is also more beneficial computationally. With an 
added advantage, this approach also conveniently 
permits the incorporation of complex and aggres­
sive manoeuvres into the AUV. This process is 
achieved via the Manoeuvre Automaton (MA) 
representation. 

Most path planning techniques introduced to date 
are based firmly on deterministic methods and 
graph searches. Unfortunately, due to their sample 
space di.screti.sation issues, the generated trajec­
tories need extra. smoothing and interpolation. 
Notwithstanding this, the system dynamics are 
also neglected to avoid state-explosion effect. Col­
lectively, these factors ensue a very conservative 
system performance. Randomisation methods are 
becoming popular as they are inherently more 
robust to the state explosion effect. One version is 
the Rapid-exploring Random Tree (RRI'), which 
this paper extends and integrates with the MA. 

This paper begins with a brief outline of the MA 
concept and its merits in Section 2. A brief theo­
retical foundation on how MA can be extended to 
solve optimal motion planning problem for cases 
without obstacles is provided. Section 3 discusses 
the AUV dynamic model and the generation of 
motion primitives. Implicitly, the latter process is 
critical as it will dictate the achievable behaviour 
of the AUV, per se. Section 4 is devoted to the 
integration of the RRT algorithm with the MA 
for the motion planning problem in the case of an 
obstacle filled environment. Discussion of the sim­
ulation results are contained in Section 5. Finally, 
Section 6 contains concluding remarks and fut ure 
work. 

2. THE MANOEUVRE AUTOMATON (MA) 

The MA, a form of finite state macl1ine, is pro­
posed by Frazzoli et al. {1999) as a unified frame­
work for formalising the control of nonlinear sys­
tems with symmetries. In essence, the main idea 
is to generate a complete trajectory via sequential 
combination of the copies of motion primitives 
from a library set. These motion primitives are 
extracted from the vehicle in an open-loop mode. 

The approach relies primarily on two different 
types of motion primitives: trim trajectories and 
manoeuvres. Trim trajectories (relative equilibria) 
correspond to steady state behaviour in situation 
when the velocities in body-axes and inputs are 
constants. On the other hand, manoeuvres can 

be seen as finite time motion primitives that 
interconnect two trim trajectories together. 

Similar to a differential or difference equation, a 
MA transcription, describes a dynamic system, 
differing only in that it has hybrid elements in 
both its control inputs (r, p), and state vector 
(x, q) . MA evolves in so-called "dense time" by ei­
ther continuous flows or discrete transitions. Con­
sequently, at each particular moment, the system 
is constrained to be either in a trim condition q 
or performing a manoeuvre p. Thus the system 
behaviour can also be explicitly formulated as 
below. 

• An MA system H starting at state vector 
(x;, qi) in trim trajectories, evolve according 
to /q(·) as determined by the length of the 
rk , which can be infinite. Where /q(-) is 
the governing differential equation at the 
specific discrete state qk . The hybrid state 
then evolves as: 

Xk+l = Xk + 7)cXq (1) 
qk+l = qk (2) 
tk+l = tk + Tk {3) 

where i<q is the time rate of change of the 
vehicle's continuous state variables and k is 
the "stage" number. 

• lo the case of performing a manoeuvre p , 
the vehicle leaves the trim trajectory q1 for 
a finite length of time before settling to 
the trim trajectory lJ2 · Mathematically, the 
manoeuvre is initiated by the control action 
p, which is discrete, and is described by a 
fixed duration Atp and displacement ~ in 
the continuous state space, as illustrated in 
Fig. 1 for a SE{2) case. In reality, the control 
history of the continuous state-space system 
is implicitly encoded in the control action 
p. As such, when manoeuvering, the hybrid 
state evolves aB: 

XA:+l = Xk + /:lxp 
qk+l = q2 

t!c+l = tk + 6.tp 

{4) 
(5) 
(6) 

Although, the hybrid control input at instant k 
can be described by a vector (r, p)k, however only 
one input, either r or p can be active at any 
moment. 

By having the AUV continuous behaviour en­
coded as a discrete state q, its configuration can 
be described by an element of the Lie group G of 
rigid motions in R2 or R3 , called SE(2) or SE(3), 
respectively. In planar situations, where the al­
titude is constant, SE(2) will be employed. The 
reason for restricting the formulation to S E{2) has 
real practical significance, and will be elaborated 



in Section 3. The group SE(2) can be expressed 
using the homogenous coordinates as follows: 

[ 

cos ,P - sin ,P x l 
g = sin ,P cos ,P y 

0 0 1 
(7) 

The Lie algebra elements € E SE(2) are repre­
sented as matrices in R3X3 and for a special case 
of w = 0, one yields Equation 8 to describe the 
configuration change after T length of time in trim 
trajectory. The subscript k is omitted for clarity. 

[ 

1 0 tJ:z;'T" l 
e{r = 0 } tJ

11
T 

0 0 1 
(8) 

One can also describe the configuration change 
resulted of a manoeuvre p using Equation 7. AB a 
result of applying the MA representation, one can 
now mathematically describe the system configu­
ration by concatenating these motion primitives 
as expressed below: 

91 = 90 [Q e<ek ,r•>gk] eeH,r>+, (9) 

Where 90 and 9! is the initial and final configura­
tion. e((k ,r,.) and 9k represent the transformation 
of applying the k-th trim trajectory and the k-th 
manoeuvre, respectively. 

The MA representation allows one to express eas­
ily tile optimal motion planning problem. Thls 
is true, for certain cost functions tllat share the 
symmetry properties of the system, such as mini­
mum time, minimum length and minimum control 
effort. For the special case of the minimum time 
cost functional, one can formulate it as Equation 
10. 

Trim trajectory: q1 

Fig. 1. Displacement of configuration variables 
and its time duration for manoeuvre p 

N 

min L(Lltp(k) + r~;) 
P•,T• k=l 

{10) 

such that Equation 9 is satisfied and r ~ 0. 

The above optimisation problem can be solved 
using a dynamic programming (DP) technique 
(Frazzoli, 2001 ; Schouwenaars et al., 2003) . For 
the unique case when ~ = 0, such that when 
all the trim trajectories are translations, the cost 
is linear with respect to the coasting variables 
r, hence one can employ the linear programming 
(LP) method instead (Frazzoli, 2002a). 

3. AUV DYNAMIC MODEL AND MA 
TMPLEMENTATION 

In thls section, t he AUV model and techniques for 
synthesising the motion primitives are presented. 
Thls is done, in order to convert the continuous 
system model into the MA representation. The 
AUV model was supplied by QinetiQ, based on 
the Autosub vehicle (Millard et al., 1998), which 
has a torpedo shaped hull. Dimensionally, the 
vehicle is 7 m long, and approximately 1 m in 
diameter and has a nominal displacement of 3600 
kgs. In tllis paper, the model is restricted to only 
latitude dynamics and yaw control limited to the 
locked bow rudders. The vehicle has a maximum 
rudder deflection of ±25.2° and a rudder rate limit 
of9.9° f s. Including these two components into the 
model resulted in a nonlinear system. The pitch 
and roll effects are neglected. The main reason for 
concentrating only on a latitude model is due to 
the limitation imposed by a forward looking sonar. 
Th elaborate, most commercial forward looking 
sonars are only capable of providing a projection 
of 2D image of the terrain, hence determination of 
object depth is extremely difficult. Accordingly, to 
mitigate any risk of col.lision, the AUV must avoid 
all the perceived obstacles. 

Figure 2 shows a possible MA representation of 
the Autosub dynamics. Both 2 mfs and 5 m/s 
of cruising speeds are illustrated. Unfortunately, 
the above model lacks propulsion dynamics, here 
the forward velocity was held constant by an 
Proportional-Integral (PI) controller during the 
experiments. Therefore, this constrains the follow­
ing simulations to only one speed regime which 
was selected to be 5 m/ s. Normally, for the pur­
pose of generating trim trajectories, a velocity 
augmentation loop must first be designed into 
the system. Nonetheless, this process is redundant 
since the AUV is a lready assumed to be cruising at 
a constant velocity. T he A utosub model is discre­
tised using the zero-hold method and a sampling 
frequency set to 10 Hz.Referring to Figure 2 again, 
it shows clearly a library that constitutes manoeu­
vres of 15°, 30° , 60°, 120°. Since the manoeuvres 



are symmetry, the opposite direction manoeuvres 
are not shown. The manoeuvres should encompass 
the important performance envelope of the AUV, 
and their generation can be attained via a human 
operator or a controller input. The latter method 
is selected for the following study. A Proportional­
Derivative {PD) autopilot is designed so that one 
can extract the manoeuvres by input step inputs. 
Obviously, a more advanced controller can also 
be applied to extract better performance out of 
the AUV. The input and the state histories are 
recorded. Table 1 shows a few manoeuvres with 
their associated execution time duration and dis­
placements. 

Quick Stop 

Fig. 2. AUV dynamics in MA representation 

Thble 1. Manoeuvre Library, q = 5 m/ s 

P{index) 
Pts 
P3o 
P60 
Pt20 

~T(s) 
5.5 
8.2 
6.6 
23 

~x(m) 
27.2 
38.5 
26.8 
-8.4 

~y(m) 

3.3 
12.2 
15.8 
93.4 

~1/J(o) 
15 
30 
60 
120 

4. QUASI RANDOM RAPID-EXPLORING 
RANDOM TREE 

The approximate cell-decomposition methods such 
as A*, dynamic programming and breath-first 
search are highly susceptible to the curse of di­
mensionality. Therefore, it is reasonable for one 
to concentrate on randornised algorithms. These 
algorithms do not have the completeness 2 and 
optimality properties of the previous algorithms. 
However, their robustness to the "curse of dimen­
sionality" tends to make them preferable in practi­
cal and real-time applications. One version of this 
algorithm is the RRT (Lavalle, 1998). It is a form 

2 A property where the algorithm will return a solution if 
such a solution exists 

of incremental stochastic search technique that 
has been devised to search efficiently nonconvex 
high-dimensional state space. 

4.1 Quasi Random Generator 

Here, the quasi random (sub-random) generator 
based on the Halton sequence (Halton, 1960) is 
utilised instead of a pseudo random generator. 
Theoretically, the former generator possess cer­
tain desirable properties such as low discrepancy 
and improved uniformity over the sampling space. 
The generation of an element of a one-dimensional 
Halton sequence within the interval {0, 1J is calcu­
lated using Equation 11 and Equation 12. Differ­
ent prime numbers starting from the smallest are 
used for the multi-dimensional sampling case. 

00 

x; = l.:nk,iP-k- l 
k=O 

(11) 

with i > O,p = 2 and nk,i determined by the 
following equation: 

00 

i = L nk,iP\ 0 ~ nk,; ~ Pi nk,; EN {12) 
k=O 

4.2 Motion Planning Algorithm 

Frazzoli (2002b) advocates enhancing the RRT al­
gorithm by fusing it with the MA to solve motion 
planning problem with obstacles. The algorithm 
assumes that one has an embedded planner, that 
can plan an optimal trajectory in an obstacle 
free environment between two arbitrary states 
(Equation 9). The approach in this paper is that 
of multiple nested nodes. Since every state in a 
trim trajectory can be considered as a starting 
point of a manoeuvre. This algorithm generates 
child nodes at every connection point between 
a trim trajectory and manoeuvre. This improves 
the RRT branching capability, thus increasing the 
probability of finding a solution. A brief explana­
tion of the the algorithm with reference to figure 
3 is outlined below: 

(1) Generate a subgoal (R1) using the quasi­
random generator and attempt to connect to 
it using the embedded planner based on a 
minimum time criterion. 

(2) If there is no collision, then generate an 
edge with new vertices at all interconnecting 
points of trim trajectories and manoeuvres. 
For all the new vertices, attempt to connect 
directly to the goal (greedy a lgorithm) . 

(3) If failed, generate another random subgoal 
(R2). Sort the shortest time t rajectories to 
R2 from all vertices in an ascending order 
and attempt to connect to it. Apply this to 
only the first few near-optima l trajectories to 
avoid vertices saturation. 



(4) The whole process is repeated until a feasible 
trajectory to the final state is found, maxi­
mum vertices size or time limit is reached. 
Figure 3 shows that vertex (ncl) has con­
nected successfully to the final state. 

4.9 Error Mitigation 

Few researchers have expressed their concern re­
garding the prescribed error generated by RRT 
algorithm. Due to the discretised nature of the 
inputs in the original RRT algorithm, when the 
input history is applied, there will exist some 
errors in the final state. Hence, Kim and Os­
trowski (2003) attempt to circumvent the problem 
by introducing a subconnection process. Similarly, 
Cervern et al. (2004) introduces error mitigation 
scheme to reduce the error caused by the concate­
nation effects. The former approach relies on "in­
tegrating" the dynamic model using the acquired 
input history to ascertain the final state. One 
disadvantage, in this approach is the requirement 
of an accurate dynamic model of the system. This 
might not be true in practice, due to model com­
plexity, or nonexistence of a mathematical model. 
In fact, this error can be considered as a form 
of disturbance, and a robust controller can be 
designed to track the nominal trajectory instead. 
The design of the tracking controller is non-trivial 
due to the multi-input-multi output (MIMO) and 
underactuated behaviour of the AUV, as such it 
will be addressed in the near future. 

~ - -1 Time-varying final condition 

The case of a time-varying final condition is par­
ticularly interesting. This problem is commonly 
met when an AUV is conducting an interception 

FNI -

Fig. 3. Simplified illustration of the RRT Algo­
rithm operation 

mission such as docking with a moving mother 
submarine (Tan et al., 2003). The problem of 
addressing the time-varying final condition using 
RRT was first pursued by Cervern et al. (2004). 
His approach is based on embedding time vari­
able into the system state vector. Evidently, the 
immediate effect is the increase in the state vector 
dimension. A simpler solution proposed here is to 
adopt an iterative subroutine commonly known 
as the "false-position" method. Fundamentally, 
assuming that the target is moving at a constant 
velocity, the concept is to use a predict-correct 
process to converge within a tolerance of the final 
state. Nonetheless, there is no guarantee of conver­
gence, thus an upper bound to the iteration count 
is needed to terminate the loop as a contingency. 

5. SIMULATION RESULTS AND 
DISCUSSIONS 

The algorithm is implemented in MATLAB with 
the GNU Linear Programming Kit ver. 4.4 (GLPK) 3 

in an 2.1 GHz Pentium IV machine, with 512 
MB of RAM and running Windows XP. The en­
vironment, based on the North-East-Down coor­
dinate, is set to 300 x 300m in dimension. The 
simulations assume an ideal case where a priori 
information of the environment is provided and 
there is no external disturbance from the environ­
ment. The simulations are run with 200 maximum 
nodes, 300 maximum iterations, and a 2 seconds 
time constraint, terminating when either criterion 
is reached or if a solution is found. 

Pertaining to simulation 1, the AUV initial state 
is set to [11 0.1], while the final state is [170 145 ~t] 
where "' denotes an unconstrained variable. Here 
the individual variables are [x y ,PI, displacements 
in meters and heading in radians, the goal toler­
ance is defined as a 7m radius. Figure 4 illustrates 
one of the trajectories found by the algorithm. 
The dotted lines are candidate trajectories where 
the continuous line is the feasible trajectory. The 
triangles symbolise the AUV, enlarged twice for 
reason of clarity. The numeric values denote the 
vertices. For simulation 2 (Figure 5), the final 
state is set to [150 70 2.2] and moving at 2 m/s, 
simulating a moving submarine. Again, a trajec­
tory is found as depicted in Figure 5. 

Due to the probabilistic nature of the algorithm, 
a sample of 100 simulations are run to compile the 
statistics (Table 2). From the median statistic, it is 
observed that the majority of the solutions arc less 
than a fraction of a second for both simulations. 
The failure rate of simulation 2 is higher due to 
the time varying state issue. Moreover, in certain 

3 Obtained from http://www.gnu.org /software/ glpk/ 
glpk.html 



cases, the AUV will intercept the target in a head 
on position instead of a tail-chase fashion. This 
is prevented by wrapping the heading angle and 
constraining the final state heading. 

6. CONCLUDING REMARKS 

The primary objective of this paper is to verify 
the feasibility of employing the MA representation 
and the RRT algorithm to an AUV to solve the 
motion planning problem. The simulation results 
obtained are very encouraging, although addi­
tional detail studies are warranted. Its very short 
computational time makes it an ideal algorithm 
for real-time applications. Additionally, a simpler 
algorithm for solving time-varying final state has 
been proposed. As aforementioned, the algorithm 
is intrinsically a feedforward controller, therefore 

Table 2. Statistics from 100 samples run 

Statistics 
Average time taken,s 
Median,s 
Standard deviation,s 
Success rate 

... 
... 

10 

..... 
.... 

~'(i) 
:. · .. . 
\\.@ 
\( " .. ········ ... 
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r ~ 

Sim. 1 
0.41 
0.27 
0.25 
88/100 

... 

Sim. 2 
1.22 
0.56 
0.41 
68/100 

·· ... 

t$\ w 

.. 

""' ... 
Fig. 4. Simulation 1. Environment with static 

obstacles 

150 

0 

50 100 , .. , ISO 

•• 

Fig. 5. Simula tion 2. Environment with time­
varying final state 

a robust low-level feedback controller will be de­
signed in the near future to track the prescribed 
trajectory. 
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Abstract : This paper presents a variant of an incremental stochastic motion plan­
ni.ng technique for autonomous underwater vehicles (AUVs) that considers both 
the algebraic constraints, caused by the environment obstacles, and differential 
constraints, induced by the vehicle dynamics. The term kinodyilamic planning is 
used to describe this type of motion planning. The majority of AUV path planners 
tend to adopt an approach where the vehicle differential constraints are neglected 
with the aim to simplify the path planning process. However, these techniques 
frequently resulted in paths that are only executable by holonomic vehicles, 
whereas underactuated vehicles like AUVs are unable to track the prescribed paths 
exactly. To circumvent this problem, an incremental stochastic planning technique 
based on a Rapid-exploring Random Tree (RRT) algorithm is used to take into 
account both types of constraints simultaneously. This paper proposes embedding 
the RRT algorithm with a reconnection technique to enhance the quality of the 
generated trajectory. Simulation results as presented below, using a 3 degree-of­
freedom AUV model, show the viability of the concept. Copyright@ 2004 IFAC 

Keywords: Kinodynamic planning, motion planning, Rapid-exploring Random 
Tree, stochastic, reconnection. 

1. INTRODUCTION 

Autonomous underwater vehicles (AUVs) are not 
recent inventions, in fact the technology has been 
around since the past three decades. Nowdays, 
AUVs are frequently employed for sea bottom ex­
ploration, mine-hunting, seabed mapping and sci­
entific data gathering. It is obvious that for AUVs 
to accomplish successfully such diverse missions, 
a robust and effective motion planning strategy 
should be forthcoming. 

A majority of the proposed path planning tech­
niques (Fogel and Fogel, 1990; Fox et al., 2000) do 
not take into account the AUV dynamics. These 
paths are normally computed as the int.erconnec-

tion of polynomials or splines. Since these paths 
are independently computed without AUV dy­
namics, it cannot b.e guaranteed that they are ex­
ecutable in practice. Typically, very conservative 
constraints are imposed on the derivatives of the 
flight path in order to avoid violating the low-level 
feedback controller operating regime. To further 
simplify the process, the AUV body geometry is 
frequently neglected by shrinking it into a point 
via the application of the configuration space con­
cept. This assumption is highly valid if the vehicle 
considered is operating i..n a sparse environment. 
Most deep sea terrain can be categorised as such. 
Lately, there has been a sudden paradigm shift by 
the scientific and naval communities from AUV 
deep sea exploration missions to deployment in 
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littoral waters. The. littoral zone is a subdivision 
of the benthic province that lies between the high 
and low tide marks and can be considered as an 
extension of the shoreline to 600 feet(183 meters) 
out into the water. The littoral zone is important 
for scientific research since it hoUBeS the bulk 
of ocean based . organisms. Likewise, the navies 
have demonstrated a keen interest in exploiting 
the AUVs technology to complement their am­
phibious power projection plans. The littoral zone 
is an intricate area to navigate by default, with 
unpredictable disturbances such as internal waves, 
coastal currents, changing beach profile, reefs and 
artificial objects. Therefore, it is crucial for an 
AUV to exploit its dynamics to actually navigate 
the unknown terrain. One class of motion plan­
ning algorithm called Rapid-exploring Random 
Tree (RRT) is particularly well suited for this type 
of application. 

The paper begins with a brief outline of the 
AUV dynamic model in Section 2. Section 3 
attempts to explicate the advantages and the 
internal mechanisms of the RRT whilst Section 4 
discusses several factors that can seriously affect 
the RRf performance. Section 5 introduces a tree 
reconnection algorithm to improve the quality 
of the generated trajectory whereas Section 6 
elaborates upon the simulation results for both 
static and dynamic obstacles. The idea is a lso 
extended to a crippled AUV case in order to 
justify its suitability as a subcomponent to be 
integrated into a fault tolerant system. Lastly, 
Section 7 gives the concluding remarks and future 
extension of the study. 

2. AUV DYNAMIC MODEL 

A 3-DOF REMUS AUV dynamic model by Pres­
tero (2001) is employed for the simulation study. 
In matrix form, the dynamics of the vehicle can 
be defined as: 

m - Yvr 0 0 
0 I zz- N;. 0 = 
0 0 1 1] 

Y,, Y, - mU, 0] 11r [ ~ l O,(t) Nvr Nr 0 r + 
0 1 0 1/J 

(1) 

Te rminology 
Y..,, coefficient for added mass in sway 
Yv, coefficient of sway force induced by side slip 
Yr coefficient for sway force induced by yaw 

Nti, coefficient for added mass moment of iner-
tia in sway 

N;. coefficient for added mass moment of iner­
tia in yaw 

Nv, 'coefficient of sway moment from side slip 
Nr coefficient of sway moment from yaw 
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Y6 rudder input coefficient for sway 
N6 rudder input coefficient for yaw 
Izz moment of inertia a t z axis 
V r sway velocity 
r yaw rate 

6r rudder deflection 
1/J heading angle w.r.t inertial frame, 10, 21r) 

This model is linearised at a constant surge veloc­
ity, 'Ur of 1.5mjs (cruising speed) to avoid violat­
ing the model fidelity (Equation 1). A pole place­
ment feedback controller is designed for the AUV 
to improve its dynamic response. The pitch and 
roll effects are neglected . Clearly, for this simple 
model an orthogonal transformation matrix can 
be used to convert the body reference velocities to 
the velocities in the inertial frame (Equation 2). 
Here, cy, and s.p denote cos( 1/J) and sin( 1/J) respec­
tively. lP q]T are the surge and sway velocity while 
[X Y]T are the vehicle position (configuration) in 
R2 . There is no singularity problem for this trivial 
case but this effect will need to be considered 
if the Euler angle formulation is used in SE(3) . 
By combining both Equation 1 and Equation 2, 
one obtains a dynamic equation of state vector, 
X= lur Vr r X Y 1/J]T. 

The vehicle has a maximum rudder deflection of 
±13.6° and a rudder rate limit of 18°/ s. Em­
bedding these two components into the model 
resulted in a nonlinear system. The nominal di­
mensions of the vehicle are 1.4m in length and 
0.3m in diameter. This information is required by 
the collision detection algorithm. 

3. RAPID-EXPLORING RANDOM TREE 

It has been known that, the approximate cell­
decomposition methods such as A •, dynamic pro­
gramming and breath-first search are highly sus­
ceptible to the curse of dimensionality. Therefore, 
it is reasonable for one to concentrate on ran­
domised algorithms (Branicky et al., 2002) . These 
algorithms do not have the completeness 1 and 
optimality properties of the previous algorithms. 
However , their robustness to curse of dimension­
ality tends to make them preferable in practical 
and real-time applications. 

One version of this a lgorithm is the RRT (Lavalle, 
1998). It is a form of incremental stochastic search 
technique that is devised to search efficiently non­
convex high-dimensional state space, X C Rn · 
In essence, the RRT algorithm attempts to build 

1 A property where the a lgori thm will return a. solution i£ 
such a solution exists 
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a graph structure, or to be preciBe, a tree that 
describes the free state space, X free of the system. 
Each node is implanted with the system state, 
x, where x E X. The tree is grown incremen­
tally by picking the closest (Euclidean metric, 
p) node, Xnear on the tree to the random node, 
X rand· Then the best constant input, u from a 
finite predetermined set U is chosen by propa­
gating each input through the system differential 
equation, f(x(t), u(t), t) for a predetermined time 
increment, 6t. If no collisions are found, a new 
child node, Xnew is added to the tree and the 
whole process is then repeated. Note that the 
time increment, 6t is not the same as the system 
equation time, &t. 

4. RRTPERFORMANCEENHANCEMENT 

4.1 Bias 

RRT performance can be improved significantly 
by the introduction of certain biasing techniques. 
One such technique is to employ a Gaussian dis­
tribution function such that the expected value is 
located at the goal state. Likewise, one can use 
a function to return either the goal state or a 
random state depending on a preset bias coeffi­
cient as implemented in this paper. Low discrep­
ancy sequence (quasi-random) such as the Halton 

· sequence has been argued to be more efficient. 
Despite the 'fact that its merit has been proven 
for the Probabilistic Road Map (PRM) method 
but its effect on RRT is still nonconclusive. 

,4.2 Computational Bottlenecks 

Perusing through the algorithm sequence, one will 
notice that the two major bottlenecks of the RRT 
algorithm are the nearest neighbour sub_routine 
and collision detection subroutine. Of the two, 
the former, particularly the naive version which 
requires all the nodes to be checked, is the most 

. .computationally intensive. As such, it is prudent 
to substitute it with approximate nearest neigh­
bour (ANN) algorithm by Arya et al. (1998) or 
KD-Tree which are more efficient. For the collision 
detection routine, this paper uses only non-convex 
polygons such as rectangle and circle to describe 
the obstacles thus avoiding the computational is­
sues. High quality collision detection libraries will 
be needed if nonconvex obstacle models in three 
dimension are used. 

4.3 Metric Sensitivity 

A proper metric is essential for the successful 
operation of RRT. Suitable metric varies from 
problem to problem. Nonetheless, the metric p in 
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the form of cost function or performance index, 
defined as, 

p* = min (<t>[x(t1),t1J + i.t' ~[x(t) , u(t) , tJdt) 

(3) 

while satisfying the differential constraint, 

f[x(t), u(t), tJ- x(t) = 0 

where pis a function of (xnear1 Xrand 1 u) , has been 
found to be a very suitable for RRT. Equation 
3 assumed an obstacle free environment. It has 
been discovered that the RRT performance tends 
to degrade as p and p• diverge. Typically, nu­
merical method is used to solve the above opti­
mal control problem. The solution can be time 
consuming since it entails solving a two-point 
boundary-value problem. In holonomic cases, the 
differential constraints disappeared and a simple 
weighted Euclidean metric can be used. On the 
other hand in nonholonomic cases, a weighted 
Euclidean metric is also frequently employed how­
ever tuning of the parameters (weights) can be 
nontrivial. Depending on the structure of the ve­
hicle dynamics, incorrect weighting frequently in­
troduces bias into RRT, diverging the search from 
the goal. Consequently, Cheng and Lavalle (2001) 
have devised several methods to render RRT less 
sensitive to metric effects. Two of their proposed 
methods are also incorporated into the following 
simulations. The first method is to record the 
used (expanded) inputs, thus avoiding any states 
duplications while the second method is to extract 
environment information concerning obstacles by 
recording the state collisions ttequency. This infor­
mation is kept in the form of constraint violation 
frequency (CVF). The objective here is to avoid 
expanding the state in the region where collision 
is bound to happen, hence biasing the search to 
the free space. Since RRT is a form of randomised 
algorithm, the solution obtained can be far from 
optimal. As such, this paper proposes a process 
called reconnection to mitigate this effect. A detail 
exposition of the process is given in Section 5. 

4.4 Multiple fues, Tree Pruning and Subconnection 

Other researchers advocates using multiple trees 
and tree pruning techniques to improve the RRT 
performance (Li and Shie, 2003). Indeed, multi­
ple trees RRT version does provide fast solution 
but its effectiveness is limited to problems with 
algebraic constraints. This is caused by the diffi­
culty of connecting the tree without obvious gap. 
Another interesting characteristic of the single 
tree RRT is its tendency to grow a few major 
branches at the initial states thus making connec­
tion with the terminal states very problematic. 
To circumvent this problem, one method is to 
introduce another start tree, with different time 



increment and metric when it is at the proximity 
of the goal states, thus improving the probability 
of connection (Kim and Oatrowski, 2003) . 

• /, 5 Hybrid Planner 

. As mentioned in Section 4.3, the RRT tends to 
degrade as the p and p• diverge. One .promising 
technique initiated by Frazzoli et al. (2002) is to 
com~ine an optimal planner with the RRT. The 
optimal planner which exploits the precomputed 
trajectory primitives is used to plan an obstacle 
free path, while the RRT attempts to reroute the . 
path if there are obstacles. Other researches pre­
'fer to merge RRT with collocation and nonlinear 
programming (Karatas and Bullo, 2001). The tra­
jectory obtained shows substantial improvement 
compared to the individual methods. 

5. RECONNECTION 

The objective of the kinodynamic planning prob­
lem is to find a trajectory 1f : [to, t1J-+ X tree from 
an initial state X.nit to a goal state Xgoat within 
the tolerance r . However, it can also be formulated 
in such a way as the problem to find an input 
function u: [to, t/]-+ U that results in a collision 
free trajectory connecting both X.nit and Xgoal . 

In most cases, it is also appropriate to select a 
path that optimises certain cost function, such as 
the time to reach x 900t or the control effort which 
corresponds to the energy consumption of the 
system. However, due to its randonllsed nature, 
the generated path will tend to be suboptimal. 

Hence, this paper proposes a process termed as 
reconnection where the algorithm is initially exe­
cuted to obtain a feasible trajectory which is then 
tri.nut1ed at a certain point and reexecuted again. 
This method exploits two inherent properties of 
RRI': {1) Its propensity to grow a few major 
branches from the initial point where these major 
branches are potentialauboptintal trajectories. (2) 
Reconnecting the RRT entails recycling some of 
the residual branches thus achieving certain com­
putational advantages compared to initiating a 
new tree. Certainly, two components need to be 
addressed : (1) The location of the trimming point 
and {2) the number of reruns required. 

Once the first feasible trajectory is found , it is 
backtracked to the initial point. The trimming 
point is selected from 0.4 to 0. 7 of the trajectory 
length. A value of 1.0 is equivalent to starting a 
new run since the whole core branch is trimmed. A 
too high value risk destroying important branches 
and a too low value will not provide substantial 
improvement as the RRT will attempt to just 
reconnect the trimmed branch. Multiple runs can 
be conducted, but, it has been experimentally 
determined that two to three runs are sufficient 
to obtain the best suboptimal trajectory. 

6. SIMULATION RESULTS AND 
DISCUSSIONS 

For these simulations, the environment is set to 
200 x 200m in dimension. Here, we assume 
an ideal case where a priori information of the 
environment is provided and there is no external 
disturbance from the environment. The conven­
tion here is to take the heading angle to start 
from the x axis (inertial) and positive when turn 
counter clockwise. The algorithm is implemented 
in C on a 2.1 GHz Pentium IV machine, with 512 
MB of RAM and running Windows XP. The sim­
ulations are run with 2000 maximum nodes and 
4000 iterations, terminating when either criterion 
is reached or if a solution is found. The AUV 
initial states is set to [1.5 0 0 0 1J (angle in radian), 
while the goal state is (1.5 tt 150 100 ttJ where tt 

denotes a variable (unconstrained). Goal tolerance 
is defined as a 5m radius. This accuracy can easily 
be achieved via a m()dern GPS employing a Wide 
Area Augmentation System (WAAS). The time 
increment and dynamic equation time are set to 
3s and 0.1s respectively. Runge-Kutta method 41 
used to propagate the dynamic equation. Instead 
of assuming a constant input for D.t, the input 
is linearly interpolated as it propagates through 
the state equations. This method allows one to 
employ larger time increment while easily taking 
into account the input rate constraint. All of the 
simulations use only the Euclidean distance as the 
metric. 

Figure 1 shows the consequence of applying the 
reconnection algorithm. Notice the first feasible 
path (grey colour) has been found and trimmed. 
The trimming coefficient is set to 0.5 in this case. 
The intrinsic RRT property of selecting the near­
est node resulted in the extension of the longer 
untrimmed trajectory (dark colour). Both the 
trajectories are compa red to select the shortest 
amongst the two. Figure 2 shows a histogram plot 
of 100 simulation samples comparing both the 
enhanced RRT and a generic RRT performance. 
It is clear from the histogram that the enhanced 
algorithm returns the solution in shorter time, 
particularly for the first feasible trajectory. In 
Figure 2, it is observed that the enhanced algo­
rithm outperforms the generic RRT in terms of 
time response while returning the best suboptima l 
trajectory, shortest distance in this case (Figure 
3}. The two means are compared using a t-test, 
it is significance at the 0.01 leve l alpha whilst the 
99% confidence interval for the true difference in 
means is [36.7 60.5) . However, one must be aware 
that trajectory selected remains suboptimal, fu­
ture extension of the algorithm is likely to take 
this factor into consideration. A detail descriptive 
statistics comparison of both the algorithms can 
be found in Table 1. The table indicates that the 
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generic RRT has a higher failure rate. The failures 
are caused by the program reaching the predefi.ned 
maximum nodes number or maximum iterations. 
Once again, the enhanced RRT performance is 
superior in comparison to the generic version. 

.... 
Fig. 1. Motion planning with RRT in environment 

populated witn static obstacles. The recon­
nection process is also being depicted 

.. 

.. 
t r 
• 

Fig. 2. Histogram plot of computational time 
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Fig. 3. Histogram plot of total distance 

"' 

Figure 4 shows a more challenging environment 
where both tile dynamic and static obstacles are 
presented. The dynamic obstacles are assumed to 
have constant velocity. The uncertainty of their 
position as time progresses can be considered by 
expanding the obstacles size through time. Figure 
5 shows a feasible trajectory (dark colour) found 
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Table 1. Descriptive statistics collected 
from 100 samples run 

Parameters Enhanced Generic 
RRT RRT 

Number of nodes used{mean) 870.5 1254.5 
Number of nodes used{std) 397.5 515.5 
Computational Time(mean, s) 461.8 743.8 
Computational Time(std, s) 245.0 211.2 
Total distance(mean, m) 278.7 327.3 
Total distance(std, m) 23.8 33.0 
Number of failures/ lOO runs 6/100 39/100 

by the RRT. To assist in visualising the dynamic 
effect, it is plotted with respect to time in the 
z-axis. The trimmed trajectory is not shown to 
avoid cluttering the view. Figure 6 illustrates a 
plot of the CVF magnitude. Notice an increase 
in CVF value of the corresponding node when it 
collides with an obstacle. This information allows 
RRT to behave in a more 'intelligent' way by 
avoiding extension near to the collision area. 

. ... , 
Fig. 4. Position of the static and dynamic obsta­

cles with their corresponding velocities 

. ~. ~. . . . . . . . :·.. . .. ~·. . .. •.· .. 

200 

ISO 200 r tmJ 

Fig. 5. Plot of configuration w.r.t time for an 
environment with both static and dynamic 
obstacles 

Recently, there is a sudden increase of interest in 
developing systems having very high fault tolerant 
capacity. One of a sub component of these systems 
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Fig. 6. Plot of the CVF superimposed with the 
trajectories 

is the fault tolerant control {FI'C) system . These 
systems have very high reliability and is important 
in terms of operational cost and .mission safety. 
Figure 7 shows a simulation run of a case where 
the rudder is partially jammed, due to seaweed en­
tanglement or ice built-up. Instead of the normal 
rudder deflection range of ± 13.6°, it is constrained 
to operate from -0.5° to +13.6°. The effect can 
be deduced from the shape of the trajectories. The 
enhanced RRT algorithm found the goal in 3930 
iterations and 1922 nodes in approximately 1.2s. 
This clearly demonstrates RRT as a promising 
subunit of a FI'C system. 

7. CONCLUDING REMARKS 

The objective of this paper is to introduce the 
enhanced RRT algorithm as a motion planner for 
AUVs. The algorithm is capable of generating 
feasible trajectories, satisfying both the algebraic 
and differential constraints. Its very short compu­
tational time makes it an ideal algorithm for real­
time applications. The reconnection algorit hm has 
been demonstrated to provide shorter traject ories. 
Nonetheless the trajectory is still suboptimal and 
this issue will be addressed in t he future. Since the 
algorithm is inherently a feedforward controller, 
a robust low-level feedback controller is needed 
to t rack the prescribed trajectory when subjected 
to external disturbance. In addressing t he case of 
navigating in an unknown environment, a sensor­
based motion planning method will be merged 
with the enhanced RRT. The algoritlun will be 
extended to a 6-DOF AUV model and it is an­
ticipated that the developed algorithm will be 
implemented in a research AUV in the near future. 
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Abstract: This paper focuses on the application of employing fuZzy logic technique 
in an autonomous underwater vehicle (AUV) docking manoeuvre involving a 
moving platform. The core of the paper delves on the implementation of an 
enhanced fuzzy logic controller for the docking of an AUV in a simulated 
environment. The implemented fuzzy logic inference system (FIS) functions by 
mapping the individual fuzzy areas or cells (AUV positions) into a format that 
contains critical information regarding AUV speed and heading requirements such 
that the AUV could be recursively driven to the docking station. Copyright © 2003 
IFAC 

Keywords: Artificial intelligence, fuzzy logic, high level control, docking 

I. rNTRODUCTION 

There is increasing interest in the use of autonomous 
underwater vehicles (AUVs) as force multipliers for 
submarine supported mar1hme expeditionary 
operations. However, aggravating tl1e problem is the 
limited battery technology of an AUV, which does 
not provide adequate servicing range. Likewise, the 
high bandwidth data transmission requirement for 
most surveillance task makes it compulsory for an 
AUV to upload its data intermittently. Thus, the 
concept for an AUV docking with a 
station/submarine for recharging, downloading data 
or even servicing purposes is an attractive 
proposition. Until recently, most research (Cowen et 
al., 1997; Yoerger et al., 1991) has been 
concentrated on the docking process with a static 
docking station or hitching post and not with a 
moving object. This paper investigates the viability 
of employing a fuzzy logic technique to assist the 
AUV docking with a moving target. 

An AUV retrieval manoeuvre can be partitioned into 
two distinct phases, which are interception and 
docking. In this case, the interception phase 
employed the popular proportional navigational 
guidance (PNG) algqrithm. However, once the AUV 
reaches a predefined circumference of acceptance of 
the target, the docking phase that utilised fuzzy logic 
will be activated. Very few scientific papers can be 
found regarding AUV docking witJ1 a moving target. 
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Smith, et al. (1993) are seen as the only proponents 
in tJtis area of research. It was reported that they 
successfully employed a separate linear function for 
the speed profile controller and a fuzzy logic system 
to provide recursive 'goal' for the AUV during the 
docking phase simulation. The advantage of using a 
fuzzy rule base system is its non-dependence of 
accurate information about the dynamics of the 
complete AUV ocean system. The fuzzy system 
approached the virtual "funnel" by providing new 
waypoint so that more .aggressive AUV manoeuvre 
can be initiated. The main goal is to dock reliably in 
various uncertain conditions instead of trying to 
achieve docking in minimum time. 

The remainder of the paper begins with Section 2, 
which provides a brief outline of the AUV dynamics 
used in the simulation. Section 3, delves into the 
speed profile controller. Section 4 discusses the 
Virtual Target Strategy (VTS), a proposed method 
for redirecting AUV heading. Section 5 provides a 
detail discussion regarding the integration of the 
speed profile controller and YTS into one compact 
AUV docking controller using a FIS. By integrating 
both elements, a simple collision avoidance system 
can be established to reduce the risk of the AUV 
colliding with the target during docking. Section 6 
provides simulations result. Lastly, Section 7 gives 
concluding remarks regarding the study. 
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2. AUV DYNAMlCS MODEL 

This simulation was hosted in the MA TLAB I 
Simulink environment and utilised the Subzero 11 
AUV dynamics. Subzero 11 is a research AUV from 
University of Southampton, much of the 
identification of the AUV dynamics has been 
produced by Lea (1998). Non-linear heading 
dynamics was used for simulation, while depth 
dimension was neglected (assuming constant depth) . 
The non-linear heading dynamics is valid for the 
range of 0.8 to lJrn/s AUV cruising speed. The 
speed of the AUV is adequately controlled by a 
proportional derivative controller. For this 
simulation, an adaptive network-based fuzzy · 
inference system (ANFIS) (Jang, 1993) has been 

· developed as the heading controller (Craven, et al. 
1998). The state space equation of the heading 
dynamics is gjven as: 

(1) 

= Sway u =Speed 
r =Yaw rate er = Rudder deflection 

= Yaw Euler angle 

3. SPEED PROFILE CONTROLLER 

As anticipated, the AUV velocity must decrease 
steadily as it approaches the target. This can be 
acconiplished by decreasing the velocity 
proportional to the distance between the AUV and 
target using linear function (Smith, et al. 1993). 
Instead of varying the velocity linearly, a more 
sophisticated version is to map the docking zones 
with various speeds as achieved in the integrated 
fuzzy docking controller. 

4. VIRTUAL TARGET STRATEGY 

The YTS is proposed to assist in dictating the AUV 
heading in order to increase the likelihood of 
docking success. The YTS utilises a simple concept 
of offsetting the real target to ensure the AUV 
homes to 'virtual target ' (fig. 1). The offset target 
causes the AUV to centralise itself quicker relative 
to the mother submarine. For perfonnance 
comparison, both the YTS and non-VTS AUV were 
simulated. Both AUVs demonstrates desired tail 
chase trajectory. The YTS AUV managed to 
constrain itself to dock in a tail chase configuration 
earlier but requires longer time to achieve docking. 
In the simulation, the offset value was constrained to 
be in line with the target vector and both linear and 
Gaussian profiles were tested. The Gaussian profile 
provides the smooth est response with A UV 
exhibiting remarkable agility. The guidance 
algorithm used in the docking phase is the line-of­
sight (LOS) and not PNG algorithm. This is to avoid 
introducing additional parameters thus complicating 
the process of evaluating YTS perfonnance. 

l 
I 

j 
~-Tnj<jby 

! 
Fig. I. Virtual Target Strategy (YTS) 

5. INTEGRATED FUZZY DOCKING 
CONTROLLER 

5.1 Introduction 

The main objective for this part is to unify the 
functionality of the speed profile controller and YTS 
into one integrated docking controller through the 
use of a FIS. The FIS employed is a multi-input 
multi-output (MIMO) system with two inputs (range 
and theta) and two outputs (speed coefficient and 
waypoint offset). To achieve this manoeuvre it must 
be assumed that the AUV has accurate relative 
position information for itself and the dock 
throughout the docking procedure. 

5.2 Cell Partitions 

The inputs are derived from area partitions, or cells 
as shown in fig. 2. The area under investigation is 
the side zone of submarine, assuming that the 
docking process is constrained to occur in only a tail 
chase configuration. . 

Fig. 2. Fuzzy Cell Partitions 

The fuzzy docking controller functions by mapping 
the are~ behind the target into different cells. Each 
individual fuzzy cell incorporates essential heuristic 
information regarding speed and heading (waypoint 
offset) requirement of the AUV. Evidently from fig. 
2, the partitioned cells are asymmetric and vary in 
size. Cells that are near to the submarine are 
classified as dangerous zones. It is crucial to 
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incorporate 'danger cells' into the docking 
algorithm in order to reduce the possibility of 
collision. The embedded FIS is expected to execute 
collision avoidance manoeuvre by dictating the 
speed and heading of the AUV. The Mandani's style 
fuzzy inference system (Mandani and AssiUian, 
197 5) was chosen due to its extraordinary capability 
to intuitively embed abstract human knowledge into 
the controller. 

5.3. Fuzzy Inputs/Outputs 

Figure 3 illustrates the membership functions of the 
two inputs, range (m) and theta (degree) that 
comprise of triangular and trapezoidal membership . 
functions. There are four membership functions for 

.range input and five for theta input. 

Vf 

P8 I
. 0.1 

0 .4 

0.2 

Fig. 3. Inputs Memberships for Fuzzy Docking 
Algorithm 

A reasonable amount of overlapped, 25% or above 
(Y an, et al., 1994) is required for a fuzzy system to 
produce smooth output and to avoid any 
discontinuity. A trapezoidal shape membership 
function has been claimed to bring robustness to 
fuzzy logic controller (Yan, et al., 1994). In this 
case, the trapezoidal shape allows the fuzzy system 
to have a 'dead band' effect, so that the controller is 
less sensitive to external noise. Triangular 
membership function normally creates a 'peak' in 
the controller output surface plot, causing actuator 
demand to fluctuate when there exists small 
perturbations. Figure 4. shows the output 
membership functions of speed coefficient (for 
controlling the AUV speed) and waypoint (for 
redirecting AUV to the virtual target). The 
membership function, MF3, for waypoint output 
was added to provide a smoother output. 

5.4 Fuzzy Rule Base 

The fuzzy rule base has the following form: 

IF Theta is T AND Range is R THEN Speed Coefficient is S 
ALSO Waypoint is W (2) 

Where T, R, S and Ware crisp inputs and outputs. 
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Fig. 4. Outputs Memberships for Fuzzy Docking 
Algorithm 
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Table I and 2 shows the fuzzy rule base in matrix 
form. The AND method used was Product. For 
composition rule, the most popular type was the 
MAX-MIN but various authors (Andreeva, et al., 
1999; Negnevistsky, 2002 and Yan, et al., 1994) 
have discovered that the MAX-DOT in general 
provides more appealing result since there are less 
information loss. This can be attributed to the use of 
Larsen product operator instead of Min operator. 
Consequently, both MAX-MfN and MAX-DOT 
composition rules were tested to observe their 
difference. 

Table l. Speed Coefficient Output Matrix 

Theta\ N M F VF 
Range 
PB PS PM PB PE 
PS PS PB PE PE 
ZE PM PB PE PE 
NS PM PS PS PE 
NB PT PS PS PE 

Table 2. Waypoint Output Matrix 

Theta\ N M F VF 
Range 
PB MF3 MF4 MF5 MF6 
PS MF2 MF3 MF4 MF5 
ZE MFI MFI MF2 MF3 
NS MF2 MF3 MF4 MF5 
NB MF3 MF4 MF5 MF6 

Inputs Abbreviations 

PB =Positive Big N =Near 
PS =Positive Small M =Medium 
ZE =Zero F =Far 
NS =Negative Small VF =Very Far 
NB =Negative Small MF =Membership Function 
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a) b) 

-c) d) 

Fig. 5. Fuzzy Surface Plot (Speed Coefficient) 

Figure 5 a) and c) are output surface plots for the 
speed coefficient using MAX-DOT composition 
rule, while fig. 5 b) and d) used MAX-MIN 
composition rule. Notice that the MA.X- D9T 
composition rule produces a smoother response 
surface compares to the MAX-MIN version. This is 
especially noticeable near the peak of the surface. 
MAX-MIN surface is clustered with bumps and 
ridges. The undulating surface causes the controller 
to have a tendency to produce erratic response in 
noisy environment. The speed coefficient output is 
then multiplied by the target speed to obtain the 
demanded AUV speed at different zones. The 
asymmetric nature of the output surface plot is due 
to the integration of the collision avoidance feature 
into the fuzzy expert system. The abrupt changes in 
surface gradient at negative theta zones are 
compulsory to decelerate the AUV and to avoid 
collis ion. This is preceded by the assumption that 
the submarine was located at the left hand side of 
the AUV (fig. 2). 

a) b) 

- a) d) 

Fig. 6. Fuzzy Surface Plot (Waypoint Offset) 

Figure 6 a) and c) are surface plots for the output 
waypoint using MAX-DOT composition rule, while 
fig. 6 b) and d) used MAX-MIN composition rule. 
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Again, the MAX- DOT composition rule produces 
smoother response surface compare to the MAX­
MIN version. The waypoint output was used to 
offset the distance of the actual target thus creating a 
'virtual' target for the AUV to home on. The surface 
was created with the assumption that if the AUV 
was in the ideal trajectories or desired zone, then the 
offsetting feature was not required. This explained 
the reason why the centre surface produces l<>wer 
waypoint offset value. Conversely, if the AUV i s not 
in the desired zone probably due to undelVt'ater 
disturbances, then the offset waypoint magnitude is 
increased to guide the AUV to desired zone. For the 
later simulation run, the MAX-DOT composition 
rule was selected for the fuzzy docking algorithm 
due to its better response. 

6. SlMULATIONS 

The fuzzy docking algorithm was tested relative to a 
target as illustrated in fig. 7 and fig. I 0. The fuzzy 
docking algorithm was tested from both left and 
right side of the submarine to evaluate its 
performance. For analytical tractability, each 
simulation was compared with the ideal, no 
disturbance model. The noise simulating a simple 
underwater disturbance encountered in practical 
situation was generated using uniform random 

number, smoothed and constrained to ± l m 
magnitude. The noise was then added in the X-axis 
direction (fig. 7 and fig. I 0}. The AUV was 
considered to dock successfully if it managed to 
reach I m from the point target. The performances of 
AUV with and without noise disturbance are 
compared with reference to the following: 

I) Engagement trajectories 
11) Heading angle requirement 

Ill) Actuator demand 
IV) Docking speed and 
V) Miss-distance 

Again, the emphasis shall be focused on the AUV's 
ability to dock in uncertain conditions and not the 
minimum time required. 

6.1 Simulation A 

The first simulation was run with an initial ta rget 
positioned at (I 00, lOO), heading 90° with speed 
0.8m/s, and AUV initial position at [150,0). Both 
resulted in a successful docking (fig. 7), although the 
disturbance model requires longer time to dock. The 
AUV with noise disturbance changes heading 
constantly to accommodate for the disturbance effect 
as shown in the yaw history (fig. 8). Furtl1ermore, 
the actuator demand shows no rudder saturation for 
both the cases, clearly demonstrating the superiority 
of fuzzy controller. The sudden heading change 
clearly noticeable at time 90s in the yaw history is 
caused by the engagement of the docking sequence. 
The sudden offset of the waypoint causes the AUV 
to react aggressively. This phenomenon is not 
desirable and will be investigated in future work. 

GCUV2003 



For the noise model, there were abrupt AUV speed 
changes during docking process as shown in fig. 9. 
The speed changes are compulsory in order to avoid 
any collision with the submarine when the AUV has 
drifted into the danger zone. The miss distance (fig. 
9) shows an increase of the range at approximately 
l80m due to the deceleration of the AUV. Clearly, 
the low precision potential of the fuzzy logic has 
been utilised to provide robustness to the overall 
docking process for this simulation. 

6.2 Simulation B 

The second simulation was tested with a initial 
target positioned at [100,100], heading 90° with . 
speed 0.18m/s, and AUV initial position was altered 
to [50,0]. Again, both show successful docking (fig. 
l 0). However, the docking process takes longer 
compared to the ftrst simulation, since the AUV 
collision avoidance feature requires the AUV to be 
in a 'safety' zone before accelerating to the target. 
The AUV with disturbance changes heading 
constantly to accommodate for the swaying as 
shown in the yaw history (fig. 11). The controller 
also shows no rudder saturation for both the cases. 
The sudden heading change at time 90s is caused by 
the initialisation of the docking algorithm. 

Rapid AUV speed changes during docking process 
as shown in fig. 12 was even more pronounce 
compare to the first simulation. Docking from the 
left side of the submarine posed a higher risk of 
collision due to the submarine structure. The speed 
change is to decelerate the AUV and allowing it to 
enter the safety zone, before accelerating to the 
target. The miss distance (fig. 12) shows an increase 
of range at approximately 150m and 180m due to 
the deceleration of the AUV. Evidently, the fuzzy 
logic capability to integrate expert knowledge, 
knowledge of docking and collision avoidance in 
this case has been fully exploited in this case. 

7.0 CONCLUSION and REMARKS 

The FIS performed an excellent task of unifying 
both the speed profile controller and VTS into one 
controller. Although, the data incorporated are still 
subjective and depends much on human knowledge, 
at least the fuzzy rules and membership functions 
provides a methodology for integrating and 
modifying the knowledge. 

Other simulation models were also tested but the 
results were unsatisfactory. The AUV failed to dock 
completely when imposed to a directional sea 
disturbance. This was caused by the proportional­
derivative optimised ANFIS heading controller; 
with no integrator, the model is vulnerable to 
setpoint and steady state error (Fossen. 1985). 
Higher magnitude of current disturbance model was 
also tested but the AUV fuzzy docking algorithm 
demonstrated osci llatory and unstable behaviour in 
that situation. The problem was partly caused by 
flaws in the expert knowledge. One of the major 
problems is the increase of accuracy required as the 
AUV approaches the target. Slight sway relative to 
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the target at near range causes the AUV to drift int~ 
neighbourhood cells, which induces the oscillatory 
behaviour. An effective solution to this would be tu 
employ a multistage FIS. Moreover, the Subzero [ J 
is a small research torpedo shaped AUV with 0.1 irt 
diameter and length of I m, this makes it unsuitable 
for real underwater disturbance simulation. 

Overall, the simulation results obtained shows 
viability and attractiveness in the techniques 
employed. However, the problems encountered 
conf11111 that more detail analysis is needed for the 
controller to function appropriately in practical 
situation. 
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Abstract: Traditional approaches to AUV collision avoidance involve the 
adaptation of COTS electronic scanning sonars that have been designed for 
applications where Low power is not a consideration. This has an adverse impact 
on the endurance and performance of the AUV. The navigation and obstacle 
avoidance processing is typically performed by the vehicle control processor, 
acting on large volumes of data fed at high speed from the sonar. This results in a 
heavy burden on the AUV control processor. A novel approach to the sonar is 
described which addresses both of these issues. The sonar used achieves power 
consumption figures that are an order of magnitude less than typical sonars fitted 
to AUVs. The sonar also uses its own DSP to perform the data analysis functions, 
thus reducing the processing burden on the vehicle computer and allowing the use 
of a low speed serial link between the sonar and the AUV. Copyright ® 2003 
UDTEurope. 

INTRODUCTION 

Hammerhead (Figure l) is an Autonomous 
Underwater Vehicle (AUV) with adaptive 
tracking and navigation capability. This 
EPSRC funded project commenced in October 
2001. A deep mobile target (DMT) has been 
converted into a rudimentary AUV. Its small size 
and modular construction make it an ideal 
platform to use as a low cost technology 
demonstrator. In this project, teams from the 
Universities of Plymouth and Cranfield in the UK. 
are working together to integrate navigation, 
control and vision systems into a single vehicle 
for a seabed inspection task. The navigation 
system will be based on a MSDF algorithm which 
will produce accurate navigation information 
continuously in real-time. During an actual 
surveying task this subsystem will be enhanced by 
data from a vision system in order that mission 
parameters can be changed based on changing 
mission and environmental conditions. Once the 
navigation data has been suitably processed it will 

be fed to the guidance and control system for 
appropriate action. 

As an extension to the original work programme 
the University of Plymouth has undertaken a 
separate study of the use of sonar for collision 
avoidance. During the latter part of 2002 a search 
was made for a suitable sonar for this purpose. At 
an early stage in this search, studies on update 
rates ruled out the use of mechanically scanned 
sonars. This meant that a suitable electronically 
scanned sonar had to be found. This proved 
problematical for several reasons: size, power 
consumption and price. The solution was found in 
the adaptation of an existing low power sonar 
offered by one of the Industrial Steering Group 
members, J&S Marine Ltd. 



AN ELECTRONIC SCANNING SONAR 
DESIGNED FOR AUV USE 

Some of the desired qualities of AUV obstacle 
avoidance sonar are listed below: 

• Low power consumption 
• High resolution with adequate detection 

range (depending on the AUV 
manoeuvrability) 

• High Scanning rate 
• Low Cost 
• Embedded clustering or classification 

logic 
• Embedded static and dynamic object 

tracker 

J&S Marine Ltd are a UK. based manufacturer of 
sonar equipment including transducers, 
underwater communications systems, diver 
navigation systems and electronic scanning 
sonars. J&S Marine are involved in the 
Hammerhead project as industrial advisers. It was 
decided that an existing electronic scanning sonar 
would be adapted for use on the vehicle. This is 
seen by J&S Marine as an experimental situation 
in which feedback will be obtained from trying 
different scanning configurations and the results 
used to define a catalogue AUV sonar product. 
The adapted product is shown in Figure 2. The 
sonar comprises an externally mounted transducer 
assembly (shown on top of the vehicle in Figure 
2), and an internally mounted electronics unit. The 
sonar has the ability to operate in several different 
scanning modes due to the use of two transmitter 
systems, one fixed and one steered. This will 
allow the University of Plymouth to experiment 
with different methods of collision avoidance and 
sea bed terrain following. The transducer 
assembly is designed to rotate to provide a 
horizontal or a vertical scanning capability. In the 
experimental version this rotation angle must be 
set and fixed prior to each run. In the production 
model this feature will be software selectable. 
Normally, the sonar would be incorporated into 
the nose of the vehicle, but Hammerhead has a 

drop weight in the nose which is released if the 
vehicle floods. 

System Overview 

Figure 3 shows the system block diagram. The 
sonar receiver is a narrow band electronically 
scanned system using an FFT beamformer. There 
are two transmitters, one having fixed steer and 
the other using a set of phase shifters to steer the 
beam. All aspects of the sonar are controlled by a 
low power DSP - a Texas TMS320LF2407 A. 
This device is a 16 bit fixed point DSP running at 
40 MIPS. It has 32k of onchip FLASH memory 
and 2.5k of onchip RAM. Whilst the device was 
originally targeted at motor control, the fact that it 
has extensive VO capabilities makes it ideal for 
embedded applications. Each sonar transmission 
is initiated by the DSP which selects the 
appropriate transmitter, and controls the 
frequency and duration of the transmit pulse. 
During the subsequent reception period, the DSP 
controls the digitisation of the return signals from 
the 16 elements in the linear receiver array. The 
returns are amplified, quadrature detected and 
converted into digital form prior to storage in 
FIFO memory. The DSP reads the samples from 
memory and performs a 64 point complex FFT on 
them to form a set of quarter beams. The DSP will 
typically digitise 256 sets of beams across the 
operating range of the sonar. At each of these 
range bins there are 64 beams across the 60 
degree sector. The DSP can then perform 
amplitude detection on the target information in 
order to determine if there are obstacle ahead of 
the AUV. Target detection information is passed 
to the AUV control processor by means of an 
RS485 serial data link. The control processor can 
adjust the operation of the sonar over the serial 
link by means of a set of commands to determine 
operating range, scanning configuration and 
detection parameters. 

Receiver array 
Figure 4 shows the transducer configuration. The 
receiver array consists of 16 elements spaced at 
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one wavelength intervals. This results in a receive 
beam which is just over 3 degrees wide and which 
can be steered over a 60 degree sector. In the non 
- steered direction the elements are curved to 
produce an acceptance angle of+/- 30 degrees. 

Fixed transmitter array 
Figure 4 shows the location of the fixed 
transmitter array. It produces a beam which is 60 
degrees wide in the direction of scan. The beam 
cuts off sharply at the edges of the scan sector to 
reduce the aliasing effects of the under sampled 
receiver array. In the non scanned direction the 
beam is 25 degrees wide. 

Steered transmitter array 
This array is similar to the receiver array. Each 
element is driven by an individual power 
amplifier coupled to a digital phase generator. The 
effect of this is to allow the 3 degree wide 
transmit beam to be steered over a 60 degree 
sector in a direction orthogonal to the steer 
direction of the receiver. Figure 5 illustrates this. 

Operating Modes 
Figure 6 shows the ability of the mounting 
arrangement to allow the sonar to be operated in 
either a horizontal or a vertical scan configuration. 
Figures 7, 8 and 9 show the three modes of 
operation. These are, respectively: 

• Mode 1 : Fixed, broad vertical beam 
transmitter, horizontally scanned receiver 

• Mode 2: Steered, narrow vertical beam 
transmitter, horizontally scanned receiver 

• Mode 3: Steered, narrow horizontal beam 
transmitter, vertically scanned receiver 

Mode 1: Fixed beam mode is commonly 
employed by most commercial forward looking 
sonars. In this mode, the sonar is capable of 
ensonifying a large region in a single ping, which 
is vital for the purpose of obstacle detection. Here, 
range and bearing information are acquired but 
not depth. This makes it suitable for an AUV 

performing mid-sea surveying and mine-searching 
missions, where the environment is uncluttered or 
sparse. However, discrimination of object depth 
can be difficult. In the case of shallow water 
(200rn or less) and when the AUV is cruising at 
low altitude, near to the sea bed performing pipe 
tracking or terrain following mission, the 
combined effect of boundary reverberation noise, 
multi-path returns and bottom clutter can rapidly 
degrade the sonar data [I]. 

Mode 2: By incrementally sweeping the fan-like 
horizontally beams vertically, as much as 3 • every 
ping, for a total angle of 60", the sonar 
performance in object discrimination and 
characterisation in the spatial domain are 
significantly enhanced. Furthermore, this feature 
provides an ability to focus on certain region of 
interest, which is critical in tracking applications. 
Ultimately, the temporal and spatial information 
extracted from this mode, allows the AUV to 
conduct more complicated missions such as mine­
hunting and optimal motion planning in 30. 

Mode 3: Mode 3 is similar to mode 2, but with 
the transducer being rotated ninety degrees. The 
non-steerable version of this mode is commonly 
employed by surface vessel for collision 
avoidance purposes. Unlike mode 2, this mode 
tends to put more emphasis on discriminating 
objects in the vertical direction (terrain) rather 
than in the horizontal direction (suspended 
objects). An AUV performing a terrain hugging 
manoeuvre such as pipeline tracking or seafloor 
surveying, needs to estimate the terrain slope in 
advance in order to initiate effective manoeuvre, 
hence justifying the use of this mode. 

LOW POWER TECHNIQUES FOR AUV 
SONARS 

Figure 1 0 contrasts the approach adopted for the 
low power AUV sonar with a conventional 
electronically scanned sonar. The conventional 
approach uses a sonar head which typically will 
consume about 25W - SOW of power from the 
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vehicle supply. The output of the sonar head is fed 
to a PC for processing and display. The PC may 
be an embedded board, in a format such as 
PC 104. The PC will typically consume a further 
SW- lOW of power. 

In the approach described here, the sonar achieves 
a power consumption of SW by a combination of 
the following techniques: 

1) Reduced number of receive channels 
2) Analogue front end power control 
3) Low power ftx.ed point DSP 
4) No PC used for processing or display 

1) The small number of receive channels saves 
power by reducing the number of analogue 
amplifiers and analogue to digital converters 
required. In a conventional imaging sonar the use 
of only 16 channels can compromise the image 
quality by reducing the number of receive beams 
which can be displayed. However, in a collision 
avoidance sonar, there is no need to present an 
image to a human operator, and hence subjective 
image quality is not an issue. What does matter is 
the ability to detect and localise an object which 
the AUV must avoid. To do this the sonar must 
have an operating range and scanned sector which 
are sufficiently large to guarantee obstacle 
avoidance within the operating envelope of the 
vehicle. 

2) The use of power switching on the analogue 
circuits and analogue to digital converters ensures 
that power is not wasted during the time between 
sonar transmissions. This technique relies on the 
fact that the DSP requires a fmite time to process 
the detected signals from the sonar and relay the 
target detection information to the AUV control 
processor. During this time the analogue circuits 
are switched off and experience shows that this 
produces a considerable power saving. 

3) The DSP used in the AUV sonar has inherently 
low power consumption. It consumes less than 
0.5W. The compromise that must be accepted 

when using such a device is limited processing 
speed. At 40MIPS the device is capable of 
processing about 4 frames of sonar data per 
second in a conventional irnaging sonar mode. In 
the AUV sonar it is possible to reduce the number 
of operations performed by the DSP when 
compared to those required for presentation of the 
image to a human operator. Figure 11 illustrates 
this point. The processing chain illustrated at the 
top of the figure is representative of a typical 
electronic imaging sonar used for collision 
avoidance. The darker coloured processing blocks 
would typically be carried out by a DSP, the 
lighter coloured blocks represent the operations 
performed on a PC to present the image to an 
operator. In this case the target detection and 
tracking operations are performed in software 
running on the PC. The output is usually some 
form of serial data stream which carries target 
position data to the control computer. In the case 
of the low power AUV sonar, the blocks at the 
bottom of Figure 11 all run on the DSP. It is also 
possible to reduce the number of the blocks by 
eliminating those (such as dynamic range 
compression and PPI transformation) which are 
solely concerned with presentation of data to a 
human operator. By making these reductions in 
the processing required it is possible to use a low 
power DSP of limited performance and still 
achieve frame rates comparable to those achieved 
by a conventional approach using much higher 
power. 

4) The observations made in the previous section 
on eliminating the need for an MMI or PPI 
display also mean that there is no need to use a PC 
as a display device. This saves a large amount of 
power and simplifies the system architecture and 
software. 

TARGET DETECTION AND OBTACLE 
A VOIDANCE TECHNIQUES 

Raw sonar data tends to be corrupted with noise. 
This requires additional processing stages to 
obtain a better representation of the environment. 
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Sonar signal processing can be decomposed into 
the processes shown below (2]: 

• Filtering and Segmentation 
• Feature Extraction 
• Tracking 
• Map Building 

Filtering and Segmentation 
The fust step of sonar signal processing typically 
entails the elimination of noise and backscatter of 
sonar image caused by scattering and 
reverberation. This can be achieved by applying 
simple Gaussian, median or mean filter to the 
image. Then, a form of segmentation process, 
popularly known as thresholding is then applied to 
the image to enhance object background 
discrimination. Typically, this is sufficient but for 
perfonnance critical application, a more 
sophisticated version, which is adaptive v1a 
switching function-integration can also be 
implemented (3]. 

Most segmentation algorithms are very 
computationally expensive and time consuming. 
As a result, some authors advocate using 
selective, data compressing and multirate I 
multidepth filtering techniques. In a selective 
approach, the static and dynamic parts of the 
image are discriminated using the frequency 
domain method (1 dimensional Fast Fourier 
Transform (FFT)) or time domain method moving 
average (4]. Once the dynamic object is detected, 
it will be tracked and segmented only in the 
region of interest. For static objects, only new 
objects need to be segmented. The multirange I 
multirate approach attempts to redistribute the 
computational load by sampling the area at 
various rates depending on their importance. As 
illustrated in Figure 12, the region adjacent to the 
AUV is more critical and requires a higher 
sampling rate [5]. As an alternative, Zanoli et al. 
[6] attempted to compress the sonar data before 
filtering, significantly reducing the processing 
requirement. A combination of these 

methodologies will be applied to this prototype 
sonar. 

Feature Extraction 
Feature extraction is a process that is intimately 
linked with object classification. In image 
processing, feature extraction entails accurate 
measurement of object features. Ideally, the 
feature selected should be invariant under various 
circumstances while extracting maximum 
information regarding the object. Such features 
can be object dimensions such as area, perimeter, 
or more complicated parameters such as moments, 
mean, and variance used to describe statistical 
distributions. 

Tracking 
In this context, tracking is a process whereby the 
object attributes such as position and speed, 
prediction accuracy are estimated, compared and 
recorded. ln video processing, one tries to 
correlate a predetermined features with 
subsequent frame features, at the same time 
noting their differences. The accuracy of the 
predicted target attributes plays a critical part in 
characterising its behaviour. These attributes are 
vital for successful collision avoidance as they 
assist in quantifying the risk. Lane et al. [7] 
employed optical flow with associative searching 
trees while Moran et al. [8] proposed using 
multiple hypotheses for object tracking. 
Nonetheless, both these pixel based schemes are 
very computational expensive, precluding their 
application in time-critical applications. 

Alternatively, the classical Kalman filter has also 
been applied successfully to sonar tracking 
systems [5, 9, 10]. Currently, we are on the stage 
of employing two different Kalman filters for 
tracking dynamic and static objects. Isolating the 
two simplified the analysis and renders it less 
computational demanding. However, this is still at 
a preliminary stage, and this methodology is 
likely to change depending on the outcome. For 
the case of a dynamic obstacle, the implemented 
tracking filter is employed to track the state vector 
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sk = [sk §I r for each of the four state variables 
Sx, Sy, Sz, (position) and additional Sr which is the 
radius of the circle circumscribing the object. It is 
used to characterise the predictability, hence the 
collision risk of the obstacle. Alternatively, 
including object area and change of area in the 
state vector can also enhance the tracking 
performance [ 10]. Tracking of static obstacles is 
the responsible of another simplified Kalman 
filter that possess identical state variables as the 
former except for the derivative terms. 

In is a well known fact that Kalman filters suffer 
from the curse of dimensionality. Increasing the 
number of tracked obstacles will rapidly overload 
the filter. Thus for those objects that shift out of 
the field of view, they should be tracked for only a 
predefined time. Once the predefined period has 
expired, an action needs to be taken for both static 
and dynamic targets. Initially, the static object 
will be stored and the countdown counter set. 
Storing the object permits quick retrieval in case 
the AUV is navigating the area again. However, 
without a global frame of reference, the AUV is 
relying on a dead reckoning system that is 
susceptible to constant sensor drift, making the 
information unreliable. Once the counter 
countdown is reached, the object is deleted. 
Dynamic objects are too unpredictable, and 
should not be tracked more than necessary. The 
lifespan of a dynamic object is determined by a 
countdown counter, however, in this case with a 
shorter timeframe. 

Map Building 
This is still an open topic and will be updated as 
the research progress. Initially, we envisage using 
a geometrical representation scheme to 
characterise the AUV environment. Here, 
dynamic obstacles will be considered as spheres 
and static obstacles as cylinders (vertical 
projection of a circle). Nevertheless, other forms 
such as spatial decomposition will also be 
investigated. A hybrid method also sounds 
promising, where each of the scheme's 
advantages can be exploited. 

Collision Avoidance Techniques 
Reflexive avoidance techniques are based on a 
sensor-based approach, where the information 
from the sensors is sent directly to the actuator 
without passing through the high-level modules. 
This makes them fast and capable of handling 
dynamic situations. Lately, some AUVs have used 
more advanced reflexive modules that are 
integrated with short-term memory, enabling the 
AUVs to exhibit simple projective planning 
capability, such as e~capiog from trap 
circumstances. 

Fuzzy logic is a rule based, multivalued logic 
inference system that tries to take account of 
uncertainty and in the real world. Fuzzy logic's 
ability to quantify abstract expert knowledge has 
made it a choice in solving complicated systems. 
Complex rules can be promptly constructed 
without resorting to obscure mathematical 
techniques. Its transparent nature, excellent 
immunity to noise and error, and real-time 
performance makes it an ideal choice for 
designing both high and low level controllers. 

Various researches have successfully 
implemented fuzzy logic systems in their collision 
avoidance modules [ 11 , 12]. The proposed 
collision avoidance system is based on a hybrid of 
fuzzy logic and virtual force field paradigms. The 
virtual force field paradigm seeks to simulate an 
artificial force field surrounding the vehicle. 
Invariably, any contact with neighbourhood 
objects will cause deformation of the force field. 
The objective is to minimise these deformations 
by locally modifying the control vector. Fuzzy 
logic will be used to assist in mapping different 
parameters such as obstacle position (zones), 
speed, risk factor, etc into behaviours. These 
behaviours such as "maintain height", 
"circumnavigation" and "avoid" will then initiate 
the corresponding actuator actions. 

One inherent weakness of the reflexive teclmique 
is its propensity to get trapped in certain 
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circumstances. Furthermore, the trajectory 
generated is highly non-optimal. Because of this, 
the proposed reflexive avoidance technique is to 
be complimented with advance motion planning 
techniques (research phase) that is capable of 
generating near optimal paths and escaping from 
trapped conditions. A block diagram of the 
proposed collision avoidance architecture is 
illustrated in Fig 13. The arbiter is used to 
coordinate the activation and inhibition of various 
modules. 

CONCLUSIONS 
The sonar presented has been designed for use on 
an AUV, rather than simply being an existing 
imaging sonar fitted to an AUV. Power savings 
have been shown to result from this approach 
which have a corresponding benefit to the 
endurance of the vehicle. The sonar has been 
designed to operate in several scan modes which 
are intended to improve its usefulness in vehicle 
navigation and obstacle avoidance. The resulting 
equipment is to be fitted to the Hammerhead 
vehicle as an experimental platform for assessing 
the optimum scanning system for an electronic 
AUV sonar. A series of experiments will be 
carried out over the next 12 months during which 
time the sonar performance will be evaluated and 
refined. It is the intention of J&S Marine to offer 
the resulting system as a corrunercial product for 
the AUV market within the next 18 months. 
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AUV Sonar Mounting on 
Hammerhead Vehk:fe 

Figure I The Hammerhead AUV 

AUV Sonar Mounting 

Figure 2 : 
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AUV Sonar System Overview 

Figure 3 

AUV Sonar Transducers 

Figure 4 
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AUV Sonar Beams 
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Figure 7 

Figure 8 
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Figure 9 

AUV Sonar Hardware comparison 
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A.UV Sonar Software compans·on 
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AUV Sonar Collision Avoidance 
Architecture 

Figure 13 
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Electronically Scanned Collision Avoidance Imaging Sonar 

ATSOO 
Description 
AcuTrak PSE Ltd has developed the AT500 imaging sonar for use on Remotely Operated 
Vehicle (ROV) and Autonomous Underwater Vehicle (AUV). The AT500s use of the latest 
DSP control and data processing electronics has resulted in a highly compact yet powerful 
imaging sonar which can be used to aid the ROV pilot and for collision avoidance in AUV. By 
interfacing the AT500 to a PC, sonar images can be displayed in real-time and logged for 
later editing and analysis. 

FEATURES 

• Electronically scanned 

Sonar 
• Raptd scan rate 

• 60" horizontal scan angle 

• Swltchable vertical beam 
width 

• Compact stze 
• Real-time Range and 

Bearing lnfonnatlon 

SYSTEM OVERVIEW 

Sonar 
The AT500 uses a transducer array to 
electronically scan for underwater object up 
to 75m away over a 602 arc in front of the 
sonar. 

PC Software 
Interfaced to a PC, AcuTrak software 
allows images from the at500 to be 
displayed in real-time. Clicking on the sonar 
display give information on range and 
bearings of targets. 

Controls 
Simple on-screen buttons are used to 
configure the AT500. The operator has 
control over range, gain, clipping, and 
beam width. 

Data Logging 
The PC software can be used to capture 
sequences of sonar scans into a log file. 
This data can then be replayed, edited and 
analysed. 

Construction 
The sonar is housed in a li~twei~t 
anodised aluminium cylinder. The end caps 
are edged in polyurethane to give resistance 
to impacts. An external connector is located 
at the rear of the housing for power input and 
data communications 

Environment 
The AT500 has been desigl to withstand a 
harsh environment. 1t is rated to a standard 
operational depth of 1 OOOm. 

AUVoption 
As an option, the AT500 can be used in 
stand·alone mode withou1 the need for a 
separate PC. This mode is intended for use 
as a collision avoidance and navigation 
sonar for AUVs. The AT500 detects 
obstades in the AUV's path and sends 
target range and bearing data to the AlN 
navigation system via a serial link. 
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SPECIFICATIONS 

Dimensions 

Weight in water 

Connector 

CONTACT 

0tOOmmx 190 

Slightly Negative 

SubConn8 

MCBHRASM 

Pater ROBINSON 
AcuTrak Precision Survey 
Equipment Ltd 

AcuTrak House 
lror1w<lm; Way 

WamnAoad 
Camforlh 
Lancs. L.A5 9EU 

United Ki1gdom 

• T el: +44 1524 736973 

• Fax: +44 870 164 1665 

e-rnal peterr@ arutrak.demon.co.uk 

© AruTrak PSE Lld 2002 

All rights reserved. This publication is issued to 

provide outline information only which (unless 

agreed by the Company In writing) may not be 

used, applied or reproduced for any purpose or 

tonn the part of any order or contract or be 

regarded as a representation relating to the 

products or services concerned. The Company 

reserves the right to alter without notice the 

speciftcation, design, price or conditions of 

supply of any product or service. 
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