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ABSTRACT Many engineering fields, such as automotive, aerospace, and the emerging challenges
towards industry 4.0, have to deal with Real-Time (RT) or Hard Real Time (HRT) systems, where temporal
constraints must be fulfilled, to avoid critical behaviours or unacceptable system failures. For this reason,
estimation of code’s Worst-Case Execution Time (WCET) has received lots attention because in RT systems
a fundamental requirement is to guarantee at least a temporal upper bound of the code execution for
avoiding any drawbacks. However, until now there is no approved method to compute extremely tight
WCET. Nowadays, indeed, HRT requirements are solved via hardware, using multi-cores embedded boards
that allow the computation of the deterministic Execution Time (ET). The availability of these embedded
architectures has encouraged the designers to look towards more computationally demanding optimal
control techniques for RT scenarios, and to compare and analyze performances also evaluating a tight
WCET. However, this area still lacks deep investigations. This paper has the intent of analysing results
regarding the choice between three of the most established optimal controls (LQR, MPC, SDRE), providing
the first link between WCET analysis and control algorithms performances. Moreover, this work shows how
it is also possible to obtain a minimal ET solution for the nonlinear SDRE controller. The results might be
useful for future implementations and for coping with Industry 4.0 emerging challenges. Furthermore, this
approach can be useful in control system engineering field, especially in the design stage for RT or HRT
systems, where temporal bounds have to be fulfilled jointly with all the other application’s specifications.

INDEX TERMS Real time systems, Optimal control, Control systems, Worst Case Execution Time, Digital
Implementation, SDRE.

I. INTRODUCTION

The embedded hardware systems used for control appli-
cations are becoming more and more performing to meet
the growing needs, in terms of computational performances,
required by the increasing complexity of control tasks, for
which they are appointed in real-world applications. Many
engineering fields, such as automotive, aerospace, and in
recent years also the emerging challenges towards industry
4.0, have been already using Real-Time (RT) or Hard Real-

Time (HRT) systems to deal with event-triggered and time-
triggered tasks [1]. This is because of the increasing number
of sensors and even more sophisticated control algorithms,
require that the system cannot lose deadlines, especially if
they involve safety concerns. The management and imple-
mentation of these algorithms are distributed among different
tasks running on the embedded system while RT or HRT
temporal constraints must be fulfilled as well, to avoid critical
behaviours or unacceptable system failure. Therefore, these
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HRT systems must be designed according to the resource
adequacy policy, providing sufficient computing resources
to handle both the specified worst-case load and fault sce-
nario. However, in order to achieve even more demanding
objectives to control systems, the linear controllers have to
be overcome because in most of the control applications
the PID is still the most used controller. For example, in
an industrial environment, linear control algorithms are pre-
ferred to facilitate the PLC to save resources since it has
to manage different architectures and respects different RT
constraints. Whereas in the Automotive field, RT or HRT
systems are used to guarantee security and performance to
the vehicles and they often use nonlinear controllers due
to the need to handle complex dynamics models [2]. For
example advanced models of two-wheeled vehicles, such as
those proposed in [2] for an all-wheel-drive vehicle, or in
[3] for single-tracked vehicle, require at least seven coupled
nonlinear equations of motion. Nevertheless, to achieve even
more sophisticated Industry 4.0 objectives and to control
new forthcoming systems, not in trivial fashion, the widely
used PID linear controller has to be overcome. To satisfy
the temporal constraints and to guarantee correctly working
systems, research on timing analysis of RT systems started
many years ago and has been focused on the Response
Time Analysis (RTA) [4], [5], which refers to the time that
a message requires to be sent and received. Indeed, many
works have been devoted to the development of methods
based on deterministic RTA, for an estimation of the code
ET. Even though many factors have been considered, it is still
difficult to analyze a real system using those methods. One
of the main reason is the unpredictable randomness of the
Central Processing Unit (CPU) scheduling which cannot be
accurately modelled. Because of these deficiencies, usually,
some degrees of pessimism are added to the model as a
price for indeterminism, and the Worst-Case Execution Time
(WCET) is evaluated. The WCET has received lots of atten-
tion because, in RT or HRT critical systems, it is a fundamen-
tal requirement to at least guarantee a temporal upper bound
for the code execution and avoid any drawbacks. However,
until now, there is no approved method to compute extremely
tight WCET, as shown in [6]. Nowadays, HRT requirements
can also be solved via hardware, using multi-cores embed-
ded boards that allow the computation of the deterministic
Execution Time (ET). In these boards, the running task is
considered on a single thread, there is no CPU scheduling
and each routine has a dedicated core. There are different
companies specialized in HRT embedded boards, amongst
them, a few years ago the benefits of XMOS technology
have been pointed out in comparing with other boards [7].
This allows us to calculate with deterministic certainty, the
Best Case Scenario (BCS) and Worst Case Scenario (WCS)
with native tools by the workbench. The availability of this
embedded architecture has encouraged the designers to look
towards more computationally demanding optimal control
techniques for RT scenarios and to compare and analyse
performances also evaluating a tight WCET. Indeed, this

area still lacks in-depth investigations while plenty of papers
have been produced in the literature addressing the imple-
mentation of different control laws on single-core embedded
architectures [8]. Therefore, the aim of this paper has been
primarily to compare optimal control techniques through per-
formance and ET analysis. This was possible by exploiting
the HRT board characteristics, and it has been proposed a
method to evaluate in a deterministic way the Execution Time
required by the controller’s implementations. Furthermore,
once evaluated both performance and ET of three most used
optimal controls, in the light of this novel, proposed analysis,
it has been possible to improve the execution time of the State
Dependent Riccati Equation (SDRE) nonlinear controller.
The improvements are related to implementation issues and
it has been proposed a method to achieve a minimal ET solu-
tion, useful for control regulation problems, which decrease
the computational effort required by the SDRE nonlinear
control algorithm. Amongst various control techniques, the
optimal controls ranging from linear to advanced linear up
to nonlinear, have been considered. In embedded system
energy saving is crucial due to limited energy availability
and optimal controls allow to accomplish control tasks also
taking into account energy minimization. Moreover, optimal
controls can handle systems which have strong dynamics
couplings, even with significant non-linearities where the
need to manoeuvre the systems in a non-trivial fashion to
achieve good performances is required. They can also be used
to open-loop trajectory optimization, e.g. in robotics, where
they are extremely useful for robot’s motion-planning [9].
This paper focuses mainly on discrete-time implementations
[10], being those of greater interest for practical applications.
Discrete-time version of Linear Quadratic Regulator (LQR)
[11], Model Predictive Control (MPC) technique [12] and
nonlinear technique based on the State Dependent Riccati
Equation (SDRE) [13] have been considered and analyzed
with an HRT board. The control laws have been tested first in
a simulation environment and then applied to an experimental
set-up using the HRT board based on XMOS technology.
To this purpose, a motorized four-wheeled mobile robot has
been built, it is equipped with an inverted pendulum mounted
on top of and joined by means of a rotational joint. A control
law has to keep the pendulum in balance while having the
cart tracking the desired position in space. The system’s
sensing is accomplished providing data by an optical encoder
measuring the angle of the pendulum, and by a distance sonar
sensor tracking the cart position w.r.t. a fixed obstacle.

The remainder of this paper is organized as follows: in
Section II an overview of related work is presented, Section
III introduces the linear and nonlinear discrete models of
the cart-pendulum system in state-space form; Section IV
recall the theory behind the optimal control laws used to
stabilize the system and provides some simulation results;
in Section V a new minimal ET solution for nonlinear
SDRE controller is presented while Section VI describes the
hardware platform and the sensors used in the real control
application. Section VII describes the differences regarding

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3019776, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the implementation between classic SDRE and the minimal
ET solution proposed. The Simulations and Experimental
results are shown in Section VIII are shown, and Section IX
concludes the paper.

II. RELATED WORK
In this subjects, most relevant works are presented consid-
ering the issues discussed above. Engineers of computer
science have investigated a lot of methods to achieve a
deterministic estimation of the WCET. The determination
of upper bounds on ET is a necessary step in Real-time
Computing (RTC) which refers to systems subject to RT
constraints. Different work [14], [15], [16], [17], highlight
the importance of the predictability’s timing behaviour for
RT embedded systems. Some work propose static and proba-
bilistic analysis of the WCET as shown in [18], [19] and [20],
while the probability response time distribution of periodic
tasks on a uniprocessor system was developed in [21]. The
approaches can be either pragmatic with a simulation [17]
or based on the statistic methods [14]. Another possibility
is to use estimation algorithms, to obtain a prediction of the
future execution timing [15]. However, most existing analysis
methods are based on deterministic RTA, and there is still
no approved method to compute extremely tight WCET [14]
[15]. Several tools and algorithms are available on the market
that allow calculating the ET of the tasks with some degree of
pessimism. Nevertheless, these tools can ensure reliability in
HRT system only considering a higher limit that exceeds in
every task the real WCET [22], [23]. In the field of embedded
system, these problems are overcome using micro-controllers
developed to HRT problems. Amongst various producers, the
XMOS family has been chosen because deemed suitable for
the novel analysis carried out in this paper and introduced
in the section above. Indeed, until now at best knowledge of
the authors, there are no works focused on the WCET of the
control algorithms used for RT or HRT applications which
aims to improve the controllers’ feasibility. In literature,
progress based on sensor selection in control design receives
a substantial interest in the last few years. For example, in
[24] a Linear-Quadratic-Gaussian (LQG) control is applied
to a Maglev suspension and it has been pointed out the sig-
nificance of achieving also, for RT scenario, even more per-
forming solutions to combine multi-objective optimization
through an adequate sensor choice. Regarding the control
techniques, different works deal with optimal control laws
and suggest a discrete implementation on micro-controllers
[10]. Some works are focused on the evaluation of the per-
formances of these optimal controllers, mainly in simulation
and sometimes also experimentally. In [25] the study was
performed on a simulated model of an inverted pendulum,
and it has been shown that the LQR algorithm works better
for stabilization problems and disturbance rejection, while
the MPC controller is more suitable for the trajectory tracking
task. In [26], two optimal control techniques such as LQR
and SDRE, have been applied to a double inverted pendulum
on a cart and these were investigated and compared. In

particular, simulations reveal the superior performance of the
SDRE over the LQR under strong nonlinear conditions, and
some improvements that could be provided by the Neural
Networks, which compensates model mismatching in the
case of LQR. Differently in [27] was tested a DC motor
speed controller. The simulations show that the control ef-
forts are lower in PID and LQR than in MPC, but the MPC
outperforms for reference tracking and constraints handling.
In [28], assuming the same linear control parameters, the
effectiveness of the SDRE control over the LQR control is
demonstrated despite a more complex design. Besides, in
[29] traditional optimal strategies such as LQR and SDRE are
investigated when applied to the control of spacecraft forma-
tion flying. In this case, the accuracy and the cost of maintain-
ing the requested orbital configuration are evaluated, and the
analysis shows as the SDRE allows to better take into account
the real dynamics at an increasing level of approximation.
However, despite the above-mentioned analyzes and compar-
isons performed on these techniques, a timing analysis seems
not has been deepened. In this regard, this paper aims to
propose a novel approach to evaluate control techniques by
a thorough analysis of both the computational performances
and the WCET of the optimal control algorithms taking into
account the already well-known validated implementations.
The analysis carried out on an RT experimental set-up (a
cart-pendulum mobile robot depicted in Fig.1) has the intent
of showing results regarding the choice between three of
the most established optimal controls, providing the first
link between WCET analysis and the control algorithms
performances. Moreover, a novel minimal ET solution for
the nonlinear SDRE controller is proposed. These results
might be useful also for future implementations to solve
Industry 4.0 challenges, where Multi-Agents Systems have to
collaborate and exchange messages without loose deadlines
in RT. Indeed, the tendency to bring the calculation of CPS
towards the edge computing, and therefore on low-cost and
lower performance embedded devices, as described in [30]
[31], requires the use of less computationally demanding
control algorithms. Otherwise, once designed an SDRE non-
linear controller based on the system model, it is possible to
develop more easily a digital twin to monitoring parameters
and system’s conditions in broader functioning range and
to apply a predictive maintenance procedure, as proposed
in [32]. However, the proposed analysis could be useful in
control systems engineering especially during the control’s
design stage for RT or HRT systems, where temporal bounds
have to be fulfilled jointly with all the other application’s
specifications.

III. CART-PENDULUM MODELS
In this section, the model of the cart-pendulum robotic sys-
tem depicted in Figure 1 has been derived. Firstly, the non-
linear model is presented, and it is shown how to obtain both
the nonlinear State-Dependent Coefficient (SDC) Factoriza-
tion, and the discrete-time model in state-space form, which
have been used in control implementation. Then, the model
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FIGURE 1: Cart pendulum system.

derived has been trivially linearized for developing the LQR
and MPC linear control techniques as well. The different
control laws will be recalled in the next sections.

To obtain the above mentioned discrete-time models, the
nonlinear continuous-time dynamic equations for the cart-
pendulum system in Figure 1 has been developed first. Then,
the system has been rewritten in its state-space linear-like
form for subsequent nonlinear control implementation.

A. CART-PENDULUM NONLINEAR DYNAMIC
EQUATIONS

The nonlinear equations for the cart-pendulum system in
Figure 1 are known and can be summarized in a compact
form as follows:

(m+M)ẍ+ (b+ γ)ẋ+mLφ̈ cosφ−
mLφ̇2 sinφ = β E

−mL cosφẍ− (Jp +mL2)φ̈+mgL sinφ = 0

(1)

Meaning and description of the variables and physical pa-
rameters in Eq.(1) are listed in Table 1. The system’s control
input is the motor voltage, here defined as E, it actuates the
electric motors connected with the wheels, their dynamics
generates external forces and moments, here defined as F
(see Fig. 1 ). The modelling details of motors-cart interaction
are reported in Appendix B.

B. SDC FACTORIZATION OF NONLINEAR
CART-PENDULUM MODEL

The system (1) can be written in linear-like form obtaining
the SDC matrix. The system’s state is defined as xs =
[x, ẋ, φ, φ̇]T , the continuous-time system’s SDC matrix is
Acnl(xs), the system is control-affine, its input matrix is
Bcnl , the output matrix is Cnl while u = E is the control
input. Therefore the linear-like form of the system can be
written as:

TABLE 1: Physical parameters of the cart-pendulum system

Parameter Value Description
M [kg] 2.683 Mass of the cart
m[kg] 0.062 Mass of the pendulum
L[m] 0.303 Half the length of the pendulum
b[N/m sec] 0.15 Coefficient of friction of the cart

Jp[kg m2] 0.0019874 Inertia moment of the pendulum with respect to the
CoM (centre of mass)

g[m/ sec2] 9.8065 Gravitational acceleration
F [N] Force applied to the cart
x[m] Longitudinal displacement of the cart
φ[rad] Angle of the pendulum from the upper vertical axis
Rr[m] 0.0605 Wheel radius
MR[kg] 0.127 Wheel mass
IR[kg m2] 2.28e(-4) Wheel inertia

ẋs = Acnl(xs)xs +Bcnl(xs)u

y = Ccnlxs
(2)

The variables x, ẋ represent the cart’s distance and the
linear velocity respectively, while φ, φ̇ are the pendulum’s
angular displacement and angular velocity, respectively. Ap-
pendix A, explains how to derive a SDC matrix solution. The
SDRE control technique, has been chosen for consistency
of analysis, wishing to focus the paper on optimal control
methods. By manipulating equations (2) following recom-
mendations are given in Appendix A, the system matrices
become the follows:

Acnl =


0, 1, 0, 0

0, − (b+γ)(Jp+mL
2)

ηnl
, −m

2L2g s3 c3
x3ηnl

,
mLx4s3(Jp+mL

2)

ηnl
0, 0, 0, 1

0,
mL(b+γ)c3

ηnl
,

mgLs3(M+m+ξ)
x3ηnl

, −m
2L2 x4s3 c3

ηnl


Bcnl(xs) =

 0
Jp+mL

2

ηnl
β

0
−mLc3ηnl

β

 , Ccnl = [ 1 0 0 0
0 0 1 0 ]

(3)
where for reasons of space the dependence on the state
(Acnl(xs)) of has been here omitted with s3=sin (x3),
c3=cos (x3) and ηnl=(Jp+mL2)(M+m)−m2L2 cos2 (x3).
To ease the reading, the matrices Acnl(xs), Bcnl(xs) can
been arranged as:

Acnl(xs) =

[
0 1 0 0
0 a22 a23 a24
0 0 0 1
0 a42 a43 a44

]
Bcnl(xs) =

[ 0
b21
0
b41

]
(4)

where

a22 = − (b+ γ)(Jp +mL2)

ηnl
(5)

a23 = − sin (x3) cos (x3)m2L2g

x3ηnl
(6)

a24 =
mL sin (x3)x4(Jp +mL2)

ηnl
(7)

a42 =
mL(b+ γ) cos (x3)

ηnl
(8)

a43 =
mgL sin (x3)(M +m)

x3ηnl
(9)
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a44 = −m
2L2 sin (x3) cos (x3)x4

ηnl
(10)

b21 =
Jp +mL2

ηnl
β (11)

b41 = −mL cos (x3)

ηnl
β (12)

In order to implement the nonlinear controller on the
proposed board for computational performance and WCET
analysis, the discrete-time non linear model of (3) is derived
by using the Euler method with sampling time ∆T , giving
rise to following discrete-time model:

xs[k + 1] = Adnl(xs)xs[k] +Bdnl(xs)u[k]

y[k] = Cxs[k]
(13)

with u[k] = E[k] and discrete-time matrices

Adnl(xs) =

[
1, ∆T 0, 0
0, 1+∆Ta22, ∆Ta23, ∆Ta24
0, 0, 1, ∆T
0, ∆Ta42, ∆Ta43, 1+∆Ta44

]
,

Bdnl(xs) =

[ 0
∆Tb21

0
∆Tb41

]
, C = [ 1 0 0 0

0 0 1 0 ]

(14)

In (14) the terms aij ,bij are the elements of continuous
matrices Acnl , Bcnl described in the equations (5) to (12).

C. DISCRETE-TIME CART-PENDULUM LINEAR MODEL

This subsection, briefly introduces the discrete-time linear
model here used to design the linear optimal control strate-
gies described in the following Section. The model is ob-
tained from the equations of motion (1) under small pertur-
bation hypothesis φ ' 0 around the upright position, and
hence cos(φ) ' 1, sin(φ) ' φ, φ̇2 ' 0. The resulting
linear dynamics is:

(m+M)ẍ+ (b+ γ)ẋ+mLφ̈ = β E

−mLẍ− (Jp +mL2)φ̈+mgLφ = 0
(15)

From (15), it is trivial to derive the discrete-time state
space model using Euler method with sampling time ∆T . It
has the form:

xs[k + 1] = Ad xs[k] +Bd u[k]

y[k] = Cx[k]
(16)

with u[k] = E[k] and matrices

Ad =

[
1, ∆T 0, 0
0, 1+∆Ta22, ∆Ta23, 0
0, 0, 1, ∆T
0, ∆Ta42, ∆Ta43, 1

]

Bd =

[ 0
∆Tb21

0
∆Tb41

]
, Cd = [ 1 0 0 0

0 0 1 0 ]

(17)

where

a22 = − (b+ γ)(Jp +mL2)

ηnl
(18)

a23 = −m
2L2g

ηnl
(19)

a42 =
mL(b+ γ)

ηnl
(20)

a43 =
mgL(M +m)

ηnl
(21)

b21 =
Jp +mL2

ηnl
β (22)

b41 = −mL
ηnl

β (23)

where k is the sampling instant and the terms aij , bij are
elements of the matrices Acnl ,Bcnl in (3).

IV. OPTIMAL CONTROL LAWS
The present section is devoted to briefly recall the theory
behind the three different optimal control techniques consid-
ered in this work to regulate the upright pendulum position of
the cart-pendulum robotic system. The controllers have been
used both in simulation and on the experimental set-up. In
order to ease the paper, some implementation details which
require longer description are given in the appendix, while
only necessary conceptual steps for a clear understanding
are presented below. Moreover, considering the issues related
to this work, different control features will be pointed out
because useful for further performance’s analysis. We refer
to the discrete-time version of the three methods. The linear
techniques LQR and MPC, make use of the model (16). The
nonlinear SDRE control uses model (13).

A. THE DISCRETE-TIME LQR
The LQR design technique is well known in modern optimal
control theory and has been widely used in many applica-
tions.

1) LQR fundamentals

In LQR theory a stabilizable discrete-time linear system:

x[k + 1] = Ax[k] +Bu[k] (24)

where x[k] is the state vector and u[k] the system’s input,
the optimal inear control problem is to determine the linear
optimal feedback matrix Kopt ∈ Rnxm where n, m are the
state and input vectors dimension respectively, such that:

uk = Kopt xk (25)

we refer to (16) as the discrete-time linear plant model (24).
In this paper, the state feedback controller is designed using
the linear quadratic regulator and the discrete-time linear
model of the system (16). Here, the infinite-time regulation
problem has been solved to guarantee stability for further
performance and WCET analysis. This solution leads to
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search for optimal control uk which minimizes the following
cost function:

J(u) =
1

2

∞∑
k=0

(xTk Qk xk + uTk Rk uk) (26)

where Qk, Rk are the state and input weighing matrices
respectively, they are symmetric and positive defined, and k
is the sampling instant. In order to ease the paper readability,
the subscript s in the state vector (xs) has been omitted. It
has been demonstrated that the optimal control input uk is
given by:

uk = −R−1Bd
T P xk = −Koptxk (27)

where the matrix P is the solution of the Discrete Algebraic
Riccati Equation (DARE) problem:

P = Q+Ad
TPAd−

Ad
TPBd(R+Bd

TPBd)
−1BTPAd

(28)

Then, once computing off-line the DARE the linear optimal
control input is obtained as well.

2) LQR features
In the conventional LQR design method, the DARE problem
(28) is solved using numerical or iterative methods. For
regulation problems, the DARE is solved once. Although,
the LQR provides a simple solution its application is limited
to linear systems or a linear approximation of nonlinear
systems. Linear approximations are quite simple to handle in
regulation problems, but for trajectory tracking problems, the
LQR finds limits when dealing with not negligible nonlinear-
ities. Often the solution can be found linearizing the system
in a subset of the trajectory points along the whole trajectory
but this is time-consuming whit respect to other techniques
involving nonlinear controllers [39].

B. DISCRETE-TIME MPC
MPC has become a widely used control in the last decades,
especially in industrial applications because of its versatility
and capability to perform industrial process optimization.
The linear MPC approach has been here considered to un-
dertake a common comparison framework. A comprehensive
theory of the MPC can be found in [12], but it is out of the
scope of this paper. Thus, here the main implementation steps
have been recalled, while more details are given in Appendix
C.

1) MPC fundamentals
For discrete-time MPC implementation, we refer to the dis-
crete time plant model (16). The MPC theory is based on the
extended model (53) reported in Appendix C, and is derived
by defining an augmented state xe[k], wherein the variable
∆u[k] becomes the new input to be controlled in place of
u[k]. How to derive the extended model and all the related
mathematical manipulations is detailed in the appendix C.
As for the other optimal controllers, the optimal control input

∆u[k] is obtained by minimizing a cost function J , defined
as follow:

J = (Rs − Y )T (Rs − Y ) + ∆UTR∆U (29)

where, the first term (Rs − Y )T (Rs − Y ) is related to the
minimization between the predictive output Y and the set-
point Rs, while the second one ∆UTR∆U is referred to
the size of ∆U . Indeed, R = rωI , and rω is used as a
tuning parameter for closed-loop performance. The optimal
∆U minimizing the cost function J holds:

∆U = (ΦTΦ +R)−1ΦT (Rs − Fxe[k]) (30)

where (ΦTΦ + R)−1ΦTRs represents the set-point change,
while −(ΦTΦ + R)−1ΦTF is the state feedback control
within the framework of predictive control, where the F ma-
trix meaning is derived from the extended model formulation
given in Appendix C.

2) MPC features

The optimal input ∆U of equation (30), contains the controls
∆u[ki], ∆u[ki + 1], ...∆u[ki + Nc − 1] with the receding
horizon window (Nc). However, only the first sample of
this sequence needs to be implemented, i.e., ∆u[ki], while
ignoring the rest of the sequence. When the next sample
period arrives, the more recent measurement is taken to form
the state vector xe[ki+1] for calculation of the new sequence
of the control signal, as shown in the following:

∆u(ki) =

Nc︷ ︸︸ ︷
[1 0 .. 0] (ΦTΦ +R)−1ΦT (Rs − Fxe[k])

= Kyr(ki)−Kmpcx(ki)

(31)

where Ky is the first element of (ΦTΦ +R)−1ΦTRs, while
Kmpc is the first row of −(ΦTΦ + R)−1ΦTF . This proce-
dure, when iterated in real-time gives rise to the receding
horizon control law. Moreover, the optimal input ∆u[ki]
implies that a discrete integrator is to be embedded in the
closed-loop to derive the right u[k] for the plant. This in-
tegration acts as a low-pass filter on the controlled quantity
making its transitions smoother; indeed the predicted optimal
control input at time-instant k is obtained as u[k + 1] =
u[k] + ∆u[k + 1]. The MPC key feature which should be
highlighted is the versatility of control input implementation
(31). Indeed, the derived implementation is valid both for
stabilization and trajectory tracking problems. This means
that in terms of computational effort and WCET of the code,
having a constant or variable set-point which is changing over
time does not affect the design and the computational effort
required by the MPC control algorithm. Indeed, in (31) Ky

is a constant weighting matrix multiplied for the reference
value r(ki) at the ki instant. Thus, for each next instant,
a change in the set-point value is taken into consideration
producing the respective optimal control input u[k + 1].

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3019776, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

C. THE DISCRETE-TIME SDRE
The SDRE strategy has become popular within the control
community over the last decade, it provides an effective
model-based method for nonlinear feedback control synthe-
sis, by allowing nonlinearities in the system states while
additionally offering good design flexibility through state-
dependent weighting matrices. Different papers have been
produced regarding the design and the implementation issues
related to the non-uniqueness of the SDC matrix factorization
[33], [34], this also for trajectory tracking control problems
[35]. It has been demonstrated with a correct SDC factoriza-
tion strong nonlinear behaviours can be handled as well [36].
However, achieving a new SDC matrix design is out of the
scope of this paper and for this reason, a common approach
has been used as proposed in [37], and the latter has been
discussed in more detail in the dedicated appendix A.

1) SDRE fundamentals
The SDRE technique here recalled has been based on the
SDC parametrization of the plant model obtained above in
(3), which represents a linear-like state space form of the
nonlinear system. The cost function to be minimized with
respect to the control u[k] is:

J(u) =
1

2

∞∑
k=0

(x[k]T Q(x)x[k] + u[k]T R(x)u[k])

(32)
One of the key advantages offered by SDRE is the trade-
off between control effort and state errors, and it can be
achieved through tuning of weighting matrices Q(x) and
R(x). These weighting matrices can be chosen to be either
constant or state dependent. However, in our application Q
and R are assumed to be constant matrices to simplify the
implementation and because constant matrices ensure the
closed loop performance. In this case, taking into account the
finite horizon problem, the sub-optimal control u[k] is given
as:

u(x[k]) = −R−1Bdnl(x[k]))T P (x[k])x[k]

= −K(x[k])x[k]
(33)

where P (x[k]) is computed at each sampling time k as the
solution of the following DARE:

P (xk) = (Q+Adnl)
T (xk)P (xk)Adnl(xk)−

ATdnl(xk)P (xk)Bdnl(xk)(R+BTdnl(xk)P (xk)Bdnl(xk))−1

·BTdnl(x(k)P (xk)Adnl(xk)
(34)

Thus, unlike the linear case, the DARE equation has to be
solved on-line at each control iteration.

2) SDRE features
Unlike the linear optimal control, the DARE equation must
be solved on-line at sample time k, at least for each new value
of Adnl(x[k]) and Bdnl(x[k]). Indeed, in embedded applica-
tions such as in our experimental set-up, the equation (34) is
solved on-line during the control actions by using iterative

methods. Generally, the P (x[k]) solution is first calculated
off-line (P (x[k])off ), with a huge number of backward iter-
ations, until it reaches the convergence (P (x[k])off ). Then,
an admissible convergence error is set (e.g. ε = 0.1) in order
to evaluate how many backward iterations the on-line DARE
needs to obtain a solution P (x[k])on which satisfies the norm
error criteria ‖P (x[k])off−P (x[k])on‖ < ε. This procedure
is repeated for different system’s working conditions. Finally,
it is found how many backward iterations are needed to
the DARE for obtaining an almost convergence solution
P (x[k])on, considering the worst case as upper bound. The
larger number of backward iterations, required by the worst
case, are set and used to solve the DARE on-line for each
sampling time k.

V. PROPOSING A NEW ON-LINE MINIMAL EXECUTION
TIME SDRE CONTROL ALGORITHM
The present Section proposes a new Minimal Execution
Time SDRE (MET-SDRE) for reducing the ET in the RT
implementation of the SDRE nonlinear controller. It aims to
maintain control performance by reducing the computational
effort and therefore ET. In this work, the new solution has
been developed for control regulation problems, the idea is
based on the performance analysis experienced in this work
in term of WCET of the SDRE algorithm by means of the
HRT board. At present, limits for RT applications of the
SDRE controller are generally related to the convergence
time of the DARE (34) solving, which is desirable to be
executed with few backward iteratively operations. As dis-
cussed in the previous subsection, the backward operations
used to solve the DARE equation and to obtain the P (x[k])
solution, are generally set experimentally in order to obtain
a convergence solution in every possible system’s working
condition. This leads to having a large ET of the SDRE
control algorithm because the WCS has to be considered as
an upper bound to guarantee a correct regulation in every
case, even if a convergence solution of (34) can be obtained
sometimes with a smaller number of backward iterations.

In particular, in our experimental set-up the closed-loop
cycle was set to 20ms which can be considered as our
RT temporal constraint. Within that time (20ms) the micro-
controller must be able to solve the DARE (34) iteratively
until the P (x[k]) solution reaches the convergence, calculate
the right control law u(x[k]) which depends on P (x[k]),
manage the data gathering from sensors and generate the
PWM signal to drive the motors. In classic SDRE ap-
proaches, considering the RT constraint (20ms), to obtain
a right control law a convergence criterion for the solution
of the DARE (34) has to be established, as presented in
Section IV-C2. Then, it can be concluded that to solve the
DARE (34) and obtain a convergence solution P (x[k]) with
an admissible convergence error ε, at least 20 times backward
iterations are needed, considering as upper bound the WCS
(when the system is working out of the linear range). The
convergent solution P (x[k]) then, is used to produce the right
control law u(x[k]) for the system.
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A. MET-SDRE BACKGROUND

The MET-SDRE algorithm aims to decrease the code-ET
of the discrete-time SDRE control algorithm maintaining
the same performance. This is achieved by reducing the
computation time required by the DARE (34) in the SDRE
algorithm in an adaptive way. This means the need to solve
the DARE is evaluated adaptively by introducing a sort of
system’s distance from the linearity range, which is based on
the degree of similarity of the SDC state-matrices between
two consecutive sampling times. This result has been found
analysing the convergence problem of the P (x[k]) solution
of the DARE (34) related to the SDRE nonlinear control
problem. The convergence speed of the P (x[k]) depends on
both the initial conditions, represented by which numerical
value P the DARE’s algorithm initializes, and on the degree
of similarity of the SDC state-matrices between two consec-
utive sampling times k and k + 1, i.e. between Adnl(x[k])
and Adnl(x[k + 1]). Regarding the numerical P initialized
by the algorithm, trivially, when the P (x[k+ 1]) solution for
a certain system’s state x[k + 1] is searched starting from a
P (x[k]) = P , the DARE solution of the previous system
state x[k] is numerically close to that of x[k + 1]. Therefore
the P (x[k+ 1]) solution will converge with a less number of
backward iterations with respect to initialize the searching
with a P as identity matrix or else derived by previous
sampling times x[k − i], with i > 1. Instead, concerning the
similarity between two consecutive numerical SDC matrices,
it is straightforward that, when two SDC matrices, namely
Adnl(x[k]) and Adnl(x[k + 1]), depend on two states x[k]
and x[k + 1], which are numerically close, it is expected
that these SDC matrices are numerically similar. Thus, in
this context, the convergence speed of the DARE solution
P (x[k]) also depends on the system’s matrices numerical
value (Adnl , Bdnl , Cdnl ). Therefore it is expected that under
state similarity condition x[k] ' x[k + 1], the DARE
solution at instant k + 1, namely P (x[k + 1]), converges
with a smaller number of backward iterations if initialized
as P = P (x[k]) instead of the instants k − i, with i > 1.
Taking into account these considerations, we propose to
modify the DARE solver of the SDRE control algorithm
making it adaptive with respect to the system’s state. This
means allowing it to have a faster convergence for the DARE
solution. In the following, the implementation details of the
proposed solution are explained. The computational solution
implements two basic steps that are: 1) evaluation of matri-
ces’ similarity and 2) adaptive P initialization.

1) Evaluation of matrices’ similarity

In order to evaluate the similarity (or distance) between two
numerical matrices, the tools proposed in [40] have been
used. Given a discrete-time nonlinear system represented in
the linear-like form (3), considering two consecutive instants
k and k+1, and the the corresponding consecutive numerical
SDC matrices, namely Adnl(x[k]) and Adnl(x[k + 1]), two

similarity criteria (dA; dλA ) can be established as follow:

dA = ||Adnl(x[k]) − Adnl(x[k + 1])||
dλA = ||λAx[k] − λAx[k+1]

||
(35)

where dA represents the pure distance between two numer-
ical SDC matrices in two time intervals, while dλA rep-
resents the distance between the eigenvalues of the frozen
matrices in the two time intervals. These values (dA, dλA )
quantify the similarity between SDC matrices which affects
the convergence speed of the DARE’s solution P (x[k]). In
this work it has been experimentally proven that in the linear
working-range of the experimental set-up, two consecutive
states yield values having an order of magnitude dA '
8 · 10−2 ' −2, dλA ' 0.5 · 100 ' 0. Differently, when
the states belong to the nonlinear range the values become
dA ' 3 · 10−4 ' −4; dλA ' 1.5 · 10−5 ' −5.
Thus, out of the linear-range the biggest numerical difference
between two consecutive matrices can be measured with the
above introduced metrics, the bigger the distance the larger
the number of backward iterations for solving the DARE.

2) adaptive P initialization
As explained in the above Section, the P chosen to initialize
the SDRE algorithm affects the convergence speed of the
DARE solution P (x[k]). For this reason, an adaptive P
initialization based on the current system state x[k] can
improve the ET required by the SDRE algorithm. A possible
solution is to calculate off-line P (x[k]) for different work-
ing ranges (e.g. linear and nonlinear ranges) and to define
different SDRE algorithm initialization conditions. Trivially,
the proposed methodology should be evaluated depending
on the application. In this paper, the proposed solution is
applied to the cart-pendulum mobile robot and is detailed in
the Experimental results Section VIII-C.

VI. HARDWARE SET-UP
In this Section are presented the hardware characteristics of
the whole system and the control strategies implemented in
the HRT board to stabilize the pendulum in upright position
while the cart is maintaining the desired distance from obsta-
cles.

A. CART-PENDULUM ROBOTIC SYSTEM
As discussed in the Introduction section, the hardware chosen
to control the cart-pendulum system consists of the XMOS
XK-1A board, a low cost development platform intended
for exploring parallel computation. The XK-1A comprises
128KBytes SPI FLASH memory, four LEDs, and two press-
button switches. An XTAG-2 debug adapter can be connected
to a PC to debug the XK-1A operations. The XK-1A is based
on a single XS1-L1 device in a 128TQFP package. The XS1-
L1 hosts four deterministic cores operating at 100Mhz and
it provides a tightly integrated general purpose I/O pins and
64 KBytes of on-chip RAM. The YUMO E6A2-CWZ3E
Rotary Encoder sensor provides the measure of the pendulum
angle while the HC-SR04 ultrasonic distance sensor provides
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precise, no contact distance measurements up to about 3
meters from the reference obstacle. It is simple to connect
the sensor to micro-controllers requiring only one I/O pin.
The DC motors are operated by the shared output voltage
provided by a Sabertooth system 2x12 motor driver. This
circuit can be powered with voltage ranging from 6 to 24 V,
with up to 12 A continuous per channel. The board is used in
R/C Mode/Microcontroller mode with a PWM from 1000us
to 2000us, respectively corresponding from -12V to +12V.
The whole system is powered by a LiPo battery, 2200mAh,
3S (3 cells), with discharge rate 65C and 12V.

B. HRT CONTROL STRATEGIES
The XK-1A board of the XMOS family has been used
to implement the control algorithms described above. This
technology was developed a few years ago, and currently
new more performing boards are available from the XMOS
company but the XK-1A hardware characteristics are still
appropriated for this paper. The closed-loop controls are
based on the direct measures of the cart position (x) and the
pendulum angle (φ) provided by the sensors. At each sample
time the controllers compute the feedback control law and
the optimal voltage (u[k]) to be applied to the motors driver
(i.e. the sabertooth device), in order to keep the pendulum
in balance (φ = 0) while maintaining the cart to the desired
x position. The sensors are directly connected to different
I/O pins of the board. The three different control strategies
have been entirely coded on the XK-1A XMOS board: where
at each of the four deterministic cores has been assigned a
task. The core 1 runs the task 1 that manages the gathering
of data from the position sensor. The core 2 hosts the task 2
that manages the gathering of data from the encoder for the
feedback on the φ angle. Both tasks are in charge of making
available their data, through the respective channels, to the
task 3. This latter runs on core 3 and retrieves the sensor data
from the proper channel every 20ms, within this time laps
task 3 must compute the control law and send the message
to the task 4 running on core 4 which generates the PWM
to drive the motors. All the tasks are parallel and their ET is
computed statically by means of the TimeAnalyzer, a feature
provided by the development environment XTimeComposer
of XMOS. The synchronization between the cores operations
has been achieved by calculating statically the computing
time of each task.

VII. CLASSIC SDRE AND MET-SDRE NONLINEAR
IMPLEMENTATIONS
In this subsection the implementation of the algorithms re-
garding the classic SDRE and the proposed MET-SDRE
algorithm solution, in the HRT board are explained in more
detail.

A. CLASSIC SDRE ALGORITHM
Regarding the classic SDRE algorithm, common features
have been already explained in Subsection IV-C2. In this
part, the classic SDRE implementation used for stabilization

problems on the cart-pendulum mobile robot is analyzed in
more detail. Further implementation issues and feasibility
aspects have been deeper discussed in [33], [38], where are
given also the guidelines regarding the construction of the
SDC matrix when the SDRE solvability condition is violated.
The implementation steps are the following:

i) The DARE (34) is solved off-line until the P (x[k])off
reaches the convergence imposing specific system condition
(e.g. φ = 0.06 rad and φ̇ = 0 rad/s).

ii) The necessary backward iterations for on-line imple-
mentation are found as discussed in Subsection IV-C2. It
has been experimentally found that within 20 backward it-
erations the norm error criteria imposed as ‖P (x[k])off −
P (x[k])20‖ < ε with ε = 0.1 was satisfied. This test, was
repeated for different points of work of the cart-pendulum
mobile robot to guarantee a consistent control law u(x[k])
during the experimental phase.

iii) Every sample time k, the SDRE control algorithm
solves the DARE (34) 20 times backwards iteratively.

B. MET-SDRE ALGORITHM

The idea of this MET-SDRE solution has been achieved
through the WCET analysis experienced in this work and it
aims to improve the classic SDRE approach in terms of ET.
In the following, the implementation steps are listed below:

i) The linear working range of the system has been esti-
mated through experimental tests, e.g. in our case the linear
working range of the cart-pendulum is φm ≤ φ ≤ φM ,
namely boundary conditions, where in our experimental set-
up φm = −4° and φM = 4° .

ii) It has been calculated off-line a convergence solution
P (x[k])1000 in 1000 backward iterations for the three dif-
ferent boundary conditions of the system φ = −4°, 0°, 4°.
These solutions have been named Pφm , P0°, PφM .

iii) The previous solutions have been used to initialize
the adaptive DSDRE control algorithm to reach a faster
convergence speed depending on the system’s working range.

In Figure 2, the flow chart of the MET-SDRE control
algorithm is shown. The initialization of the Algorithm is
composed by the reading of the initial system’s output (Y0)
and the computation of the state (X0), then the matrix P0 is
chosen based on the initial state (X0). The periodic control
task in this implementation last 20ms, it consists of the
computation of the current state based on the output acqui-
sition Yk. In order to compute the DARE convergent solution
P (x[k]), the number of backward iterations i is set based
on the current pendulum angle φ. Then, if φ belongs to the
linear range i = Im, otherwise i = IM . In our case, the
values of Im = 3 and IM = 10 are found experimentally
following the proposed procedure in Section V. Finally, the
control input u(Xk) is computed, and the periodic task stops
upon termination decided by the user.
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Control
Routine

Read Y0
Compute X0

ϕ ≤ ϕm

P0 = P0° P0 = Pϕm P0 = PϕM

i < Im
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A(Xk), B(Xk), P(Xk)

i ++

Compute
Kk, u(Xk)

Set u(Xk)

ϕm < ϕ < ϕM

i < IM

Compute
A(Xk), B(Xk), P(Xk)
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T

T T

T T

F

F F

F F

Read Yk
Compute Xk

ϕm < ϕ < ϕM

Periodic
control task [Termination]

FIGURE 2: Flow chart of the MET-SDRE algorithm. In the
Figure T and F state respectively for True and False.

VIII. PERFORMANCE’S ANALYSIS AND WCET OF THE
OPTIMAL CONTROL ALGORITHMS
In this section, the simulation and experimental results re-
garding the cart-pendulum robotic system (Fig. 3) subject to
the three above mentioned controllers are shown. The control
performance is evaluated under different working condition
of the real robot. The control parameters are introduced in
Subsection VIII-A, while in Subsection VIII-B the simula-
tions are compared with experimental results to demonstrate
the validity of controllers’ implementation. Lastly in Sub-
section VIII-C the experimental results are presented and
discussed, with related performances and WCET analysis.

A. CONTROL PARAMETERS
Each controller has been designed and tuned to stabilize the
cart-pendulum around the pendulum’s vertical position while
maintaining a certain distance from obstacles detected by the
sonar and for disturbance rejection. All the tuning parameters
are chosen to obtain a control system which first achieves
as small as possible oscillations around the vertical position,
secondly it maintains the desired x position and finally to
have it also has a certain reactivity to disturbances. The
values of the weighting matrices and tuned parameters used

FIGURE 3: Cart-pendulum prototype developed by the au-
thors.

by the controllers in all the simulations and experimental tests
are given below.

1) LQR
- The values of weighting matrices for the cost function (26)
of the discrete-time LQR control are:

R = 1;

Q =


500.0, 0.0, 0.0, 0.0
0.0, 100.0, 0.0, 0.0
0.0, 0.0, 500.0, 0.0
0.0, 0.0, 0.0, 100.0

 (36)

2) MPC
- The controller is designed on the linear system plant in (16)
with predicted horizon Np = 50 and receding horizon Nc =
3, while the control weight is set to rω = 0.5

3) SDRE
- The values of weighting matrices for the cost function (32)
of the discrete-time SDRE control have been selected as
those of LQR to better compare the controllers performance:

R = 1;

Q =


500.0, 0.0, 0.0, 0.0
0.0, 100.0, 0.0, 0.0
0.0, 0.0, 500.0, 0.0
0.0, 0.0, 0.0, 100.0

 (37)

B. SIMULATION RESULTS
This subsection briefly presents the simulation results of
the cart-pendulum regulation problem. For showing the con-
sistency of simulations with responses of the experimental
setup, simulations have been compared with experimental
results. For brevity, we reported the comparing results with
only one of the controllers analyzed, that is the SDRE.
Figure 4 shows the comparative results of the pendulum’s
φ angle when the SDRE controller is applied. In Figure 5
the comparative results for the cart position x are showed,
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FIGURE 4: SDRE control of the cart-pendulum: comparison
of simulated and experimental results of angle φ within
similar boundary conditions.

lastly in Figure 6, the control effort U in both cases are
compared. The trend over time shown in the figures, high-
lights similar oscillations in term of amplitude, frequency and
phase. Furthermore, small deviations between simulated and
real system can be noticed in cart and pendulum direction
changes, this may be attributed to the not perfect modelling
of the tyre-floor contact point (tyre slip conditions). However,
despite the small predictable mismatches between model
and reality, by focusing on Figure 6 it can be noticed as
the control input seems to be the same in both cases. This
proves the effectiveness and consistency of the controller
implementation in the HRT board. Besides, it is appropriate
to point out that the achievement of perfect model matching
with reality is out of the scope of this work.

C. EXPERIMENTAL RESULTS
This subsection is devoted to describe the experimental re-
sults obtained by applying optimal control laws in different
working conditions of the experimental set-up in a RT sce-
nario. The experiments concern the performance evaluation
for the regulation problem of a cart-pendulum system. The
challenge is: balancing the pendulum in a vertical position
(pitch angle φ = 0) while the cart maintains a desired posi-
tion in space (x). In the design phase, the regulation around a
fixed set-point is the primary goal to achieve by any control
system. The second one is often the trajectory tracking, in
which the control law forces the closed-loop response to fol-
low a specified reference, generally time varying. Though the
trajectory tracking is not the subject of this investigation, it
will be shown how some considerations on it can be inferred
in terms of WCET, considering the implementation of the
algorithms adopted. For evaluating performance and WCET
of the considered optimal controllers on regulation problems
two experiments have been carried out. In the first one, the
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FIGURE 5: SDRE control of the cart-pendulum: comparison
of simulated and experimental results of cart position x
within same boundary conditions.
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FIGURE 6: SDRE control of the cart-pendulum: comparison
of simulated and experimental results of control input U
within same boundary conditions.

system works within the linearity range of the pendulum’s
vertical unstable equilibrium point, which is φ = 0. For our
system, it has been experimentally proofed that the range is
−4° ≤ φ ≤ 4°. The second experiment aims to evaluate
the performance of the optimal controllers when nonlinear
behaviours arise. In our case this happens by choosing the
initial condition of the φ angle out of the linear region.
During experiments, continuous monitoring of the WCET is
performed by implementing the control Algorithms in the
XMOS board. Furthermore, computational efforts required
to the microcontroller by the control laws are taken into
account.
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1) Test 1 - linear working conditions

The Figures 7, 8, 9 show the comparison of control results
respectively for the pitch angle φ, the cart position x and
control input U in linear working conditions. Overall, all
the controllers accomplish the regulation task stabilizing the
system around φ = 0 with small oscillations mainly due
to physical limits of the experimental set-up. A comparative
analysis of the controllers in terms of a) ET, and b) perfor-
mance, is detailed as follows. Regarding the point a), Table 2
reports the code execution BCS and WCS values, which have
been computed using the XMOS development environment
xTimeComposer for each of the task executed by the board,
including those related to the control algorithms. The WCS
provides the values of the WCET for each task, this analysis
gives the possibility of setting the temporal upper bound limit
for RT or HRT applications. A first aspect to be noticed
from Table 2, even if it is quite obvious, but here it has
been quantified, is that for regulation problems LQR and
MPC algorithms require less time to be executed. The SDRE
requires instead almost four times the WCET in respect to the
previous ones. This first result suggests that attention must be
taken, in terms of ET, in using nonlinear algorithms, as the
SDRE, for linear tasks. This becomes even more notable in
higher order MIMO systems because the ET of the DARE
solution is related to the system’s order, as well as with the
initial conditions. In classical applications where a single
microcontroller must execute more tasks (e.g. sensors acqui-
sition, control, etc.), a high WCET of the control algorithm
could lead to critical situations. These temporal constraints
are crucial in HRT applications. Differently, using the MET-
SDRE controller previously introduced the algorithm ET
decrease. In particular as long as the system is working within
linear conditions the BCS value obtained can be comparable
to the linear controllers and with respect to classic SDRE
it decreases significantly. Regarding the point b), related
to the performance analysis, it can be noticed that under
linear conditions the LQR performs similar to the SDRE
disregarding the ET, while the MET-SDRE keeps the same
performance of SDRE as expected. For visualization reason,
here the MET-SDRE performances, are not plotted because
they match with the classic SDRE and they will be given
for the second test. Figure 7 shows how the stabilization is
reached for both the LQR controller and SDRE controller.
However, focusing on Figure 8 it is possible to notice that,
when using LQR controller, the cart position x is kept
with a constant bias from the set-point. It happens because
the LQR controller gives priority to the angle stabilization,
indeed it has been demonstrated that in nonlinear systems
when the state has coupling dynamics (as e.g. in our case
where the φ and x behaviours are strictly related) a linear
LQR cannot manage them perfectly [28]. However, some
works sustain that in terms of performance SDRE approach
provide at best a quite limited and case dependent, benefit
over LQR [29]. Therefore LQR is often preferable due to
its less computational effort especially in application where

TABLE 2: Code execution BCS and WCS values computed
for accomplished tasks

Algorithm BCS WCS

Encoder acquisition 0.00331ms 0.00331ms

Motor and PWM driver 1.50025ms 2.00025ms

Sonar acquisition 1.58035ms 6.57300ms

LQR 1.90454ms 4.01384ms

MPC 2.06109ms 4.55033ms

SDRE 11.9710ms 12.5170ms

MET-SDRE 3.25336ms 8.15412ms

system’s nonlinearities are negligible. Finally, the MPC takes
more time to reach the steady-state condition with respect
to the others and when reached is not able to well regulate
the cart position x within 25 seconds. This may be because
of determining the value of the control signal, the MPC
analyzes the whole prediction horizon (Np). As a result, the
control effort is smoother but the system is also less reactive
because the disturbance rejection task is averaged for the
entire time horizon. Therefore the prediction horizon should
not be too long, because it slows down the reaction of a
controller to disturbances in the system, though this feature
is interesting in some cases. Indeed, the control signal of
MPC controller is smoother than the others (Fig. 9) and this
may be important, especially in an industrial environment,
during the start-up phases of plants and actuators, because
these systems are adversely affected by sudden changes in
the control signal. Moreover, this control strategy has less
impact on energy consumption because the power required
for a hypothetical actuator is less. Therefore, the prediction
horizon Np is an important tuning parameter that must be
set case by case. Lastly, regarding trajectory tracking tasks,
the MPC controller has advantages in terms of design and
ET. This because the MPC control algorithm implementation
is valid both for constant and variable system’s reference
signals. Therefore, the WCET of the MPC calculated in Table
2 for control regulation problem would remain the same also
for the trajectory tracking problem. Differently, the LQR
design phase in case of trajectory tracking issues is pursued
[27] [39].

2) Test 2 - nonlinear working conditions
Figures 10, 11, 12 show the trends over time of the pitch an-
gle φ, the cart position x and the control input U . In this case,
not all the controllers can accomplish the regulation task sta-
bilizing the system around φ = 0, for this reason in Figures
10, 11, 12 the divergent trends for the linear controllers are
obtained. Also in this second test, a comparative analysis of
the controllers in terms of a) ET, and b) performance, has
been detailed. Regarding the point a) related to the ET values
of the controllers, there are no changes from the previous test,
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FIGURE 7: Experimental results of three optimal control
strategies (LQR, MPC, SDRE) for the cart-pendulum in
linear conditions; trend of pitch angle φ.
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FIGURE 8: Experimental results of three optimal control
strategies (LQR, MPC, SDRE) for the cart-pendulum in
linear conditions; trend of cart position x.

but some insights regarding the MET-SDRE are given. For
BCS and WCS values we always refer to 2. What should
be pointed out is that the WCS value for the MET-SDRE
has been obtained during this second test. Indeed, it is trivial
to figure out that the Best Case Execution Time (BCET) is
related to test no. 1, while the Worst Case Execution Time
(WCET) is related to test no. 2. In the first case, under linear
conditions (test no. 1), referring to the control performance,
the MET-SDRE, being based on classic SDRE, can achieve
superior performance (e.g. in terms of disturbance rejection
and robustness) with respect to linear controllers such as
LQR or MPC. At the same time, referring to the execution
time (ET), the MET-SDRE has BCET of about 3ms, similar
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FIGURE 9: Experimental results of three optimal control
strategies (LQR, MPC, SDRE) for the cart-pendulum in
linear conditions; trend of control input U .

to that of the LQR and MPC linear controllers, while the
classic SDRE requires about 12ms under the same condi-
tions, that means 4 times more. Secondly, in test no. 2 the
MET-SDRE and the classic SDRE are proven to be the only
control strategies able to stabilize the system while LQR and
MPC lose control. At the same time, in the second scenario,
the MET-SDRE decreases the algorithm’s WCET of about
35% with respect to the classic SDRE (as in Table 2), by
maintaining the same performance as well. This result is due
to its adaptive nature, indeed, as discussed in section V, the
number of backward iterations of the DARE (34) and then
the ET of the control algorithm are based on the current state
of the system. Then, when nonlinear behaviours arises the
biggest difference between two consecutive SDC matrices
Adnl(x[k]) and Adnl(x[k + 1]) requires solving the DARE
(34) with more iterations to obtain a convergent solution
P (x[k]). Regarding the point b) instead, which is related
to the performance analysis, the system nonlinearities are
triggered by imposing to the pendulum an angle φ = 11° out
of the linear range. The linear controllers (LQR, MPC) are
obviously not able to perform the regulation task. Indeed, in
Figure 10 it can be noticed how the MPC tries to approach the
reference value (φ = 0) but the control law is not fast enough
and the cart diverges from the position x = 0, as shown in
Fig. 11. A similar result is obtained with the LQR even if the
controller tries within 5 seconds to stabilize the pendulum but
because of the large oscillations (Fig. 10) the control is lost.
Differently, the SDRE and the MET-SDRE, within 2 seconds
are able to bring the system near to the equilibrium point
and stabilize the pendulum (with small oscillation around
φ = 0) in 5 seconds. The performance of these two nonlinear
controllers are shown separately from the others to evaluate
better the similarity of their behaviour. They are presented
in Figures 13, 14, 15, where respectively are compared the
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FIGURE 10: Experimental results of three optimal control
strategies (LQR, MPC, SDRE) for the cart-pendulum in
nonlinear conditions; trend of pitch angle φ.

pitch angle φ, the cart position x and the control input U
for the classic SDRE and the proposed MET-SDRE. It can
be noticed in these figures, that the MET-SDRE achieves
the same performance as classic SDRE implementation but
decreases the algorithm’s WCET. There is a small time-
shift on the Figures 13, 14, 15 which depends on three
factors: on the acquisition instant, on the small error which
might be between the two initial angles ( φ = 11°) and on
the possible reading lag introduced by the sonar. However,
it is trivial to see how the MET-SDRE performances are
consistent with its classic version. The performance analysis
of SDRE, LQR and MPC instead, are shown in the Figures
10, 11, 12. Here, only the nonlinear controller (SDRE) is able
to manage the increasing dynamics coupling of the system
under nonlinear conditions. This is expected, indeed, when
the systems dynamics become complex or the disturbances
forces the system to work out of the linear range. In this case
the MPC and LQR performance are overcome by the SDRE.
Indeed, the SDRE taking into account system’s nonlinearities
can better handle the system dynamics as also experienced in
[34] [41].

IX. CONCLUSION
The advancement in electronics, computing and commu-
nication technologies have made it feasible to extend the
application of embedded systems to more critical applica-
tions, such as automotive, avionic and many others. Often,
they involve Hard Real Time (HRT) requirements, where
systems must be designed according to the resource adequacy
policy and must provide sufficient computing resources to
handle the specified worst-case computational load and fault
scenario. The HRT embedded resources, as shown in this
work, mostly are required by the control algorithms and the
implementation of nonlinear control laws are often compu-
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FIGURE 11: Experimental results of three optimal control
strategies (LQR, MPC, SDRE) for the cart-pendulum in
nonlinear conditions; trend of cart position x.
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FIGURE 12: Experimental results of three optimal control
strategies (LQR, MPC, SDRE) for the cart-pendulum in
nonlinear conditions; trend of control input U .

tationally demanding. For this reason in some cases, the
performances are not suitable because of specification on
application constraints. However, in order to achieve even
more demanding objectives to control systems, the linear
controllers have to be overcome because in most of control
applications the PID is still the most used controller. In
this work, a method has been provided to evaluate in a
deterministic way the Execution Time required by the con-
trollers’ implementations for embedded devices with HRT
characteristics. Implementation solutions for discrete-time
linear and nonlinear optimal control techniques have been
carried out with encouraging perspectives. Once evaluated
both performance and ET for three of the most used optimal
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FIGURE 13: Experimental results of nonlinear optimal con-
trollers (SDRE and MET-SDRE) for the cart-pendulum in
nonlinear conditions; trend of pitch angle φ.
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FIGURE 14: Experimental results of nonlinear optimal con-
trollers (SDRE and MET-SDRE) for the cart-pendulum in
nonlinear conditions; trend of cart position x.

controllers, this work shows how to improve the execution
time of the SDRE nonlinear controller, by proposing a new
method named MET-SDRE. With the MET-SDRE, in terms
of ET, a Best Case Scenario (BCS) comparable with linear
controllers have been achieved. The Worst Case Scenario
(WCS) has been improved by 35% with respect to the com-
mon approach maintaining the same performance. In general,
the results obtained, could be useful in the filed of control
systems engineering especially during the design stage in
RT and HRT systems, where temporal bounds have to be
fulfilled also taking into account all the other functional
specifications. In future, further investigation is required in
order to prove the performance of these solutions on higher-
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FIGURE 15: Experimental results of nonlinear optimal con-
trollers (SDRE and MET-SDRE) for the cart-pendulum in
nonlinear conditions; trend of control input U .

order systems.
.

APPENDIX A SDC FACTORIZATION FOR SDRE DESIGN
In this appendix, the design flexibility for the SDC matrix
is discussed, and general recommendations are provided to
derive a correct factorization. The extended linearization,
also known as SDC factorization is the process of factorizing
a nonlinear system into a linear-like structure which contains
SDC matrices. Considering the cart-pendulum model in (2),
this can be generally written as:

ẋ(t) = f(x) +B(x)u(t) (38)

where f(x) = A(x)x. Without loss of generality, the origin
x = 0 can be assumed as an equilibrium point, such that
f(0) = 0. Under this assumption, a continuous nonlinear
matrix-valued function A(x) always exists such that f(x) =
A(x)x, whereA(x) is a n× nmatrix found by mathematical
factorization and it is nonunique when n > 1. Because of
this non-uniqueness of theA(x) matrix, in literature different
works have been proposed methods to improve the system
stability performances through the factorization process. For
example, in [37] a method has been proposed to design the
SDC matrix when working with a conforming system. In
[36], it has been studied how a different factorization of
the A(x) matrix can affect stability performances. Another
possible SDC parameterization solution is given in [34] and
[41], where in both cases an inverted pendulum has been
controlled with SDRE for both the swinging-up and stabiliza-
tion. However, in this work, the focus is not to investigate a
new parameterization method but to carry out a comparative
analysis of control algorithms execution time, in particular
LQR, MPC and SDRE. Consequently, a classic approach re-
garding the design flexibility has been followed, as proposed
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in [37]. The parameterization steps adopted to derive the SDC
matrix in (3) are presented below with related motivations.
Considering a nonlinear systems and under the assumption
of x = 0 being an equilibrium point. The SDC A(x) matrix
terms can be state-independent or state-dependent. In case
of state-independent terms, named also "bias", it can be
handled to satisfy the assumption f(0) = A(0)x(0) = 0
by augmenting the system with a stable state:

˙z(t) = −λ z(t) (39)

so that the bias can be factorized as:

b(t) =
b(t) z

z
(40)

which converges to zero only when z = 0.

Differently, regarding state-dependent terms non-unique
solutions can be adopted. Defining A(x, α)x as an infinite
family of SDC parameterization, in general, terms which do
not converge to zero as the state approaches zero, violates
the fundamental condition f(0) = 0 outlined above. Like
biases, these terms prevent a direct factorization of f(x) into
A(x, α)x but they can be handled as discussed above. How-
ever, it is more desirable to capture their state dependency
in the proper element of the matrix A(x, α). For example,
supposing to have a system with two state variables, where
equations are given by:

ẋ1 = β(x1 + x2)

ẋ2 = cos(x1)
(41)

where β can be considered as a bias term, discussed above,
the SDC matrix A(x) has the form:

A(x) =

[
β β

cos(x1) 0

]
(42)

The cosine term of the A(x, α) matrix it is desirable to be
nonzero to reflect the state dependency. A solution could be
to re-arrange the cosine function as:

cos(x1) = [cos(x1) − 1] + 1 (43)

where [cos(x1) − 1] approaches to the origin when x1 goes
to zero and can be factorized as:

cos(x1) = [
cos(x1) − 1

x1
]x1 (44)

and the remaining term +1 of equation (43) can be handled
like a bias.

APPENDIX B THE MOTOR MODEL

The four-wheeled robot is powered by four identical motors
which provide the total force F acting on it. The first order
model in Laplace domain has been derived by means of
an identification process which has provided the following
transfer function:

Ω(s)

E(s)
=

Kp

1 + τps
=

1.7469

1 + 0.70738s
(45)

where Ω(s),E(s), are respectively the Laplace transform
of the angular velocity and the excitation voltage of the
motor, while Kp,τp are respectively the gain constant and the
mechanical time constant of the motor. In the time domain
we have:

ω̇(t) = − 1

τp
ω(t) +

Kp

τp
E(t) (46)

Knowing that ω̇ = τm
J = F Rr

J and ω = ẋ
Rr

the (46) can be
rewritten w.r.t. the force acting on the robot as:

F =
(J Kp)

(τpRr)
E − J

τpR2
r

ẋ (47)

Then, the force equation is replaced in the system model (1)
where the term β =

(J Kp)
(τp Rr) , and γ = J

τp R2
r

. The parameters
Kp and τp are found through the identification process, Rr
is the wheel radius. The rotor inertia J is calculated by
adopting the reduced order model of the DC motor, where
the electrical time constant is neglected. Since Ke and Ra
are measured, and Kt is computed as a good approximation
as τstall

Istall
, it is possible to compute the viscous friction Bm

with:
Kp =

Kt

KtKe + RaBm
(48)

Then J can be computed with:

τp =
Ra J

KtKe + RaBm
(49)

the physical and electrical parameters are completely defined
and listed in table 3.

TABLE 3: Physical and electrical parameters of the motor
HN-GH35GMA

Parameter Value Description
τstall[N m] 0.44 Stall torque
Istall[A] 1.4 Stall current
Kt[Nm/A]

τstall
Istall

= 0.3152 Torque constant
Ke[V sec /rad] 0.4090 Back electromotive force constant

Ra[Ω] 7.49 Armature resistence
Bm[N rad/ s] 0.007 viscous friction

J[km2] 0.0018 Inertia rotor
E[V] Excitation voltage

APPENDIX C MPC EXTENDED MODEL DERIVATION

In order to derive the extended model let consider the follow-
ing extended state vector xe:

xe[k] = [ ∆xs[k]T y[k]T ]T (50)

Using the iteration of the model (16) and by considering
that xs[k] = Ad xs[k − 1] + Bd u[k − 1], the following
relationships can be easily obtained:

∆xs[k + 1] = Ad∆xs[k] +Bd∆u[k] (51)

y[k+1]−y[k] = C(xs[k+1]−xs[k]) = C∆xs[k+1] =

= CAd∆xs[k] + CBd∆u[k] (52)
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equations (51) and (52) can be combined as below:[
∆ xs[k+1]
y[k+1]

]
=
[
Ad oTm
CAd Iqxq

] [
∆ xs[k]
y[k]

]
+
[
Bd
CBd

]
∆u (53)

where for simplicity, it has been rewritten matrices as follow:

Ae =

[
Ad oTm
CAd Iqxq

]
Be =

[
Bd
CBd

]
Ce =

[
om Iqxq

] (54)

with om a q x dim(xs) zero matrix and q the number of the
system outputs, i.e. the number of rows of y. Thus, equation
(53) can be written in a compact form, and adding the
equation to extract the y[k] component, yields the extended
system:

xe[k + 1] = Ae xe[k] +Be ∆u[k]
y[k] = Ce xe[k]

(55)

Considering the extended model (50) Let us assume a
sampling instant kth and define the predicted output vector
Y and the vector of the input trajectory ∆U as follows:

Y = [y[k + 1|k]T , y[k + 2|k]T , ..., y[k +Np|k]T ]T

(56)
∆U = [∆u[k], ∆u[k + 1], ..., ∆u[k +Nc − 1]]T

(57)
where the variable Np is the length of the prediction window
and Nc is the length of the receding window with Nc ≤ Np.
It can be proven by using the model (54) iteratively that the
output vector Y can be expressed in compact form as:

Y = F xe[k] + Φ∆U (58)

where

F =


CAe
CAe

2

CAe
3

...

CAe
Np

 (59)

Φ =

 CBe 0 ... 0
CAeBe CBe ... 0
CAe

2Be CAeBe ... 0
... ... ... 0

CAe
Np−1Be CAe

Np−2Be ... CAe
Np−NcBe

 (60)

For a given set-point signal r(ki) at sample time ki, within
a prediction horizon the objective of the predictive control
system is to bring the predicted output as close as possible to
the set-point signal, where we assume that the set-point signal
remains constant in the optimization window. This objective
is then translated into a design to find the ‘best’ control
parameter vector ∆U such that an error function between the
set-point and the predicted output is minimized. Assuming
the data-vector which contains the set-point information as:

Rs =

Np︷ ︸︸ ︷
[1 1 .. 1] r[ki]. (61)

The cost function J that reflects the control objective is

defined as:

J = (Rs − Y )T (Rs − Y ) + ∆UTR∆U (62)

where the first term is related to the minimization between
the predictive output and the set-point, while the second is
referred to the size of ∆U .
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