16 research outputs found

    Embedded visual perception system applied to safe navigation of vehicles

    Get PDF
    Orientadores: Douglas Eduardo Zampieri, Isabelle Fantoni CoichotTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia MecanicaResumo: Esta tese aborda o problema de evitamento de obstáculos para plataformas terrestres semie autônomas em ambientes dinâmicos e desconhecidos. Baseado num sistema monocular, propõe-se um conjunto de ferramentas que monitoram continuamente a estrada a frente do veículo, provendo-o de informações adequadas em tempo real. A partir de um algoritmo robusto de detecção da linha do horizonte é possível investigar dinamicamente somente a porção da estrada a frente do veículo, a fim de determinar a área de navegação, e da deteção de obstáculos. Uma área de navegação livre de obstáculos é então representa a partir de uma imagem multimodal 2D. Esta representação permite que um nível de segurança possa ser selecionado de acordo com o ambiente e o contexto de operação. A fim de reduzir o custo computacional, um método automático para descarte de imagens é proposto. Levando-se em conta a coerência temporal entre consecutivas imagens, uma nova metodologia de gerenciamento de energia (Dynamic Power Management) é aplicada ao sistema de percepção visual a fim de otimizar o consumo de energia. Estas propostas foram testadas em diferentes tipos de ambientes, e incluem a deteção da área de navegação, navegação reativa e estimação do risco de colisão. Uma característica das metodologias apresentadas é a independência em relação ao sistema de aquisição de imagem e do próprio veículo. Este sistema de percepção em tempo real foi avaliado a partir de diferentes bancos de testes e também a partir de dados reais obtidos por diferentes plataformas inteligentes. Em tarefas realizadas com uma plataforma semi-autônoma, testes foram conduzidos em velocidades acima de 100 Km/h. A partir de um sistema em malha aberta, deslocamentos reativos autônomos foram realizados com sucessoResumé: Les études développées dans ce projet doctoral ont concerné deux problématiques actuelles dans le domaine des systèmes robotiques pour la mobilité terrestre: premièrement, le problème associé à la navigation autonome et (semi)-autonome des véhicules terrestres dans un environnement inconnu ou partiellement connu. Cela constitue un enjeu qui prend de l'importance sur plusieurs fronts, notamment dans le domaine militaire. Récemment, l'agence DARPA1 aux États-Unis a soutenu plusieurs challenges sur cette problématique robotique; deuxièmement, le développement de systèmes d'assistance à la conduite basés sur la vision par ordinateur. Les acteurs de l'industrie automobile s'intéressent de plus en plus au développement de tels systèmes afin de rendre leurs produits plus sûrs et plus confortables à toutes conditions climatiques ou de terrain. De plus, grâce à l'électronique embarquée et à l'utilisation des systèmes visuels, une interaction avec l'environnement est possible, rendant les routes et les villes plus sûres pour les conducteurs et les piétons. L'objectif principal de ce projet doctoral a été le développement de méthodologies qui permettent à des systèmes mobiles robotisés de naviguer de manière autonome dans un environnement inconnu ou partiellement connu, basées sur la perception visuelle fournie par un système de vision monoculaire embarqué. Un véhicule robotisé qui doit effectuer des tâches précises dans un environnement inconnu, doit avoir la faculté de percevoir son environnement proche et avoir un degré minimum d'interaction avec celui-ci. Nous avons proposé un système de vision embarquée préliminaire, où le temps de traitement de l'information (point critique dans des systèmes de vision utilisés en temps-réel) est optimisé par une méthode d'identification et de rejet d'informations redondantes. Suite à ces résultats, on a proposé une étude innovante par rapport à l'état de l'art en ce qui concerne la gestion énergétique du système de vision embarqué, également pour le calcul du temps de collision à partir d'images monoculaires. Ainsi, nous proposons le développement des travaux en étudiant une méthodologie robuste et efficace (utile en temps-réel) pour la détection de la route et l'extraction de primitives d'intérêts appliquée à la navigation autonome des véhicules terrestres. Nous présentons des résultats dans un environnement réel, dynamique et inconnu. Afin d'évaluer la performance de l'algorithme proposé, nous avons utilisé un banc d'essai urbain et réel. Pour la détection de la route et afin d'éviter les obstacles, les résultats sont présents en utilisant un véhicule réel afin d'évaluer la performance de l'algorithme dans un déplacement autonome. Cette Thèse de Doctorat a été réalisée à partir d'un accord de cotutelle entre l' Université de Campinas (UNICAMP) et l'Université de Technologie de Compiègne (UTC), sous la direction du Professeur Docteur Douglas Eduardo ZAMPIERI, Faculté de Génie Mécanique, UNICAMP, Campinas, Brésil, et Docteur Isabelle FANTONI-COICHOT du Laboratoire HEUDIASYC UTC, Compiègne, France. Cette thèse a été soutenue le 26 août 2011 à la Faculté de Génie Mécanique, UNICAMP, devant un jury composé des Professeurs suivantsAbstract: This thesis addresses the problem of obstacle avoidance for semi- and autonomous terrestrial platforms in dynamic and unknown environments. Based on monocular vision, it proposes a set of tools that continuously monitors the way forward, proving appropriate road informations in real time. A horizon finding algorithm was developed to sky removal. This algorithm generates the region of interest from a dynamic threshold search method, allowing to dynamically investigate only a small portion of the image ahead of the vehicle, in order to road and obstacle detection. A free-navigable area is therefore represented from a multimodal 2D drivability road image. This multimodal result enables that a level of safety can be selected according to the environment and operational context. In order to reduce processing time, this thesis also proposes an automatic image discarding criteria. Taking into account the temporal coherence between consecutive frames, a new Dynamic Power Management methodology is proposed and applied to a robotic visual machine perception, which included a new environment observer method to optimize energy consumption used by a visual machine. This proposal was tested in different types of image texture (road surfaces), which includes free-area detection, reactive navigation and time-to-collision estimation. A remarkable characteristic of these methodologies is its independence of the image acquiring system and of the robot itself. This real-time perception system has been evaluated from different test-banks and also from real data obtained by two intelligent platforms. In semi-autonomous tasks, tests were conducted at speeds above 100 Km/h. Autonomous displacements were also carried out successfully. The algorithms presented here showed an interesting robustnessDoutoradoMecanica dos Sólidos e Projeto MecanicoDoutor em Engenharia Mecânic

    Information-driven navigation

    Get PDF
    En los últimos años, hemos presenciado un progreso enorme de la precisión y la robustez de la “Odometría Visual” (VO) y del “Mapeo y la Localización Simultánea” (SLAM). Esta mejora de su funcionamiento ha permitido las primeras implementaciones comerciales relacionadascon la realidad aumentada (AR), la realidad virtual (VR) y la robótica. En esta tesis, desarrollamos nuevos métodos probabilísticos para mejorar la precisión, robustez y eficiencia de estas técnicas. Las contribuciones de nuestro trabajo están publicadas en tres artículos y se complementan con el lanzamiento de “SID-SLAM”, el software que contiene todas nuestras contribuciones, y del “Minimal Texture dataset”.Nuestra primera contribución es un algoritmo para la selección de puntos basado en Teoría de la Información para sistemas RGB-D VO/SLAM basados en métodos directos y/o en características visuales (features). El objetivo es seleccionar las medidas más informativas, para reducir el tama˜no del problema de optimización con un impacto mínimo en la precisión. Nuestros resultados muestran que nuestro nuevo criterio permitereducir el número de puntos hasta tan sólo 24 de ellos, alcanzando la precisión del estado del arte y reduciendo en hasta 10 veces la demanda computacional.El desarrollo de mejores modelos de incertidumbre para las medidas visuales mejoraría la precisión de la estructura y movimiento multi-vista y llevaría a estimaciones más realistas de la incertidumbre del estado en VO/SLAM. En esta tesis derivamos un modelo de covarianza para residuos multi-vista, que se convierte en un elemento crucial de nuestras contribuciones basadas en Teoría de la Información.La odometría visual y los sistemas de SLAM se dividen típicamente en la literatura en dos categorías, los basados en features y los métodos directos, dependiendo del tipo de residuos que son minimizados. En la última parte de la tesis combinamos nuestras dos contribucionesanteriores en la formulación e implementación de SID-SLAM, el primer sistema completo de SLAM semi-directo RGB-D que utiliza de forma integrada e indistinta features y métodos directos, en un sistema completo dirigido con información. Adicionalmente, grabamos ‘‘Minimal Texture”, un dataset RGB-D con un contenido visual conceptualmente simple pero arduo, con un ground truth preciso para facilitar la investigación del estado del arte en SLAM semi-directo.In the last years, we have witnessed an impressive progress in the accuracy and robustness of Visual Odometry (VO) and Simultaneous Localization and Mapping (SLAM). This boost in the performance has enabled the first commercial implementations related to augmented reality (AR), virtual reality (VR) and robotics. In this thesis, we developed new probabilistic methods to further improve the accuracy, robustness and efficiency of VO and SLAM. The contributions of our work are issued in three main publications and complemented with the release of SID-SLAM, the software containing all our contributions, and the challenging Mininal Texture dataset. Our first contribution is an information-theoretic approach to point selection for direct and/or feature-based RGB-D VO/SLAM. The aim is to select only the most informative measurements, in order to reduce the optimization problem with a minimal impact in the accuracy. Our experimental results show that our novel criteria allows us to reduce the number of tracked points down to only 24 of them, achieving state-of-the-art accuracy while reducing 10x the computational demand. Better uncertainty models for visual measurements will impact the accuracy of multi-view structure and motion and will lead to realistic uncertainty estimates of the VO/SLAM states. We derived a novel model for multi-view residual covariances based on perspective deformation, which has become a crucial element in our information-driven approach. Visual odometry and SLAM systems are typically divided in the literature into two categories, feature-based and direct methods, depending on the type of residuals that are minimized. We combined our two previous contributions in the formulation and implementation of SID-SLAM, the first full semi-direct RGB-D SLAM system that uses tightly and indistinctly features and direct methods within a complete information-driven pipeline. Moreover, we recorded Minimal Texture an RGB-D dataset with conceptually simple but challenging content, with accurate ground truth to facilitate state-of-the-art research on semi-direct SLAM.<br /

    Design and Development of Robotic Part Assembly System under Vision Guidance

    Get PDF
    Robots are widely used for part assembly across manufacturing industries to attain high productivity through automation. The automated mechanical part assembly system contributes a major share in production process. An appropriate vision guided robotic assembly system further minimizes the lead time and improve quality of the end product by suitable object detection methods and robot control strategies. An approach is made for the development of robotic part assembly system with the aid of industrial vision system. This approach is accomplished mainly in three phases. The first phase of research is mainly focused on feature extraction and object detection techniques. A hybrid edge detection method is developed by combining both fuzzy inference rule and wavelet transformation. The performance of this edge detector is quantitatively analysed and compared with widely used edge detectors like Canny, Sobel, Prewitt, mathematical morphology based, Robert, Laplacian of Gaussian and wavelet transformation based. A comparative study is performed for choosing a suitable corner detection method. The corner detection technique used in the study are curvature scale space, Wang-Brady and Harris method. The successful implementation of vision guided robotic system is dependent on the system configuration like eye-in-hand or eye-to-hand. In this configuration, there may be a case that the captured images of the parts is corrupted by geometric transformation such as scaling, rotation, translation and blurring due to camera or robot motion. Considering such issue, an image reconstruction method is proposed by using orthogonal Zernike moment invariants. The suggested method uses a selection process of moment order to reconstruct the affected image. This enables the object detection method efficient. In the second phase, the proposed system is developed by integrating the vision system and robot system. The proposed feature extraction and object detection methods are tested and found efficient for the purpose. In the third stage, robot navigation based on visual feedback are proposed. In the control scheme, general moment invariants, Legendre moment and Zernike moment invariants are used. The selection of best combination of visual features are performed by measuring the hamming distance between all possible combinations of visual features. This results in finding the best combination that makes the image based visual servoing control efficient. An indirect method is employed in determining the moment invariants for Legendre moment and Zernike moment. These moments are used as they are robust to noise. The control laws, based on these three global feature of image, perform efficiently to navigate the robot in the desire environment

    Active Information Acquisition With Mobile Robots

    Get PDF
    The recent proliferation of sensors and robots has potential to transform fields as diverse as environmental monitoring, security and surveillance, localization and mapping, and structure inspection. One of the great technical challenges in these scenarios is to control the sensors and robots in order to extract accurate information about various physical phenomena autonomously. The goal of this dissertation is to provide a unified approach for active information acquisition with a team of sensing robots. We formulate a decision problem for maximizing relevant information measures, constrained by the motion capabilities and sensing modalities of the robots, and focus on the design of a scalable control strategy for the robot team. The first part of the dissertation studies the active information acquisition problem in the special case of linear Gaussian sensing and mobility models. We show that the classical principle of separation between estimation and control holds in this case. It enables us to reduce the original stochastic optimal control problem to a deterministic version and to provide an optimal centralized solution. Unfortunately, the complexity of obtaining the optimal solution scales exponentially with the length of the planning horizon and the number of robots. We develop approximation algorithms to manage the complexity in both of these factors and provide theoretical performance guarantees. Applications in gas concentration mapping, joint localization and vehicle tracking in sensor networks, and active multi-robot localization and mapping are presented. Coupled with linearization and model predictive control, our algorithms can even generate adaptive control policies for nonlinear sensing and mobility models. Linear Gaussian information seeking, however, cannot be applied directly in the presence of sensing nuisances such as missed detections, false alarms, and ambiguous data association or when some sensor observations are discrete (e.g., object classes, medical alarms) or, even worse, when the sensing and target models are entirely unknown. The second part of the dissertation considers these complications in the context of two applications: active localization from semantic observations (e.g, recognized objects) and radio signal source seeking. The complexity of the target inference problem forces us to resort to greedy planning of the sensor trajectories. Non-greedy closed-loop information acquisition with general discrete models is achieved in the final part of the dissertation via dynamic programming and Monte Carlo tree search algorithms. Applications in active object recognition and pose estimation are presented. The techniques developed in this thesis offer an effective and scalable approach for controlled information acquisition with multiple sensing robots and have broad applications to environmental monitoring, search and rescue, security and surveillance, localization and mapping, precision agriculture, and structure inspection

    First Annual Workshop on Space Operations Automation and Robotics (SOAR 87)

    Get PDF
    Several topics relative to automation and robotics technology are discussed. Automation of checkout, ground support, and logistics; automated software development; man-machine interfaces; neural networks; systems engineering and distributed/parallel processing architectures; and artificial intelligence/expert systems are among the topics covered

    The 1991 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in this proceeding fall into the following areas: Planning and scheduling, fault monitoring/diagnosis/recovery, machine vision, robotics, system development, information management, knowledge acquisition and representation, distributed systems, tools, neural networks, and miscellaneous applications

    Multimodal Computational Attention for Scene Understanding

    Get PDF
    Robotic systems have limited computational capacities. Hence, computational attention models are important to focus on specific stimuli and allow for complex cognitive processing. For this purpose, we developed auditory and visual attention models that enable robotic platforms to efficiently explore and analyze natural scenes. To allow for attention guidance in human-robot interaction, we use machine learning to integrate the influence of verbal and non-verbal social signals into our models

    Reinforcement Learning With High-Level Task Specifications

    Get PDF
    Reinforcement learning (RL) has been widely used, for example, in robotics, recommendation systems, and financial services. Existing RL algorithms typically optimize reward-based surrogates rather than the task performance itself. Therefore, they suffer from several shortcomings in providing guarantees for the task performance of the learned policies: An optimal policy for a surrogate objective may not have optimal task performance. A reward function that helps achieve satisfactory task performance in one environment may not transfer well to another environment. RL algorithms tackle nonlinear and nonconvex optimization problems and may, in general, not able to find globally optimal policies. The goal of this dissertation is to develop RL algorithms that explicitly account for formal high-level task specifications and equip the learned policies with provable guarantees for the satisfaction of these specifications. The resulting RL and inverse RL algorithms utilize multiple representations of task specifications, including conventional reward functions, expert demonstrations, temporal logic formulas, trajectory-based constraint functions as well as their combinations. These algorithms offer several promising capabilities. First, they automatically generate a memory transition system, which is critical for tasks that cannot be implemented by memoryless policies. Second, the formal specifications can act as reliable performance criteria for the learned policies despite the quality of the designed reward functions and variations in the underlying environments. Third, the algorithms enable online RL that never violates critical task and safety requirements, even during exploration

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore