
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Publicly Accessible Penn Dissertations

2019

Reinforcement Learning With High-Level Task Specifications Reinforcement Learning With High-Level Task Specifications

Min Wen
University of Pennsylvania, kelanzhen@gmail.com

Follow this and additional works at: https://repository.upenn.edu/edissertations

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Wen, Min, "Reinforcement Learning With High-Level Task Specifications" (2019). Publicly Accessible Penn
Dissertations. 3509.
https://repository.upenn.edu/edissertations/3509

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3509
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3509&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=repository.upenn.edu%2Fedissertations%2F3509&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3509?utm_source=repository.upenn.edu%2Fedissertations%2F3509&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3509
mailto:repository@pobox.upenn.edu

Reinforcement Learning With High-Level Task Specifications Reinforcement Learning With High-Level Task Specifications

Abstract Abstract
Reinforcement learning (RL) has been widely used, for example, in robotics, recommendation systems,
and financial services. Existing RL algorithms typically optimize reward-based surrogates rather than the
task performance itself. Therefore, they suffer from several shortcomings in providing guarantees for the
task performance of the learned policies: An optimal policy for a surrogate objective may not have
optimal task performance. A reward function that helps achieve satisfactory task performance in one
environment may not transfer well to another environment. RL algorithms tackle nonlinear and nonconvex
optimization problems and may, in general, not able to find globally optimal policies. The goal of this
dissertation is to develop RL algorithms that explicitly account for formal high-level task specifications
and equip the learned policies with provable guarantees for the satisfaction of these specifications. The
resulting RL and inverse RL algorithms utilize multiple representations of task specifications, including
conventional reward functions, expert demonstrations, temporal logic formulas, trajectory-based
constraint functions as well as their combinations. These algorithms offer several promising capabilities.
First, they automatically generate a memory transition system, which is critical for tasks that cannot be
implemented by memoryless policies. Second, the formal specifications can act as reliable performance
criteria for the learned policies despite the quality of the designed reward functions and variations in the
underlying environments. Third, the algorithms enable online RL that never violates critical task and safety
requirements, even during exploration.

Degree Type Degree Type
Dissertation

Degree Name Degree Name
Doctor of Philosophy (PhD)

Graduate Group Graduate Group
Electrical & Systems Engineering

First Advisor First Advisor
Ufuk Topcu

Second Advisor Second Advisor
George J. Pappas

Keywords Keywords
Game theory, Inverse reinforcement learning, Learning-based control, Learning from demonstration,
Reinforcement learning, Temporal logic specifications

Subject Categories Subject Categories
Artificial Intelligence and Robotics | Computer Sciences

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/3509

https://repository.upenn.edu/edissertations/3509

REINFORCEMENT LEARNING WITH HIGH-LEVEL TASK SPECIFICATIONS

Min Wen

A DISSERTATION

in

Electrical and Systems Engineering

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2019

Supervisor of Dissertation

Ufuk Topcu, Assistant Professor of Aerospace Engineering and Engineering Mechanics,
Univ. of Texas at Austin

Graduate Group Chairperson

Victor Preciado, Associate Professor of Electrical and Systems Engineering

Dissertation Committee

George J. Pappas, Joseph Moore Professor and Chair of Electrical and Systems Engineering

Manfred Morari, Distinguished Faculty Fellow of Electrical and Systems Engineering

Michael Littman, Professor and Associate Chair of Computer Science, Brown University

REINFORCEMENT LEARNING WITH HIGH-LEVEL TASK SPECIFICATIONS

c© COPYRIGHT

2019

Min Wen

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/

To my family.

iii

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest gratitude to my advisor, Ufuk Topcu. Without

his continuous encouragement, trust, and patience throughout my studies, it would be impossible

for me to explore the diverse research topics in my thesis and find my own research story there. His

enthusiasm for research and working and his positive attitude in face of all difficulties have shaped

my understanding of being a researcher and a reliable person. It is my fortune to have him as my

advisor and friend.

I would like to thank my thesis committee members, Professor George Pappas, Manfred Morari, and

Michael Littman, for generously sharing their vision and wisdom with me. I also learned a lot by

attending George’s group meetings in the past few years.

I thank my friends for our memorable times together: Ximing Chen, Bhoram Lee, Jinwook Huh,

Sangdon Park, Meng Xu, Siyao Hu, Clark Zhang, Ivan Papusha, Shaoru Chen, Lingjun Chen, and

Konstantinos Gatsis. I am also very lucky to have two of my high-school deskmates, Ning Wang and

Meng Ye, to pursue our PhDs together in Philadelphia.

Finally, I would like to thank my parents, Dan Liu and Kewu Wen. Thank you for being my parents,

raising me with all your love, and always supporting me to pursue my dreams. I also thank my

grandfather, Taiji Liu, for sharing his own experience with me when I get puzzled and upset. I will

always benefit from his positive attitude towards life. I thank my husband, Jihua Huang, for his love,

companion, understanding, and support.

iv

ABSTRACT

REINFORCEMENT LEARNING WITH HIGH-LEVEL TASK SPECIFICATIONS

Min Wen

Ufuk Topcu

Reinforcement learning (RL) has been widely used, for example, in robotics, recommendation

systems, and financial services. Existing RL algorithms typically optimize reward-based surrogates

rather than the task performance itself. Therefore, they suffer from several shortcomings in providing

guarantees for the task performance of the learned policies: An optimal policy for a surrogate

objective may not have optimal task performance. A reward function that helps achieve satisfactory

task performance in one environment may not transfer well to another environment. RL algorithms

tackle nonlinear and nonconvex optimization problems and may, in general, not able to find globally

optimal policies. The goal of this dissertation is to develop RL algorithms that explicitly account

for formal high-level task specifications and equip the learned policies with provable guarantees for

the satisfaction of these specifications. The resulting RL and inverse RL algorithms utilize multiple

representations of task specifications, including conventional reward functions, expert demonstrations,

temporal logic formulas, trajectory-based constraint functions as well as their combinations. These

algorithms offer several promising capabilities. First, they automatically generate a memory transition

system, which is critical for tasks that cannot be implemented by memoryless policies. Second, the

formal specifications can act as reliable performance criteria for the learned policies despite the

quality of the designed reward functions and variations in the underlying environments. Third, the

algorithms enable online RL that never violates critical task and safety requirements, even during

exploration.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENT iv

ABSTRACT v

LIST OF TABLES viii

LIST OF ILLUSTRATIONS xi

1 Introduction 1

1.1 Challenges in Representing Task Requirements as Reward Functions 1

1.2 Outline and Contributions . 4

1.3 Related Work . 7

2 Learning from Demonstrations with High-Level Side Information 17

2.1 Introduction . 17

2.2 Preliminaries . 18

2.3 Maximum-Likelihood Inverse Reinforcement Learning (MLIRL) 21

2.4 MLIRL with High-Level Side Information . 22

2.5 Experimental Results . 26

3 Task-Oriented Deep Inverse Reinforcement Learning 32

3.1 Introduction . 32

3.2 Preliminaries . 34

3.3 Task-Oriented Deep Inverse Reinforcement Learning 37

3.4 Related Work . 39

3.5 Experimental Results . 41

4 Constrained Cross-Entropy Method for Safe Reinforcement Learning 46

vi

4.1 Introduction . 46

4.2 Related Work . 48

4.3 Preliminaries . 49

4.4 Constrained Cross-Entropy Framework . 53

4.5 Experimental Results . 74

5 Correct-By-Synthesis Reinforcement Learning with Temporal Logic Constraints 82

5.1 Introduction . 82

5.2 Preliminaries . 84

5.3 Problem Formulation . 88

5.4 Permissive Strategies, Learning and the Main Algorithm 90

5.5 Experimental Results . 96

6 Probably Approximately Correct Learning in Stochastic Games with Temporal Logic

Specifications 101

6.1 Introduction . 101

6.2 Related Work . 103

6.3 Preliminaries . 104

6.4 Problem Formulation . 109

6.5 Main Approach . 110

6.6 Proof of Theorem 6 . 122

6.7 Experimental Results . 137

7 Conclusion 142

7.1 Future Research Directions . 144

BIBLIOGRAPHY 145

vii

LIST OF TABLES

TABLE 1 : Design of features in Case 2 and Case 3. 27

TABLE 2 : Interpretation of DFA states. 29

TABLE 3 : DFA states . 42

TABLE 4 : Ji(τ), Zi(τ) and constraint upper bound di for i = 1, 2, 3, 4, τ ∈ (S ×A)N . 79

TABLE 5 : Results for example 1. 97

TABLE 6 : Results for example 3 (for the 3-by-3 case). 100

viii

LIST OF ILLUSTRATIONS

FIGURE 1 : Illustration of the grid world example. Left: grid world map and demon-

stration trajectories. Right: an equivalent DFA for ϕcs. 26

FIGURE 2 : Probability of satisfying ϕcs when following the corresponding policy

from each initial state. 28

FIGURE 3 : Probability of satisfying ϕcs (left) and negative log-likelihood of the

state-action pairs in demonstration (right), as function of µ. 30

FIGURE 4 : Probability of satisfying ϕcs for policies learned without the obstacle

avoidance requirement. 31

FIGURE 5 : Training and test grid-worlds. Indexing convention: (vertical axis index,

horizontal axis index). In (a) O1 = (1, 7), O2 = (7, 1), O3 = (10, 10)

and OB = {(4, 4), (4, 5), (4, 6), (4, 7), (10, 7)}. All other cells corre-

spond to distractor objects. 42

FIGURE 6 : Training and testing performance of TODIRL and the baselines with 100

demonstrations. 44

FIGURE 7 : Testing performance with 100 demonstrations for different design choices. 45

FIGURE 8 : Comparison of the globally optimal policy π∗ and the 50 learned policies

for different policy network structures. Each row corresponds to a policy

network structure. From left to right, the first three columns represent

the trajectories of the two states xt(1), xt(2) and the input ut over time

t. The solid line in each figure is for π∗ and the dashed lines are for the

learned policies. In the fourth column, we show the gap between their

G-values and G(π∗) in ascending order. In the last column, we show the

H-values of the learned policies in ascending order. 76

ix

FIGURE 9 : (9a) Map of the 2D navigation example. There are one obstacle region

(grey rectangle), one goal region (blue rectangle) and 10 randomly selected

initial states (red circles pointing to the forward direction). Dotted lines

are added to show x and y axes. (9b) Illustration of the local features

in the robot’s local coordinate at one of the initial states, with ns = 5.

Obstacle nodes, goal nodes and free nodes are labeled by black crosses,

yellow plus signs and green triangles respectively. The goal direction

(black arrow) is also included in local features. 78

FIGURE 10 : Learning curves of CCE, CPO and TRPO with different objectives GJi

and constraints HZi . The horizontal axes show the total number of sample

trajectories for CCE and the total number of equivalent sample trajectories

for TRPO and CPO. The vertical axes show the sample mean of the

objective and constraint values of the learned policy (for TRPO and CPO)

or the learned policy distribution (for CCE). The shade shows 1 standard

deviation. The region below the dashed line in the second row is feasible.

Each experiment is repeated for 5 times. 80

FIGURE 11 : Average performance of CCE, CPO and TRPO for Experiment 4 with

initial feasible policy. 81

FIGURE 12 : A game G0 without finite-memory optimal strategy. 89

FIGURE 13 : Results for Example 1 for N = 4: (Left) J̄ ĜR(µ̂, ŝ) for all ŝ ∈ Ŝs and the

learned greedy strategy µ̂; (right) the logarithm of the maximal change in

V in every 104 iterations. 98

FIGURE 14 : Result for Example 2 when N = 4: J̄ Ĝ1
R (µ̂, ŝ) for all ŝ ∈ Ŝs and a learned

greedy strategy µ̂. 99

FIGURE 15 : DBA constructed for some example specifications. Accepting states for

each DFA are marked with double circles. 105

x

FIGURE 16 : Illustration of the construction of Ĝ = HatGame(G,Q∗, ε′, pε′). Each

arrow represents an available action from the starting state. The red

arrows correspond to ε′-optimal actions in A∗ε′(s). For each system state

s ∈ Ss in G, there are three states in Ĝ: a copy of the state s with

only one available action â, and two virtual states s1 and s2 such that

AĜ(s1) = AG(s) and AĜ(s2) = A∗ε′(s). 118

FIGURE 17 : (17a) A DBA constructed for the example. p1 stands for the lower left

block, and p2 stands for the upper right block. (17b) The optimal strategy

for the system with only the discounted reward. The pink and blue squares

represent the dangerous areas when the light is on and off. The triangles

show the optimal transition directions from each block (pink ones for light

on, blue ones for light off). 137

FIGURE 18 : Comparison of the value function of the initial almost-sure winning strat-

egy, the learned strategy and an optimal strategy (which may not be

almost-sure winning) for all system states. The red crosses mark all the

strongly connected components in which there is at least one state whose

value is learned to be ε-optimal. 139

FIGURE 19 : Illustration of the initial almost-sure winning strategy σs (the middle

column) and the learned ε-optimal almost-sure winning system strategy

σs,ε (the right column). From top to bottom, the four figures in each

column show the system strategy with DBA state q1 to q4. In each figure,

the pink and blue triangles point to the transition directions at each block

when the light is on and off respectively. In the right column, big triangles

represent actions with probability (1− pε1), and small triangles represent

actions with probability pε1 . Triangles with yellow background are ε-

optimal over all almost-sure winning system strategies. 140

xi

Chapter 1: Introduction

Reinforcement learning (RL) techniques have been used to solve a wide range of real-world tasks

such as robotics [55, 68, 83, 85, 91, 196], recommendation systems [109, 172, 199] and financial

services [45, 118, 128]. Given a reward function and some mechanism for a learning agent to interact

with its environment, the goal of RL is to learn an optimal policy that maximizes the expected reward.

To solve a robotic task using RL, one first needs to specify a reward function to encode the task

objective, which implicitly introduces the following assumption:

The more expected reward a policy gets, the better task performance it has.

In other words, the assumption states that the expected reward is interpreted as a performance

criterion for the given task. This assumption holds trivially for score-optimizing applications such as

board games [100, 161, 162] and video games [122, 132], where a lot of impressive RL applications

emerge these days. However, this assumption is rarely valid for most real-world tasks, where reward

functions are not part of the original task specification and need to be designed. In general, reward

design is non-trivial and mostly still an open problem [9, 69, 163, 200]. In many cases, reward

design proceeds by trial and error with intense human supervision, yet the learned policies still lack

guarantees for task performance. In Section 1.1, we show several reasons why a reward function by

itself is not an ideal way to represent task requirements in general.

1.1. Challenges in Representing Task Requirements as Reward Functions

Conceptually, there is a non-negligible gap between the objective of reward design and the require-

ment of reward utilization. For reward design, the goal is usually to find a candidate reward function

such that there exists an optimal policy that implements the given task successfully in training

environments, as in the cases of ad-hoc reward design and inverse reinforcement learning [1]. For

reward utilization, it is required that all optimal policies with the specified reward function can

implement the task successfully in (possibly different) testing environments, as any optimal policy

will be a sound output of an RL algorithm. An extreme case of this gap is an all-zero reward function,

1

i.e., a reward function that assigns zero rewards to all state-action pairs. A policy that implements the

given task successfully is undoubtedly optimal for the all-zero reward function; nevertheless, it is

impractical to learn such a policy using such an uninformative reward.

For some relatively simple tasks, it is possible to bridge this gap using sparse rewards. Consider a

target-reaching task as an example, where the goal is to reach a given target object within ten time

steps. Then a reward function that satisfies the above assumption can be designed as follows: The

reward is one if the hand has just reached the target object and zero otherwise. With this reward

function, any optimal policy that maximizes the expected total reward maximizes the probability

to reach the target object within ten steps. However, the sparsity of non-zero reward signals makes

exploration very inefficient and thus is undesired for most RL algorithms.

For more complicated tasks, reward functions need to encode multiple (possibly conflicting) long-

term objectives, where each objective corresponds to some behavior to be encouraged or prohibited.

The objectives can still be quantified separately as reward basis functions, but their weights that

signify the importance of each basis function to task performance are not apparent. Even for a

specific weight vector, it is not clear how to predict the task performance of the corresponding

optimal policies without actually solving the RL problem. Moreover, the trade-off between the basis

functions is also affected by the system dynamics and the underlying environment. Therefore, a

reward function that leads to good task performance in one environment may not guarantee similar

performance in another environment, which suggests that it may not be enough to represent task

requirements merely as reward functions.

Last but not least, RL techniques may not always converge to a global optimum, especially when

nonlinear parameterization is used, which is almost always the case for problems with continuous

state spaces. Recently, deep RL techniques [108] becomes popular, where the agent’s policy is

parameterized as a neural network. The network weights are computed using backpropagation and

updated using some stochastic gradient descent method. There is no wonder that neither the expected

reward nor the task performance is convex in network weights, and thus gradient-based methods

cannot guarantee convergence to global optima. Researchers have observed that implementation

2

details of deep RL algorithms such as policy network structure, batch size, learning rate, and even

random seeds can drastically alter the performance of deep RL algorithms [71]. This observation

again indicates that it is impractical to rely on reward design to guarantee the task performance of the

learned policies.

Having discussed the limitations of reward-based task specifications, we also note that reward function

is neither the unique way nor the most common way for humans to describe task requirements. Rather

than optimizing some quantitative evaluative feedback (such as rewards) from each transition, it is

far more natural to learn from high-level task requirements in natural language or to directly imitate

some successful demonstrations of the given task. For example, when people learn to drive, they are

required to learn the road rules to follow some general guidelines and avoid some common mistakes.

In the meantime, they learn about driving customs by both mimicking the other drivers and observing

others’ feedback. Similarly, we can express the rule-based task requirements as temporal-logic-based

specifications or finite-state transition systems, and consider expert demonstrations as a given set of

trajectories.

Instead of relying on reward functions as a unique task description, we propose to incorporate

miscellaneous sources of task information into RL algorithms, with the following objective in mind:

To learn policies that are known to have reliable task performance.

The exploitation of reward-free task information can help improve output task performance in

multiple ways. For example, constraints help restrict the search space of output policies: Trajectories

generated by a valid output policy should satisfy the given constraints with high probability. Temporal

logic specifications show insights into task structure and facilitate the design of memory states. Expert

demonstrations provide samples of desired behaviors for policy training and the inference of the

expert’s preferences. The works in this dissertation are some exploratory steps towards the ultimate

goal of learning with reliable task performance.

3

1.2. Outline and Contributions

The overarching goal of this dissertation is to utilize different sources of available task information

besides reward functions and provide the policies learned by reinforcement learning with task

performance guarantees. The works in this dissertation contain three parts, where each part uses

different formulations and task representations.

1.2.1. Learning from Demonstrations with High-Level Side Information

The first part includes Chapter 2 and Chapter 3, in which we represent the task information in the

following two ways: First, there is a co-safe linear temporal logic specification or an equivalent

deterministic finite automaton [99], which can be used to directly check whether a given trajectory

fails or succeeds in the given task. Additionally, there is a set of demonstrations showing how

an experienced expert implements the given task. The overall problem, formulated as an inverse

reinforcement learning problem, aims at learning a reward function and an output policy at the same

time such that the learned policy satisfies the given temporal logic specification with high probability.

Chapter 2 shows how to extend an existing inverse reinforcement learning algorithm (the example

used in Chapter 2 is the maximum likelihood inverse reinforcement learning algorithm [12]) to

explicitly take advantage of the extra input of task information as a co-safe linear temporal logic

specification. The proposed algorithm incorporates the task information in several steps. First, it

transforms the specification into an equivalent deterministic finite automaton, such that a trajectory

satisfies the specification if and only if it is accepted by the deterministic finite automaton. Then the

algorithm constructs a product automaton by extending the state space of the original environment

with the deterministic finite automaton. Essentially, the deterministic finite automaton acts as a

memory transition system that tracks the current progress of the task, since the policies of the

product automaton depend on both the current state in the environment Markov decision process

and the state in the task deterministic finite automaton. Moreover, there is a one-to-one mapping

between the trajectories of the environment Markov decision process and the trajectories of the

product automaton. Therefore, the task performance of the learned policy, i.e., the probability that the

4

learned policy satisfies the temporal logic specification, can be evaluated in the product automaton

and is independent of the recovered reward function. As the task performance is differentiable,

it can be used to augment the objective function of the underlying inverse reinforcement learning

algorithm. The resulting algorithm parameterizes the reward function as a linear combination of a set

of manually designed reward features in the constructed product automaton.

Chapter 3 extends the above framework to nonlinearly parameterized reward functions such as

reward networks. The proposed algorithm relies on an existing deep maximum-entropy inverse

reinforcement learning algorithm [195]. While the previous work focused on the generalization

performance at states without expert demonstrations in the same environment, this work evaluates the

generalization performance in new testing environments with no expert demonstrations. Compared

with linearly parameterized rewards, reward networks gain the capability to construct reward features

automatically and thus transferable to new environments. After transferring the learned reward

function, the algorithm computes a new policy separately for each testing environment. A comparison

of the generalization performance of the proposed algorithm with that of a memory-based behavioral

cloning algorithm shows that, with the same set of expert demonstrations, policies generated by the

learned reward function have near-perfect task performance in both training and testing environments,

while the policy learned by the memory-based behavioral cloning algorithm deteriorates significantly

in testing environments.

1.2.2. Constrained Reinforcement Learning

The second part corresponds to Chapter 4. In this part, we represent task information as objective

and constraint functions and formulate the problem as a constrained reinforcement learning problem.

The constraint functions act as the role of temporal logic specifications in the first part: a policy

is feasible if and only if all constraint functions evaluated with this policy are within the specified

ranges. The objective function encodes preferences over different feasible policies. Both objective

and constraint functions are evaluated over finite-step trajectories and thus can encode even non-

Markovian objectives, which is more general than standard reward functions.

5

We treat both objective and constraint functions as black boxes and propose a constrained cross-

entropy-based method. The key idea is to transform the original constrained optimization problem

into an unconstrained one with a surrogate objective. The method explicitly tracks its performance

for constraint satisfaction and thus is well-suited for safety-critical applications. We show that

the asymptotic behavior of the proposed algorithm converges almost-surely to that of an ordinary

differential equation, and also provide sufficient conditions on the differential equation for the

convergence of the proposed algorithm. We illustrate the performance of the proposed algorithm with

two simulation examples. The first one is a constrained linear quadratic regulator problem, in which

the algorithm converges to the global optimum with high probability. The second example is a 2D

navigation problem, for which the proposed algorithm manages to learn feasible policies effectively

without assumptions on the feasibility of initial policies, even with non-Markovian objective functions

and constraint functions.

1.2.3. Reinforcement Learning with Temporal Logic Constraints in Two-Player Games

The third part includes Chapter 5 and 6. In this part, we consider two reinforcement learning

problems in two-player games, where the task requirements are represented by one qualitative

and one quantitative objective. Similar to the first part, we represent the qualitative objective as

a temporal logic specification that is not limited to the co-safe ones. No matter which policy the

other uncontrolled player takes, the learning agent should guarantee to satisfy the given temporal

logic specification even during the learning procedure. The quantitative objective is the worst-case

expected discounted reward, which is unknown a priori and learned by interacting with the other

player. The two objectives are independent of each other such that they may be conflicting, somewhat

similar, or irrelevant at all.

In Chapter 5, we model the interaction between a controlled agent (referred to as the system agent)

and an uncontrolled agent (referred to as the environment agent) a deterministic two-player turn-

based zero-sum game. Since the two objectives are independent, we decouple the two objectives

and address them separately. In this work, the algorithm first computes, for the system agent, a

(maximally) permissive policy from the given temporal logic specification. A permissive policy

6

includes multiple (possibly all) policies that guarantee the system to satisfy the given specification,

despite the policy of the potentially adversarial environment agent. The algorithm restricts the system

agent to take the policies included in the permissive strategy and solves an optimal system policy

over the restricted set using any RL algorithms for zero-sum two-player games. For a particular

case where the given temporal logic specification encodes a safety property, this two-step technique

secures both correctness (with the safety property) and optimality (with the a priori unknown reward

function). For other specifications, the learned policy still satisfies the given specification but may be

sub-optimal.

Chapter 6 generalizes the previous problem in two ways. First, the game transitions can be stochastic

instead of deterministic; second, it addresses a broader type of temporal logic specifications without

loss of optimality. In this work, we assume that the given temporal logic specification is representable

as a deterministic Büchi automaton, which strictly includes the safety property. The quantitative

objective is to maximize the expected discounted reward over an infinite horizon. We prove that there

always exists a memoryless almost-sure winning strategy that is ε-optimal for any arbitrary positive

ε. Based on the idea of the R-MAX algorithm [28], a probably approximately correct (PAC) learning

algorithm is proposed to learn such a strategy efficiently in an online manner with a priori unknown

reward functions and unknown transition distributions. To the best of our knowledge, this is the first

result on PAC learning in stochastic games with independent quantitative and qualitative objectives.

1.3. Related Work

In this section, we introduce two fields of works, namely learning from demonstrations and learning-

based control with safety requirements, that are closely related to the high-level idea of this thesis.

For each field, we describe the high-level ideas, main existing approaches, and their connections with

high-level task specifications.

1.3.1. Learning from Demonstrations

Chapter 2 and 3 of this thesis is closely related to the topic of learning from demonstrations (LfD) [10],

which studies the following problem: Given a set of expert demonstrations that are sampled from

7

some unknown expert policy, learn a policy to imitate the expert demonstrations. The interpretation

of imitation varies among different LfD methods. In general, there are two types of approaches to

LfD problems: behavioral cloning, and inverse reinforcement learning.

Behavioral cloning. Behavioral cloning methods directly formulate the LfD problem as a super-

vised learning problem. In other words, behavioral cloning directly reproduces a mapping from states

to actions or action distributions that will be taken by the expert. Depending on whether actions are

continuous or discrete, behavioral cloning methods can be classified into regression or classification

methods. The strength of behavioral cloning has been demonstrated by various applications that

range from basic navigation tasks such as lane keeping [142] to complicated tasks such as obstacle

avoidance [78, 151] and end-to-end autonomous driving [25, 126].

Behavioral cloning methods suffer from the following two noticeable limitations.

The first limitation is on compounding errors or cascading errors [149]: The difference between the

state distributions induced by the expert policy and the learned policy compounds over time. For

behavioral cloning, testing performance is not evaluated over a randomly drawn subset of states from

expert demonstrations (which is a common practice for standard supervised learning problems), but

rather over the distribution of state-action pairs generated by executing the learned policy. As the

action distributions at previous steps affect the state distributions at later steps, the state distribution

induced by a learned policy gradually diverges from that of the expert policy as time goes on. As a

result, the learned policy often guides the agent to reach states that are distinct or far away from the

states in the expert demonstrations. It is not clear to the agent how to behave at these states, or how

to return to states visited in demonstrations.

Another limitation of behavioral cloning is the inability to replan in new environments. For the

policies trained by supervised learning methods, the predicted action distribution at each state is only

decided by the local features of that state and independent of the possible states to be visited later.

As a result, the learned policies ignore the long-term effect of each action and “(behavioral cloning)

often leads to myopic and poor-quality robot performance” [148].

8

Various attempts have been made to overcome the above two limitations. The key idea is to allow the

learning agent to query the expert’s policy at any given state. Based on this idea, Ross and Bagnell

[149] first proposed the SMILe algorithm to stochastically combine the expert policy and the policies

learned in each iteration, and gradually reduce the probability to query the expert over time. Ross et

al. [150] proposed another algorithm called DAgger that augments the demonstration data in each

iteration with the expert’s new demonstrations on all states visited by the learned policy. Laskey et al.

[101] forced the expert to demonstrate how to recover from errors by injecting noise into the expert’s

policy during the demonstrating process.

Inverse reinforcement learning. Inverse reinforcement learning (IRL) [129], also called inverse

optimal control [84], solves the LfD problem in an indirect manner: It assumes that the expert policy

optimizes the expected reward with some unknown reward function, and thus IRL methods aim at

inferring a reward function from the given expert demonstrations. IRL is closely related to (forward)

RL, which solves optimal policies for some given reward function. Many IRL algorithms need to

solve an RL problem after each update of the learned reward function. IRL methods have been used

in many applications such as flying helicopters [2, 3], navigation of mobile robots [96, 187, 195],

goal inference [14], behavior modeling of pedestrians [52] and drivers [98], to name a few.

IRL problems suffer from the problem of ill-posedness: For example, the all-zero reward function

admits any policy as its optimal policy and thus is a sound solution for any expert demonstrations. A

given policy can be optimal simultaneously for many different reward functions, and the optimal

policies for these reward functions are generally not equivalent. Therefore, it is upon each IRL

algorithm to decide how to interpret the expert demonstrations with the expert’s reward function

or with the output policy. These algorithms typically resort to some common heuristics: First, the

expected reward of the expert policy (estimated as the average value over expert demonstration)

matches that of the learned policy [1, 201]. Second, the expected reward of the expert policy is

higher than that of any other policies by a given margin [147]. Third, the output policy maximizes

the likelihood or posterior probability of generating expert demonstrations [12, 105, 146, 195, 202].

9

Challenges of LfD for task implementation. Remember that our goal is to learn how to imple-

ment high-level tasks from expert demonstrations. However, most existing LfD algorithms merely

rely on statistical analyses of expert demonstrations and thus have no explicit representation of tasks.

We briefly explain several challenges faced by these algorithms that prevent them from achieving

satisfactory task performance, especially at new states or new environments where there are no

demonstrations.

First, there is a lack of reliable criteria for the task performance of the learned policies. For behavioral

cloning methods, loss functions that quantify the error between the expert policy and the learned

policy are not useful: The expert policy may not be accessible at the all the states that the learning

agent visits while taking the learned policy. Additionally, low training loss for the demonstration data

does not guarantee low testing loss due to compounding errors. For IRL, researchers have designed

multiple performance criteria, which are functions of the ground-truth expert reward function or even

the ground-truth expert policy. Examples include the L1 or L2 distance between the learned reward

and the expert reward [146], the suboptimality of the learned policy with respect to the expert reward

function [41, 105, 192], and the average KL divergence between the output policy and the expert

policy [72]. However, it is not clear how to relate the losses mentioned above to the corresponding

task performance. Furthermore, the expert reward function and expert policy may be unavailable

during testing.

Second, for both behavioral cloning and IRL, policies are assumed to be mappings from each state

to an action or an action distribution. In other words, these policies are memoryless. This primary

setting may not suffice for task implementation. Indeed, a lot of everyday tasks can be decomposed

into multiple subtasks and thus beyond the scope of memoryless policies. Such tasks can be as simple

as dialing in a phone number: the next digit is not a function of the last dialed digit, but the number

of digits that have been dialed so far. However, it is ambiguous how to generate a memory system for

an unknown task from a finite set of expert demonstrations.

Third, the expert policy is dependent on not only the current state but also the whole environment.

Even with the same high-level task, the expert needs to recompute its policy in different environments.

10

For behavioral cloning methods that do not allow replanning in new environments, it is improbable

that a policy learned in one environment can be transferred successfully in a new environment

without modification. For IRL algorithms, reward functions learned from expert demonstrations are

“merely observations about what the designer actually wants” [69] in the demonstrated environments.

However, environments such as Markov decision processes, a class of models commonly used in

RL and later in this thesis, are not directly encoded as an input to reward functions or policies. As a

result, it is not clear if the inputs of reward functions contain enough local environment information

to allow successful transfers to new environments.

LfD with some task information. There have been several attempts to introduce tasks into LfD

problems. With diverse problem formulations, existing works mainly focus on the first two challenges:

to evaluate policies and to introduce memory states. There are two types of approaches, which

introduce tasks in different ways. The first type introduces tasks by augmenting demonstrations.

Lee et al. [102] add a Boolean tag to each demonstration trajectory as an indication of whether

the trajectory is satisfactory or not. In some other works [30, 51], each demonstration trajectory

augmented with a continuous score, which can further indicate an expert’s preference over different

demonstration trajectories. Instead of ratings, Pan and Shen [134] augment each demonstration

trajectory with a subset of the visited states, highlighted as the subgoals to visit in order to implement

some implicit high-level task. The second type of work partitions each demonstration trajectory into

several segments, where each segment corresponds to a different policy. The number of segments in

each demonstration is either given [87, 158] or inferred automatically from demonstrations [119, 131].

All the proposed algorithms of this type are behavioral cloning methods. Therefore, it is not clear

how to utilize the learned knowledge in new environments.

1.3.2. Learning-Based Control with Safety Requirements

The topic of this thesis is also closely related to the field of learning-based control with safety

requirements, including safe RL [62]. Depending on each specific work, the word safety may have

drastically different meanings.

11

Interpretation of safety. In general, safety properties are of interest for both the learned policies

and the policies taken during exploration.

For learned policies, some commonly used safety requirements include constraint satisfaction and

stability. Given a cost function and a budget value, one may express safety constraints in many

different ways: The expected total cost cannot exceed a given budget (expectation constraint) [4, 43];

the probability that the total cost exceeds budget is bounded (chance constraint) [42, 81]; or the

expected total cost over the worst α-proportion of worst cases is bounded for a given constant α ∈

(0, 1) (conditional value-at-risk) [42]. Another commonly used safety requirement is (asymptotic)

stability [5, 11], which is a fundamental objective in control theory. Intuitively, asymptotic stability

indicates that there exists a set of initial states and a policy, such that taking the policy from any

state in the initial state set, the agent will eventually return to the origin at some point, despite the

existence of modeling errors and disturbances. Stability requirements may be used to represent tasks

such as goal reaching and reference tracking.

Safety may also be essential during exploration, especially for applications that involve physical

systems. There has been a significant amount of work on the topic of safe exploration, in which

all policies that a learning agent implements during the training should be safe. Some examples

are as follows: The learning agent can never visit a set of failure states during exploration, which

coincides with the interpretation of safety properties in model checking [99], i.e., a trajectory is

safe if and only if it does not have an unsafe prefix. Usually, the failure states can be identified

immediately by observing a safety function [44, 176, 180] or state labeling function [7]. Another

type of safety requirement is to maintain returnability, that is, the ability to return to currently

known non-failure states after visiting a new state, which is critical for continual exploration. For

example, Moldovan and Abbeel [124] require the exploration policies to preserve ergodicity with

high probability. Turchetta et al. [176] and Wachi et al. [180] restrict exploration to the unknown

states that are highly likely to be safe, can be reached from some known state in one step and only

visit highly-likely-safe states before returning to a known safety state eventually. Berkenkamp et

al. [18] enforce learning agents to stay within the region of attraction, which is decided by a given

12

Lyapunov function. Alshiekh et al. [7] pre-compute the winning region for learning agents and

only allow a learning agent to take actions that are guaranteed to stay within the winning region.

Safety may refer to other properties such as monotonic improvement of the updated policies [137] or

learned policies always perform better than a given baseline [63].

Summary of existing approaches. One of the main difficulties in learning with safety require-

ments is the trade-off between prior knowledge and new exploration. Prior knowledge is reliable yet

restrictive, while exploration is adaptive yet uncertain. Intuitively, the lack of necessary information

may prevent learning agents from safe exploration. Suppose that there is an unknown safety function

that identifies the safe states, and the safety values at different states are independent. Consequently,

a learning agent has to risk taking unsafe states in order to explore the safety function. To bound

the risk of violating safety requirements during exploration, one may need to introduce additional

assumptions to infer the safety values of new states from previous observations. In the remaining part

of this section, we briefly summarize some existing work based on the introduced prior knowledge

and the roles of learning.

One commonly used framework for learning-based control is learning-based model predictive control

(MPC), where the system model is deterministic with bounded modeling error. Without learning,

MPC techniques construct an online controller with guaranteed recursive feasibility and stability for

all models with the given error bound. However, the resulting controller may be overly conservative or

even may not exist, if the model allows too much uncertainty. To address this limitation, researchers

have investigated to incorporate learning modules that refine dynamics model and improve control

objectives, while keeping the safety and stability guarantees with high confidence. For example,

Aswani et al. [11] propose to maintain two models simultaneously, one is the given linear dynamics

model and the other is a refined model learned from observed transitions. With the given model,

they resort to the idea of tube MPC to guarantee stability, safety, and recursive feasibility. With the

refined model, they make better predictions to the induced trajectory given a sequence of control

inputs, which helps improve the objective value of the learned policy. Koller et al. [92] study a

similar problem as in [11] but use learning differently. Instead of learning a deterministic dynamics

13

model, they approximate the unknown dynamics as a Gaussian process (GP) model and further use it

to over-approximate the system trajectory as a sequence of set-valued confidence regions with high

probability. Akametalu et al. [5] propose a reachability-based framework to guarantee closed-loop

stability for control-affine systems with unknown bounded modeling error. With the given part of

the dynamics model and an overestimation of modeling errors, they design a safety value function

V whose nonnegative superlevel sets are all controlled invariant. Given a critical safety value VL,

an agent can take any valid action if V at the current state is much greater than VL and is forced

to switch to a conservative policy otherwise. They use online measurements to learn a GP-based

modeling error function to help select VL such that the resultant control invariant set is as large as

possible.

Learning is also used to explore a priori unknown safety function, which is a usual practice for safe

exploration. Since learning agents are not allowed to visit unsafe states, it is critical to reliably infer

the safety value of unvisited states from previous observations and only explore new safe states.

Moreover, the newly explored transition should not prevent the agent from eventually reaching the

origin (stability) or returning to other explored states safely (returnability).

For example, Turchetta et al. [176] study a safe exploration problem for finite-step Markov decision

processes with known deterministic transitions. The proposed solution depends on both prior

knowledge, such as the transition function, and new information inferred from previous observations.

They approximate the safety function with a GP to gain statistical confidence about the safety values

of unvisited transitions and only explore the states that are safe with high probability. With the given

transition function, they can further guarantee the returnability to previously visited states after a

new state is explored: Among the new states that are highly likely to be safe, they only explore the

states that can both reach and be reachable from known states. The setting in [179] is very similar

to that in [176] except that the authors of [179] also explicitly optimize an expected discounted

reward with an unknown reward function. In each iteration, the learning agent partitions the state

space into three parts: safe states, unsafe states, and uncertain states. The agent is only allowed to

take transitions that lead to safe states. Thus the learned policy is guaranteed to be safe with high

14

probability, although it may not be globally optimal before the learning agent fully explores the state

space. Berkenkamp et al. [18] propose to learn system dynamics from measurements without ever

leaving the region of attraction. Although the region of attraction is not known a priori, a Lyapunov

function V is available such that any sublevel set of V is a subset of the region of attraction. They

use GPs to estimate a confidence interval of V at the next state for each transition. They only allow

taking transitions for which the V -value of the next state is upper bounded by the current threshold

value, which guarantees stability.

Another way to handle learning-based control is to decouple the learning part from safety objectives.

Prior knowledge is used to limit the policy search space for the learning agent, either by explicitly

restricting the actions that the learning agent can take or by providing a set of candidate policies.

All the policies that remain in the policy space satisfy the given safety objectives. Junges et al. [81]

follow this idea and design a safe reinforcement learning algorithm to minimize the expected total

cost (optimization objective) while satisfying an independently specified probabilistic reachability

constraint (safety objective). In each iteration, they compute a safe permissive policy, which is a

set of memoryless policies that satisfy the safety objective, then use RL to evaluate all policies that

are compliant with the permissive policy and pick one with the lowest expected cost. The selected

candidate policy provides an upper bound of the minimal cost. They also estimate a lower bound of

the minimal cost by solving an unconstrained RL problem and stop the iteration if the two bounds are

close enough. Alshiekh et al. [7] study a similar problem of learning an optimal policy (optimization

objective) while satisfying a safety specification during learning (safety objective), but they decouple

the two objectives differently. The system dynamics is modeled both as a Markov decision process

and as a deterministic transition system called abstraction. They consider the worst-case scenario

for the safety objective and interpret the Markov decision process as a two-player game, where the

learning agent picks an action at the current state, and an environment player chooses the successor

state. By computing the winning region of the safety game, they identify the safe actions that prevent

the agent from leaving the winning region and construct a shield accordingly. The shield monitors

the actions of the agent and substitutes the selected actions by safe actions whenever it is necessary

to avoid violating the safety specification. Note that such a shield can be constructed merely using

15

prior knowledge and is independent on the cost function for the optimization objective.

There is also work on solving safe RL problems using policy gradient methods [4, 42], with the

safety objective encoded as a constraint function of the output policy. The key idea is to address

the constraints by solving the dual problems. Without concerning safety during learning, these

algorithms require little prior knowledge compared with other methods. Achiam et al. [4] extend

an existing policy gradient algorithm to constrained RL problems with bounded expected cost. The

key idea is to upper bound the expected costs of a new policy using the difference between the new

policy and the current one, and to approximate the upper bound as a linear function. They manage

to relax the primal problem as a convex optimization problem, which can be solved efficiently by

solving the dual problem. Chow et al. [42] propose several primal-dual algorithms for finite Markov

decision processes with percentile risk constraints. They derive unbiased estimators of the gradients

of the Lagrangian function over all primal and dual variables and update them with different time

scales. Their algorithms convergence almost surely to local saddle points of the Lagrangian function.

16

Chapter 2: Learning from Demonstrations with High-Level Side

Information

2.1. Introduction

Learning from demonstration [10], also referred to as imitation learning or apprenticeship learning

[1], aims at learning a policy to implement some task, using samples of an expert’s behaviors as

demonstrations. There is a wide range of applications of learning from demonstration in robotics,

such as navigation and manipulation tasks.

One common approach to learning from demonstration is inverse reinforcement learning (IRL) [129],

in which the agent relies on rewards to interpret the expert’s behaviors. The environment is modeled

as a Markov decision process (MDP) with known transition dynamics. Given the environment MDP

and expert’s demonstrations as trajectories, IRL recovers a reward function and constructs policies

based on the estimated reward function. Formulations of IRL in the literature differ primarily in their

interpretation of expert demonstrations, or the “similarity” between the expert’s policy and desired

policies expressed in terms of rewards. Some common assumptions are, for example, that both the

expert’s policy and all desired policies are optimal [1, 48, 146, 147]; or the expected total rewards

of output policies should match the sample mean of total rewards of trajectories in demonstrations

[23, 27, 202].

Although human experts can directly provide low-level demonstrations to implicitly specify the

learning task, it is usually beneficial to explicitly indicate high-level task requirements, which we

naturally rely on to assess the performance of the learned policies. A high-level task can be “grasp

an object without touching anything else,” or “obey traffic lights and road signs while driving from A

to B,” which may not be sufficient to encode all desired properties of an ideal policy, but is crucial to

the task performance. Existing IRL methods do not infer underlying high-level tasks and thus the

agent’s behavior at newly visited states may not satisfy the actual task requirements.

In this work, we join the strengths of high-level task requirements and demonstrations and formalize

17

the problem of IRL with high-level side information. Given task specification as a co-safe linear

temporal logic (LTL) formula, and a collection of optimal expert demonstrations consistent with the

task specification, we describe a learning framework that recovers both a reward function, as well as

a deterministic finite automaton (DFA), which together guarantee a quantitative level of probability

that the learned policy will satisfy the task. Crucially, the addition of an LTL side specification allows

us to learn general policies that work even when the expert examples are scarce.

Following the many applications of formal methods to robotics and control [24, 53, 94, 189], we

encode the task requirements in LTL [139], which is an expressive formal logic suitable for task

requirements. These include reaching-a-goal, stability, obstacle avoidance, sequentially visiting

regions of interest, and conditional reactive behaviors. Generally, LTL specifications can be evaluated

on trajectories with infinite length; but since expert demonstrations are finite, we focus on a set of

tasks to be implemented in finite time, which can be specified by a subset of LTL called co-safe LTL

[99].

We adopt the framework of maximum-likelihood inverse reinforcement learning (MLIRL) [12] as

a baseline approach, and learn policies in both the original environment MDP and in the product

space of the MDP and the specification automaton. We further propose an algorithm that evaluates

the learned policy using the co-safe LTL formula during learning. We report numerical results

on a navigation example, in which policies are learned with MLIRL, MLIRL with a specification

automaton, and with our own algorithm. We show that the learned policy benefits from both the

construction of product automaton and the evaluation with co-safe LTL formula, because it attains

higher probabilities of successfully implementing the task, and provides formal guarantees on task

completion even in regions of state space not covered by the expert examples.

2.2. Preliminaries

For a finite set B and a nonnegative integer l ∈ N+, define Bl as the set of all sequences of length

l composed by elements in B. In addition, define B∗ (resp. Bω) as the set of all finite (infinite)

sequences composed by elements of B. Finally, defineD(B) as the set of all probability distributions

18

over B.

2.2.1. Markov Decision Processes and Policies

LetM = 〈S, SI , A, T,R, γ〉 be a Markov decision process (MDP), where S is a finite set of states;

SI ⊆ S is a set of initial states; A is a finite set of actions; T : S × A× S → [0, 1] is a transition

function such that for each (s, a) ∈ S ×A, T (s, a, ·) ∈ D(S); R : S ×A→ R is a reward function,

and γ ∈ (0, 1) is a discounting factor.

A path or trajectory τ ofM is an infinite alternating sequence of states and actions, τ = s0, a0, s1, a1, . . .,

such that s0 ∈ SI , and for all k ≥ 0, we have ak ∈ A and T (sk, ak, sk+1) > 0. Given two states

s, s′ ∈ S, we say s′ is reachable from s, denoted by s s′, if and only if there exists a path

τ = s0, a0, s1, a1, . . . with s = si and s′ = sj for some integers 0 ≤ i ≤ j. For any set of states

B ⊆ S, define Reach(B) = {s′ ∈ S : ∃s ∈ B, s′ s} as the set of states from which B is

reachable.

A (memoryless) policy π forM is a mapping from states to distributions over actions: π : S ×A→

[0, 1] such that for any s ∈ S, π(s, ·) ∈ D(A). Given any policy π, we can define a state value

function Vπ : S → R such that for each state s ∈ S, Vπ(s) = Eπ
[∑∞

k=0 γ
kR(sk, ak) | s0 = s

]
is the expected future discounted reward that an agent can get by applying policy π from state s.

Correspondingly, we can define an action value function Qπ : S ×A→ R such that for any state-

action pair (s, a) ∈ S × A, Qπ(s, a) = Eπ
[∑∞

k=0 γ
kR(sk, ak) | s0 = s, a0 = a

]
is the expected

discounted reward if the agent takes policy π after taking action a from state s. The functions

Vπ, Qπ, R, and π satisfy the Bellman relations:

Vπ(s) =
∑
a

π(s, a)Qπ(s, a),

Qπ(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′)Vπ(s′).

19

These two equations can be combined into

Qπ(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′)
∑
a′

π(s′, a′)Qπ(s′, a′). (2.1)

2.2.2. Linear Temporal Logic Specifications

In order to evaluate policies with linear temporal logic (LTL) specifications, we attach labels to states.

The labels, consisting of atomic propositions, are boolean variables defined on S. Let AP be a set

of atomic propositions. The labeling function L : S → 2AP maps each state s ∈ S to its labels

L(s) ⊆ AP , which is the set of atomic propositions that are true at state s. With slight abuse of

notation, we also use L(τ) to denote the sequence of atomic propositions that hold at states in path

τ = s0, a0, s1, a1, · · · ofM, i.e., L(τ) = L(s0),L(s1), · · · .

An LTL formula ϕ over AP is defined recursively by:

ϕ := true | p | ¬ϕ1 | ϕ1 ∨ ϕ2 | Xϕ1 | ϕ1 Uϕ2,

where p ∈ AP , and ϕ1, ϕ2 are LTL formulas. The logical and temporal operators above can

be combined to define other useful operators such as ∧, →, G and F . See [139] for a detailed

explanation of the semantics of LTL.

In general, an LTL formula ϕ is evaluated on (2AP)ω, i.e., infinite sequences of elements in 2AP .

To better suit the need to encode tasks that are implemented over finite horizons, we focus on

a subset of LTL formulas, namely co-safe LTL formulas. These formulas are characterized by

the key feature that every (infinite) sequence that satisfies the formula has a finite prefix [99]. A

wide range of learning from demonstration tasks that can be encoded as co-safe LTL formulas, for

example: ϕ1 = (¬obstacle U goal) ∧ F goal means “reach the goal without running into obstacles,”

and ϕ2 =
(
(¬object2) U object1

)
∧ (F object1) ∧ (F object2) means “grab object 1 first and then

grab object 2.”

20

Given a co-safe LTL formula ϕcs, we can construct a (non-unique) deterministic finite automaton

(DFA) Aϕcs = 〈Q, qI , QF , 2AP , δ〉 that accepts the finite prefixes all runs that satisfy ϕcs, where Q

is a finite set of states, qI ∈ Q is the initial state, QF ⊆ Q is a set of accepting (final) states, 2AP

is the alphabet, and δ : Q × 2AP → Q is a deterministic transition function. All states in QF are

absorbing states, i.e., for all L ∈ 2AP , q ∈ QF , δ(q, L) = q.

2.3. Maximum-Likelihood Inverse Reinforcement Learning (MLIRL)

We adopt the framework of maximum-likelihood inverse reinforcement learning (MLIRL) [12] as the

baseline algorithm that does not use any high-level side information. In this section we introduce the

key components of MLIRL: policy structure, reward parameterization, and optimization objective.

Softmax policy. We restrict the policy search to the subclass of policies for which the probability

to take an action a at state s is a softmax function of the action-value function. For any function

Q : S ×A→ R, define the softmax policy as

πQ(s, a) :=
exp

(
Q(s, a)

)∑
ã exp

(
Q(s, ã)

) , ∀(s, a) ∈ S ×A. (2.2)

The softmax policy, as a special case of the Boltzmann exploration policy [79], has been used in

several instances of IRL [12, 114, 127]. It defines a valid distribution πQ for all Q, i.e., πQ(s, a) ≥ 0

for all s ∈ S and a ∈ A, and
∑

a∈A πQ(s, a) = 1 for all s ∈ S. It is also smooth in the components

of Q, allowing easy computation of a policy gradients. With the softmax policy, the agent prefers to

select actions with higher action-values, but still has the freedom to explore suboptimal actions. Such

freedom is particularly important in accommodating any inconsistency in the expert’s demonstrations.

Reward parameterization. The reward function R ofM is approximated by a linear combination

of k pre-designed features, with parameter θ ∈ Rk×1. We denote the feature matrix as F =

[f1, · · · fk] ∈ R|S|·|A|×k with fi representing the ith reward feature vector. For convenience, we denote

the row of F corresponding to the state-action pair (s, a) as F (s, a) ∈ R1×k. The overall reward

matrix is R = Fθ for some feature weight θ ∈ Rk. Substituting the softmax policy and the reward

21

matrix into (2.1) yields

Q(s, a) = F (s, a)θ + γ
∑
s′

T (s, a, s′)
∑
a′

πQ(s′, a′)Q(s′, a′). (2.3)

In the following, we treat θ as the free variable, and denote the action value function Q and policy

πQ satisfying (2.2) and (2.3) as Qθ and πθ.

Expert demonstrations. The demonstrations consist of a setD = {τ1, · · · τm} ofm finite prefixes

of trajectories inM. For each l ∈ {1, · · ·m}, τl = sl,0, al,0, · · · sl,tl , al,tl is the lth demonstration

trajectory, which is an ordered sequence of tl + 1 state-action pairs. We refer to such demonstrated

trajectories as expert trajectories.

Maximum-likelihood objective. The goal is to find θ and an induced policy πθ that maximize

the likelihood of observing the expert demonstrations. An equivalent optimization objective is to

minimize the negative log-likelihood

Jmle(θ | M, D) :=−
m∑
l=1

tl∑
t=1

log πθ(sl,t, al,t)

=−
m∑
l=1

tl∑
t=1

(
Qθ(sl,t, al,t)− log

(∑
ã

exp
(
Qθ(sl,t, ã)

)))
,

(2.4)

with equality constraints given by Eq. (2.2) and (2.3). The objective function is smooth and convex

in θ, but regularization on θ may be needed to avoid separation problems, and to get a finite solution

[6].

2.4. MLIRL with High-Level Side Information

Assume that in addition to the standard inputs to MLIRL problems, i.e., a reward-free MDPM,

expert demonstrations D, and feature matrix F , we also know some high-level task requirements

encoded as a co-safe LTL formula ϕcs. This side information is utilized in two steps: we first extend

the original MDPM into a product automaton incorporating the task structure, and then augment

the optimization objective by explicitly evaluating the policy.

22

2.4.1. Extending the State Space

An implicit assumption in all MDP-based IRL methods is that the expert’s policy is memoryless, i.e.,

the distribution of the next action is decided by the current state and independent on trajectory history.

The assumption breaks if the task has some hierarchical structure and can be easily decomposed

into several sub-tasks, which is a common case in practice. Side information as high-level task

requirements can be used to generate memory states automatically, which enables us to construct

a product automaton Mϕcs with the original environmentM and a DFA Aϕcs . Then we learn a

memoryless policy over the extended state space of Mϕcs .

Given Aϕcs andM, define the product automaton Mϕcs = 〈S̄, S̄I , S̄F , A, T̄ , γ〉, where S̄ = S ×Q

is a finite state space; S̄I = SI × qI is the set of initial states; S̄F = S × QF is the set of

final states; T̄ : S̄ × A × S̄ → [0, 1] is a transition function such that for any (s, q), (s′, q′) ∈

S̄, a ∈ A, T̄
(
(s, q), a, (s′, q′)

)
= T (s, a, s′) if δ

(
q,L(s′)

)
= q′ and 0 otherwise. Policies in

Mϕcs can be defined analogously to those inM. Similar to the evaluation of Aϕcs , a finite path

τM = (s0, q0), a0, (s1, q1), a1 · · · (sl, ql), al ∈ (S̄ × A)l+1 of Mϕcs satisfies ϕcs if and only if

(sl, ql) ∈ S̄F , or equivalently ql ∈ QF .

Any finite (resp. infinite) trajectory inM can be uniquely mapped to a trajectory of equal length

in the product automaton Mϕcs . We define an operator h(· | M,Aϕcs) : (S ×A)∗ → (S̄ ×A)∗ to

translate finite trajectories inM into the corresponding trajectories in the product automaton Mϕcs .

The operator h enables us to interpret the demonstrations D in Mϕcs . For any τl ∈ D, define

h(τl | M,Aϕcs) = s̄l,0, al,0, s̄l,1, al,1, · · · , s̄l,tl , al,tl ,

such that s̄l,0 := (sl,0, qI) and for j = 1, · · · , tl, s̄l,j :=
(
sl,j , δ

(
ql,j−1,L(sl,j)

))
. Any trajectory

in Mϕcs can be uniquely projected to a trajectory in M, simply by dropping the second com-

ponent of each state in S̄. In the following, we assume that the learning procedure occurs in

the product automaton in order to take advantage of the side information. For simplicity we use

h(D | M,Aϕcs) := {h(τl | M,Aϕcs) : τl ∈ D} to represent the set of projected trajectories of D

23

in Mϕcs .

The construction of Aϕcs and Mϕcs is internal to the learning algorithm and may not be accessible

by the expert. Correspondingly the agent has no access to the expert policy. The only shared inputs

between the agent and expert are the high-level task specification ϕcs, the environment dynamicsM,

and the set D of demonstrated trajectories inM. Any equivalent DFA for ϕcs works in principle,

except with varying computation time due to possibly different sizes of Mϕcs .

2.4.2. Augmenting the Objective with Side Information

In order to guarantee the performance of the learned policy, we explicitly compute the probability of

satisfying ϕcs from all valid initial states. This is done by computing a function ȳ(· | π̄) : S̄ → [0, 1]

such that ȳ(s̄ | π̄) is the probability of satisfying ϕcs by taking policy π̄ from initial state s̄. By a

result in model checking [13],

ȳ(s̄ | π̄) =

1, if s̄ ∈ S̄F ,

0, if s̄ 6∈ Reach(S̄F),∑
a∈A

π̄(s̄, a)
∑
s̄′∈S̄

T (s̄, a, s̄′)ȳ(s̄′ | π̄), otherwise.

(2.5)

There is a unique ȳ(· | π̄) for any given π̄; it can be obtained either by linear programming, or by

computing the least fixed point of the operator

Γπ̄(ȳ)(s̄) =

1, if s̄ ∈ S̄F ,

0, if s̄ 6∈ Reach(S̄F),∑
a∈A

π̄(s̄, a)
∑
s̄′∈S̄

T (s̄, a, s̄′)ȳ(s̄′ | π̄), otherwise.

Assume ȳ(0)(s) = 0 for all s̄ ∈ S̄\S̄F and ȳ(0)(s) = 1 for all s ∈ S̄F , and ȳ(k) is updated as

ȳ(k+1) = Γπ̄(ȳ(k)) for all k ∈ N, then it can be shown that limk→+∞ ȳ
(k) exists and is the unique

solution to (2.5) [13]. Note that since πθ(s̄, a) > 0 for all θ and (s̄, a) such that there exists s̄′ ∈ S̄

24

with T̄ (s̄, a, s̄′) > 0 by definition of softmax policy, Reach(S̄F) is independent on θ.

We can augment the MLIRL objective (2.4) by adding a non-decreasing differentiable function

g : R|S̄| → 1 of ȳ(· | πθ) to explicitly consider the performance of πθ with respect to the task

specification. The new objective is to minimize

J side
(
θ |Mϕcs , h(D|M,Aϕcs)

)
= Jmle

(
θ |Mϕcs , h(D|M,Aϕcs)

)
− µ · g(ȳ), (2.6)

where µ > 0 is a trade-off parameter adjusting the weight between the objective and the task

performance objective. The optimization is subject to constraints (2.2), (2.3) and (2.5).

We solve the optimization problem by gradient descent, in which the key is to compute the derivative

of Qθ, πθ and ȳ with respect to θ. For any matrix B, we denote its component at row i and column j

as B(i, j). If we assume that πθ does not change much in the neighborhood of θ, we can estimate

∂Qθ
∂θ while considering πθ as constant. Then for any i = 1, · · · k and (s̄, a) ∈ S̄ ×A,

∂Qθ(s̄, a)

∂θi
=Fi(s̄, a) + γ

∑
s̄′∈S̄

∑
a′∈A

T (s̄, a, s̄′)πθ(s̄
′, a′)

∂Qθ(s̄
′, a′)

∂θi
. (2.7)

∂πθ(s̄, a)

∂θi
= πθ(s̄, a)

(∂Qθ(s̄, a)

∂θi
−
∑
ã

πθ(s̄, ã)
∂Qθ(s̄, ã)

∂θi

)
. (2.8)

∂

∂θi
ȳ(s̄) =

∑
a∈A

πθ(s̄, a)
∑
s̄′∈S̄

T (s̄, a, s̄′)

(
∂ȳ(s̄′)

∂θi
+
(∂Qθ(s̄, a)

∂θi
−
∑
ã

∂Qθ(s̄, ã)

∂θi

)
ȳ(s̄′)

)
,

∂

∂θi
ȳ(s̄) =0, if s̄ ∈ S̄F

⋃ (
S̄\Reach(S̄F)

)
.

(2.9)

The derivatives of Qθ, πθ and ȳ with respect to θ are unique solutions of (2.7)–(2.9), given πθ and ȳ.

The uniqueness of the solution ∂Qθ
∂θi

in (2.7) holds for any stationary (i.e., time-invariant) policy πθ

given that F is bounded [21], which trivially holds as F is fixed. The uniqueness of the solution ∂ȳ
∂θi

in (2.9) holds for any stationary policy πθ, ȳ and ∂Qθ
∂θ , which can be proved by contradiction: assume

that there exist two different functions y1, y2 : S̄ → R that are both solutions to (2.9). Then for any

25

(a)

q0start qf

q1

q2

q3 qt

g1

g2

w

y ∨ r

g1 ∨ w g2

y ∨ r

y ∨ r
g1

g2 ∨ w

w ∨ g1 ∨ g2

r y

y ∨ w ∨ r
∨g1 ∨ g2

y ∨ w ∨ r
∨g1 ∨ g2

(b)

Figure 1: Illustration of the grid world example. Left: grid world map and demonstration trajectories.
Right: an equivalent DFA for ϕcs.

s̄ ∈ S̄,

y1(s̄)− y2(s̄) =
∑
a∈A

πθ(s̄, a)
∑
s̄′∈S̄

T (s̄, a, s̄′)
(
y1(s̄′)− y2(s̄′)

)
.

As (2.5) is known to have a unique solution, y1(s̄)− y2(s̄) has to be zero for all s̄ ∈ S̄, which leads

to a contradiction to the assumption. Therefore (2.9) has a unique solution ∂ȳ
∂θi

.

2.5. Experimental Results

We illustrate our approach on a path planning task in a 10-by-10 grid world map, as shown in

Figure 1a. Each cell represents a state inM, from which the agent has 4 available actions: up, down,

left, and right. States are labeled by their colors: r (red), w (white), y (yellow) and b (blue). The two

green states are labeled as g1 (green1) and g2 (green2). The yellow state is an absorbing state, i.e., it

has no outgoing transitions.

The specification task is to visit both green cells (intermediate goals) in any order, and end at the

yellow cell (final goal), while avoiding red cells (obstacles). These requirements are encoded as the

co-safe LTL formula

ϕcs = ϕinit → (ϕsafe ∧ ϕgoal),

26

where

ϕinit = ¬r ∧ ¬y (Initial state),

ϕsafe = ¬r U y (Obstacle avoidance),

ϕgoal =
(
(¬y) U (F g1 ∧ F g2)

)
∧ (F y) (Goal reaching).

An equivalent DFA is shown in Figure 1b. Each state in the DFA corresponds to some task status (see

Table 2), and each transition represents some progress toward task completion. These transitions can

be automatically encoded into features to facilitate learning. In fact, three features were constructed

this way (see f2, f3, f4 in Table 1). The other two features come from transitions observed in

demonstrations (f1), and a penalty for each transition (f5). Note that the final state has no outgoing

transitions, and outgoing loops have zero reward.

The agent is given a set of demonstrated trajectories that successfully implemented the task, as shown

in Figure 1a. In this example all demonstrated trajectories start from the blue cell, pass both green

cells (in arbitrary order), avoid all red cells, and eventually end at the yellow cell. States in the upper

right corner are never observed in demonstration.

We now discuss the learned policy in three different cases, where the agent is provided with a different

amount of side information, and the policies are learned with or without high-level task information.

Case 1 (MLIRL inM). The agent only knows about the MDPM, the labeling function L, and

the demonstrations D, and learns a policy with MLIRL, i.e., by minimizing Jmle(θ | M, D) in

Eq. (2.4) while satisfying the constraints (2.2) and (2.3). Since the agent does not know ϕcs or

the DFA, we cannot use all features from Table 1. Instead, we replace f2(s̄, a) and f3(s̄, a) by the

Table 1: Design of features in Case 2 and Case 3.

Feature Explanation
f1 f1(s, a) = 1 if (s, a) appeared in demonstration; otherwise f1(s, a) = 0.
f2 f2(s, a) is the probability to reach qt for the first time by taking a at state s.
f3 f3(s, a) is the probability to reach q2, q3 for the first time by taking a at state s.
f4 f4(s, a) is the negative probability to reach red states.
f5 f5(s, a) = −1 if s 6∈ S̄F .

27

theta = [8.5176, 4.2678, -0.0442, -0.8208, 3.7336]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) MLIRL policy inM (Case 1).
Min prob: 6.90× 10−9; average
prob: 0.304.

theta = [9.6090, 2.3128, 2.7393, -0.0121, 2.3221]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) MLIRL policy in Mϕcs
(Case

2). Min prob: 0.430; average
prob: 0.954.

theta = [10.2010, 1.8908, 3.9550, 8.1854, 1.8855]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Policy with augmented objec-
tive (Case 3). Min prob: 0.962;
average prob: 0.999.

Figure 2: Probability of satisfying ϕcs when following the corresponding policy from each initial
state.

probability of reaching the yellow state or a green state from s̄ by taking a. All other features have

the same interpretation as in Table 1. The learned feature weight vector is

θ̂(1) = [8.5176, 4.2678,−0.0442,−0.8208, 3.7336]ᵀ.

The sign of the learned weights is instructive: they define a policy that seeks to follow demonstrations

(f1) and tries to reach the yellow state (f2) in a timely manner (f5). As the weights of f3 and f4

are negative, the agent fails to realize the importance of visiting green states and avoiding red

states. There are at least two reasons for such behavior. First, as there is a feature (f1) marking the

state-action pairs observed in demonstrations, the agent may simply try to follow the demonstrations

whenever possible to minimize Jmle(θ | M, D), without further reasoning about the demonstrations,

which results in overfitting. Second, there is no side information for the agent to evaluate its policy or

identify important features. As shown in Figure 2a, the agent behaves best in the lower right region,

where it can follow some expert expert demonstration easily; it behaves the worst in the upper middle

region, where the expert demonstrations are lacking.

Case 2 (MLIRL in Mϕcs). The agent has all inputs in Case 1 and the DFA, and learns a policy

with MLIRL within the product automaton. Compared with Case 1, the agent can now construct a

product automaton. With the extended state space, the agent may behave differently based on the

current status with respect to intermediate goals and potentially learn the importance of avoiding red

28

Table 2: Interpretation of DFA states.

DFA State Interpretation
q0 None of g1, g2, y or r visited.
q1 Visited g1, never visited g2, y, r.
q2 Visited g2, never visited g1, y, r.
q3 Visited g1 and g2, never visited y, r.
qt Visited g1, g2, y without visiting r (success).
qf Visited r, or visited y before visiting both g1 and g2 (failure).

cells. A simple check of the structure of the product automaton reveals that any visit to a red cell will

lead to a transition to qf in the DFA, which makes it impossible to reach S̄F later. Therefore in order

to reach a final state, it is necessary to add some penalty on visiting red states. The learned feature

weight vector is

θ̂(2) = [9.6090, 2.3128, 2.7393,−0.0121, 2.3221]ᵀ.

As shown in Figure 2b, the probability of satisfying ϕcs has been greatly improved. The weight for

f3 is away from zero as expected, but the weight for f4 is still small, which suggests that the agent

still has not learned to always avoid red cells. As a result, the probability of task success is the lowest

in the upper right region, which is not covered by demonstrations. The two sources of problems

explained in Case 1 still exist here, which calls for the augmentation of objective function using LTL

side information.

Case 3 (Policy with augmented objective). The agent has the same input as in Case 2, but

now the policy is learned with the augmented objective function J side in (2.6), where we set

g(ȳ) =
∑

s̄∈S̄ ȳ(s̄ | πθ), i.e., the sum of probabilities of satisfying ϕcs from all initial states. With

µ = 0.01, the learned feature weight vector is

θ̂(3) = [10.2010, 1.8908, 3.9550, 8.1854, 1.8855]ᵀ.

Compared with θ̂(2), the most significant change in θ̂(3) is that the weight on f4 is almost as large

as f1, and much larger than the weights on other features. The agent now learns the importance of

avoiding red states, and the performance with respect to task implementation has been significantly

29

0.1 0.01 0.001 0.0001 1e-05 1e-06

µ

0.4

0.5

0.6

0.7

0.8

0.9

1

min prob

average prob

0.1 0.01 0.001 0.0001

µ

11.5

11.6

11.7

11.8

11.9

12

12.1

Figure 3: Probability of satisfying ϕcs (left) and negative log-likelihood of the state-action pairs in
demonstration (right), as function of µ.

improved, especially from states that demonstrations fail to cover, as shown in Figure 2c. It shows

that, by evaluating policies with side information ϕcs, the agent manages to get rid of the overfitting

problem and the induced policy can now be generalized well into regions not previously seen in

demonstrations.

To check the effect of the weight µ, we solved Case 3 with a series of µ and plotted the corresponding

minimum and average probabilities of satisfying specification from all possible initial states, and

corresponding negative log-likelihood of demonstrated trajectories (see Figure 3). Each experiment is

repeated three times. Note that the value of the original objective Jmle(θ |Mϕcs , D) is only slightly

affected by µ, while the average probability of satisfying ϕcs is very sensitive to µ. This confirms

that the augmentation of the objective function with LTL side information is necessary.

If the given high-level task description is incomplete or inaccurate, as is often the case in practice,

demonstrations can compensate for an imperfect specification as long as the features are expressive

enough, and no extra memory is needed to implement the missing part of the task.

To illustrate this point, we learned a policy where the side requirement to avoid red cells ϕsafe is

missing, and evaluated it with respect to the true task encoded by ϕcs. The result is shown in Figure 4.

We observe the overall performance is only slightly worse than the case with accurate high-level

task information, which suggests that the agent manages to learn from expert demonstration to avoid

visiting red states at most initial states. Still, performance can be significantly worse at states that are

30

Probability of satisfying spec, DFA state = q
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Probability of satisfying ϕcs for policies learned without the obstacle avoidance require-
ment.

close to obstacles, such as the cell in row 7, column 5. This example illustrates the agent’s ability to

learn actions preferences from demonstrations. However if the inaccurate high-level task information

leads to insufficient memory states, the performance of the learned policies can be poor, as it is

impossible to recover enough missing memory states from demonstration purely by learning the

rewards.

31

Chapter 3: Task-Oriented Deep Inverse Reinforcement Learning

3.1. Introduction

The topic of teaching robots to implement tasks via demonstrations, also called learning from

demonstrations (LfD) [10], has been studied for many years. Given a set of demonstration trajectories,

the goal of LfD is to learn a policy, which is a mapping from states to distributions over actions,

that imitates the demonstrations in a particular way. Intuitively, it is easier to show robots how

to implement a task in a specific scenario than to design a general controller, which may require

significant human effort and specialized knowledge. There are two major approaches to LfD [133]:

One is behavioral cloning (BC) or imitation learning, which treats policy learning as a supervised

learning problem. It is possible to do inference about the task structure and learn several sub-policies

for the overall task [97, 103, 131], but the goal is still to directly learn a policy by doing statistical

analysis of the demonstrations. The other approach is inverse reinforcement learning (IRL) [1, 202],

which directly outputs reward functions and can only generate policies by interacting with a specific

environment.

One key concern of LfD is how to generalize the demonstrations to new scenarios, which is almost

always necessary in practice. Ideally, we expect the robot to not only learn a policy to implement

the task in exactly the same environment where it has seen demonstrations, but also be adaptive to

reasonably similar environments. Compared with BC, IRL is better suited for this purpose due to the

following reasons. By learning a reward function, IRL essentially aims at learning a representation

of the task [129] and inferring the demonstrator’s intent [12]. Moreover, the policies learned by IRL

in new environments are computed specifically for the new environments using the learned reward

function.

Most existing work on IRL learns a reward function merely by observing a set of expert demonstra-

tions in a given environment. Unfortunately, this common setting makes it prohibitively difficult to

achieve good performance in new environments. The problem of IRL is ill-posed as many different

32

reward functions can lead to the same policy. As a result, the learned reward function may not be a

reliable task performance criterion even in the training environment, let alone new environments in

which no demonstration has been observed.

In contrast, human rarely needs to learn new skills only from state-level observations. In many cases,

we have some high-level side information of the task that is implemented by the demonstrations,

which greatly reduces the learning effort. For example, the whole task may be partitioned into several

subtasks, where each subtask should be implemented using an independent policy. The subtasks may

be implemented in any order, or have to be implemented in some specific order. Some subtasks may

only be required if the robot observes some certain condition, otherwise it is fine skip them.

Although high-level task information can be easily acquired for humans, it is difficult, if not im-

possible, to be inferred accurately from demonstration trajectories. Assume that you are to learn

how to repair cars (the task) but have zero knowledge about the components (features) or they

should be examined and repaired (the task structure). You get the chance to watch several videos

(demonstrations) that show how an experienced auto mechanic have repaired several cars, but there

is no explanation on the goal for each step or why these steps are necessary. It is not hard to imagine

that the auto mechanic’s demonstrations will be very ambiguous and confusing: There are too many

possible interpretations of the demonstrations and it is not clear how to select one. In general, the

demonstrator’s policy, e.g., the mechanic’s car-repairing policy, is affected by both the task and the

specific environment, e.g., the specific condition of the car to be repaired. In order to reconstruct the

task information, the robot has to identify the tasks and infer the conditions to take each one of them,

which generally requires both positive and negative examples in expert demonstrations over many

different environments.

Considering the difficulty of task inference and the easy access to high-level task information, we

propose to incorporate such high-level task information directly as part of the input to IRL. In this

chapter, we encode the high-level task information as a deterministic finite automaton (DFA), which

tracks the progress in task implementation. It is well-known that DFA can be used to represent all

regular expressions [164], which is commonly used to represent search patterns. In practice, the

33

input DFA can either be manually designed or be transformed from formal language specifications

using off-the-shelf tools.

3.2. Preliminaries

Generally, the problem of inverse reinforcement learning (IRL) can be described as follows: Given

an environment modelM and a set of demonstration trajectories D, infer a reward function R that

can optimally interpret the demonstrations in some pre-specified way. Different works on IRL can be

distinguished from each other from the following three aspects: First, the reward parameterization;

second, the way to generate a policy with a given reward function; third, the interpretation of the

demonstrations using the output policy. In this section, we describe two existing IRL algorithms:

maximum entropy inverse reinforcement learning (MaxEnt IRL) algorithm [202] and one of its deep

variant, MaxEnt Deep IRL Algorithm [192, 195]. For each algorithm, we show their limitations for

the purpose of generalizing to new environments, which motivate our algorithm.

We adopt the following setting on environment model and demonstrations that are commonly used

in IRL works. The environment is modeled as a reward-free Markov decision process M =

〈S,A, T, ρ, γ〉 where S is a state space; A is an action space; T : S × A → D(S) (where D(S)

is the set of all probability distributions over S) is the transition distribution; ρ ∈ D(S) is an

initial distribution over S and γ ∈ (0, 1) is a discount factor. Let D = {τ1, . . . , τN} be a set of

demonstration trajectories, where τi = {(si,0, ai,0), . . . , (si,ni , ai,ni)} for all i = 0, . . . , ni.

3.2.1. Maximum Entropy IRL

In the original MaxEnt IRL algorithm [202], the reward function is parameterized as a linear

combination of a given set of feature functions. In other words, given a set of features {f1, . . . , fK}

where fk : S × A → R for k = 1, . . . ,K, the reward function Rθ is parameterized by θ =

[θ1, . . . , θK]ᵀ such that

Rθ(s, a) =

K∑
k=1

θkfk(s, a).

34

The basic assumption is that the expected total reward over the distribution of trajectories is the same

as the empirical average reward over demonstration trajectories. With the principle of maximum

entropy, it can be derived that the probability of generating any (finite-length) trajectory τ =

s0, a0, . . . , s|τ |, a|τ | is proportional to the exponent of the total reward of τ :

Pr(τ |Rθ) ∝ exp
1

|τ |

|τ |∑
i=0

Rθ(si, ai). (3.1)

While linear parameterization is commonly used in IRL literature [1, 88, 127, 147], it suffers from

several drawbacks. On the one hand, it requires human knowledge to provide properly designed

reward features, which can be labor-intensive; on the other hand, if the given features fail to encode

all the essential requirements to generate the demonstrations, there is no way to recover this flaw by

learning from demonstrations. One way to deal with this problem is to use nonlinear reward models

such as Gaussian process [105], decision trees [104] or neural network to automatically construct

reward features from expert demonstrations.

3.2.2. Maximum Entropy Deep IRL

An IRL algorithm is generally referred to as a deep IRL algorithm if the reward is modeled as a

neural network. There are several existing works on deep IRL [56, 192, 194, 195] that originate from

MaxEnt IRL, largely due to the properties that Qθ is independent from πθ and implicitly derives

πθ by πθ(a|s) ∝ expQθ(s, a). We take the MaxEnt deep IRL algorithm (MEDIRL) [195] as an

example. Unlike the previous case where the reward function is modeled as a linear combination of

pre-specified features, the reward is modeled as a convolutional neural network in MEDIRL. The

reward parameter θ is the weight vector of the reward network. The objective is to maximize the

posterior probability of the demonstration trajectories given a prior distribution P (θ) of θ:

L(θ) := logPr(D, θ) = logPr(D|Rθ)︸ ︷︷ ︸
LD

+ logP (θ)︸ ︷︷ ︸
Lθ

. (3.2)

35

LD is the log likelihood of the demonstration trajectories in D given the reward function Rθ. Let πθ

be the policy corresponding to Rθ, then LD can be expressed as

LD =
∑
τi∈D

ni−1∑
j=0

log πθ(ai,j |si,j) + C, (3.3)

where C is a constant that is dependent on D and the transition distribution T . Lθ can be interpreted

as either the logarithm of the prior distribution P (·) at θ or as a differentiable regularization term

on θ. The original MEDIRL algorithm was also designed for finite-horizon problems, but has been

extended to the infinite-horizon case [23]. In this chapter, we adopt the infinite-horizon setting, but

the same algorithm can be easily adapted to solve finite-horizon prolems.

For MaxEnt IRL, the computation of πθ given Rθ is essentially a maximum entropy reinforcement

learning problem. It can be proved [201] that for any Rθ, there exists a unique Q which is the

(unique) fixed point of (3.4).

Qθ(s, a) = Rθ(s, a) + γ
∑
s′∈S

T (s′|s, a) log
∑
a′

exp(Qθ(s
′, a′)). (3.4)

The policy πθ can be represented as the explicit expression of Qθ in (3.5).

πθ(a|s) =
Qθ(s, a)∑

a′ exp(Qθ(s′, a′))
. (3.5)

The gradient of πθ and Qθ can be computed as in (3.6).

∂Qθ(s, a)

∂θ
=
∂Rθ(s, a)

∂θ
+ γ

∑
s′

T (s′|s, a)
∑
a′

πθ(a
′|s′)∂Qθ(s

′, a′)

∂θ
,

∂πθ(a|s)
∂θ

=zθ(s, a)− πθ(a|s)
∑
a′

zθ(s, a
′),

(3.6)

where

zθ(s, a) := πθ(a|s)
∂Qθ(s, a)

∂θ

for any s ∈ S, a ∈ A.

36

Since γ ∈ (0, 1), it can be shown that for any θ, there exists a unique solution ∂Qθ(s,a)
∂θ to (3.6).

Therefore, there is also a unique solution ∂πθ(a|s)
∂θ to (3.6). With (3.6), we can write the gradient of

LD with respect to θ as

∂LD
∂θ

=
∂

∂θ

N∑
i=1

ni∑
l=0

log πθ(si,l, ai,l) =
N∑
i=1

ni∑
l=0

(∂Qθ(si,l, ai,l)
∂θ

−
∑
a′

zθ(si,l, a
′)
)
. (3.7)

For problems with finite states, finite actions and known transition functions, we can use dynamic

programming to solve the Q function given any policy π. For problems with continuous state spaces,

there are approximate algorithms to estimate Q using neural networks, such as the soft Q-learning

algorithm [67] or the soft actor-critic algorithm [68].

Although MEDIRL can construct reward features automatically from demonstrations, it suffers from

a fundamental limitation that the learned reward function is Markovian. As a result, the learned

policy has to be independent from the history, which does not suffice for tasks that are composed of

multiple subtasks. Moreover, given some a priori knowledge of the task structure, MEDIRL cannot

effectively take advantage of such information.

3.3. Task-Oriented Deep Inverse Reinforcement Learning

In this section, we introduce a new IRL algorithm called task-oriented deep IRL (TODIRL), which

explicitly incorporates high-level task information and thus leads to more reliable generalization

performance to new environments.

3.3.1. Extending the State Space Using Task Information

In this work, we represent the high-level task information as a deterministic finite automaton (DFA).

A DFA A is defined as a tuple 〈QA,Σ, δ, q0, F 〉 where QA is a set of states; Σ is a set of input

symbols (also called the alphabet); δ : QA×Σ→ QA is a deterministic transition function; q0 ∈ QA

is the initial state; F ⊆ QA is a set of final states (also called accepting states). Given a finite

sequence of input symbols w = σ0, σ1, . . . , σk−1 in Σk for some k ∈ N+, the DFA A generates

a unique sequence of k + 1 states τA = q0, q1, . . . , qk in Qk+1
A such that for each t = 1, . . . , k,

37

qt = δ(qt−1, σt−1). We denote the last state qk by taking the sequence w of inputs from q0 as

δ(q0, w). w ∈ Σ∗ is accepted by A if and only if δ(q0, w) ∈ F . Let L(A) ⊆ Σ∗ be the set of finite

sequences of input symbols that are accepted by A, which is also referred to as the language of A.

To effectively take advantage of the known task information, we introduce a task DFA A and a

labeling function η to encode the known task information. The labeling function η : S → Σ is a

mapping from the states of the MDP to the input symbols of the DFA, so the transitions in MDP will

automatically trigger transitions in the DFA. The DFA state is always initialized to q0. Assume that

the agent takes a sequence of actions a0, a1, . . . , ak ∈ Ak+1 from a given initial state s0 ∈ S inM.

At each step t ∈ {0, . . . , k}, the agent takes an action at from MDP state st and DFA state qt. Then

the MDP state transits to st+1 with probability T (st+1 | st, at) and the DFA state simultaneously

transits to qt+1 = δ(qt, η(st)). The derived trajectory τ = s0, a0, . . . , st, at, st+1 implements the

task successfully if and only if qt+1 ∈ F . In essence, the states in QA are the memory states that

track the current progress in task implementation. The input symbols in Σ are the task-critical signals

triggered by the states in S.

We propose an algorithm called task-oriented deep IRL which is shown in Algorithm 1. The key idea

is to first build a task DFA A using the known task information and then learn a reward function over

the extended state space S ×QA, rather than the original state space S of the MDPM. As a result,

the reward depends on both the current state s inM and the memory state in A, as well as the action

a ∈ A. Memory states can be considered as different stages in task implementation. The agent learns

a different reward function and thus derives a different policy at each stage.

3.3.2. Evaluating Task Performance Using the Task DFA

Besides constructing the memory space for rewards and policies, the task DFA can also be used to

evaluate the learned policies with respect to their task performance. The task performance of a policy

π is evaluated via a function y : S ×QA → [0, 1], where for each (s, q) ∈ S ×QA, y(s, q) is the

probability to reach S×F from (s, q). In other words, states in S×F are treated as absorbing states.

For problems with finite states spaces and action spaces, y can be represented as a vector of length

38

Algorithm 1 Task-oriented Inverse Reinforcement Learning

1: Input: A reward-free MDP M = 〈S,A, T, ρ, γ〉, a labeling function η : S → Σ, a DFA

A = 〈QA,Σ, δ, q0, F 〉, a set of demonstrations D = {τ1, . . . , τN}.
2: Output: A reward network Rθ : S ×QA → R and a policy πθ : S ×QA → D(A).

3: Initialize the reward network parameter θ0.

4: for each iteration t do
5: Compute the Q function Qθt and the policy πθt for the current θt via (3.4) and (3.5).

6: Compute ∂Qθ
∂θ |θ=θt and ∂πθ

∂θ |θ=θt via (3.6).

7: Compute ∂LD(θt)
∂θt

via (3.7) and then compute ∂L(θ)
∂θ |θ=θt .

8: Update θ: θt+1 ← θt + αt
∂L(θ)
∂θ |θ=θt .

9: end for

|S||QA| which satisfies the following linear equation:

yπ(s, q) =

1 if q ∈ F,

0 if S × F is not reachable from (s, q),∑
a∈A π(a|(s, q))T (s′|s, a)yπ(s′, δ(q, η(s′))) otherwise,

(3.8)

where we use y(s, q) to denote the component of y that is corresponding to (s, q). It has been

shown (see Theorem 10.19 in [13]) that there always exists a unique solution y to (3.8). For ease of

visualization, we define a scalar task performance criterion

Lϕ =
∑
s∈S

ρ(s)yπ(s, q0), (3.9)

which is the average probability to implement the task in A over all initial states by taking policy π.

Lϕ is used to evaluate the task performance of the learned policy in new environments in Section 4.5.

3.4. Related Work

Recently, there has been interesting works on LfD with task information. The first attempt to

incorporate task evaluation into IRL was to augment the demonstrations with evaluation of their

task performance. Lee et al. [102] proposed an IRL algorithm that learns from both successful

39

(positive) demonstrations and failed (negative) demonstrations. El Asri et al. [51] and Burchfiel et

al. [30] augmented each demonstration trajectory with a score rated by experts. The boolean labels

and the continuous scores can be used to train a classification or a regression model to evaluate

policies. Their experiment results showed that such data augmentation help reduce the number of

demonstration. But since the task is not explicitly defined, the learned policy evaluation model may

be neither reliable nor interpretable. Pan and Shen [134] assumed that the experts provide with a set

of subgoal states for each demonstration. However, the learning agent does not understand how or

why the demonstrator picks this set of critical subgoal states, especially if the number of subgoals

are inconsistent over different demonstrations. Though the robot may recognize some similar states

using the learned reward features in a new environment, it cannot tell if all of previous subgoals are

still necessary or if they should be executed in the same order. With our method, the agent can search

for a sequence of subgoals in the extended state space S ×QA that implements the task, which may

not be necessarily the same as shown in training environments.

Several work has been done on policy learning with assumptions about the task structure. Niekum

et al.[130] and Michini et al. [120] use Bayesian inference to segment unstructured demonstration

trajectories. Shiarlis et al. [158] assumed that the expert performs a given sequence of (symbolic)

subtasks in each demonstration. They solve the problem of temporal alignment for the demonstrations

and policy learning for each subtask simultaneously. Kipf et al. [87] solved a similar problem using

recurrent neural networks, where each latent node corresponds to a subtask. The outputs are policies

for each subtask, which are not expected to generalize to new environments with constraints (for

example, obstacle states). For example, a policy that successfully navigates to a target object in one

environment may lead to collision in another environment, as the location of obstacles have changed.

Re-planning is usually necessary to deal with this problem. With our method, we can easily adapt to

new environments by solving a new policy with the learned reward function.

Perhaps the most closely related work to ours is that of Wen et al. [186], which also discussed about

the idea of using high-level task information in IRL. However, their method as is restricted to linearly

parameterized rewards and there was no discussion about the reward generalization performance in

40

new environments.

3.5. Experimental Results

Model. We use the game “temporal grid-world” for numerical experiments. Temporal grid-world

is an MDP in which the underlying task has a temporal structure, i.e., knowing the current state of the

MDP is not enough to determine the next best action. The transitions in the MDP are deterministic,

and the set of actions is {“up”, “down”, “left”, “right”}.

Each cell in the MDP has one of the colors: {red, yellow, white, purple, black} and belongs to one

of the following categories: {important object, obstacle, distractor object}. The category of each

cell is defined based on the color of all the cells in the 3× 3 neighborhood of that cell. We define

the categories as: Important object 1 (O1): 5 red cells and 4 black cells, Important object 2 (O2):

5 yellow cells and 4 black cells, Important object 3 (O3): 5 white cells and 4 black cells, Obstacle

(OB): 9 black cells and Distractor object (DB): any cell that does not belong to one of the other

categories.

Fig. 5a shows the training grid-world used for all experiments. To refer to a cell we use a tuple with

the following structure: (vertical index, horizontal index). As an example, in Fig. 5a, O1 is located at

(1,7). At test time, the placement of the objects and obstacles is randomized. Fig. 5b and Fig. 5c

depict two test grid-worlds.

Task Specification and DFA. The task specification is as follows: {Reach O1, O2 and O3 in this

order and never reach OB}. To encode the task specification, a DFA is constructed with 5 states as

described in Table 3. The DFA is visualized in Fig. 4 in the appendix. The states of the DFA act as

memory states and capture the agent’s progress toward task completion.

Reward network. When performing TODIRL, the reward network is modeled as a multilayer

perceptron (MLP) with 2 hidden layers; each layer has 80 neurons and is followed by ReLU non-

linearity. The input to the network at each state is composed of the colors of the 3× 3 neighborhood

of the agent in the MDP, the current DFA state and the current action. The network outputs a single

41

(a) Training grid-world (b) Test grid-world with ID 1 (c) Test grid-world with ID 2

Figure 5: Training and test grid-worlds. Indexing convention: (vertical axis index, hor-
izontal axis index). In (a) O1 = (1, 7), O2 = (7, 1), O3 = (10, 10) and OB =
{(4, 4), (4, 5), (4, 6), (4, 7), (10, 7)}. All other cells correspond to distractor objects.

Table 3: DFA states

State Interpretation
q0 None of O1, O2, O3 or OB has been reached.
q1 O1 has been reached. O2 or O3 has never been reached.
q2 O1 and O2 have been reached in this order. O3 has never been reached.
q3 Winning state. O1 and O2 and O3 have been reached in this order. This state is absorbing.
qf Failure state. This state is absorbing.

number as the reward. We use full gradient descent for training the reward network, i.e, at each

iteration, we use all the demonstrations to calculate ∂L(θ)
∂θ according to Eq. 3.7.

Demonstration trajectories. To produce the demonstration trajectories, we manually designed a

ground-truth reward function over the extended state space S ×QA and run MaxEnt RL [202] on

the extended state space. The MaxEnt RL algorithm yields a softmax policy which we use to sample

demonstration trajectories.

Baselines. We implemented two baseline models to compare with TODIRL; ”memoryless IRL

agent” and ”memory-based behavioural cloning (BC) agent”. The memoryless IRL agent is a basic

MaxEnt IRL agent [193] that does not benefit from the extended state space and relies solely on

the states of the MDP. The memory-based BC agent operates on the extended state space and uses

the behavioural cloning [143] method to learn a policy that mimics the demonstrations. To train

this agent, we created a training dataset with elements (X,Y), where X denotes the set of all pairs

42

(s, q) ∈ S ×QA observed in the demonstrations and Y denotes the corresponding demonstration

actions. We modeled the policy using a deep convolutional neural network. The network has two

convolutional layers, the first layer has 12 kernels and the second layer has 24 kernels, all kernels are

of size (2 × 2) with stride of 1. The convolutinal layers are followed by 2 fully connected layers

with 100 neurons each and the output layer has 4 neurons corresponding to the score of each action.

After each hidden layer, ReLU non-linearity is used. The input to the policy network is x = (s, q),

and the output would be a probability distribution over actions. Let Px be the probability distribution

predicted over actions for x, C corresponds to the index of the action in demonstrations and A is the

set of all action indexes. Then the objective function that is minimized is defined as

LBC(θ) = −
∑
x∈X

log

(
exp (Px[C])∑
i∈A exp (Px[i])

)
. (3.10)

We train the network using ADAM optimization [86] with mini batches of size 128. In all the

experiments we use a learning rate of 0.003.

TODIRL vs baselines. The primary criterion we use for evaluating the performance of a trained

agent is the value of Lϕ. All models are trained using the same single training grid-world (Fig. 5a)

and same demonstrations. The TODIRL agent and the memory-based BC agent perform well at

training time (Fig. 6a and Fig. 6b) with TODIRL agent still outperforming the BC agent. The

memoryless IRL agent, however, performs poorly even during training (Fig. 6a). The main difference

between TODIRL and memory-based BC lies in their generalization ability. Fig. 6c shows how the

three agents compare in terms of their generalizability to the test grid-worlds. As evident from this

figure, the memory-based IRL agent performs very well on test cases with Lϕ ≈ 1 , whereas the

other two methods generalize poorly. The reason for this difference in generalizability is that the

memory-based IRL agent learns a local reward function which generalizes significantly better to test

grid-worlds where the same objects and obstacles are placed randomly. The behavioral cloning agent,

on the other hand, learns to shallowly imitate the demonstrations by directly learning a policy. The

memoryless IRL agent performs poorly at both training and test time as it essentially learns a single

reward function based on MDP states and ignores the temporal structure of the underlying task. For

43

(a) Training IRL agents (b) Training memory-based BC
agent

(c) Test performance comparison

Figure 6: Training and testing performance of TODIRL and the baselines with 100 demonstrations.

further visualization and analysis of test performance of TODIRL, refer to Sec. 7.2 in the appendix.

Incomplete DFA. We also trained an agent that has access to incomplete task specification. What

is missing from the specification is the statement ”never reach an OB”. We equipped this agent with a

corresponding DFA (Fig. 5 in the appendix) that does not transition when an OB is reached. Fig. 7b

shows the performance of such an agent at test time as a function of the number of demonstrations.

Fig. 7a corresponds to the case where a complete DFA is used. A comparison between these two cases

shows that the performance of the agent with incomplete DFA declines, specially with decreasing

number of demonstrations. Note that this specific choice of incomplete DFA does not remove any of

the temporal information, the only information that is missing is the fact that reaching obstacles leads

to failure, but since this fact is true no matter what the DFA state is, the agent can still learn the task

from demonstrations without help from the DFA, however, only if the number of demonstrations is

large enough.

Reward input size. Fig 7c shows the generalization of the reward function when we assume the

input is a neighborhood of size 5 × 5, while the ground truth reward is a function of the 3 × 3

neighborhood. For large number of demonstrations (> 100), both cases generalize well. For smaller

number of demonstrations, however, the case corresponding to 3× 3 input generalizes better. This

observation verifies our hypothesis that the proposed method benefits from modelling the reward

locally. The 5× 5 neighborhood includes all the information available in the 3× 3 neighborhood

but the extra information is redundant for our problem and hence leads to weaker generalization

44

(a) Complete DFA (b) Incomplete DFA (c) Complete DFA, 5 × 5 input to
reward network

Figure 7: Testing performance with 100 demonstrations for different design choices.

with limited amount of training as it interferes with learning the most relevant features; this is an

interesting observation, and this result could be extended to other problems where the reward function

is a function of local observations rather than the function of the global state.

45

Chapter 4: Constrained Cross-Entropy Method for Safe

Reinforcement Learning

4.1. Introduction

We study the following constrained optimal control problem in this chapter: Given a dynamical

system model with continuous states and actions, a objective function and a constraint function,

find a controller that maximizes the objective function while satisfying the constraint. Although

this topic has been studied for decades within the control community [20], it is still challenging for

practical problems. To illustrate some major difficulties, consider the synthesis of a policy for a

nonholonomic mobile robot to reach a goal while avoiding obstacles (which introduces constraints) in

a cost-efficient way (which induces an objective). The obstacle-free state space is usually nonconvex.

The equations of the dynamical system model are typically highly nonlinear. Constraint functions

and cost functions may not be convex or differentiable in the state and action variables. There may

even be hidden variables that are not observable and make transitions and costs non-Markovian.

Given all these difficulties, we still need to compute a policy that is at least feasible and improve the

cost objective as much as possible.

Reinforcement learning (RL) methods have been widely used to learn optimal policies for agents with

complicated or even unknown dynamics. For problems with continuous state and action spaces, the

agent’s policy is usually modeled as a parameterized function of states such as deep neural networks

and later trained using policy gradient methods [65, 123, 153, 154, 155, 159, 188]. By encoding

control tasks as reward or cost functions, RL has successfully solved a wide range of tasks such as

Atari games [121, 122], the game of Go [160, 161], controlling simulated robots [144, 197] and real

robots [106, 125, 198].

Most of the existing methods for RL solve only unconstrained problems. However, it is generally

non-trivial to transform a constrained optimal control problem into an unconstrained one, due to

the asymmetry between the goals of objective optimization and constraint satisfaction. On the one

46

hand, it is usually acceptable to output a policy that is only locally optimal with respect to the

optimization objective. On the other hand, in many application scenarios where constraints encode

safety requirements or the amount of available resources, violating the constraint even by a small

amount may have significant consequences.

Existing methods for safe reinforcement learning that are based on policy gradient methods cannot

guarantee strict feasibility of the policies they output, even when initialized with feasible initial

policies. When initialized with an infeasible policy, they usually are not be able to find even a single

feasible policy until their convergence (with an example in Section 4.5). These limitations motivate

the following question: Can we develop a reinforcement learning algorithm that explicitly addresses

the priority of constraint satisfaction? Rather than assuming that the initial policy is feasible and that

one can always find a feasible policy in the estimated gradient direction, we need to deal with cases

in which the initial policy is not feasible, or we have never seen a feasible policy before.

Inspired by stochastic optimization methods based on the cross-entropy (CE) concept [75], we

propose a new safe reinforcement learning algorithm, which we call the constrained cross-entropy

(CCE) method. The basic framework is the same with standard CE methods: In each iteration, we

sample from a distribution of policies, select a set of elite sample policies and use them to update

the policy distribution. Rather than treating the constraints as an extra term in the objective function

as what policy gradient method do, we use constraint values to sort sample policies. If there are

not enough feasible sample policies, we select only those with the best constraint performance

as elite sample policies. If a given proportion of the sample policies are feasible, we select the

feasible sample policies with the best objective values as elite sample policies. Instead of initializing

the optimization with a feasible policy, the method improves both the objective function and the

constraint function with the constraint as a prioritized concern.

Our algorithm can be used as a black-box optimizer. It does not even assume that there is an

underlying reward or cost function encoding the optimization objective and constraint functions.

In fact, the algorithm can be applied to any finite-horizon problem (say, with horizon N) whose

objective and constraint functions are defined as the average performance over some distribution of

47

trajectories. For example, a constraint function can be the probability that the agent satisfies a given

task specification (which may be Markovian or non-Markovian) with policy πθ, if the satisfaction

of the given task can be decided with any N -step trajectory. An optimization objective may be the

expected number of steps before the agent reaches a goal state, or the expected maximum distance

the agent has left from its origin, or the expected minimum distance between the agent and any

obstacle over the whole trajectory.

Our contributions are as follows. First, we present a model-free constrained RL algorithm that

works with continuous state and action spaces. Second, we prove that the asymptotic behavior of

our algorithm can be almost-surely described by that of an ordinary differential equation (ODE),

which is easily interpretable with respect to the objectives. Third, we give sufficient conditions on

the properties of this ODE to guarantee the convergence of our algorithm. At last, we empirically

show that our algorithm converges to the global optimum with high probability in a convex problem,

and effectively find feasible policies in a 2D navigation example while other policy-gradient-based

algorithms fail to find strictly feasible solutions.

4.2. Related Work

Safety has long been concerned in RL literature and is formulated as various criteria [62]. We choose

to take the so-called constrained criterion [62] to encode our safety requirement, which is the same

as in the literature of constrained Markov decision processes (CMDP) [8]. Approaches are still

limited for safe RL with continuous state and action spaces. Uchibe and Doya [177] proposed a

constrained policy gradient reinforcement learning algorithm, which relies on projected gradients to

maintain feasibility. The computation of projection restricts the types of constraints it can deal with,

and there is no known guarantee on convergence. Chow et al. [42] came up with a trajectory-based

primal-dual subgradient algorithm for a risk-constrained RL problem with finite state and action

spaces. The algorithm is proved to converge almost-surely to a local saddle point. However, the

constraints are just implicitly considered by updating dual variables and the output policy may not

actually satisfy the constraints. Recently, Achiam et al. [4] proposed a trust region method for CMDP

called constrained policy optimization (CPO), which can deal with high-dimensional policy classes

48

such as neural networks and claim to maintain feasibility if started with a feasible solution. However,

we found in Section 4.5 that feasibility is rarely guaranteed during learning in practice, possibly due

to errors in gradient and Hessian matrix estimation.

Cross-entropy-based stochastic optimization techniques have been applied to a series of RL and

optimal control problems. Mannor, Rubinstein and Gat [117] used cross-entropy methods to solve

a stochastic shortest-path problem on finite Markov decision processes, which is essentially an

unconstrained problem. Szita and Lörincz [171] took a noisy variant to learn how to play Tetris.

Kobilarov [90] introduced a similar technique to motion planning in constrained continuous-state

environments by considering distributions over collision-free trajectories. Livingston, Wolff and

Murray [113] generalized this method to deal with a broader class of trajectory-based constraints

called linear temporal logic specifications. Both methods simply discard all sample trajectories that

violate the given constraints, and thus their work can be considered as a special case of our work

when the constraint function has binary outputs. Similar applications in approximate optimal control

with constraints can be found in [60, 107, 135].

4.3. Preliminaries

We first introduce some notations that are used throughout this chapter. For a set B, let D(B) be

the set of all probability distributions over B, int(B) be the interior of B and 1B be the indicator

function of B. For any k ∈ N+, define

Bk = {s0, s1, . . . , sk−1 | st ∈ B, ∀t = 0, . . . , k − 1}

as the set of all sequences composed by elements in B of length k. We further define

B∗
⋃

1≤k<∞
Bk

as the set of all (non-empty) finite sequences generated by elements inB. Given two integers i, j ∈ N

such that i ≤ j, we use i : j to denote the sequence i, i+ 1, . . . , j − 1, j.

49

A (reward-free) Markov decision process (MDP) is defined as a tuple M = 〈S,A, T, P0〉, where

S is a set of states, A is a set of actions, T : S × A → D(S) is a transition distribution function

and P0 ∈ D(S) is an initial state distribution. Without loss of generality, we assume that the set of

available actions are the same at all states. S and A can either be continuous or discrete.

Given an MDP M , a policy π : S∗ → D(A) is a mapping from a sequence of history states to

a distribution over actions. π is called stationary or memoryless if its output is decided by the

last state in history, that is, π(ζ) = π(ζk) holds for any ζ = ζ0, ζ1, . . . , ζk ∈ S∗. π is called

deterministic if the support of its output distribution is always a singleton. For notational simplicity,

we use π(ζ) to represent the unique action a ∈ A such that π(a|ζ) > 0 for any ζ ∈ S∗. If π is

not deterministic, we call it a randomized policy. Let Π, ΠS , ΠD, ΠSD be the set of all policies,

stationary policies, deterministic policies and stationary deterministic policies for M . It is clear that

ΠSD = ΠS
⋂

ΠD ⊂ Π.

Given a finite horizon N ∈ N+, an N -step trajectory τ is a sequence of N state-action pairs:

τ = s0, a0, . . . , sN−1, aN−1 ∈ (S × A)N . Each policy π ∈ Π decides a distribution Pπ,N over

N -step trajectories such that for any τ = s0, a0, . . . , sN−1, aN−1,

Pπ,N (τ) = P0(s0)
N−2∏
t=0

T (st+1|st, at)
N−1∏
t=0

π(at|s0:t).

Without loss of generality, we assume that N is fixed and use Pπ to represent Pπ,N .

To solve an N -step planning problem, we can generally define a trajectory-based objective function

J : (S ×A)N → R as a mapping from each N -step trajectory to a scalar value. For each π ∈ Π, let

GJ(π) = Eτ∼Pπ [J(τ)]

be the expected value of J with the N -step trajectory distribution decided by π. Many commonly

used objectives for finite-horizon planning problems can be represented as GJ , such as

50

• Expected N -step total reward. Given a reward function R : S ×A→ R, define

J(τ) =
N−1∑
t=0

R(st, at), τ = s0, a0, . . . , sN−1, aN−1.

GJ(π) = Eτ∼ρπ [J(τ)] is the expected N -step total reward while running π.

• Probability. Given a set of N -step trajectories B ⊆ (S × A)N , define J(τ) = 1B(τ) and

GJ(π) will be the probability to induce a trajectory in B while running π. For example, GJ(π)

can be used to represent the probability to reach a set of target states or the probability to

remain in a safe region for N steps.

A policy π∗ ∈ Π is optimal with respect to J if

GJ(π∗) = max
π′∈Π

GJ(π′).

Generally, π∗ is not stationary if the horizon N is finite. But since the transition distribution T is

Markovian, there always exists a (non-stationary) deterministic optimal policy, which is formally

stated in Lemma 1.

Lemma 1. Given N ∈ N+ be a finite horizon and an MDP M , let J : (S × A)N → R be any

trajectory-based functional. There always exists a deterministic (yet possibly non-stationary) optimal

policy π∗. In other words, there exists πd ∈ ΠD such that

GJ(πd) = max
π∈Π

GJ(π).

Proof. Let π : S∗ → D(A) be a policy for M . Then it generates a distribution over N -step

trajectories which is Pπ. For any t = 0, . . . , N − 1, the probability that s0, a0, . . . , st (denoted as

51

s0:t, a0:t−1) is a prefix of a generated trajectory is

ppret =Pπ(s0:t, a0:t−1) =
∑

a′t:N−1,s
′
t+1:N−1

Pπ(s0:t, a0:t−1, a
′
t:N−1, s

′
t+1:N−1)

=P0(st)
t−1∏
t′=0

(
π(at′ | s0:t′)T (st′+1 | st′ , at′)

)
.

Given a prefix s0:t, a0:t, the probability that the next (N − t− 1) state-action pairs are

st+1, at+1, . . . , sN−1, aN−1 (denoted as st+1:N−1, at+1:N−1) is

psuft+1 =P sufπ

(
st+1:N−1, at+1:N−1 | s0:t, a0:t

)
=

N−2∏
t′=t

T (st′+1 | st′ , at′)
N−1∏
t′=t+1

π(at′ | s0:t′).

Define JN = J(s0:N−1, a0:N−1). We can rewrite GJ(π) as

GJ(π) =
∑

s0:N−1,a0:N−1

π(at | s0:t)p
pre
t psuft+1JN

=
∑
s0:t

π(at | s0:t)
∑
a0:t−1

ppret

∑
st+1:N−1,at+1:N−1

psuft+1JN .

Define

Qπ(at | s0:t) =
∑
a0:t−1

ppret

∑
st+1:N−1,at+1:N−1

psuft+1JN ,

then

GJ(π) =
∑
s0:t

π(at | s0:t)Qπ(at | s0:t).

Note that ppret , psuft+1 and JN are independent of π(at|s0:t); π(at | s0:t) is also independent for

different t and prefix s0:t. Therefore Qπ(a | s0:t) is independent of π(a | s0:t). For any prefix except

s0:t, it holds for any optimal policy π′(· | s0:t) that maximizes GJ that

{a ∈ A | π′(a | s0:t) > 0} ⊆ arg max
a∈A

Qπ(a | s0:t)

which always incorporates a deterministic choice. In other words, randomized policies cannot reach

52

higher GJ than deterministic policies.

Similarly, we can define a trajectory-based cost function Z : (S ×A)N → R and define

HZ(π) = Eτ∼Pπ [Z(τ)]

as the expected cost over trajectory distribution Pπ. A policy π ∈ Π is feasible for a constrained

optimization problem with cost function Z and constraint upper bound d if HZ(π) ≤ d. Let ΠZ,d be

the set of all feasible policies.

For notational simplicity, we omit J and Z in GJ and HZ whenever there is no ambiguity. For any

policy π ∈ Π, we refer to G(π) and H(π) as the G-value and H-value of π.

4.4. Constrained Cross-Entropy Framework

In this section, we first state the constrained policy optimization given a trajectory-based objective

function J and a trajectory-based cost function Z, then we describe how to transform the constrained

problem into an unconstrained one with a surrogate objective function. We propose an algorithm

called constrained cross-entropy method to optimize the surrogate objective and show that the

algorithm converges almost surely with some given assumptions.

4.4.1. Problem Formulation

We consider a finite-horizon RL problem with a strictly positive objective function J : (S ×A)N →

R+, a cost function Z : (S ×A)N → R and a constraint upper bound d. For MDPs with continuous

state and action spaces, it is usually intractable to exactly solve an optimal stationary policy due to

the curse of dimensionality. An alternative is to use function approximators, such as neural networks,

to parameterize a subset of policies. Given a parameterized class of policies ΠΘ with a parameter

space Θ ⊆ Rdθ , we aim to solve the following problem:

π∗ = arg max
π∈ΠΘ

⋂
ΠZ,d

[GJ(π)]. (4.1)

53

The proposed algorithm, which we call the constrained cross-entropy method, generalizes the well-

known cross-entropy method [117] for unconstrained optimization. The basic idea is to generate a

sequence of policy distributions that eventually concentrates on a feasible (locally) optimal policy.

Given a distribution over ΠΘ, we randomly generate a set of sample policies, sort them with a ranking

function that depends on their G-values and H-values and then update the policy distribution with

a subset of highly ranked sample policies. The set of sample policies that are selected to update

the current policy distribution are also referred to as elite samples or elite set in the literature (for

example, [90, 113, 117]).

Given the policy parameterization ΠΘ, we use distributions over the parameter space Θ to represent

distributions over the policy space ΠΘ. Let f : V → D(Θ) be a family of distributions over Θ with

parameter space V . For each v ∈ V , fv(·) is a distribution over policies in ΠΘ. We assume that

for any θ ∈ Θ, there exists vθ ∈ V such that fvθ(θ
′) = 1{θ}(θ′). In other words, fvθ is a discrete

distribution that is concentrated at θ. Given V and f , we rewrite the original problem (4.1) where we

search over policies into the following problem which searches over policy distributions:

v∗ = arg max
v∈V

Eθ∼fv [GJ(πθ) | πθ ∈ ΠZ,d]. (4.2)

We show the connection between (4.1) and (4.2) with Lemma 2.

Lemma 2. Let πθ∗ and v∗ be any solution to (4.1) and (4.2) respectively. Then

GJ(πθ∗) = Eθ∼fv∗ [GJ(πθ) | πθ ∈ ΠZ,d].

Proof. If πθ∗ is a solution to (4.1), then πθ∗ ∈ ΠZ,d and GJ(πθ∗) ≥ GJ(πθ) for all πθ ∈ ΠZ,d.

Therefore,

GJ(πθ∗) = Eθ∼fvθ∗ [GJ(πθ) | πθ ∈ ΠZ,d]

≤ Eθ∼fv∗ [GJ(πθ) | πθ ∈ ΠZ,d] ≤ Eθ∼fv∗ [GJ(πθ∗)] = GJ(πθ∗),

54

where the first inequality holds since v∗ is a solution to (4.2).

4.4.2. Surrogate Objective

As with other CE-based algorithms, we replace the objective in (4.2) with a surrogate function.

For the unconstrained CE method, the surrogate function is the conditional expectation of GJ

over the elite sample policies with the current sampling distribution fv. The ranking function for

unconstrained CE is defined using the concept of ρ-quantiles for random variables, which is formally

defined as below.

Definition 1. [74] Given a distribution P ∈ D(R), ρ ∈ (0, 1) and a random variable X ∼ P , the

ρ-quantile of X is defined as a scalar γ such that Pr(X ≤ γ) ≥ ρ and Pr(X ≥ γ) ≥ 1− ρ.

For ρ ∈ (0, 1), v ∈ V and any function X : Θ→ R, we denote the ρ-quantile of X for θ ∼ fv by

ξX(ρ,v). Let

δ : R× {≥,≤, >,<,=} × R→ {0, 1}

be an indicator function such that for ◦ ∈ {≥,≤, >,<,=}, δ(x ◦ y) = 1 if and only if x ◦ y holds.

Usually, we interpret ρ as the proportion of highly ranked policies. For the unconstrained CE method,

a policy πθ is considered as highly ranked if G(πθ) ≥ ξG(1 − ρ,v), that is, if the G-value of πθ

is greater than at least (1 − ρ) of all policies in ΠΘ with sampling distribution fv. The surrogate

objective function for the unconstrained CE method is

Eθ∼fv [G(πθ)δ(G(πθ) ≥ ξG(1− ρ,v))]. (4.3)

When there is a constraint H(π) ≤ d, we also need to take the H-value of πθ into consideration

while designing ranking functions. As in the unconstrained case, we will have a ρ proportion of all

policies as highly ranked policies. Let pv be the probability of sampling feasible policies with fv.

The definition of highly-ranked policies with respect to fv can be split into two cases, depending

whether pv ≥ ρ or not.

55

Case 1. If pv < ρ, the ρ-quantile of H with distribution fv will be greater than the constraint

threshold d. In this case, we rank policies in the decreasing order of their H-values. The indicator

function of highly ranked policies is δ(H(πθ) ≤ ξH(ρ,v)). As a result, all feasible policies and a

small proportion (to be specific, (ρ− pv)\(1− pv)) of infeasible policies with the least H-values

will be highly ranked.

Case 2. If pv ≥ ρ, the probability of sampling feasible policies with fv is at least ρ. In this case,

we rank feasible policies in the increasing order of their G-values. Define U : ΠΘ → R such that

U(πθ) = G(πθ)δ(H(πθ) ≤ d).

The indicator function of highly ranked policies is δ(U(πθ) ≥ ξU (1− ρ,v)). Since GJ is strictly

positive, U(π) > U(π′) holds for any feasible π and infeasible π′. As pv ≥ ρ, any policy πθ such

that U(πθ) ≥ ξU (1− ρ,v)) will be feasible. As a result, a fraction of ρ\pv feasible policies with the

highest G-values will be highly ranked.

We can combine the two cases and write down a single indicator function of highly ranked policies

with distribution fv. Define S : ΠΘ × V × (0, 1)→ {0, 1} such that

S(πθ,v, ρ) =δ(ξH(ρ,v) > d)δ(H(πθ) ≤ ξH(ρ,v))+

δ(ξH(ρ,v) ≤ d)δ(U(πθ) ≥ ξU (1− ρ,v)).

Then the surrogate function for CCE can be expressed as follows:

L(v; ρ) = Eθ∼fv [G(πθ)S(πθ,v, ρ)]. (4.4)

Note that the surrogate function (4.4) for the constrained problem has the same structure as that for

the unconstrained problem in (4.3). Intuitively, the highly-ranked policies are selected to update the

current policy distribution fv. If pv < ρ, it suggests that the distribution update should be focused

on increasing the probability to sample feasible policies; if pv ≥ ρ, we can pay more attention to

increasing the expected G-value over feasible policies.

56

Remark 1. For the unconstrained problem, pv = 1 > ρ and U(πθ) = G(πθ), then

Eθ∼fv [δ(G(πθ) ≥ ξG(1− ρ,v))]

= Eθ∼fv [G(πθ)δ(U(πθ) ≥ ξU (1− ρ,v))] = L(v; ρ).

Therefore (4.3) is a special case of (4.4).

Remark 2. If ξH(ρ,v) ≤ d, then

G(πθ)δ
(
G(πθ) ≥ ξG(1− ρ,v)

)
≥U(πθ)δ

(
U(πθ) ≥ ξU (1− ρ,v)

)
≥G(πθ)δ

(
H(πθ) ≤ ξH(ρ,v)

)
.

Intuitively, if at least 100ρ% of all policies are feasible, L(v; ρ) is less than the objective value for

the unconstrained CE method and greater than the expected G-value over the 100ρ% policies of the

lowest H-values.

Remark 3. For ease of analysis, we may approximate δ by a continuous function δ̃ε where ε > 0,

such that for any x, y ∈ R and ◦ ∈ {≥, >}:

δ̃ε(x ◦ y) =

δ(x ◦ y) if y ◦ x or y < x− ε

(y − x)/ε+ 1 otherwise.

δ̃ε(x < y) = 1− δ̃ε(x ≥ y), δ̃ε(x ≤ y) = 1− δ̃ε(x > y).

The main problem we solve in this chapter can be then stated as follows.

Problem 1. Given a set Π = {πθ : θ ∈ Θ} of policies with parameter space Θ, a set FV = {fv ∈

D(Θ) : v ∈ V} of distributions over Θ, two functions G : Π→ R+ and H : Π→ R, a constraint

upper bound d and ρ ∈ (0, 1), compute v∗ ∈ V such that

v∗ = arg max
v∈V

L(v; ρ),

where L : V × (0, 1)→ R is defined in (4.4).

57

4.4.3. The Constrained Cross-Entropy Algorithm

In this section, we focus on how to solve Problem 1 and propose the CCE algorithm. We first

describe the key idea behind the (idealized) CE-based stochastic optimization method as in [76]. For

notational simplicity, we use Ev[·] to represent Eθ∼fv [·] in the rest of this chapter.

As explained in the previous section, we aim at finding a policy distribution fv∗ to maximize L(v; ρ).

By definition of ρ-quantiles, it is a rare event to sample the highly ranked policies for small ρ.

The idea behind CE is to treat this optimization problem as an estimation problem of rare-event

probabilities. With importance sampling, we may estimate L(v; ρ) using any sampling distribution g

that shares the same support Θ as fv, then

L(v; ρ) = Eg[G(πθ)S(πθ,v, ρ)
fv(θ)

g(θ)
].

It is well-known that the optimal distribution g∗v [152] with minimal variance is

g∗v(θ) =
G(πθ)S(πθ,v, ρ)fv(θ)

L(v; ρ)
. (4.5)

In practice we smoothen the updates by including a learning rate α ∈ (0, 1) so the goal distribution

is g̃v = αg∗v + (1− α)fv. Since neither g∗v nor g̃v are necessarily in FV , we project g̃v to fv′ ∈ FV

by minimizing the Kullback-Leibler (KL) divergence between fv′′ ∈ FV and g̃v, which is also

equivalent to minimizing the cross entropy between g̃v and fv′′ .

v′ = arg min
v′′∈V

DKL(g̃v || fv′′)

= arg max
v′′∈V

Eθ∼g̃v [log fv′′(θ)]

= arg max
v′′∈V

(
αEv

[G(πθ)S(πθ,v, ρ)

L(v; ρ)
log fv′′(θ)

]
+ (1− α)Ev

[
log fv′′(θ)

])
.

(4.6)

We focus ourselves on a specific family of distributions over Θ called natural exponential fam-

ily (NEF), which includes many useful distributions such as Gaussian distribution and Gamma

58

distribution. A formal definition of NEF is as follows.

Definition 2. A parameterized family FV = {fv ∈ D(Θ),v ∈ V ⊆ Rdv} is called a natural

exponential family if there exist continuous mappings Γ : Rdθ → Rdv and K : Rdθ → R such that

fv(θ) = exp
(
vᵀΓ(θ) −K(v)

)
, where V ⊆ {v ∈ Rdv : |K(v)| < ∞} is the natural parameter

space and K(v) = log
∫

Θ exp
(
vᵀΓ(θ)

)
dθ.

Define m(v) = Ev[Γ(θ)] ∈ Rdv for v ∈ V , which is continuously differentiable in v. It can be

verified that

m(v) =
∂

∂v
K(v)

∂

∂v
m(v) =Covv[Γ(θ)],

where Covv[Γ(θ)] denotes the covariance matrix of Γ(θ) with θ ∼ fv. We take Assumption 1 to

guarantee that m−1 exists and is continuously differentiable over {η : ∃ v ∈ int(V) s.t. η = m(v)}.

The proof can be done by directly applying the inverse function theorem to m on int(V).

Assumption 1. Covv[Γ(θ)] is positive definite for any v ∈ V ⊆ int({v ∈ Rdv : |K(v)| <∞}).

With Assumption 1,∇2K(v) = Covv[Γ(θ)] < 0 and thus K(v) is convex in v. Thus log fv′′(θ) =

(v′′)ᵀΓ(θ)−K(v′′) is concave in v′′. As a result, v′ in (4.6) can be found by setting

∂

∂v′′

(
−
∫

Θ
g̃v(θ) log fv′′(θ)dθ

)
= 0,

which induces

m(v′)−m(v) = α
(
Eg∗v [Γ(θ)]−m(v)

)
. (4.7)

As a property of NEF, the KL-divergence of fv from g satisfies ∂
∂vDKL(g || fv) = −Eg[Γ(θ)] +

m(v). Therefore

m(v′)−m(v) = −α
(∂

∂v′′
DKL(g∗v || fv′′)

)∣∣∣
v′′=v

, (4.8)

which shows that if v is updated to v′ by solving (4.6), m(v) will be updated in the negative gradient

direction of the objective function DKL(g∗v || fv) where g∗v is the optimal sampling distribution from

importance sampling.

59

Define L̃(v; ρ) = Eg∗v [Γ(θ)]−m(v). If G is bounded with a strictly positive lower bound, then

L̃(v; ρ) =
Ev[G(πθ)S(πθ,v, ρ)Γ(θ)]

L(v; ρ)
−m(v)

=

∫
Θ

G(πθ)S(πθ,v, ρ)

L(v; ρ)
fv(θ)(Γ(θ)−m(v))dθ

(∗)
=

∫
Θ

G(πθ)S(πθ,v, ρ)

L(v; ρ)

(∂
∂v
fv(θ)

)
dθ

(∗∗)
=

∂

∂v′′
Ev′′ [G(πθ)S(πθ,v, ρ)]

L(v; ρ)

∣∣∣
v′′=v

=
∂

∂v′′
logEv′′ [G(πθ)S(πθ,v, ρ)]

∣∣∣
v′′=v

,

(4.9)

where the (∗) step holds by noticing

∂

∂v
fv(θ) = fv(θ)(Γ(θ)−m(v))

and the (∗∗) step holds by the dominated convergence theorem. Combining (4.7) and (4.9), we get

m(v′)−m(v) = αL̃(v; ρ) = α
∂

∂v′′
logEv′′ [G(πθ)S(πθ,v, ρ)]

∣∣∣
v′′=v

, (4.10)

which leads to the second interpretation of the updates: The update from v to v′ approximately

follows the gradient direction of logL(v′′; ρ), while the quantiles are estimated using the previous

distribution fv.

If we apply log fv′′(θ) = (v′′)ᵀΓ(θ)−K(v′′) to (4.6), we can simplify the right-hand side (RHS)

of (4.6) as (
αEv

[G(πθ)S(πθ,v, ρ)Γ(θ)

L(v; ρ)

]
+ (1− α)m(v)

)ᵀ
v′′ −K(v′′),

which is concave in v′′. By setting the derivative with respect to v′′ as zero, we get an explicit

expression of m(v′) as in (4.11).

m(v′) = αEv

[G(πθ)S(πθ,v, ρ)Γ(θ)

L(v; ρ)

]
+ (1− α)m(v). (4.11)

60

Algorithm 2 Constrained Cross-Entropy Method

Require: An objective function G, a constraint function H , a constraint upper bound d, a class of

parameterized policies ΠΘ, an NEF family FV .

1: l← 1. Initialize nl,vl, ρ, λl, αl. kl ← dρnle. η̂l ← 0.

2: repeat
3: Sample θ1, . . . , θnl ∼ fvl i.i.d..

4: for i = 1, . . . , nl do
5: Simulate πθi and estimate G(πθi), H(πθi).

6: end for
7: Sort {θi}nli=1 in ascending order of H . Let Λl be the first kl elements.

8: if H(πθkl) ≤ d then
9: Sort {θi

∣∣ H(πθi) ≤ d} in descending order of G. Let Λl be the first kl elements.

10: end if
11: η̂l+1 ← αl

∑
θ∈Λl

G(πθ)∑
θ∈Λl

G(πθ)Γ(θ) + (1− αl)
(
λl
nl

∑nl
i=1 Γ(θi) + (1− λl)η̂l

)
.

12: vl+1 ← m−1(η̂l+1).

13: Update nl, λl, αl. l← l + 1. kl ← dρnle.
14: until Stopping rule is satisfied.

The pseudocode of the CCE algorithm is given in Algorithm 2, which approximately takes the

updates in (4.11) in each iteration, with all expectations and quantiles estimated by Monte Carlo

simulation. Given fvl ∈ D(Θ) in the lth iteration, we sample over policies (Step 3), evaluate their

G-values and H-values (Step 5), estimate S(·,v, ρ) (Step 7 to 10) and estimate m(vl+1) with η̂l+1

(Step 11) and finally update the sampling distribution to vl+1 (Step 12).

4.4.4. Convergence Analysis

We prove the convergence of Algorithm 2 by comparing the asymptotic behavior of {η̂l}l≥0 with the

flow induced by the following ordinary differential equation (ODE):

∂η(t)

∂t
= L̃(m−1(η(t)); ρ), (4.12)

where we define η = m(v) or equivalently, v = m−1(η). The main result that connects the

asymptotic behavior of Algorithm 2 with that of an ODE is stated in Theorem 1.

Theorem 1. If Assumptions 1 and 2 hold, the sequence {η̂l}l≥0 in Step 11 of Algorithm 2 converges

61

to a connected internally chain recurrent set of (4.12) as l→∞ with probability 1.

By definition of η in (4.12), we know

∂η(t)

∂t
=
∂v

∂t
· Covv[Γ(θ)].

Since Covv[Γ(θ)] is invertible by Assumption 1, (4.12) can be rewritten with variable v

∂v

∂t
=
(
L̃(v; ρ)

)ᵀ(
Covv[Γ(θ)]

)−1
. (4.13)

The conclusion of Theorem 1 can be equivalently stated in terms of the variable v: the sequence

{vl}l≥0 of Algorithm 2 converges to a connected internally chain recurrent set of (4.13) as l→∞

with probability 1.

Intuitively, a point v0 ∈ V is chain recurrent for (4.13) if the solution v(t) of (4.13) with initial

condition v(0) = v0 can return to v0 within some finite time t′ > 0 itself or just with finitely many

arbitrarily small perturbations. An internally chain recurrent set is a nonempty compact invariant set

of chain-recurrent points. In other words, v can never leave an internally chain recurrent set if v0

belongs to it.

Theorem 1 implies that with probability 1, the set of points that occur infinitely often in {vl}l≥0 are

internally chain recurrent for (4.13). Since fv belongs to NEF, Covv[Γ(θ)] is the Fisher information

matrix at v and the right hand side of (4.13) is an estimate of the natural gradient of logL(v; p) with

a fixed indicator function S. This suggests that v evolves to increase L(v; ρ), which is consistent

with the optimization problem (4.4) and our motivation to solve a constrained RL problem. Note that

internally chain-recurrent sets are generally not unique and our algorithm can still converge to a local

optimum.

We need a series of assumptions for technical reasons.

Assumption 2. (2a) L̃(v; ρ) is continuous in v ∈ int(V) and (4.12) has a unique integral curve

for any given initial condition.

62

(2b) The number of samples in the lth iteration is nl = Θ(lβ), β > 0. The gain sequence {αl} is

positive and decreasing with liml→∞ αl = 0,
∑∞

l=1 αl = ∞. {λl} satisfies λl = O(1
lλ

) for

some λ > 0 such that β + 2λ > 1.

(2c) For any ρ ∈ (0, 1) and fv for any v ∈ V , the ρ-quantile of {H(πθ) : θ ∼ fv} and the

(1− ρ)-quantile of {U(πθ) : θ ∼ fv} are both unique.

(2d) Both Θ and V are compact.

(2e) The functionG defined in Problem 1 is bounded and has a positive lower bound: infπ∈ΠG(π) >

0. The function H in Problem 1 is bounded.

(2f) vl ∈ int(V) for any iteration l.

Assumption (2a) ensures that (4.12) is well-posed and has a unique solution. Assumption (2b)

addresses some requirements on the number of sampled policies in each iteration and other hyper-

parameters in Algorithm 2. Assumptions (2c) to (2e) are used in the proof of the convergence of

Algorithm 2. Assumption (2c) is required to show that 1
nl

∑
θ∈Λl

G(πθ) in Step 11 of Algorithm 2

is an unbiased estimate of Evl [G(πθ)S(πθ,vl, ρ)]. Assumption (2d) and (2e) are compactness and

boundedness constraints for the sets and functions involved in Algorithm 2, which are unlikely to

be restrictive in practice. Assumption (2f) states that V is large enough such that the learned v lies

within its interior.

The main idea behind the proof of Theorem 1 is similar to that of Theorem 3.1 in [76], although the

details are tailored to our problem. There are two major parts in the convergence proof: The first

part shows that all the sampling-based estimates converge to the true values almost surely, including

sample quantiles and sample estimates of G, H and L. The second part shows that the asymptotic

behavior of the idealized updates in (4.7) can be described by the ODE (4.12).

In practice we can only estimate the expectations and quantiles in (4.11) using finite samples. Let

Yl = {θ1, . . . , θnl} be the set of samples in the lth iteration with sampling distribution fvl . We

denote the sample estimate of S(πθ,v, ρ) as Ŝ(πθ,v, ρ).

63

Consider the equation in the Step 11 of Algorithm 2:

η̂l+1 =αl

∑nl
i=1G(πθi)Ŝ(πθi ,vl, ρ)Γ(θi)∑nl

i=1G(πθi)Ŝ(πθi ,vl, ρ)
+ (1− αl)

(λl
nl

nl∑
i=1

Γ(θi) + (1− λl)η̂l
)
, (4.14)

where vl = m−1(η̂l) and vl+1 = m−1(η̂l+1). We can rewrite (4.14) as

m(vl+1)−m(vl) = η̂l+1 − η̂l = αl

(
L̃(vl; ρ) + bl + wl

)
, (4.15)

where

bl =

∑nl
i=1G(πθi)Ŝ(πθi ,vl, ρ)Γ(θi)∑nl

i=1G(πθi)Ŝ(πθi ,vl, ρ)
− Evl [G(πθ)S(πθ,vl, ρ)Γ(θ)]

Evl [G(πθ)S(πθ,vl, ρ)]
,

wl =
1− αl
αl

(λl
nl

nl∑
i=1

Γ(θi)− λlη̂l
)
.

(4.16)

Comparing (4.15) and (4.10), we see that the error is sampling-based estimation of all expectations

and quantiles is captured by bl and wl.

We aim to show the connection between {η̂l}l≥0 and the ODE (4.12) using the following conclusion

in stochastic approximation.

Theorem 2. (Theorem 1.2, [17], with modified notation) Let Y : Rm → Rm be a continuous

vectorfield with unique integral curves. Let {vn}n≥0 be the solution to vn+1 − vn = γn(Y (vn) +

un + bn), where {γn}n≥0 is a decreasing gain sequence. Assume that

• {γn}n≥0 is bounded.

• limn→+∞ bn = 0.

• For any N > 0,

lim
n→∞

(
sup

k:0≤τk−τn≤N
||
k−1∑
i=n

γiui||
)

= 0,

where {τn}n∈N is defined as: τ0 = 0, τn =
∑n−1

i=0 γi.

Then the limit set of {vn}n≥0 is a connected set internally chain-recurrent for the flow induced by Y .

64

We first show that liml→∞ bl = 0 where bl is defined in (4.16), which is stated in Lemma 3.

Lemma 3. With Assumption (2b), (2c), (2d), (2e), liml→∞ bl = 0, with probability 1.

In order to prove Lemma 3, we first show that the sample quantile is an unbiased estimate of the true

quantile, which is stated in Lemma 4. Although we only show the result for the ρ-quantile of H ,

similar results apply for the (1− ρ)-quantile of U .

Lemma 4. Given ρ ∈ (0, 1), let ξ(ρ,vl) be the true ρ-quantile of H(πθ) with θ ∼ fvl and ξ̂l

be a sample ρ-quantile acquired from nl i.i.d. samples. With Assumption (2b), (2c), (2d), (2e),

ξ̂l − ξ(ρ,vl)→ 0 as l→∞ with probability 1.

Proof. By Assumption (2e), H(πθ) ∈ H = [Hmin, Hmax] for all πθ ∈ ΠΘ for some Hmin, Hmax ∈

R. It can be verified that any ρ-quantile ξ(ρ,vl) with θ ∼ fvl(·) can be represented as an optimal

solution of the following optimization problem [74]:

min
γ∈H

Jl(γ) = Evl [h(H(πθ), γ)]

s.t. h(H(πθ), γ) =

ρ(H(πθ)− γ), if H(πθ) ≥ γ,

(1− ρ)(γ −H(πθ)), if H(πθ) < γ.

Similarly the sample ρ-quantile ξ̂l can be computed by minimizing

Ĵl(γ) =
1

nl

nl∑
i=1

h(H(πθi), γ),

where {θ1, . . . , θnl} are i.i.d. samples with distribution fvl .

We first show that Jl(γ) uniformly converges to Ĵl(γ) overH with probability 1, i.e. supγ∈H |Jl(γ)−

Ĵl(γ)| → 0 as l→∞ with probability 1.

Let δ and r be two arbitrary scalars such that δ > 0 and r ≤ δ
3 max(ρ,1−ρ) . Let B(γ, r) = {γ′ ∈ H :

||γ − γ′|| ≤ r} be the r-neighborhood of γ ∈ H withinH. SinceH is compact, there exists a finite

set U = {h1, . . . , hk} ⊂ H such that H ⊆
⋃k
i=1B(hi, r). For each γ ∈ H, let u(γ) ∈ U be the

65

closest component in U . By definition, supγ∈H ||γ − u(γ)|| ≤ r. For any γ ∈ H,

|Jl(γ)− Jl(u(γ))| = |Evl [h(H(πθ), γ)]− Evl [h(H(πθ), u(γ))] |

≤max(ρ, 1− ρ) sup
γ∈H
||γ − h(γ)|| ≤ δ

3
, and

|Ĵl(γ)− Ĵl(u(γ))| = 1

nl
|
nl∑
i=1

(
h(H(πθi), γ)− h(H(πθi), u(γ))

)
|

≤max(ρ, 1− ρ) sup
γ∈H
||γ − u(γ)|| ≤ δ

3
.

As H(·) ⊆ [Hmin, Hmax], we can bound the probability that |Jl(u(γ))− Ĵl(u(γ))| > δ/3 for any

δ ≥ 0 by Hoeffding’s bound:

Pr
(
|Jl(u(γ))− Ĵl(u(γ))| ≥ δ

3

)
≤ 2e

− 2nlδ
2

9|Hmax−Hmin|2 .

As card(U) = k <∞, we can bound the probability that |Jl(hi)− Ĵl(hi)| < δ
3 holds for all hi ∈ U

with the union bound:

Pr
(

max
hi∈U

|Jl(hi)− Ĵl(hi)| ≥
δ

3

)
≤

k∑
i=1

Pr
(
|Jl(hi)− Ĵl(hi)| ≥

δ

3

)
≤ 2ke

− 2nlδ
2

9|Hmax−Hmin|2 .

Therefore with probability at least
(

1− 2ke
− 2nlδ

2

9|Hmax−Hmin|2
)

,

|Jl(γ)− Ĵl(γ)| ≤ δ

3
+
δ

3
+
δ

3
= δ

holds uniformly for all γ ∈ H. Therefore

∞∑
l=1

Pr(sup
γ∈H
|Jl(γ)− Ĵl(γ)| > δ) ≤

∞∑
l=1

2ke
− 2nlδ

2

9|Hmax−Hmin|2 <∞.

The last inequality holds as nl = Θ(lβ) and β > 0 by Assumption (2b). By Borel-Cantelli

Lemma, Pr(supγ∈H |Jl(γ) − Ĵl(γ)| > δ i.o.) = 0. As the above proof holds for any δ > 0,

supγ∈H |Jl(γ) − Ĵl(γ)| → 0 as l → ∞ with probability 1. In other words, Ĵl(·) converges

66

uniformly to Jl(·) as l→∞ with probability 1. Note that this uniform convergence holds whenever

Assumption (2b) and (2e) hold.

Then we prove that liml→+∞ |ξ̂l − ξ(ρ,vl)| = 0, with probability 1.

Since supγ∈H |Jl(γ)− Ĵl(γ)| → 0 as l →∞ with probability 1, for any ε > 0, there exists some

L(ε) > 0 such that supγ∈H |Jl(γ)− Ĵl(γ)| < ε holds for all l > L(ε), with probability 1. Therefore

with probability 1 and l > L(ε),

Jl(ξ̂l)− ε < Ĵl(ξ̂l), Ĵl(ξ(ρ,vl)) < Jl(ξ(ρ,vl)) + ε.

As ξ(ρ,vl) minimizes Jl(·) and ξ̂l minimizes Ĵl(·), we have

Jl(ξ(ρ,vl)) ≤ Jl(ξ̂l), Ĵl(ξ̂l) ≤ Ĵl(ξ(ρ,vl)).

Combining the above two equalities, we get

Jl(ξ(ρ,vl))− ε ≤ Jl(ξ̂l)− ε < Ĵl(ξ̂l) ≤ Ĵl(ξ(ρ,vl)) < Jl(ξ(ρ,vl)) + ε.

Therefore for any ε > 0 and l > L(ε),

Jl(ξ(ρ,vl))− ε < Jl(ξ̂l) < Jl(ξ(ρ,vl)) + ε

with probability 1. Equivalently, Jl(ξ̂l)− Jl(ξ(ρ,vl))→ 0 as l→ +∞ with probability 1.

We define Jv in the same way as we defined Jl, namely,

Jv(γ) = Ev[h(H(πθ), γ)]

for all v ∈ V and γ ∈ H. By Assumption (2c), the ρ-quantile of {H(πθ) : θ ∼ fv(·)} is unique

for all v ∈ V , i.e., Jv(γ) is minimized with a unique ξ(ρ,v) for all v ∈ V . We can verify from the

67

definition of Jv(·) such that if γ ≤ ξ(ρ,v),

Jv(γ)− Jv(ξ(ρ,v))

= Ev

[
(H(πθ)− γ)1[γ,ξ(ρ,v))(H(πθ))

]
+ (ξ(ρ,v)− γ)

(
Prv(H(πθ) ≥ ξ(ρ,v))− (1− ρ)

)
.

If γ > ξ(ρ,v),

Jv(γ)− Jv(ξ(ρ,v))

= Ev

[
(γ −H(πθ))1(ξ(ρ,v),γ)(H(πθ))

]
+ (γ − ξ(ρ,v))(Prv(H(πθ) ≤ ξ(ρ,v))− ρ).

By definition of ξ(ρ,v), it holds that

Prv
(
H(πθ) ≥ ξ(ρ,v)

)
− (1− ρ) ≥ 0,

P rv
(
H(πθ) ≤ ξ(ρ,v)

)
− ρ ≥ 0.

Therefore for any v ∈ V , Jv(γ) decreases monotonically if γ < ξ(ρ,v) and increases monotonically

if γ > ξ(ρ,v). Since the global minimizer is always unique, Jv(γ) > Jv(ξ(ρ,v)) for any γ 6=

ξ(ρ,v). For any fixed δ′ > 0 and any v ∈ V , ρ ∈ (0, 1), if |γ − ξ(ρ,v)| ≥ δ′, it holds that

|Jv(γ)− Jv(ξ(ρ,v))| ≥ min
(
Jv(ξ(ρ,v) + δ′)− Jv(ξ(ρ,v)), Jv(ξ(ρ,v)− δ′)− Jv(ξ(ρ,v))

)
.

For any fixed δ′ > 0 and all v ∈ V , it holds that

Jv(ξ(ρ,v) + δ′)− Jv(ξ(ρ,v)) > 0 and Jv(ξ(ρ,v)− δ′)− Jv(ξ(ρ,v)) > 0.

Since V is compact, we get

inf
v∈V

(
Jv(ξ(ρ,v) + δ′)− Jv(ξ(ρ,v))

)
> 0 and inf

v∈V

(
Jv(ξ(ρ,v)− δ′)− Jv(ξ(ρ,v))

)
> 0

for any δ′ > 0.

Assume that ξ̂l − ξ(ρ,vl) does not converge to 0 with probability 1. Then there exists δ̄ > 0 such

68

that Pr({|ξ̂l− ξ(ρ,vl)| ≥ δ̄ i.o.}) > 0. Since Jl(ξ̂l)−Jl(ξ(ρ,vl))→ 0, we know that with positive

probability, there exists a subsequence {lk}k≥0 ∈ N∞ such that |ξ̂lk − ξ(ρ,vlk)| ≥ δ̄ for each k ∈ N

and limk→∞(Jlk(ξ̂lk)− Jlk(ξ(ρ,vlk))) = 0. However,

|Jlkj (ξ̂lk)− Jlk(ξ(ρ,vlk))|

≥min
(

inf
v∈V

(
J(ξ(ρ,v)− δ̄)− J(ξ(ρ,v))

)
, inf
v∈V

(
J(ξ(ρ,v) + δ̄)− J(ξ(ρ,v))

))
> 0,

which contradicts our assumption that limk→∞(Jlk(ξ̂lk) − Jlk(ξ(ρ,vlk))) = 0. Therefore the

assumption is wrong and liml→+∞ |ξ̂l − ξ(ρ,vl)| = 0 with probability 1.

We can now give a proof to Lemma 3.

Proof. By Assumption (2e), infπ∈ΠG(π) > 0. By definition of (1 − ρ)-quantile, it holds for any

v ∈ V that

Ev[G(πθ)S(πθ,v, ρ)] ≥ inf
π∈Π

G(π)ρ > 0.

Similarly we can show
nl∑
i=1

G(πθi)Ŝ(πθi ,v, ρ) ≥ inf
π∈Π

G(π) > 0.

There are two types of approximation involved in bl: the first is to approximate ξH(ρ,vl) and

ξU (1− ρ,vl) by ξ̂H,l and ξ̂U,l. The second is to approximate the expectations with sample means,

for example, to approximate Evl [G(πθ)Ŝ(πθi ,vl, ρ)Γ(θ)] with 1
nl

∑nl
i=1G(πθi)Ŝ(πθi ,vl, ρ)Γ(θi).

We have shown that liml→∞ |ξH(ρ,vl)− ξ̂H,l| = 0 with probability 1 and liml→∞ |ξU (1− ρ,vl)−

ξ̂U,l| = 0 with probability 1 by Lemma 4. With the continuous approximation of δ as explained

in Remark 3, we can show liml→∞ |S(πθ,vl, ρ) − Ŝ(πθ,vl, ρ)| = 0 with probability 1. using the

continuous mapping theorem. We only need to consider the second part in this proof.

Γ(·) is bounded as it is a continuous function defined over a compact set (by Assumption (2d)). By

69

Assumption (2e), both G and H are bounded over Π. Therefore

lim
l→∞

∣∣∣ 1

nl

nl∑
i=1

G(πθi)Ŝ(πθi ,vl, ρ)Γ(θi)−
1

nl

nl∑
i=1

G(πθi)S(πθi ,vl, ρ)Γ(θi)
∣∣∣ = 0

holds with probability 1.

As G(πθ), S(πθ,vl, ρ), Γ(θ) are all bounded for any θ and ρ, there exist finite a, b such that

a ≤ G(πθ)S(πθ,vl, ρ)Γ(θ) ≤ b for any θ ∈ Θ. By Hoeffding’s inequality, for any ε > 0

Pr(
∣∣∣ 1

nl

nl∑
i=1

G(πθi)S(πθi ,vl, ρ)Γ(θi)− Evl [G(πθ)S(πθ,vl, ρ)Γ(θ)]
∣∣∣ ≥ ε) ≤ 2e

−2nlε
2

(b−a)2 .

By Assumption (2b), nl = Θ(lβ) and β > 0. Therefore for any ε > 0,

∞∑
l=1

Pr(
∣∣∣ 1

nl

nl∑
i=1

G(πθi)S(πθi ,vl, ρ)Γ(θi)− Evl [G(πθ)S(πθ,vl, ρ)Γ(θ)]
∣∣∣ ≥ ε) ≤ ∞∑

l=1

2e
−2nlε

2

(b−a)2 <∞.

Then by Borel-Cantelli Lemma, with probability 1,

lim
l→∞

∣∣ 1

nl

nl∑
i=1

G(πθi)S(πθi ,vl, ρ)Γ(θi)− Evl [G(πθ)S(πθ,vl, ρ)Γ(θ)]
∣∣ = 0.

Similarly, we can show that with probability 1,

lim
l→∞

∣∣ 1

nl

nl∑
i=1

G(πθi)S(πθi ,vl, ρ)− Evl [G(πθ)S(πθ,vl, ρ)]
∣∣ = 0.

Then liml→∞ bl = 0 holds with probability 1 by continuous mapping theorem.

Now we provide a proof for Theorem 1.

Proof. We connect the sequence {η̂l}l≥0 to the ODE (4.12) by applying Theorem 2. We need to

verify that all sufficient conditions in 2 hold properly. By (4.15), η̂l+1− η̂l = αl

(
L̃(vl; ρ) + bl+wl

)
.

• By Assumption (2a), L̃(v; ρ) is continuous in v ∈ int(V). Since m−1(η) is continuous in η,

70

L̃(v; ρ)
∣∣∣
v=m−1(η)

is continuous in η. (4.12) has a unique integral curve by Assumption (2a).

• By Assumption (2b), {αl}l≥0 is bounded and decreasing.

• By Lemma 3, liml→∞ bl = 0 with probability 1 with Assumption (2b), (2c), (2d), (2e).

• Then we show that for any N ∈ N+,

lim
l→∞

(
sup

k:
∑k
i=n αi<N

||
k∑
i=n

αiwi||
)

= 0.

Define Ml =
∑l

i=1 αiwi. Then Ml = Ml−1 + αnwn. As the set {θi}nli=1 is generated i.i.d.

with distribution fm−1(η̂l)(·) and η̂l = Em−1(η̂l)[Γ(θ)], it holds that

E[Ml|M1, . . . ,Ml−1]−Ml−1 = (1− αl)λl
(
Em−1(η̂l)[

1

nl

nl∑
i=1

Γ(θi)|Ml−1]− η̂l
)

= 0

regardless of the value of η̂l. To show that {Mn}n≥0 is a martingale, we show that E[||Mn||] <

∞. Note that wi is independent of wj if i 6= j, as all θ are independently generated. Therefore

E[wᵀiwj] = E[wi]
ᵀE[wj] = 0.

E[||Mn||2] =E[Mᵀ
nMn] = E[

(n∑
i=1

αiwi
)ᵀ(n∑

i=1

αiwi
)
]

=

n∑
i=1

α2
iE[wᵀiwi] +

n∑
i=1

∑
j 6=i

αiαjE[wᵀiwj]

=
n∑
i=1

α2
iE[wᵀiwi] =

n∑
i=1

(1− αi)2λ2
i

ni
Covm−1(η̂i)[Γ(θ)].

As Γ(θ) is continuous and the domain Θ is compact, there exists 0 < C < ∞ such that

Covv[Γ(θ)] ≤ C for any v ∈ V . Therefore by Assumption (2b),

E[||Mn||2] ≤
n∑
i=1

C
(1− αi)2λ2

i

ni
= O

(n∑
l=1

1

lβ+2λ

)
.

By Assumption (2b), β + 2λ > 1. Therefore limn→∞ E[||Mn||2] < ∞. As {||Mn||2}

71

increases monotonically, we know

sup
n

E[||Mn||2] = lim
n→∞

E[||Mn||2] <∞.

Since and E[||Mn||] ≤
√
E[||Mn||2], it holds that supn E[||Mn||] < ∞ and {Mn}n≥0 is a

martingale. Then by L2 martingale convergence theorem, there exists M∞ such that Mn →

M∞ with probability 1 and E[||M∞||2] <∞.

sup
{k:

∑k
i=n αi<N}

||
k∑
i=n

αiwi|| = sup
{k:

∑k
i=n αi<N}

||Mk −Mn−1|| ≤ 2 sup
k≥n
||Mk||.

Therefore

0 ≤ lim
n→∞

(
sup

{k:
∑k
i=n αi<N}

||
k∑
i=n

αiwi||
)
≤ lim

n→∞

(
2 sup
k≥n−1

||Mk||
)

= 0

for any finite N > 0.

Since all conditions in Theorem 2 are satisfied, the limit set of sequence {η̂l}l≥0 is a internally chain

recurrent connected set for the flow induced by L̃(m−1(η); ρ) with probability 1.

To further interpret Theorem 1, we first note that any equilibrium of (4.12) forms an internally chain

recurrent set by itself. The following result shows a sufficient condition for an equilibrium point v̄∗

of (4.12) to be locally asymptotically stable, which means that there exists a small neighborhood of

v̄∗ such that once entered, (4.13) will converge to v̄∗.

Theorem 3. Let ϕ : V → R be any function such that ∂
∂vϕ(v) = L̃(v; ρ). Any equilibrium

v̄∗ ∈ int(V) of (4.13) that is an isolated local maximum of ϕ(v) is locally asympototically stable.

Proof. The Lyapunov function we use is similar to that in [80]:

V (v) =ϕ(v̄∗)− ϕ(v),

where v̄∗ is an isolated local maximum of ϕ(v) and v is in some neighborhood of v̄∗ such that

72

ϕ(v̄∗) ≥ ϕ(v) and V (v) ≥ 0. By previous analysis, logϕ(v) and V (v) are continuous in v. For

the derivative:

dV (v)

dt
= −∂v

∂t

∂ϕ(v)

∂v
= −

(
L̃(v; ρ)

)ᵀ
(Cov[Γ(θ)])−1L̃(v; ρ).

As Covv[Γ(θ)] is positive definite for v ∈ int(V),
(
Covv[Γ(θ)]

)−1 is also positive definite. There-

fore ∂V (v)
∂t ≤ 0 in a neighborhood of v∗ and ∂V (v)

∂t = 0 if and only if L̃(v; ρ) = 0, which guarantees

that v is a stationary point of (4.13). As v̄∗ is an isolated local maximum of ϕ(v), it is the only

stationary point in some neighborhood of v̄∗. Therefore ∂V (v)
∂v = 0 if and only if v = v̄∗ (if v is in

the neighborhood of v∗) and v̄∗ is locally asymptotically stable.

The proof of Theorem 3 shows that ϕ(v) always decreases in the interior of V unless it hits a

stationary point of (4.13), which suggests a stronger property of our algorithm as stated in Theorem 4.

In order to state the result we need to first introduce some definitions. By Assumption (2a),

Z =
(
L̃(v; ρ)

)ᵀ
(Covv[Γ(θ)])−1

is a continuous vector field defined on V ⊂ Rdv with unique integral curves. The flow of Z is

the family of mappings {Φt(·)}t∈R defined on V by ∂Φt(v)
∂t = Z(Φt(v)) such that Φ0(v) ≡ v and

Φt(Φs(v)) ≡ Φt+s(v) for any v ∈ V , t, s ∈ R. v ∈ V is an equilibrium if Φt(v) = v for all t. A

set V ′ ⊂ V is positively invariant under the flow Φ if for all t ≥ 0, Φt(V ′) = V ′.

Theorem 4. If all equilibria of (4.13) are isolated, the sequence {vl}l≥0 derived by Algorithm 2

converges toward an equilibrium of (4.13) as l→∞ with probability 1.

Proof. Let ϕ be defined in the same way as in Theorem 3. We first show that ϕ is bounded over V .

By definition of L̃(v; ρ) in (4.9),

L̃(v; ρ) =
Ev[G(πθ)S(πθ,v, ρ)Γ(θ)]

L(v; ρ)
−m(v).

73

Since G has a positive lower bound (by Assumption (2e)) and Ev[S(πθ,v
′, ρ)] ≥ ρ for any v ∈ V ,

L(v; ρ) ≥ inf
π∈Π

G(π)ρ > 0.

Since Γ is continuous over Θ, Θ and V are compact (by Assumption (2d)), Γ(θ) and m(v) =

Ev[Γ(θ)] are both bounded. SinceG is also bounded (by Assumption (2e)), Ev[G(πθ)S(πθ,v, ρ)Γ(θ)]

is also bounded over V for any ρ ∈ (0, 1). Therefore ϕ is also bounded over V .

Let Φ be a flow induced by (4.13) and Λ be the set of all equilibria of (4.13). By definition, Λ is

positively invariant under Φ. Define V : V → R≥0 as

V (v) = sup
v′∈V

ϕ(v′)− ϕ(v).

supv′∈V ϕ(v′) <∞ as ϕ is shown to be bounded in V . By definition of Λ and the proof of Theorem 3,

the mapping t 7→ V (Φt(v)) is constant-valued for v ∈ Λ and strictly decreasing for v ∈ int(V)\Λ.

Since we also assume that (4.13) has only isolated equilibria and v is always in the interior of V

(Assumption (2f)), {vl}l≥0 converges to an equilibrium of (4.13) as l → ∞ with probability 1 by

Corollary 3.3 in [17].

4.5. Experimental Results

We show the performance of CCE in two numerical experiments: One is a discrete-time finite-horizon

constrained linear quadratic regulator problem and the other is a 2D robot navigation problem with

only local observations.

4.5.1. Constrained Linear Quadratic Regulator

We first run CCE on a simple finite-horizon constrained linear quadratic regulator (LQR) problem.

The problem is convex and thus can be solved efficiently and accurately. The goal of this example is

to check if CCE can converge to the globally optimal solution for a convex problem, as well as the

effect of policy network structure on the performance of CCE.

74

Given an initial state x0 ∈ Rnx , a finite horizon N ∈ N+, a lower bound ulow ∈ Rnu and an upper

bound uupp ∈ Rnu of inputs, the optimization problem to be solved is

min
u0,...,uN−1
x1,...,xN

N−1∑
t=0

(
xᵀt+1Qxt+1 + uᵀtRut

)
s.t. xt+1 = Axt +But, ∀t = 0, . . . , N − 1,

ulow 4 ut 4 uupp, ∀t = 0, . . . , N − 1,

xt ∈ Rnx , ut ∈ Rnu , ∀t = 0, . . . , N − 1.

(4.17)

It is well known that if Q � 0 and R � 0, an optimal solution u∗t to (4.17) at each time t =

0, . . . , N − 1 is a continuous piecewise affine function of the state xt [26]. At each time t, there

exists a polyhedral partition {P jt }, j = 1, . . . , kt of Rnx such that P jt = {x ∈ Rnx |F jt x ≤ Kj
t }

and u∗t (x) = Cjtx + djt for x ∈ P jt . Since Problem (4.17) is convex, we can compute its globally

optimal solution x∗t and u∗t via tools such as CVX [64].

The specific matrices we used are

A =

1 1

0 1

 , B =

1

1

 , Q =

1 0

0 0

 , R =

[
0.3

]
,

ulow = −0.2,uupp = 0.2,x0 =

[
1 −1

]ᵀ
.

The horizon length is N = 20, which is long enough to for u∗ to drive the states back to the origin.

The state and input trajectories derived by a globally optimal policy π∗ are shown in Figure 8.

We now solve (4.17) using CCE. We define J as the objective function in (4.17) and the constraint

function Z as follows:

Z(x0,u0, . . . ,xN−1,uN−1,xN) = 1−max
t

max(ulow − ut,ut − uupp, 0).

Therefore, a trajectory τ = x0,u0, . . . ,xN−1,uN−1,xN is feasible if and only if Z(τ) ≥ 1.

75

Policy network structure: one hidden layer of 2 nodes

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

0 5 10 15 20
-1

-0.5

0

0.5

0 5 10 15 20
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 20 40 60
0

0.2

0.4

0.6

0.8

1
10

-4

0 20 40 60
0.999994

0.999995

0.999996

0.999997

0.999998

0.999999

1

Policy network structure: one hidden layer of 10 nodes

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

0 5 10 15 20
-1

-0.5

0

0.5

0 5 10 15 20
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60
0.99999

0.999992

0.999994

0.999996

0.999998

1

Policy network structure: one hidden layer of 50 nodes

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

0 5 10 15 20
-1

-0.5

0

0.5

0 5 10 15 20
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 20 40 60
0

1

2

3

4

0 20 40 60
0.9975

0.998

0.9985

0.999

0.9995

1

Policy network structure: two hidden layers with 10 nodes in each layer

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

0 5 10 15 20
-1

-0.5

0

0.5

0 5 10 15 20
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 20 40 60
0

1

2

3

4
10

-4

0 20 40 60
0.999995

0.999996

0.999997

0.999998

0.999999

1

Figure 8: Comparison of the globally optimal policy π∗ and the 50 learned policies for different
policy network structures. Each row corresponds to a policy network structure. From left to right,
the first three columns represent the trajectories of the two states xt(1), xt(2) and the input ut over
time t. The solid line in each figure is for π∗ and the dashed lines are for the learned policies. In the
fourth column, we show the gap between their G-values and G(π∗) in ascending order. In the last
column, we show the H-values of the learned policies in ascending order.

We use a fully-connected neural network to represent the policy or controller, which maps from

the current position xt = [xt(1),xt(2)]ᵀ ∈ R2 to an input ut ∈ R. We compare four different

policy network structures: three networks with one hidden layer of 2, 10 or 50 nodes respectively

and one network with two hidden layers of 10 nodes in each layer. The activation function for each

hidden layer is the rectified linear unit (ReLU) and thus the learned controller is also a piecewise

linear function of the states. There is no activation function for the output layer. Note that the

policy represented by the neural network is time-invariant and thus it may be impossible to reach the

globally optimal objective value.

76

We assume that FV is a family of Gaussian distributions with diagonal covariance matrices. Each

sample policy is represented as a vector composed of all its network weights. For each policy

network, we repeatedly run CCE for 50 times. At the beginning of each experiment, we randomly

initialize the policy distribution parameter v ∈ V . In each iteration, we draw 100 sample policies

from the current policy distribution. The results are shown in Figure 8, which includes the state and

input trajectories of both the globally optimal policy π∗ and each learned policy π̂, the suboptimality

gap G(π̂)−G(π∗) of the G-value and the H-value for each learned policy.

CCE converged in all experiments. The performance of the learned policy is largely dependent on

the architecture of the policy network. As this example problem is simple, it turns out that a neural

network with a single hidden layer of 2 nodes can approximate the globally optimal policy accurately

and consistently. As we increase the number of nodes in the hidden layer, it becomes more difficult

to find or converge to feasible solutions; the suboptimality gap of G-value also increases. Meanwhile,

neither the number of hidden nodes nor the number of weight parameters is a reliable metric to

evaluate the complexity of the model. As the policy network has 2 inputs and 1 output, a network

with a single layer of 50 nodes has 150 weight parameters and a network with two hidden layers of

10 nodes has 130 weight parameters. However, Figure 8 shows that the performance of the latter

network is much better than the previous one: all the trajectories led by the 50 learned policies are

very close to that generated by π∗ and the suboptimality gap of G-value is very small.

4.5.2. 2D Navigation

We also consider a mobile robot navigation task with only local observations. Unlike the previous

example for which we can reliably compute the globally optimal solution, the optimization problem

in this example is non-convex and we have to resort to approximate solutions. The goal is to compare

the performance of CCE with that of the constrained policy optimization algorithm, which is a

state-of-the-art constrained reinforcement learning algorithm [4].

The robot’s state space is S = {(x, y, ζ)
∣∣xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax,−π ≤ ζ < π},

which contains the robot’s position and orientation in the global coordinate. The action space

77

(a) (b)

Figure 9: (9a) Map of the 2D navigation example. There are one obstacle region (grey rectangle),
one goal region (blue rectangle) and 10 randomly selected initial states (red circles pointing to the
forward direction). Dotted lines are added to show x and y axes. (9b) Illustration of the local features
in the robot’s local coordinate at one of the initial states, with ns = 5. Obstacle nodes, goal nodes
and free nodes are labeled by black crosses, yellow plus signs and green triangles respectively. The
goal direction (black arrow) is also included in local features.

is 2-dimensional: A = {(v, ω)
∣∣|v| ≤ vmax, |ω| ≤ ωmax}, which are linear and angular speed

respectively. The environment map is shown in Figure 9a, where there is a compact goal region G

and a disjoint compact obstacle region B. The overall goal of the navigation task is to reach the goal

region G without colliding with the obstacle region B, while the objective and constraint are encoded

in four different ways as shown in Table 4.

The policy is again modeled as a fully connected neural network with 2 hidden layers and 30 nodes

in each layer. The activation function is ReLU for hidden layers and the hyperbolic tangent function

(tanh) for the output layer. The policy network maps from local observations to actions. The local

observations are interpreted as follows.

We assume that the robot cannot observe (x, y, ζ) directly and can only use local sensors (shown

in Figure 9b) to observe if B or G is in its neighborhood and the direction of the center of G in its

local coordinate. For a given parameter ns ∈ N+ and sampling time ∆t, we design a radial grid as

ns circles in the robot’s local coordinate. The difference between the diameters of adjacent circles

78

Table 4: Ji(τ), Zi(τ) and constraint upper bound di for i = 1, 2, 3, 4, τ ∈ (S ×A)N .

i Ji(τ) Zi(τ) di Ji Markovian Zi Markovian

1

1 for each state in G; 2|y|
for each state with
y ∈ [−2,−0.2]; 0

otherwise.

-1 if the robot arrives
G which is absorbing;

0 otherwise.
-0.5 Yes Yes

2
30 times the minimum

signed distance from any
state in τ to B.

-1 if the robot visited
G in τ ; 0 otherwise.

-0.5 No No

3 Same as J2(τ).
-1 for each state in G;

0 otherwise.
-5 No Yes

4 Same as J1(τ).
-1 if the robot visits G
and never visits B; 0

otherwise.
-0.5 Yes No

is vmax∆t > 0. There are d2π/ωmaxe uniformly distributed observation points on each circle and

the robot can measure the label for each node. An observation point is labeled: 1, if it belongs to

G; -1, if it belongs to B; and 0, otherwise. We also assume that the robot can sense the direction

of the center of G in its local coordinate without knowing the distance. In total, there are a total of

(2 + nsd2π/ωmaxe) outputs of the local observation model. In our experiment, ωmax = π
6 , ns = 5,

so there are 62 local observations as the inputs to the policy network.

We compare the performance of CCE to trust region policy optimization (TRPO) [153], a state-of-the-

art unconstrained RL algorithm, and its variant for constrained problems called constrained policy

optimization (CPO). The policy space ΠΘ is a set of deterministic stationary policies. Trajectory

length for all experiments is set to N = 30. Each sampled policy is evaluated using 10 sample

trajectories. We set ρ = 0.2. For TRPO and CPO, we set the batch size as 6,000, the discount factor

as 0.999, and the step size for trust region as 0.01. All other parameters are the default values in rllab

[47].

We show the learning curves of CCE, TRPO and CPO for each experiment in Figure 10. For

experiments in which Ji is not strictly positive, we use exp(Ji) instead of Ji to update the policy

distributions in CCE. The vertical axes in Figure 10 show the average objective and constraint values

79

Objective value GJi(πθ)

Constraint value HZi(πθ) (Feasible regions are below dashed lines)

(a) i = 1 (b) i = 2 (c) i = 3 (d) i = 4 (e) i = 1

Figure 10: Learning curves of CCE, CPO and TRPO with different objectives GJi and constraints
HZi . The horizontal axes show the total number of sample trajectories for CCE and the total number
of equivalent sample trajectories for TRPO and CPO. The vertical axes show the sample mean of
the objective and constraint values of the learned policy (for TRPO and CPO) or the learned policy
distribution (for CCE). The shade shows 1 standard deviation. The region below the dashed line in
the second row is feasible. Each experiment is repeated for 5 times.

of the learned policy. For CCE, the average values are computed with all rollout trajectories that are

simulated with all the policies sampled at the current iteration. For CPO and TRPO, we simulate

the current policy from exactly the same set of initial states and compute the average objective and

constraint values for all trajectories.

Results by TRPO show that the constraints cannot be satisfied by merely optimizing the corresponding

objectives. However, CCE successfully outputs feasible policies in all experiments. On the other

hand, CPO needs significantly more samples to find a single feasible policy, or simply converges to

an infeasible policy especially if the constraint is non-Markovian.

One may argue that CPO is designed to work with feasible initial policies and Markovian objectives

and constraints (specifically, both J and Z are discounted total rewards). Thus, we repeat the first

experiment (i = 1) with feasible initial policies and obtain the result in the last column of Figure 10.

In this case, CPO leaves the feasible region rapidly and then follows generally the same path as if it is

initialized with an infeasible policy. This behavior suggests that its incapability to enforce constraint

80

(a) GJ4(πθ). (b) HZ4
(πθ).

Figure 11: Average performance of CCE, CPO and TRPO for Experiment 4 with initial feasible
policy.

satisfaction is not due to the lack of initial feasibility. Although CCE also leaves the feasible region

at an early stage of iterations, it regains feasibility much faster than the previous case with infeasible

initial polices. These results suggest that CCE is more reliable than CPO for applications where the

strict constraint satisfaction is critical.

In Figure 11, we compare the performance of CPO and CCE in Experiment 4 to that of TRPO with

objective GJ4 − 100HZ4 . The fixed penalty coefficient 100 is chosen to be neither too large nor

too small so it can show a large variety of locally optimal behaviors with very different GJ4-values

and HZ4-values. Figure 11 clearly shows the trade-off between GJ4-values and HZ4-values, which

partially explains the gap between the GJ4-value outputs of CCE and CPO. With a fixed penalty

coefficient, the policies learned by TRPO are either infeasible or with very small constraint values.

The policy output by CCE has higher GJ4-value than all the feasible policies found by TRPO and

CPO.

81

Chapter 5: Correct-By-Synthesis Reinforcement Learning with

Temporal Logic Constraints

5.1. Introduction

The goal of this paper is to synthesize optimal reactive strategies for systems with respect to

some unknown performance criterion and in an adversarial environment such that given temporal

logic specifications are satisfied. The consideration of unknown performance criterion may seem

unreasonable at first sight, but it turns out to be an effective supplement to the specification as task

description and suits the need in many applications. On the one hand, general requirements on system

behaviors such as safety concerns and task rules may be known and expressed as specifications

in temporal logic. On the other hand, quantitative performance criterion can help encode more

subtle considerations, such as specific intentions for the current application scenario and personal

preferences of human operators who work with the autonomous system. For a path planner of

autonomous vehicles, specifications imply fixed nonnegotiable constraints like safety requirements,

e.g., always drive on the correct lane, never jump the red light and eventually reach the destination.

Quantitative performance criteria give preferences within the context constrained by the specifications,

which may involve considerations that have not been taken into account during controller design and

suggested by the human operators.

The two main topics most relevant to our work are reactive synthesis with temporal logic specifications

and reinforcement learning with respect to unknown performance criteria. Neither solves the problem

we consider in this paper.

On the synthesis side, early work focused on planning in static known environments [116, 178].

Reactivity to the changes in dynamic environments is a crucial functionality. For example, the

environment of an autonomous vehicle involves the other vehicles and pedestrians moving nearby,

and it is impractical to expect an autonomous vehicle to run on roads safely without reacting to

its surrounding environment in real time. Recently, references [138, 140, 141] considered possibly

82

adversarial environments and reactive strategies (without any quantitative performance criteria).

Another concern in synthesis is optimality with respect to a given performance criterion. Optimal

strategies have been studied with respect to given objectives while satisfying some temporal logic

specifications, mostly in deterministic environments or stochastic environments with known transition

distribution [46, 190]. Both qualitative objectives such as correctness guarantee with respect to an

adversarial environment and quantitative objectives such as mean payoffs were studied in [36] though

these results crucially rely on the quantitative measure being known a priori.

In order to deal with problems with a priori unknown performance criterion, it is intuitive to gain

experience from direct interactions with the environment or with a human operator, which coincides

with the motivation of many reinforcement learning methods [170]. Multiple learning methods

have been studied and are available to problems with unknown reward functions and incomplete

prior knowledge on system models [15, 156, 169, 181], and have been used in many applications,

including the famous TD-Gammon example [173] and robot collision avoidance [77]. However,

the learning process generally cannot guarantee the satisfaction of other independently imposed

specifications while maximizing the expected rewards at the same time, though they can be modified

to deal with some simple cases [59, 136].

To the best of our knowledge, the current paper is the first to deal with the problem of synthesizing

a controller which optimizes some a priori unknown performance criterion while interacting with

an uncontrolled environment in a way that satisfies the given temporal logic specifications. The

approach we take is based on a decomposition of the problem into two subproblems. For the first

part (Section 5.4.1), the intuition is to extract a strategy for the system, namely a permissive strategy

[19], which encodes multiple (possibly all) ways in which the system can react to the adversarial

environment and satisfy the specifications. Then in the second part (Section 5.4.2), we quantify the

a priori unknown performance criterion as a (still unknown) reward function and apply the idea of

reinforcement learning to choose an optimal strategy for the system within the operating envelope

allowed by the permissive strategy. By decoupling the optimization problem with respect to the

unknown cost from the synthesis problem, we manage to synthesize a strategy for the system that is

83

guaranteed to both satisfy the specifications and reach optimality over a set of winning strategies

with respect to the a priori unknown performance criterion (Section 5.4.3).

5.2. Preliminaries

We now introduce some basic concepts.

5.2.1. Two-Player Games

First we model the setting as a two-player game. In this model we care about not only the controlled

system, but also its external uncontrolled environment. Interactions between the controlled system

and the uncontrolled environment play a critical role in guaranteeing the correctness of given

specifications, as we will discuss later.

Definition 3. A two-player game, or simply a game, is defined as a tuple G = (S, Ss, Se, I, Ac, Auc, T,W),

where S is a finite set of states; {Ss, Se} is a partition of S, i.e., S = Ss
⋃
Se, Ss

⋂
Se = ∅; I ⊆ S

is a set of initial states; Ac is a finite set of controlled actions of the system; Auc is a finite set

of uncontrolled actions for the environment and Auc
⋂
Ac = ∅; T : S × {Ac

⋃
Auc} → 2S is a

transition function; W is the winning condition defined later.

Ss and Se are the sets of states from which it is the system’s or the environment’s turn to take actions,

respectively. There are no available uncontrolled actions (environment actions) to any state s ∈ Ss,

and correspondingly, states in Se can not respond to any controlled action (system action). Let A(s)

be the set of actions available at state s ∈ S. Hence A(s) ⊆ Ac if s ∈ Ss and A(s) ⊆ Auc if s ∈ Se.

If the transition function T of G satisfies |T (s, a)| ≤ 1 for all s ∈ S and a ∈ A(s), the game is called

deterministic; otherwise the game is called non-deterministic, highlighting the fact that multiple

transitions are possible to some state-action pairs. We assume here that G is deterministic.

A run π = s0s1s2 . . . of G is an infinite sequence of states such that s0 ∈ I and for i ∈ N, there

exists ai ∈ A(si) such that si+1 = T (si, ai) (G is deterministic). Without loss of generality, assume

that all states are reachable from I in G.

84

5.2.2. Linear Temporal Logic

We use fragments of linear temporal logic (LTL) to specify the assumptions on environment behaviors

and the requirements for the system. LTL can be regarded as a generalization of propositional logic. In

addition to logical connectives such as conjunction (∧), disjunction (∨), negation (¬) and implication

(→), LTL also includes basic temporal operators such as next (©), until (U), derived temporal

operators like always (�) and eventually (♦), and any (nested) combination of them, like always

eventually (�♦).

An atomic proposition is a Boolean variable (or propositional variable). Suppose AP is a finite set

of atomic propositions, then we can construct LTL formulas as follows: (i) Any atomic proposition

p ∈ AP is an LTL formula; (ii) given formulas ϕ1 and ϕ2, ¬ϕ1, ϕ1 ∧ ϕ2,©ϕ1 and ϕ1Uϕ2 are LTL

formulas. A formula without any temporal operators is called a Boolean formula or assertion. A

linear time property is a set of infinite sequences over 2AP .

LTL formulas are evaluated over executions: An execution σ = σ0, σ1, σ2, . . . is an infinite sequence

of truth assignments to the variables in AP , where σi is the set of atomic propositions that are

True at position i ∈ N. Let P (ϕ) be the set of atomic propositions appearing in an LTL formula ϕ.

Given ϕ and an execution σ, the condition that ϕ holds at position i of σ, denoted by σ, i |= ϕ, is

constructed inductively as follows:

1. For any p ∈ P (ϕ), σ, i |= p iff p ∈ σi.

2. σ, i |= ¬ϕ iff σ, i 6|= ϕ.

3. σ, i |=©ϕ iff σ, i+ 1 |= ϕ.

4. If ϕ = ϕ1 ∧ ϕ2, then σ, i |= ϕ iff σ, i |= ϕ1 and σ, i |= ϕ2.

5. If ϕ = ϕ1 ∨ ϕ2, then σ, i |= ϕ iff σ, i |= ϕ1 or σ, i |= ϕ2.

6. If ϕ = (ϕ1 → ϕ2), then σ, i |= ϕ iff σ, i |= ϕ1 implies σ, i |= ϕ2.

85

7. If ϕ = ϕ1 U ϕ2, then σ, i |= ϕ iff there exists k ≥ i such that σ, j |= ϕ1 holds for all

i ≤ j < k and σ, k |= ϕ2.

8. ♦ϕ = True U ϕ, �ϕ = ¬♦¬ϕ.

If σ, 0 |= ϕ, we say that ϕ holds on σ or σ satisfies ϕ, which can also be written as σ |= ϕ.

An LTL formula ϕ1 is a safety formula if for every execution σ that violates ϕ1, there exists an

i ∈ N+ such that for every execution σ′ that coincides with σ up to position i, σ′ also violates ϕ1. An

LTL formula ϕ2 is a liveness formula if for every prefix of any execution σ0, . . . , σi (i ≥ 0), there

exists an infinite execution σ′ with prefix σ0, . . . , σi such that σ′ |= ϕ2. Intuitively, safety formulas

indicate that “something bad should never happen,” and liveness formulas require that “good things

will happen eventually.”

Let AP be a set of atomic propositions, and define a labeling function L : S → 2AP such that each

state s ∈ S is mapped to the set of atomic propositions that hold True at state s. A word is an

infinite sequence of labels L(π) = L(s0)L(s1)L(s2) . . . where π = s0s1s2 . . . is a run of G. We say

a run π satisfies ϕ if and only if L(π) |= ϕ.

To complete the definition of two-player games, define the winning condition W = (L,ϕ) such

that L is a labeling function and ϕ is an LTL formula, and a run π of G is winning for the system

if and only if π satisfies ϕ. ϕ can be used to express the qualitative specifications such as system

requirements and environment assumptions.

5.2.3. Control Strategies

Given the game G, we would like to synthesize a control protocol such that the runs of G satisfy the

specification ϕ.

A (deterministic) memoryless strategy for the system is a map µ : Ss → Ac, where µ(s) ∈ A(s) for

all s ∈ Ss. A (deterministic) finite-memory strategy for the system is a tuple µ = (µm, ρm,M) where

µm : Ss×M → Ac such that µm(s,m) ∈ A(s) for all s ∈ Ss,m ∈M , and ρm : S×M →M . The

finite setM is called the memory and ρm is also called the memory update function. µm(s,m) ∈ A(s)

86

for all s ∈ Ss and m ∈ M . m is initialized to be m0 ∈ M . Strategies can also be defined as non-

deterministic, in which case µ will be defined as µ : Ss → 2Ac for memoryless strategies or

µ = (µm, ρm,M) with µm : Ss ×M → 2Ac for finite-memory strategies. Clearly deterministic

strategies can be regarded as a special case of non-deterministic strategies when |µm(s,m)| = 1 for

all s ∈ Ss,m ∈ M . We require |ρm(s,m)| = 1 for all s ∈ S and m ∈ M , no matter the strategy

is deterministic or not. ρm will be evaluated each time after any player takes action. If we further

specify the probability distribution P over A(s) for each state s ∈ Ss, the corresponding strategies

are called randomized strategies. We refer to deterministic strategies unless otherwise stated. By

replacing Ss by Se and Ac by Auc, we can define memoryless and finite-memory strategy for the

environment.

A run π = s0s1s2 . . . is induced by a strategy µ for the system if for any i ∈ N such that si ∈ Ss,

si+1 = T (si, µ(si)) (for memoryless strategies) or there exists an infinite sequence m0m1m2 . . .

over M such that si+1 = T (si, µm(si,mi)) and for all sj ∈ S, mj+1 = ρm(sj+1,mj) (for finite-

memory strategies). Let Rµ(s) be the set of runs of G induced by a strategy µ for the system and

initialized with s ∈ I . |Rµ(s)| > 1 when the strategies for the environment are not unique, even if µ

is deterministic.

We say a strategy µ for the system wins at state s ∈ I if all runs π ∈ Rµ(s) are winning for the

system. A strategy µ is called a winning strategy if it wins at all initial states of G. A formula ϕ is

realizable for G if there exists a winning strategy for the system with W = (L,ϕ).

5.2.4. Reward Functions

Besides qualitative requirements which are encoded in the winning condition, we also consider

quantitative evaluation from other sources such as the human operators. Such evaluation is modeled

as a reward function which we want to maximize by choosing proper strategy for the system.

In order to evaluate the system strategy, we first map each system state-action pair to a nonnegative

value by an instantaneous reward functionR : S × (Ac
⋃
Auc)→ R+

⋃
{0}, and then consider the

“accumulation” of such instantaneous rewards obtained over a run of a game G. As runs are of infinite

87

length, we cannot simply add all the instantaneous reward acquired, which may approach infinity.

Instead we define a reward function JGR : Sω → R to compute reward for any run π of G given the

instantaneous reward functionR. A common example of JGR is the discounted reward

JGR =
∞∑
k=0

γkrk+1, (5.1)

where γ is a discount factor satisfying 0 ≤ γ < 1, and rk+1 is the (k + 1)th instantaneous reward

obtained by the system. In this case, rewards acquired earlier are given more weight, while in other

examples like the mean payoff function

lim inf
k→∞

1

k + 1

t+k∑
i=t

ri,

weights on instantaneous reward are independent of the sequence.

Now we define a reward function J̄GR : P × I → R+
⋃
{0} to evaluate each strategy for the system,

where P is the set of system strategies. Usually |Rµ(s)| > 1 as the uncontrolled environment has

more than one strategies, and thus the definition of J̄GR(µ, s) is not unique given JGR(π) for all runs

in Rµ(s). One commonly used choice for J̄GR is the expectation of JGR(π) over all runs in Rµ(s)

with some given distribution for the environment strategy, i.e., Eπ∈Rµ(s)

[
JGR(π)

]
. The distribution

is usually estimated from interaction experience with the environment. Another common way is to

define J̄GR as the minimal possible reward acquired when the system strategy is µ, i.e.,

J̄GR(µ, s) = inf
π∈Rµ(s)

JGR(π), (5.2)

which we use as the reward function in our problem.

5.3. Problem Formulation

We have modeled the interaction between the uncontrolled environment and the controlled system as

a two-player game whose winning condition is described by a given LTL formula. Moreover, we

defined reward functions to evaluate the performance of different system strategies. Now we can go

88

s0

{b1}

s1

{b2}
a1

a0 a2

Figure 12: A game G0 without finite-memory optimal strategy.

on to formulate the main problem of the paper.

Problem 2. A two-player deterministic game G = (S, Ss, Se, I, Ac, Auc, T,W) is given where

W = (L,ϕ) and ϕ is realizable for G. Find a memoryless or finite-memory winning strategy µ for

the system such that J̄GR(µ, s) is maximized for all s ∈ I , where a reward function J̄GR is given with

respect to an unknown instantaneous reward functionR : S × (Ac
⋃
Auc)→ R+

⋃
{0}.

Generally, there does not necessarily exist a memoryless or finite-memory winning strategy that

maximizes the reward over all winning strategies, as it is possible that the instantaneous reward pro-

motes the system to violate the specification. Take as an example G0 = (S, Ss, Se, I, Ac, Auc, T,W),

where Se = ∅, S = Ss = I = {s0, s1}, Ac = {a0, a1, a2}, Auc = ∅ and W = (L,ϕ). The

transition function T and the labeling function L are shown in Figure 12, and the formula is ϕ = ♦b2.

The game G0 does have winning strategies for the system. For example, the strategy µ where

µ(s0) = a1, µ(s1) = a2 is a memoryless winning strategy, and the strategy µ′ = (µ′m, ρ
′
m, {0, 1})

where

µ′m(s1, 0) =µ′m(s1, 1) = {a2},

µ′m(s0, 0) ={a0, a1},

µ′m(s0, 1) ={a1},

ρ′m(s1, 0) =0,

ρ′m(s1, 1) =ρ′m(s0, 0) = ρ′m(s0, 1) = 1

is a finite-memory winning strategy.

But G0 may not have memoryless or finite-memory optimal winning strategies for the system. Sup-

pose the unknown instantaneous reward function is actually defined asR(s1, a2) = 0,R(s0, a0) =

R(s0, a1) = 10, and the reward function JGR is the same as (5.1). In order to maximize J̄GR(µ, ·), µ

89

should allow the system to stay at s0 forever, which will violate ϕ. Thus optimal winning strategies

need infinite memory.

Let us now move on to an overview of the two-stage solution approach we propose. Given a game

G as in Problem 2, we first extract a non-deterministic winning strategy µp called a permissive

strategy [19], which guarantees that Rµ(s) ⊆ Rµp(s) for all memoryless winning strategies µ and

s ∈ I . In some special cases (e.g. the conditions in Proposition 2), we are even able to compute

a maximally permissive strategy µmaxp , such that Rµ(s) ⊆ Rµ
max
p (s) for all winning strategies µ

and s ∈ I . Then in the second stage we restrict to the transitions allowed by µp (or µmaxp), apply

reinforcement learning methods to explore the a priori unknown instantaneous reward functionR and

compute an optimal strategy over all strategies of the new game obtained in the first stage. With this

decomposition we managed to separate the problem of guaranteeing the correctness of specifications

from that of seeking the optimal reward with a priori unknown instantaneous rewards.

5.4. Permissive Strategies, Learning and the Main Algorithm

This section is composed of three parts. We first introduce the idea of permissive strategies, then

describe a reinforcement learning method which is used to learn an optimal strategy with respect

to an unknown reward function without concern about any specification, and finally combine the

two parts to apply the reinforcement learning method to explore for an optimal strategy out of those

encoded in an appropriately constructed permissive strategy.

5.4.1. Extraction of Permissive Strategies

We first introduce an inclusion relation between strategies. Recall that we have defined the set of runs

induced by a strategy µ for the system with initial state s ∈ I as Rµ(s). For two non-deterministic

strategies µ1 and µ2 for the system, we say that µ1 includes µ2 if Rµ2(s) ⊆ Rµ1(s) holds for all

s ∈ I . Furthermore, if µ1 includes µ2 and µ2 includes µ1, we call µ1 and µ2 equivalent. In other

words, equivalent strategies induce the same set of runs. A game G has a unique winning strategy

if all its winning strategies are equivalent. Now we can define permissive strategies based on this

strategy inclusion relation.

90

Definition 4. Given a two-player game G, a non-deterministic strategy µ for the system is called

permissive if (i) it is winning for the system and (ii) includes all memoryless winning strategies for

the system. A permissive strategy is called maximally permissive if it includes all winning strategies

for the system.

All two-player games have permissive strategies. For games with finite states, there are only finitely

many memoryless winning strategies. We can build a permissive strategy by adding a unique tag

to each of them (as memory) and directly combining them together. In cases where there is no

memoryless winning strategy, this fact is trivial as any winning strategy is permissive.

In general, permissive strategies are not necessarily unique. For example, the game G0 in Figure 12

has a unique memoryless winning strategy µ for the system where µ(s0) = a1, µ(s1) = a2. As a

result, µp such that µp(s0) = {a1} and µp(s1) = {a2} is a deterministic memoryless permissive

strategy. In the meantime, the finite-memory strategy µ′ = (µ′m, ρ
′
m, {0, 1}) where

µ′m(s1, 0) =µ′m(s1, 1) = {a2},

µ′m(s0, 0) ={a0, a1},

µ′m(s0, 1) ={a1},

ρ′m(s0, 0) =ρ′m(s0, 1) = ρ′m(s1, 1) = 0,

ρ′m(s1, 0) =0

includes µ and thus is also a permissive strategy. As µp does not include µ′, they are different

permissive strategies of G.

On the other hand, maximally permissive strategies must be unique by definition, if they exist for a

game G. The specific representations of maximally permissive strategies may not be unique, just like

a memoryless strategy can be rewritten as a finite-memory strategy in which the allowed actions are

independent of the memory.

It is naturally desirable to extract maximally permissive strategies as they include all the other

winning strategies. While they do not exist in general, the following proposition is a sufficient

91

condition of their existence.

Proposition 1 ([19]). All games G with winning conditions W = (L,ϕ) in which ϕ is a safety

formula have memoryless or finite-memory maximally permissive strategies.

This characterization can be extended to be both sufficient and necessary. It has been shown that

maximally permissive strategies exist if and only if the winning conditions are reactive safety proper-

ties [49], which are equivalent to safety properties when the interaction between the environment

and system is explicitly considered. Reactive safety characterizes precisely the properties whose

satisfaction is checked by testing if the runs of G satisfy some safety formula.

There exists work on the construction of permissive strategies for games G with a general LTL

formula ϕ in the winning condition [19, 166], so we only sketch the relevant results briefly here. The

first step is to compute a deterministic parity automaton [174] from ϕ, which is taken into account by

constructing a new game G′ with a parity winning condition. Games with such a winning condition

have permissive strategies and Bernet et al. [19] provided an algorithm to compute such strategies.

Additionally, Ehlers and Finkbeiner [49] offer a method for checking if the winning condition W is a

reactive safety property for G. The game G is first translated into a parity automaton as before, and is

then used to construct a parity tree automaton [174]. Tree automata are commonly used to explicitly

model inputs and outputs and the overall behavior of reactive systems. For reactive safety properties,

trees get rejected if and only if some path in the tree visits some violating states, i.e., the states from

which all trees are rejected. In other words, the set of accepted trees should be exactly those that

never visit any violating state in all paths. The acceptance of trees can be decided by simply checking

the set of states they can visit. The problem of checking if ϕ is a reactive safety property for A is

reduced to checking the equivalence of two parity tree automata, which can be solved with existing

approaches [82]. If we get a positive answer, we can construct another game with a safety formula

in its winning condition which accepts exactly the same set of runs as A . By Proposition 1, there

exists a maximally permissive strategy for G. The worst-case complexity of the resulting method is

2-EXPTIME.

92

Although Proposition 1 guarantees the existence of a maximally permissive strategy µmaxp when ϕ is

a safety formula, the computational time complexity is the same as that of synthesizing a strategy for

a game with a general LTL formula [99]. The complexity can be significantly improved when ϕ is of

the following special form. The proof is straightforward and is omitted due to the limited space.

Proposition 2. For all games G with winning condition W = (L,ϕ) and ϕ = ϕ0 ∧ �ϕ1, where

ϕ0 and ϕ1 are Boolean formulas of p and©q for p, q ∈ AP , a memoryless maximally permissive

strategy can be solved in linear time of the number of transitions of G and the size of ϕ.

We use the software tool slugs [50] to extract permissive strategies when ϕ in G is in the form of

generalized reactivity (1) (GR(1)) [138]. Under the condition of Proposition 2, slugs synthesizes a

maximally permissive strategy.

The extraction and application of permissive strategies greatly simplify the solution of Problem 2,

enabling us to focus on optimizing the performance over strategies known to be correct. By Defini-

tion 4, a permissive strategy µp is non-deterministic and thus its application to a game G is essentially

encoding its memory update function into the game structure and removing all transitions that it

does not allow. Hence any run π′ of the resulting game G′ has a unique counterpart π in the runs

of G induced by µp, and vice versa. Moreover, such π and π′ can only be winning for the system

simultaneously. Since µp is winning for the system in G, all runs it induces are winning for the

system and so are their counterpart runs in G′. As a result, any strategy µ′ of G′ is winning for the

system. Let JG
′

R (π′) be the same as JGR(π), and J̄G
′

R is defined similarly as J̄GR.

5.4.2. Reinforcement Learning

Now that we have acquired a game G′ whose runs are all guaranteed to be correct with respect

to the underlying linear temporal logic specification, we can move on to learn an optimal strategy

with respect to an a priori unknown instantaneous reward functionR. The reinforcement learning

algorithm aim to maximize J̄G
′

R for the game G′.

The choice of reinforcement learning algorithms depends on the choice of the reward function J̄GR in

Problem 2, regardless of how the permissive strategy µp is generated. Here we focus on discounted

93

reward functions, but the pseudo-algorithm in Section 5.4.3 also works with other forms of J̄G
′

R

so long as there exists an optimal deterministic winning strategy µ′ which can be solved by the

corresponding reinforcement learning method.

The discounted reward function for evaluating the rewards obtained by a run is shown in (5.1). We

particularly focus on the minimal (worst-case) possible reward for each system strategy, as shown

in (5.2). This definition concerns about the tight lower bound of the reward obtained by executing

strategy µ′ whatever strategy the uncontrolled environment implements. In other words, we assume

that the environment acts adversarially and the game is equivalently a zero-sum game. It has been

shown that in this case both the environment and the system have deterministic memoryless optimal

strategies in G′ [157]. As a result we can neglect all randomized strategies without loss of optimality.

With proper assumptions on the game structure, such an optimal strategy can be computed by the

maximin-Q algorithm, which is a simple variation of the minimax-Q learning algorithm [110], or by

the generalized Q-learning algorithm for alternating Markov games [112]. Both methods guarantee

that the learned greedy strategy, which always chooses an action with the best learned Q value,

converges to an optimal strategy for a system interacting with an adversary under some common

convergence conditions.

5.4.3. Connecting the Dots: Correct-By-Synthesis Learning

Having discussed permissive strategies and reinforcement learning, we are now ready to connect the

pieces and discuss a solution to Problem 2, which is outlined in Algorithm 3. Maximally permissive

strategies play a special role as they include all winning strategies for the system, and their existence

naturally divide the solution into two cases.

For games whose maximally permissive strategies can be computed

If maximally permissive strategies can be computed for a game G, µp in Algorithm 3 includes all

winning strategies and is a winning strategy itself. Applying it to G not only guarantees winning for

the system but also preserves all winning strategies for the system in all subsequent steps, which

decouples the correctness requirements from optimality concerns. As the output of the reinforcement

94

Algorithm 3 Pseudo-algorithm for solving Problem 2

Require: A game G = (S, Se, Ss, I, Ac, Auc, T,W) with W = (L,ϕ) in which ϕ is a realizable

formula for G, a reward function JGR and J̄GR (e.g. as in (5.1), (5.2)) with respect to an unknown

instantaneous reward functionR.

Ensure: A winning strategy µ for the system that maximizes J̄GR(µ, s) for all s ∈ I .

1: Compute a (maximally) permissive strategy µp.

2: Apply µp to G and modify G into a new game Ĝ = (Ŝ, Ŝs, Ŝe, Î, Ac, Auc, T̂ , Ŵ), where Ŵ =

(L, True).

3: Compute µ̂∗ that maximizes Ĵ ĜR(µ,s) for all s ∈ I with some reinforcement learning algorithm

(e.g. the maximin-Q algorithm).

4: Map µ̂∗ in Ĝ back to µ∗ in G.

5: return µ∗.

learning algorithm used in Step 3 is guaranteed to converge to an optimal deterministic winning

strategy, the output of Algorithm 3 is guaranteed to be a solution of Problem 2. Theorem 5 summarizes

this result in a special case.

Theorem 5. If the conditions in Proposition 2 hold, the output of Algorithm 3 is a solution to

Problem 2.

For games whose maximally permissive strategies cannot be computed

If maximally permissive strategies for a game G are not solvable, the best we can expect is to extract

a permissive strategy which includes a proper subset of winning strategies for the system. There

can be many permissive strategies for the same game with different “permissiveness”, i.e., including

different subsets of winning strategies. For two different permissive strategies µ1 and µ2 for the

system, if µ2 includes µ1, intuitively µ2 would be more “permissive” and have higher worst-case

reward, although it is also expected to consume more computation resources. Thus there is a natural

trade-off between “permissiveness” and optimality for the solution of this case, which is illustrated

in Section 5.5.

95

5.5. Experimental Results

We demonstrate the use of Algorithm 3 on robot motion planning examples in grid worlds with

different sizes and winning specifications. The game in the first example has a maximally permissive

strategy for the system as its specification is a safety formula, while for the second example we can at

most compute a permissive strategy. The last example shows the trade-off between the performance

of the learned system strategy of Algorithm 3 and the computation cost.

Example 1. Two robots, namely a system robot and an environment robot, move in an N -by-N

square grid world strictly in turns. It is known that the two robots are in different cells initially and at

each move, the environment robot must go to an adjacent cell, while the system robot can either go

to an adjacent cell or stay in its current cell. The system robot should always avoid collision with the

environment robot. Assume that the positions of both robots are always observable for the system.

This problem can be formulated as a game G = {S, Ss, Se, I, Ac, Auc, T,W} with W = (L,ϕ0).

Let Pos = {0, . . . , N2 − 1} be the set of cells in the map. Then

S =Pos× Pos× {0, 1},

Ss =Pos× Pos× {1},

Se =Pos× Pos× {0},

I ={(x, y, 1) | x, y ∈ Pos, x 6= y},

Ac ={ups, downs, lefts, rights, stays},

Auc ={upe, downe, lefte, righte}.

The transition function T guarantees that Ac and Auc only change the first and second component of

a state respectively. The set of atomic propositions is

AP =
(N2−1⋃

i=0

xi
)
∪
(N2−1⋃
j=0

yj
)
∪ {t0, t1}.

The labeling function is L(s) = {xi, yj , tk} if s = (i, j, k) ∈ S. The requirements on the system

96

Table 5: Results for example 1.

N te [s] tl [s] Iterations |Ŝ| |Ŝs|
3 0.10 4.28 9× 104 120 72
4 0.21 16.35 3.2× 105 432 240
5 2.20 43.12 8.5× 105 1120 600
6 19.40 88.69 1.81× 106 2400 1260
8 30.29 305.77 6.05× 106 7840 4032

10 300.00 771.73 1.562× 107 19440 9900

robot can be expressed as

ϕ0 =
∧N2−1

i=0
(¬xi ∨ ¬yi) ∧�

∧N2−1

i=0
(xi → ¬yi).

Proposition 2 asserts that we can compute a maximally permissive strategy and construct Ĝ. By

Theorem 5, Algorithm 3 is expected to output an optimal strategy for the system.

The reward functions JGR and J̄GR are given as (5.1) and (5.2), with the discounting factor γ set to

be 0.9. However, the instantaneous reward functionR is a priori unknown to the system robot. In

practical scenariosR is often given by some independent human operator or trainer of the system

robot for unpredictable purposes with arbitrarily complicated structure and thus can neither be

acquired nor be guessed ahead of time. For this numerical example,R is set to encourage the system

robot to reach positions diagonal to the environment robot’s position as often as possible. From a

state s ∈ Ss,R(s, a) = 1 if the two robots are diagonal to each other at T (s, a);R(s, a) = 0 for all

other (s, a). But this information is not available to the system robot in advance and is only revealed

through the learning process. The system robot can only get an instantaneous reward each time when

it takes a corresponding transition.

The results for the cases when N = 3, 4, 5, 6, 8, 10 are shown in Table 5, where te is the time [s]

spent extracting a maximally permissive strategy µmaxp with slugs, and tl is the time [s] used to

learn an optimal strategy µ̂∗. The number of states and state-action tuples are for the game Ĝ in

Algorithm 3. All examples run on a laptop with a 2.4GHz CPU and 8GB memory.

97

0 100 200 300
7

7.29

8.1

9

10

si ∈ Ŝs

0 10 20 30 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iteration (× 10
4
)

Figure 13: Results for Example 1 for N = 4: (Left) J̄ ĜR(µ̂, ŝ) for all ŝ ∈ Ŝs and the learned greedy
strategy µ̂; (right) the logarithm of the maximal change in V in every 104 iterations.

Now we illustrate the optimality of the learned greedy policy with the simulation result when N = 4,

whose result is shown in Figure 13. Let µ̂ be the greedy strategy of the system learned by the

maximin-Q learning algorithm against an adversarial environment. If from a state ŝ ∈ Ŝs the system

robot can only reach a diagonal position with respect to the position of the environment in at least

k ∈ N steps, J̄ ĜR(µ̂′, ŝ) is upper bounded by
∑∞

l=k γ
l · 1 = 1

1−γγ
k for any system strategy µ̂′. By

definition, if µ̂∗ is an optimal strategy for the system against an adversarial environment, we have

J̄ ĜR(µ̂′, ŝ) ≤ J̄ ĜR(µ̂∗, ŝ) ≤ 1

1− γ
γk.

In this 4-by-4 case, the system can always reach a diagonal position in 3 steps. Figure 13 shows that

V converges to the values 10, 9, 8.1 and 7.29, which coincide with 1
1−γγ

k when k = 0, 1, 2, 3 and

γ = 0.9. Thus by the inequality above, J̄ ĜR(µ̂, ŝ) also coincides with J̄ ĜR(µ̂∗, ŝ), indicating that µ̂

itself is an optimal strategy of the system, as predicted by Algorithm 3.

Example 2. Now we construct a new game G1 with a new winning condition W1 = (L,ϕ1) from

G by adding liveness assumptions to the environment robot and liveness requirements to the system

robot. To be more specific, we require the system robot to visit the upper left corner (cell N2 −N)

and the lower right corner (cell N − 1) infinitely often, provided that the environment robot visits the

lower left corner (cell 0) and the upper right corner (cell N2 − 1) infinitely often. G1 is the same as

98

0 50 100 150 200 250 300 350 400 450
1.5

2

2.5

3

3.5

4

4.5

5

5.5

si ∈ Ŝs

Figure 14: Result for Example 2 when N = 4: J̄ Ĝ1
R (µ̂, ŝ) for all ŝ ∈ Ŝs and a learned greedy strategy

µ̂.

G except that

ϕ1 = ϕ0 ∧
(
(�♦x0 ∧�♦xN2−1)→ (�♦yN−1 ∧�♦yN2−N)

)
.

The definition of the instantaneous functionR remains the same as in Example 1, and the learning

result of J̄ Ĝ1
R (µ̂, ŝ) when N = 4 is given as Figure 14. With this specification the system has no

maximally permissive strategies, and it is expected that the true value of J̄ Ĝ1
R (µ̂, ŝ) should be almost

the same as J̄ ĜR(µ̂∗, ŝ), as the system robot is allowed to follow µ̂∗ for as many finite moves as desired.

However, Figure 14 shows that J̄ Ĝ1
R (µ̂, ŝ) is smaller than J̄ ĜR(µ̂∗, ŝ), indicating a sub-optimality due

to the loss of some winning strategies by the permissive strategy.

Example 3. We now illustrate the trade-off between the performance of the learned strategy and

the computation cost in Algorithm 3. Consider a new game G2 with winning condition W2 = (L,ϕ2)

which is slightly different from the game G of Example 1 as it also requires the system robot to visit

one of two given cells (say cell N2 −N and cell N − 1) infinitely often. In other words,

ϕ2 = ϕ0 ∧�♦(yN2−N ∨ yN−1),

which is in the form of GR(1). We compute a memoryless permissive strategy µ2 for G2.

Now we design a sequence of games G1
2 to G6

2 from G in the following way. For each game we

99

add a counter as a new controlled state variable which counts the number of the system’s moves

since its last visit to cell N2 −N or cell N − 1, and the maximum allowed counter value increases

monotonically from G1
2 to G6

2 . The value of each counter should always be less than its corresponding

maximum value. All these 6 games satisfy the condition in Proposition 2 and we can extract a

maximally permissive strategy for each of them. With the counters, the system robot is forced to visit

cell N2 −N or cell N − 1 infinitely often and as a result, any permissive strategies of any game

in this sequence is also a permissive strategy for G2. Let µi2 be the extracted maximally permissive

strategy of the game Gi2 for i = 1, · · · , 6. By definition of maximally permissive strategies, µi2

includes µj2 if i > j, i, j ∈ {1, · · · , 6}. In this way we extracted a sequence of permissive strategies

with increasing permissiveness for the game G2.

We proceed the same learning procedure as the previous two examples on G2 and the game sequence

from G1
2 to G6

2 . For the 3-by-3 case, the maximum allowed counter values and the maximum values

of the learned discounted reward are shown in Table 6. It is shown that the maximum discounted

reward, which can be seen as the performance of the learned system strategy, increases monotonically

with the maximum counter value, i.e., the permissiveness of the permissive strategy. In the meantime,

the number of learning iterations and computation time grows. This illustrates the trade-off between

the performance of the learned strategy and the computation cost.

Table 6: Results for example 3 (for the 3-by-3 case).

Strategy
Max counter

value
Max discounted

reward
Learning
time [s]

Learning iterations
[×104]

µ2 N/A 5.7368 9.87 20
µ1

2 4 8.0922 9.70 19
µ2

2 6 8.8658 16.00 33
µ3

2 8 9.2442 27.34 55
µ4

2 10 9.4647 41.54 83
µ5

2 14 9.7034 83.88 172
µ6

2 20 9.8616 275.88 534

100

Chapter 6: Probably Approximately Correct Learning in Stochastic

Games with Temporal Logic Specifications

6.1. Introduction

Reinforcement learning (RL) is a class of methods that allows agents to learn how to implement tasks

through interaction with their environments. In general, tasks are specified using reward functions.

The goal of RL is to maximize some reward-based objective function, for which some commonly

used examples are the expected discounted reward and the expected average reward.

In this paper, we focus ourselves to the expected discounted-sum objective. The underlying dynamical

system is modeled as a two-player zero-sum turn-based stochastic game, where the environment

to be interacted with is considered as an uncontrolled adversarial player. It is well known that for

both (single-player) Markov decision processes (MDPs) and (multi-player) stochastic games with

discounted-sum objectives, deterministic memoryless strategies suffice for optimality [54]. Such a

property plays several roles in the interpretation of the discounted-sum objective as a task description:

On the one hand, it significantly simplifies the learning problem; on the other hand, it implies that

discounted-sum objectives cannot be used to encode tasks that require memory. As memoryless

strategies are sufficient to achieve optimality, agents lack the incentive to learn the more complicated

finite-memory strategies.

Besides the memoryless property, the discounted-sum objective also suffers from some general limi-

tations when using reward functions to specify tasks. For example, it cannot restrict the exploration

behavior during the learning process. With rewards, the agent can only figure out the preferable

actions after it tries all transitions, even the fatal ones such as crashing into some obstacle, which

is obviously unacceptable. Also, there is usually a lack of theoretical guarantee that any strategy

solved with the given reward function is desirable, except in some simple scenarios. For example,

multi-dimensional reward functions are generally necessary to represent the conjunction of several

requirements, in which case a strategy usually cannot be simultaneously optimized with every single

101

reward. It is hard to know intuitively from the reward function how different the learned strategy is

from a desired one.

In order to compensate for these problems, we propose to use linear temporal logic (LTL) specifica-

tions to complement the task description. Practically, it is relatively straightforward to extract LTL

specifications from high-level task requirements in robot planning and control [66, 93, 165, 191].

Algorithmically, all LTL formulas can be transformed to deterministic Rabin or parity automata (DRA

or DPA), which can be further used to construct product stochastic Rabin or parity games. Strategies

synthesized for such product Rabin or parity games are guaranteed to satisfy the corresponding LTL

specifications with probability one (also called almost surely), treating LTL specifications as ‘game

rules’ that should never be violated. Both the construction of DRA or DPA from LTL formulas

and the synthesis can be performed using off-the-shelf tools [22, 57, 61, 89, 175]. Although it has

been shown that deterministic memoryless strategies suffice for almost-sure winning in the product

stochastic Rabin or parity games [34, 35], these strategies use memory in the original stochastic

games. In this way, LTL specifications offer a systematic way of designing the memory for the

desired strategies. We will show later that with the pre-computation of almost-sure winning regions

in the product games, we can keep the agent safe even during the learning procedure.

In this paper we use both discounted-sum objectives and LTL specifications to encode task require-

ments. In particular, if an LTL specification is realizable (that is, there exists an almost-sure winning

strategy for the agent) and can be transformed into a deterministic Büchi automaton (DBA), we prove

the existence of a memoryless strategy which is both almost-sure winning with respect to the Büchi

objective and ε-optimal with respect to the discounted-sum objective. We also propose a probably

approximately correct (PAC) algorithm to learn such a strategy online when the reward function and

the transition distributions are both unknown a priori [59, 167]. To the best of our knowledge, this is

the first PAC learning algorithm for stochastic games with independent quantitative and qualitative

objectives.

102

6.2. Related Work

The problem of strategy synthesis for two-player games with both qualitative and quantitative

objectives has been extensively studied in the last decade. In many cases, the qualitative objective is

to satisfy an ω-regular property, such as a parity condition or an LTL specification. The quantitative

objective is to optimize some reward-based objective function, such as the expected discounted

reward or the expected average reward. Examples include mean-payoff parity games [36], energy

parity games [31], their extensions to multi-dimensional objectives [37] and stochastic games [32, 38].

There are also results on strategy synthesis in stochastic games with total reward constraints and LTL

specifications [40].

Strategy synthesis methods generally require accurate knowledge of input games, such as transition

distributions and reward functions. If such information is unavailable, exploration and learning

techniques are necessary to ensure the high quality of output strategies. The problem of learning

strategies with both qualitative and quantitative objectives is still relatively new. With qualitative

objectives modeled as ω-regular properties, most existing work only works with MDPs instead of

stochastic games, such as to maximize the probability to reach a given target set [29] or to satisfy a

given temporal logic specification [59, 70] in a partially unknown MDP. Note that there are even no

quantitative objectives in these works. For a special case where the qualitative objective is modeled as

a safety property, Junges et al. [81] propose to restrict the exploration behavior with a pre-computed

permissive strategy for MDPs with unknown rewards and known transitions. Alshiekh et al. [7]

address a similar problem with unknown rewards by synthesizing a reactive system called a shield,

which monitors the actions that the agent plans to take and makes corrections if a planned action

leads to violations of the given specification. Recently, Kretı́nskỳ et al. [95] proposed an algorithm

to maximize the mean-payoff value while satisfying a parity objective with probability 1 in MDPs

with unknown probabilistic transition function and unknown reward function, which is similar to the

topic of this paper but is for MDPs.

Only limited work has been done for two-player games. Our previous work [185] shows how to

learn optimal strategies for deterministic games with unknown rewards and GR(1) specifications.

103

However, optimality can only be guaranteed if the specification encodes a safety property. In this

paper, we consider a more general problem of learning near-optimal strategies for stochastic games

with a deterministic Büchi objective, unknown rewards and unknown transition distributions. We

extend a previous version of this paper [182] to better explain the high-level intuition behind our

algorithms and show full proofs to our theoretical results.

6.3. Preliminaries

For any countable set M , let |M | be its cardinality, Mω be the set of infinite sequences composed of

elements in M , and D(M) be the set of all probability distributions over M .

Turn-Based Labeled Stochastic Game. We first formulate the interaction between the agent and

its environment as a turn-based labeled stochastic game. A turn-based labeled stochastic game

between the controlled agent (the ‘system’) and the uncontrolled agent (the ‘environment’) is defined

as a tuple G = 〈SG , Ss,G , Se,G , IG , AG , TG ,RG , AP, LG〉, where SG is a finite state space; Ss,G ⊆ SG

is the set of states at which the system chooses actions; Se,G = SG\Ss,G is the set of states at which

the environment chooses actions; IG ⊆ SG is a set of initial states; AG is a finite action space;

TG : SG × AG → D(SG) is a transition function; RG : SG × AG × SG → R≥0 is a non-negative

reward function; AP is a finite set of atomic propositions (Boolean variables); LG : SG → 2AP is a

labeling function. For any s, s′ ∈ SG and a ∈ AG , we use TG(s′ | s, a) to represent the probability

of transiting to s′ by taking action a at state s. We assume that the game is zero-sum and the reward

functionRG is for the system. The reward function for the environment is exactly −RG .

Deterministic Büchi Automata from LTL Specifications. LTL specifications put restrictions

on the label sequences corresponding to the infinite state sequences of G. Interested readers may

refer to [13] for the detailed syntax and semantics of LTL. Instead of treating LTL specifications

directly as formulas, we translate them into ω-regular automata, or deterministic Büchi automata,

to be precise. Only a subclass of LTL formulas can be transformed into equivalent DBAs, but this

subclass of specifications covers a wide range of task requirements. For example, �safe region

(always stay in states labeled as ‘safe region’), ♦goal (eventually reach a state labeled as ‘goal’),

104

q0start q1

¬safe region

safe region True

(a) �safe region.

q0start q1

goal

¬goal True

(b) ♦goal.

q0start q1

req

¬req ¬resp

resp

(c) �(req → ♦resp).

q0start q1

(b low ∧ c) ∨ (¬char)

char ∧ ¬b low

True

(d) �((¬char) U b low).

Figure 15: DBA constructed for some example specifications. Accepting states for each DFA are
marked with double circles.

�(request→ ♦response) (if a ‘request’ state is visited, a ‘response’ state should be visited later),

�((¬charge) U battery low) (never charge yourself before the battery gets low), just to name a

few.

A deterministic Büchi automaton (DBA) is a tuple A = 〈QA,ΣA, δA, Q0,A, FA〉 where QA is a

finite set of states; ΣA is a finite input alphabet; δA : QA × ΣA → QA is a deterministic transition

function; Q0,A ⊆ QA is a set of initial states; FA ⊆ QA is a set of accepting states. A run of A

over an input sequence (pt)t∈N ∈ Σω
A is an infinite sequence (qt)t∈N ∈ QωA, where q0 ∈ Q0,A and

qt+1 = δA(qt, pt) for all t ∈ N. A run (qt)t∈N is accepted by A if |{t ∈ N : qt ∈ FA}| =∞. Some

example DBAs corresponding to the example specifications in the last paragraph are illustrated in

Figure 15.

Turn-Based Stochastic Büchi Game. If ΣA = 2AP , we can construct a turn-based stochastic

Büchi game G = 〈S, Ss, Se, I, A, T,R, F 〉 from G and A with the standard product automata

construction:

• S = SG ×QA is a finite state space;

• Ss = Ss,G ×QA is the set of system states;

105

• Se = S\Ss is the set of environment states;

• I = IG ×Q0,A is a set of initial states;

• A = AG is a finite action space;

• T : S ×A→ D(S) is the transition function such that for any (s, q) ∈ S, s′ ∈ SG and a ∈ A,

T
(
(s′, q′) | (s, q), a

)
=

TG(s′ | s, a), if q′ = δA

(
q, LG(s)

)
,

0, otherwise.

• R : S × A × S → R≥0 is a non-negative reward function such that R
(
(s, q), a, (s′, q′)

)
=

RG(s, a, s′) for any (s, q), (s′, q′) ∈ S and a ∈ A;

• F = SG × FA is a set of accepting states.

The product game G inherits the reward from G and the winning condition from A. On the reward

side, the system is to maximize its future discounted reward, while the environment is to minimize it.

On the winning condition side, the system is to win with probability one, regardless of the behavior

of the environment. We define the system strategies and then formulate the almost-sure winning

objective as well as the discounted-sum objective.

A (randomized) system strategy is defined as a tuple σs = 〈σms , ρms ,Ms,m
0
s〉, whereMs is a (possibly

countably infinite) set of memory states; m0
s ∈ Ms is the initial memory state; σms : Ss ×Ms →

D(A), and ρms : S × Ms → Ms is the memory update function. If Ms is a singleton, σs is a

memoryless strategy; if Ms is a finite set, σs is a finite-memory strategy. With a slight abuse of

notation, we use σs(s, a) to represent σms (a | s,m0
s) for s ∈ Ss, a ∈ A when σs is memoryless. If

|{s′ ∈ S : σs(s
′ | s,m) > 0}| = 1 for all s ∈ Ss and m ∈ Ms, σs is a deterministic strategy. An

environment strategy σe = 〈σme , ρme ,Me,m
0
e〉 can be defined analogously.

The Almost-Sure Winning Objective. The winning condition for G is defined on its runs. Let

AG : S → 2A\∅ be a mapping from each state to its available actions in G. For each s ∈ S,

106

a ∈ AG(s), let EG(s, a) ⊆ S be the set of possible successors by taking a at s in G. A run π =

(st−1
π , atπ)t∈N+ of G is an infinite sequence of state-action pairs such that for all t ∈ N+, st−1

π ∈ S,

atπ ∈ AG(stπ), and stπ ∈ EG(st−1
π , atπ). π is winning for the system with respect to the Büchi

condition if and only if F is visited for infinitely many times in π, that is, |{t ∈ N : stπ ∈ F}| =∞.

A system strategy σs is almost-sure winning at s ∈ S if a run π with s0
π = s is winning for the

system with probability one when the system takes σs, regardless of the environment strategy. The

almost-sure winning region for the system, denoted by Was (or WG
as to explicitly indicate G), is

the set of states at which the system has almost-sure winning strategies. By definition, there are no

outgoing transitions from Se
⋂
Was that leaves Was.

The almost-sure winning objective for the system is to always take an almost-sure winning strategy.

As a result, the system should always stay within its almost-sure winning region and try to figure out

an almost-sure winning strategy through the learning process. It has been shown that deterministic

memoryless strategies suffice for the almost-sure winning objective for the system in two-player

zero-sum turn-based stochastic Büchi games [35]. In other words, if there exists an almost-sure

winning strategy for the system, there exists a deterministic memoryless one.

The Discounted-Sum Objective. We assume that G is a zero-sum game with an infinite-horizon

discounted-sum objective. For the system, the goal is to find a strategy σs to maximize the worst-case

107

expected discounted reward over all possible environment strategies.

max
σs

min
σe

Eσs,σe

[∞∑
t=0

γtR
(
(st, qt), at, (st+1, qt+1)

)]

s.t. mt+1
s = ρms

(
(st+1, qt+1),mt

s

)
, ∀t ∈ N+

mt+1
e = ρme

(
(st+1, qt+1),mt

e

)
, ∀t ∈ N+

at ∼ σms
(
· | (st, qt),mt

s

)
, if (st, qt) ∈ Ss

at ∼ σme
(
· | (st, qt),mt

e

)
, if (st, qt) ∈ Se

(st+1, qt+1) ∼ T (· | (st, qt), at), ∀t ∈ N+

m0
s,m

0
e given by σs, σe, (s0, q0) ∈ I.

As common in the RL literature, we use state value functions and action value functions to evaluate

system strategies. The state value function Vσs : S → R≥0 specifies the worst-case expected

discounted reward from each state when the system takes the strategy σs. The action value function

Qσs : S ×A→ R≥0 shows the worst-case expected discounted reward if the system takes a given

action at the current step and follows the strategy σs thereafter. A system strategy σs is optimal if

it maximizes the state value functions over all system strategies. When σs is an optimal strategy,

its state value function and action value function are called the optimal state value function and the

optimal action value function, denoted by V ∗ and Q∗ respectively. V ∗ and Q∗ satisfy the following

optimality conditions [111]:

V ∗(s) =

maxa∈AG(s)Q

∗(s, a), if s ∈ Ss

mina∈AG(s)Q
∗(s, a), if s ∈ Se

Q∗(s, a) =
∑

s′∈EG(s,a)

T (s′ | s, a)
(
R(s, a, s′) + γV ∗(s′)

)
,

108

where γ ∈ (0, 1) is a discount factor. For any ε > 0, a system strategy σs is ε-optimal at s ∈ S

if Vσs(s) ≥ V ∗(s) − ε. Given Σs as a set of system strategies, a system strategy σs ∈ Σs is

optimal over Σs at s ∈ S if Vσs(s) ≥ maxσ′s∈Σs Vσ′s(s), or ε-optimal over Σs at s if Vσs(s) ≥

maxσ′s∈Σs Vσ′s(s)− ε.

Given ε > 0, the discounted-sum objective for the system is to be ε-optimal over all almost-sure

winning system strategies at all states that are visited infinitely often. In other words, eventually the

worst-case expected reward at any state that will be visited in future is ε-optimal.

6.4. Problem Formulation

We make the following assumptions in our formulation. The first two assumptions are on the

observability of the game and the a-priori known knowledge of the game graph. The third assumption

is on the unknown reward.

Assumption 3. The game is fully observable for both the environment and the system. Both agents

can observe the joint state, actions taken by either agent and the reward each time a transition is

taken.

Assumption 4. The system knows the correct list of all possible successors for all state-action pairs,

but does not know the exact transition distributions a priori. In other words, the system knows

EG(s, a) for all s ∈ S, a ∈ A, but does not know T (· | s, a).

Assumption 5. The reward function is unknown a priori, but is upper bounded by the specified

positive numberRmax. The upper boundRmax is not required to be tight.

Since no system strategy can help guarantee almost-sure winning from outside W in
as , we introduce

the following assumption on Iin.

Assumption 6. Iin ⊆W in
as .

With the above assumptions, we formulate our learning problem as follows.

Problem 3. Given a turn-based stochastic Büchi gameGin = 〈Sin, Sins , Sine , Iin, Ain, T in,Rin, F in〉

satisfying Assumptions 3 - 6, a discount factor γ ∈ (0, 1) and suboptimality bound ε > 0, learn a

memoryless system strategy σs,ε in Gin that satisfies both the almost-sure winning objective and the

109

discounted-sum objective.

The knowledge of all existing transitions in Assumption 4 is critical in order to achieve the almost-

sure winning objective. Without Assumption 4, it is possible that an almost-sure winning strategy

can never be learned from any finite observations. For example, even if s′ ∈ S is never witnessed

as a successor of a state-action pair (s, a), we cannot confirm that T (s′ | s, a) = 0 with probability

1. With only inaccurate knowledge of the topology of the game graph, the system may leave its

almost-sure winning region during the exploration period and thus violate almost-sure winning

objective.

6.5. Main Approach

We now propose an algorithm to solve Problem 3. We first solve Problem 3 when the reward functions

and transition distributions are known, then discuss how to estimate the game model and learn an

ε-optimal almost-sure winning in an online manner.

6.5.1. Restricting Gin into the Almost-Sure Winning Region

The first step is to compute the almost-sure winning region W in
as for the system. By definition of

almost-sure winning regions, the system can only win almost-surely if it always stays within W in
as .

The definition guarantees that for any s ∈ Sins
⋂
W in
as , there exists an action a ∈ AGin(s) such that

EG
in

(s, a) ⊆ W in
as ; for any s ∈ Sine

⋂
W in
as , EG

in
(s, a) ⊆ W in

as for all a ∈ AGin(s). By limiting

the set of available actions at each state and the set of initial states, we can construct a new game

G from Gin to guarantee staying in W in
as , regardless of the strategies taken by the system and the

environment. Intuitively, G = Gin � W in
as = 〈S, Ss, Se, I, A, T,R, F 〉 is a projection of Gin to

110

W in
as ⊆ Sin such that

S =W in
as , Ss = Sins

⋂
W in
as , Se = Sine

⋂
W in
as ,

I =Iin
⋂
W in
as , F = F in

⋂
W in
as ,

AG(s) =

{a ∈ AGin(s) : EG

in
(s, a) ⊆W in

as} if s ∈ Ss

AG
in

(s) if s ∈ Se.

T (s′ | s, a) =TG
in

(s′ | s, a), ∀s, s′ ∈ S, a ∈ AG(s),

R(s, a, s′) =Rin(s, a, s′), ∀s, s′ ∈ S, a ∈ AG(s).

Lemma 5 guarantees that we actually lose nothing by considering G instead of Gin as we are looking

for almost-sure winning strategies.

Lemma 5. Let σs be a system strategy in Gin. With Assumption 6, σs is almost-sure winning in Gin

if and only if it is a almost-sure winning strategy in G.

Proof. By definition, σs is almost-sure winning in Gin if and only if F in is visited infinitely often

with probability 1 by taking σs from any initial state in Iin. If σs is almost-sure winning in Gin, all

reachable states from Iin when the system takes σs should be in W in
as and thus in S. Accordingly,

any state to be visited infinitely often by taking σs belongs to F in
⋂
W in
as = F .

As the set of allowed actions at each system state s ∈ Ss inG is exactly the set of actions guaranteeing

the stay within W in
as with probability 1, σs is also a system strategy in G. As σs guarantees infinite

visits to F with probability 1, it is an almost-sure winning system strategy in G.

If σs is an almost-sure winning strategy in G, then it is a system strategy in Gin and has been shown

to be almost-sure winning in Gin.

The set of almost-sure winning system strategies in G is a subset of all system strategies in G.

111

Therefore if an almost-sure winning system strategy σs is ε-optimal in G, it is also ε-optimal over

all almost-sure winning system strategies in G and thus ε-optimal over all almost-sure winning

strategies in Gin. So we can solve Problem 3 by learning a memoryless almost-sure winning system

strategy that is ε-optimal in G.

6.5.2. Analysis with Known RewardR and Transition T

Without the Büchi objective, the discounted-sum objective degenerates to learning a system strategy

that is ε-optimal at the infinitely-often-visited states, which can be solved with some slight modifica-

tion of the R-max algorithm [28]. However, RL algorithms such as R-max are not directly usable to

learn ε-optimal almost-sure winning strategies, as the Büchi condition is given independently from

the reward function. Moreover, there is no standard parameterization of the space of all almost-sure

winning strategies.

In the meantime, the structure of optimal strategies is well-understood for discounted reward. First,

deterministic memoryless strategies suffice for optimality with respect to discounted reward. Second,

a memoryless system strategy σs is optimal if and only if Qσs(s, a) = V ∗(s) holds for all s ∈ Ss

and a ∈ {a′ ∈ AG(s) : σs(s, a
′) > 0} [54]. In other words, σs is optimal when it only takes the

optimal actions.

Suppose that a game G′ is constructed from G such that the two games are identical, except that all

actions available to the system states inG′ are optimal actions inG. Thus any system strategy inG′ is

optimal over all system strategies in G. Since AG
′
(s) ⊆ AG(s) for all s ∈ Ss and AG

′
(s) = AG(s)

for all s ∈ Se, the almost-sure winning region for the system in G′ will be a subset of that in G. That

is, WG′
as ⊆WG

as. There can be two cases:

1. If WG′
as = WG

as, there exists a memoryless almost-sure winning strategy σs in G′. As there are

no restrictions to the environment in G′, σs is also almost-sure winning in G. As σs is also

optimal in G, it is a solution to Problem 3.

2. If WG′
as ⊂WG

as, there does not exist an optimal system strategy that is almost-sure winning in

112

G. It is necessary for the system to take some suboptimal actions in G in order to preserve the

almost-sure winning region WG
as.

We only need to deal with the second case. Lemma 6 shows one way to construct a set of almost-sure

winning strategies in Gin. It is guaranteed that all system strategies that assign positive probability to

all available actions in G are almost-sure winning in Gin.

Lemma 6. Given a turn-based stochastic Büchi gameGin = 〈Sin, Sins , Sine , Iin, Ain, T in,Rin, F in〉

and its almost-sure winning region W in
as , define G = Gin �W in

as = 〈S, Ss, Se, I, A, T,R, F 〉 as in

Section 6.5.1. Then any memoryless system strategy σs in Gin such that {a ∈ AGin(s) | σs(s, a) >

0} = AG(s) holds for all s ∈ Ss is almost-sure winning at any state s ∈W in
as .

Proof. The proof is done by contradiction. Let the system agent take the strategy σs such that

{a ∈ AG
in

(s) | σs(s, a) > 0} = AG(s) holds for all s ∈ Ss. By definition of G and σs, the

environment cannot force the system to leave W in
as while the system takes σs. The only possible

scenario that σs is not almost-sure winning at some sσs ∈W in
as is that there exists an environment

strategy σe such that starting from sσs , the probability to prevent the system from visiting F infinitely

often is positive. As |W in
as | < ∞, it implies the existence of a state s′σs ∈ W

in
as from which it is

impossible to visit F when the system takes σs and the environment takes σe.

However, the aforementioned scenario is impossible. By definition of the almost-sure winning region

W in
as , there exists a deterministic memoryless system strategy σ′s that is almost-sure winning at all

s ∈W in
as regardless of the environment’s strategy [33]. Therefore, there exists some finite positive

integer N(s′σs) such that starting from s′σs , the probability to reach F within N(s′σs) steps is positive

when the system takes σ′s, regardless of the environment’s strategy. By definition of σs, there is some

positive probability that the system takes the same actions as σ′s for N(s′σs) steps while taking the

strategy σs. Therefore, there will be some positive probability to reach F from s′σs regardless of

the environment strategy, which contradicts our assumption that it is impossible to visit F from s′σs

when the system takes σs and the environment takes σe. As a result, σs is almost-sure winning at all

states in W in
as .

113

We now show that an ε-optimal strategy can be constructed by bounding the probability of taking

arbitrary suboptimal actions. Given ε > 0, we first define the set of ε-optimal actions, and then build

a connection between the suboptimality of a given system strategy σs and its probability to take

ε-optimal actions in Lemma 7.

Definition 5. (ε-optimal actions) Let G = 〈S, Ss, Se, I, A, T,R, F 〉 be a turn-based stochastic

Büchi game and ε > 0 be a constant. Define the set of ε-optimal actions at each system state s ∈ Ss

as

A∗ε(s) = {a ∈ AG(s) | Q∗(s, a) ≥ max
a′∈AG(s)

Q∗(s, a′)− ε},

where Q∗ is the optimal action value function of G.

Lemma 7. Let G = 〈S, Ss, Se, I, A, T,R, F 〉 be a turn-based stochastic Büchi game such that all

rewards are upper bounded byRmax > 0. Let V ∗ be the optimal value function of G, γ ∈ (0, 1) be

the discount factor and ε > 0, pε ∈ (0, 1) be fixed scalars. Then if a system memoryless strategy σs

satisfies
∑

a6∈A∗ε(s) σs(s, a) ≤ pε for all s ∈ Ss, then

||V ∗ − Vσs ||∞ = max
s′∈S

(
V ∗σs(s

′)− V (s′)
)
≤ pε

Rmax

(1− γ)2
+

ε

1− γ
.

Proof. If s ∈ Ss and a ∈ A∗ε(s), it holds that

Q∗(s, a) =
∑
s′∈S

T (s′ | s, a)(R(s, a) + γV ∗(s′)) ≥ V ∗(s)− ε.

114

We compare the optimal value function and the value function corresponding to σs at s ∈ Ss,

V ∗(s)− Vσs(s)

=
∑

a6∈A∗ε(s)

σs(s, a)V ∗(s) +
∑

a∈A∗ε(s)

σs(s, a)V ∗(s)−

(∑
a6∈A∗ε(s)

σs(s, a)Qσs(s, a) +
∑

a∈A∗ε(s)

σs(s, a)Qσs(s, a)
)

=
∑

a6∈A∗ε(s)

σs(s, a)
(
V ∗(s)−Qσs(s, a)

)
+

∑
a∈A∗ε(s)

σs(s, a)
(
Q∗(s, a∗(s))−Qσs(s, a)

)
(
where a∗(s) ∈ arg max

a′∈A(s)
Q∗(s, a′)

)
(∗)
≤

∑
a6∈A∗ε(s)

σs(s, a)V ∗(s) +
∑

a∈A∗ε(s)

σs(s, a) ·
(
Q∗
(
s, a∗(s)

)
−Q∗(s, a) +Q∗(s, a)−Qσs(s, a)

)
(∗∗)
≤

∑
a6∈A∗ε(s)

σs(s, a)V ∗(s) +
∑

a∈A∗ε(s)

σs(s, a) ·
(
ε+ γ

∑
s′∈S

T (s′ | s, a)
(
V ∗(s′)− Vσs(s′)

))
(∗∗∗)
≤ pε

Rmax

1− γ
+ ε+ γ||V ∗ − Vσs ||∞.

Inequality (*) holds as R is non-negative and Vσs(s) ≥ 0 for all s ∈ S. Inequality (**) holds by

definition of ε-optimal actions: Q∗
(
s, a∗(s)

)
− ε ≤ Q∗(s, a) for all a ∈ A∗ε(s). Inequality (***)

holds as maxs∈S V
∗(s) ≤ 1

1−γRmax and maxs∈S
∑

a∈A∗ε(s) σs(s, a) ≤ pε.

Let σe be an optimal environment strategy when the system takes σs, and σ∗e be an optimal envi-

ronment strategy when the system takes an optimal strategy σ∗s . Then V ∗ and V can be reached

respectively when the strategy pair of the system and the environment is (σ∗s , σ
∗
e) and (σs, σe), which

we denote by V ∗ = V(σ∗s ,σ
∗
e) and Vσ = V(σs,σe). As σ∗e is optimal for the environment when the

system takes σ∗s and the environment is trying to minimize the value function at each s ∈ Se, it holds

115

that ∑
a∈AG(s)

σe(s, a)
∑
s′∈S

T (s′ | s, a)
(
R(s, a, s′) + γV ∗(s′)

)

≥
∑

a∈AG(s)

σ∗e(s, a)
∑
s′∈S

T (s′ | s, a)
(
R(s, a, s′) + γV ∗(s′)

)
.

Then for any environment state s ∈ Se, we have

V ∗(s)− Vσs(s)

=
∑

a∈AG(s)

σ∗e(s, a)
∑
s′∈S

T (s′ | s, a)(R(s, a, s′) + γV ∗(s′))

−
∑

a∈AG(s)

σe(s, a)
∑
s′∈S

T (s′ | s, a)(R(s, a, s′) + γVσs(s
′))

≤
∑

a∈AG(s)

σe(s, a)
∑
s′∈S

T (s′ | s, a)(R(s, a, s′) + γV ∗(s′))

−
∑

a∈AG(s)

σe(s, a)
∑
s′∈S

T (s′ | s, a)(R(s, a, s′) + γVσs(s
′))

=
∑

a∈AG(s)

σe(s, a)
∑
s′∈S

T (s′ | s, a)γ(V ∗(s′)− Vσs(s′))

≤γ||V ∗ − Vσs ||∞.

Note that since V is the value function of the system, V ∗(s) ≥ Vσs(s) holds even if s ∈ Se.

Therefore if there exists s ∈ Se such that V ∗(s)− Vσs(s) = ||V ∗ − Vσs ||∞, then as V ∗ ≥ Vσs and

γ ∈ (0, 1), ||V ∗ − Vσs ||∞ = 0. Otherwise ||V ∗ − Vσs ||∞ can only be reached by system states and

thus

||V ∗ − Vσs ||∞ ≤ pε
Rmax

1− γ
+ ε+ γ||V ∗ − Vσs ||∞,

thus

||V ∗ − Vσs ||∞ ≤ pε
Rmax

(1− γ)2
+

ε

1− γ
.

116

Algorithm 4 HatGame and RecoverHatStrategy
1: function HATGAME(G, Q∗, ε1, pε1)

2: For i ∈ {1, 2}, Sis ← {si | s ∈ Ss}.
3: Define B : S1

s

⋃
S2
s → Ss such that for all si ∈ Sis and i ∈ {1, 2}, B(si) = s.

4: Ŝs ← Ss
⋃
S1
s

⋃
S2
s , Ŝ ← Ŝs

⋃
Se.

5: Define A∗ε1 : Ss → 2A\∅ such that for all s ∈ Ss, A∗ε1(s) = {a ∈ AG(s) |
maxa′∈AG(s)Q

∗(s, a′)−Q∗(s, a) ≤ ε1}.
6: Â← A

⋃
{â}.

7: Define the set of available actions for all s ∈ Ŝ: AĜ(s) =

AG(s) if s ∈ Se,

{â} if s ∈ Ss,

AG(B(s)) if s ∈ S1
s ,

A∗ε1(B(s)) if s ∈ S2
s .

8: Define the transition function for all s, s′ ∈ Ŝ and a ∈ AĜ(s): T̂ (s′ | s, a) =

pε1 if s ∈ Ss, s′ = s1,

1− pε1 if s ∈ Ss, s′ = s2,

T (s′ | s, a) if s ∈ Se, s′ ∈ S,

T (s′ | B(s), a) if s ∈ S1
s

⋃
S2
s , s
′ ∈ S.

9: return Ĝ = (Ŝ, Ŝs, Ŝe, I, T̂ ,R, F).

10: end function
11: function RECOVERHATSTRATEGY(Ĝ, σ̂s)

12: For all s ∈ Ss and a ∈ AG(s), σ̄s(s, a) ← T̂ (s1 | s, â)σ̂s(s
1, a) + T̂ (s2 | s, â)σ̂s(s

2, a),

where T̂ is the transition function of Ĝ.

13: return σ̄s.
14: end function

And it confirms that σs is
(
pε
Rmax

(1−γ)2 + ε
1−γ
)
-optimal.

We use Lemma 7 to construct a game Ĝ = HatGame(G,Q∗, ε, pε) as in Algorithm 4, such that

any system strategy in Ĝ corresponds to an ε-optimal system strategy in G. The idea is to select

ε′ > 0 from ε and partition the set of available actions AG(s) at each system state s ∈ Ss into two

parts: the set A∗ε′(s) of ε′-optimal actions and the other actions. For each system state s ∈ Ss, we

add two additional system states s1 and s2 in Ĝ such that â is the unique available action at s and

EĜ(s, â) = {s1, s2}. At s1 the system can take all actions in AG(s); at s2 the system can only take

the ε′-optimal actions. The transition probability from s to s1 is confined to be a small number pε′ .

117

s AG(s)

(a) Transitions from
s ∈ Ss in G.

s {â}
pε′

1− pε′
s2 A∗

ε′(s)

s1 AG(s)

(b) Transitions from s ∈ Ss in Ĝ.

Figure 16: Illustration of the construction of Ĝ = HatGame(G,Q∗, ε′, pε′). Each arrow represents
an available action from the starting state. The red arrows correspond to ε′-optimal actions in A∗ε′(s).
For each system state s ∈ Ss in G, there are three states in Ĝ: a copy of the state s with only one
available action â, and two virtual states s1 and s2 such thatAĜ(s1) = AG(s) andAĜ(s2) = A∗ε′(s).

The comparison between transitions from s ∈ Ss in G and in Ĝ is illustrated in Figure 16.

For each memoryless system strategy σ̂s in Ĝ, we can construct a memoryless system strategy

σs = RecoverHatStrategy(Ĝ, σ̂s) in G. The following lemma bounds the suboptimality of any

system strategy that is derived from Ĝ.

Lemma 8. Let G and Ĝ be two turn-based Büchi games such that Ĝ = HatGame(G,Q∗, ε1, pε1),

where Q∗ is the optimal action value function of G, and ε1 > 0, pε1 ∈ (0, 1) are constants. The

reward functionR inG is bounded by Rmax
1−γ , where γ ∈ (0, 1) is the discount factor. If σ̂s is a strategy

for the system in Ĝ, then σs = RecoverHatStrategy(Ĝ, σ̂s) is
(
pε1

Rmax
(1−γ)3 + ε1

1−γ
)
-optimal in G.

Proof. The proof can be done by checking that
∑

a∈A∗ε1 (s) σs(s, a) ≤ pε1 holds for each system

state s ∈ Ss and applying Lemma 7. Note that the reward upper bound is Rmax
1−γ .

Lemma 9 guarantees that the system strategies σ̂s in Ĝ and σs = RecoverHatStrategy(Ĝ, σ̂s) in G

can only be almost-sure winning simultaneously.

Lemma 9. Let G and Ĝ be two turn-based Büchi games such that Ĝ = HatGame(G,Q∗, ε1, pε1),

where ε1 > 0, pε1 > 0 and Q∗ is the optimal action function of G. Let σ̂s be a system strategy in

Ĝ and σs = RecoverHatStrategy(Ĝ, σ̂s) as in Lemma 8. Then σ̂s is almost-sure winning for the

system in Ĝ if and only if the constructed σs is almost-sure winning for the system in G.

118

Proof. By construction of Ĝ = 〈Ŝ, Ŝs, Ŝe, I, A, T̂ ,R, F 〉, the system states of Ĝ can be partitioned

into three non-overlapping parts: Ŝ = Ss
⋃
S1
s

⋃
S2
s . Let P Ĝσ̂s(·, ·) : Ss × S → [0, 1] be a function

such that for any s, s′ ∈ S = Ss
⋃
Se, P Ĝσ̂s(s, s

′) is the probability that the next visited state in S

from s is s′ when the system takes σ̂s in Ĝ. Similarly, define PGσs(·, ·) : Ss × S → [0, 1] to represent

the transition probability by taking σs inG. Then by definition of T̂ , σ̂s, σs andAĜ(·) in Algorithm 4,

for any s ∈ Ss, s′ ∈ S:

P Ĝσ̂s(s, s
′)

=T̂ (s1 | s, â)
∑

a∈AG(B(s))

σ̂s(s
1, a)T̂ (s′ | s1, a) + T̂ (s2 | s, â)

∑
a∈A∗ε1 (B(s))

σ̂s(s
2, a)T̂ (s′ | s2, a)

=
∑

a∈AĜ(B(s1))

T̂ (s1 | s, â)σ̂s(s
1, a)T (s′ | B(s1), a)

+
∑

a∈AĜ(B(s2))

T̂ (s2 | s, â)σ̂s(s
2, a)T (s′ | B(s2), a)

=
∑

a∈AG(s)

σs(s, a)T (s′ | s, a) = PGσs(s, s
′).

In other words, the probability that the system transits from s ∈ Ss to s′ ∈ S is the same if the

system takes σs in G or if it takes σ̂s in Ĝ.

Let MG = 〈S, ∅, Se, I, A, TG,R, F 〉 and MĜ = 〈S, ∅, Se, I, A, TĜ,R, F 〉 be the two generated

MDPs for the environment when the system takes σs and σ̂s inG and Ĝ, respectively. For any s ∈ Se

and a ∈ AG(s), s′ ∈ S:

TG(s′ | s, a) = TĜ(s′ | s, a) = T (s′ | s, a).

For any s ∈ Ss and a ∈ A, s ∈ S:

TĜ(s′ | s, a) = P Ĝσ̂s(s, s
′) = PGσs(s, s

′) = TG(s′ | s, a).

119

Therefore the transition distributions between states in S are the same in these two MDPs. The

winning condition for the environment in both games is to prevent the system from visiting F

infinitely often with positive probability. An environment strategy σe prevents the system from

visiting F ⊂ S for infinite times in MG with positive probability if and only if it prevents the system

from visiting F for infinite times in MĜ with positive probability. In other words, σ̂s is almost-sure

winning for the system in Ĝ if and only if the constructed σs is almost-sure winning for the system

in G.

In summary, given the optimal action value function Q∗, we can compute a memoryless ε-optimal

almost-sure winning strategy in G as follows. First, construct a game Ĝ = HatGame(G,Q∗, ε′, pε′)

for some ε′ and pε′ using Algorithm 4, such that any system strategy σ̂s in Ĝ corresponds to an

ε-optimal system strategy σs = RecoverHatStrategy(Ĝ, σ̂s) in G. Then synthesize a memoryless

almost-sure winning strategy σ̂s in Ĝ. By Lemma 9, the corresponding system strategy σs is also

almost-sure winning in G. The existence of almost-sure winning system strategies in Ĝ is guaranteed

by Lemma 6.

Remark 4. One way to construct a memoryless almost-sure winning system strategy σ̂s is as follows:

σ̂s(s, a) =
1

|AĜ(s)|
, for all s ∈ Ŝs.

The idea to prove that such a system strategy σ̂s is almost-sure winning is the same as that of

Lemma 6.

The construction of Ĝ from G requires the knowledge of the ground-truth optimal action value

function Q∗. If the reward functionR and the transition function T are approximated, the estimated

Q function and the estimated sets of ε-optimal actions may not be accurate. Therefore the system

strategy σs derived from σ̂s may not be ε-optimal for the ground-truth game G. σs is always

almost-sure winning in G if σ̂s is almost-sure winning in Ĝ, no matter what Q∗ is.

120

6.5.3. Algorithm with Unknown RewardR and Transition T

Now we return to Problem 3, where both the reward function and the transition distributions are

unknown. Motivated by the R-max algorithm [28], we learn an optimistically-initialized game model

Ḡ of the ground-truth game G in an online manner. The key idea is as follows: We initially mark

all state-action pairs in G as unknown. Given a suboptimality bound ε > 0 and confidence level

1− δc ∈ (0, 1), we compute a constant Kε,δc such that a state-action pair is considered as known or

learned if it has been taken for Kε,δc times. The system strategy σs,ε is always almost-sure winning

and ε-optimal with respect to its current game model Ḡ. Both Ḡ and σs,ε are updated every time

a new state-action pair is learned. The overall algorithm is shown in Algorithm 5, with guarantees

stated in Theorem 6.

Theorem 6. Let Gin be a turn-based Büchi game, Rmax be a positive upper bound of the reward,

γ ∈ (0, 1) be a discount factor, ε > 0 be a suboptimality bound and 1− δc ∈ (0, 1) be a confidence

lower bound, as given in the input of Algorithm 5. The system strategy σs,ε in Algorithm 5 is always

memoryless and almost-sure winning. With probability no less than 1− δc, by taking σs,ε, the future

expected discounted reward from the current state s is at least V ∗(s)− ε, except for some number of

steps polynomial in |S|, |A|, 1
ε and 1

δc
.

Algorithm 5 is sketched as follows. We first compute the almost-sure winning region W in
as for the

system in the game Gin (Step 1). Then we construct a new game G such that regardless of the

system’s strategy in G, the system will always stay within W in
as (Step 2). G cannot be used directly

in Algorithm 5, as the transition T and reward functionR of G are unknown. Instead, we keep an

estimated model Ḡ of G, which is initialized to have uniform transition distribution and constant

reward for all state-action pairs (Step 3). The initial reward value is set to be an upper bound of

the value function of G with the following two purposes. First, the optimistic initial value function

encourages the system to take unknown transitions, as the Q values of the unknown state-action

pairs are higher than those of the known ones. Second, once an unknown transition is taken, the

discounted reward in Ḡ will be higher than that in G. σs,ε is initialized to be an almost-sure winning

system strategy for G and Ḡ (Step 5). In each iteration, the system takes σs,ε for one step and observe

121

the transition (st, at, st+1, rt) (Step 10). We count the frequency of taking each transition (s, a, s′)

(Step 11): If the number of visits to (st, at) exceeds some given threshold K (Step 13), the game

model Ḡ is updated (Step 16) and the system strategy σs,ε is recomputed (Step 20).

The almost-sure winning objective and the discounted-sum objective are no longer intertwined in

Algorithm 5. The almost-sure winning objective is achieved as follows. By constructing the game G,

the actions taken by the system are restricted such that the system always stays in the almost-sure

winning region (Step 1). By Lemma 6, the system strategies σs,ε (Step 5) and σ̂s (Step 19) are

almost-sure winning in G and Ĝ, respectively. By Lemma 9, the updated system strategy σs,ε in

Step 20 is also almost-sure winning in Ḡ. It remains to be shown that σs,ε is also almost-sure winning

in G.

The discounted-sum objective is addressed by the construction of Ĝ. By Lemma 8, σ̂s is a system

strategy in Ĝ and thus σs,ε is ε
6 -optimal in Ḡ. The suboptimality of σs,ε in G will be analyzed later.

As the construction of Ĝ is independent on the almost-sure winning objective and any system strategy

of Ĝ can be used to construct an ε-optimal strategy of G, the two objectives are now fully separated

in our solution.

6.6. Proof of Theorem 6

We show a proof of Theorem 6 in this section. With the previous analysis, there are two key points in

this proof: First, any memoryless system strategy that is almost-sure winning in the game model Ḡ

is also almost-sure winning in the ground-truth game G; second, with probability at least (1− δc),

σs,ε is ε-optimal in the ground-truth game G except for some number of steps that is polynomial in

|S|, |A|, 1
ε ,

1
δc

. These two points are addressed consecutively in this section.

6.6.1. Proof of Almost-Sure Winning Objective

We first show that any almost-sure winning system strategy in Ḡ is also almost-sure winning in Gin.

Lemma 10. Let G = 〈S, Ss, Se, I, A, T,R, F 〉 and Ḡ = 〈S, Ss, Se, I, A, T̄ , R̄, F 〉 be two turn-

based stochastic Büchi games sharing the same transitions. In other words, for all s, s′ ∈ S, a ∈ A,

122

Algorithm 5 Overall algorithm for Problem 3
Require: A turn-based Büchi game Gin, Rmax > 0, γ ∈ (0, 1), a suboptimality bound ε > 0, a

confidence bound δc ∈ (0, 1), maximum number of iterations Kmax.

1: Compute W in
as .

2: G← Gin �W in
as = 〈S, Ss, Se, I, A, T,R, F 〉.

3: Ḡ ← 〈S, Ss, Se, I, A, T̄ , R̄, F 〉 such that T̄ (s′ | s, a) = 1
|EG(s,a)| and R̄(s, a, s′) ← Rmax

1−γ for

all s ∈ S, a ∈ AG(s) and s′ ∈ EG(s, a).

4: for s ∈ Ss, a ∈ AG(s), s′ ∈ EG(s, a) do
5: σs,ε(s, a)← 1

|AG(s)| .

6: k(s, a, s′)← 0, L(s, a)← 0, Q̄∗(s, a)← Rmax
(1−γ)2 .

7: end for
8: δ ← ε(1−γ)2 log(γ)

6Rmax|S| log(ε(1−γ)2/6Rmax)
, K ← 1

2δ2 log 4|A||S|2
δc

, ε1 ← 1−γ
12 ε, pε1 ←

ε(1−γ)3

12Rmax
.

9: for t = 0, 1, . . . ,Kmax do
10: at, st+1, rt = Simulate(st, σs,ε).

11: k(st, at, st+1)← k(st, at, st+1) + 1.

12: if L(st, at) = 0 then
13: if

∑
s′∈S

k(st, at, s
′) ≥ K or |EG(st, at)| = 1 then

14: L(st, at)← 1.

15: k(st, at, s
′)← max(k(st, at, s

′), 1) for all s′ ∈ EG(st, at).

16: T̄ (s′ | st, at)← k(st,at,s′)∑
s′∈S k(st,at,s′)

for all s′ ∈ EG(st, at), R̄(st, at, st+1)← rt.

17: Update Q̄∗.

18: Construct Ĝ← HatGame(Ḡ, Q̄∗, ε1, pε1).

19: Compute a memoryless almost-sure winning strategy σ̂s for the system in Ĝ.

20: σs,ε ← RecoverHatStrategy(Ĝ, σ̂s).

21: end if
22: end if
23: end for
24: function SIMULATE(s, σs)

25: if s ∈ Ss then
26: Draw action a ∼ σs(s, ·).

27: else
28: The environment takes an action a ∈ AG(s).

29: end if
30: Observe the next state s′ and the reward r.

31: return a, s′, r.

32: end function

123

T (s′ | s, a) > 0 if and only if T̄ (s′ | s, a) > 0. Then for any s0 ∈ S, a memoryless system strategy

σs is almost-sure winning in G at s0 if and only if it is almost-sure winning in Ḡ at s0.

Proof. The proof is done by contradiction. Turn-based stochastic Büchi games is a special case of

stochastic turn-based parity games. It has been shown that in (finite-state) stochastic turn-based parity

games, deterministic memoryless strategies suffice for the environment to minimize the winning

probability for the system [203]. Without loss of generality, assume that the strategies σe, σs taken

by the environment and the system are both deterministic and memoryless.

Then for any finite sequence of state-action pairs π = (si−1, ai)i=1,··· ,K , the probability that π is

part of a run of G when the system takes σs is

PG(π) =
K−1∏
i=1

T (si | si−1, ai)
K∏
i=1

(
σs(si−1, ai)1Ss(si−1) + σe(si−1, ai)1Se(si−1)

)
and the corresponding probability in Ḡ is

PḠ(π) =
K−1∏
i=1

T̄ (si | si−1, ai)
K∏
i=1

(
σs(si−1, ai)1Ss(si−1) + σe(si−1, ai)1Se(si−1)

)
,

where for any set S, 1S(·) denotes the characteristic function of S. By assumption, it holds for

all i = 1, · · · ,K − 1 that T (si | si−1, ai) > 0 if and only if T̄ (si | si−1, ai) > 0. Then for any

π = (si−1, ai)i=1,··· ,K of finite length,
∏K−1
i=1 T (si | si−1, ai) > 0 if and only if

∏K−1
i=1 T̄ (si |

si−1, ai) > 0, therefore PG(π) > 0 if and only if PḠ(π) > 0. Given any state s ∈ S and any pair of

memoryless strategies σs and σe for the system and the environment, the sets of states that can be

reached from s with positive probability (referred to as ‘reachable’ below) are the same in G and Ḡ.

Suppose σs is not almost-sure winning at s0 ∈ S in G. Then as shown in the proof of Lemma 6,

there exist a state sσe ∈ S and an environment strategy σe such that the following two conditions

hold in G when the environment takes σe:

1. sσe can be reached with positive probability from s0;

124

2. the probability of reaching F from sσe is zero.

In other words, sσe is reachable from s0 and F is not reachable from sσe in G, when the environment

takes σe and the system takes σs. With the previous analysis, sσe is reachable from s0 and F is not

reachable from sσe in Ḡ. Therefore, there is some positive probability that F cannot be visited for

infinitely many times from s0, which shows that σs cannot be almost-sure winning in Ḡ at s0.

We can similarly show that if σs is not almost-sure winning in Ḡ at s0, it cannot be almost-sure

winning in G at s0. Therefore σs is almost-sure winning in G at s0 if and only if it is almost-sure

winning in Ḡ at s0.

Now we show that σs,ε in Algorithm 5 is almost-sure winning for the system in Gin.

In Step 5 of Algorithm 5, σs,ε is initialized to assign positive probability to all actions at all system

states in G. By Lemma 6, the initial σs,ε is almost-sure winning at any state s ∈ W in
as = S in Gin.

In Step 19, σ̂s is updated as a memoryless almost-sure winning system strategy in Ĝ. By Lemma 9,

σs,ε = RecoverHatStrategy(Ĝ, σ̂s) is also almost-sure winning in G. Finally by Lemma 5, the

updated system strategy σs,ε is also almost-sure winning in Gin.

6.6.2. Proof of Discounted-Sum Objective

We follow a similar proof as in [28] to show that the future expected discounted reward of σs,ε is

ε-optimal at the infinitely-often-visited states. There are several parts:

• Any transition distribution can be learned with arbitrarily small positive error bound with con-

fidence arbitrarily close to 1, if the transition is taken for reasonably many times. (Lemma 11)

• (Implicit exploration or exploitation) Suppose that all known transition distributions are

approximated with enough accuracy. Given p ∈ (0, 1), there exists a constant Np which is

polynomial in 1/ε such that if σs,ε constructed in Step 20 of Algorithm 5 is taken for Np steps

from the current state, either the Np-step expected discounted reward is ε-optimal in the real

game G, or the probability of taking an unknown transition is at least p. (Lemma 13)

125

• With high confidence, the number of Np-step periods in which the discounted reward are not

ε-optimal is bounded by a polynomial of |S|, |A| and 1/p.

The following lemma shows that if a state-action pair (s, a) is taken for sufficiently many times,

the transition distribution T (· | s, a) can be approximated with arbitrarily small error with high

confidence.

Lemma 11. Let G = 〈S, Ss, Se, I, A, T,R, F 〉 be a turn-based stochastic Büchi game. For arbi-

trarily small εT > 0 and δ4 ∈ (0, 1), if a state-action pair (s, a) with s ∈ S and a ∈ AG(s) is

taken for at least K = 1
2ε2T

log 2|A||S|2
δ4

times, then with probability at least (1− δ4), the estimated

transition distribution T̄ (s, a) satisfies |T̄ (s′ | s, a)− T (s′ | s, a)| ≤ εT for all s′ ∈ S.

Proof. Let (s, a, s′) ∈ S ×A× S be an existing transition of G. Let X1, · · · , XK be a sequence of

independent and identically distributed binary random variables. For each i = 1, · · · ,K,Xi ∈ {0, 1}

and Xi = 1 if and only if the successor state is s′ when a is taken from s for the ith time. Thus

E(Xi) = T (s′ | s, a) ∈ [0, 1]. By Hoeffdings inequality [73],

Pr
(∣∣∣ 1

K

K∑
i=1

Xi − T (s′ | s, a)
∣∣∣≥ εT) ≤ 2e−2ε2TK . (6.1)

holds for any

εT ∈
(

0,min
(
T (s′ | s, a), 1− T (s′ | s, a)

))
.

If

K ≥ 1

2ε2
T

log
2|A||S|2

δ4
,

then

Pr
(∣∣∣ 1

K

K∑
i=1

Xi − T (s′ | s, a)
∣∣∣≥ εT) ≤ δ4

|S|2|A|
.

In other words, if the state-action pair (s, a) is taken forK times, then 1
K

K∑
i=1

Xi estimates T (s′ | s, a)

with error no more than εT with probability no less than
(
1− δ4

|S|2|A|
)
. As there cannot be more than

|S|2|A| such transitions, the probability that all transitions that are taken for at least K times are

126

εT -accurate is at least (1− δ4).

Then we compare the value functions of two games with similar transition distributions. To be

specific, we compare the value functions of a game and its εT -approximation, which is defined as

below.

Definition 6. LetG1 = 〈S, Ss, Se, I, A, T1,R, F 〉 andG2 = 〈S, Ss, Se, I, A, T2,R, F 〉 be two turn-

based stochastic Büchi games with different transition distributions. For any εT > 0, we say that

G2 is a εT -approximation of G1, or G2 εT -approximates G1, if |T1(s′ | s, a)− T2(s′ | s, a)| ≤ εT

holds for all s, s′ ∈ S and a ∈ A.

We introduce the following notations, which will later be used in lemmas and their proofs. Let G be

a turn-based stochastic Büchi game, N be a positive integer and s ∈ S.

• VG(s, σs, σe, N) denotes the N -step expected discounted reward when the system takes σs

and the environment takes σe at s in G,

• VG(s, σs, σe) = limN→∞ VG(s, σs, σe, N) denotes the infinite-horizon expected discounted

reward,

• VG(s, σs) = minσe VG(s, σs, σe) denotes the worst-case expected discounted reward when

the system takes σs at s in G and

• V ∗G(s) = maxσs VG(s, σs) denotes the optimal value of s ∈ S in G.

The following lemma shows that if two turn-based stochastic games have sufficiently similar transition

distributions, the expected discounted rewards with the same pair of system and environment

strategies can be arbitrarily close.

Lemma 12. Let G1 and G2 be turn-based stochastic Büchi games with state space S and reward

upper bound Rmax
1−γ . Assume that G2

ε2(1−γ)2

Rmax|S|K -approximates of G1 for some K ∈ N+ and ε2 > 0.

Then for every state s ∈ S, system strategy σs and environment strategy σe, it holds that

|VG1(s, σs, σe,K)− VG2(s, σs, σe,K)| ≤ ε2.

127

Proof. The proof of this lemma is the same as that of Lemma 4 in [28], except that the expected

discounted reward is bounded by Rmax
(1−γ)2 rather thanRmax.

We have shown by Lemma 11 and 12 that if all state-action pairs inG are visited for sufficiently many

times, the game model Ḡ will be arbitrarily close to the ground-truth game G with high confidence.

However, the agent is not allowed to arbitrarily reset to any state, therefore it may not be feasible

to learn all transitions before computing σs,ε. If there are both known and unknown transitions in

Ḡ, the suboptimality of σs,ε in Ḡ cannot be effectively used to bound the suboptimality in G. For

example, σs,ε is always ε-optimal in Ḡ, but it can be arbitrarily suboptimal in G. Intuitively, it is only

possible to bound the suboptimality of σs,ε in G if the probability of taking unknown transitions in

Ḡ is small. In the following lemma, we show that for some a finite horizon N , either the probability

of taking an unknown transition within N steps is greater than a given value (exploration), or the

suboptimality of the current system strategy is bounded (exploitation).

Lemma 13. (Implicit exploration or exploitation) Let G, Ḡ and L : S × A → {0, 1} be defined

as in Algorithm 5, and ε3 > 0, ε4 > 0, εT > 0 and δ3 ∈ (0, 1) as constants. Assume that for

any known transition (s, a, s′) such that L(s, a) = 1, |T̄ (s′ | s, a) − T (s′ | s, a)| ≤ εT . Let

σ̄s be an ε3-optimal memoryless system strategy in Ḡ. If the system takes σ̄s from s0 ∈ S for

N ≥ log(ε4(1−γ)2/Rmax)
log(γ) steps in G, then either the expected discounted reward in G is at least

V ∗G(s0)−
(Rmax

(1−γ)2 δ3 + 2Rmax|S|NεT
(1−γ)2 + 2ε4 + ε3

)
, or it takes an unknown transition with probability

no less than δ3.

Proof. There are multiple games in Algorithm 5 and in this proof. For clarification, we summarize

their interpretation as follows to avoid confusion.

• Gin = 〈Sin, Sins , Sine , Iin, Ain, T in,Rin, F in〉 is the input (ground-truth) turn-based stochas-

tic Büchi game whose transition distribution function and reward function are unknown.

• G = 〈S, Ss, Se, I, A, T,R, F 〉 is a subgame of Gin when the state space is restricted to the

128

almost-sure winning region W in
as .

• Ḡ = 〈S, Ss, Se, I, A, T̄ , R̄, F 〉 is an approximate model of G that is learned from exploration.

For any known transition (s, a, s′) such that L(s, a) = 1, it holds that

∣∣T (s′ | s, a)− T̄ (s′ | s, a)
∣∣ ≤ εT ,

R̄(s, a, s′) = R(s, a, s′).

For any other transition (s, a, s′),

T̄ (s′ | s, a) =
1

|EG(s, a)|
,

R̄(s, a, s′) =
Rmax

1− γ
.

The value Rmax
1−γ is selected such that regardless of the strategies taken by the environment and

the system, the expected discounted reward in G is upper bounded by that in Ḡ.

• Ĝ = HatGame(Ḡ, Q̄∗, ε1, pε1) is an auxiliary game constructed from Ḡ such that

1. any memoryless system strategy σ̂s in Ĝ can derive a memoryless ε-optimal system

strategy σ̄s = RecoverHatStrategy(Ĝ, σ̂s) in Ḡ (Lemma 8);

2. σ̄s is almost-sure winning in Ḡ if and only if σ̂s is almost-sure winning in Ĝ (Lemma 9);

• ḠL = 〈S, Ss, Se, I, A, T̄L, R̄L, F 〉 is another game model that mixes the transition distribu-

tions and rewards of Ḡ and G. For each known transition (s, a, s′),

T̄L(s′ | s, a) = T (s′ | s, a),

R̄L(s, a, s′) = R(s, a, s′).

129

For any other transition (s, a, s′),

T̄L(s′ | s, a) = T̄ (s′ | s, a),

R̄L(s, a, s′) = R̄(s, a, s′) =
Rmax

1− γ
.

Remember that a transition (s, a, s′) is known if L(s, a) = 1. By construction, ḠL εT -

approximates Ḡ.

Let (σ∗s , σ
∗
e) be a pair of optimal strategies for the system and the environment in G, (σ̄∗s , σ̄

∗
e) be a

pair of optimal strategies for the system and the environment in Ḡ. To show the result in Lemma 13,

we show that if the probability of taking an unknown transition in

N ≥ log(ε4(1− γ)2/Rmax)

log(γ)

steps is less than δ3, then VG(s0, σ̄s, σ
′
e, N) is lower bounded by

V ∗G(s0)−
(Rmax

(1− γ)2
δ3 +

2Rmax|S|NεT
(1− γ)2

+ 2ε4 + ε3

)
.

Step 1. First, since R and R̄ are non-negative and bounded by Rmax and Rmax
1−γ respectively, it

holds for any system strategy σ′s and environment strategy σ′e that

VG(s0, σ
′
s, σ
′
e, N) ≥ VG(s0, σ

′
s, σ
′
e)−

Rmaxγ
N

1− γ
,

VḠ(s0, σ
′
s, σ
′
e, N) ≥ VḠ(s0, σ

′
s, σ
′
e)−

Rmaxγ
N

(1− γ)2
.

As σ̄s is ε3-optimal in Ḡ, it holds that

VḠ(s0, σ̄s, σ
′
e) ≥ min

σ′′e
VḠ(s0, σ̄s, σ

′′
e) ≥ V ∗Ḡ(s0)− ε3.

130

Then

VḠ(s0, σ̄s, σ
′
e, N) ≥ V ∗Ḡ(s0)− Rmaxγ

N

(1− γ)2
− ε3.

As N ≥ log(ε4(1−γ)2/Rmax)
log(γ) , we know

Rmaxγ
N

1− γ
≤ Rmaxγ

N

(1− γ)2
≤ ε4.

Therefore

VG(s0, σ
′
s, σ
′
e, N) ≥ VG(s0, σ

′
s, σ
′
e)− ε4,

VḠ(s0, σ̄s, σ
′
e, N) ≥ V ∗Ḡ(s0)− ε4 − ε3.

(6.2)

Since R̄ is nonnegative,

VḠ(s0, σ
′
s, σ̄
∗
e , N) ≤ VḠ(s0, σ

′
s, σ̄
∗
e) ≤VḠ(s0, σ̄

∗
s , σ̄
∗
e) = VḠ(s0). (6.3)

Step 2. Then we show that if the probability of taking an unknown transition in N steps is bounded

by δ3, the difference between the N -step expected discounted rewards in G and ḠL is bounded when

the system takes σ̄s, regardless of the environment strategy σ′e. That is,

|VḠL(s0, σ̄s, σ
′
e, N)− VG(s0, σ̄s, σ

′
e, N)| ≤ Rmax

(1− γ)2
δ3. (6.4)

The idea is the same as the proof of Lemma 6 in [28].

For any environment strategy σ′e, let U(s0, σ̄s, σ
′
e, N) be the set of N -step run segments when

the system takes σ̄s and the environment takes σ′e at s0. Since all the games G, Ḡ and ḠL share

the same set of transitions, their induced sets of runs are the same. Depending on whether there

exists an unknown transition in each N -step run segment, we partition U(s0, σ̄s, σ
′
e, N) into two

non-overlapping subsets Ω(s0, σ̄s, σ
′
e, N) and Λ(s0, σ̄s, σ

′
e, N) such that each π ∈ Ω(s0, σ̄s, σ

′
e, N)

contains some unknown transitions. For each π ∈ U(s0, σ̄s, σ
′
e, N), define PG(π | σ̄s, σ′e) as the

probability of generating π by taking (σ̄s, σ
′
e) from s0 in G and RR(π) as the N -step discounted

131

reward of π with reward function R. For notational simplicity, we use U , Ω and Λ to represent

U(s0, σ̄s, σ
′
e, N), Ω(s0, σ̄s, σ

′
e, N) and Λ(s0, σ̄s, σ

′
e, N).

By construction of ḠL, it holds for all λ ∈ Λ(s0, σ̄s, σ
′
e, N) that

RR(λ) = RR̄L(λ),

PḠL(λ | σ̄s, σ′e) = PG(λ | σ̄s, σ′e).

Therefore ∑
λ∈Λ

PḠL(λ | σ̄s, σ′e)RR̄L(λ) =
∑
λ∈Λ

PG(λ | σ̄s, σ′e)RR(λ). (6.5)

If the probability of taking an unknown transition in N steps is bounded by δ3,

∑
ω∈Ω

PḠL(ω | σ̄s, σ′e) =
∑
ω∈Ω

PG(ω | σ̄s, σ′e) ≤ δ3.

As RR̄L(ω) and RR(ω) are nonnegative and bounded by Rmax
(1−γ)2 for all ω ∈ Ω(s0, σ̄s, σ

′
e, N), it

holds that

|VḠL(s0, σ̄s, σ
′
e, N)− VG(s0, σ̄s, σ

′
e, N)|

=
∣∣∣∑
π∈U

(
PḠL(π | σ̄s, σ′e)RR̄L(π)− PG(π | σ̄s, σ′e)RR(ω)

)∣∣∣
≤
∣∣∣∑
λ∈Λ

(
PḠL(λ | σ̄s, σ′e)RR̄L(λ)− PG(λ | σ̄s, σ′e)RR(λ)

)∣∣∣+
∣∣∣∑
ω∈Ω

(
PḠL(ω | σ̄s, σ′e)RR̄L(ω)− PG(ω | σ̄s, σ′e)RR(ω)

)∣∣∣
=
∣∣∣∑
ω∈Ω

(
PḠL(ω | σ̄s, σ′e)RR̄L(ω)− PG(ω | σ̄s, σ′e)RR(ω)

)∣∣∣
≤
∣∣∣∑
ω∈Ω

(
PḠL(ω | σ̄s, σ′e)

Rmax

(1− γ)2
− PG(ω | σ̄s, σ′e) · 0

)∣∣∣
≤ Rmax

(1− γ)2
δ3,

which proves (6.4).

132

Step 3. Now we show that for any system strategy σ′s and environment strategy σ′e,

VḠL(s0, σ
′
s, σ
′
e, N) ≥ VG(s0, σ

′
s, σ
′
e, N). (6.6)

For all i ∈ {1, · · · , N} and τ ∈ Λ(s0, σ
′
s, σ
′
e, i − 1), define Uτ,N ⊆ Ω(s0, σ

′
s, σ
′
e, N) as the set of

N -step run segments with the prefix τ such that τ only contains known transitions and the transition

following τ is unknown, that is, L(si−1, ai−1) = 0. Therefore it holds that

Ω(s0, σ
′
s, σ
′
e, N) =

N⋃
i=1

⋃
τ∈Λ(s0,σ′s,σ

′
e,i−1)

Uτ,N . (6.7)

As T (s, a) = T̄L(s, a) for all known (s, a), it holds for all i ∈ {1, · · · , N} and τ ∈ Λ(s0, σ
′
s, σ
′
e, i−

1) that ∑
ω∈Uτ,N

PG(ω | σ′s, σ′e) =
∑

ω∈Uτ,N

PḠL(ω | σ′s, σ′e),

RR(τ) =RR̄L(τ).

For each ω ∈ UΩ(τ, σ′s, σ
′
e, N), the ith transition visited in ω is unknown and thus the reward in

ḠL is Rmax
1−γ . Since the reward function R of G is bounded by Rmax, the total discounted reward

after i steps in G is upper bounded by γiRmax
1−γ , which is exactly the the discounted reward at

the ith step of ω in ḠL. As both R and R̄L are nonnegative, RR(ω) ≤ RR̄L(ω′) holds for any

ω, ω′ ∈ UΩ(τ, σ′s, σ
′
e, N). Therefore

∑
ω∈Uτ,N

PG(ω | σ̄s, σ′e)RR(ω) ≤
∑

ω∈Uτ,N

PḠL(ω | σ′s, σ′e)RR̄L(ω) (6.8)

holds for all i ∈ {1, · · · , N} and τ ∈ Λ(s0, σ
′
s, σ
′
e, i− 1).

133

VḠL(s0, σ̄s, σ
′
e, N)− VG(s0, σ̄s, σ

′
e, N)

=
∑
π∈U

(
PḠL(π | σ̄s, σ′e)RR̄L(π)− PG(π | σ̄s, σ′e)RR(π)

)

=
∑
λ∈Λ

(
PḠL(λ | σ̄s, σ′e)RR̄L(λ)− PG(λ | σ̄s, σ′e)RR(λ)

)
+

∑
ω∈Ω

(
PḠL(ω | σ̄s, σ′e)RR̄L(ω)− PG(ω | σ̄s, σ′e)RR(ω)

)
.

(6.9)

Substituting (6.5) and (6.8) into (6.9), we can prove that

VḠL(s0, σ̄s, σ
′
e, N) ≥ VG(s0, σ̄s, σ

′
e, N). (6.10)

Step 4. As ḠL is an εT -approximation of Ḡ, Lemma 12 guarantees that

|VḠL(s0, σ̄s, σ
′
e, N)− VḠ(s0, σ̄s, σ

′
e, N)| ≤ Rmax|S|NεT

(1− γ)2
,

|VḠL(s0, σ
∗
s , σ̄
∗
e , N)− VḠ(s0, σ

∗
s , σ̄
∗
e , N)| ≤ Rmax|S|NεT

(1− γ)2
.

(6.11)

Step 5. We can now finish the proof.

As σ∗s and σ∗e are a pair of optimal strategies in G, V ∗G(s0) = VG(s0, σ
∗
s , σ
∗
e). Since σ̄e may not be

134

optimal in G, VG(s0, σ
∗
s , σ
∗
e) ≤ VG(s0, σ

∗
s , σ̄
∗
e). By (6.2), (6.6) and (6.11),

V ∗G(s0) = VG(s0, σ
∗
s , σ̄
∗
e)

By (6.2)
≤ VG(s0, σ

∗
s , σ̄
∗
e , N) + ε4

By (6.10)
≤ VḠL(s0, σ

∗
s , σ̄
∗
e , N) + ε4

By (6.11)
≤ VḠ(s0, σ

∗
s , σ̄
∗
e , N) + ε4 +

Rmax|S|NεT
(1− γ)2

By (6.3)
≤ V ∗Ḡ(s0) + ε4 +

Rmax|S|NεT
(1− γ)2

By (6.2)
≤ VḠ(s0, σ̄s, σ

′
e, N) + 2ε4 +

Rmax|S|NεT
(1− γ)2

+ ε3

By (6.11)
≤ VḠL(s0, σ̄s, σ

′
e, N) +

2Rmax|S|NεT
(1− γ)2

+ 2ε4 + ε3.

(6.12)

We assume that the probability of taking a transition (s, a, s′) such that L(s, a) = 0 is less than δ3.

By (6.4) we get

V ∗G(s0)− VG(s0, σ̄s, σ
′
e, N)

By (6.12)
≤ VḠL(s0, σ̄s, σ

′
e, N)− VG(s0, σ̄s, σ

′
e, N) +

2Rmax|S|NεT
(1− γ)2

+ 2ε4 + ε3

By (6.4)
≤ Rmax

(1− γ)2
δ3 +

2Rmax|S|NεT
(1− γ)2

+ 2ε4 + ε3.

Therefore we have proved that if the probability of taking a transition (s, a, s′) such that L(s, a) = 0

is less than δ3, then

VG(s0, σ̄s, σ
′
e, N) ≥ V ∗G(s0)−

(Rmax

(1− γ)2
δ3 +

2Rmax|S|NεT
(1− γ)2

+ 2ε4 + ε3

)
holds for any environment strategy σ′e.

135

We now show the satisfaction of the discounted-sum objective as stated in Theorem 6, that is, with

probability no less than (1− δc), the future expected discounted reward of the current state s when

the system takes σs,ε is at least V ∗G(s) − ε, except for some number of steps that is polynomial

in |S|, |A|, 1
ε and 1

δc
. The system strategy σ̄s in Lemma 13 corresponds to the strategy σs,ε in

Algorithm 5.

Proof. By Lemma 8, the system strategy σs,ε constructed from HatGame and RecoverHatStrategy

with parameters ε1 = 1−γ
12 ε, and pε1 = ε(1−γ)3

12Rmax
is ε

6 -optimal for the system in Ḡ.

In Step 13, a state-action pair (s, a) ∈ S × A is relabeled as known if it is visited for at least

K = 1
2δ2 log 4|A||S|2

δc
times. By Lemma 11, with probability at least

(
1− δc

2|S|2|A|

)
,

∣∣∣T̄ (s′ | s, a)− T (s′ | s, a)
∣∣∣ ≤ δ

holds for each known (s, a) and s′ ∈ S. As there are at most |S|2|A| different transitions (s, a, s′),

the probability that all known transitions are estimated with precision δ is at least (1− δc
2).

Then we estimate the number of steps necessary to learn an ε-optimal strategy for the system. Let

ε3 = ε4 =
ε

6
, δ3 =

ε(1− γ)2

6Rmax
,

N =
log(ε4(1− γ)2/Rmax)

log(γ)
=

log(ε(1− γ)2/6Rmax)

log γ
,

εT = δ =
ε(1− γ)2 log γ

6Rmax|S| log(ε(1− γ)2/6Rmax)
,

then by Lemma 13, if the system takes σs,ε from s0 ∈ S for N steps in G, then either the probability

to take an unknown transition is no less than δ3, or the suboptimality is bounded by

Rmax

(1− γ)2
δ3 +

2Rmax|S|NεT
(1− γ)2

+ 2ε4 + ε3 =
ε

6
+
ε

3
+ 2 · ε

6
+
ε

6
= ε.

Thus Lemma 13 guarantees that if all known transitions are approximated with precision δ, then either

the expected discounted reward in N steps is ε-optimal, or the agent takes an unknown transition

136

q1start

q2

q3

q4

p1

p2

¬p1

∧
¬p2

p2

¬p2

p1

¬p1

p1

p2

¬p1

∧
¬p2

(a) (b)

Figure 17: (17a) A DBA constructed for the example. p1 stands for the lower left block, and p2

stands for the upper right block. (17b) The optimal strategy for the system with only the discounted
reward. The pink and blue squares represent the dangerous areas when the light is on and off. The
triangles show the optimal transition directions from each block (pink ones for light on, blue ones for
light off).

with probability at least δ3.

We now show that the number of N -step periods in which the probability of taking unknown

transitions is at least δ3 can be polynomially bounded. As there are at most |S||A| state-action pairs

in G, at most |S||A|K exploration steps can be taken before learning all transitions in G. Again

by the Hoeffding’s inequality, we can show that if the probability of taking unknown transitions in

each period is at least δ3, there exists K2 which is polynomial in |S|, |A|, 1
ε and 1

δc
such that with

confidence at least (1− δc
2), |S||A|K explorations will be made within K2 N -periods. Therefore

with probability at least (1− δc), the system by running Algorithm 5 behaves ε-optimally except for

at most some polynomial number of steps, which completes the proof.

6.7. Experimental Results

We show the usage of our algorithm with a robot motion planning problem which involves simul-

taneous resource collection and surveillance. This example was run on a laptop with an 8 Intel(R)

Core(TM) 2.40GHz CPU and 8 GB memory.

137

We first introduce the turn-based game and task requirements. The system moves in a 3-by-3 grid

world, and it has to move to an adjacent block if the current state is a system state. The environment

is a signal light that indicates the dangerous area in the world at the current step which needs to be

monitored closely. If the environment light is on, the upper left four blocks are dangerous; otherwise,

the lower right four blocks are dangerous. The environment can arbitrarily decide the status of the

light in the next step if the current state is an environment state. Furthermore, the lower left block

and the upper right block are labeled as post offices. For ease of demonstration, we assume that all

transitions are deterministic. In other words, |EG(s, a)| = 1 for all state-action pair (s, a).

We want to learn a strategy for the system to both patrol the dangerous areas and persistently visit

the two post offices. We first interpret the task requirements as a almost-sure winning objective and a

discounted-sum objective, encode them as inputs to our algorithm, and then show the results.

Almost-Sure Winning Objective. The task of visiting the two post offices can be expressed by

the four-state DBA in Figure 17a. The initial state is q1, and the set of accepting states is {q4}. The

upper right block is labeled by ‘p1’ (‘post office #1’) and the lower left block is labeled by ‘p2’ (‘post

office #2’). We show that the Büchi condition is satisfied if and only if both p1 and p2 are visited

infinitely often. Starting from the initial state, the system transits to q2 if it visits p1, or transits to q3

if it visits p2. If it visits neither of them, it stays at q1. From q2 and q3, the system should visit the

other post office (p2 for q2 and p1 for q3) in order to enter q4. q4 has the same outgoing transitions as

q1. The transitions show that one new visit to q4 requires at least one new visit to p1 and one new

visit to p2. Therefore to satisfy the Büchi condition, that is, to visit q4 infinitely often, the system has

to visit p1 and p2 infinitely often. All initial states are with DBA state q1.

The Discounted-Sum Objective. The task of monitoring the dangerous area is interpreted as a

discounted-sum objective. A reward function is designed to encourage the system to patrol the

dangerous area. The system will be rewarded by 1 in the following cases: (1) when the system

transits into the dangerous area; (2) when the light is on and the system moves counterclockwise in

the dangerous area; (3) when the light is off and the system moves clockwise in the dangerous area.

138

For all other system transitions and all environment transitions, there is no reward. Throughout this

example, the discount factor γ is 0.6, andRmax = 1.

The system does not know this reward function ahead of time, but eventually manages to learn a

strategy with optimal worst-case discounted reward. As shown in Figure 17b, the system learns to

approach the area specified by the environment as soon as possible and then move in the corresponding

direction to maximize the reward.

We get the product of the original turn-based game and the DBA, which results in a turn-based

Büchi game Gin. The almost-sure winning region W in
as and a memoryless almost-sure winning

strategy σs are computed with the off-the-shelf tool PGSolver [58]. It turns out that W in
as is the whole

state space, and σs is illustrated in Figure 19a. The suboptimality bound ε is set to be 0.0001. To

output the learned strategy in a timely manner, we added a terminating condition to the while loop in

Algorithm 5 such that the algorithm stops if there are no updates in the last 10,000 steps.

Upon termination, the learned strategy for the system is shown in Figure 19b. The strategy is

randomized and allows two actions at each system state, one with probability (1− pε1) and the other

0 10 20 30 40 50 60 70

0

0.5

1

1.5

2

2.5

3

States

V
a

lu
e

optimal

learned

initial

Figure 18: Comparison of the value function of the initial almost-sure winning strategy, the learned
strategy and an optimal strategy (which may not be almost-sure winning) for all system states. The
red crosses mark all the strongly connected components in which there is at least one state whose
value is learned to be ε-optimal.

139

DBA state
The initial almost-sure
winning strategy σs

The learned ε-optimal
almost-sure winning
strategy σs,ε

q1

q2

q3

q4

Figure 19: Illustration of the initial almost-sure winning strategy σs (the middle column) and the
learned ε-optimal almost-sure winning system strategy σs,ε (the right column). From top to bottom,
the four figures in each column show the system strategy with DBA state q1 to q4. In each figure, the
pink and blue triangles point to the transition directions at each block when the light is on and off
respectively. In the right column, big triangles represent actions with probability (1− pε1), and small
triangles represent actions with probability pε1 . Triangles with yellow background are ε-optimal over
all almost-sure winning system strategies.

with probability pε1 , represented by the big triangles and small triangles respectively. The worst-case

value functions for the learned strategy, the initial almost-sure winning strategy, and an optimal

strategy are shown in Figure 18. These value functions are evaluated with the true reward function,

and thus are not accessible to the system. It can be found that the value of the learned strategy is

much better than that of the initial strategy, although it is not at all close to the optimal strategy. In

Figure 19, we marked all states where the learned strategy is ε-optimal with yellow background. It

turns out that all system states are marked with yellow, i.e., are ε-optimal, except those that are not

reachable from the initial states. The product Büchi game has 144 states, 72 system states and 192

140

transitions. On average of ten repetitive experiments, the algorithm terminates at 58.05 seconds with

the last update occurs at 29.77 seconds.

141

Chapter 7: Conclusion

Reinforcement learning (RL) algorithms solve sequential decision-making problems by accumulating

intermediate feedback as rewards from an environment, and gradually improve the long-term expected

reward. For most RL algorithms, little prior knowledge, such as the underlying dynamics or the

analytical form of the reward function, is required. Such flexibility makes it tempting to apply RL

techniques in a variety of applications. The downside is the lack of guarantees and understanding

of the learned policies that the RL algorithms provide. It is very challenging and demanding to

reliably represent high-level task specifications as reward functions. The reward function would have

to capture heterogeneous and possibly competing requirements of the task; the resulting optimal

policies should achieve high task performance, and the reward functions should work not just in the

training environment, but also in similar testing environments. Moreover, RL algorithms are not

always capable of converging to globally optimal policies, widening the gap between the learned

policy and the high-level task which RL was applied to solve.

This thesis developed reinforcement learning algorithms with high-level task specifications that

learn policies with high task performance. It merges and extends ideas from a diverse range of

conventionally disparate research fields, including learning from demonstrations, model checking,

and reactive synthesis.

Chapter 2 and Chapter 3 combine ideas from the field of learning from demonstrations and model

checking. Instead of specifying a reward function, the expert trains learning agents by providing

demonstrations of how to implement the task successfully and a temporal logic specification that

directly encodes the high-level task requirements. The temporal logic specification can improve the

task performance of the learned policies in several ways. First, it is used to automatically construct a

memory transition system and extend the state space of the original MDP. Policies with the extended

state space are of finite-memory for the original MDP, and thus can implement more tasks than

memoryless policies. In essence, each state in the memory transition system corresponds to a

different reward function and optimal policy. Second, the temporal logic specifications act as a task

142

performance criterion for the learned policies, which is objective and independent on the inferred

reward function. We observe that the policies learned merely from demonstrations cannot generalize

well to states uncovered by expert demonstrations. To overcome this difficulty, we augment the

original optimization objective to account for task performance explicitly in Chapter 2. In Chapter 3,

we extend the previous framework to nonlinearly parameterized reward functions such as reward

networks, which automatically construct reward features by themselves. The resulting algorithm

learns a reward network that maps local neighborhoods to reward values and directly applies the

learned reward network to new environments with no expert demonstrations. Numerical experiments

show that both the memory transition system generated from task specifications and the ability to

replan in new environments play critical roles to enable good generalization performance. Related

papers include [184, 186].

We solve a constrained RL problem with a novel policy search algorithm in Chapter 4. We use

trajectory-based objective and constraint functions to represent high-level task specifications. Com-

pared with state-based or transition-based reward functions, trajectory-based functions are both more

expressive and more straightforward to encode task specifications. The proposed algorithm is a

variant of an existing cross-entropy algorithm, in which both objective and constraints are assumed to

be black boxes. We prove almost-sure asymptotic convergence properties of the proposed algorithm.

Although the convergence to global optima is not guaranteed, it is observed to happen with high

probability in a constrained linear quadratic regulator example. The related publication is [183].

Chapter 5 and Chapter 6 combine RL with reactive synthesis with temporal logic specifications. The

high-level task specifications are represented both qualitatively as a temporal logic specification and

quantitatively as a reward function. We model the interaction between the learning agent and its

environment as a two-player turn-based zero-sum game. Besides constructing memory transition

systems, temporal logic specifications restrict exploration and guarantee safety even during learning.

In Chapter 5, we first compute a nondeterministic (possibly maximally) permissive strategy for the

given temporal logic specification. The learning agent can only take actions that are allowed by the

permissive strategy in exploration. If the permissive strategy is not maximal, the learned policy may

143

not be globally optimal but is still guaranteed to be winning for the system. In Chapter 6, we propose

an online model-based RL algorithm to solve this problem. For the qualitative objective, we compute

the almost-sure winning region of the system agent and prune the game graph, such that the learning

agent always has a winning policy at any reachable state. For the quantitative objective, we design

an auxiliary game for the original game model, such that any policy in the auxiliary game model

corresponds to a ε-optimal policy in the original game model. Moreover, the two policies can only

be almost-surely winning simultaneously. The proposed algorithm guarantees that the exploration

policy is always almost-surely winning in the auxiliary game model. Properties of the auxiliary game

model guarantee that the exploration policy is always almost-sure winning for the learning agent,

and will be ε-optimal in the ground-truth game if the game model is accurate enough. We show that

the proposed algorithm is probably approximately correct, which is the first PAC-learning algorithm

in stochastic games with independent quantitative and qualitative objectives. Publications for this

topic include [182, 185].

7.1. Future Research Directions

The problem of incorporating high-level task specifications into RL algorithms is just a starting

point for a much broader picture of problems: How to allow RL algorithms to build upon existing

knowledge of underlying problems and thus achieve better solutions? With the environment

modeled as a general-purpose MDP with unknown transition distributions and unknown reward

functions, an RL agent knows very little about the underlying problem to be solved, which includes

transition distributions (system dynamics, uncertainties), constraints (such as game rules) and

optimization objectives (such as reward function). Intuitively, lack of prior knowledge of the

underlying problem raises many difficulties and limitations for RL algorithms. Which of these

difficulties can be addressed by incorporating heterogeneous prior knowledge and how?

One promising research direction is to use prior knowledge to select function approximators for RL

problems. Except for problems with moderately sized state spaces, RL algorithms need function

approximators to represent policies and value functions. A common practice is to resort to general-

purpose function approximators such as fully connected neural networks and Gaussian processes.

144

Recently, several attempts have been made to compare different function approximators on some

commonly used RL benchmarks [115, 145]. It turns out that policies with linear or radial-basis-

function-based parameterizations may match or even outperform the performance of policies modeled

by fully connected neural networks, yet with much fewer training episodes. Additionally, the

variance of the values of the learned policies is high. It remains an open problem to find an optimal

function approximator for a given RL problem, or even just what it means to be an optimal function

approximator. Prior knowledge of the underlying problem may help facilitate this difficulty. For

example, under some assumptions on the quadratic objective function, a constrained linear quadratic

regulator problem has a piecewise-affine optimal controller, which can be perfectly represented as

a fully connected neural network with ReLU activations. The idea of learning an explicit policy

function is also related to the topic of explicit model predictive control, which has been intensively

studied [16, 39, 168].

Another exciting direction is to study learning from demonstration problems with abstract task

specifications. In this thesis, all the given high-level task specifications are accurate and complete.

For example, for each problem which uses temporal logic specifications, there is a well-defined

labeling function that explicitly connects each state with a subset of symbolic labels. Therefore,

there is no need for learning agents to infer the interpretation of the specifications. Without labeling

functions, agents may not be able to interpret task specifications accurately, and that is why the task

specifications are called abstract. As a result, agents will not be able to directly use the memory

transition systems that are built from task specifications. However, it is possible to approach this

problem by learning from demonstrations, where the learned policies outputs decide not only which

action to take at each state, but also when to transit from one memory state to another. In other words,

the learning procedure both benefit from abstract task specifications (by introducing memory states)

and help refine the given task information (by predicting the conditions for each memory transition).

145

BIBLIOGRAPHY

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, page 1. ACM,
2004.

[2] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of reinforcement learning to
aerobatic helicopter flight. In Advances in neural information processing systems, pages 1–8,
2007.

[3] P. Abbeel, A. Coates, and A. Y. Ng. Autonomous helicopter aerobatics through apprenticeship
learning. The International Journal of Robotics Research, 29(13):1608–1639, 2010.

[4] J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pages 22–31. JMLR.
org, 2017.

[5] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N. Zeilinger, and C. J. Tomlin.
Reachability-based safe learning with gaussian processes. In 53rd IEEE Conference on
Decision and Control, pages 1424–1431. IEEE, 2014.

[6] A. Albert and J. A. Anderson. On the existence of maximum likelihood estimates in logistic
regression models. Biometrika, 71(1):1, 1984. doi: 10.1093/biomet/71.1.1. URL +http:
//dx.doi.org/10.1093/biomet/71.1.1.

[7] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu. Safe reinforce-
ment learning via shielding. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[8] E. Altman. Asymptotic properties of constrained markov decision processes. Mathematical
Methods of Operations Research, 37(2):151–170, 1993.

[9] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané. Concrete
problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

[10] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

[11] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin. Provably safe and robust learning-based
model predictive control. Automatica, 49(5):1216–1226, 2013.

[12] M. Babes, V. Marivate, K. Subramanian, and M. L. Littman. Apprenticeship learning about
multiple intentions. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 897–904, 2011.

[13] C. Baier, J.-P. Katoen, and K. G. Larsen. Principles of model checking, volume 26202649.
MIT press Cambridge, 2008.

[14] C. L. Baker, J. B. Tenenbaum, and R. R. Saxe. Goal inference as inverse planning. In
Proceedings of the Annual Meeting of the Cognitive Science Society, volume 29, 2007.

146

[15] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE Transactions on Systems, Man and Cybernetics,
SMC-13(5):834–846, 1983.

[16] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicit linear quadratic
regulator for constrained systems. Automatica, 38(1):3–20, 2002.

[17] M. Benaim. A dynamical system approach to stochastic approximations. SIAM Journal on
Control and Optimization, 34(2):437–472, 1996.

[18] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause. Safe model-based reinforcement
learning with stability guarantees. In Advances in neural information processing systems,
pages 908–918, 2017.

[19] J. Bernet, D. Janin, and I. Walukiewicz. Permissive strategies: from parity games to safety
games. RAIRO-Theoretical Informatics and Applications, 36(03):261–275, 2002.

[20] D. P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II. Athena Scientific, 3rd
edition, 2007. ISBN 1886529302, 9781886529304.

[21] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas. Dynamic programming
and optimal control, volume 1. Athena Scientific Belmont, MA, 1995.

[22] F. Blahoudek. Ltl3dra - ltl to deterministic rabin automata translator based on ltl3ba, 2015.
URL http://sourceforge.net/projects/ltl3dra/.

[23] M. Bloem and N. Bambos. Infinite time horizon maximum causal entropy inverse reinforce-
ment learning. In Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on, pages
4911–4916. IEEE, 2014.

[24] L. Bobadilla, O. Sanchez, J. Czarnowski, K. Gossman, and S. M. LaValle. Controlling wild
bodies using linear temporal logic. In Robotics: Science and systems, volume 7, page 17,
2012.

[25] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, et al. End to end learning for self-driving cars. arXiv
preprint arXiv:1604.07316, 2016.

[26] F. Borrelli, A. Bemporad, and M. Morari. Predictive control for linear and hybrid systems.
Cambridge University Press, 2017.

[27] A. Boularias, J. Kober, and J. Peters. Relative entropy inverse reinforcement learning. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
pages 182–189, 2011.

[28] R. I. Brafman and M. Tennenholtz. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning. The Journal of Machine Learning Research, 3:213–231,
2003.

[29] T. Brázdil, K. Chatterjee, M. Chmelik, V. Forejt, J. Křetı́nskỳ, M. Kwiatkowska, D. Parker, and
M. Ujma. Verification of markov decision processes using learning algorithms. In International

147

Symposium on Automated Technology for Verification and Analysis, pages 98–114. Springer,
2014.

[30] B. Burchfiel, C. Tomasi, and R. Parr. Distance minimization for reward learning from scored
trajectories. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[31] K. Chatterjee and L. Doyen. Energy parity games. In Automata, Languages and Programming,
pages 599–610. Springer, 2010.

[32] K. Chatterjee and L. Doyen. Perfect-information stochastic games with generalized mean-
payoff objectives. In 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1–10. IEEE, 2016.

[33] K. Chatterjee and T. A. Henzinger. A survey of stochastic ω-regular games. Journal of
Computer and System Sciences, 78(2):394–413, 2012.

[34] K. Chatterjee, M. Jurdziński, and T. A. Henzinger. Simple stochastic parity games. In
Computer Science Logic, pages 100–113. Springer, 2003.

[35] K. Chatterjee, L. De Alfaro, and T. A. Henzinger. The complexity of stochastic Rabin and
Streett games. Springer, 2005.

[36] K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Mean-payoff parity games. In Logic in
Computer Science, 2005. LICS 2005. Proceedings. 20th Annual IEEE Symposium on, pages
178–187. IEEE, 2005.

[37] K. Chatterjee, M. Randour, and J.-F. Raskin. Strategy synthesis for multi-dimensional
quantitative objectives. In CONCUR 2012–Concurrency Theory, pages 115–131. Springer,
2012.

[38] K. Chatterjee, L. Doyen, H. Gimbert, and Y. Oualhadj. Perfect-information stochastic mean-
payoff parity games. In Foundations of Software Science and Computation Structures, pages
210–225. Springer, 2014.

[39] S. Chen, K. Saulnier, N. Atanasov, D. D. Lee, V. Kumar, G. J. Pappas, and M. Morari.
Approximating explicit model predictive control using constrained neural networks. In 2018
Annual American Control Conference (ACC), pages 1520–1527. IEEE, 2018.

[40] T. Chen, M. Kwiatkowska, A. Simaitis, and C. Wiltsche. Synthesis for multi-objective
stochastic games: An application to autonomous urban driving. In Quantitative Evaluation of
Systems, pages 322–337. Springer, 2013.

[41] J. Choi and K.-E. Kim. Bayesian nonparametric feature construction for inverse reinforcement
learning. In IJCAI, pages 1287–1293, 2013.

[42] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone. Risk-constrained reinforcement
learning with percentile risk criteria. The Journal of Machine Learning Research, 18(1):
6070–6120, 2017.

[43] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. A lyapunov-based approach

148

to safe reinforcement learning. In Advances in Neural Information Processing Systems, pages
8092–8101, 2018.

[44] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa. Safe exploration in
continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

[45] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai. Deep direct reinforcement learning for financial
signal representation and trading. IEEE transactions on neural networks and learning systems,
28(3):653–664, 2016.

[46] X. Ding, S. L. Smith, C. Belta, and D. Rus. Optimal control of markov decision processes with
linear temporal logic constraints. Automatic Control, IEEE Transactions on, 59(5):1244–1257,
2014.

[47] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforce-
ment learning for continuous control. In International Conference on Machine Learning,
pages 1329–1338, 2016.

[48] K. Dvijotham and E. Todorov. Inverse optimal control with linearly-solvable MDPs. In
International Conference on Machine Learning, pages 335–342, 2010.

[49] R. Ehlers and B. Finkbeiner. Reactive safety. In Proceedings of Symposium on Games,
Automata, Logics and Formal Verification, pages 178–191, 2011.

[50] R. Ehlers, V. Raman, and C. Finucane. Slugs GR(1) synthesizer, 2013. Available at https:
//github.com/LTLMoP/slugs.

[51] L. El Asri, B. Piot, M. Geist, R. Laroche, and O. Pietquin. Score-based inverse reinforcement
learning. In Proceedings of the 2016 International Conference on Autonomous Agents &
Multiagent Systems, pages 457–465. International Foundation for Autonomous Agents and
Multiagent Systems, 2016.

[52] M. Fahad, Z. Chen, and Y. Guo. Learning how pedestrians navigate: A deep inverse reinforce-
ment learning approach. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 819–826. IEEE, 2018.

[53] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas. Temporal logic motion planning for
mobile robots. In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on, pages 2020–2025. IEEE, 2005.

[54] J. Filar and K. Vrieze. Competitive Markov decision processes. Springer-Verlag New York,
Inc., 1996.

[55] C. Finn and S. Levine. Deep visual foresight for planning robot motion. In Robotics and
Automation (ICRA), 2017 IEEE International Conference on, pages 2786–2793. IEEE, 2017.

[56] C. Finn, S. Levine, and P. Abbeel. Guided cost learning: Deep inverse optimal control via
policy optimization. In International Conference on Machine Learning, pages 49–58, 2016.

[57] O. Friedmann and M. Lange. The pgsolver collection of parity game solvers. University of
Munich, 2009.

149

[58] O. Friedmann and M. Lange. tcsprojects/pgsolver, 2015. URL https://github.com/
tcsprojects/pgsolver.

[59] J. Fu and U. Topcu. Probably approximately correct mdp learning and control with temporal
logic constraints. In Proceedings of Robotics: Science and Systems, Berkeley, USA, July 2014.
doi: 10.15607/RSS.2014.X.039.

[60] J. Fu, I. Papusha, and U. Topcu. Sampling-based approximate optimal control under temporal
logic constraints. In Proceedings of the 20th International Conference on Hybrid Systems:
Computation and Control, pages 227–235. ACM, 2017.

[61] A. Gaiser, J. Křetı́nskỳ, and J. Esparza. Rabinizer: Small deterministic automata for ltl (f, g).
In Automated Technology for Verification and Analysis, pages 72–76. Springer, 2012.

[62] J. Garcıa and F. Fernández. A comprehensive survey on safe reinforcement learning. Journal
of Machine Learning Research, 16(1):1437–1480, 2015.

[63] M. Ghavamzadeh, M. Petrik, and Y. Chow. Safe policy improvement by minimizing robust
baseline regret. In Advances in Neural Information Processing Systems, pages 2298–2306,
2016.

[64] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version
2.1. http://cvxr.com/cvx, Mar. 2014.

[65] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep q-learning with model-
based acceleration. In M. F. Balcan and K. Q. Weinberger, editors, Proceedings of The
33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 2829–2838, New York, New York, USA, 20–22 Jun 2016. PMLR.
URL http://proceedings.mlr.press/v48/gu16.html.

[66] M. Guo, K. H. Johansson, and D. V. Dimarogonas. Revising motion planning under linear
temporal logic specifications in partially known workspaces. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on, pages 5025–5032. IEEE, 2013.

[67] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-
based policies. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 1352–1361. JMLR. org, 2017.

[68] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, pages 1856–1865, 2018.

[69] D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell, and A. Dragan. Inverse reward design.
In Advances in Neural Information Processing Systems, pages 6765–6774, 2017.

[70] E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak. Omega-regular
objectives in model-free reinforcement learning. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 395–412, 2019.

150

[71] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement
learning that matters. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[72] M. Herman, T. Gindele, J. Wagner, F. Schmitt, and W. Burgard. Inverse reinforcement learning
with simultaneous estimation of rewards and dynamics. In Artificial Intelligence and Statistics,
pages 102–110, 2016.

[73] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American statistical association, 58(301):13–30, 1963.

[74] T. Homem-de Mello. A study on the cross-entropy method for rare-event probability estimation.
INFORMS Journal on Computing, 19(3):381–394, 2007.

[75] J. Hu, M. C. Fu, S. I. Marcus, et al. A model reference adaptive search method for stochastic
global optimization. Communications in Information and Systems, 8(3):245–276, 2008.

[76] J. Hu, P. Hu, and H. S. Chang. A stochastic approximation framework for a class of randomized
optimization algorithms. IEEE Transactions on Automatic Control, 57(1):165–178, 2012.

[77] B.-Q. Huang, G.-Y. Cao, and M. Guo. Reinforcement learning neural network to the problem
of autonomous mobile robot obstacle avoidance. In Proceedings of Conference on Machine
Learning and Cybernetics, volume 1, pages 85–89, 2005.

[78] C. Innocenti, H. Lindén, G. Panahandeh, L. Svensson, and N. Mohammadiha. Imitation
learning for vision-based lane keeping assistance. In 2017 IEEE 20th International Conference
on Intelligent Transportation Systems (ITSC), pages 425–430. IEEE, 2017.

[79] G. H. John. When the best move isn’t optimal: Q-learning with exploration. In AAAI, page
1464. Citeseer, 1994.

[80] A. G. Joseph and S. Bhatnagar. Revisiting the cross entropy method with applications in
stochastic global optimization and reinforcement learning. In ECAI 2016 - 22nd European Con-
ference on Artificial Intelligence, 29 August-2 September 2016, The Hague, The Netherlands,
pages 1026–1034, 2016.

[81] S. Junges, N. Jansen, C. Dehnert, U. Topcu, and J.-P. Katoen. Safety-constrained reinforcement
learning for mdps. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 130–146. Springer, 2016.

[82] M. Jurdziński. Small progress measures for solving parity games. In Symposium on Theoretical
Aspects of Computer Science 2000, pages 290–301, 2000.

[83] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, et al. Qt-opt: Scalable deep reinforcement learning for
vision-based robotic manipulation. arXiv preprint arXiv:1806.10293, 2018.

[84] R. E. Kalman. When is a linear control system optimal? Journal of Basic Engineering, 86(1):
51–60, 1964.

[85] H. J. Kim, M. I. Jordan, S. Sastry, and A. Y. Ng. Autonomous helicopter flight via rein-

151

forcement learning. In Advances in neural information processing systems, pages 799–806,
2004.

[86] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[87] T. Kipf, Y. Li, H. Dai, V. Zambaldi, E. Grefenstette, P. Kohli, and P. Battaglia. Compo-
sitional imitation learning: Explaining and executing one task at a time. arXiv preprint
arXiv:1812.01483, 2018.

[88] E. Klein, M. Geist, B. Piot, and O. Pietquin. Inverse reinforcement learning through structured
classification. In Advances in Neural Information Processing Systems, pages 1007–1015,
2012.

[89] J. Klein. Ltl2dstar - ltl to deterministic streett and rabin automata, 2015. URL http:
//www.ltl2dstar.de/.

[90] M. Kobilarov. Cross-entropy randomized motion planning. In Robotics: Science and Systems,
2011.

[91] N. Kohl and P. Stone. Policy gradient reinforcement learning for fast quadrupedal locomotion.
In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04.
2004, volume 3, pages 2619–2624. IEEE, 2004.

[92] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause. Learning-based model predictive
control for safe exploration. In 2018 IEEE Conference on Decision and Control (CDC), pages
6059–6066. IEEE, 2018.

[93] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Where’s waldo? sensor-based temporal
logic motion planning. In Robotics and Automation, 2007 IEEE International Conference on,
pages 3116–3121. IEEE, 2007.

[94] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu. Correct, reactive, high-level robot control.
IEEE Robotics & Automation Magazine, 18(3):65–74, 2011.

[95] J. Kretı́nskỳ, G. A. Pérez, and J.-F. Raskin. Learning-based mean-payoff optimization in
an unknown mdp under omega-regular constraints. In 29th International Conference on
Concurrency Theory (CONCUR 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

[96] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard. Socially compliant mobile robot
navigation via inverse reinforcement learning. The International Journal of Robotics Research,
35(11):1289–1307, 2016.

[97] S. Krishnan, A. Garg, S. Patil, C. Lea, G. Hager, P. Abbeel, and K. Goldberg. Unsupervised
surgical task segmentation with milestone learning. In Proc. Intl Symp. on Robotics Research
(ISRR), 2015.

[98] M. Kuderer, S. Gulati, and W. Burgard. Learning driving styles for autonomous vehicles from

152

demonstration. In Robotics and Automation (ICRA), 2015 IEEE International Conference on,
pages 2641–2646. IEEE, 2015.

[99] O. Kupferman and M. Y. Vardi. Model checking of safety properties. Formal Methods in
System Design, 19(3):291–314, 2001.

[100] M. Lai. Giraffe: Using deep reinforcement learning to play chess. arXiv preprint
arXiv:1509.01549, 2015.

[101] M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg. Dart: Noise injection for robust
imitation learning. In Conference on Robot Learning, pages 143–156, 2017.

[102] K. Lee, S. Choi, and S. Oh. Inverse reinforcement learning with leveraged gaussian processes.
In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, pages
3907–3912. IEEE, 2016.

[103] S. H. Lee, I. H. Suh, S. Calinon, and R. Johansson. Learning basis skills by autonomous seg-
mentation of humanoid motion trajectories. In 2012 12th IEEE-RAS International Conference
on Humanoid Robots (Humanoids 2012), pages 112–119. IEEE, 2012.

[104] S. Levine, Z. Popovic, and V. Koltun. Feature construction for inverse reinforcement learning.
In Advances in Neural Information Processing Systems, pages 1342–1350, 2010.

[105] S. Levine, Z. Popovic, and V. Koltun. Nonlinear inverse reinforcement learning with gaussian
processes. In Advances in Neural Information Processing Systems, pages 19–27, 2011.

[106] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[107] L. Li and J. Fu. Sampling-based approximate optimal temporal logic planning. In Robotics
and Automation (ICRA), 2017 IEEE International Conference on, pages 1328–1335. IEEE,
2017.

[108] Y. Li. Deep reinforcement learning. CoRR, abs/1810.06339, 2018. URL http://arxiv.
org/abs/1810.06339.

[109] E. Liebman, M. Saar-Tsechansky, and P. Stone. Dj-mc: A reinforcement-learning agent for
music playlist recommendation. In Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, pages 591–599. International Foundation for
Autonomous Agents and Multiagent Systems, 2015.

[110] M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Proceedings of the eleventh international conference on machine learning, volume 157, pages
157–163, 1994.

[111] M. L. Littman. Value-function reinforcement learning in markov games. Cognitive Systems
Research, 2(1):55–66, 2001.

[112] M. L. Littman and C. Szepesvári. A generalized reinforcement-learning model: Convergence
and applications. In Proceedings of Conference on Machine Learning, pages 310–318, 1996.

153

[113] S. C. Livingston, E. M. Wolff, and R. M. Murray. Cross-entropy temporal logic motion plan-
ning. In Proceedings of the 18th International Conference on Hybrid Systems: Computation
and Control, pages 269–278. ACM, 2015.

[114] J. Macglashan and M. L. Littman. Between imitation and intention learning. In International
Conference on Artificial Intelligence, pages 3692–3698, 2015.

[115] H. Mania, A. Guy, and B. Recht. Simple random search of static linear policies is competitive
for reinforcement learning. In Advances in Neural Information Processing Systems, pages
1800–1809, 2018.

[116] Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic specifi-
cations. ACM Transactions on Programming Languages and Systems, 6(1):68–93, 1984.

[117] S. Mannor, R. Rubinstein, and Y. Gat. The cross entropy method for fast policy search. In In
International Conference on Machine Learning, pages 512–519. Morgan Kaufmann, 2003.

[118] T. Matsui, T. Goto, K. Izumi, and Y. Chen. Compound reinforcement learning: Theory and an
application to finance. In European Workshop on Reinforcement Learning, pages 321–332.
Springer, 2011.

[119] B. Michini and J. P. How. Bayesian nonparametric inverse reinforcement learning. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pages
148–163. Springer, 2012.

[120] B. Michini, T. J. Walsh, A.-A. Agha-Mohammadi, and J. P. How. Bayesian nonparametric
reward learning from demonstration. IEEE Transactions on Robotics, 31(2):369–386, 2015.

[121] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[122] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

[123] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International
Conference on Machine Learning, pages 1928–1937, 2016.

[124] T. M. Moldovan and P. Abbeel. Safe exploration in markov decision processes. In Proceedings
of the 29th International Coference on International Conference on Machine Learning, pages
1451–1458. Omnipress, 2012.

[125] W. Montgomery, A. Ajay, C. Finn, P. Abbeel, and S. Levine. Reset-free guided policy search:
Efficient deep reinforcement learning with stochastic initial states. In Robotics and Automation
(ICRA), 2017 IEEE International Conference on, pages 3373–3380. IEEE, 2017.

[126] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun. Off-road obstacle avoidance through
end-to-end learning. In Advances in neural information processing systems, pages 739–746,
2006.

154

[127] G. Neu and C. Szepesvári. Apprenticeship learning using inverse reinforcement learning and
gradient methods. In Proceedings of the Twenty-Third Conference on Uncertainty in Artificial
Intelligence, pages 295–302. AUAI Press, 2007.

[128] Y. Nevmyvaka, Y. Feng, and M. Kearns. Reinforcement learning for optimized trade execution.
In Proceedings of the 23rd international conference on Machine learning, pages 673–680.
ACM, 2006.

[129] A. Y. Ng and S. J. Russell. Algorithms for inverse reinforcement learning. In Proceedings
of the Seventeenth International Conference on Machine Learning, pages 663–670. Morgan
Kaufmann Publishers Inc., 2000.

[130] S. Niekum, S. Osentoski, G. Konidaris, and A. G. Barto. Learning and generalization of
complex tasks from unstructured demonstrations. In Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on, pages 5239–5246. IEEE, 2012.

[131] S. Niekum, S. Osentoski, G. Konidaris, S. Chitta, B. Marthi, and A. G. Barto. Learning
grounded finite-state representations from unstructured demonstrations. The International
Journal of Robotics Research, 34(2):131–157, 2015.

[132] OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

[133] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters, et al. An algorithmic
perspective on imitation learning. Foundations and Trends R© in Robotics, 7(1-2):1–179, 2018.

[134] X. Pan and Y. Shen. Human-interactive subgoal supervision for efficient inverse reinforcement
learning. In Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems, pages 1380–1387. International Foundation for Autonomous Agents and
Multiagent Systems, 2018.

[135] I. Papusha, J. Fu, U. Topcu, and R. M. Murray. Automata theory meets approximate dynamic
programming: Optimal control with temporal logic constraints. In Decision and Control
(CDC), 2016 IEEE 55th Conference on, pages 434–440. IEEE, 2016.

[136] T. J. Perkins and A. G. Barto. Lyapunov-constrained action sets for reinforcement learning. In
Proceedings of Conference on Machine Learning, volume 1, pages 409–416, 2001.

[137] M. Pirotta, M. Restelli, A. Pecorino, and D. Calandriello. Safe policy iteration. In International
Conference on Machine Learning, pages 307–315, 2013.

[138] N. Piterman, A. Pnueli, and Y. Saar. Synthesis of reactive (1) designs. In Verification, Model
Checking, and Abstract Interpretation, pages 364–380. Springer, 2006.

[139] A. Pnueli. The temporal semantics of concurrent programs. Theoretical computer science, 13
(1):45–60, 1981.

[140] A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module. In Automata,
Languages and Programming, pages 652–671. Springer, 1989.

[141] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of Symposium
on Principles of Programming Languages, pages 179–190, 1989.

155

[142] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in
neural information processing systems, pages 305–313, 1989.

[143] D. A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation.
Neural Computation, 3(1):88–97, 1991.

[144] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Vecerik, T. Lampe, Y. Tassa,
T. Erez, and M. Riedmiller. Data-efficient deep reinforcement learning for dexterous manipu-
lation. arXiv preprint arXiv:1704.03073, 2017.

[145] A. Rajeswaran, K. Lowrey, E. V. Todorov, and S. M. Kakade. Towards generalization and
simplicity in continuous control. In Advances in Neural Information Processing Systems,
pages 6550–6561, 2017.

[146] D. Ramachandran and E. Amir. Bayesian inverse reinforcement learning. Urbana, 51(61801):
1–4, 2007.

[147] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. Maximum margin planning. In Proceedings
of the 23rd international conference on Machine learning, pages 729–736. ACM, 2006.

[148] N. D. Ratliff, D. Silver, and J. A. Bagnell. Learning to search: Functional gradient techniques
for imitation learning. Autonomous Robots, 27(1):25–53, 2009.

[149] S. Ross and D. Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pages 661–668,
2010.

[150] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 627–635, 2011.

[151] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. Bagnell, and
M. Hebert. Learning monocular reactive uav control in cluttered natural environments. In
2013 IEEE international conference on robotics and automation, pages 1765–1772. IEEE,
2013.

[152] R. Y. Rubinstein and B. Melamed. Modern simulation and modeling, volume 7. Wiley New
York, 1998.

[153] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages
1889–1897, 2015.

[154] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

[155] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[156] A. Schwartz. A reinforcement learning method for maximizing undiscounted rewards. In
Proceedings of Conference on Machine Learning, volume 93, pages 298–305, 1993.

156

[157] L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences of the
United States of America, 39(10):1095, 1953.

[158] K. Shiarlis, M. Wulfmeier, S. Salter, S. Whiteson, and I. Posner. Taco: Learning task
decomposition via temporal alignment for control. In International Conference on Machine
Learning, pages 4661–4670, 2018.

[159] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic
policy gradient algorithms. In Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pages 387–395, 2014.

[160] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. nature, 529(7587):484–489, 2016.

[161] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge.
Nature, 550(7676):354, 2017.

[162] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[163] S. Singh, R. L. Lewis, and A. G. Barto. Where do rewards come from. In Proceedings of
the annual conference of the cognitive science society, pages 2601–2606. Cognitive Science
Society, 2009.

[164] M. Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course Technology
Boston, 2006.

[165] S. L. Smith, J. Tumova, C. Belta, and D. Rus. Optimal path planning for surveillance
with temporal logic constraints. The International Journal of Robotics Research, page
0278364911417911, 2011.

[166] S. Sohail and F. Somenzi. Safety first: a two-stage algorithm for the synthesis of reactive
systems. International Journal on Software Tools for Technology Transfer, 15(5-6):433–
454, 2013. doi: 10.1007/s10009-012-0224-3. URL http://dx.doi.org/10.1007/
s10009-012-0224-3.

[167] A. L. Strehl, L. Li, and M. L. Littman. Reinforcement learning in finite mdps: Pac analysis.
The Journal of Machine Learning Research, 10:2413–2444, 2009.

[168] S. Summers, D. M. Raimondo, C. N. Jones, J. Lygeros, and M. Morari. Fast explicit nonlinear
model predictive control via multiresolution function approximation with guaranteed stability.
IFAC Proceedings Volumes, 43(14):533–538, 2010.

[169] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3(1):9–44, 1988.

[170] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press, 1998.

157

[171] I. Szita and A. Lörincz. Learning tetris using the noisy cross-entropy method. Learning, 18
(12), 2006.

[172] N. Taghipour, A. Kardan, and S. S. Ghidary. Usage-based web recommendations: a rein-
forcement learning approach. In Proceedings of the 2007 ACM conference on Recommender
systems, pages 113–120. ACM, 2007.

[173] G. Tesauro. TD-gammon, a self-teaching backgammon program, achieves master-level play.
Neural Computation, 6(2):215–219, 1994.

[174] W. Thomas, T. Wilke, et al. Automata, logics, and infinite games: a guide to current research,
volume 2500. Springer Science & Business Media, 2002.

[175] M.-H. Tsai, Y.-K. Tsay, and Y.-S. Hwang. Goal for games, omega-automata, and logics. In
Computer Aided Verification, pages 883–889. Springer, 2013.

[176] M. Turchetta, F. Berkenkamp, and A. Krause. Safe exploration in finite markov decision
processes with gaussian processes. In Advances in Neural Information Processing Systems,
pages 4312–4320, 2016.

[177] E. Uchibe and K. Doya. Constrained reinforcement learning from intrinsic and extrinsic
rewards. In 2007 IEEE 6th International Conference on Development and Learning, pages
163–168. IEEE, 2007.

[178] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for Concur-
rency, pages 238–266. Springer, 1996.

[179] K. P. Wabersich and M. N. Zeilinger. Safe exploration of nonlinear dynamical systems: A
predictive safety filter for reinforcement learning. arXiv preprint arXiv:1812.05506, 2018.

[180] A. Wachi, Y. Sui, Y. Yue, and M. Ono. Safe exploration and optimization of constrained mdps
using gaussian processes. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[181] C. J. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279–292, 1992.

[182] M. Wen and U. Topcu. Probably approximately correct learning in stochastic games with
temporal logic specifications. In IJCAI, pages 3630–3636, 2016.

[183] M. Wen and U. Topcu. Constrained cross-entropy method for safe reinforcement learning. In
Advances in Neural Information Processing Systems, pages 7450–7460, 2018.

[184] M. Wen, F. Memarian, and U. Topcu. Task-oriented deep inverse reinforcement learning.
submitted.

[185] M. Wen, R. Ehlers, and U. Topcu. Correct-by-synthesis reinforcement learning with temporal
logic constraints. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, pages 4983–4990. IEEE, 2015.

[186] M. Wen, I. Papusha, and U. Topcu. Learning from demonstrations with high-level side
information. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, 2017.

158

[187] M. Wigness, J. G. Rogers, and L. E. Navarro-Serment. Robot navigation from human
demonstration: Learning control behaviors. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1150–1157. IEEE, 2018.

[188] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. In Reinforcement Learning, pages 5–32. Springer, 1992.

[189] E. Wolff, U. Topcu, and R. Murray. Optimal control with weighted average costs and temporal
logic specifications. In Proceedings of Robotics: Science and Systems, Sydney, Australia, July
2012. doi: 10.15607/RSS.2012.VIII.057.

[190] E. M. Wolff, U. Topcu, and R. M. Murray. Optimal control with weighted average costs and
temporal logic specifications. In Robotics: Science and Systems, 2012.

[191] E. M. Wolff, U. Topcu, and R. M. Murray. Efficient reactive controller synthesis for a fragment
of linear temporal logic. In Robotics and Automation (ICRA), 2013 IEEE International
Conference on, pages 5033–5040. IEEE, 2013.

[192] M. Wulfmeier, P. Ondruska, and I. Posner. Deep inverse reinforcement learning. CoRR,
abs/1507.04888, 2015.

[193] M. Wulfmeier, P. Ondruska, and I. Posner. Maximum entropy deep inverse reinforcement
learning. arXiv preprint arXiv:1507.04888, 2015.

[194] M. Wulfmeier, D. Z. Wang, and I. Posner. Watch this: Scalable cost-function learning for path
planning in urban environments. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2089–2095. IEEE, 2016.

[195] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner. Large-scale cost function
learning for path planning using deep inverse reinforcement learning. The International
Journal of Robotics Research, 36(10):1073–1087, 2017.

[196] A. Yahya, A. Li, M. Kalakrishnan, Y. Chebotar, and S. Levine. Collective robot reinforcement
learning with distributed asynchronous guided policy search. In Intelligent Robots and Systems
(IROS), 2017 IEEE/RSJ International Conference on, pages 79–86. IEEE, 2017.

[197] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero. Extending the openai gym
for robotics: a toolkit for reinforcement learning using ros and gazebo. arXiv preprint
arXiv:1608.05742, 2016.

[198] T. Zhang, G. Kahn, S. Levine, and P. Abbeel. Learning deep control policies for autonomous
aerial vehicles with mpc-guided policy search. In Robotics and Automation (ICRA), 2016
IEEE International Conference on, pages 528–535. IEEE, 2016.

[199] G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N. J. Yuan, X. Xie, and Z. Li. Drn: A deep
reinforcement learning framework for news recommendation. In Proceedings of the 2018
World Wide Web Conference, pages 167–176. International World Wide Web Conferences
Steering Committee, 2018.

159

[200] Z. Zheng, J. Oh, and S. Singh. On learning intrinsic rewards for policy gradient methods. In
Advances in Neural Information Processing Systems, pages 4644–4654, 2018.

[201] Z. Zhou, M. Bloem, and N. Bambos. Infinite time horizon maximum causal entropy inverse
reinforcement learning. IEEE Transactions on Automatic Control, 63(9):2787–2802, 2018.

[202] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforce-
ment learning. In AAAI, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

[203] W. Zielonka. Perfect-information stochastic parity games. In International Conference on
Foundations of Software Science and Computation Structures, pages 499–513. Springer, 2004.

160

	Reinforcement Learning With High-Level Task Specifications
	Recommended Citation

	Reinforcement Learning With High-Level Task Specifications
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Keywords
	Subject Categories

	tmp.1571836685.pdf.qjF_A

