19 research outputs found

    Non-myopic information theoretic sensor management of a single pan\u2013tilt\u2013zoom camera for multiple object detection and tracking

    Get PDF
    Detailed derivation of an information theoretic framework for real PTZ management.Introduction and implementation of a non-myopic strategy.Large experimental validation, with synthetic and realistic datasets.Working demonstration of myopic strategy on an off-the-shelf PTZ camera. Automatic multiple object tracking with a single pan-tilt-zoom (PTZ) cameras is a hard task, with few approaches in the literature, most of them proposing simplistic scenarios. In this paper, we present a novel PTZ camera management framework in which at each time step, the next camera pose (pan, tilt, focal length) is chosen to support multiple object tracking. The policy can be myopic or non-myopic, where the former analyzes exclusively the current frame for deciding the next camera pose, while the latter takes into account plausible future target displacements and camera poses, through a multiple look-ahead optimization. In both cases, occlusions, a variable number of subjects and genuine pedestrian detectors are taken into account, for the first time in the literature. Convincing comparative results on synthetic data, realistic simulations and real trials validate our proposal, showing that non-myopic strategies are particularly suited for a PTZ camera management

    On-line control of active camera networks

    Get PDF
    Large networks of cameras have been increasingly employed to capture dynamic events for tasks such as surveillance and training. When using active (pan-tilt-zoom) cameras to capture events distributed throughout a large area, human control becomes impractical and unreliable. This has led to the development of automated approaches for on-line camera control. I introduce a new approach that consists of a stochastic performance metric and a constrained optimization method. The metric quantifies the uncertainty in the state of multiple points on each target. It uses state-space methods with stochastic models of the target dynamics and camera measurements. It can account for static and dynamic occlusions, accommodate requirements specific to the algorithm used to process the images, and incorporate other factors that can affect its results. The optimization explores the space of camera configurations over time under constraints associated with the cameras, the predicted target trajectories, and the image processing algorithm. While an exhaustive exploration of this parameter space is intractable, through careful complexity analysis and application domain observations I have identified appropriate alternatives for reducing the space. Specifically, I reduce the spatial dimension of the search by dividing the optimization problem into subproblems, and then optimizing each subproblem independently. I reduce the temporal dimension of the search by using empirically-based heuristics inside each subproblem. The result is a tractable optimization that explores an appropriate subspace of the parameters, while attempting to minimize the risk of excluding the global optimum. The approach can be applied to conventional surveillance tasks (e.g., tracking or face recognition), as well as tasks employing more complex computer vision methods (e.g., markerless motion capture or 3D reconstruction). I present the results of experimental simulations of two such scenarios, using controlled and natural (unconstrained) target motions, employing simulated and real target tracks, in realistic scenes, and with realistic camera networks

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Markov decision processes with applications in wireless sensor networks: A survey

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Multiple-objective sensor management and optimisation

    No full text
    One of the key challenges associated with exploiting modern Autonomous Vehicle technology for military surveillance tasks is the development of Sensor Management strategies which maximise the performance of the on-board Data-Fusion systems. The focus of this thesis is the development of Sensor Management algorithms which aim to optimise target tracking processes. Three principal theoretical and analytical contributions are presented which are related to the manner in which such problems are formulated and subsequently solved.Firstly, the trade-offs between optimising target tracking and other system-level objectives relating to expected operating lifetime are explored in an autonomous ground sensor scenario. This is achieved by modelling the observer trajectory control design as a probabilistic, information-theoretic, multiple-objective optimisation problem. This novel approach explores the relationships between the changes in sensor-target geometry that are induced by tracking performance measures and those relating to power consumption. This culminates in a novel observer trajectory control algorithm based onthe minimax approach.The second contribution is an analysis of the propagation of error through a limited-lookahead sensor control feedback loop. In the last decade, it has been shown that the use of such non-myopic (multiple-step) planning strategies can lead to superior performance in many Sensor Management scenarios. However, relatively little is known about the performance of strategies which use different horizon lengths. It is shown that, in the general case, planning performance is a function of the length of the horizon over which the optimisation is performed. While increasing the horizon maximises the chances of achieving global optimality, by revealing information about the substructureof the decision space, it also increases the impact of any prediction error, approximations, or unforeseen risk present within the scenario. These competing mechanisms aredemonstrated using an example tracking problem. This provides the motivation for a novel sensor control methodology that employs an adaptive length optimisation horizon. A route to selecting the optimal horizon size is proposed, based on a new non-myopic risk equilibrium which identifies the point where the two competing mechanisms are balanced.The third area of contribution concerns the development of a number of novel optimisation algorithms aimed at solving the resulting sequential decision making problems. These problems are typically solved using stochastic search methods such as Genetic Algorithms or Simulated Annealing. The techniques presented in this thesis are extensions of the recently proposed Repeated Weighted Boosting Search algorithm. In its originalform, it is only applicable to continuous, single-objective, ptimisation problems. The extensions facilitate application to mixed search spaces and Pareto multiple-objective problems. The resulting algorithms have performance comparable with Genetic Algorithm variants, and offer a number of advantages such as ease of implementation and limited tuning requirements

    Active Information Acquisition With Mobile Robots

    Get PDF
    The recent proliferation of sensors and robots has potential to transform fields as diverse as environmental monitoring, security and surveillance, localization and mapping, and structure inspection. One of the great technical challenges in these scenarios is to control the sensors and robots in order to extract accurate information about various physical phenomena autonomously. The goal of this dissertation is to provide a unified approach for active information acquisition with a team of sensing robots. We formulate a decision problem for maximizing relevant information measures, constrained by the motion capabilities and sensing modalities of the robots, and focus on the design of a scalable control strategy for the robot team. The first part of the dissertation studies the active information acquisition problem in the special case of linear Gaussian sensing and mobility models. We show that the classical principle of separation between estimation and control holds in this case. It enables us to reduce the original stochastic optimal control problem to a deterministic version and to provide an optimal centralized solution. Unfortunately, the complexity of obtaining the optimal solution scales exponentially with the length of the planning horizon and the number of robots. We develop approximation algorithms to manage the complexity in both of these factors and provide theoretical performance guarantees. Applications in gas concentration mapping, joint localization and vehicle tracking in sensor networks, and active multi-robot localization and mapping are presented. Coupled with linearization and model predictive control, our algorithms can even generate adaptive control policies for nonlinear sensing and mobility models. Linear Gaussian information seeking, however, cannot be applied directly in the presence of sensing nuisances such as missed detections, false alarms, and ambiguous data association or when some sensor observations are discrete (e.g., object classes, medical alarms) or, even worse, when the sensing and target models are entirely unknown. The second part of the dissertation considers these complications in the context of two applications: active localization from semantic observations (e.g, recognized objects) and radio signal source seeking. The complexity of the target inference problem forces us to resort to greedy planning of the sensor trajectories. Non-greedy closed-loop information acquisition with general discrete models is achieved in the final part of the dissertation via dynamic programming and Monte Carlo tree search algorithms. Applications in active object recognition and pose estimation are presented. The techniques developed in this thesis offer an effective and scalable approach for controlled information acquisition with multiple sensing robots and have broad applications to environmental monitoring, search and rescue, security and surveillance, localization and mapping, precision agriculture, and structure inspection

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 1

    Get PDF
    This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) on August 3-5, 1993, and held at JSC Gilruth Recreation Center. SOAR included NASA and USAF programmatic overview, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations. More than 100 technical papers, 17 exhibits, a plenary session, several panel discussions, and several keynote speeches were included in SOAR '93

    Resource-aware plan recognition in instrumented environments

    Get PDF
    This thesis addresses the problem of plan recognition in instrumented environments, which is to infer an agent';s plans by observing its behavior. In instrumented environments such observations are made by physical sensors. This introduces specific challenges, of which the following two are considered in this thesis: - Physical sensors often observe state information instead of actions. As classical plan recognition approaches usually can only deal with action observations, this requires a cumbersome and error-prone inference of executed actions from observed states. - Due to limited physical resources of the environment it is often not possible to run all sensors at the same time, thus sensor selection techniques have to be applied. Current plan recognition approaches are not able to support the environment in selecting relevant subsets of sensors. This thesis proposes a two-stage approach to solve the problems described above. Firstly, a DBN-based plan recognition approach is presented which allows for the explicit representation and consideration of state knowledge. Secondly, a POMDP-based utility model for observation sources is presented which can be used with generic utility-based sensor selection algorithms. Further contributions include the presentation of a software toolkit that realizes plan recognition and sensor selection in instrumented environments, and an empirical evaluation of the validity and performance of the proposed models.Diese Arbeit behandelt das Problem der Planerkennung in instrumentierten Umgebungen. Ziel ist dabei das Erschließen der Pläne des Nutzers anhand der Beobachtung seiner Handlungen. In instrumentierten Umgebungen erfolgt diese Beobachtung über physische Sensoren. Dies wirft spezifische Probleme auf, von denen zwei in dieser Arbeit näher betrachtet werden: - Physische Sensoren beobachten in der Regel Zustände anstelle direkter Nutzeraktionen. Klassische Planerkennungsverfahren basieren jedoch auf der Beobachtung von Aktionen, was bisher eine aufwendige und fehlerträchtige Ableitung von Aktionen aus Zustandsbeobachtungen notwendig macht. - Aufgrund beschränkter Resourcen der Umgebung ist es oft nicht möglich alle Sensoren gleichzeitig zu aktivieren. Aktuelle Planerkennungsverfahren bieten keine Möglichkeit, die Umgebung bei der Auswahl einer relevanten Teilmenge von Sensoren zu unterstützen. Diese Arbeit beschreibt einen zweistufigen Ansatz zur Lösung der genannten Probleme. Zunächst wird ein DBN-basiertes Planerkennungsverfahren vorgestellt, das Zustandswissen explizit repräsentiert und in Schlussfolgerungen berücksichtigt. Dieses Verfahren bildet die Basis für ein POMDP-basiertes Nutzenmodell für Beobachtungsquellen, das für den Zweck der Sensorauswahl genutzt werden kann. Des Weiteren wird ein Toolkit zur Realisierung von Planerkennungs- und Sensorauswahlfunktionen vorgestellt sowie die Gültigkeit und Performanz der vorgestellten Modelle in einer empirischen Studie evaluiert
    corecore