18,659 research outputs found

    A mechanism for randomness

    Full text link
    We investigate explicit functions that can produce truly random numbers. We use the analytical properties of the explicit functions to show that certain class of autonomous dynamical systems can generate random dynamics. This dynamics presents fundamental differences with the known chaotic systems. We present realphysical systems that can produce this kind of random time-series. We report theresults of real experiments with nonlinear circuits containing direct evidence for this new phenomenon. In particular, we show that a Josephson junction coupled to a chaotic circuit can generate unpredictable dynamics. Some applications are discussed.Comment: Accepted in Physics Letters A (2002). 11 figures (.eps

    Another approach to Runge-Kutta methods

    Get PDF
    The condition equations are derived by the introduction of a system of equivalent differential equations, avoiding the usual formalism with trees and elementary differentials. Solutions to the condition equations are found by direct optimization, avoiding the necessity to introduce simplifying assumptions upon the Runge-Kutta coefficients. More favourable coefficients, in view of rounding errors, are found

    Competition and boundary formation in heterogeneous media: Application to neuronal differentiation

    Get PDF
    We analyze an inhomogeneous system of coupled reaction-diffusion equations representing the dynamics of gene expression during differentiation of nerve cells. The outcome of this developmental phase is the formation of distinct functional areas separated by sharp and smooth boundaries. It proceeds through the competition between the expression of two genes whose expression is driven by monotonic gradients of chemicals, and the products of gene expression undergo local diffusion and drive gene expression in neighboring cells. The problem therefore falls in a more general setting of species in competition within a non-homogeneous medium. We show that in the limit of arbitrarily small diffusion, there exists a unique monotonic stationary solution, which splits the neural tissue into two winner-take-all parts at a precise boundary point: on both sides of the boundary, different neuronal types are present. In order to further characterize the location of this boundary, we use a blow-up of the system and define a traveling wave problem parametrized by the position within the monotonic gradient: the precise boundary location is given by the unique point in space at which the speed of the wave vanishes

    Synchronicity From Synchronized Chaos

    Get PDF
    The synchronization of loosely coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical notion of synchronicity. Effectively unpredictable chaotic systems, coupled through only a few variables, commonly exhibit a predictable relationship that can be highly intermittent. We argue that the phenomenon closely resembles the notion of meaningful synchronicity put forward by Jung and Pauli if one identifies "meaningfulness" with internal synchronization, since the latter seems necessary for synchronizability with an external system. Jungian synchronization of mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system as in meteorological data assimilation. Internal synchronization provides a recipe for combining different models of the same objective process, a configuration that may also describe the functioning of conscious brains. In contrast to Pauli's view, recent developments suggest a materialist picture of semi-autonomous mind, existing alongside the observed world, with both exhibiting a synchronistic order. Basic physical synchronicity is manifest in the non-local quantum connections implied by Bell's theorem. The quantum world resides on a generalized synchronization "manifold", a view that provides a bridge between nonlocal realist interpretations and local realist interpretations that constrain observer choice .Comment: 1) clarification regarding the connection with philosophical synchronicity in Section 2 and in the concluding section 2) reference to Maldacena-Susskind "ER=EPR" relation in discussion of role of wormholes in entanglement and nonlocality 3) length reduction and stylistic changes throughou

    Enabling a Pepper Robot to provide Automated and Interactive Tours of a Robotics Laboratory

    Full text link
    The Pepper robot has become a widely recognised face for the perceived potential of social robots to enter our homes and businesses. However, to date, commercial and research applications of the Pepper have been largely restricted to roles in which the robot is able to remain stationary. This restriction is the result of a number of technical limitations, including limited sensing capabilities, and have as a result, reduced the number of roles in which use of the robot can be explored. In this paper, we present our approach to solving these problems, with the intention of opening up new research applications for the robot. To demonstrate the applicability of our approach, we have framed this work within the context of providing interactive tours of an open-plan robotics laboratory.Comment: 8 pages, Submitted to IROS 2018 (2018 IEEE/RSJ International Conference on Intelligent Robots and Systems), see https://bitbucket.org/pepper_qut/ for access to the softwar
    corecore