1,523 research outputs found

    Adaptive quantization for spectrum exchange information in mobile cognitive radio networks

    Get PDF
    To reduce the detection failure of the exchanging signal power onto the OFDM subcarrier signal at uniform quantization, dynamic subcarrier mapping is applied. Moreover, to addressing low SNR’s wall-less than pre-determine threshold, non-uniform quantization or adaptive quantization for the signal quantization size parameter is proposed. μ-law is adopted for adaptive quantization subcarrier mapping which is deployed in mobility environment, such as Doppler Effect and Rayleigh Fading propagation. In this works, sensing node received signal power then sampled into a different polarity positive and negative in μ-law quantization and divided into several segmentation levels. Each segmentation levels are divided into several sub-segment has representing one tone signal subcarrier number OFDM which has the number of quantization level and the width power. The results show that by using both methods, a significant difference is obtained around 8 dB compared to those not using the adaptive method

    Reinforcement-based data transmission in temporally-correlated fading channels: Partial CSIT scenario

    Get PDF
    Reinforcement algorithms refer to the schemes where the results of the previous trials and a reward-punishment rule are used for parameter setting in the next steps. In this paper, we use the concept of reinforcement algorithms to develop different data transmission models in wireless networks. Considering temporally-correlated fading channels, the results are presented for the cases with partial channel state information at the transmitter (CSIT). As demonstrated, the implementation of reinforcement algorithms improves the performance of communication setups remarkably, with the same feedback load/complexity as in the state-of-the-art schemes.Comment: Accepted for publication in ISWCS 201

    Cooperative Spectrum Sensing based on 1-bit Quantization in Cognitive Radio Networks

    Get PDF
    The wireless frequency spectrum is a very valuable resource in the field of communications. Over the years, different bands of the spectrum were licensed to various communications systems and standards. As a result, most of the easily accessible parts of it ended up being theoretically occupied. This made it somewhat difficult to accommodate new wireless technologies, especially with the rise of communications concepts such as the Machine to Machine (M2M) communications and the Internet of Things (IoT). It was necessary to find ways to make better use of wireless spectrum. Cognitive Radio is one concept that came into the light to tackle the problem of spectrum utilization. Various technical reports stated that the spectrum is in fact under-utilized. Many frequency bands are not heavily used over time, and some bands have low activity. Cognitive Radio (CR) Networks aim to exploit and opportunistically share the already licensed spectrum. The objective is to enable various kinds of communications while preserving the licensed parties' right to access the spectrum without interference. Cognitive radio networks have more than one approach to spectrum sharing. In interweave spectrum sharing scheme, cognitive radio devices look for opportunities in the spectrum, in frequency and over time. Therefore, and to find these opportunities, they employ what is known as spectrum sensing. In a spectrum sensing phase, the CR device scans certain parts of the spectrum to find the voids or white spaces in it. After that it exploits these voids to perform its data transmission, thus avoiding any interference with the licensed users. Spectrum sensing has various classifications and approaches. In this thesis, we will present a general review of the main spectrum sensing categories. Furthermore, we will discuss some of the techniques employed in each category including their respective advantages and disadvantages, in addition to some of the research work associated with them. Our focus will be on cooperative spectrum sensing, which is a popular research topic. In cooperative spectrum sensing, multiple CR devices collaborate in the spectrum sensing operation to enhance the performance in terms of detection accuracy. We will investigate the soft-information decision fusion approach in cooperative sensing. In this approach, the CR devices forward their spectrum sensing data to a central node, commonly known as a Fusion Center. At the fusion center, this data is combined to achieve a higher level of accuracy in determining the occupied parts and the empty parts of the spectrum while considering Rayleigh fading channels. Furthermore, we will address the issue of high power consumption due to the sampling process of a wide-band of frequencies at the Nyquist rate. We will apply the 1-bit Quantization technique in our work to tackle this issue. The simulation results show that the detection accuracy of a 1-bit quantized system is equivalent to a non-quantized system with only 2 dB less in Signal-to-Noise Ratio (SNR). Finally, we will shed some light on multiple antenna spectrum sensing, and compare its performance to the cooperative sensing

    Optimal Cooperative Spectrum Sensing for Cognitive Radio

    Get PDF
    The rapid increasing interest in wireless communication has led to the continuous development of wireless devices and technologies. The modern convergence and interoperability of wireless technologies has further increased the amount of services that can be provided, leading to the substantial demand for access to the radio frequency spectrum in an efficient manner. Cognitive radio (CR) an innovative concept of reusing licensed spectrum in an opportunistic manner promises to overcome the evident spectrum underutilization caused by the inflexible spectrum allocation. Spectrum sensing in an unswerving and proficient manner is essential to CR. Cooperation amongst spectrum sensing devices are vital when CR systems are experiencing deep shadowing and in a fading environment. In this thesis, cooperative spectrum sensing (CSS) schemes have been designed to optimize detection performance in an efficient and implementable manner taking into consideration: diversity performance, detection accuracy, low complexity, and reporting channel bandwidth reduction. The thesis first investigates state of the art spectrums sensing algorithms in CR. Comparative analysis and simulation results highlights the different pros, cons and performance criteria of a practical CSS scheme leading to the problem formulation of the thesis. Motivated by the problem of diversity performance in a CR network, the thesis then focuses on designing a novel relay based CSS architecture for CR. A major cooperative transmission protocol with low complexity and overhead - Amplify and Forward (AF) cooperative protocol and an improved double energy detection scheme in a single relay and multiple cognitive relay networks are designed. Simulation results demonstrated that the developed algorithm is capable of reducing the error of missed detection and improving detection probability of a primary user (PU). To improve spectrum sensing reliability while increasing agility, a CSS scheme based on evidence theory is next considered in this thesis. This focuses on a data fusion combination rule. The combination of conflicting evidences from secondary users (SUs) with the classical Dempster Shafter (DS) theory rule may produce counter-intuitive results when combining SUs sensing data leading to poor CSS performance. In order to overcome and minimise the effect of the counter-intuitive results, and to enhance performance of the CSS system, a novel state of the art evidence based decision fusion scheme is developed. The proposed approach is based on the credibility of evidence and a dissociability degree measure of the SUs sensing data evidence. Simulation results illustrate the proposed scheme improves detection performance and reduces error probability when compared to other related evidence based schemes under robust practcial scenarios. Finally, motivated by the need for a low complexity and minmum bandwidth reporting channels which can be significant in high data rate applications, novel CSS quantization schemes are proposed. Quantization methods are considered for a maximum likelihood estimation (MLE) and an evidence based CSS scheme. For the MLE based CSS, a novel uniform and optimal output entropy quantization scheme is proposed to provide fewer overhead complexities and improved throughput. While for the Evidence based CSS scheme, a scheme that quantizes the basic probability Assignment (BPA) data at each SU before being sent to the FC is designed. The proposed scheme takes into consideration the characteristics of the hypothesis distribution under diverse signal-to-noise ratio (SNR) of the PU signal based on the optimal output entropy. Simulation results demonstrate that the proposed quantization CSS scheme improves sensing performance with minimum number of quantized bits when compared to other related approaches

    Data Transmission in the Presence of Limited Channel State Information Feedback

    Get PDF

    Decentralized Narrowband and Wideband Spectrum Sensing with Correlated Observations

    Get PDF
    This dissertation evaluates the utility of several approaches to the design of good distributed sensing systems for both narrowband and wideband spectrum sensing problems with correlated sensor observations

    Transmitter Optimization in Multiuser Wireless Systems with Quality of Service Constraints

    Get PDF
    In this dissertation, transmitter adaptation for optimal resource allocation in wireless communication systems are investigated. First, a multiple access channel model is considered where many transmitters communicate with a single receiver. This scenario is a basic component of a. wireless network in which multiple users simultaneously access the resources of a wireless service provider. Adaptive algorithms for transmitter optimization to meet Quality-of-Service (QoS) requirements in a distributed manner are studied. Second, an interference channel model is considered where multiple interfering transmitter-receiver pairs co-exist such that a given transmitter communicates with its intended receiver in the presence of interference from other transmitters. This scenario models a wireless network in which several wireless service providers share the spectrum to offer their services by using dynamic spectrum access and cognitive radio (CR) technologies. The primary objective of dynamic spectrum access in the CR approach is to enable use of the frequency band dynamically and opportunistically without creating harmful interference to licensed incumbent users. Specifically, CR users are envisioned to be able to provide high bandwidth and efficient utilization of the spectrum via dynamic spectrum access in heterogeneous networks. In this scenario, a distributed method is investigated for combined precoder and power adaptation of CR transmitters for dynamic spectrum sharing in cognitive radio systems. Finally, the effect of limited feedback for transmitter optimization is analyzed where precoder adaptation uses the quantized version of interference information or the predictive vector quantization for incremental updates. The performance of the transmitter adaptation algorithms is also studied in the context of fading channels
    • …
    corecore