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ABSTRACT 

TRANSMITTER OPTIMIZATION IN MULTIUSER WIRELESS 

SYSTEMS WITH QUALITY OF SERVICE CONSTRAINTS 

Danda B. Rawat 
Old Dominion University, 2010 

Director: Dr. Dimitrie C. Popescu 

In this dissertation, transmitter adaptation for optimal resource allocation in wire­

less communication systems are investigated. First, a multiple access channel model 

is considered where many transmitters communicate with a single receiver. This 

scenario is a basic component of a wireless network in which multiple users simul­

taneously access the resources of a wireless service provider. Adaptive algorithms 

for transmitter optimization to meet Quality-of-Service (QoS) requirements in a dis­

tributed manner are studied. Second, an interference channel model is considered 

where multiple interfering transmitter-receiver pairs co-exist such that a given trans­

mitter communicates with its intended receiver in the presence of interference from 

other transmitters. This scenario models a wireless network in which several wire­

less service providers share the spectrum to offer their services by using dynamic 

spectrum access and cognitive radio (CR) technologies. The primary objective of 

dynamic spectrum access in the CR approach is to enable use of the frequency band 

dynamically and opportunistically without creating harmful interference to licensed 

incumbent users. Specifically, CR users are envisioned to be able to provide high 

bandwidth and efficient utilization of the spectrum via dynamic spectrum access in 

heterogeneous networks. In this scenario, a distributed method is investigated for 

combined precoder and power adaptation of CR transmitters for dynamic spectrum 



sharing in cognitive radio systems. Finally, the effect of limited feedback for trans­

mitter optimization is analyzed where precoder adaptation uses the quantized version 

of interference information or the predictive vector quantization for incremental up­

dates. The performance of the transmitter adaptation algorithms is also studied in 

the context of fading channels. 



V 

To my family. 



VI 

ACKNOWLEDGMENTS 

This work would not have been possible without the guidance, enthusiasm, and 

support of my supervisor, Dr. Dimitrie C. Popescu, to whom I owe a debt of many 

thanks. I would also like to acknowledge all members of the Department of Electri­

cal and Computer Engineering, Old Dominion University, especially the Graduate 

Program Director, Prof. Scharia Albin, and the Department Chair, Prof. Shirshak 

K. Dhali, for their guidance and support during my Ph.D. program. 

I would also like to thank Dr. Linda L. Vahala, Dr. Oscar R. Gonzalez and Prof. 

K. Vijayan Asari (Department of Electrical and Computer Engineering, University of 

Dayton) for being on my dissertation committee. I also want to thank Prof. Stephan 

Olariu (Department of Computer Science, Old Dominion University) for serving as 

an external member on my dissertation committee. 

I would also like to give my thanks to my colleagues, and other dedicated re­

searchers and scholars with whom I collaborated during my Ph.D. study. 

I would also like to thank my family for their support and encouragement. No 

acknowledgment will be completed without mentioning my wife, Chandra, who has 

supported my every step with a gentle sprite and always encouraged me. I am very 

much thankful to her. 



VII 

TABLE OF CONTENTS 

Page 

LIST OF FIGURES xi 

Chapter 

I INTRODUCTION 1 
1.1 SYSTEM MODEL 4 

1.1.1 Interference Channel and Transmitter Adaptation 5 
1.1.2 Multiple Access Channel and Transmitter Adaptation 7 

1.2 PROBLEM STATEMENT 14 
1.3 DISSERTATION OUTLINE 15 

II GRADIENT DESCENT BASED TRANSMITTER ADAPTATION 
WITH POWER CONTROL 18 

II. 1 SYSTEM MODEL AND PROBLEM STATEMENT 18 
11.2 IDEAL CHANNEL SCENARIO 20 

11.2.1 Algorithm 23 
11.2.2 Simulations and Numerical Results 24 
11.2.3 Algorithm Convergence 24 
11.2.4 Variation of User Powers and SINRs, and Fixed-Point Properties 26 

11.3 NON-IDEAL CHANNEL SCENARIO 33 
11.3.1 Transmitter Adaptation and Power Control 35 
11.3.2 Algorithm 38 
11.3.3 Simulations and Numerical Results 39 
11.3.4 Variation of user SINRs and Powers 39 
11.3.5 Tracking Variable Number of Active Users 41 
11.3.6 Tracking Variable Target SINRs of Active Users 42 

11.4 CHAPTER SUMMARY 45 
III INCREMENTAL STRATEGIES FOR TRANSMITTER ADAPTATION 

WITH POWER CONTROL 46 
111.1 GAME THEORY AND RELATED WORK 47 
111.2 SYSTEM MODEL AND PROBLEM STATEMENT 49 
111.3 JOINT PRECODER ADAPTATION AND POWER CONTROL 

GAME (JPAPCG) 50 
111.3.1 Precoder Adaptation Sub-Game (PASG) 52 
111.3.2 Power Control Sub-Game (PCSG) 54 
111.3.3 Nash Equilibrium for the JPAPCG 56 

111.4 ALGORITHM FOR INCREMENTAL STRATEGIES 57 
111.5 SIMULATIONS AND NUMERICAL RESULTS 60 

111.5.1 Algorithm Convergence 60 
111.5.2 User SINRs, Powers and Costs Variation, and Tracking Ability 

of the Algorithm for Variable Number of Active Users 63 



viii 

III.5.3 Tracking Ability of the Algorithm for Variable Target SINRs . 67 
111.6 PERFORMANCE COMPARISON 69 
111.7 CHAPTER SUMMARY 73 

IV TRANAMITTER ADAPTATION WITH POEWER CONTROL IN IN­
TERFERENCE SYSTEMS 74 

IV. 1 BACKGROUND AND RELATED WORK 75 
IV. 2 SYSTEM MODEL AND PROBLEM STATEMENT 77 

IV.2.1 System Model 77 
IV.2.2 Operating Constraints 80 
IV.2.3 Problem Formulation 83 

IV.3 RATE MAXIMIZATION IN SPECTRUM UNDERLAY 85 
IV.3.1 Distributed Solution in Spectrum Underlay Using Primal De­

composition Approach 86 
IV.3.2 Algorithm 88 

IV.4 RATE MAXIMIZATION IN SPECTRUM OVERLAY 91 
IV. 5 SIMULATIONS AND NUMERICAL EXAMPLES 94 
IV.6 CHAPTER SUMMARY 97 

V TRANSMITTER ADAPTATION WITH LIMITED FEEDBACK . . . . 98 
V.l INTERFERENCE INFORMATION QUANTIZATION 99 

V.l . l Algorithm 101 
V.1.2 Simulations and Numerical Results 102 

V.2 PREDECTIVE VECTOR QUANTIZATION FOR PRECODER 
ADAPTATION 103 
V.2.1 Predictive Vector Quantization (PVQ) 105 
V.2.2 The Algorithm 107 
V.2.3 Simulation and Numerical Results 108 

V.3 CHAPTER SUMMARY I l l 
VI TRANSMITTER ADAPTATION AND POWER CONTROL WITH 

FADING CHANNELS 113 
VI.l OUTAGE PROBABILITY 114 
VI.2 FADING CHANNEL MODEL AND SIMULATION RESULTS . . . . 115 
VI.3 CHAPTER SUMMARY 119 

VII CONCLUSIONS AND FUTURE WORK 120 

BIBLIOGRAPHY 124 

VITA 138 



IX 

LIST OF FIGURES 

Figure Page 

1 Interference system model with K links 6 

2 Precoder and SINR convergence for 100 trials of the proposed algo­
rithm for a system with K = 15 users in iV = 10 dimensions, target 
SINRs for all users equal to 1.95, and gradient constant fi = 10~3. 
Sum of effective bandwidths is 9.9153 - roughly 10% below the upper 
bound - and target SINRs can be achieved with arbitrary precision. . 27 

3 Precoder and SINR convergence for 100 trials of the proposed algo­
rithm for a system with K — 15 users in iV = 10 dimensions, target 
SINRs for all users equal to 1.99, and gradient constant \i — 10~3. 
Sum of effective bandwidths is 9.9833 - only about 1% below the up­
per bound - and target SINRs are achieved with limited precision. . . 28 

4 SINR variation for the system with K = 7 users in N = 5 dimensions, 
target SINRs {3.25, 3, 2.75, 2.5, 2.25, 2, 1.75}, for different gradient 
constants /i. One ensemble iteration is equal to 7 precoder updates in 
this case 30 

5 SINR Variation for the system with K = 5 users in N = 3 signal space 
dimensions for target SINRs {2.5,2.0,1.5,1.0,0.5} 40 

6 Power Variation for the system with K = 5 users in N = 3 signal 
space dimensions for target SINRs {2.5,2.0,1.5,1.0,0.5} 41 

7 Variation of user SINRs for the tracking example where one user is 
dropped from the system followed by subsequent addition of another 
user 43 

8 Variation of user powers for the tracking example where one user is 
dropped from the system followed by subsequent addition of another 
user 43 

9 Variation of user SINRs for K = 5 user in N = 3 signal space dimen­
sions tracking variable number of active users in the system 44 

10 Variation of user powers for K = 5 user in N = 3 signal space dimen­
sions for tracking variable number of active users in the system. . . . 45 



X 

11 Average number of ensemble iterations for convergence to optimal 
Nash equilibrium of JPAPCG for K = 6 and A = 5 in 1,000 trials. . . 62 

12 Average number of ensemble iterations for convergence to optimal 
Nash equilibrium of JPAPCG for fixed \i = 0.1 and f3 = 0.1 and 
increasing K and A" in 1,000 trials 64 

13 SINR Variation for the system with K = 5 users in N = 3 signal space 
dimensions from random initialization 65 

14 Power Variation for the system with K = 5 users in N = 3 signal 
space dimensions from random initialization 65 

15 Cost Variation for the system with K = 5 users in Â  = 3 signal space 
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CHAPTER I 

INTRODUCTION 

Current wireless networks consist of various wireless service providers which of­

fer a wide range of services from traditional voice service to delivery of multimedia 

contents. Wireless networks have become less expensive and more ubiquitous with 

increasing demand for wireless services and applications. With the worldwide suc­

cess of cellular telephone systems in wide area networks (WANs) and increasing 

deployment of wireless local area networks (WLANs) for home and office use, wire­

less communications is the fastest growing segment of the communication industry. 

Many new wireless applications such as wiring replacement (HomeRF, Bluetooth) 

networks, paging networks, wide area email access, sensor networks, and remote 

telemedecine are emerging from research ideas to concrete systems. However, the 

increasing demand for various wireless systems and services are tempered by scarce 

radio frequency (RF) spectrum and its usage fee or cost. The wireless applications 

which cannot be deployed with a regular revenue base, such as cellular telephone sys­

tems, cannot usually afford to pay for the RF spectrum and must therefore share use 

of various unlicensed bands such as the Unlicensed National Information Infrastruc­

ture (the UNII) bands at 5GHz and industrial, scientific and medical (ISM) bands 

at 900MHz and 2.4GHz. It is worth noting that the practical wireless systems are 

often multi-user in nature because system designs are often constrained by physical 

resources such as scarce RF spectrum and power, and thus a system that allows 

multiple users to share resources is often the most economical for service providers in 
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licensed bands such as in cellular systems, and is the most efficient way of utilizing 

precious RF spectrum in unlicensed bands. 

Unfortunately, shared spectrum use by multiple users implies mutual interference 

among systems whose owners and/or offered services and/or traffic types may be 

completely different, and spending development, maintenance and development costs 

for equipment and services for interference mitigation from another system might not 

be an attractive perspective for the wireless industry. Thus, interference mitigation 

through transmitter optimization along with power control has been and continues 

to be an important research topic for wireless systems and networks. 

As noted, the wireless systems are more public with the transmitter radiating 

a signal that can be received by any antenna in close proximity, interference and 

noise are much more prevalent in wnreless communication systems [2-4]. The re­

cent advances in the field of cognitive radios - software defined radios with some 

artificial intelligence - facilitate the wireless users by allowing them to adapt their 

operating parameters such as frequency, transmit power, output waveforms as well 

as their demodulation methods based on their operating environment [5-7]. The 

transmitter and receiver adapt their waveforms (or signatures) in response to inter­

ference conditions to enhance the system performance through interference avoidance 

methods [4,8,9], where the transmitter radio is instructed to adapt its waveform via 

feedback from the receiver [10-12]. Furthermore, transmitter optimization for inter­

ference avoidance through signature (or precoder or waveform or codeword) adapta­

tion can be either centralized where the optimal transmitter parameters are obtained 

at the common receiver and assigned to individual users [13-17] or decentralized 
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where users independently update their transmitter parameters in response to feed­

back from the receiver by broadcast [8,9,18] and can be obtained global optimal 

solution in a distributed manner. 

It is noted that the signature update is a transmitter optimization (or signal 

design) method to avoid the interference experienced from other users, in which the 

target SINRs may not be met. Therefore, combined signal design for interference 

avoidance and power control to meet QoS requirements has attracted research from 

both academia and industry. 

It is worth noting that, in centralized systems, the network overhead as well as 

computational complexity is increased significantly for large systems, and thus the 

distributed implementation of algorithms is more desirable. Furthermore, commu­

nication networks are becoming increasingly decentralized in decision making and 

dynamic spectrum sharing. Individual nodes in such distributed networks are re­

quired to adapt their transmitted signals in a way that reduces interference and thus 

facilitates multi-user communications. Moreover, the rapid growth of wireless tech­

nologies and its pervasive use in daily life is creating the scarcity in radio frequency 

(RF) spectrum. In addition, the transmit power in wireless networks is a key element 

in the management of interference, energy, and connectivity. Therefore, the RF spec­

trum and power are regarded as the scarce resources and their efficient utilization 

is highly recommended in order to increase spectral efficiency and thus the system 

capacity, and active management of wireless resources using transmitter optimization 

with power control are fundamental steps in multi-user wireless systems, which is the 

subject matter of this dissertation. 
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Therefore, this dissertation provides transmitter optimization algorithms (for in­

terference avoidance) and power control (for QoS requirement or to limit the interfer­

ence to other users) for resource allocation in wireless systems by investigating their 

applications to general vector channels. The gradient descent approach for signature 

update for interference avoidance and power adaptation to meet QoS requirements 

in terms of target SINRs for multiple access channel in uplink of wireless systems 

is investigated. Then, for the same system, a game theoretic approach is applied 

for joint signature adaptation for transmitter optimization with power adaptation 

to meet QoS requirements for which the game has an optimal point called a Nash 

Equilibrium. Then, a generalized method for transmitter optimization using pre-

coder adaptation with power control in interference systems is investigated, and the 

method is applicable for cognitive radio systems. Furthermore, high computational 

complexity at the receiver for large systems in centralized implementation motivates 

this research to use limited feedback from receiver to the individual transmitter so 

that individual transmitters adjust their operating parameters (such as transmit 

waveform and/or powers) in distributed manner and reach at optimal point. The 

effect of limited feedback in transmitter optimization is also investigated. 

1.1 SYSTEM MODEL 

With ever increasing diversity of wireless services and applications, the commu­

nication model can be considered as an interference channel [19-21] where neither 

transmitters nor receivers cooperate and each transmitter-receiver pair attempts to 

communicate in the presence of interference from all other users, or multiple access 
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channel [2,3,22] where transmitters do not cooperate but compete with each other 

for the same resources, and each transmitter represents a different user sending inde­

pendent information and the joint receiver (such as a common base station or access 

point) must decode information from all users, or broadcast channel where a single 

transmitter communicates with many receivers. 

In this dissertation, interference channel and multiple access channel scenarios are 

considered, and the system models for them are presented in the following section. 

1.1.1 Interference Channel and Transmitter Adaptation 

In the interference channel scenario, multiple transmitters communicate with their 

corresponding receivers and interfere with each other as depicted in Figure 1. The 

X-links interfering system is considered which comprised of K transmitters and K 

receivers operating in a signal space of dimension N, and each node is equipped with 

only one antenna. 

The iV-dimensional received signal at the kth receiver over one signaling interval 

is described as follows: 

K 

r/c = Hfc>fcxfc + ^2 HfcjXj+Wfc (111) 

where Hk,j is the N x N dimensional channel matrix between transmitter j and 

receiver k, x^ is the iV-dimensional transmitted signal vector, and w^ is the N-

dimensional additive white Gaussian noise (AWGN) at fcth receiver with E[wk\vJ] = 

a%l, where E[-] and [-]T, respectively, denote the expectation and conjugate transpose 

operations. For a given link k, the first term on the right hand side of the equation 
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TxK RxK 

Fig. 1: Interference system model with K links. 

(1.1.1) is the desired signal and the second term is interference from remaining K — 1 

links. 

This type of system model has been used in analyzing radio resource management 

in [23, 24] and optimal transmission strategies in [25, 26] using a game theoretic 

approach for transmitter optimization. It is noted that the system model (1.1.1) 

incorporates FDM, TDM, as well as CDM scenarios with the proper choice of the set 

of transmitter and receiver functions [27], and the FDM scheme actually corresponds 

to OFDM (orthogonal frequency division multiplexing), whereas the TDM scheme 

actually corresponds to SCCP (single carrier with a cyclic prefix) and CDM scheme 
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covers code division multiple access (CDMA). It is also noted that this type of system 

model incorporates the scenario where incumbent primary users and secondary users 

co-exist and transmit simultaneously provided that the secondary users are restricted 

not to create harmful interference to incumbent primary users. 

The interference system model (1.1.1) is a general one and can be modified to 

represent the multiple access channel scenario where multiple transmitters commu­

nicate with a single receiver. In other words, the multiple access channel model is 

a special case of the interference channel model, and is the subject matter of the 

following section. 

1.1.2 Multiple Access Channel and Transmitter Adaptation 

In multiple access channel scenarios, many transmitters communicate with a com­

mon receiver and potentially interfere with each others' data stream at the receiver. 

For instance, the uplink of a cellular system after ignoring the out-of-the- cell inter­

ference, access-point, or infrastructure based wireless LAN and reporting of sensed 

information by sensor nodes to their common central unit/node are examples of 

the multi-user wireless systems as well as prototypical examples of multiple access 

channel. 

For multiuser communication systems, uplink of a wireless system is considered 

with K active users communicating with a centralized base station in a signal space of 

dimension N where non-ideal channels between users and base station are explicitly 

considered for which the A-dimensional received signal at the base station receiver 



for one signaling interval is given by the expression [4,27] 

K 

r = J^H fcx fe + w (1.1.2) 
fe=i 

where H^ is NxN dimensional channel matrix between a user k and the base station, 

Xfc is the iV-dimensional transmit signal vector of user k, i.e. 

xfc = Sfcp!bfc (1.1.3) 

with N x M dimensional unit norm signature matrix S^ = [s\ ... sjj. . . . SjJ], the 

transmit frame of symbol vector b& = [b\ ... bk ... bM]T and the transmitted power 

matrix Pfc = diagjp^ . . .pk .. -pM} for user k which transmits M symbols, and 

w is the AWGN that corrupts the received signal with zero-mean and covariance 

matrix W = E'fww1"]. As noted in the case of interference channel scenario, the 

system model (1.1.2), as in (1.1.1), still incorporates FDM, TDM, as well as CDM 

scenarios with the proper choice of the set of transmitter and receiver functions [27]. 

It is worth noting that the CDMA enables multiuser communications along with 

efficient utilization of available spectrum and transmitter power in wireless systems 

[4,17,28-32], and has been proposed for use in traditional as well as future generation 

wireless systems. 

Now a simple scenario is considered where a user k has single signature s^ (i.e., 

the transmit signal vector x^ = bk^/pkSk), and the system model (1.1.2) becomes 

K 

r = ^b f c v /p^H f cs f c + w (1.1.4) 
fc=i 
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and for ideal channel consideration (i.e., the channel matrix H^ = I, Vfc), the received 

signal (1.1.4) can be written as 

K 

r = ] T > v / R s f c + w = SP1 /2b + w (1.1.5) 
fc=i 

where S = [ s i , . . . ,sk,... ,SK] is the N x K signature matrix having as 

columns the unit-norm signatures {sk}^=i of active users in the system, P = 

diagjpi,. .. ,pk, •.. ,'PK} is the K x K diagonal matrix containing transmit powers 

of active users, and b = [b\ ... bk ... &A']T is the vector containing the information 

symbols transmitted by users. 

Consider that a receiver uses a linear receiver vector ck, which is assumed to be 

unit norm, to estimate the symbol transmitted by a given user k, and the estimate 

is computed as 

h = c j r = bfcy/pjTcfcSfc + c M ^ bey/p~ese + n\ (1.1.6) 

desired signal v v / 
interference + noise 

Then, from the perspective of user k, the signal-to-interference-plus-noise-ratio 

(SINR) for the received signal in (1.1.5) can be expressed as 

Pkjcjsk)2 

Ik = —^ (I-1-7) 
£ pe(clsef + E[(cT

knf] 

Formally, the denominator of the SINR in (1.1.7) is defined as the user interference 
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function 

jk = Y2 M c* s*)2 + Ei(cln)2] = cl \ Y^ P*stsJ + W cfc = c^Rfccfc (1.1. 

Rfc 

where 

K 

Rfc= Y, P^SJ + W = SPST^+ W -pksksj = R - pksksj (1.1.9) 

is the correlation matrix of the interference-plus-noise experienced by user k, and 

R = £[ r r T ] = S P S T + W (1.1.10) 

is the correlation matrix of the received signal in equation (1.1.5). It is important to 

note that the interference function ik in (1.1.8) for a given user k depends explicitly 

on user fc's receiver filter ck as well as on all the other user signatures ŝ  and powers 

Pi, for £ j^ k. Furthermore, the interference function ik depends implicitly on user fc's 

signature, since the receiver filter ck depends on sk, however, it does not depend on 

user k's power. It is also noted that interference function has been defined in previous 

work on power control [33] as well as both power and signature adaptation [34,35] 

In the case of matched filter (MF) receivers c^ = s^, Vfc, the interference function 

(1.1.8) can be expressed as 

*MF = sjRfcsfc ( L L 1 1 ) 
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and the user k SINR expression (1.1.7) can be expressed as 

,MF _ Pk 
Sk iifcSfc 

By looking at the equation (1.1.12), it can be seen that the maximization of 

SINR of user k is equivalent to minimization of denominator term of SINR for a 

given power pk- Therefore, in this case, user k signature is updated by replacing 

it with the eigenvector corresponding to the minimum eigenvalue of the matrix R/, 

which implies maximization of the user SINR ^k [9], and the method is known as the 

Eigen algorithm. 

The MMSE (minimum mean square error) algorithm for interference avoidance 

is an alternative to the matched filter based approach. The idea behind the MMSE 

filter [36] is to minimize the mean squared error (MSE) between the filter output and 

the transmitted information symbol, and is the optimal linear multiuser detector that 

maximizes also the SINR [4,36,37]. The unit norm MMSE receiver filter c^ is [4,36] 

ck = , T
R f c / f c . ; , \/k (1.1.13) 

In this case, the interference expression (1.1.8) for user k becomes 

^MMSE = BkR~ksk 

s f c R
f c

 sk 

and the corresponding SINR expression (1.1.7) for user k with MMSE receivers is 

MMSE _n C T R - I S / T , 1C-N 
7fc - PkSkti-k sk (1.1.15) 
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In this case, user signatures are replaced by their corresponding MMSE receiver filters 

Cfc which implies the maximization of the user SINR 7 f c
M M S E [18] . 

Formally, interference avoidance algorithms (the Eigen algorithm and the MMSE 

algorithm) for transmitter optimization are stated as follows: 

1. Start with randomly initialized user signature ensemble specified by {sk}^=l, 

powers {pfcj^L^ the noise covariance matrix W and the tolerance e. 

2. For each user k = 1 , . . . , K 

a) Compute the autocorrelation matrix R^ of the interference-plus-noise ex­

perienced by user k 

b) Replace current signature of user k with the minimum eigenvector of R^ 

for Eigen algorithm 

OR 

Replace current signature of user k with the MMSE receiver filter for MMSE 

interference avoidance 

3. Repeat Step 2. until a fixed point is reached 

Numerically, a fixed point of the algorithm is defined with respect to a stopping 

criteria, and a fixed point is reached when the difference between two consecutive 

values of the stopping criteria is within a specified tolerance. For distributed im­

plementation of the algorithm, the stopping criteria can use the local information 

available to individual users. Therefore, for distributed implementation, numerically 

the fixed point is reached when the Euclidean distance between a given signature and 

its corresponding replacement is within some specified tolerance e. For centralized 
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implementation, the algorithm stops if the change in sum capacity is within specified 

tolerance e [4]. The convergence of the algorithms has been investigated analytically 

in [8,38]. At the fixed point, the signatures correspond to a Generalized Welch Bound 

Equality (GWBE) signature ensemble [4,9,17,18] in the case of overloaded system 

(i.e., K > N), and they satisfy the equality 

S P S T = ^ I \IK>N (1.1.16) 

Otherwise, in the case of underloaded systems (the number of users is less than the 

number of dimensions, i.e., K < N) and equally loaded (the number of users is equal 

to the number of dimensions, i.e., K = N), the choice of orthogonal signatures results 

in the optimal fixed point for interference avoidance algorithms. 

Application of interference avoidance algorithms to multiple access uplink scenar­

ios in which users are assigned multiple signatures for transmission similar to [39,40], 

and for non-ideal channels have been investigated in [41,42]. In this case the algo­

rithms converge to sum capacity with the maximization of signature ensembles. 

It is worth noting that signals, with non-orthogonal signatures, transmitted at 

the same time by different transmitters interfere with each other at the receiver and 

thus create multiple access interference (MAI) [37]. Therefore, in wireless systems, 

minimization of the MAI effects to increase spectral efficiency and meet specified QoS 

requirements for reliable communication are central problems. In order to solve those 

problems, the transmitters in an uplink of the system may adjust their signatures 

and/or powers, and numerous algorithms have been proposed for signature and/or 

power adaptation in the systems [4,17,30-32]. Furthermore, uplink signals in the 
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system are also affected by fading channels and propagation through multipath which 

further degrades their quality at the receiver. Algorithms for signature optimization 

for uplink systems with multipath are discussed in [42-44]. However, these algorithms 

focus exclusively on the optimization of uplink signatures, and do not adapt power 

and specify QoS requirements for users in the system. 

In order to have successful communication, the instantaneous SINR of a link 

should be greater than or equal to minimum SINR. If the instantaneous SINR is 

lower than minimum SINR requirement, the user should be either dropped or handed 

over to other base station. The alternative approach of this scheme is to adjust the 

power level through an adaptive algorithm in order to meet target SINR along with 

precoder adaptation. Therefore, in order to perform optimal resource allocation 

in wireless systems, wireless systems need active management of wireless resources 

through adaptive algorithms by using precoder/signature update for interference mit­

igation and power control to match the target SINR in an uplink of a wireless system. 

Where as in interference systems, power control along with precoder adaptation helps 

to control the interference created to other links/users. 

1.2 PROBLEM STATEMENT 

The main objectives of this dissertation are to: 

i. Investigate adaptive algorithms for decentralized based precoder adaptation with 

power control in multiple access channels by using: 

a. Gradient descent based approach, and 

b. Game theory with incremental strategies. 
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ii. Investigate adaptive algorithms for decentralized precoder adaptation with power 

control in interference channels with their applications to cognitive radio systems 

for dynamic spectrum sharing. 

iii. Analyze the effect of limited feedback for transmitter adaptation in decentralized 

implementation of the algorithms. 

iv. Analyze the effect of fading channels in the implementation of transmitter adap­

tation algorithms. 

1.3 DISSERTATION OUTLINE 

The dissertation is organized as follows: Chapter II describes the gradient descent 

based signature adaptation for interference avoidance and power control for target 

SINR matching for active users in the uplink of a wireless system. There are two 

scenarios; one is with ideal channel and the other is with non-ideal channel between 

the user and the base station, the channel between each user and the base station 

is assumed to be known. A matched filter is assumed to be used at the receiver 

which simplifies the receiver complexity. In an uplink system, transmitters' symbols 

are assumed to be independent of each other. In order to implement the proposed 

algorithms in a distributed manner, the common receiver broadcasts the correlation 

matrix of the received signal or the received signal itself to the users. The work 

presented in Chapter II and III maintains these assumptions. 

Chapter III presents the incremental strategies for transmitter optimization by 

adapting signature and power control using a game theoretic approach for interference 

avoidance and power control in non-ideal channel scenario. It is noted that the 
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gradient descent based algorithm does not always converge to optimal point, since 

it might be trapped at sub-optimal points. Therefore the game theoretic approach 

for signature and power adaptation is applied since it gives a socially optimal point 

called a Nash equilibrium. In this approach, the optimal point for the algorithm 

is presented. We also present the tracking ability of algorithm in terms of number 

of active users and/or different QoS requirements in terms of different target SINR 

requirements. 

Chapter IV describes the transmitter optimization and power control in interfer­

ence systems, and the proposed approach is applicable to both conventional and cog­

nitive radio systems. In dynamic spectrum access, unlicensed secondary users access 

the spectrum (which is not licensed to them) without creating harmful interference 

to licensed primary users. Both analytical and simulation results are presented for 

an optimal point of the proposed algorithm. 

Chapter V presents the effect of the transmitter optimization with limited feed­

back. The simulation results are presented for two scenarios: First, by quantizing the 

interference information and feeding it back to transmitter for the signature adap­

tation. In this case, the interference information is quantized using both uniform 

and non-uniform quantization and compare them in terms of distortion introduced 

by them. Second, the effect of limited feedback is studied by using predictive vector 

quantization (PVQ) for incremental updates of precoders. The effect of PVQ is also 

compared with that of random vector quantization (RVQ) of precoders. 

Chapter VI deals with the average channel and each channel realization of fast 

fading channels for distributed transmitter optimization algorithms as well as with 

the comparison between them in terms of outage probabilities. 
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Chapter VII concludes the dissertation with discussions and future directions of 

research work. 

Most of the results in this dissertation have been presented in part at various 

IEEE conferences and published in part in IEEE transactions. The work presented 

in Chapter II was published in proceedings of The IEEE 41st Annual Asilomar Con­

ference on Signals, Systems, and Computers [45] and the 5th IEEE Consumer Com­

munications and Networking Conference [46]. The results presented in Chapter III 

were presented in part at the 2008 IEEE Global Telecommunications Conference [47] 

and published in the IEEE Transactions on Systems, Man, and Cybernetics: Part 

B [48]. Results of Chapter IV were presented in part at The 2nd IEEE Interna­

tional Workshop on Dynamic Spectrum Access and Cognitive Radio Networks [49]. 

Chapter V was presented in part at the IEEE 41st Annual Asilomar Conference on 

Signals, Systems and Computers [50]. 

This dissertation uses IEEE Transaction style for the bibliography and citation. 
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C H A P T E R II 

GR AD IEN T DESCENT BASED TRANSMITTER 

ADAPTATION W I T H P O W E R CONTROL 

This chapter presents distributed Gradient Descent (GD) based transmitter adap­

tation for interference avoidance, and power update to meet a QoS requirement. 

Specifically, this chapter deals with optimization of uplink precoders and powers for 

a multiple access wireless system in distributed manner in which the target SINRs 

are met to satisfy the QoS requirements of active users. 

Section II. 1 deals with the problem statement for precoder adaptation with power 

control for an uplink of a wireless system in multiple access scenario. We investigate 

the gradient descent based transmitter optimization with power control for ideal 

channel case in Section II.2, and the method is extended to non-ideal channel scenario 

in Section II.3 where the channel between users and the base station are explicitly 

considered. In both cases, we perform the GD-based precoder update and power 

control to meet minimum SINR requirement. Simulation results are also presented 

which show the convergence of the proposed algorithm, and tracking ability of the 

algorithm for variable number of active users and/or variable QoS requirements. 

II. 1 SYSTEM MODEL A N D PROBLEM STATEMENT 

It is worth noting that the precoder (or waveform) design method in transmitter 

optimization performs interference avoidance which may not satisfy the user QoS re­

quirement. In order to have reliable communication, the instantaneous SINR should 
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be greater than or equal to target SINR for each user which is known as QoS require­

ment. If the calculated SINR is less than the required minimum SINR, there will be 

errors in transmission and the transmitter may need to re-transmit the information. 

In such cases, the transmitter will create burden/overhead in the network resulting 

in high interference to other active users. In this case, users who do not satisfy mini­

mum SINR requirements either should be dropped [51,52] from the system or handed 

over to other base station [53,54]. However, in this chapter, an alternative approach 

is considered in which the user can satisfy minimum SINR requirement by adapting 

its transmit power along with precoder adaptation to meet QoS requirements. 

A method is investigated for the precoder adaptation for transmitter optimization 

and power control for QoS requirement with specified user target SINR 7^ require­

ment, Vfc, where the target SINRs are admissible in the multiple access channel of 

uplink wireless system with signal dimension (or processing gain in the case of CDMA 

system) N if and only if the sum of their effective bandwidths 

e(^) = Trb' Vfc (ILL1) 

'Ik 

is less than the signal dimension N [17,55,56], i.e. 

\ " ^ A _ <N (II.1.2) 
^ 1 + it ~ 
Vfc >k 

It is important to note that the Eigen-algorithm and the MMSE algorithm pre­

sented in Chapter I may result in abrupt change in user precoders and/or pow­

ers [4,32,57], which motivates us to find alternative methods where the precoder are 
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replaced in the direction of optimal ones using gradient descent approach. In order 

to derive a distributed algorithm in which individual users adjust their precoders 

for transmitter optimization (or interference avoidance) and their powers to achieve 

specified target SINRs {jk}, V/c, a method is proposed with two separate updates for 

all users which consist of 

• a gradient based precoder update to decrease the effective interference and 

• power update designed to meet the specified target SINRs. 

I I .2 I D E A L C H A N N E L S C E N A R I O 

In this section, a simple scenario is considered where the channel between a user 

and the base station is considered as ideal, and the received signal at the base station 

receiver is given in (1.1.5). The SINR expression for matched filter receivers is given 

in (1.1.12) where the denominator is the effective interference, i.e. 

T T I Sk Rfcsfc /TT o 1 \ 

tk = slRksk = ^ (II.2.1) 
SfcSfc 

It is well known that the Rayleigh quotient of a matrix is minimized by the minimum 

eigenvector corresponding to the minimum eigenvalue of the matrix [58], and for a 

user k decrease in interference ik results in increase in SINR. It is noted that ik is a 

quadratic form with a positive definite matrix R&. As a consequence, ik is strictly 

convex over the ^-dimensional unit sphere {s^ls/c £ IR^, 11ŝ 11 = 1}, and has the 

global minimum point equal to the minimum eigenvalue of R^ achieved for precoder 

s/c equal to the corresponding minimum eigenvector of R^ [58]. Therefore, the global 
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minimum point can be approached using the gradient descent update iteration 

'dsk 
sfc(n + 1) = sfc(n) - u — | i n s t a n t „ (II.2.2) 

where n denotes the nth time instant and \i is suitably chosen algorithmic gradient 

constant. 

It is worth noting that, in practical systems, the precoder and power should be 

changed in small increments/decrements allowing corresponding changes in the re­

ceiver matched filter. This will avoid steep changes that may not be tracked by the 

receiver and could result in increased probability of error at the receiver or even 

connection loss between transmitter and receiver. Such incremental updates is de­

rived which uses GD-based adaptation for the user precoder and user power. For 

incremental changes in user precoders, the gradient of interference function i\. with 

respect to user precoder s^ is 

oik 
^— linstant n = 2Rfc(n)sfc(n) (II.2.3) 

Then, from equations (II.2.2) and (II.2.3), the actual precoder that is unit norm 

update for the next instance n 4- 1 is as 

( - L I ^ I - 2 / i R f c n sfc n , „ „ . 
sfe(n + l) = 7777— „ , M , v., (II.2.4 

I - 2/iRfc(n) sfc(n) 

It is worth noting that the precoder update procedure in (II.2.4) does not need 

complex calculations like determining maximum or minimum eigenvectors and/or 

taking the inverse of Rfc for the MMSE updates for interference avoidance [42-44]. 
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Therefore, this method has computational advantages over other interference avoid­

ance updates. Furthermore, the convergence of the GD-base approach is guaranteed 

since the process of increment or decrement in precoder guarantees the global con­

vergence [4,57,59] because of convexity. 

After precoder adaptation, the new SINR at instant n + 1 is 

lk(n + 1) = -r, lk("U\ , r (II.2.5) 
m ' s J ( n + l ) R f c ( n ) s f c ( n + l ) V ; 

and the power update can be performed to match the specified target SINR 7^ for 

user k as 

. P'k(n + l)=7is
T

k(n + l)Rk(n)sk(n + l) (11.2.6) 

If the instantaneous SINR 7/c(n + 1) in (II.2.5) is below the specified target SINR, 

the power update equation (II.2.6) results in increase in user power. Similarly, if the 

instantaneous SINR 7fc(n + 1) in (II.2.5) after precoder update is above the specified 

target SINR, the power update equation (II.2.6) results in decrease in user power. 

Furthermore, it is important to note that when the resulting power value p'k(n + 1) 

in (II.2.6) is above the maximum allowed power p™aa: by which user k is allowed to 

transmit, the new power value pk(n+l) will be updated with the maximum allowed 

power value p™"1, i.e. 

pk(n + 1) = mm{prx,Pk(n + 1)} (II.2.7) 

The power value is updated to meet target SINR where the newly adapted power 

should not be greater than the maximum allowed power level p™ax for given user k. 
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II. 2.1 Algorithm 

Based on the above mentioned precoder and power updates, respectively, in equa­

tions (II.2.4) and (II.2.6), the gradient-descent interference avoidance with SINR 

matching algorithm is formally stated as follows: 

Algorithm: The GD-Based Algorithm for Ideal Channels 

1. Input data: initial user precoder matrix S, power matrix P , noise covariance 

matrix W , desired target SINRs {71,72, • • • ,7*K}, maximum user power p™ax, 

and the constant \i. 

2. If admissibility condition in equation (II.1.2) is satisfied continue with Step 3, 

else STOP. 

3. For each user k = 1 , . . . , K do 

• Compute Rfc using equation (1.1.9). 

• Update user k's precoder to reduce effective interference using equation 

(II.2.4). 

• Compute power required to match specified target SINR using equation 

(II.2.6). 

• If Pk{n + 1) implied by equation (II.2.6) is less than p™ax update user k's 

power with this value. Otherwise assign power to p™ax. 

4. Perform the iteration until a fixed point is reached. 

Step 3 of the algorithm consists of K individual user updates in which all user 

precoders and powers are updated one time, and is called an ensemble iteration. In 
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this algorithm, the R is assumed to be fed back through some error-free feedback 

channel so that individual users can adapt their precoders to avoid interference and 

powers to meet their target SINRs, and thus the proposed algorithm is implemented 

in distributed manner. 

The algorithm stops at fixed point when the stopping criteria is met. Generally, 

a fixed point of the algorithm is reached when the precoder and power updates at 

this point imply no change in the value of the stopping criterion. Specifically as 

stopping criterion, the difference between the actual SINR at the receiver and the 

target SINR, as well as the Euclidean distance between a given precoder and its 

corresponding replacement are used. 

11.2.2 Simulations and Numerical Results 

This section presents the results obtained from extensive simulations for vari­

ous scenarios to show the convergence of the algorithm as well as the variation of 

user powers and SINRs. The fixed-point properties are also illustrated with optimal 

GWBE ensembles [16]. 

11.2.3 Algorithm Convergence 

First of all, the effect of algorithmic parameter /J in the performance are investi­

gated. The algorithm has run for the gradient descent based transmitter adaptation 

with matching target SINRs with initial random user precoders, random powers, and 

admissible target SINRs. With the extensive simulations, it has observed that the 

algorithm reaches a GWBE ensemble of user precoders and powers [16] within some 

tolerance limits that can be adjusted through parameters \i and e as it is the case 
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in general with gradient-based algorithms. As expected, the result is consistent with 

that of related interference avoidance (Eigen and MMSE) algorithms which always 

converge to GWBE ensembles of user precoders and powers from random initializa­

tion [4]. In the simulation, for the stopping criteria and convergence of the algorithm, 

both criteria were used which are mentioned in Section II.2.1, i.e. 

• the Euclidean distance between a given precoder and its corresponding replace­

ment in two consecutive iterations, and 

• the difference between the actual SINR and the desired target SINR. 

When the first criterion is used to stop the algorithm at fixed point, the speed 

of convergence to tight norm difference tolerances (||sfc(n + 1) — Sfe(n)|| < 10~6, Vfc) 

depends, as it was expected, on the value of the gradient constant fi. It is observed 

that for smaller ji value, the algorithm takes more steps to reach to a fixed point. 

When the second criterion is used, it is noted that the convergence speed of the 

algorithm does not really depends on algorithm/gradient constants. Instead, the 

precision with which the target SINRs are met after the algorithm settles down and 

no more changes in user precoder and powers occur depends on the specified target 

SINR values. It has observed the following with the help of extensive simulations: 

First, when target SINR values, which are admissible in the system, are selected in 

such a way that the sum of user effective bandwidths in equation (II. 1.2) is not close 

to N (that is sum of user effective bandwidths is much smaller than N), then the 

given target SINRs can be achieved with arbitrary precision as shown in Figure 2 

which is typical for all the simulations. Second, when the sum of effective bandwidths 

corresponding to the specified and admissible target SINRs is very close to the upper 
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bound N, then the instantaneous SINRs are reached only with limited precision of 

the order of 10~2, as shown in Figure 3, which is also typical for all simulations we 

have performed. 

In Figure 2 and 3, it is noted that the convergence occurs slower in both precoders 

and SINRs when the sum of user effective bandwidths is very close to the upper 

bound N when the same value of the gradient constant \x is used. This is another 

important characteristic observed in all simulation results we have performed. It has 

also observed that the number of precoder updates per user does not increase with 

proportionately increasing number of users and signal dimensions, and the number 

of ensemble iterations needed for convergence stays approximately constant for given 

ratio of number of users and signal dimensions. We have considered a simulation 

scenario with signal dimension N ranging from 5 to 50 with the increment of 5 

and the ratio K/N ~ 1.5, and observed that the algorithm converges in 300 and 

400 ensemble iterations when the sum of effective bandwidths was close to its upper 

bound N in equation (II. 1.2), and it converged in 60 to 80 ensemble iterations when 

the sum of effective bandwidths was not close to its upper bound. 

II.2.4 Variation of User Powers and SINRs, and Fixed-Point Properties 

This section shows the variation in user power and SINR. An uplink wireless 

system operating in a signal space of dimension A = 5 with K = 7 users is considered, 

and the AWGN with variance a2 = 0.1. User precoder matrix is initialized randomly 

and initial user powers are also selected randomly between 0 and the maximum 

allowed power p™ax = 10, \/k. The tolerance for precoder convergence is assumed to 

be e = 10~6. 
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Fig. 2: Precoder and SINR convergence for 100 trials of the proposed algorithm for 
a system with K = 15 users in N = 10 dimensions, target SINRs for all users equal 
to 1.95, and gradient constant // = 10 - 3 . Sum of effective bandwidths is 9.9153 
- roughly 10% below the upper bound - and target SINRs can be achieved with 
arbitrary precision. 
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Fig. 3: Precoder and SINR convergence for 100 trials of the proposed algorithm for 
a system with K = 15 users in iV = 10 dimensions, target SINRs for all users equal 
to 1.99, and gradient constant fj, — 10~3. Sum of effective bandwidths is 9.9833 -
only about 1% below the upper bound - and target SINRs are achieved with limited 
precision. 
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Two scenarios are considered: In the first scenario, users target SINRs, which 

satisfy the admissibility condition in equation (II.1.2), are as following 

K,72,7s*,71,75,76,7;} = {3-25, 3, 2.75, 2.5, 2.25, 2, 1.75} (II.2.8) 

There are no over-sized users and the sum of effective bandwidths is 4.9577 which 

is less than the upper bound N = 5, and is not close to N. In this scenario, a 

gradient constant \i = 0.01 is considered and then the algorithm is applied. The 

algorithm converged in approximately 30 ensemble iterations (corresponding to 210 

individual precoder updates). The user SINR variation during the update is shown 

in Figure 4(a). The gradient constant is then changed to \i = 0.001 and the al­

gorithm is applied, and the resulting user SINR variation is shown in Figure 4(b). 

As seen from Figure 4(b), smaller /i value slows down the convergence, however, it 

also reduces the variance of SINR variations which might be a desirable feature in 

practical implementations. 

It is noted that, regardless of chosen gradient constant /i, the algorithm yields 

same final precoder matrix Si in equation (II.2.11) and power matrix 

P i = diag{9.0345, 8.8605, 8.6634, 8.4384, 8.1788, 7.8758, 7.5179} 

and the weighted correlation matrix S i P i S ^ + W = 11.814 I5, which is within the 

tolerance of O(10~3) with the corresponding GWBE values implied by the algorithms 

in [16]. 
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Precoder updates 

(b) ii = 10"3 

Fig. 4: SINR variation for the system with K = 1 users in N = 5 dimensions, target 
SINRs {3.25, 3, 2.75, 2.5, 2.25, 2, 1.75}, for different gradient constants fi. One 
ensemble iteration is equal to 7 precoder updates in this case. 
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In the second scenario, the target SINRs for users are as 

{7r,72.73.74*>75,76>77*} = {15, 1-5, 1.5, 1.5, 1.5, 1.5, 1.5} (II.2.9) 

which imply that user 1 is over-sized according to [16]. The algorithm was applied 

with above setup, and the algorithm yielded optimal precoder matrix S2 in equa­

tion (II.2.12) and power matrix 

P 2 = diag{1.5, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6} 

such that over-sized user 1 is orthogonal to all the other users as can be seen from the 

precoder correlation matrix SJS2 in equation (II.2.13). It is noted that this result 

agrees with the properties of optimal precoder ensembles in [16] which indicates that 

over-sized users must have private channels over which they transmit at the minimum 

power required to achieve their corresponding target SINRs. It is also noted that 

weighted correlation matrix S2P2SJ is not exactly in the form given in [16], however, 

can be converted to the same form using the linear transformation implied by the 

left singular vectors [58] of the matrix S2 in (II.2.12) to align the signal space axes to 

the over-sized user. The transformation is applied which results in the transformed 

precoder matrix S2 as shown in equation (II.2.14) which is in the form of [17] in 

which non-over-sized users 2-7 share dimensions 1-4 and over-sized user 1 uses signal 

dimension 5. For non-over-sized users, the weighted correlation matrix [16] is as 

7 

J^PJSJSJ = 0.9I4 (II.2.10) 
i=2 
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-0.2771 

-0.7015 

-0.0844 

0.0864 

-0.6454 

0.8654 

0.2836 

0.2588 

0.1489 

-0.2856 

-0.2527 

0.3208 

-0.5990 

0.6783 

-0.1202 

-0.2680 

0.6844 

0.1284 

0.1127 

-0.6562 

0.4095 

-0.4232 

0.0325 

0.8062 

0.0466 

0.2838 

0.0921 

-0.9008 

-0.1877 

0.2537 

Precoder matrix yielded by the algorithm for the first scenario in Section II.2.4, with 
no oversized users: 

-0.4029 
0.1549 
0.4330 
0.4843 
0.6258 

(II.2.11) 
Precoder matrix yielded by the algorithm for the second scenario in Section II.2.4, 
with oversized user 1: 

-0.5468 0.6511 0.0681 0.1032 0.3167 0.3663 -0.6147 
0.1139 0.6327 0.2169 0.6543 -0.5777 0.2072 0.4780 

-0.5551 -0.1594 -0.2750 0.5482 0.1084 -0.7526 0.2409 
0.0896 0.2679 0.8638 -0.1405 0.6293 -0.3753 0.3369 

-0.6098 -0.2804 0.3558 -0.4908 -0.3978 0.3401 0.4714 
(II.2.12) 

Correlation matrix of precoders yielded by the algorithm for the second scenario in 
Section II.2.4, showing that over-sized user 1 is orthogonal to the other, non-over­
sized users: 

On So 

1 
0 
0 
0 
0 
0 
0 

0 
1 

0.3571 

0.4938 

0.1036 

0.2936 

-0.1782 

0 
0.3571 

1 
-0.2977 

0.2685 

0.0737 

0.4543 

0 
0.4938 

-0.2977 

1 
-0.1790 

-0.3534 

0.1027 

0 
0.1036 

0.2685 

-0.1790 

1 
-0.4568 

-0.4201 

0 
0.2936 

0.0737 

-0.3534 

-0.4568 

1 
-0.2736 

0 
-0.1782 

0.4543 

0.1027 

-0.4201 

-0.2736 

1 

(II .2.13) 

The results of second scenario is concluded by noting that user 1 had no a prion 

knowledge of its over-sized status in the system, and performed the same adaptations 

as the other non-over-sized users which resulted in the right ensemble of precoders 

and powers. However, in [16] it is required to have a prion knowledge of the over­

sized status to obtain the right precoders and powers for over-sized users. 
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Transformed precoder matrix for second scenario in Section II.2.4, with signal space 
axes aligned to the over-sized user: 

0 
0 
0 
0 
1 

-0.4839 

0.8151 

0.3184 

0.0071 

0 

-0.9595 

-0.0334 

-0.2540 

0.1173 

0 

0.0362 

0.3565 

0.7068 

-0.6099 

0 

-0.1317 

0.3689 

-0.8097 

-0.4370 

0 

-0.0183 

0.2707 

0.1802 

0.9455 

0 

-0.5712 

-0.7057 

0.3827 

.-0.1713 

0 

(II.2.14) 

I I .3 N O N - I D E A L C H A N N E L S C E N A R I O 

This section extends the application of gradient descent approach for interfer­

ence avoidance methods from ideal channel to non-ideal dispersive multiple access 

channels. Specifically, the adaptation of uplink precoders and transmit powers for 

an uplink wireless system in which the channels between users and the base station 

are considered explicitly and are assumed to be known. Moreover, the channels are 

assumed to be slow fading where channel fading matrix H remains fixed throughout 

the encoding frame. Similar to [44], in order to decode the information transmitted 

by a given user k, the receiver uses an "inverse-channel" observation obtained by 

equalizing the received signal in (1.1.4) with the given user k channel matrix 

rfc H ^ r 

interference + noise 

hy/PkSk + Hfc
 1 I ] P bey/piHeSe + n J 

(II.3.1) 

desired signal 
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This is processed by a matched filter receiver corresponding to user fc's precoder to 

obtain the decision variable for user k, i.e. 

4 = sjrfc 
/ K \ (H.3.2) 

= hy/Pk + sIHfc X ( X! ^ y ^ H ^ + n 1 

For user fc, the SINR expression for the received signal vector in (II.3.2) can be 

written as 

7, = J—K ^ r = ~ ^ ~ (H.3.3) 
/ \ sl Rfcsfc 

where the matrix 

Rfc = H^ 1 ( ^ p ,s ,H,Hjs ,T + W J Hfc"
T (II.3.4) 

in the denominator of the SINR expression (II.3.3) is the correlation matrix of the 

interference-plus-noise that affects user fc's symbol in the "inverse-channel" observa­

tion, and is related to the correlation matrix of the received signal in equation (1.1.4) 

as 
K 

R = J ] peUesesjHj + W (II.3.5) 
e=i 



35 

It can also be written 

Rfc = Hfc 1 (R-p f e H f c s f e s jH^)Hfe T 

(II.3.6) 

It is worth noting that both Rfc and R are also positive definite matrices because 

of the presence of the positive definite noise covariance matrix W . The denominator 

in (II.3.3) represents the effective interference+noise power that is present in user fc's 

decision variable, i.e. 

ik = sjRfcsfc (II.3.7) 

The main goal in this setup is to derive a distributed algorithm in which in­

dividual users adjust their corresponding precoders using gradient-based updates 

for interference avoidance and powers to meet a specified set of target SINRs 

(7*) • • • >7fc! • • • >7AT}- -^ *s noted that K active users with specified target SINRs 

are admissible in the uplink system with processing gain N, if and only if the admis­

sibility condition in (II.1.2) is satisfied. The admissibility condition (II.1.2) is derived 

for ideal user channels in [17] and it has been extended to multipath non-ideal channel 

scenario in [56]. 

II.3.1 Transmitter Adaptation and Power Control 

As mentioned previously, the transmitted power for a given user A; is a valuable 

resource, and user k would be interested in transmitting with the minimum power 

that satisfies its specified target SINR. In order to achieve this goal, each user k 
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will first apply transmitter adaptation using GD-based precoder update to reduce 

the effective interference that corrupts its transmitted symbol at the receiver which 

eventually increases its SINR. The precoder adaptation for a given user increases its 

SINR, however, it is not guarantee that it meets target values. Therefore, the power 

update is necessary which adjusts the transmitted power such that the specified 

target SINR 7^ is satisfied. If the calculated SINR after precoder adaptation is equal 

to the target SINR, we do not need power update. Otherwise, there are two cases: 

• If the SINR after precoder update is above its target value 7^ then the power 

update must decrease user k power. 

• If the SINR after precoder update is below its target value 7^ then the power 

update must increase user k power. 

An incremental update is performed in user precoder by using GD-based ap­

proach. It is noted that the effective interference function ik in equation (II.3.7) is a 

quadratic form since the matrix Rfc is positive semidefinite. Therefore, ik in (II.3.7) 

is a convex function over the iV-dimensional unit sphere {sfc|s£ G K^Hs^H = 1}, 

and it is decreased by the GD update iteration with actual precoder (i.e., unit norm 

precoder) update as in the case of ideal channel scenario 

sfc(n+l)= F - W W M " ) (n.3. 
| | [ I - 2/isRfc(n)]sfe(n)|| 

As noted previously, the GD-based precoder update in equation (II.3.8) has a 

numerical advantage over the methods (such as minimum eigenvector or the MMSE 

updates for interference avoidance [42-44]) since it does not require computationally 
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intensive calculations. 

After performing the precoder update, the value of the effective interference func­

tion is 

i'k(n) = sk(n + l)TRfc(n)sfc(n + 1) (II.3.9) 

which requires the user k power update in order for its SINR to satisfy the specified 

target value 7^ as 

Pk(n) = ltfk(n) (H.3.10) 

However, the value p'k(n) may not be close to Pk{n) which leads to abrupt change 

in power and might result in connection breakage or error in transmission. Thus, the 

"lagged" update is used to avoid abrupt variations as 

pk(n + 1) = m i n O T , [(1 ~ th)Pk(n) + VPp'k(n))} (II.3.11) 

where p™ax is the maximum allowed power level for a given user k, and 0 < \xv < 1 

a suitably chosen algorithmic constant, which adapts user k power to a new value 

that is a combination of the current power pk(n) and the calculated power p'k(n) 

required to meet the given target SINR after the effective interference function has 

been reduced by the incremental precoder update. It is worth noting that for smaller 

fip value the lag value in power update will be more distinct and the power change 

will be with smaller incremental. 
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II.3.2 Algorithm 

Based on the precoder and power updates denned in the previous section, the 

proposed algorithm for GD based transmitter adaptation for multipath channels 

consists of two distinct stages performed sequentially by active users in the system. 

That is individual users perform incremental adaptation of their precoder followed 

by power control. A formal statement of the GD based transmitter adaptation for 

uplink channels for non-ideal channels is given below: 

1. Initial Data: 

• Precoders s^, powers p^, channel matrices Hfc, and target SINRs 7^ for 

active users k = 1 , . . . , K. 

• Noise covariance matrix W 

• Constants /is, /j,p, and tolerance e. 

2. IF admissibility condition in equation (II. 1.2) is satisfied GO TO Step 3, ELSE 

STOP. The desired target SINRs are not admissible. 

3. FOR each user k = l,...,KDO 

(a) Compute corresponding R^ using equation (II.3.6). 

(b) Update user fc's precoder using equation (II.3.8). 

(c) Update user fc's power using equation (II.3.11). 

4. REPEAT Step 3 until all user SINRs are within specified tolerance e of their 

corresponding target value. 
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The optimal point of the algorithm is met when the difference between target 

SINR and the calculated SINR is within the specified tolerance e. Extensive simula­

tions of the GD interference avoidance algorithm have shown that, when initialized 

with random user precoders and powers, and admissible target SINRs, the algorithm 

results in the SINRs to their corresponding specified target values, and the algorithm 

converges to a fixed point. 

11.3.3 Simulations and Numerical Results 

In this section, in order to support theoretical claims, the extensive simulations for 

various scenarios are presented. Both diagonal channel [44] and circulant channel [43] 

matrices are considered for the simulations. In particular, simulation results are 

presented to show the convergence of the algorithm, and also to see the tracking 

ability of the algorithm for variable number of active users and their variable QoS 

requirement on the fly. 

11.3.4 Variation of user SINRs and Powers 

In this section, the simulations are performed to look at the variation of user 

SINRs and the user powers and convergence of the algorithm. 

For the simulation, the uplink of a wireless system is considered with K = 5 users 

in a signal space dimension N = 3 and AWGN with o~2=0.1 that is W = 0.11/v- The 

constants for the algorithm were chosen as ^,,=0.1 and fip=0.01, and the tolerance 

€=0.001. The maximum allowed power level p™ax, Vfc, was set to 10. 

The user precoders and channel matrices of users were initialized randomly, and 

user powers were initialized to 0.1. The different target SINRs were set up for different 
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Fig. 5: SINR Variation for the system with K = 5 users in iV = 3 signal space 
dimensions for target SINRs {2.5,2.0,1.5,1.0,0.5}. 

users 

{7i*,72,73,74*, 75*} = {2-5, 2.0,1-5,1.0,0.5} (II.3.12) 

such that they satisfy the admissibility condition in (II.1.2). 

The proposed algorithm was applied for this simulation setup, and the results for 

SINR and power variation are plotted in Figure 5 and 6. The user SINRs and powers 

increases sharply at first and then decreases to settle down to the target SINRs. The 

power is also settled down that is minimized for all users. From these results, it is 

concluded that the proposed algorithm converges to a fixed point. 
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Fig. 6: Power Variation for the system with K — 5 users in N = 3 signal space 
dimensions for target SINRs {2.5, 2.0,1.5,1.0, 0.5}.. 

II.3.5 Tracking Variable Number of Active Users 

This section illustrates the tracking ability of the proposed algorithm for variable 

number of active users in the system. For this case, the simulation was started with 

K = 5 users in N = 3 signal space dimension with different user target SINRs in 

(II.3.12) which satisfies the admissibility condition in (II.1.2) 

The proposed algorithm was applied for random initialization of precoder, channel 

and powers and the constants mentioned in section II.3.4, and at the fixed point of 

the algorithm, user 5 was dropped from the system so that the total number of active 

user in the system became K = 4 with target SINRs (as we had before), that is 

W , 72,73,74*} = {2.5,2.0,1.5,1.0} 
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which also satisfy the admissibility condition (II.1.2). The algorithm was applied 

for this new setup. Once the system reached the optimal fixed point, a new user 

was added in the system such that the total number of users in the system became 

K = 5 without changing signal space dimension (i.e. N = 3) with new target SINR 

for newly added user j^s = 0.8 keeping others' target SINRs as they were. After 

the admission of the new user with its target SINR, the admissibility condition in 

(II. 1.2) should still be satisfied. Then the algorithm is applied in this new setup until 

a fixed point is reached. 

The variation of user SINRs and powers during the tracking of variable number 

of active users in the system are plotted as shown in Figure 7 and 8. From these 

plots, it is observed that there are spikes on SINRs and the powers while adding 

and dropping the users to and from the system. After few ensemble iterations, the 

algorithm settled down to optimal fixed point as shown in Figure 7 and 8. 

II.3.6 Tracking Variable Target SINRs of Active Users 

This section illustrates the tracking ability of the proposed algorithm for variable 

target SINRs (i.e., changing QoS requirements on the fly) for active users in the 

system. For this case, the simulation was started with K = 5 users in signal space 

dimension N = 3 with different user target SINRs as in (II.3.12) which are admissible 

in the system. The proposed algorithm was applied for the simulation setup presented 

in section II.3.4, and when the algorithm reached the fixed point, user 5 changed its 

target SINR to 75 = 0.3 in which target SINRs still satisfy the admissibility condition 

(II. 1.2). The algorithm was ran for this new setup, and once the system reached 

optimal fixed point, again user 5 changed its target SINR to new value to 75 = 0.7. 
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Fig. 7: Variation of user SINRs for the tracking example where one user is dropped 
from the system followed by subsequent addition of another user. 
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Fig. 8: Variation of user powers for the tracking example where one user is dropped 
from the system followed by subsequent addition of another user. 
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Fig. 9: Variation of user SINRs for K = 5 user in TV = 3 signal space dimensions 
tracking variable number of active users in the system. 

Then, the algorithm was applied to this new setup. 

The variation of user SINRs and powers are plotted as shown in Figure 9 and 

10 for tracking of variable number of active users in the system. As in the previous 

simulation results, it has observed that there are spikes on SINRs and powers as the 

target SINR changed. However, after few ensemble iteration, the algorithm settled 

down to optimal fixed point satisfying the target SINRs of active users in the system. 

Extensive simulations of the gradient-based algorithm have shown few instances 

where users distribute their power inefficiently and the algorithm gets trapped in 

sub-optimal points 
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Fig. 10: Variation of user powers for K = 5 user in N = 3 signal space dimensions 
for tracking variable number of active users in the system. 

II.4 C H A P T E R S U M M A R Y 

In this chapter, the GD-based transmitter optimization is investigated for active 

users in the uplink of wireless systems with ideal channel scenario where the users 

adapt precoders and powers to meet minimum SINR requirements. Then, the ap­

proach is extended to non-ideal channel scenario where the channels between users 

and the base station are taken explicitly into account. The simulation results have 

shown that the proposed algorithm for both ideal and non-ideal channels converges 

to a fixed point. Furthermore, the algorithm can keep track of the number of active 

users and/or variable target SINRs in the system. Thus the proposed algorithm can 

be implemented in dynamic wireless system where the number of active users and/or 

QoS requirements changes on the fly. 
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C H A P T E R III 

INCREMENTAL STRATEGIES FOR TRANSMITTER 

ADAPTATION W I T H P O W E R CONTROL 

This chapter presents incremental strategies for transmitter optimization and 

power update using a game theoretic approach. Specifically, separable non-

cooperative game is proposed to perform interference avoidance using incremental 

precoder adaptation sub-game and power control to meet QoS requirements using 

incremental power control sub-game for uplink of a wireless system with a non-ideal 

channel scenario. The work in this chapter is motivated by the fact that the extensive 

simulations of the gradient-based algorithm presented in Section II.3 (and/or [45]) 

have shown few instances where this algorithm gets trapped in sub-optimal points 

where users distribute their power inefficiently and are difficult to escape when the 

channel gains are really low compared to others for a given user in some bands. The 

given user puts most of its power puts into the lowest gain band and can not meet 

its required SINR. In Section III. 1, a brief literature review relevant to this work 

and game theory is presented. The system model and formalized the game theoretic 

approach is presented in Section III.2. The Nash equilibrium of two sub-games is 

investigated and then the joint game followed by presentation of an algorithm in Sec­

tion III.4. Simulation results are presented in Section III.5 to show the convergence 

of the algorithm as well as tracking ability of the proposed algorithm with respect to 

variable number of active users and/or variable QoS requirements of active users in 

the system. 
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III . l G A M E THEORY A N D RELATED WORK 

Recently, game theory has been an emergent tool for wireless resource allocation 

[60]. There are several reasons for using a game theoretic approach for resource 

allocation in wireless systems. First, game theory helps scale up the network. That 

is, one can model the resource allocation using game for small-scale network, often 

2- or 3-player games that are easy to describe in order to understand regarding 

basic issues such as rationality. Finding the efficient techniques for describing and 

analyzing the game such as Nash equilibrium becomes easy for such small games. 

Once everything is set up for a small-scale network, one can apply the model in a 

large-scale network, which will have a Nash equilibrium as in a small-scale network. 

Therefore, the game theory has been regarded as the tool to the scalability of wireless 

network in every aspect. Second, game theory has recently been regarded as a tool to 

evaluate the performance of the wireless networks. Performance can be measured in 

terms of the number of steps needed to reach the game at Nash equilibrium, which is 

senn as a socially optimal point of the game. The last but not least is learning in a 

game. There has been a great deal of work in game theoretic approach on learning to 

play well in different settings. Learning to play optimally in a reinforcement learning 

setting, where an agent interacts with an unknown (but fixed) environment, is one 

of the greatest advantages of game theoretic approach. After few steps, the player 

faces a trade-off between exploration and exploitation. 

Since optimal resource allocation in distributed systems where users compete for 

resources is not straightforward, users operate using a game theory where rational 

users learn to respond optimally according to their operating environment. With 
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proper choice of utility functions the game leads to an equilibrium point called the 

Nash equilibrium [61] which leads to efficient global use of resources. A new algorithm 

is presented that is extended adaptive interference avoidance technique [32, 59] for 

the practical case where channels between users and the base station are explicitly 

considered. As noted previously, the distributed implementation of the algorithm is 

possible provided that the correlation matrix of the received signal is made available 

to individual users. 

Game theory is a formal model of an interactive situation where several players 

are involved. It is also important to point out that a game with only one player is 

usually called a decision problem. The game is formally consist of following three 

basic elements [62]: 

• Set of players which are the active agents in the system. That is a player is 

an agent who makes decisions in a game 

• Set of strategies for players or the strategic actions available to them. In 

a game of strategic form, a strategy is one of the given possible actions of a 

player. 

• Player's payoff (or utility or cost) function that maps the strategies or 

their preferences. That is a payoff is a number, also called utility that reflects 

the desirability of an outcome to a player. 

In a non-cooperative game, the players are assumed to be rational, that is, they 

play a game always to choose an action, which gives the outcome she/he most prefers 

without taking care of opponents who are also rational. In other words, players in 
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non-cooperative games make choices out of their own interest without interaction 

with others. However, it is noted that the cooperation can arise in non-cooperative 

games, when players find their own best interests. A separable game is a particular 

type of non-cooperative game [62] in which the player payoff (or utility or cost) 

functions are separable with respect to variables that define user strategies [34,63]. 

In this chapter, following the [32,34], game theoretic approach is considered for 

precoder and power control of active users in the uplink wireless system which have 

QoS requirements to be satisfied in non-ideal channels, and show that the global 

optimal fixed point of the game analytically. 

III.2 SYSTEM MODEL A N D PROBLEM STATEMENT 

An uplink of a wireless system with K active users is considered in a signal 

space of dimension N where multipath channels between users and base station are 

explicitly considered. The A-dimensional received signal vector at the base station 

corresponding to one signaling interval is given by the expression in (1.1.4). As 

mentioned in Section II.3, the receiver uses an "inverse-channel" observation obtained 

by equalizing the received signal with the given user k channel matrix as in (II.3.1). 

Again it is noted that the denominator term in SINR expression in (II.3.3) represents 

the effective interference+noise power that is present in user /c's decision variable 

ik = s^Rfcsfc (III.2.1) 

The interference function i^ for a given user k depends implicitly on sfc (for 

matched filter receiver case) as well as on all the other users precoders and powers 
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s f,p^,W ^ k, but does not depend on user fc's power. 

Main goal in this setup is to derive a distributed algorithm in which individual 

users adjust their corresponding precoders and powers to meet specified target SINRs 

{it> • • • > 7fci • • • > IK} that must be admissible as defined in [17] and/or satisfy equation 

(II. 1.2) using separable non-cooperative game theoretic approach. 

III.3 JOINT P R E C O D E R ADAPTATION A N D P O W E R CONTROL 

G A M E (JPAPCG) 

The uplink of a wireless system with multipath is formulated and described by 

equations (II.3.1) or (II.3.2) as a separable non-cooperative game in which active 

users in the system are the players of the game, and adaptation of their precoders 

and powers are their corresponding strategies with strategy spaces formally defined, 

respectively, by the iV-dimensional sphere with unity radius for the precoder strate­

gies 

Sk = H | s f c e K M | s f c | | = l} Vk=l,...,K (III.3.1) 

and by the set corresponding to the real interval (0, P™aa;] for the power strategies 

Vk = {Pk\Pk e (o ,p r i} Vfc = 1,.,.,/v (in.3.2) 

where p™ax is the maximum allowed power level for users for the power strategies. 

Following [32], the payoff function is considered, which is cost function in this 

context, for a given user k to be the product between its power and its corresponding 
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Uk = Vkk = Pk sjRfcsfe Vfc = 1 , . . . , K. (III.3.3) 

fk(Pk) Sfc(sfc) 

Formally the joint precoder adaptation and power control game (JPAPCG) is 

defined as 

JPAPCG = (/C, {Sk x Vk}k^ W ( . ) W ) (III.3.4) 

where the components of the game are as follows: 

1. K = { 1 , . . . , K} is the set of players which are the active users in the system. 

2. Sk is the set of precoder strategies for player k in (III.3.1), and Vk is the set of 

power strategies for player k in (III.3.2). 

3. uk : S x V —> (0,oo) is the user cost function that maps the joint strategy 

spaces 5 = (Si x . . . x SK and V = V\ x . . . x VK to the set of positive real 

numbers. 

As noted in [32,34], the cost function in (III.3.3) is separable with respect to 

the two parameters that define the user strategy - the corresponding precoder and 

power. Again, it is noted that the interference function (i.e., ik or gk(sk)) does 

not depend on the user power however it depends on the user precoder [32,34], 

Thus, the cost function can be expressed as a product of two independent/separable 

functions: power strategies fk(Pk) and/or precoder strategy gk(sk) This property 

leads to JPAPCG as a separable game with two separate sub-games: 

1. Precoder Adaptation Sub-Game (PASG) and 
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2. Power Control Sub-Game (PCSG) 

which minimize the user cost functions with optimal strategies. These two sub-games 

are further investigated in the following sections with best response strategies in terms 

of precoder and power updates that will minimize the user cost functions. It is also 

investigated the existence of Nash equilibria for the two sub-games, and the result 

in [32, 34] are used to show that the joint precoder adaptation and power control 

game has a Nash equilibrium provided that Nash equilibria for the two sub-games 

exist. 

III.3.1 Precoder Adaptation Sub-Game (PASG) 

In this sub-game, for given fixed user powers, individual users adjust only their 

precoders in their corresponding strategy spaces (III.3.1) to minimize their corre­

sponding cost functions. Formally, the PASG for given set of powers is defined as 

PASG = (/C, {Sk}kelc, K ( . ) W ) (HI.3.5) 

Specifically, in this game, for a given set of powers, each user adjust its strategy to 

minimize its corresponding cost function subject to unit norm constraint on precoder, 

that is 

™ in Ufcl{Pl,P2,..,PK}=fixed s u b J e c t t 0 sIsk = 1, Vk = l,...,K (III.3.6) 

Next the following formal definitions from game theory are stated in the context 

of the problem in order to investigate the existence of a Nash equilibrium for the 
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PASG and identify the best response strategies for players. 

Definition 1 (Nash equilibrium for the PASG): The precoder ensemble 

{ s i , . . . ,SfcjjSj^Sfc+i,... ,SK} is a Nash equilibrium of the PASG if, for every user 

k G /C, we have that 

Uk(sl, • • • ,ski,sk, s f c+ l , • • • , SK) > Uk(s S f e ' , s f c + 1 , . . . , s K ) , Vs'fc G <Sfc 

(111.3.7) 

Definition 2 (Best Response for the PASG): The best response function of user k 

to the other users' strategies is the set 

B% = (sfc ^ <5fc|ufe(sij • • • i sfei) sfc, sfc+i, • • • , S _ K ) > ^fc ( s i , • • • , s f c i ; Sfc ' ,Sfc+ 1 , . . . ,sK) 

Vs'fc G 5 f c } 

(111.3.8) 

Definition 3 (Convex Game): A game is convex for a closed, convex, and bounded 

joint strategy space S if the cost function of each user k is convex in s^ for every 

fixed sj, such that k / j . 

The cost function in (III.3.3) is a quadratic form in the user precoder sk for given 

fixed user power, which implies that is differentiable two times with respect to Sfc, 

and after differentiating two times, one can get 

— ^ = 2PkRk (III.3.9) 

It is noted that the correlation matrix R^ of the interference-plus-noise corrupting 

user fc's inverse-channel observation (II.3.1) is symmetric and positive definite. This 

implies that, for a given set of powers (i.e., pk > 0), the user cost function is convex 
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and that the PASG is a convex game, which ensures that it has a Nash equilibrium 

[32]. 

As discussed in [32], the best response of PASG in terms of precoder updates 

is found by solving the constrained optimization problem (III.3.6) in which user fc's 

precoder is replaced by the eigenvector corresponding to the minimum eigenvalue of 

its corresponding interference-plus-noise matrix R^ [4]. This procedure minimizes 

the effective interference that affects user fc's "inverse-channel" observation. Thus, 

at fixed point, which is a Nash equilibrium, all user precoders will be the minimum 

eigenvectors of their corresponding interference-plus-noise matrices. If the following 

determinant relationship implied by the Kuhn-Tucker conditions for constrained op­

timum is satisfied [32], the Nash equilibrium implied by this procedure is optimal 

with respect to minimization of user fc's cost function: 

£>Z = ( -1) 

This is also referred as determinant condition for optimality. 

III.3.2 Power Control Sub-Game (PCSG) 

In this sub-game, the user precoders are fixed, and the individual users adjust 

only their powers in their corresponding strategy spaces (III.3.2) to minimize their 

corresponding cost functions. 

Formally, the PCSG for a given set of precoders is defined as 

PCSG = (/C, {VkheK, K ( - ) W ) (III.3.11) 

2pfc(Rfc - 7^1^) 2sfc 

2s f c
T 0 

> 0 , Vfc = l , . . . , K (III.3.10) 
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Specifically, in this game, for a given set of precoders, each user adjust its power 

strategy to minimize its corresponding cost function subject to QoS requirement in 

terms of target SINR, that is 

minUfcl{si,s2,..,s*}=fixed subject to pk =-f*ksjRksk, Vk = l,...,K (III.3.12) 
Pk 

Similar to PASG, some formal definitions are made to investigate the existence 

of a Nash equilibrium for the PCSG and identify the best response strategies for 

players. 

Definition 4 (Nash equilibrium for the PCSG): The set of powers 

{pi,. .. }pkl,Pk,Pk+i, • • • ,PK} is a Nash equilibrium of the PCSG if, for every user 

k £ /C, we have that 

uk(pu.. . ,pkl,pk,pk+1,. . .,pK) > uk(pu...,pkl,pk',pk+1,... ,pK), Vp'k e Vk 

(III.3.13) 

Definition 5 (Best Response for the PCSG): The best response function of user k 

to the other users' strategies is the set 

Bp
k = {pk e Sk\uk(pu ... ,pkl,pk,pk+1,.. . ,pK) > uk(p1,...,pkl,pk',pk+i,...,pK) 

Wk e Vk} 

(III.3.14) 

In this sub-game, the user cost function is linear in pk, which may also be regarded 

as a convex function. Following [32], a Nash equilibrium exists and the best response 

strategy is to update power to match target SINR, that is, pk = ik~fk, for all k = 

1,...,K. 
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III.3.3 Nash Equilibrium for the JPAPCG 

As mentioned in previous sections, the precoder ensemble { s 1 ; . . . , s^} is a Nash 

equilibrium for the PASG and power set {pi,... ,PK} is a Nash equilibrium for the 

PCSG. Since Nash equilibria exist for both the PASG and the PCSG, this implies that 

a Nash equilibrium for the JPAPCG also exists, and is implied by the best response 

strategies of the PASG and the PCSG. It is noted that, following the approach in [32] 

based on the result of [34, Theorem 1], a Nash equilibrium solution for the JPAPCG 

exists. It is also important to point out that precoder ensemble is not unique at Nash 

equilibrium. However, with the random initialization of initial precoders, equilibrium 

precoder ensemble preserves norms and cross correlations resulting in a new precoder 

ensemble, which is also a Nash equilibrium for the system. It is also noted that 

a precoder ensemble corresponding to a Nash equilibrium is optimal with respect 

to constrained minimization of the user cost function if the sufficient conditions in 

(III.3.10) are satisfied. 

Furthermore, at a Nash equilibrium user precoder is an eigenvector correspond­

ing to a minimum eigenvalue of its corresponding interference-plus-noise correlation 

matrices R^, that is 

Rfcsfc = AfcSfe, Vk = l,...,K (III.3.15) 

where Â  is a minimum eigenvalue of a Rfc. At optimal Nash equilibrium, the equa­

tion (III.3.15) can be expressed in term of target SINR 7^ and thus the power at 

equilibrium is 

Pk = s^Rfcsfe7fc = Afc7fc 
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Then, using the relationship between R and R^ from equation (II.3.6), one can 

express (III.3.15) in terms of R as 

H ^ R H ^ s * = Pk
l-^sk (III.3.16) 

Ik 

This implies that, at Nash equilibrium, the user precoder ŝ . is eigenvector of the 

matrix H ^ R H ^ T with corresponding eigenvalue pk—?*-, for all fc = 1 , . . . , K. 

One can also express (III.3.16) as [58] 

HjR^HfcSfc = - T ^ s f c (III.3.17) 
Pk 1 + 7fc 

Motivated by the approach in [23] (where an optimal precoder ensemble and 

powers that maximize the sum capacity of the multiaccess vector channel), at the 

optimal Nash equilibrium of the JPAPCG, all user cost functions are minimized 

subject to the specified unit norm and target SINR constraints for which target 

SINRs are met with minimum transmitted power for all active users. This also 

extends the similar result obtained for uplink systems with ideal channels in [32] to 

the non-ideal channel case where the channel between users and the basestation are 

explicitly considered. 

III.4 ALGORITHM FOR INCREMENTAL STRATEGIES 

The strategies that define the optimal Nash equilibrium solution of the joint 

precoder adaptation and power control game discussed in the previous section may 
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lead to abrupt changes of the user precoder and/or power which are not desirable 

in practical implementations and similar to [32,59] the proposed algorithm uses the 

incremental updates: 

• Precoder update of user k at step n of the algorithm is: 

/ . n sk(n) + mPxk(n) 
sfc(n + l ) = (III.4.1) 

sfc(n) + m/3xfc(n) 

where x^ is the minimum eigenvector of corresponding interference+noise corre­

lation matrix R^, f3 is a parameter that limits how far in terms of Euclidian dis­

tance the updated precoder can be from the old precoder, and m — sgn(sJx/£) 

gives sign. 

• Power update of user k at step n of the algorithm is: 

pk(n + 1) = m i n f r r * , \pk(n) - fi[Pk(n) - j*kik(n)]}} (III.4.2) 

where p ^ a x is maximum allowed power level for a given user k, and 0 < /i < 1 

is suitably chosen constant. 

The proposed algorithm consists of two distinct stages performed sequentially by 

active users in the system: individual users perform incremental adaptation of their 

precoders followed by their incremental power control. The algorithm is formally 

stated below: 

1. Input Data: 

• Precoders Sfc, powers pk, channel matrices H^, and target SINRs 7^ for all 
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active users k = 1 , . . . , K. 

• Noise covariance matrix W 

• Constants /?, fi, and tolerance e. 

2. IF admissibility condition in equation (II.1.2) is satisfied GO TO Step 3. OTH­

ERWISE STOP, the desired system configuration is not admissible. 

3. FOR each user k = l,...,K DO 

(a) Compute corresponding Rfc(n) using equation (II.3.6) and determine its 

minimum eigenvector Xfc(n). 

(b) Update user fc's precoder using equation (III.4.1). 

(c) Update user k's power using equation (III.4.2). 

4. IF change in cost function is larger than e for any user then GO TO Step 3 

OTHERWISE a Nash equilibrium is reached. 

5. IF optimality condition (III.3.10) is true then STOP: an optimal Nash equilib­

rium has been reached. OTHERWISE GO TO Step 3. 

It is worth noting that the checking the optimality condition (III.3.10) in Step 5 

ensures that the optimal Nash equilibrium is reached and that the algorithm does 

not stop at a sub-optimal point. Numerically, a fixed point of the algorithm may 

be reached when the precoder and power updates result in decreases of the user 

cost functions that are smaller than the specified tolerance, but if the optimality 

condition (III.3.10) is not satisfied the return to Step 3 and the incremental updates 
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that will follow will move the system away from the sub-optimal Nash equilibrium 

toward the optimal one. 

It is also noted that the algorithm is implementable in a distributed manner where 

individual users update precoder and power using common feedback information 

broadcast by the receiver [10-12]. In order for user k to perform the updates the 

interference+noise correlation matrix R^ is needed, which can be obtained from the 

correlation matrix R of received signal by subtracting its contribution (pfcHfeS^s^H^) 

as shown by equation (II.3.6). 

III.5 SIMULATIONS A N D NUMERICAL RESULTS 

This section presents numerical results obtained from simulations that illustrate 

convergence and tracking properties of the proposed algorithm. 

III.5.1 Algorithm Convergence 

Extensive simulations are performed with the proposed algorithm to study con­

vergence of the JPAPCG game to the Nash equilibrium. It is noted that the conver­

gence speed of the algorithm depends on the values of the corresponding increments 

specified by the algorithm constants \i and /?. 

In the first experiment, simulation are performed to study the convergence speed 

for different values the algorithm constants \x and (3 for fixed values of active users 

K and signal dimensions N. A wireless system with K = 6, N — 5, and noise 

matrix W — O.IIJV has been considered. The algorithm was applied starting from 

a random ensemble of user precoders and channel matrices. Once the algorithm 

stopped at Nash equilibrium one user was added/removed to/from the system with 
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one more/less corresponding user precoder ensemble. The algorithm was run for 

1,000 independent trials and recorded the number of ensemble iterations for all cases 

needed for convergence within tolerance e = 0.001, and calculated their corresponding 

average values. Then, in Figure 11, the average number of ensemble iterations for 

different /x and f3 values was plotted in which it is noted that convergence of the game 

to the Nash equilibrium is mostly determined by /3 value and is not very sensitive to 

changing \i values. It is also noted that for // = 0.1 and j3 — 0.1 the game reaches to 

the Nash equilibrium in less than 70 ensemble iterations as shown in Figure 11. 

In the second experiment, simulations are performed to look at the performance 

of the algorithm in terms of convergence speed for increasing K and N by keeping 

their ratio K/N (also referred to as system load factor in CDMA systems) fixed. 

As mentioned in previous experiment, the algorithm constants were chosen to be 

\x = 0.1 and f3 — 0.1 and the algorithm was run for 1,000 independent trials. In 

each trail, the number of ensemble iterations required for convergence was recorded 

within the given tolerance e = 0.001 for given load factor. Similar scenarios have 

been considered as in the first experiment: the algorithm was applied for random 

initialization of user precoder ensemble until it reached to Nash equilibrium. Next, 

starting from an ensemble of precoders corresponding to an optimal Nash equilibrium, 

one precoder added/removed corresponding to one more/less user in the ensemble 

so that there were one more/less active users in the system. The results are plotted 

as shown in Figure 12 where it is noted that average number of ensemble iterations 

to reach a Nash equilibrium does not change significantly with increasing values of 

K and N for given ratio K/N. The convergence speed of the algorithm to reach to 

Nash equilibrium is almost the same for light and average load factor (K/N = 1.2 
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and 1.8), and is slightly higher for higher load factor {K/N = 2.4) as it is expected 

since more users would be competing for the same resources for their transmissions. 

III.5.2 User SINRs, Powers and Costs Variation, and Tracking Ability 

of the Algorithm for Variable Number of Active Users 

In the first experiment, convergence of the algorithm is illustrated from random 

initialization of precoders, channels and powers matrices. An uplink of wireless 

system with K — 5 users in a signal space of dimension N = 3 and AWGN with 

covariance matrix W = O.II3 was considered. The algorithm constants were chosen 

to be /3 = 0.01,/i = 0.01, and tolerance e = 0.001. User precoders and channel 

matrices were initialized randomly, and the target SINRs were selected as 

W,72*,7s,74*,75*} = {1-5,1.4,1.3,1.2,1.1} 

which satisfy the admissibility condition in equation (II. 1.2). The algorithm was 

applied for this simulation setup, and the variation of the user SINRs, powers and 

cost functions are plotted in Figures 13, 14, and 15, respectively. The plots show 

fluctuation at first followed by gradual adaptation and convergence to the specified 

target SINR values. This example shows that the proposed algorithm converges to 

a Nash equilibrium point. 

In the second experiment, the tracking ability of the algorithm is illustrated when 

the number of active user in the system changes in the fly. In this case, once the 

algorithm reached at optimal fixed point for first experiment, user 5 was dropped from 

the system leaving the total number of active users K = 4, and the target SINRs 
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for remaining active users as {1.5,1.4,1.3,1.2}. Then the algorithm was applied to 

this new configuration. After the system reached at new optimal fixed point a new 

user was added to the system with randomly generated precoder, power and channel 

matrix, and with a target SINR 75 = 1.0. For this new configuration, the algorithm 

was applied until it reached to the optimal point. 

Then, the variation of the user SINRs, powers and costs are plotted as shown in 

Figures 16, 17, and 18 where a sudden sharp change appeared in user SINRs, powers 

and costs when one user is dropped from the system as well as when the new user is 

added to the system, that are gradually compensated by the algorithm which brings 

the users SINRs to the specified target SINR values. The plots in Figures 16, 17, and 

18 show the tracking ability of the algorithm for variable number of active users in 
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multipath uplink of the wireless system. This shows that the proposed algorithm is 

applicable to real time dynamic wireless systems where the users can join and leave 

the system. 

III.5.3 Tracking Ability of the Algorithm for Variable Target SINRs 

In order to show that tracking ability of the algorithm for variable target SINR, 

another scenario with K — 5 users in a signal space of dimension N = 4 and AWGN 

with covariance matrix W = O.IIAT was considered. The algorithm constants are 

j3 = 0.01, /j, = 0.01, and tolerance e = 0.01 and channels matrices were chosen 

randomly for all users. Initial user powers were p^ = 0.1, Vfc and initial precoders 

were selected randomly. The maximum allowed power level p™ax, Vfc, was set to 10. 
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In this case, user target SINRs were chosen as 

K,72*,73*,7l,75*} = {5.0,4.0,3.0,2.0,1.0} 

which are admissible in the system. The objective is to illustrate the tracking ability 

of the proposed incremental algorithm for the users who keep changing their cor­

responding target SINRs based on their needs. The algorithm was applied for this 

simulation setup, and once the algorithm is reached at the optimal Nash equilibrium, 

the target SINR of user 5 was changed to 75 = 2.5 and the algorithm was applied 

until it reached again to Nash equilibrium. Then after, the target SINR of user 5 

was changed to a new value 75 = 1.75, and the algorithm was applied for this setup 

until it reached to Nash equilibrium. The variation of the user SINRs, powers and 

costs for this scenario are plotted, respectively, in Figures 19, 20, and 21 which show 

the tracking ability of the algorithm in terms of variable target SINRs. Thus, the 

proposed algorithm can be used in dynamic systems where users may change their 

QoS requirements on the fly 

III.6 P E R F O R M A N C E COMPARISON 

In this section, the performance of the proposed non-cooperative game is com­

pared with the existing method proposed by Buzzi et al. in [1]. It is worth noting that 

the authors in [1] have compared their proposed method with many other existing 

ones and have shown that their method outperforms all of them. 

In order to campare, similar simulation scenario presented in [1] is considered 

which consists of an uplink of a wireless system consists of K = 1,4, 7,10,13,16,19,22 
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and signal space dimension N = 15. In each case, the same target SINRs 7^ = 

6.689 = 8.25dB are taken for all active users wherein users may have random positions 

which is incorporated by using different channel gains generated randomly. The 

AWGN level is chosen to be N0 = 10"9W/Hz and the maximum allowed power P™ax 

is —25dBW for all users k = 1 , . . . , K. 

Figures 22 and 23 show the average user transmit power and the average achieved 

SINR at the receiver output versus the number of users, for the game in [1] and for 

the non-cooperative game considered in this chapter. The results presented are of 

averaging over 1,000 independent realizations for the simulation scenarios. More 

precisely, for each trial, channel coefficients, initial power and precoder for each user 

were generated randomly. 



72 

-20 
— ^ - Proposed method 
— * ~ Buzzi etal., IEEE JSAC Apr. 2008 

10 12 14 
Number of users 

16 20 22 

Fig. 22: Average transmit power versus number of active users for the proposed non-
cooperative game and for the game in references [1] for the signal space dimension 
(system processing gain) iV = 15. 

8.5 

~~«|w., proposed method 
- • - Buzzi et al., IEEE JSAC Apr. 2008 

-o - a 

7 10 13 
Number of users 

Fig. 23: Achieved average output SINR versus number of active users for the proposed 
non-cooperative game and for the game in references [1] for the signal space dimension 
(system processing gain) N = 15. 



73 

By observing the plots in Figures 22 and 23, it is seen that the proposed approach 

converges to a social optimal point (Nash equilibrium) where transmit power is lower 

in the case presented in [1]. This became possible because the proposed algorithm 

uses interference avoidance algorithm with power control to meet target SINRs. Fur­

thermore, the SINR is always constant in our scheme since the target SINR is always 

met within the given tolerance regardless of the system load (i.e., underloaded or 

overloaded). However, in the case of overloaded scenarios for the game in [1], the 

achieved SINR is below the target SINR. It has shown that the game proposed in 

this chapter largely outperforms the game proposed in the literature [1]. 

I I I .7 C H A P T E R S U M M A R Y 

In this chapter, game theory based algorithm is presented for joint precoder adap­

tation and power control in uplink wireless systems with non-ideal channels between 

users and base station. The proposed algorithm uses incremental precoder and power 

updates in the direction of the optimal strategies that minimize cost functions and 

has a smooth transition to a steady state configuration where specified SINR targets 

are achieved with minimum power. The algorithm can also keep track of variable 

target SINRs for active users and variable number of active users in the system, 

and therefore is useful for dynamic wireless system with changing number of active 

users and/or QoS requirements. It has also shown that the analytical optimal point 

which is Nash equilibrium in the game theoretic approach. Furthermore, proposed 

approach outperforms the methods existing in the literature in terms of transmit 

power and QoS. 
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C H A P T E R IV 

T R A N S M I T T E R ADAPTATION W I T H P O W E R 

CONTROL IN INTERFERENCE SYSTEMS 

In this chapter, transmitter adaptation with power control in interference system 

where each user-transmitter pair communicates in the presence of other interfering 

links and creates interference to other user-receivers is presented. The proposed 

method is applicable to both conventional wireless system and cognitive radio sys­

tems. As centralized methods for resource allocation tend to be computationally ex­

pensive in large-scale networks, the interest is to optimize the link parameters with 

local information and reasonable computational burden leading to a decentralized 

approach in interference systems. A distributed method, where each link attempts 

to selfishly maximize its own mutual information based on the knowledge of its own 

channel matrix and the covariance of the total interference and the noise at its own 

receiver. 

Section IV. 1 presents the background and a literature review relevant to this re­

search problem. Section IV.2 deals with a system model, problem statement and 

operating constraints. Achievable rate maximization in spectrum underlay is pre­

sented in Section IV.3 followed by the rate maximization in spectrum overlay in 

Section IV.4 along with simulation results. 
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IV. 1 B A C K G R O U N D A N D RELATED WORK 

Conventional radio frequency (RF) spectrum allocation is based on the specific 

band assignments designated for a particular service (or a service provider) for long 

time and vast geographic area. The usage of statistically allocated RF spectrum is 

ranging from 15% to 85% in the bands below 3 GHz that are favored in non-line-

of-sight propagation and even lesser in the bands above 3 GHz leading to spectrum 

scarcity [7,64-66]. In other words, the existing "command-and-control" spectrum al­

locations defined by government regulatory agencies prohibit the unlicensed access to 

licensed spectrum which results in underutilization of significant amount of spectrum 

in almost all currently deployed frequency bands. Wireless technologies and devices 

are increasing day-by-day and becoming ubiquitous in our daily life leading to strain 

the effectiveness of the traditional spectrum policies. As a consequence, the need of 

more efficient usage of limited wireless resources is the central step in next generation 

(XG) wireless networks. The inefficient usage of the RF spectrum can be improved 

through dynamic and opportunistic access of licensed bands by unlicensed secondary 

users [67,68]. In particular, cognitive radio (CR) [5,7,69] has been proposed to alle­

viate the spectrum scarcity through dynamic spectrum access. It is noted that the 

dynamic spectrum access for spectrum sharing has two basic approaches [68]. One 

is a spectrum underlay approach where CR users are allowed to coexist and transmit 

simultaneously with primary users sharing the same licensed bands but by imposing 

transmit power constraint on CR users so as not to cause any harmful interference 

to the active primary user-receivers. In this approach, CR users are not required 

to sense for spectrum opportunities however they are not allowed to transmit with 
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higher than the preset power mask even if the primary system is completely idle. 

The other is spectrum overlay technique whereby a secondary CR users are required 

to sense and identify the spectrum opportunities in licensed bands before using them 

for given time and geographic location, and exploit those opportunities dynamically. 

If primary users are active in a given frequency band for given time and location, 

the band will not be used by secondary CR users. In this approach CR users can 

transmit with high data rate as primary users once they find the idle spectrum bands. 

It is noted that the main goal in both approaches is to access the licensed spectrum 

dynamically and/or opportunistically by respecting the primary user transmissions. 

In this chapter, the combined precoder adaptation and power control is presented 

for both spectrum underlay and overlay scenarios for dynamic spectrum sharing in 

cognitive radio networks. For spectrum underlay, it is considered that the secondary 

users coexist and transmit simultaneously with primary users without violating the 

interference power limit at primary user-receivers. For spectrum overlay, the informa­

tion related to spectrum opportunities is assumed to be available at CR transmitters 

using a spectrum sensing method as mentioned in [70] so that they use available idle 

spectrum bands opportunistically. Interference system is considered where a given 

transmitter creates interference to all receivers. In general, finding the capacity of 

interference channel is an open problem [20,71]. One can model the interference as 

colored noise and use a whitening transform [72] to find the capacity in the presence 

of external interference. 

The related previous works include [25,26,73-75], where users allocate their pow­

ers over frequency-selective channels in a competitive way. The optimal point in 
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terms of the Nash equilibrium in the Gaussian interference channel has been charac­

terized in [25,26,73] for selfish users with their power spectra to maximize their own 

rates. The simulation results in [74] has shown the inefficiency of Nash equilibrium 

for two-user power control game, and the results in [75] has shown that the reduc­

tion in Nash equilibrium inefficiency in a spectrum sharing game using the repeated 

game equilibria. It is emphasized that the model used in these studies is different 

from this research, since the user decision parameters in [25,26,73-75], are either 

the precoder or the transmitted power adaptations over the spectrum rather than 

combined adaptation of precoder and power of the transmitted signals. Moreover, all 

the previous related works have not considered the interference constraint at primary 

user-receivers and the methods are not applicable to spectrum underlay scenarios. 

IV.2 SYSTEM MODEL A N D PROBLEM STATEMENT 

This chapter considers an interference system for wireless communications with 

K CR links and L primary links where each link consist of transmitter-receiver pair 

as shown in Figure 24. 

IV.2.1 System Model 

Consider a primary wireless system operating in a signal space of dimension 

N where secondary CR users share those signal space dimensions dynamically and 

opportunistically. That is, the licensed bandwidth will be accessed by secondary 

CR users dynamically through the use of signal spaces. In a spectrum underlay, 

secondary CR users coexist with primary users and use the same signal spaces but 

satisfy the interference constraint. Whereas in a spectrum overlay, secondary CR 
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Fig. 24: System model with one primary (licensed) link and K secondary CR links. 

users avoid the signal spaces occupied by primary users in order not to harm primary 

user transmissions. 

As the block transmission, which includes schemes such as orthogonal fre­

quency division multiplexing (OFDM) and code division multiple access (CDMA), 

is capacity-lossless strategy [72,76], it is considered that the user transmitter adopts 

the block transmission making the proposed approach general and independent of 

the CR system implementation. The A^-dimensional transmitted signal by a CR 

user-transmitter i can be expressed as 

X7" — K~>;(\j — v^7 'Jr • CL' (IV.2.1) 
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where d; is ^-dimensional information symbol block transmitted by CR user i with 

.E^didJ] = I, and Cj is iV x N dimensional precoding matrix and is expressed as 

_ i _ 
C t = CiPf in terms of its normalized N x N dimensional form Cj1 and N x N 

dimensional diagonal transmit power matrix P , = dmg{p[,p2, • • • ,Pn , • • • , PJV } • 

Similar to equation (1.1.1), the iV-dimensional received signal at the desired CR 

receiver of link i is described in terms of the vector channel model as [77] 

K 

y% = H M x ; + ^ HjjXj + qj + nj (IV.2.2) 

- ' 

where H y is the N x N dimensional channel matrix between transmitter j and re­

ceiver i (i.e., Hj.j is the channel matrix for the CR link i), Xj is the iV-dimensional 

transmitted signal vector as in (IV.2.1), q̂  = X^=iHi£x£ represents the interfer­

ence experienced at ith CR receiver from L licensed user-transmitters with channel 

matrices H ^ , W, and n^ is the JV-dimensional additive white Gaussian noise at ith 

receiver with £[11,11]] = of I. The first term of right side in (IV.2.2) is the desired 

signal for link i, and the remaining terms consist of interference from other links and 

the noise. In this chapter, it is assumed that: 

• individual transmitter-receiver pairs transmit and receive symbols indepen­

dently without any collaboration at either transmitter or receiver, 

• the co-channel interference from other interfering links is unknown and thus 

treated as noise (i.e., no interference cancelation techniques are employed at 

receivers), and 

! T h e N x N dimensional matrix Cj is said to be normalized when its each column has unit 
norm. 
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• the channels are assumed to be known and vary sufficiently slow and can be 

considered as time invariant during the period of each symbol transmission, 

and varies block by block independently. 

Therefore, by treating the multiuser interference (MUI) as noise, the received 

signal in (IV.2.2) can be expressed from the perspective of a single CR link i as 

Yi = HMXj + zt = H ^ Q d i + Zj (IV.2.3) 

where Zj is the interference-plus-noise vector that corrupts CR i's transmission and 

is assumed to be identified by the CR i receiver in a preliminary sensing operation, 

and hence its autocorrelation matrix E'fzjzJ] = HZi is known. 

In this chapter with an aim of reducing complexities at receivers, we are not 

interested in joint decoding of the interfering signals rather are interested to maximize 

achievable rates over the transmit-covariance matrices. 

Q t = £[x,xj] = Q C t = Q P i C t , Vi = l,...,K (IV.2.4) 

It is noted that the covariance matrix consists of both precoder and power of the 

corresponding link. 

IV.2.2 Operating Constraints 

The transmit power in wireless networks is a key element in the management 

of interference, energy, and connectivity. The transmit power along with the RF 
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spectrum is regarded as the scarce resources and its efficient utilization is highly rec­

ommended in order to increase spectral efficiency and the system capacity. Therefore, 

the CR transmitter i is subject to an average transmit power constraint this implies 

that 

Trace [Qf] = Trace [QCj l = Trace pF\] < i>max (IV.2.5) 

where J^max is an upper limit set on the CR link i's average transmit power. 

In the spectrum underlay, CR users may operate in the same frequency bands 

with licensed primary users provided that the interference generated by CR systems 

is below the maximum level tolerated by the licensed users, i.e. 

Ie<PtT, W = 1 , . . . , L (IV.2.6) 

where Ig is the interference power experienced from CR users at primary receiver I, 

and the interference (and noise) level experienced from primary system at primary 

receiver £ are assumed to be already taken into account. It is worth noting that the 

maximum permissible interference level Pfr should be supplied either by the gov­

ernmental regulatory agencies or the licensed primary operator and may be obtained 

based on interference temperature constraints [78,79]. 

In order to estimate the interference power Ig, the received signal form K CR 

transmitters at the primary receiver £ is given as 

K K 

re = Yl S^x* = S fl^C*di (IV-2-7) 

where H ^ is the N x N channel matrix between CR transmitter % and primary 
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receiver L The interference power can be obtained as 

Ie = Trace 
K 

z2~H-e,iQiH-e,i 
t = i 

(IV.2.8) 

Then, one can write the interference constraint in equation (IV.2.6) as 

Trace 
K 

/ ^H^iQjH^, 
i = l 

< P , / T (IV.2.9) 

It is considered that the CR users are aware of the total interference caused to 

the primary users and the interference threshold P / T , W. This is possible either by 

broadcasting the related interference information by primary users or by using extra 

sensors (which have ranging capabilities) at CR users to measure it or by using an 

external detection agent [80]. 

In the spectrum overlay, the spectral shapes of transmitted waveforms need to 

comply some design and governmental spectral regulation requirements. In order to 

comply with a specific power mask in each signal space, the spectral mask constraint 

for user i can be expressed as [25,26] 

/mask P ^ = [ Q i U < P r s > ) , Vn = l , . . . , iV, Vi = ! , . . . , # (IV.2.10) 

It is important to note that the power mask in each signal space dimension should 

not be violated in order to comply with regulation requirements which leads to the 

condition 
N 

^2p?ask(n) > P™ax (IV.2.11) 
7 1 = 1 
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that help to protect the primary user transmissions from the interference created by 

CR links. 

Furthermore, in the spectrum overlay, the signal space dimensions np G 

{ 1 , . . . ,N} which are occupied by primary users should not be used in secondary 

CR transmissions. This can be ensured by setting p™asfc(np) = 0 for np G { 1 , . . . , N} 

to avoid possible interference to primary users. This avoidance process will be carried 

out at CR transmitter i based on the spectrum opportunities obtained from spectrum 

sensing and analysis process [70], and the spectrum opportunities are assumed to be 

available at CR transmitter. It is noted that the spectrum sensing process in CR 

systems is a fundamental step however it is out of the scope of this chapter. In spec­

trum overlay case, it must be pointed out that the interference from primary users 

in (IV.2.2) will be zero since secondary CR users avoid the bands used by primary 

users. 

IV.2.3 Problem Formulation 

In this framework, the problem of resource allocation for CR link i consists of 

finding the precoder matrix C; along with the transmit power that optimizes some 

meaningful objective function subject to specified operating constraints. From an 

individual CR link perspective, the achievable rate corresponding to each CR link is 

considered as a performance measure of wireless applications, and for the CR link 

described by equation (IV.2.3), it is expressed as [20] 

Hi — - log2 |RjJ — - log2 \RZi\ [bits/transmission] (IV.2.12) 



where 

R-j/i = H^jQiH^ ^ + KZi (IV.2.13) 

is the correlation matrix of the received signal ŷ  in (IV.2.3) at the CR % receiver. 

The rate expression (IV.2.12) can also be expressed in compact form using the fact 

that |(I + AB) | = |(I + BA) | as 

Tli = | log2 |R,,t + H.^Q.H^I - i log2 SR-, 

= i logal l + R - ^ C f c H t j 

= i l o g 2 | I + CjHj i iR-1H i ,<C ( | 

(IV.2.14) 

The decentralized optimal resource allocation which maximizes the achievable 

rate 1Zi for CR link by choosing an appropriate precoder matrix and power in the 

presence of the other links those also want to maximize their own achievable rates 

can be formally written as the following constrained optimization problem 

max 
Q.>o 

K.i 

subject to < 

Trace [Qf] < P\ 

[Qi]n,n < P?askl 

Trace 

n (IV.2.15) 

IT 

It is noted that the relation in equation (IV.2.11) should be satisfied so that the 

primary user transmissions are not hampered from the interference created by the 

CR users. Otherwise average transmit power constraint can be omitted. Then the 
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optimization problem can be written as 

max TZi 
Qi>o 

Trace [Q,] < P™ax, V? 
subject to { (IV.2.16) 

Trace <PT,W 

It is noted that the optimization problem (IV.2.16) is different from the traditional 

rate maximization problem under average power constraint only which has a water 

filling solution [81] and that a related problem with power and spectral constraints 

has been studied in [25,26]. However, the approach proposed in [25,26] has not taken 

account of interference constraint (i.e., the interference power experienced at primary 

receivers from CR users), which might not be realistic assumption for CR systems, 

and thus the method may not be applicable to spectrum underlay scenario. But, 

the resource allocation approach proposed in this chapter is suitable for CR system 

which can switch from spectrum underlay to overlay and vice versa. 

IV.3 RATE MAXIMIZATION IN SPECTRUM UNDERLAY 

In this scenario, the achievable rate maximization problem (IV.2.16) for individual 

CR links is considered in which each transmitter chooses an appropriate precoder and 

power in the presence of the other interfering links. 

As mentioned previously, the dissemination of the interference power contribution 

P\J of CR link i can be done by broadcasting or feeding back the related information 

from coordinator. However, this research adopts the way of setting the upper limit 
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of interference power contribution for each link as P\J = P\T jK to obtain a fully 

distributed solution. 

IV.3.1 Distributed Solution in Spectrum Underlay Using Primal Decom­

position Approach 

With primal-decomposition of overall interference power constraint contribution 

to per-link constraint, the constrained optimization problem (IV.2.16) can be written 

in terms of precoder as 

f(P{i) = Ki subject to 
Trace 

Trace 

CiC! — r i ? V* 

C i H f , j H £ , i C i 

(IV.3.1) 

<ni, w 

It is noted that the desired optimization problem for per-link in terms of semi-

distributed solution can be expressed as 

max f{Pa ) subject to 
Ef^T<^/T, w 

(IV.3.2) 

P% > 0, ViJ 

It is noted that the maximization of (IV.3.1) results in maximization of (IV.3.2). 

The Lagrangian solution of (IV.3.1) is presented, which is the rate maximization 

problem in a distributed approach, and it can be written in terms of Q^ as 

A ( Q i j ^ i \ Li) l l o g ^ R ^ + H i . i Q i H T J - i l o g a l R 

-/ij Trace [Qj] — A ĵ Trace H^iQiH Li + tup]™* + \ttiPjJ 
(IV.3.3) 
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and equivalently it can be expressed in terms of Q as 

CiiC^fuXiJ = \ log2 |I + C t H ^ R - ^ i . i C i - Trace [ c j ^ l + A ^ H ^ H ^ C , ] + 

+fjL.prnax + ^.plT 

(IV.3.4) 

where //j and A ĵ are, respectively, the Lagrange multipliers associated with average 

power constraint and interference constraint. These two Lagrange multiplier can 

be found by using the ellipsoid algorithm [82,83] which will satisfy both power and 

interference constraints. 

P ropos i t i on 1 [84]: The optimal Cj solving the maximization problem (1V.3A) is a 

generalized eigen-matrix o / H j ^ R j 1 ! ! ^ and (/jjl + A ^ H ^ H ^ ) . That is, 

H t i R - 1 H i > i C i = (/i.J + A ^ H ^ H ^ Q A , (IV.3.5) 

Proof: A similar result is proved in [84] in the context of multiple-input- multiple-

output (MIMO) system. Thus the results are used for the single antenna-based 

system and the proof is omitted here. • 

It is noted that the Proposition 1 specifies the optimal precoders Ct but not the 

optimal power allocation. Without loss of generality, the columns of the precoder 

_ i 

are converted into unit norms such that C, = CjP?, where Pj is diagonal and non-

negative power matrix. 

One can write from [58] that 

A ^ = C J H L R J / H ^ Q (IV.3.6) 



and 

C t ^ I + A ^ H ^ O C ^ A (2) (IV.3.7) 

where both At and AJ are diagonal. Moreover, from (IV.3.5), (IV.3.6) and 

(IV.3.7), one can write 

(IV.3.8) .(!) K' = *A 
(2) 

Then, (IV.3.3) can be expressed as 

max - log211 + Pi A? ' | — Trace PA 
(2) (IV.3.9) 

Therefore, the optimal power allocation with spectral mask constraint in each 

signal space dimension for the problem (IV.3.9) is given as [25,26] 

v(i) = [P-l 
Vn L i\n,n [AIVT. 

p™ask(n) 

V n = 1,...,JV (IV.3.10) 

where the Euclidean projection [s]b
a with a < b is defined as [82]: [s]b

a = a if s < a, 

[s]b
a = b if s > b, and [s]b

a = s otherwise. It is noted that the other non-diagonal 

elements of Pj are zeros. 

The spectral mask determines the upper limit of transmit power in each signal 

space dimension which protect the primary user transmissions. 

IV. 3.2 Algorithm 

Based on the analysis above, formally an algorithm is stated for resource allo­

cation by using combined precoder adaptation and power control for CR links as 
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follows: 

Algorithm: CR Resource Allocation 

1. Input: 

• Precoder matrices Cj and find Qj = Q C j = CjP;Cj. 

• Channel matrices H^j, H j j and H ^ , P™", P\T -, qj, the noise variances 

Oi and 

• the desired tolerance e, /i, and A^j. 

2. Output: 

• Optimal precoder and transmit power of CR links 

3. Precoder Adaptation and Power Control 

• DO FOR i = 1 , . . . , K CR links 

(a) Compute the generalized eigen matrix Cj and eigenvalues Aj of the 

matrix pair H^Rj^H^j and (/ijl + A^H^H^j) . 

_ i 

(b) Normalize Cj such that Q = C,P,f. 

(c) Compute A^ using (IV.3.6). 

(d) Allocate the power Pj using (IV.3.10). 

(e) Set Qi = CiPiCt 

4. Repeat Step 3 until the algorithm converges to a fixed point. 
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It is noted that a fixed point of the algorithm is implied by a stopping criterion 

and it is reached when the difference between two consecutive values of the crite­

rion is within the specified tolerance e. One obvious criterion for such distributed 

approach is obtained using the achievable rate Hi of the CR link in (IV.2.12). The 

overall algorithm essentially optimizes the rate of each link i in distributed manner 

until the system converges to KKT point of the problem (IV.3.3). 

Proposition 2. The algorithm 1 converges to a fixed point which is a KKT point of 

problem (TV.3.3/ 

Proof: It is worth mentioning that both objective function IZi and constraints are 

convex in Qi. In order to find a KKT point, we differentiate £i(Qi, faXe^) in (IV.3.3) 

with respect to Q; as [85] 

d C ^ ^ = [ H ^ R ^ + H ^ Q i H , ! , ) - 1 ! ^ ] * - /^I - XtMA* (IV.3.11) 

where it is noted that (R2. + H ^ Q j H J J l Mi = 1 , . . . , K are Hermitian matrices. 

The optimal KKT point of the problem (IV.3.3) can be obtained using 

d ^ f f i ' ^ ) = o (IV.3.12) 
oQi 

That is, at the fixed KKT point, the covariance matrix is 

Q, = H r / [ ( H M S - t H ! j - R j H r / (IV.3.13) 
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where the matrix S = juT + A^HJ^H^. It is worth mentioning that the channel 

matrices are assumed to be full ranked and thus invertible2. At the optimal KKT 

point, the covariance matrix is as (IV.3.13) and the optimal power allocation for 

each CR user-transmitter is as presented in equation (IV.3.10). It is also noted that 

the covariance matrix and power allocation for a given CR link will be different for 

different initial values of the algorithm (e.g., initial precoders, channels, noise and so 

on). 

IV.4 RATE MAXIMIZATION IN SPECTRUM OVERLAY 

This section presents the process of precoder adaptation and power control for 

rate maximization in spectrum overlay approach where secondary CR users avoid the 

signal spaces used in primary user transmissions. In spectrum overlay framework, 

the interference power constraint is not considered since the secondary CR users will 

avoid the signal space dimensions occupied by primary users (i.e., they do not coexist 

and transmit simultaneously in the same signal spaces with primary users), and the 

achievable rate maximization problem (IV.2.16) can be written as 

max %i subject to Trace [Q,] < P m a x , Vz (IV.4.1) 

It is noted that the similar optimization problem (IV.4.1) has been solved in 

[25,26] using game theory which is different from this approach. In an interference 

network scenario, individual CR links maximize their corresponding achievable rates 

2Noninvertible channel gain matrix can be made invertible as in [44, Theorem 1] which does 
not change the capacity. Therefore, it is assumed that all channels are invertible with no loss of 
generality. 
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by choosing suitable precoder and power. 

The rate optimization problem (IV.4.1) in terms of Cj can be written as 

max i l oga l l + C t H ^ R ^ H ^ Q I 

subject to Trace I c J c J < Pz
max, Vi (IV.4.2) 

Now, the Lagrangian of (IV.4.2) can be expressed as 

A ( Q , ^ ) = \ log2 |I + C j H ^ R - ^ i . i C i 

Hi Trace CJQ +&!? (IV.4.3) 

Trace[ct(wi)cJ 

where /ij is the Lagrange multiplier corresponding to the power constraint. In prob­

lem (IV.4.3), the optimal jU, needs to be find by solving the following dual function 

using binary search algorithm, i.e. 

mmmax£;(Ci, i i , ) (IV.4.4) 
IH>O c , 

Equivalently, one can write (IV.4.4) in terms of covariance matrix Qj as 

minmax£j(Qj, u;) (IV.4.5) 
W>OQj>0 

The problem (IV.4.3) and (IV.3.4) are similar except that a (/iT + A^HJ^H^j) 

in (IV.3.4) is replaced by a /i.;I in (IV.4.3). Then the generalized eigen value prob­

lem becomes a regular eigen value problem, and the optimal power allocation with 
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spectral mask constraint in each signal space dimension for the problem (IV.3.9) is 

given as in (IV.3.10). 

As mentioned previously, signal spaces which are used for primary transmissions 

will be avoided by CR user-transmitters by setting p™aa:(np) = 0, Vnp, which is 

required to ensure not to disturb primary users. It is also noted that the solution in 

the case of spectrum overlay in (IV.3.10) can be used to power control in conventional 

wireless system when no spectral mask constraints are imposed (i.e., p™ask(n) = 

+oo, Vn, \ji) with the assumption that [A| \(n,n) > 0. I n this case, the power 

allocation can be done by the classical simultaneous waternlling solutions as in [81, 

86]. Therefore, the proposed approach is applicable to both conventional wireless 

systems and cognitive radio systems in spectrum underlay as well as spectrum overlay 

scenarios. 

It is noted that the Algorithm 1 presented for spectrum underlay can be used 

for spectrum overlay by replacing generalized eigen value problem by a regular eigen 

value problem. Following the similar steps as in the case of spectrum underlay, at 

the KKT point, the covariance matrix in spectrum underlay is as 

Q, = H r ^ C H ^ H j , , ) - R „ ] H r ; (IV.4.6) 

Similar to spectrum underlay, the channel matrices are assumed to be full ranked 

and thus invertible. It is also pointed out that the covariance matrix and power 

allocation will be different with different initial values of the inputs. 
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IV.5 SIMULATIONS A N D N U M E R I C A L EXAMPLES 

In order to illustrate the proposed algorithm, a communication system with K = 

20 CR links and L = 1 primary link operating in a signal space of dimension N = 30 

is considered. The diagonal channel matrices were generated which represents the 

fading coefficients of the path using uniform random distribution in the interval (0,1], 

and were assumed to be fixed for one signaling interval. 

The background noise is assumed to be white with covariance matrix equal to 

O.lljv, the tolerable interference power level is P / T = 0.7, the power allowed for 

transmission is P™az = 3, Mi, and the tolerance is set to be e = 0.001. The precoder 

matrices Ci} Vi, were initialized randomly so that the initial covariance matrices were 

Q» = Q C t , V«, and satisfied Trace [Q4] < Plnax. 

The first scenario considers the spectrum underlay where 20 CR links co-exist 

with 1 primary link and can use all signal spaces for their transmissions by satisfying 

imposed average transmit power and interference constraints to CR transmitters. 

In this case, the interference from primary system to CR users is considered to be 

£[q i qT] = 0.051. 

Then, the Algorithm 1 was applied (taking account of both average power and 

interference constraints) for the above simulation setup to optimize the precoders 

and power of CR links. The variations in achievable rates are plotted for CR links 

in Figure 25. By satisfying both power and interference constraints, all CR user-

transmitters maximize their achievable rates, and the proposed algorithm reached at 

KKT fixed point. 
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Fig. 25: Achievable rates of the secondary CR links versus iterations in spectrum 
underlay with spectral mask, power and interference constraints. 

The second scenario considers the spectrum overlay where the primary link has oc­

cupied 6 signal spaces (1,2,3,12,13 and 14) out of 30 which are avoided by secondary 

CR user-transmitters by setting p] mask i 
Ur, 0 for Vnp 6 {1, 2,3,12,13,14}. Thus 

the interference from primary link to CR users is taken as q; = 0 (i.e., Sfq^q^] = 0) 

in the case of spectrum overlay. Then, Algorithm 1 was applied without consider­

ing interference constraint for the above simulation setup for precoder and power 

adaptation by using the procedure mentioned in Section IV.4. As in the previous 

scenario, the resulting achievable rate variations for CR links are plotted as shown 

in Figure 26. It is noted that the proposed algorithm reached at KKT fixed point 
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and the fixed point might not be unique for different random initialization of input 

parameters in the algorithm. It is also noted that results similar to those shown in 

Figure 26 are presented in [25,26] and are obtained by application of the simultaneous 

Iterative Water Filling Algorithm (IWFA), which was derived using game theoretic 

approach. Once again it is worth noting that the approach presented in this chapter 

is applicable to both spectrum underlay and overlay whereas the approach presented 

in [25,26] might not be applicable to spectrum underlay. 
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Fig. 26: Achievable rates of the secondary CR links versus iterations in spectrum 
overlay with spectral mask and average transmit power constraints. 

It is noted that if the cross channel gains are higher than the intended link channel 

gains, the algorithm takes longer time to converge or might not be able to converge 



97 

to a fixed point. The higher cross channel gains implies that the cross transmitter-

receivers are closer than the intended transmitter-receiver pairs. If this case happens 

in the case of spectrum underlay, the secondary CR users are not allowed to coexist 

and transmit simultaneously with primary users or will be allowed to coexist with 

primary users only if they satisfy both power and interference constraints. 

IV.6 C H A P T E R S U M M A R Y 

In this chapter, a new approach has been presented for combined precoder and 

power adaptation for multi-user spectrum sharing over interference CR systems. The 

rate maximization problem has been solved for spectrum underlay scenario of CR 

systems by taking average transmit power and interference constraints since CR 

users can transmit simultaneously and coexist with primary users in the same signal 

space dimensions. Then, the approach has been particularized to spectrum overlay 

scenario where CR transmitters are imposed only transmit power constraint as the 

CR users avoid the signal space dimension occupied by primary users. Specifically, 

the optimal resource allocation for achievable rate maximization of CR links as a 

constrained optimization problem has been formulated, where the bandwidth use in 

terms of signal space dimensions has been optimized by the CR transmitters under 

imposed constraints that restrict the operation of CR user-transmitters to protect 

the primary user-transmissions. The proposed algorithm converged to KKT point 

and has been illustrated with numerical results obtained from simulations. 
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C H A P T E R V 

T R A N S M I T T E R ADAPTATION W I T H LIMITED 

FEEDBACK 

In the implementation of transmitter adaptation algorithms in distributed man­

ner, users in the system update their corresponding precoders individually provided 

that the correlation matrix of received signal (or interference information) is made 

available to them. The conventional approach using fixed transmitters and heavy sig­

nal processing at the receiver is changing to a new one in which adaptive transmitters 

use feedback from receiver(s) to adjust to varying operating environment such as in 

emerging wireless cognitive radios and adaptive wireless networks [87,88]. Specifi­

cally, feedback in an adaptive wireless systems is used to cooperate between trans­

mitter and receiver to improve the quality of the desired signal at the receiver [89,90]. 

However, the feedback channel has limited capacity in practice and thus the infor­

mation to be fed back needs to be quantized. 

In this chapter, two ways of providing the limited feedback from receiver to the 

transmitter are presented: feedback using interference information quantization and 

using predictive vector quantization. In both cases, the objective is to feed back the 

least amount of information used to update the precoder in decentralized manner 

and use the least number of bits to quantize. Comparison of different quantization 

techniques are presented which are obtained from a Monte Carlo Simulation. 
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V . l I N T E R F E R E N C E INFORMATION QUANTIZATION 

For a precoder update, individual users do not require complete knowledge about 

all other active users in the system in terms of precoders and powers but they only 

need the correlation matrix R^ of interference-plus-noise experienced at the receiver. 

For a given user, this matrix can be obtained by subtracting its contribution from 

the correlation matrix R of the received signal provided that this matrix is available 

at individual users. Thus, distributed implementation of interference avoidance al­

gorithms require that only the correlation matrix of the received signal, R, be made 

available through the feedback channel. Furthermore, as mentioned in previous chap­

ters, the users have access to R instantly, and it can be obtained by either periodic 

broadcast of R by the basestation or periodic broadcast of the received signal r and 

then compute its correlation matrix at the individual users. However, in this chapter 

it is assumed that the base station broadcasts the quantized R. 

It is worth noting that R is an N x N symmetric matrix, and that the values of 

only N(N +1)/2 elements need to be actually transmitted over the feedback channel. 

Whereas in case of r broadcast, one needs only iV elements to be transmitted but 

need to compute correlation matrix at mobile users, which might be costly in terms 

of computation and energy for individual users. Therefore, it is assumed that the 

quantized R is fed back. 

In the study for interference avoidance, an Eigen algorithm with scalar quanti­

zation [22] of the R matrix is considered and assumed that the quantized matrix R 

(whose elements are the quantized version of the corresponding elements in R) is used 

during the interference avoidance algorithm to compute the interference-plus-noise 
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correlation matrices of active users in the system, i.e. 

Rk = R-Pks
T

ksk (V.l.l) 

is used instead of R^. 

In order to see the effect of limited feedback, the system performance in terms of 

sum capacity of the system is analysed, where the sum capacity for non-quantized 

R is defined as [4] 

Cs = i l o g 2 | R | - ^ l o g 2 | W | (V.1.2) 

and with quantized version of R is as 

Cs = ^ l o g 2 | R | - ^ l o g 2 | W | (V.1.3) 

It is noted that the main objective is to get sum capacity closer to the sum 

capacity obtained without quantization. The distortion introduced by quantization 

can be expressed as 

D = E[{CS - Csf] = E \ |R|' 
l o g 2 lRT 

(V.1-4) 

In this setup, main aim is to minimize the distortion introduced by quantization by 

choosing suitable number of bits. 

In scaler quantization, the set of real numbers is partitioned into L disjoint subsets 

{1Z}f=1, and generally L is chosen to be power of 2. It is noted that the quantization 

is nonlinear and non-invertible. For L quantization levels, one needs B = log2 L 

bits to encode. Depending on the choice of quantization regions, one can have uni­

form quantization where quantization widths are equal and non-uniform quantization 
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where the widths are not necessarily equal. The optimal quantizer minimizes the dis­

tortion by optimal selection of output levels and corresponding input levels, and the 

optimal quantizer is known as Lloyd-Max [22]. 

V . l . l Algorithm 

Formally the algorithm is as follows: 

Algorithm: The Eigen Algorithm with Quantized Information 

1. Input: Initial precoder matrix S, user power matrix P , noise covariance matrix 

W , desired tolerance e, and B-bit increment codebook. 

2. For each user k = 1 , . . . , K 

(a) Determine the true R matrix at the receiver and quantize it to obtain 

matrix R. 

(b) Compute matrix R^ using equation (V.l.l) . 

(c) Replace current precoder of user k with the minimum eigenvector of R^. 

3. Repeat Step 2 until a fixed point is reached 

4. Output: Updated precoder matrix S. 

According to [4,8], the convergence of Eigen algorithm with quantized interference 

information is not guaranteed. Thus, the sum capacity is used for a stopping criterion 

of the algorithm. The algorithm reached to fixed point when the difference between 

two consecutive values of the sum capacity are within the specified tolerance. 
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Fig. 27: Distortion versus the number of bits for uniform and non-uniform quantiza­
tion of the interference information for K = 15 and N = 10. 

V.1.2 Simulations and Numerical Results 

Extensive simulations are performed for both uniform and non-uniform quanti­

zation of R using different number of bits for 100 independent trials and plotted the 

average distortion versus the quantization bits as shown in Figure 27. It is noted 

that the distortion introduced by non-uniform quantization in sum capacity is lower 

than that introduced by uniform quantization as shown in Figure 27. 

Then, having looked at the sum capacity variations for non-uniform quantiza­

tion using three different bits, as shown in Figure 28, shows that 3-bit non-uniform 

quantization gives sufficient approximation in the performance measure. 

It is noted that one can choose a suitable number of bit as per the specified 

- a - Uniform 
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Fig. 28: Variation of sum capacity for the interference avoidance algorithm with 
non-uniform quantization of the interference information for K = 15 and iV = 10. 

upper limit in distortion, and can apply non-uniform quantization to the R and relay 

the quantized information through feedback channel so that individual transmitters 

adapt their corresponding precoders. 

V.2 P R E D I C T I V E V E C T O R QUANTIZATION FOR PRECODER 

A D A P T A T I O N 

As mentioned previously, the optimal precoder can be obtained when a receiver 

can estimate or compute the covariance matrix of the interference-plus-noise. Then 

the receiver relays the covariance matrix or the optimal precoder to the transmitter 

via a error-free feedback channel. As the feedback channel has a limited capacity 
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in practice, in this section, it is of interest to present vector quantization for user 

precoders for transmitter adaptation. 

In this section, predictive vector quantization (PVQ) [91] is studied for quantizing 

user precoders in the context of distributed incremental algorithms for precoder adap­

tation [92] and compare its performance with the random vector quantization (RVQ) 

method discussed in [10]. The codebook of precoders is known a priori at both the 

transmitter and receiver in the system. For given B feedback bits, the receiver for 

a given user selects a incremental precoder vector, which gives the small distortion 

in sum capacity, from 2B-precoder codebook and transmits back the corresponding 

value/index to the transmitter via an error-free feedback channel. 

In this setup, the precoder adaptation is considered which uses incremental up­

dates given in equation (III.4.1), i.e. 

sfc(n + l) = —--77 (V.2.1, 
sfc(n) + m/3xfc(n) 

where x^ is the minimum eigenvector of corresponding interference+noise correlation 

matrix corresponding to user k 

Rfc = S P S T + W - pfesfcsj (V.2.2) 

and determines the direction of the increment. The parameter j3 determines the 

increment size (that is, how far in terms of Euclidian distance the updated precoder 

is from the old one) while m = sgn(sJTxfc) gives sign of the increment. It is noted 

that, for distributed implementation of the precoder update (V.2.1), users expect to 
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receive the information of their corresponding increment over a feedback channel. 

V.2.1 Predictive Vector Quantization (PVQ) 

PVQ is discussed in [91] in the context of beam forming for MIMO systems for 

feeding back information about channel prediction/estimation errors. In this section, 

PVQ is applied for the incremental precoder update (V.2.1). Specifically, a given 

user k at instant n uses a quantized version q^ of its corresponding increment vector 

m/3xfc(n) and updates its precoder as follows: 

a( .L-n sfc(n + qfc (n) w . , „ (\TO->\ 

sfc(n + l = _ Vfc = l , . . . , K V.2.3 
sfc(n) + qfc(n) 

The quantized increment is obtained by applying 5-bit vector quantization where 

an increment codebook that is known to both transmitter and receiver is used. This 

codebook is obtained prior to running the PVQ updates and its use implies that only 

B bits need to be feed back from receiver to transmitter for this update. 

The effect of quantization and feedback limited to B bits is studied in terms of 

global system performance measured through the information-theoretic sum capacity 

given by 

C s u m(S) = i log2 |SPS T + W | - \ log2 |W| (V.2.4) 

The distortion is measured in sum capacity C s u m corresponding to the precoders S 

yielded by the algorithm with Csum corresponding to optimal Welch Bound Equality 

(WBE) precoders [16]. The distortion measure is expressed as 

D(S) = E[(Csum - CSum)2] (V.2.5) 
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The main objective here is to maximize the sum capacity where the distortion 

caused by PVQ does not exceed the given upper limit. That is, the PVQ-based sum 

capacity maximization problem can be written as 

max \ log2 | S P S T + W | - \ log2 |W| 

(V.2.6) 

subject to D(S) < D m a x 

where the Dmax is the allowed upper limit in the distortion. 

Following [93,94], it is noted that the predictive vector quantization for precoders 

can be done using 1 bit PVQ corresponding to a simple up/down feedback scheme 

where the distortion does not exceed its given limit. 

In addition, the distortion is compared which is introduced when RVQ [10] is used 

for quantizing the user signature updates Sfe(n + 1) in (V.2.1) with that of when PVQ 

is used. In RVQ, precoders are quantized instead of just their increments in PVQ. 

Similar to [10], it has considered that the precoders are independent and Gaussian 

distributed in RVQ, and the unquantized optimal precoders are the eigenvectors 

corresponding to the minimum eigenvalues of their corresponding interference-plus-

noise matrices. The simulation results plotted in Figure 29 shows that PVQ results in 

smaller distortion than the RVQ ones. Therefore, PVQ method is further investigated 

in the following section. 
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Fig. 29: Average sum capacity distortion for different number of quantization bits 
for PVQ and RVQ of precoders in which we take the number of users K = 6, signal 
space dimension N = 5, and W = O.IIJV-

V.2.2 The Algorithm 

Based on the above analysis, formally an algorithm is presented for PVQ based 

precoder adaptation as below: 

Algorithm: PVQ Precoder Adaptation 

1. Input: Initial precoder matrix S, user power matrix P , noise covariance matrix 

W , increment constant /3, desired tolerance e, B-bit increment codebook. 

2. For each user k = 1 , . . . , K 
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(a) Determine the minimum eigenvector Xfc(n) of Rj.(n). 

(b) Determine quantized increment qfc(ra) in codebook. 

(c) Update user fc's precoder using equation (V.2.3). 

3. Repeat Step 2 until a fixed point is reached 

4. Output: Updated precoder matrix S. 

It is noted that, numerically, a fixed point of the algorithm is observed when 

the difference between two consecutive values of the stopping criterion is within the 

specified tolerance e. For distributed implementation of the algorithm, the stopping 

criterion uses local information that is available to individual users such as the Eu­

clidean distance between a given precoder and its corresponding replacement to be 

within the specified tolerance e. It is also noted that the value of e must be much 

smaller than that of the increment j3. 

V.2.3 Simulation and Numerical Results 

This section presents numerical results obtained from simulations to look perfor­

mance of the proposed algorithm for different cases. 

The codebook was generated independently for incremental updates for different 

number of bits and assumed to be known at both receiver and transmitter. It is 

considered that the transmitter uses the CDMA technology to transmit their infor­

mation. 

The initial precoders were initialized randomly and shared between transmitter 

and receiver, and the channels are assumed to be ideal ones. The generated user 
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Fig. 30: Average sum capacity distortion by PVQ versus the number of bits and 
signal space dimensions. 

powers are assumed to be fixed during the entire simulation. White noise is consid­

ered to be a covariance matrix as W = 0.1IW. Algorithm constants were chosen to 

be p = 0.01, n = 0.01, the distortion limit Dmax = 0.1, and tolerance e = 0.001. For 

an ideal channel scenario, channels were initialized as identity matrices of dimension 

N. 

The first experiment illustrates the variation of distortion for different number of 

bits and different number of dimensions by keeping the ratio (known as load factor 

in CDMA systems) § — 2.4 which is highly overloaded scenario. The algorithm 

was run for 1,000 independent realizations and their average values were calculated. 

Figure 30 shows the average distortion variations in sum capacity introduced by PVQ 

versus the number of bits and number of signal space dimensions. 
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Fig. 31: Average sum capacity distortion versus the different number of bits and load 
factor JJ. 

From Figure 30, it is noted that, as expected, the distortion decreases with in­

creasing number of bits however the there is no high difference between the distortion 

introduced by 1 bit and 4 bits. It is also noted that the distortion increases with the 

increasing signal space dimensions (or number of users) in the system. 

In the second scenario, the simulation was performed for different load factors 

and quantization bits for PVQ of precoder. Underloaded system were considered 

which consists of ^ = 0.6 i.e. K < N and the overloaded system (i.e., K > N) 

which includes light, moderate, and high numbers of transmitters in the system, 

respectively, with the load factor ^ = 1.2,1.8, and 2.4. The variation of distortion 

is plotted in Figure 31. 

From Figures 31, it is observed that the distortion increases with increasing load 
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factor, and the distortion does not change significantly as the number of bits increases 

from 1 to 4 for the given value of load factor. 

From Figure 30 and 31, it is observed that the distortion increases with increasing 

load factor, and the distortion does not change significantly as the number of bits 

changes from 1 to 4 for the given load factor. It is concluded that the sum capacity 

maximization problem for limited feedback can be solved by using 1 bit PVQ in 

which the distortion does not exceed its upper limit 0.1. 

V.3 C H A P T E R S U M M A R Y 

In the first section of this chapter, transmitter adaptation were studied for sum ca­

pacity maximization problem with limited feedback when only quantized interference 

information is available. The results have shown that non-uniform quantization out­

performs uniform quantization when scaler quantization of interference information 

is used. It is noted that 3-bit non-uniform quantization gives close approximation to 

the non-quantized system performance. 

In the second part of this chapter, PVQ was studied for precoder adaptation with 

limited feedback and its performance was compared with that of RVQ in which the 

PVQ outperforms the RVQ in terms of introduced distortion. Then, the PVQ for 

different load factor has been studied where, for given B feedback bits, the receiver 

for a given user selects a incremental precoder vector, which gives the small distortion 

in sum capacity, from 2s-precoder codebook (known a priori at both the transmitter 

and receiver) and transmits back the corresponding B bits to the transmitter via an 

error-free feedback channel. The performance of a PVQ scheme has been studied in 
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terms of sum capacity for different number of bits and load factors. For B = 1 , . . . , 4, 

the distortion value introduced by quantization does not exceed 0.1. As seen in the 

simulation results, a 1 bit PVQ corresponding to a simple up/down feedback scheme 

can be considered as an optimal where the distortion does not exceed its given limit. 
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C H A P T E R VI 

T R A N S M I T T E R ADAPTATION AND P O W E R 

CONTROL W I T H FADING CHANNELS 

In previous chapters, the transmitter adaptation is presented for interference miti­

gation and power control under specified target SINR requirement where the channels 

between transmitters and a receiver are assumed to be known and fixed for the en­

tire duration of transmission. However, in wireless communications, the channels 

experience fading. The fading may vary with time, geographical position and/or 

radio frequency which may either be multipath induced fading (due to multipath 

propagation) or shadow fading (due to shadowing from obstacles affecting the wave 

propagation). Since the time variations appear to be unpredictable, channels in wire­

less systems are often modeled as a stochastic process. Usually, fading is modeled as 

a time-varying random change in the amplitude and phase of the transmitted signal. 

Fading channel models are generally used to model the random effects of electromag­

netic transmission of information in cellular networks, broadcast communication and 

underwater acoustic communications. 

The performance of the wireless system heavily depends on channels. As men­

tioned in previous chapters, the SINRs are used as performance measure character­

istic of the system. It is also noted that the SINR is measured at the output of the 

receiver and thus directly related to the data detection process, and the bit-error-rate 

has one-to-one relationship with target SINRs matching criteria. 
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In this chapter, the outage probability in multiaccess fading channels is analyzed 

in the context of uplink of a wireless system. 

VI. 1 OUTAGE PROBABILITY 

The performance of wireless systems operating over fading channels can be eval­

uated using the outage probability denoted by Pout and defined as the probability 

that the output SNR for a given user k, 7^, falls below a certain specified threshold 

(i.e, target SINR), 7^. Formally, the outage probability is 

Paut= fk Plk{lk)dlk (VI.1.1) 
Jo 

which is the cumulative distribution function evaluated at 7^ where Plk{^ik) denotes 

the probability density function (PDF) of 7^. 

For the case with quasi-static fading channels which has a large coherence time, 

channels can be estimated and assumed to be known. That is, channels can be 

assumed to vary sufficiently slowly and can be considered as time invariant during 

the period of each symbol transmission and vary block by block independently. Then 

one can apply joint transmitter adaptation and power control to meet target SINR 

requirements in straightforward way. 

For the dynamic channel, where the coherence time of the channel is small, it 

may not be possible to estimate channel characteristics and apply the algorithm for 

joint transmitter adaptation and power control. That is, by the time channel has 

been estimated and the algorithm for joint transmitter adaptation and power control 

applied, the channel under consideration may have already changed to new values. 
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This is possible when a communicating device is traveling on a vehicle moving with 

high speed. In this practical approach would be to use average characteristics 

of the channel and apply our algorithm. That is, precoder ensemble for transmitter 

adaptation and power control will be applied over the average channels regardless of 

the actual channel realizations. 

Instantaneous SINR is considered as random variable and find Complementary 

Cumulative Distributed Functions (CCDFs) to compare the performance of the al­

gorithm with the help of Monte Carlo simulations. Based on SINRs CCDFs, the 

performance of the algorithm is compared for average channel and for each channel 

realizations. 

It is noted that SINR CCDFs show that the probability of exceeding user SINR by 

its value in abscissa for a given precoder ensemble. An outage occurs whenever SINR 

is below a given target value, and the probability of outage Pout can be identified 

from the corresponding CCDF plot. 

VI.2 FADING C H A N N E L MODEL A N D SIMULATION RESULTS 

This section shows the application of transmitter adaptation to fading channels 

with average and each channel realizations. 

It is worth noting that the information dissemination over wireless channels is a 

complicated phenomenon and characterized by various effects, such as multipath and 

shadowing. As the wireless fading channels depend on the particular propagation en­

vironment and the underlying communication scenario, a precise mathematical model 
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of the phenomenon is either unknown or too complex. However, one can use statis­

tical modeling and characterization to incorporate different effects. In this chapter, 

indoor wireless channels are the focus [95]. Similar to [4,95], the frequency selective 

fading channel model with flat fading are considered that represents Rayleigh fading. 

In the Rayleigh fading environment, the amplitude scaling at for the channel between 

a user I and basestation is a Rayleigh random variable with PDF 

ft(ae) = ^exp ^ (VI.2.1) 

°t 

where E\af\ = 2a'j which relates the o\ to the second moment of the Rayleigh 

random variable. Specifically, the second moment of the random variable represents 

the eigenvalue corresponding to user £ average channel, that is, E\af\ = 2<r| = Xe. 

To apply this algorithm, a transmitter needs to estimate the autocorrelation ma­

trix of the received signal in addition to channel between the transmitter and bases­

tation. The transmitter adjusts its waveforms based on the received interference-

plus-noise (obtained by subtracting the contribution of a given user from the auto­

correlation matrix). This problem has been studied in Chapter V. 

It is noted that, for slowly fading indoor channels, it may be possible to apply 

our algorithms in a straightforward way. But, fast fading channels are of interest 

where their average values as well as actual channel values are used. In this case 

when the channel between a given user and basestation is dynamic and can not be 

estimated rapidly to make it like a quasi-static to apply this algorithm, one can 

measure the average channel characteristics and use the optimal precoders ensemble. 

For the system with a frequency selective fading channel model, the average value 
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of the channel gains given by the equation (VI.2.1) is taken and apply ensemble of 

precoders and power control to meet QoS requirement. Next, precoder ensemble is 

applied for the real channel realizations with power control to meet individual users' 

QoS requirements. It is noted that given precoder ensemble, which is applied in 

average and actual channel realizations, might not be optimal one. To look at system 

performance, extensive simulations were performed in terms of SINR CCDFs. 

In order to perform simulations, an uplink of a wireless system with K = 5 

number of users operating in signal space of dimension N = 4, AWGN at the 

basestation receiver with correlation matrix W = O.lljv and user target SINRs 

7^ = {1.5, 2.5, 3.0,4.0,5.0} was considered. The algorithm was applied and the SINR 

CCDFs were plotted as shown in Figures 32 and 33. 500 set of precoder ensembles 

were generated and the simulation was performed for 1,000 independent realizations 

of Rayleigh fading channels for the given system. 

Two cases for average channel realizations are considered: First, ideal average 

channels, where all channel eigenvalues are equal to 1 which implies that second mo­

ment of Rayleigh random variables in equation (VI.2.1) are also equal to 1. Second, 

non-ideal average channels, in which channel eigenvalues generated from uniform 

distribution in the interval [0.6, 1.4] are used which includes both attenuation and 

boosting of the signal. 

From Figures 32 and 33, the best performance is obtained with precoder ensembles 

optimal for each channel realization, however, it should be noted that this might 

not be always possible for rapidly varying channels. It is noted that, because of 

the computational burden in each channel realization and transmitter adaptation, 

selecting sets of precoder optimal for the average channel might be a reasonable 
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Fig. 32: SINR CCDFs for multiaccess fading channels comparing precoder ensembles 
optimal for the average channel (dashed line) and precoder ensembles optimal for each 
channel realization (solid line). Average channels are assumed to be ideal. 

Fig. 33: SINR CCDFs for multiaccess fading channels comparing precoder ensembles 
optimal for the average channel (dashed line) and precoder ensembles optimal for each 
channel realization (solid line). Average channels are assumed to be non-ideal. 
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choice as it results in well enough system performance. 

VI.3 C H A P T E R S U M M A R Y 

In this chapter, the performance of the algorithm was analyzed in the context 

of fading channels. The application of the algorithm is straightforward in the case 

of slowly fading channels which are assumed to be known and stable for the entire 

duration of transmission. In the case of fast varying channels, during the process of 

finding optimal precoder with required QoS service, the channel would be changed to 

different values and thus, the algorithm can be used to compute precoder ensembles 

with average channel parameters and the performance of the algorithm has been 

presented with the help of Monte Carlo simulations. 
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C H A P T E R VII 

CONCLUSIONS AND FUTURE W O R K 

The number of wireless devices and applications that access unlicensed parts of 

the radio spectrum are increasing at a prolific rate. Further deployment of wireless 

devices and networks that use the same parts of the unlicensed spectrum thus needs 

to take account for possible external interference. In unlicensed bands, cooperation 

among devices in terms of shared medium access cannot be guaranteed. Further­

more, there is lack of any enforcing body pushing for optimal resource allocation 

between the unlicensed band technologies and devices, thus the development of adap­

tive algorithms for resource management in unlicensed RF bands is of importance. 

Interference avoidance is one promising solution in this direction for wireless resource 

management. Emerging trends in the wireless industry, such as cognitive radios and 

adaptive wireless networks are shifting the design paradigm for wireless communi­

cation systems. The traditional approach using fixed transmitters and heavy signal 

processing at the receiver is changing to a new one in which adaptive transmitters use 

feedback from receiver(s) to adjust to varying channels and interference patterns in 

order to better suit the dynamic environment in which they operate under specified 

quality of service. Specifically, in an adaptive wireless communication system with 

feedback, the transmitter and receiver cooperate in order to improve the quality of 

the desired signal at the receiver [89]. 

This thesis is a result of implementation of transmitter optimization algorithms 

in distributed manner. Since the centralized methods for resource allocation tend 
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to be computationally expensive in large-scale networks. Furthermore, the need for 

optimizing the link parameters with local information and reasonable computational 

burden motivates a decentralized approach. A distributed method, where each link 

attempts to update its precoder and optimize its power based on the knowledge of 

its own channel matrix and the covariance of the total interference and the noise at 

its own receiver. 

Chapter II considered the system model where multiple transmitters commu­

nicate with a single receiver, and the transmitters employ CDMA type signa­

tures/waveforms for transmitting their information. A Gradient-Descent based pre­

coder adaptation by each user in distributed manner for interference mitigation and 

power control where each user has QoS requirement in terms of minimum target 

SINR has been analyzed and simulated, and the adaptation is based on the received 

covariance matrix of interference information via error-free feedback channel. In this 

scenario, the distributed method and the centralized methods are equivalent in terms 

of precoder ensemble. The proposed algorithm has been analyzed for ideal channel 

scenario and then has been extended to non-ideal channel scenario where channels 

between users and base station were considered explicitly. 

Chapter III investigated the incremental strategies for precoder adaptation and 

power control in distributed manner for a system model that is similar to the model 

of Chapter II. Specifically, non-cooperative separable games for precoder adaptation 

and power control were used where individual users have their QoS requirements to 

satisfy. The incremental algorithm has presented which can keep track of variable 

QoS requirement and variable number of users in the system on the fly. Therefore 

the algorithm presented is applicable to dynamic wireless systems. The performance 
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of proposed algorithm was also compared with methods existing in the literature [1] 

and our algorithm outperforms the existing one in terms of power and QoS (i.e., 

target SINR). Specifically, the proposed algorithm needed lower power to satisfy the 

specified QoS than the method available in the literature. 

Chapter IV considered the interference system where individual transmitters have 

their intended receivers, and communication occurs in the presence of other inter­

fering links. A distributed algorithm was proposed which requires absolutely no 

coordination between the links and allows them to maximize their desired rates. The 

algorithm presented in this chapter is applicable to traditional wireless systems as 

well as future generation cognitive radio systems. Furthermore, in cognitive radio 

system, the method can be implemented in both spectrum overlay and underlay 

approaches. 

In Chapter V, the effect of quantization of information used in distributed pre-

coder adaptation was explored. In the first section, the distortion introduced by 

quantization (i.e., non-uniform and uniform scaler) of interference information was 

presented. The non-uniform quantization of interference information with 3-bits 

resulted the sum capacity closer to that obtained when unquantized interference in­

formation was used. In the next section, two different vector quantization methods 

were compared: PVQ and RVQ. As the PVQ outperforms the RVQ in terms of dis­

tortion introduced in sum capacity, the PVQ approach for precoder adaptation was 

analyzed and simulated for different load factors and quantization bits. It was shown 

that PVQ with 1 bit for precoder adaptation is sufficient to get distortion in sum 

capacity lower than the value of 0.1 for sparse to highly overloaded systems. 

In Chapter VI, the performance of the algorithm in the context of fading channels 
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was analyzed. Average channel realization with precoder ensemble gives reasonable 

system performance, and the performance has been presented with the help of Monte 

Carlo simulations. 

Finding out a method based on PVQ for joint precoder adaptation and power 

control to meet QoS requirement in MAC is part of future work. The other interest­

ing areas of future work would be developing the similar mechanisms for downlink 

(broadcast channels) using uplink-downlink duality. In interference systems, the ar­

eas of future work would be to develop a game theoretic approach for social optimal 

resource allocation. 
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