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ABSTRACT

This dissertation evaluates the utility of several approaches to the design of good

distributed sensing systems for both narrowband and wideband spectrum sensing problems

with correlated sensor observations.

With respect to narrowband sensing, a spectrum hole within a band is sensed, and

its occupancy status is determined. For distributed detection network, which has multiple

sensors in collaboration to detect the presence of a deterministic signal in correlated Gaussian

noise, parallel and tandem topologies are considered. The distributed detection problem is

formulated as a non-linear integer programming problem, and two heuristic strategies are

designed for optimization: Markov Chain Monte Carlo and genetic algorithm (GA).

For the tandem topology, it is known that the optimum decision rules of both sensors

are coupled in nature. For two-sensor distributed detection, the two-dimensional signal

space is partitioned into three regions, and the availability and properties of coupled single-

threshold sensor rules are established in each region. Validated results for the probability of

error detection performance, as a function of sensor placement, of coupled single-threshold

sensor rules are compared with sensor rules generated using the GA.

The probability of error detection performance of the parallel topology is compared

to that of the tandem topology. Extension to the case with two-bit sensor reports to the

fusion center (FC) is also investigated.

For the one-bit sensor reporting case, the performance of the exclusive-OR (XOR)

rule in detecting the presence or absence of a deterministic signal in bivariate Gaussian

noise is reported. Signals from the two sensors are assumed unequal, whereas the noise

components are correlated and have identical marginal distributions. The sensors send their

one-bit quantized data to the FC, which then employs the XOR rule to arrive at the �nal
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decision. In the limit where the correlation coe�cient r approaches 1, the optimum fusion

rule for both parallel and tandem detection topologies is proven to be XOR with identical,

alternating partitions (XORAP) of the observations at the sensors. The rate at which the

probability of detection error of XORAP decreases as it approaches zero is further quanti�ed.

The rate is much slower, of the order of
√

1− r, compared to the centralized likelihood ratio

detector, which has the probability of error approaching zero exponentially fast.

For the wideband sensing case, multiple narrowband channels on a wideband spectrum

are sensed simultaneously. An advanced compressive wideband spectrum sensing system is

analyzed based on Slepian-Wolf coding scheme. The results show that the system with

Slepian-Wolf coding reinforces joint decoding at the FC by helping the system collect a

larger number of measurements given a constrained number of total reporting bits, thereby

contributing to better fusion results in reduced mean squared error (MSE).
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CHAPTER 1 INTRODUCTION

In a distributed spectrum sensing (SS) system, multiple sensors deployed at the sec-

ondary users (SUs) may use channels opportunistically by observing the status of a speci�c

channel or multiple channels on a spectrum assigned to primary users (PUs). The sen-

sor observations are compressed, summarized, and reported to a fusion center (FC), where

aggregated analysis is made to decide the occupancy states of PUs.

In this dissertation, a distributed spectrum sensing system is designed with correlated

observations to minimize detection error. The distributed detection problem is formulated as

a binary hypothesis testing problem. Algorithms, analytical methods, and numerical results

for the probability of error detection performance of designed systems are presented.

1.1 Background

Cognitive radio (CR) has been hypothesized as a potential tool to reduce the e�ects of

spectrum shortage. For the interweave model in cognitive radio networks (CRN), according

to the spectrum policies developed by the Federal Communications Commission (FCC), SUs

are allowed to access unoccupied licensed frequency bands and detect spectral opportunities

when PUs are absent [1]. SS is performed at the SUs without receiving assistance from or

causing a harmful e�ect on the PUs.

In terms of the size of a frequency band of interest, the spectrum sensing problems are

divided into two parts: narrowband and wideband spectrum sensing. Wideband spectrum

sensing focuses on discovering opportunities over a wide frequency range simultaneously

to bypass the sampling complexity and get high aggregated throughput while narrowband

spectrum sensing focuses on a single channel [2].

Spectrum sensing based on a network of cooperative sensors has been analyzed exten-

1



sively in the literature. Depending upon the capability of sensor networks, either condensed

information or the raw data from the sensor sites may be transmitted to an FC, where a �nal

decision concerning the presence (hypothesis H1) or absence (hypothesis H0) of a signal (or

target) is made. The former case is usually referred to as decentralized detection, whereas

the latter is termed centralized detection. Furthermore, the correlation that naturally occurs

in sensor observations can be exploited to improve system performance.

1.2 Narrowband Spectrum Sensing With Correlated Observations

1.2.1 Distributed Detection Systems

Taking advantage of a distributed detection system in CRN is a way of �nding spec-

tral opportunities in a CRN. The spectrum information of PUs as sensed by neighboring

SUs are gathered at the FC in one of the two ways: decentralized or centralized detection.

Instead of collecting raw data from the sensors, decentralized detection reduces the band-

width requirement of reporting channels by gathering only quantized sensor observations

at the FC. Therefore, decentralized detection has broad spectrum sensing applications for

cognitive radio systems.

Spectrum sensing with distributed signal detection problem in CR is a binary hypoth-

esis testing problem indicating the absence and presence of PUs. Many models have been

proposed to solve the signal detection problems with correlated sensor observations [3, 4].

[5] introduced a new framework using a hidden variable to transfer the detection problem

from the dependent case to an independent one. The e�ect of signal-to-noise ratio (SNR)

was studied in [6] by introducing equicorrelated and autoregressive-order-one models. In [7],

signals from two sensors were modeled as a bivariate shift-in-mean normal distribution. The

likelihood ratio partitions using binary quantization are considered. In [8], a distributed

detection system with two sensors, using one-bit quantization at each sensor, is presented.

A comprehensive study is given by dividing the sensing areas of two sensors into �Good�,

�Bad�, and �Ugly� regions, with fusion rules classi�ed into �AND�, �OR� and �XOR�. To �nd

2



the sensor decisions and fusion rules, a lot of work studies optimization methods focusing on

minimizing the probability of error. Other criteria, such as minimum time cost and minimal

samples, were investigated [9]. However, �nding optimal solutions to the distributed detec-

tion problem is an NP-hard problem [10], which is often approximated by heuristic methods.

In [11], genetic algorithm (GA) was used to calculate the soft decisions for a distributed

detection problem.

1.2.2 Noise Correlation

For a distributed detection system, assume that a known signal is present in Gaussian

noises when hypothesis H1 is true. When H0 is true, there is no signal at each sensor, and

the sensor observation is simply noise. For a distributed detection (DD) system with two

sensors, assume the noise components at the sensors are jointly bivariate Gaussian with a

correlation coe�cient r and identical variance.

Sensor observations are correlated since sensors are observing the same target [12].

The correlation is introduced by noise, which exists in interfering signals and is based on the

assumption of a theoretical model. As explained in [13, 14], a model of sensor observations

using multi-variate Gaussian with a covariance matrix could only characterize linear relations

between them. However, a copula-based formulation could explore non-linear dependence

across the sensors, in which copula theory was applied to estimate the joint probability

density function (PDF) of correlated observations [15]. A recent contribution discussed

the joint estimation of unknown parameters and detection in a joint copula probability

distribution model [16]. In [17], a distributed detection problem of �nding sensor decision

rules was considered using joint Clayton copula distribution to model correlation. Correlation

could be exploited to improve system performance based on correlated sensor observations

and statistical modeling of their joint PDF.
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1.2.3 Distributed Detection with Tandem Topology

The literature has widely investigated the two-sensor parallel network for detecting

deterministic signals in correlated Gaussian noise. In [18], a distributed detection system with

two sensors and an FC was considered, and noise models for the optimal system employing

marginal likelihood ratio tests were characterized. A new framework was proposed in [19]

that performs spectrum sensing in soft-decision-based distributed detection systems and

considers correlated sensor observations. Rate-limited and error-prone transmission between

SUs and FC were considered in [20].

However, less attention has been paid to the tandem distributed detection system

with correlated sensor observations. In [21], the detection problem of Gaussian signals in

Gaussian noise for the tandem case was discussed. Finding optimal communication direction

in a two-sensor tandem fusion system was also addressed. It was pointed in [21] that [22]

made an incorrect assumption that the �rst sensor in a tandem network could employ a

simple likelihood ratio test without compromising the global optimality. The impact of

interactive fusion on detection performance was considered in [23]. Furthermore, distributed

signal detection with two or more sensors tandem structures was discussed in [24].

1.2.4 Probability of Error Detection Performance Comparison of Parallel and Tandem

Topologies

In the parallel topology, sensors are placed independently to observe the same target.

After making an observation, each sensor sends its own report, which is the compressed

information of its sensor observation, to the FC. The DD problem considering sensors placed

in parallel has been widely investigated in the literature. It is studied in [8] that Bayes-

optimal binary quantization of sensor observations in the bivariate Gaussian distributed

detection problem. Optimal quantization with single-threshold is obtainable with speci�c

parameters of signal means and correlation coe�cient, where the �Good� region is de�ned.

In other cases, [19] formulated the distributed detection problem as a non-linear integer
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programming problem and introduced GA to �nd suboptimal solutions. Sensor reports of

one-bit and multiple-bits were considered. Besides, [20] considered both rate-limited and

error-prone transmission of sensor soft-decisions to the FC.

In the tandem topology, sensors are placed serially. [25] and [26] considered the Bayes

error performance of two-sensor tandem distributed detection network. In [26], distributed

estimation with correlated noises was considered in the Bayesian framework. In [21, 25, 26],

the problem of whether making the better sensor with a higher mean serve as the FC gives

better detection performance or not was mentioned.

However, works of literature studying the probability of error detection comparison

of parallel and tandem topology are limited. For the conditionally independent sensor ob-

servations, conditioned on the received signal hypothesis, asymptotic error rate analyses, as

the number of sensors tending to in�nity, for both parallel and tandem topologies, have been

made. Also, for a �nite number of sensors, except for the case of a two-sensor system, no

general conclusion as to whether parallel or tandem topology is better can be made. It is

possible that one topology could do better than the other for speci�c ranges for parameters

associated with the distributions of the sensor observations [27].

In the case of a two-sensor DD system, the tandem con�guration is known to have as

good or better performance than the parallel. The tandem con�guration can always imitate

the optimal parallel topology, having in possession of both sensor 2 observation and the

quantized data from sensor 1 [27]. This result is valid irrespective of whether the observations

are conditionally independent or dependent. However, for the particular case of deterministic

signals in correlated Gaussian noise, it would be interesting to know the performance gaps

between the optimal parallel and the optimal tandem topology, in di�erent signal-regions

and correlation parameters, would be.
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1.2.5 Boolean Fusion Rules for One-Bit Sensor Reports and �XOR�

It is well known that the complexity of �nding optimal solutions to decentralized

detection problems is, in general, formidable [20, 28, 29]. Even in the case of distributed

detection with two sensors, with each sensor sending one-bit quantized information to the FC,

which then makes a �nal decision on the true hypothesis, �nding the optimal quantization

schemes at the two sensors and the decision rule at the FC is still a di�cult problem. The

optimal quantizers at the two sensors need not be identical, even if the marginal distributions

are identical [8, 28, 29]. It is applicable for both correlated and statistically independent

observations [28].

In the case of one-bit quantized data from two sensors, the number of possible FC

Boolean rules are limited to 222 , out of which the non-trivial ones are the Boolean �AND�,

�OR�, �XOR�, and �Ignoring one of the sensors�, excluding the other equivalent rules. �XOR�

can never be optimal for the statistically independent case, but it can be competitive in some

regions of the correlated Gaussian case, as shown in [8]. Hence, a method to �nd the optimal

solution to the decentralized detection problem is to assume a particular fusion rule, optimize

the quantizers at the sensors for that fusion rule, and then pick the best fusion rule along

with the corresponding quantizers at the sensors as the optimal solution. In the simplest case

of each sensor getting one sample, the optimal quantizer turns out as the partitioning of the

real line (i.e., the sample) into quantization intervals, where the intervals are represented as

a bit `1' (possibly also for the intervals represented by the bit `0') could be non-contiguous.

In the seminal paper by Willett et al.[8], the authors identi�ed regions for the opti-

mality of the Boolean �AND� (or �OR�) rule in the (s1, s2) signal plane, which includes the

region where the quantization intervals for both bits `1' and `0' are contiguous (called simply

the �Good� region), the region where it may be optimal to ignore one sensor data (�Bad�

region), and the region where the �XOR� rule could outperform both �AND� and �OR� rule.

However, [8] did not examine the performances of those rules when the correlation coe�cient

r is closer to 1. Reference [25] extended the results in [8] to two-sensors tandem case and
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obtained �Good� region solution. All the above results and those in [18, 21, 26, 30] show the

di�culty in �nding an optimal solution when sensor observations are correlated.

1.2.6 Motivation for Investigating the �XOR� Performance

There are two reasons for the investigation of the performance of �XOR� rule. The

�rst reason is regarding the optimality of the �XOR� rule for both two-sensor parallel and

tandem topologies, as shown in Fig. 2.1 in Chapter 2. Suppose each sensor makes its

decision based on the comparison of its observation against a single threshold. In that case,

�XOR� as a fusion rule is not meaningful in the case of independent observations, because

the �XOR� rule is not a monotone fusion rule, a condition needed for optimality in the case

of independent observations [27, 31]. Consider the situation when sensors utilize multiple

quantization intervals, each interval designated as either a bit `1' or a bit `0'. In that case,

a bit `1' received at the FC from a sensor might be the result of its observation falling in

any one of the multiple intervals marked as bit `1' by the sensor. Therefore this bit is not a

local decision in favor of a hypothesis. The alternating partitioning intervals of span |s1−s2|

for �XOR� decision was �rst mentioned in [19]. It showed the optimality of XORAP rule in

the two-sensor parallel topology, in the sense of achieving perfect decision when r = 1. The

partitioning was heuristic.

A proof will assert that XORAP is the optimal rule for the two-sensor tandem topol-

ogy. Also, the detection error of the XORAP rule is proven to decrease in the order of
√

1− r. It has been shown in [27, 31] that since the optimal rule in the parallel case can

never outperform the optimal rule in the tandem case and the XORAP is also a parallel

decision rule, other parallel fusion rules cannot outperform the XORAP rule in the parallel

case, in terms of the rate that the detection error decreases to zero as r approaches 1. It

proves that the XORAP is the optimal rule for both tandem and parallel cases as r → 1.

For the parallel one-bit case and r tending to 1, if possible, let some fusion rules other

than XORAP, achieve the minimum Bayes error. However, as r tends to 1, the best tandem
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rule has been proven to be the XORAP, with the rate of detection error decreasing in the

order of
√

1− r. Since the optimal rule in the parallel case can never outperform the optimal

rule in the tandem case (see [27, 31]) and the XORAP is also a parallel decision rule, other

parallel fusion rules cannot outperform the XORAP rule in the parallel case, in terms of the

rate that the detection error decreases to zero as r approaches 1. It proves that the XORAP

is the optimal rule for both tandem and parallel cases as r → 1.

The second reason for the investigation is the behavior of di�erent fusion rules as

the correlation coe�cient increases from 0 to 1. As shown in [6], for the case of centralized

likelihood ratio test (CLRT), as r increases from 0, the probability of error keeps increasing

up to a point r = min(s1,s2)
max(s1,s2)

, after which it monotonically decreases towards 0. That is, the

increasing correlation is detrimental to the probability of error performance in detection,

but that is only up to the point determined by the signal levels at the two sensors. This

behavior is seen for the number of sensors exceeding 2, but the point of in�ection is not the

above simple formula given for two sensors. Any increase in correlation coe�cient beyond

that point aids in detecting signals, ultimately leading to zero probability of error as r → 1.

Similar behavior is also exhibited when sensors employ multi-bit quantization, see [19, 32].

Hence, given that XORAP is the best one-bit fusion rule as r → 1 and that the CLRT is the

best fusion rule without any quantization of sensor data. It will be of interest to compare

the performances of the two for large values of r, knowing well how the performance of any

reasonable scheme improves once the correlation becomes increasingly larger.

A side question may be what happens when s1 = s2 and r → 1. Partition interval

in the XORAP rule cannot be of zero length. Since observations at both sensors will now

be identical under hypothesis H1 and identical under H0 (identical but with only noise), the

FC essentially has information from any one sensor. The CLRT in such a case will have the

performance of a single sensor. Hence, the probability of error reaches a threshold that is

bounded away from zero, determined only by the SNR of a single sensor, as r → 1.

Finally, it is noted that although the correlation close to 1 is rarely seen in practice,
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investigation of this limiting case has its theoretic importance that contributes to a better

understanding of how the local decisions and the fusion rules would change concerning the

change of correlation coe�cient, as well as the corresponding performance.

1.3 Wideband Spectrum Sensing With Slepian-Wolf Coding Theorem

1.3.1 Slepian-Wolf Theorem

In information theory, the Slepian-Wolf coding theorem relates to the distributed

source coding (DSC) problem that compresses two correlated information sources indepen-

dently but recovers them jointly [33]. Let R1 and R2 be the rates to code source XS and

source YS, respectively. It has been proved that if R1 ≥ H(XS|YS), R2 ≥ H(YS|XS), and

R1 + R2 ≥ H(XS, YS), both XS and YS can be fully reconstructed with joint decoding

[33]. H(XS|YS), H(YS|XS) and H(XS, YS) are conditional and joint entropy of (XS, YS). In

[34], a practical multi-terminal source coding method was introduced for direct and indirect

two-terminal source coding. In [35], a binned progressive quantization method was used to

exploit correlations, which were usually overlooked in measurements. This framework can

be implemented in wideband spectrum sensing.

1.3.2 Wideband Spectrum Sensing Techniques

Wideband spectrum sensing is categorized into two types [1]: Nyquist and sub-

Nyquist wideband sensing, according to whether or not the sampling rate is higher than

the Nyquist rate. Among di�erent spectrum sensing methods, compressive sensing (CS),

which belongs to sub-Nyquist wideband sensing, is considered an e�cient approach to sense

sparse or near-sparse signals. This method allows CRs to sample from a wideband spectrum

with a small number of measurements based on which the original spectrum may be precisely

reconstructed. A modi�ed sensing method was proposed in [36], using CS and wavelet to

process the signal and showing improvement over the traditional Nyquist sensing method.

Usually, measurements used to reconstruct the original spectrum are not noiseless. In
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[37], Gaussian measurement noise was used, and a lower bound on the number of required

noisy measurements to make accurate reconstruction was derived. Moreover, due to the lim-

ited bandwidth in reporting channels, measurements may be quantized before being encoded

and transmitted. The concept of quantized CS was introduced in [38], and the distortion

introduced by the quantized CS measurements was analyzed. Contrary to the centralized

sensing where the FC has the completed information from each SU, a sensing system with

quantized data is also called a distributed system. In [39], a distributed compressed wide-

band spectrum sensing framework for wideband CRN was introduced. Also, a new technique

of µ-law quantization was introduced in [40].

In terms of signal reconstruction based on noisy measurements, Candès et al. [41] gave

a comprehensive study. Also, in [42], a signal recovery problem in terms of quantized linear

measurements was considered. In [43], several signal recovery problems were presented, with

solvers provided.

Cooperative distributed sensing has also raised great interests in the literature and

is known for better robustness and accuracy. In cooperative sensing, multiple SUs may

simultaneously sense the same wideband channel and communicate their information to

the FC to make a �nal decision [44, 45]. The sensed measurements from di�erent SUs

are generally treated as independent information in existing work. However, since SUs are

sensing the same wideband spectrum, the measurements obtained from di�erent SUs are

naturally correlated. The purpose of the wideband spectrum sensing problem is to devise a

scheme to exploit this correlation so that the signal reconstruction and detection performance

could be vastly improved.

The Slepian-Wolf coding theorem may also be applied to compressive sensing. In [35],

a framework of CS-based image data acquisition and reconstruction was presented to exploit

the hidden correlation between CS measurements. This concept can further be extended into

wideband spectrum sensing, where measurements obtained from two SUs can be treated as

two correlated information sources.
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1.4 Organization and Contributions

Chapter 2 concerns the narrowband distributed detection that adopts parallel and

tandem network topologies. The work completed is listed below.

1. A new method based on the MCMC algorithm to solve the decentralized detection

problem is introduced. Cases of one-bit and multi-bit quantization are presented with

probability of error performance compared with centralized detection. The MCMC

is a statistical optimization method, using slice sampling to generate samples, which

are therefore evaluated by simulated annealing. Initial conditions at sensors including

thresholds and codewords assignment are de�ned in the algorithm and the complexity

discussed.

2. Assume a two-sensor tandem distributed detection network with one-bit sensor reports,

the coupling e�ect of optimum sensor rules is investigated. Particularly the availability

of coupled single-threshold decision rules of both sensors in di�erent signal regions and

their properties and performance are addressed. Numerical results then validates them.

3. Assume two-sensor DD networks with parallel and tandem topologies, their probability

of error detection performances are compared. When the pair of the signal mean falls

in the identi�ed region I and one-bit sensor reports are considered, optimum sensor

rules and fusion rules of parallel and tandem topologies are studied and compared.

When the identi�ed region II and III for one-bit sensor reports and all regions on

the signal plane for two-bit sensor reports are considered, suboptimal solutions of the

sensor and fusion rules for both topologies are generated by the GA and compared.

For the above cases, the probability of error performance gap between parallel and

tandem topologies is presented compared with the centralized detection. Numerical

results show that tandem topology performs either the same or outperforms the parallel

topology. Also, in the tandem topology, making the better sensor serve as the FC gives

better performance than making the worse sensor serve as the FC.
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4. Assume a two-sensor DD network with one-bit sensor reports, for XORAP rule, when

the correlation coe�cient approaches 1, the asymptotic error rate is �rst derived math-

ematically. Then a simulation study is shown to corroborate the analytical result. As

a result, one could understand the di�erences in the probability of error performances

of XORAP and CLRT rules, as r starts to increase from a value, say 0.9, towards 1.

In Chapter 3, the wideband sensing problem is addressed. The quantized CS and

the traditional distributed cooperative wideband spectrum sensing technique are presented

�rst. The advanced cooperative wideband sensing system based on the Slepian-Wolf coding

theorem is then presented. Simulation results compare the system with compressive sensing

and Slepian-Wolf theory and the system with only compressive sensing. By exploiting cor-

relation, it is shown that for a given number of total reporting bits, a larger total number

of measurements can be transmitted to the fusion center to improve the performance of

spectrum reconstruction and detection.

In Chapter 4, the contributions of this dissertation work are summarized. Appendices

A, B, C, D, and E have provided the mathematical proofs for the following:

1. Theorem 1 in Section 2.4.1: global optimality of sensor rules in the two-sensor dis-

tributed detection network with tandem topology.

2. Theorem 2 in Section 2.4.3: when η = 1, a unique set of solutions {ts1, tsW20
, tsW21

} exists

that simultaneously satis�es L0(tW20) = 1, L1(tW21) = 1, LW1(t1) = 1.

3. Theorem 3 in Section 2.5.1: behaviors of optimum sensor rules considering independent

sensor observations for both parallel and tandem topologies.

4. Theorem 5 in Section 2.6.1: optimum sensor rule of XORAP for two-sensor tandem

topology as r approaches 1.

5. The statement in Section 2.6.2: P2 decreases to zero exponentially fast and can be

neglected compared to 1− P1.
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CHAPTER 2 NARROWBAND SPECTRUM SENSING

In Chapter 2, topics related to narrowband spectrum sensing are investigated. First,

the system model and formulation of a general distributed detection problem are provided.

The implementation of two heuristic algorithms: MCMC and GA, to �nd sub-optimal solu-

tions is provided.

Then by restricting the discussion to only a two-sensor distributed detection problem,

the system structure of parallel topology is compared with the tandem topology. In numerical

results, the probability of error detection performances of these topologies in distributed

detection is compared with the benchmark of two-sensor centralized detection.

In addition, the availability and properties of coupled single-threshold sensor rules

are investigated in the tandem topology. Lastly, by restricting the problem with one-bit

quantization, the asymptotic error analysis and performance of Exclusive-OR (XOR) rule

are investigated as correlation coe�cient approaches 1.

2.1 Distributed Detection System Model and Problem Formulation

Consider a distributed detection system detecting the presence or absence of PUs,

based on binary hypothesis testing with NS distributed sensors that have correlated obser-

vations, the FC makes a �nal decision based on a fusion rule and decisions from sensors.

Each sensor Sk, k = 1, 2, ..., NS receives the deterministic signal transmitted through a sens-

ing channel with additive white Gaussian noise (AWGN). The presence and absence status

of PUs are given by hypotheses H1 and H0, respectively,

H1 : X = S+N

H0 : X = N,
(2.1)
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where XT = [X1, X2, ..., XNS ] represents observations at all sensors, ST = [s1, s2, ..., sNS ] is

the signals from PUs sensed at each sensor, and NT = [N1, N2, ..., NNS ] is the sensor noise

vector. The noise is assumed to be Gaussian distributed with zero-means, unit variances,

and correlation coe�cient Σ. The noise component is the same under both hypotheses,

exhibiting correlation among NS sensor readings. The existence of correlation could be due

to the e�ect of shadowing from the environment [46, 47].

For the conditionally independent sensor observations, conditioned on the received

signal hypothesis, asymptotic error rate analyses, as the number of sensors tending to in�nity,

have been made. However, even in the DD problem with two sensors and each sensor

sending one-bit quantized information to the FC, where a �nal decision is made on the true

hypothesis, it is still di�cult to �nd the optimal quantization schemes at the two sensors

and the decision rule at the FC. Therefore, this dissertation focuses on designing distributed

detection system with two or a small number of sensors only.

2.1.1 Two-Sensor Parallel and Tandem Topologies

Consider a distributed detection system with two sensors, an FC, and the parallel

and tandem topologies illustrated in Fig. 2.1.

Target Target

Sensor 1 Sensor 1Sensor 2 Sensor 2 (FC)

FC

Final Decision

   Final

Decision

Parallel Tandem

Figure 2.1: Diagram of a two-sensor distributed detection system with the parallel topology
(left) and tandem topology (right) with the second sensor also acting as the fusion center.
FC stands for the fusion center, where a �nal decision is made after collecting sensor reports
of V1 and V2 in parallel topology. W2 gives the �nal decision in the tandem topology.

In the parallel topology, sensors are placed to observe the same target without com-
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municating with each other. After making an observation, each sensor sends its own report,

which is the compressed information of its sensor observation, to the FC. The FC receives

the quantized version of sensor observations and decides in favor of either hypothesis H1 or

H0. The local rule of sensor k, k = 1, 2 is determined by RVk , denoting the region of Xk in

which sensor k makes its decision in favor of hypothesis H1. RVk represents the region in

which sensor k decides on hypothesis H0. The FC collects quantized data from both sensors

and forms a �nal decision. As shown in Fig. 2.1, in the parallel topology, by observing

the same target, sensor k, k = 1, 2 makes observation Xk and reports Vk to the FC, where

Vk = T Vk (Xk) gives the compressed (quantized) information of Xk. Thus, the FC makes a

�nal decision based on information gathered from both sensors.

In the tandem topology, sensors are organized serially. Each sensor makes its own

observation Xk, k = 1, 2. W1 = TW1 (X1) gives the compressed information of X1. As shown

in Fig. 2.1 (right), along the direction from left to right, sensor 1 reportsW1 to sensor 2 based

on its observation X1. Therefore, Sensor 2 serves as the FC and makes the �nal decision,W2,

based on W1 and its own observation X2. Denote RW1 and RW1 the region in which sensor

1 decides in favor of H1 and H0, respectively. Upon receiving W1 = w,w = 0, 1, RW2|W1=w

and RW2|W1=w represent the regions in which sensor 2 favors H1 and H0, respectively.

2.2 Two-Sensor Centralized Detection

First, consider the two-sensor centralized detection problem as a benchmark. Assume

the covariance matrix of noise Σ =

Σ11 Σ12

Σ21 Σ22

 with Σ11 = Σ22 = 1 and Σ12 = Σ21 =

r. As discussed in [6], the SNR can be de�ned as K = WTΣW, where W = Σ−1S =[
s1−rs2
1−r2 ,

s2−rs1
1−r2

]T
. The centralized detection test statistic is given by XTW. Hence, the

relationship between K and r is given by

K =
s2

1 + s2
2 − 2rs1s2

1− r2
. (2.2)
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Since CLRT is a LRT based on the observation X, it can be easily seen that the

probability of error PeC for CLRT is given by Q(
√
K
2

), where Q(z) = 1−Φ(z), and Φ(z) is the

standard normal cumulative distribution function (CDF) of z. As r → 1, PeC → Q( |s1−s2|
2
√

1−r2 ).

Using asymptotic expansion for the Q(·) function as the argument becomes in�nitely large,

we get limr→ 1 PeC = e−
D2

16(1−r) . Hence, the error decreases to zero exponentially fast, with

increasing 1
1−r .

2.3 Heuristic Markov Chain Monte Carlo Based Parallel Distributed Detection

2.3.1 Performance Criterion

Consider a general model of the parallel distributed detection system with NS sensors.

Each sensor receives the raw data transmitted through the AWGN channel and quantizes

it into di�erent binary codewords before sending it to the FC. As shown in Fig. 2.2, at

sensor Sk, k = 1, 2, ..., NS, the positions where codewords change are de�ned as thresholds

{T 1
k , T

2
k , ..., T

h
k }, where h is the number of thresholds. The number of quantization intervals

for sensor Sk is Qk = 2Bk , where Bk is the number of quantization bits at sensor Sk. As

mentioned in [7], �threshold-like� sensor rules from NS sensors, including thresholds and

codewords assignment, are the system design results and are known to the FC. Only the

codeword of the region where the observation falls in is transmitted to the FC.

Figure 2.2: Determining thresholds {T 1
k , T

2
k , ..., T

h
k } of quantization on observation (Xk)

region of sensor Sk.

Combinations of codewords from NS sensors are formed by concatenating the code-

words from each sensor. There is a total number of
NS∏
k=1

Qk ways to group the sensor readings.

The FC calculates the probabilities of each combination of codewords (Ci, i = 1, 2, ...,
NS∏
k=1

Qk)

from NS sensors based on H0 and H1, de�ned as PH0(Ci) and PH1(Ci) and makes a decision
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according to the LRT:

L(Ci) =
PH1(Ci)

PH0(Ci)
. (2.3)

Thus, the decision D(Ci) for each combination of codewords Ci is made by

D(Ci) =

 0 L(Ci) < η

1 L(Ci) ≥ η,
(2.4)

where π1 and π0 are the prior probability of H1 and H0, and η = π0
π1
. The probability of

error is

Pe = π1P (D = 0|H1) + π0P (D = 1|H0), (2.5)

with the miss-detection probability,

PM = P (D = 0|H1) = 1− P (D = 1|H1) = 1−
∑
Cj∈R1

PH1(Cj), (2.6)

and the probability of false alarm,

PF = P (D = 1|H0) =
∑
Cj∈R1

PH0(Cj), (2.7)

where Cj(Cj ∈ R1) is the combination of codewords that belong to region R1, in which

D(Cj) = 1.

Therefore, the probability of error of a general distributed detection problem with

binary hypothesis testing is

Pe = π1

[
1−

∑
Cj∈R1

PH1(Cj)
]

+ π0

∑
Cj∈R1

PH0(Cj). (2.8)

In summary, for a distributed detection system with NS sensors and the FC, the objective

of an MCMC-based optimization is to �nd a suboptimal solution, including thresholds,

codewords assignment, and fusion rules, that minimizes the probability of error, formulated
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by

min

{
π1

[
1−

∑
Cj∈R1

PH1(Cj)
]

+ π0

∑
Cj∈R1

PH0(Cj)

}
, (2.9)

s.t.

L(Cj) ≥ η =
π0

π1

, Cj ∈ R1. (2.10)

2.3.2 Heuristic MCMC Algorithm

A heuristic MCMC algorithm is proposed to solve the optimization problem men-

tioned above. This algorithm can sample from a stationary distribution of a Markov Chain

when the distribution is mapped from the cost function of an optimization problem, with

each sample corresponding to a solution [48]. Methods of slice sampling and simulated

annealing are involved in this algorithm, as speci�ed in Algorithm 1.

Algorithm 1: Markov Chain Monte Carlo Algorithm
Assume there are NS sensors, with each of the sensing range of observation divided
into IV intervals using B-bits quantization. The MCMC algorithm is performed
according to the following steps.

Step 1: Randomly generate a binary sequence of length l = NSIVB serving as
an initial condition, and codewords for NS sensors are allocated according to it.

Step 2: Use slice sampling to generate a binary sequence as a new sample.
Step 3: Examine the produced sample and determine whether or not to accept it

using simulated annealing.
Step 4: Repeat Step 2 and Step 3 by several iterations.

Slice sampling, mentioned in Step 2, can sample a random variable y with a speci�c

probability density function, the area under which can be uniformly sampled [49]. In this

problem, the mapped probability function of the random variable is given by

P (y) =
1

Zγ
exp[−Pe

∗(y)

γ
], (2.11)

where Pe
∗(·) is the function to calculate detection error Pe, and γ is used to reshape the
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probability function, and Zγ is the normalization function [50].

Figure 2.3: An example of a slice sampling process. In this example, u ∈ (0, P (yw)), and
the next state yw+1 is obtained by taking steps to the right from the current state yw, with
P (yw+1) > u.

Fig. 2.3 shows an example of slice sampling with the probability function P (y). A

current state yw, with probability P (yw), is presented between a left limit yL and a right

limit yR. First of all, a uniform value u between 0 and P (yw) is taken. Secondly, moves

are taken to the left or right to produce a sample yw+1 inside the boundary (yL, yR) until

P (yw+1) > u. Since the random variable y to be considered in this work is a binary sequence,

a binary implementation of slice sampling is introduced [51]. It automatically considers the

update of the length of each move, and the left and right boundaries.

In Step 3 of Algorithm 1, simulated annealing examines the new sample yw+1. If

Pe
∗(yw+1) < Pe

∗(yw), the new sample is accepted with probability 1; otherwise, the new

sample is accepted with a probability of e−
Pe
∗(yw+1)−Pe

∗(yw)

T , where T is de�ned as the temper-

ature in the annealing process. As stated in [51], the lower the temperature is, the less likely

the new generated samples will be accepted. If a new sample is rejected, another sample will

be produced by slice sampling and examined further.

2.3.3 Complexity

The discussion of the complexity of the MCMC-based optimization problem centers

on the complexity of calculating the Pe function, as shown in (2.8), and the number of times

the MCMC algorithm calls it.
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1. The complexity of calculating the Pe function

First of all, as discussed in [11], the calculation of probabilities PH0(Ci) and PH1(Ci)

in (2.3) is needed only once and can be acquirable for calculation later. In (2.6) and

(2.7), to calculate PM and PF , j and Cj need to be found by searching through all

possible combinations of codewords (QNS , assuming all sensors use the same number

of quantization level Q) and accumulate probabilities of the combination of intervals

from NS sensors (INSV , assuming all sensors divide IV sub-intervals) with a complexity

of O((Q · IV )NS).

2. Number of times for evaluating Pe function

In slice sampling, Pe is evaluated when the probability function P (y) is calculated. For

each sample generated, due to the randomness of the sampling process, the number of

times that Pe is called is random as well. Pe is also evaluated when a new sample is

examined in simulated annealing. Therefore, the complexity mainly depends on the

number of samples generated by slice sampling.

However, one of the advantages of the MCMC algorithm is that by adjusting the

cooling schedule, temperature T , and the number of accepted samples needed at each tem-

perature, the complexity of the MCMC algorithm is controllable. Also, it is proven that the

MCMC algorithm could give optimal solutions as long as the number of iterations is large

enough. As stated in [51], if the temperature drops slowly enough, the solution converges

to the global minimum with probability one, and simulated annealing almost indeed gives

global optimum with enough samples accepted. However, a cooling schedule that leads to a

global optimum convergence is usually time-consuming. Therefore, factors including cooling

schedule, temperature change, and the number of accepted samples need to be adjusted

heuristically to obtain an expected result.
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2.3.4 Performance Analysis

Using the metric of minimizing Pe, suboptimal solutions using the MCMC algorithm

are obtained in di�erent scenarios. The performance is compared with existing work and

other algorithms when available. Factors that a�ect the performance of this algorithm is

also investigated.

Scenario 1: 2 sensors each with B-bit (B = 1, 2, 3), Q-level (Q = 2B) quantizer

In this scenario, the correlation in observations between two sensors is given by a

covariance matrix. Distributions of sensor observations in terms of H1 and H0 are initialized

as bivariate normal distributions as follow,

H1 : X1, X2 ∼ N


 µ11 = 1

µ12 = 2

 ,

 σ2 rσ2

rσ2 σ2


 (2.12)

H0 : X1, X2 ∼ N


 µ01 = 0

µ02 = 0

 ,

 σ2 rσ2

rσ2 σ2


 , (2.13)

where σ2 = 1, i.e., unit variance is assumed. The prior probability of PUs presence hypothesis

H1 is equal to that of the null hypothesis H0 , i.e., π0 = π1 = 1
2
. The quantization level

Q1 = Q2 = Q taking values from {2, 4, 8} and number of initial intervals is set as IV1 =

IV2 = 22. The intervals are divided with the same length of 0.5 in (−4, 6) with boundaries

b1,0 = b2,0 = −Inf, b1,1 = b2,1 = −4, b1,2 = b2,2 = −3.5, ..., b1,21 = b2,21 = 6, b1,22 = b2,22 = Inf.

Using a similar method in [8], random binary sequences are generated as initial code-

words assignment for both sensors. The best suboptimal solution optimized according to

these initial conditions is selected as the �nal solution.

The simulation result shows how the minimum Pe changes as r takes values from a set

between −1 and 1: {−0.99999,−0.9,−0.5, 0, 0.5, 0.9, 0.99999}. In Fig. 2.4, the probability of

error performance of di�erent quantization levels of the decentralized detection is compared

with the centralized detection. As quantization level Q increases, the performance of the
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decentralized detection approaches the centralized detection.
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Figure 2.4: Probability of error detection performance with quantization levels of Q = 2, 4, 8
by solutions obtained from the MCMC algorithm, compared with the centralized detection.

The following discussions can be made when the correlation coe�cient r takes par-

ticular values of interests.

1. When r = 0.5, decentralized and centralized detection have the same performance, and

two interacting results can be observed.

At point r = 0.5, which is r = min(s1,s2)
max(s1,s2)

in general, assuming s1 = µ11, s2 = µ12. The

centralized detection gives a decision boundary represented by a straight line, which is

2(µ11 − rµ12)x1 + 2(µ12 − rµ11)x2 = µ11
2 + µ12

2 − 2rµ11µ12 (2.14)

For the centralized detection, the FC decidesH1 when (x1, x2) falls above the boundary

line and decides H0 otherwise. When r = µ11
µ12

= 1
2
, the boundary becomes x2 = µ12

2
.

The performance of the centralized detection can easily be reached for the decentralized
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case by setting one threshold of sensor 2 and ignoring sensor 1, i.e., the sensor with

a lower mean value in general. Therefore, at this point, the MCMC algorithm can

perform as well as the centralized detection.

2. When r → 1, Pe → 0.

In this case of perfect correlation, the probability of error is almost 0 with the constraint

that µ11 6= µ12.

Figure 2.5: Local decision rules at observation regions of X1 and X2. h is some integer.
When r → 1, the XOR alternating partition for the parallel two-sensor distributed detection
system gives Pe → 0.

Proof. When r = 1, observations in both sensors experience the same noise. Under H0,

X1 = X2 = N where N is the noise; while under H1, X1 = s1 + N and X2 = s2 + N .

Therefore, testing H0 and H1 becomes deciding whether the observations from two

sensors are the same. It can be accomplished by transmitting only one bit from each

sensor to the fusion center, with the local decision rules shown in Fig. 2.5. There are

in�nite number of thresholds T hk , where k = 1 or 2 and h ∈ Z, with Z is the set of

all integer numbers. Further, T h+1
k − T hk = |s1 − s2|, for all h. Decision 0 and 1 are

alternatively assigned to the intervals. If s1 6= s2, the FC can perfectly decide H1 or

H0 using the �XOR� fusion rule.

Scenario 2: 2 sensors with shift-in-mean distributions using B-bit (B = 1, 2, 3), Q-

level (Q = 2B) quantizer

The shift-in-mean signal distribution model is realized by keeping µ01 = µ02 = 0 and

mapping it as the origin on a x1-x2 plane, i.e. (µ01, µ02) = (0, 0). A shift from (0,0) to
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Figure 2.6: Probability of detection error performance as angles of degree change, obtained
from the MCMC algorithm and compared with probability of error detection performance
given by Boolean fusion rules �AND�, �OR�, and �XOR� considering one-bit sensor reports.
The performances of the MCMC-based solutions with multiple-bit sensor reports are also
presented.
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(µ11, µ12) is formed. Also, the probability density under two hypotheses is regarded as one

shifted by another.

In this scenario, [8] investigates di�erent FC Boolean rules including �AND�, �OR�,

and �XOR� using one-bit quantization per sensor. Signals under the hypotheses of H1 and

H0 are given by

H1 : X1, X2 ∼ N


 µ11 = cosφ

µ12 = sinφ

 ,

 σ2 rσ2

rσ2 σ2


 (2.15)

H0 : X1, X2 ∼ N


 µ01 = 0

µ02 = 0

 ,

 σ2 rσ2

rσ2 σ2


 , (2.16)

where φ takes values from a set {45◦, 65◦, 85◦, 105◦, 125◦}, σ2 = 1, r = 0.75, the prior

probability π0 = 2
3
and π1 = 1

3
. The performance of quantizers, codewords and decision rules

obtained by the MCMC algorithm is compared with those obtained by the person-by-person

(PBP) optimization method using �AND�, �OR�, and �XOR� rules (studied thoroughly in

[8]) is made.

As shown in Fig. 2.6, it is evident that among the three fusion rules mentioned in this

scenario, �OR� rule performs the best, and the MCMC algorithm using one-bit quantization

can rival it, which proves that the MCMC algorithm can �nd the best fusion rule after a

certain number of iterations.

The di�erence between the MCMC algorithm and the PBP optimization method is

that MCMC updates fusion rules, thresholds, and codewords assignment simultaneously. In

contrast, the PBP optimization method updates them separately. For the PBP optimization

method, if the fusion rule is �xed, sensor rules that give a suboptimal solution can be obtained

by comparing the results given by di�erent fusion rules; if the fusion rule is not �xed, the

PBP optimization method can only update the sensor rules according to the fusion rule

determined by the FC, according to initial conditions. In this case, the PBP optimization
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method cannot update the fusion rule, leading to the situation that the PBP optimization

method can be trapped in a local optimal condition. However, the MCMC algorithm allows

the FC to access di�erent fusion rules rather than focusing on just one fusion rule.

Scenario 3: 3 sensors each with B-bit (B = 1, 2, 3), Q-level (Q = 2B) quantizer

For the distributed detection system with 3 sensors, the correlation structures of

equicorrelated and autoregressive(1) models are initialized. In [6], the noise correlation

e�ect of these two models applied in the centralized detection is investigated.

The signals based on hypotheses H0 and H1 for the equicorrelated model are given

by:

H1 : X1, X2, X3 ∼ N




1

5

3

 ,


σ2 rσ2 rσ2

rσ2 σ2 rσ2

rσ2 rσ2 σ2


 (2.17)

H0 : X1, X2, X3 ∼ N




0

0

0

 ,


σ2 rσ2 rσ2

rσ2 σ2 rσ2

rσ2 rσ2 σ2


 , (2.18)

and for the autoregressive(1) model, the signals under H1 and H0 are given by

H1 : X1, X2, X3 ∼ N




1

5

3

 ,


1 rσ2 r2σ2

rσ2 1 rσ2

r2σ2 rσ2 1


 (2.19)

H0 : X1, X2, X3 ∼ N




0

0

0

 ,


1 rσ2 r2σ2

rσ2 1 rσ2

r2σ2 rσ2 1


 , (2.20)

where σ2 = 1 and r takes a few values in (−0.5, 1).

In this scenario, the MCMC algorithm is shown to handle the three-sensor distributed

detection problem with complicated signal models, including multi-variate distribution and
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Figure 2.7: The probability of error detection performance of three-sensor using B-bit (B =
1, 2) quantization with di�erent correlation structures. �Equi.� and �Auto.� are short for
models of equicorrelated and autoregressive(1), respectively. The MCMC algorithm gives
sub-optimal solutions and their probability of error detection performances are compared
with the centralized detection.

two correlation structures. Furthermore, it is shown in Fig. 2.7 that the probability of

error detection performance of these two models is almost the same as the correlation coef-

�cient changes. Also, as the quantization level increases, the performance of MCMC-based

decentralized detection is close to centralized detection.

2.4 Genetic Algorithm Based Distributed Detection with Tandem Topology

This section focuses on investigating the coupling e�ect of optimum sensor rules.

The availability and properties of coupled single-threshold decision rules of both sensors in

di�erent signal regions are addressed.

2.4.1 Optimum Decision Rules of Both Sensors

At sensor 1, assume RW1 and RW1 denote the regions in which W1 = 1 and W1 = 0,

respectively. Then, RW2|W1=w and RW2|W1=w represent the regions in which sensor 2 makes a
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decision favoring hypothesis H1 and H0, respectively, conditioned on W1 = w, where w = 0

or 1.

The objective of the detection problem is to �nd the decision rule RW1 and the

associated rules RW2|W1=w, w = 0, 1, that minimize the overall Bayes cost C(W2), which is

taken here as the probability of detection error:

C(W2) = π0P (W2 = 1|H0) + π1P (W2 = 0|H1),

= π0P (W2 = 1,W1 = 0|H0) + π0P (W2 = 1,W1 = 1|H0)

+π1P (W2 = 0,W1 = 0|H1) + π1P (W2 = 0,W1 = 1|H1),

(2.21)

where π0 and π1 are prior probabilities of H0 and H1, and π0 + π1 = 1.

The necessary conditions that the decision rules at the two sensors in the tandem

con�guration need to satisfy for the �nal decision to be globally optimal. Although these

conditions have been stated in [25, 32], the proof here provides new contributions. Also,

these conditions are for any bivariate distributions, not necessarily restricted to the bivariate

Gaussian family.

Theorem 1. For the global optimality of two-sensor tandem scheme, the decision rules at the

two sensors need to satisfy the following coupled equations

RW2|W1=1 =
{
x2 : L1(x2) ≡

∫
RW1

p(x1, x2|H1)dx1∫
RW1

p(x1, x2|H0)dx1

≥ η
}
, (2.22)

RW2|W1=0 =
{
x2 : L0(x2) ≡

∫
RW1

p(x1, x2|H1)dx1∫
RW1

p(x1, x2|H0)dx1

≥ η
}
, (2.23)

where η = π0
π1

is the decision threshold. L1 and L0 are corresponding functions,

RW1 =
{
x1 : π1

[ ∫
RW2|W1=1

p(x1, x2|H1)dx2 −
∫
RW2|W1=0

p(x1, x2|H1)dx2

]
>

π0

[ ∫
RW2|W1=1

p(x1, x2|H0)dx2 −
∫
RW2|W1=0

p(x1, x2|H0)dx2

]}
.

(2.24)
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On one hand, assuming RW1 is known, optimizing the decision rule of sensor 2 to

minimize Bayes cost yields the tests in (2.22) and (2.23) [25]. On the other hand, with the

knowledge of RW2|W1=w(w = 0, 1), the decision rule of sensor 1 that minimizes the Bayes cost

is obtained in (2.24).

Proof. The set of optimal decision rules obtained by simultaneously satisfying (2.22), (2.23),

and (2.24) is person-by-person optimal [25], the proof of which is shown in Appendix B.1.

2.4.2 Identi�cation of Regions

Figure 2.8: Identi�cation of three regions on the (s1, s2) signal plane.

Consider the s1-s2 signal plane and consider the 3-tuple (s1, s2, r),−∞ < s1 <

∞,−∞ < s2 < ∞, 0 ≤ r < 1. Let δ12 = s1 − rs2 and δ21 = s2 − rs1. As illustrated

in Fig. 2.8, the regions I, II and III are given by

(s1, s2) ∈


Region I, δ12 ≥ 0, δ21 ≥ 0

Region II, δ12 ≤ 0

Region III, δ21 ≤ 0.

(2.25)

Speci�cally, region I is also de�ned as the �Good� region in [8], where the optimum

decision rules for both sensors, for the parallel con�guration, are proven to be single-threshold

rules. By showing that ∂L(x1)
∂x1

≥ L(x1)δ12
1−r2 ≥ 0 and ∂L(x2)

∂x2
≥ L(x2)δ21

1−r2 ≥ 0, the likelihood
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ratio expressions de�ning RW1 and RW2|W1=w, w = 0, 1, are monotonic increasing in their

arguments. Therefore, the optimum quantization intervals for both sensors are semi-in�nite

with single-threshold values.

2.4.3 Coupled Single-Threshold Rules

Assume both sensors have single-interval quantization regions of their received signals,

i.e. RW1 = (tW1 , Inf), RW2|W1=0 = (tW20 , Inf) and RW2|W1=1 = (tW21 , Inf). Received signals

are distributed as a bivariate Gaussian. Expressions (2.22), (2.23), and (2.24) become

L1(tW21) = e−
s22
2 etW21

s2

Q

(
tW1
−rtW21

−δ12√
1−r2

)
Q

(
tW1
−rtW21√
1−r2

) , (2.26)

L0(tW20) = e−
s22
2 etW20

s2

Q

(
− tW1

−rtW20
−δ12√

1−r2

)
Q

(
− tW1

−rtW20√
1−r2

) , (2.27)

and

LW1(tW1) = e−
s21
2 etW1

s1 ·
Q(

tW21
−rtW1

−δ21√
1−r2 )−Q(

tW20
−rtW1

−δ21√
1−r2 )

Q(
tW21

−rtW1√
1−r2 )−Q(

tW20
−rtW1√

1−r2 )
, (2.28)

where (2.26) and (2.27) are obtained when tW1 is given, and (2.28) is obtained when tW20

and tW21 are given. A set of solution {tsW1
, tsW20

, tsW21
} satisfying (2.26), (2.27) and (2.28)

simultaneously is termed as a set of coupled single-threshold rules.

2.4.4 Availability of Coupled Single-Threshold Rules

In region I, for any η = π0
π1
, as proven in [25], the optimum sensor rules of both sensors

are coupled single-threshold rules. That is, a unique set of solution {tsW1
, tsW20

, tsW21
} exists

that simultaneously satis�es

L0(tW20) = η, L1(tW21) = η, LW1(tW1) = η, (2.29)
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and achieves the minimum probability of detection error.

In region II, the following result is obtained, which is a new contribution (published,

[32]).

Theorem 2. When η = 1, a unique set of solutions {tsW1
, tsW20

, tsW21
} exists that simultaneously

satis�es

L0(tW20) = 1, L1(tW21) = 1, LW1(tW1) = 1. (2.30)

In addition, tsW1
= s1

2
and tsW20

+ tsW21
= s2.

Proof. The proof of Theorem 2 is given in Appendix B.1.

However, when η 6= 1, according to numerical results, except when r is close to 1,

a set of coupled single-threshold decision rules {tsW1
, tsW20

, tsW21
} that simultaneously satisfy

(2.30) exists, but no closed-form of such rules is obtained.

In region III: the following conjecture is obtained.

Conjecture 1. The unique coupled single-threshold solution in region III is the tuple {tsW1
=

lnη
s1

+ s1
2
, tsW20

= −∞, tsW21
= +∞}.

Argument: Assume that the single-threshold decision rule for senor 1 is used. Nu-

merous simulation results show that, for any chosen value of tW1 used for sensor 1, the plots

of L0(tW20) in (2.23) and L1(tW21) in (2.22) are always �concave-like� and �convex-like� non-

monotonic functions, respectively. Therefore, if one or both of them crosses η, the decision

of the second sensor cannot be based on a single threshold rule. For example, if L1(tW21)

crosses η, there must exist two values, t∗W21
and t∗∗W21

, such that L1(t∗W21
) = L1(t∗∗W21

) = η.

Hence, the decision rule of the second sensor becomes RW2|W1=1 = (−∞, t∗W21
)∪ (t∗∗W21

,+∞),

no longer a single threshold decision rule.

When we set tW1 = tsW1
= lnη

s1
+ s1

2
, numerous simulation results show that, for

any chosen η, we always have L0(tW20) < η and L1(tW21) > η . As a result, sensor 2

always has RW2|W1=0 = ∅ and RW2|W1=1 = (−∞,+∞), which correspond to tsW20
= −∞ and

tsW21
= +∞. Putting these tsW20

and tsW21
back to (2.24) and making it equal to η, we get
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tW1 = tsW1
= lnη

s1
+ s1

2
back. Therefore, the solution is coupled. The uniqueness is apparent

as the above tsW1
is the only solution when tsW20

= −∞ and tsW21
= +∞.

Mathematical proof for this conjecture is not found yet, although numerous numerical

results have con�rmed it.

In this coupled single-threshold case, sensor 2 always decides H0 based on W1 = 0

and decides H1 based on W1 = 1. In other words, the decision rule of sensor 2 is ignored.

However, region III is only observed when s1 > s2 where the better sensor, i.e., the sensor

with a higher signal mean, is placed on top. Therefore, when the coupled single-threshold

rules are assumed, to make the distributed detection system more e�ective, the sensor with

a weaker signal has to be placed on top of the tandem-pole so that its decision will not be

ignored as now the signal (s1, s2) is in region II.

2.4.5 Properties of Coupled Single-Threshold Sensor Rules

Assume coupled single-threshold decision rules are available for both sensors, i.e.

the set {tsW1
, tsW20

, tsW21
} that satis�es the coupling relationships in (2.29), (2.30) and the

Conjecture 1, according to the three identi�ed regions.

Remark 1. In region I, coupled single-threshold sensor rules are optimum. However, in region

II, they are not necessarily but most likely to be optimum. Consider the sub-optimal case

as described in [25], i.e., when the decision rule of sensor 1 is forced to be single-threshold,

then the coupled single-threshold rules of both sensors give the best solution. The following

remarks are new contributions.

Remark 2. Given {tsW1
, tsW20

, tsW21
}, the following properties can be observed.

1. In region I, tsW20
≥ tsW21

.

2. In region II and III, tsW20
< tsW21

.

The explanation for this is shown below. Since δ12 ≥ 0 in region I, δ12 ≤ 0 in region
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II, and tsW21
= +∞ in region III,

Q
(
tsW1
−rtsW21

−δ12
√

1−r2

)
Q
(
tsW1
−rtsW21√
1−r2

)

> 1, region I

< 1, region II

= 1, region III

. (2.31)

In order to make sure

L1(tW21)


= η, region I and II

=∞, region III

, (2.32)

by putting back to (2.23) and combining (2.32),

tsW21


≤ 1

s2
lnη + s2

2
, region I

> 1
s2
lnη + s2

2
, region II

=∞, region III

. (2.33)

Similarly,

tsW20


≥ 1

s2
lnη + s2

2
, region I

< 1
s2
lnη + s2

2
, region II

= −∞, region III

. (2.34)

Hence, irrespective of whether s1 < s2 or not, in region I, tsW20
≥ tsW21

. Also, tsW20
<

tsW21
in region II and III. tsW20

= tsW21
is satis�ed when r = s1

s2
.
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Remark 3. Given {tsW1
, tsW20

, tsW21
}, by rewriting (2.21), the detection error is given as:

C(W2) = π0

∫∞
tW21

1√
2π
e−

x22
2 Q(

tW1
−rx2√

1−r2 )dx2 + π0

∫∞
tW20

1√
2π
e−

x22
2 Q(− tW1

−rx2√
1−r2 )dx2

+π1

∫ tW21

−∞
1√
2π
e−

(x2−s2)
2

2 Q(
tW1
−r(x2−s2)√

1−r2 )dx2 + π1

∫ tW20

−∞
1√
2π
e−

(x2−s2)
2

2 Q(− tW1
−r(x2−s2)√

1−r2 )dx2.

(2.35)

2.4.6 Numerical Results

2.4.6.1 Finding Coupled Single-Threshold Rules in Di�erent Regions

Assume that sensor 1 and sensor 2 have unequal means. Two scenarios are considered

according to whether s1 > s2 or s1 < s2.

Figure 2.9: Coupled single-threshold sensor rules in scenario 1. The availability of coupled
single-threshold rules is checked when η = {1/4, 1, 4} in region I and II. The relationship
between available tsW20

and tsW21
is validated.
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Scenario 1 with s1 = 2 and s2 = 4: region I occurs when 0 ≤ r ≤ 0.5 and for region

II, 0.5 ≤ r < 1. Considering three threshold values η = {0.25, 1, 4}, the available coupled

single-threshold decision rules are presented in Fig. 2.9. The following observations can be

made.

� When 0 ≤ r ≤ 0.95 across region I and II, unique solution set {tsW1
, tsW20

, tsW21
} always

exists. For η = 1, tsW20
+tsW21

= s2 is validated. For η > 1, tsW1
> s1

2
and tsW20

+tsW21
> s2.

For η < 1, tsW1
< s1

2
and tsW20

+ tsW21
< s2.

� When 0.95 < r < 1 in region II, coupled single-threshold solutions are not obtainable

due to instability in numerical calculations.

� In region I, tsW20
≥ tsW21

. While in region II, tsW20
≤ tsW21

. Remark 2 is validated.

� When r = s1/s2 = 0.5, tW20 = tW21 . The decision rule of sensor 1 is ignored. As shown

in [11], in centralized detection, the worst detection performance is observed because

when r = s1/s2, the SNR attains its minimum value.

Scenario 2 with s1 = 4 and s2 = 2: region I occurs when 0 ≤ r ≤ 0.5 and region III

occurs when 0.5 ≤ r < 1. For η = {0.25, 1, 4}, available coupled single-threshold sensor rules

are presented in Fig. 2.10. Note that in region III, tsW20
= −∞ and tsW21

= ∞ and hence,

not shown. The following observations can be made:

� As illustrated by Fig. 2.10, a solution set {tsW1
, tsW20

, tsW21
} always exists in both region

I and III. For η = 1 in region I, tsW1
is always s1

2
and tsW20

+ tsW21
= s2.

� In region III, tsW1
is a constant ln η

s1
+ s1

2
, for any given η. This is di�erent from that, as

shown in Fig. 2.9, in regions I and II where when η < 1, tsW1
decreases monotonically

and when η > 1, tsW1
increases monotonically.
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Figure 2.10: Coupled single-threshold sensor rules in scenario 2, which exchanges the place-
ment of sensors in scenario 1. The availability of coupled single-threshold rules are checked
when η = {1/4, 1, 4} in region I. The relationship between available tsW20

and tsW21
is validated.
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2.4.6.2 Probability of Error Detection Performance and Placement of Sensors

Assuming coupled single-threshold sensor rules are available, the detection error is

examined using (2.35). In region II and III, the GA provides sub-optimal solutions. GA

searches over several candidate decision rules, including non-single threshold decision regions,

for sensor 1, and then utilizes (2.22) and (2.23) for person-by-person optimal decision regions

for sensor 2. It is observed that the GA solutions do not always satisfy the coupling e�ect

that is necessary for the optimal solution. As shown in Fig. 2.11, in region II, the detection

error performance of coupled single-threshold sensor rules is always slightly better than the

sub-optimal solutions given by the GA. The coupled single-threshold decision rules are most

likely to be near optimum, except when r is close to 1.

Figure 2.11: Probability of error detection performance of the case of the sensor with higher
mean serving as the FC compared with the case of the sensor with lower mean serving as
the FC, as r changes from 0 to 1.

In region III, when r ∈ (0.5, 0.97), the performance of coupled single-threshold deci-
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sion rules is almost the same as that of the sub-optimal solutions given by the GA. When

r ∈ (0.97, 1), the GA based sub-optimal solutions give better performance, therefore, coupled

single-threshold sensor rules may not be the optimum when r approaches 1.

It can also be observed that, by placing the sensor with a higher mean as the FC (in

scenario 1), the detection performance is better than when the sensor with a lower mean is

the FC (in scenario 2).

2.5 Comparison Between Parallel and Tandem Topology

2.5.1 Comparison of Optimum Detection with One-Bit Sensor Reports in Region I

For both parallel and tandem topologies, it has been proven in [8] and [25] respectively

that in region I, optimum decision rules for both sensors are in the forms of single-threshold,

against which corresponding likelihood ratio test (LRT) is compared with. Thresholds are

given by

Parallel : RV1 = (tV1 ,∞), RV2 = (tV2 ,∞)

Tandem :


RW1 = (tW1 ,∞)

RW2|W1=0 = (tW20 ,∞),

RW2|W1=1 = (tW21 ,∞),

(2.36)

where tW20 is the threshold when the decision W1 = 0 is received, and tW21 is the threshold

when W1 = 1 is received.

In the parallel topology, assume that each sensor sends one-bit reports to the FC.

The �nal decision can be represented by the boolean expression between V1 and V2. The

optimum fusion rule is according to LRT, obtained by choosing the best from the set of rules

{AND,OR,XOR, Ignoring sensor 1, Ignoring sensor 2}, denoted by symbols {×,+,⊕, 2, 1}

respectively. Since it is known that the �XOR� rule is never optimal when both sensors have

single-threshold decision rules, the �XOR� rule is excluded from the following discussion.

While in the tandem topology, since sensor 2 serves as the FC, the �nal decision is expressed

in the form of W2 only.
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2.5.1.1 Independent sensor observations

Assume r = 0, with the assumption in (2.36), the detection errors of all possible

fusion rules for the parallel topology are given by

P×e = π0Q(tV1)Q(tV2) + π1[1−Q(tV1 − s1)Q(tV2 − s2)]

P+
e = π0[Q(tV1) +Q(tV2)−Q(tV1)Q(tV2)] + π1[1−Q(tV1 − s1)][1−Q(tV2 − s2)],

P 2
e = π0Q(tV2) + π1[1−Q(tV2 − s2)],

P 1
e = π0Q(tV1) + π1[1−Q(tV1 − s1)],

(2.37)

where Q(·) is the tail distribution function of the standard normal distribution. The detec-

tion performance of optimum fusion rule of parallel topology is determined by choosing the

minimum from (2.37), i.e. P P
e = min{P×e , P+

e , P
2
e , P

1
e }.

In the tandem topology, the optimum detection error is given by

P T
e = π0 {Q(tW20) · [1−Q(tW1)] +Q(tW21)Q(tW1)}

+π1[1−Q(tW20 − s2)] · [1−Q(tW1 − s1)] + π1[1−Q(tW21 − s2)] ·Q(tW1 − s1).

(2.38)

When tV1 , tV2 , tW1 , tW20 , and tW21 are available, the optimum detection performance

of parallel and tandem topology can be compared by comparing P P
e and P T

e .

For the independent case, it is known that the optimal sensor rules are individual

likelihood ratio tests, but with the corresponding thresholds being coupled, in general. The

�lone-acting� sensor is de�ned as below. Assume we have only one sensor j, j = 1 or 2,

the LRT based on senor j's observation computes its likelihood ratio and compares it to the

threshold tVj .

Theorem 3. Assume independent sensor observations and one-bit sensor reports, the rela-

tionships between the optimum rules of both sensors are presented.

- In the parallel topology, under no conditions, the thresholds used in the case of �lone-
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acting� sensors are optimal.

- In the tandem topology, when η = π0
π1
6= 1, the decision rule of sensor 2 is always

dependent upon sensor 1's decision and sensor 1's decision also depends on sensor 2,

i.e., sensor 2's threshold is coupled with sensor 1's.

A particular case exists when η = 1, the optimum rule of sensor 1 is decoupled from

that of sensor 2, with a single sensor (sensor 1) test, i.e., tW1 = s1
2
.

Proof. The proof is given in Appendix C.1.

2.5.1.2 Correlated Sensor Observations

Based on the assumption made in (2.36), in the parallel topology, the detection error

given di�erent fusion rules are shown as below. P 2
e and P 1

e are the same as those in (2.37).

P×e = π0

∫∞
tV2

1√
2π
e−

x22
2 Q
( tV1−rx2√

1−r2
)
dx2 + π1

[
1−

∫∞
tV2

1√
2π
e−

(x2−s2)
2

2 Q
( tV1−s1−r(x2−s2)√

1−r2

)
dx2

]
,

P+
e = π0

[
1−

∫ tV2
−∞

1√
2π
e−

x22
2 Q
(
− tV1−rx2√

1−r2
)
dx2

]
+π1

∫ tV2
−∞

1√
2π
e−

(x2−s2)
2

2 Q
(
− tV1−s1−r(x2−s2)√

1−r2
)
dx2,

(2.39)

and P P
e = min{P×e , P+

e , P
2
e , P

1
e }. While in the tandem topology, the detection error of the

optimum sensor rules is given by

P T
e = π0[

∫∞
tW21

1√
2π
e−

x22
2 Q
( tW21

−rx2√
1−r2

)
dx2 +

∫∞
tW20

1√
2π
e−

x22
2 Q
(
− tW1

−rx2√
1−r2

)
dx2]

+π1[
∫ tW21

−∞
1√
2π
e−

(x2−s2)
2

2 Q
( tW1

−r(x2−s2)√
1−r2

)
dx2

+
∫ tW20

−∞
1√
2π
e−

(x2−s2)
2

2 Q
(
− tW1

−r(x2−s2)√
1−r2

)
dx2].

(2.40)

Thus, the comparison of detection error given correlated sensor observation can be made by

comparing P P
e and P T

e .

Theorem 4. Consider the special case where (s1, s2) falls on the boundary between region I

and II (or I and III), i.e., the 3-tuple (s1, s2, r) satis�es r = s1/s2 when s1 < s2, or r = s2/s1
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when s1 > s2. The optimum fusion rules for parallel and tandem topology are the same,

which are obtained by ignoring the weaker sensor, i.e. sensor 1 for the case s1 < s2 and

sensor 2 for the case s2 < s1. At this point, the worst performance over 0 ≤ r ≤ 1 is given.

Proof. Assume s1 < s2 and r = s1
s2
, Σ =

 1 s1
s2

s1
s2

1

 and WT = [0, s2] can be obtained. Thus,

the centralized test statistic is XTW = s2x2, and observation of sensor 1 is ignored.

Meanwhile, from (2.2), let

∂K

∂r
=
−2[r2 − (s2

1 + s2
2)r/s1s2 + 1]

(1− r2)2
= 0, (2.41)

which gives r = s1
s2
. Also,

∂2K
∂r2

=
2[(s21+s22)(3r2+1)−2s1s2r(3+r2)]

(1−r2)3

= a(r)[(s1 − b(r))2 + c(r)s2
2],

(2.42)

where

a(r) = 2(1+3r2)
(1−r2)3

,

b(r) = r(3+r2)
3r2+1

,

c(r) = (1−r2)3

(3r2+1)2
.

(2.43)

For any 3-tuple (s1, s2, r), a(r) > 0 and c(r) > 0. Hence, ∂
2K
∂r2

> 0 and K is a convex

function of r. K reaches a minimum at r = s1
s2
. The fusion rule of ignoring one sensor's

observation always performs the worst.

Since optimal centralized test ignores sensor 1, optimal detection of parallel and

tandem topologies can be expected to ignore sensor 1. A similar discussion can be made

when s1 > s2.
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2.5.2 Comparison of Sub-optimal Sensor Rules Obtained by the GA

After comparing optimum detection in region I with one-bit sensor reports, we con-

sider region II and III with one-bit sensor reports, and all regions with two-bit sensor reports.

Since optimum sensor rules are not necessarily in the form of single-threshold in these sce-

narios, to have a better understanding of detection performance comparison between parallel

and tandem topology, the distributed detection problem is formulated as a non-linear integer

programming problem [11], and the GA is proposed to produce sub-optimal solutions, re-

garding sensor rules and fusion rule at the FC. The di�erence in the GA procedure between

parallel and tandem topology is given below.

The initialization for the input of the GA is done by converting sensor rules into a

solution form, i.e., a binary sequence that can be operated by the GA, which is shown in

detail below.

1. Divide the observation range of the k-th (k = 1, 2) sensor into a number of sub-intervals,

such as Sk, with equal space division

2. Assume sensor k has quantization level Qk = 2Bk , i.e., each sub-interval is quantized

and represented by taking one value from set {1, 2, ..., Qk}. Bk is the number of quan-

tization bits, i.e. sensor reporting bits, for sensor k. The quantized values of all

sub-intervals are concatenated into sequence qk of length Sk

3. The sequence qk is then translated into a binary codeword sequence bk of length BkSk

For example, assume sensor k has observation range (−4, 8), which can be divided into

Sk = 8 sub-intervals of equal length 1.5. Assume two-bit decision rule is used, i.e. Bk = 2,

and let qk = [1, 2, 1, 3, 4, 2, 1, 2]. If we use `00', `01',`10', and `11' to represent `1',`2',`3', and

`4', respectively, the binary codeword sequence is bk = [0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1].

Although the two-sensor DD problem is considered in this paper, the discussion can

be extended to NS-sensor case, as presented in Algorithm 2. Moreover, detailed algorithm

and discussion of complexity are shown by Kasasbeh et al. in [11].
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Algorithm 2: Applying the genetic algorithm to �nd sub-optimal solutions in NS-
sensor parallel and tandem distributed detection problem

Initialize a solution in the form of bP or bT , which are given as below.

� In the parallel topology, assume the solution form is given by bP . Codeword
sequence bk, k = 1, 2, ..., NS from all sensors are considered, which are concatenated
to form a new binary sequence bP = [b1b2...bNS ] of length

∑NS
k=1BkSk.

� In the tandem topology, the solution form is given by bT = b1 with length B1S1.

Step 1: Generate a total number of ζ solutions, which are in the form of bP

for the parallel topology or bT for the tandem topology.
Step 2: Evaluate the �tness function, which is designed to calculate the detection

error for each solution.
Step 3: From those ζ solutions, take ζ

2
solutions that give higher �tness,

i.e. lower detection error, and place them to the next generation.
Step 4: Do crossover and mutation.
Step 5: Repeat Step 2 to Step 4 by several iterations.
Step 6: Take the solution with the highest �tness from all iterations as

the sub-optimal solution.

As shown in Algorithm 2, the di�erence between the parallel and tandem topology is

the length of bP and bT . Only the codeword sequence of sensor 1 is updated for the tandem

topology. The sensor rules of the following sensors are obtained by utilizing a person-by-

person optimal decision. Therefore, the complexity of GA in the tandem topology is much

smaller than that in the parallel topology.

2.5.3 Numerical Results

In this simulation, assume equal priors, i.e. π0 = π1 = 0.5 and unequal means with

s1 = 2, s2 = 4 are applied to both topologies. Similar experiments with unequal priors were

also performed but not shown here. Besides, s1 = 4, s2 = 2 is used to compare the placement

of sensors in the tandem topology. In the parallel topology, switching the position of sensors

does not a�ect the �nal detection performance.
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2.5.3.1 Comparison of Parallel and Tandem Topology with One-bit Sensor Reports

Optimum detection in region I: restricted by 0 ≤ r ≤ 0.5, in which the comparison of

optimum detection of parallel and tandem topology is made.

Correlation coefficient

Figure 2.12: Comparison of the probability of error detection performance for parallel and
tandem topology in region I. In the tandem topology, the comparison of di�erent placements
of sensors is made. The correlation coe�cient changes from 0 to 0.5.

It is a�ordable to use exhaustive search method to �nd the optimum single-threshold

that minimizes Pe according to (2.37)-(2.40). As shown in Fig. 2.12, as r increases, all curves

give increasing Pe and then converge at their maximum at r = 0.5, where optimum detection

ignores sensor 1. At this point, r = s1
s2

as explained in Theorem 4.

Tandem topology always gives better performance than parallel topology. In the

tandem topology, placing the better sensor, i.e. the sensor with a higher mean, on the

bottom gives a better performance than placing it on the top.

The sensor rules in both topologies are also studied given the optimum detection. In

the simulation, a few test points of r are set between 0 and 0.5. As shown in Fig. 2.13

(left), in the parallel topology, according to simulation, when test points of r are up to 0.46,

both �AND� and �OR� rules give the best performance, but the tV1 are di�erent, and tV2 are

mostly the same for the two rules. For the test points beyond r = 0.47, the best fusion rule

is �Ignoring sensor 1�. Besides, when r = 0, it is con�rmed that �lone-acting� sensor rules
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Correlation coefficient Correlation coefficient

Figure 2.13: Optimum sensor rules and fusion rules in region I. For the parallel topology,
the values of tV1 and tV2 are presented, and the best fusion rule. For the tandem topology,
the values of tW1 , tW20 , and tW21 are presented. The correlation coe�cient changes from 0 to
0.5.

are not optimal, i.e. tV1 6= s1/2 = 1 and tV2 6= s2/2 = 2.

In the tandem topology, as illustrated in Fig. 2.13 (right), the optimum single-

threshold sensor rules tW1 , tW20 and tW21 are shown. When r = 0, tW1 = s1/2 = 1. The

optimum decision rule of sensor 1 is the same as a single sensor (sensor 1) detection system.

Sub-optimal detection in region II or III: restricted by 0.5 ≤ r < 1. For the tandem

topology, placing the better sensor on the bottom leads to region II of concern, whereas placing

the better sensor on top gives region III.

As shown in Fig. 2.14, the comparison with sub-optimal detection given by the GA

is made. It can be observed that all detection errors decrease as r increases and tend to 0 as

r approaches 1. As expected, among all sub-optimal rules, tandem topology with the better

sensor placed on the bottom gives the best performance.

Also, for a large range of r before it is close to 1, the �nal detection error of the parallel

topology and that of the tandem topology with the worse sensor placed on the bottom are
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Correlation coefficient

Figure 2.14: Probability of error detection performance for both parallel and tandem topolo-
gies in region II or III, compared with the centralized detection, as correlation coe�cient
changes from 0.5 to 1.

similar and remain constant 0.02275, which gives the same detection error when the decision

rule of sensor 2 is ignored according to P 1
e in (2.37). When in region III, the worse sensor is

placed on the bottom. Therefore, it refers to the decision rule of the better sensor placed on

top.

When r → 1, it is proven in [11] and [32] that Pe → 0 with optimum fusion rule

�XOR�. However, the ratio of decrease of Pe from 0.02275 to 0 will be investigated in Section

2.6.

2.5.3.2 Two-Sensor Network with Two-Bit Sensor Reporting

In this scenario, assume s1 = 2, s2 = 4 for both parallel and tandem topology. The

comparison of sub-optimal detection given by the GA in parallel and tandem topology for

a two-sensor network with two-bit sensor reports is made in Fig. 2.15. Compared with Fig.

2.12 and Fig. 2.14, the detection performances of both topologies improve signi�cantly. A

two-sensor optimal tandem topology is always as good as or better than a two-sensor optimal
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Correlation coefficient

Figure 2.15: Probability of error detection performance of sub-optimal solutions generated by
the GA in parallel and tandem topology with two-bit sensor reports, as correlation coe�cient
changes from 0 to 1. The results are compared with the centralized detection.

parallel topology.

2.6 Performance of Exclusive-OR Rule for Distributed Detection with One-Bit Sensor Re-

ports

In this section, assume one-bit sensor reports. As the correlation coe�cient r ap-

proaches 1, it is of signi�cant interest to investigate the optimality of Exclusive-OR (XOR)

rule for both parallel and tandem topologies. Besides, the asymptotic error analysis, and the

rates of decrease for parallel topology, tandem topology, and centralized detection, as r → 1,

are worth studying.

2.6.1 XOR Alternating Partitioning Rule and Its Optimality

In a tandem distributed detection system with two sensors, see Fig. 2.1, assume

decision rule of sensor 2 (FC) is denoted by W2 and the decision rule of sensor 1 is given

by W1, with RW1 as the region in which sensor 1 makes a decision favoring H1. Since we

consider one-bit sensor reports, both W1 and W2 take values from {0, 1}. Referring to Fig.

2.16, the following Theorem 5 is established.
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Figure 2.16: Local one-bit quantizers at the two sensors for XOR fusion. Partition of Xi:
Vi = 1, Xi ∈ RVi ;Vi = 0, Xi ∈ RVi .

Theorem 5. For a two-sensor distributed detection system with tandem topology, as r → 1,

the optimum decision rule W2 can be expressed as the Exclusive-OR (XOR) rule between

W1 and I(x2 ∈ RW1), where I(·) is the indicator function which takes value 1, if x2 ∈ RW1 ,

and value 0, otherwise. The optimum partitions of both sensors' observations, as bits `1' and

`0', are the same and are given by alternating segments of �xed length, |s2 − s1|, assuming

that the length is not zero.

Proof. Appendix D.1 proves in detail that the optimal detection rule for the two-sensor tan-

dem topology, with one-bit quantization, is exactly the XOR rule with alternating partitions

as shown in Fig. 2.16, as r → 1.

2.6.2 Asymptotic Error Analysis of XORAP

First, evaluate the probability of correct decision of the XORAP rule when H0 is

true, that is, the probability, Pc0 = P (XORAP decides H0|H0). The contributions to this

probability come from two distinct probabilities P1 and P2, which are de�ned below in the

following two equations.

P1 =
∞∑

i=−∞

∫ (i+1)D

iD

∫ (i+1)D

iD

f(x, y; r)dxdy (2.44)

P2 =
∞∑

i=−∞

∞∑
k=1

∫ (i+1)D

iD

∫ (i+1)D±2kD

iD±2kD

f(x, y; r)dxdy, (2.45)
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where f(x, y; r) denotes bivariate Gaussian density with zero means, unit variances and

correlation coe�cient r. P1 is nothing but the probability that both the sensor observations

fall in the same interval (iD, (i+ 1)D) in Fig. 2.16. Therefore, when this happens, XORAP

will correctly decide H0. By looking at Fig. 2.16, it is plain that, under H0, XORAP will

also decide correctly when X1 ∈ (iD, (i + 1)D) and X2 ∈ (iD ± 2kD, (i + 1)D ± 2kD), k is

an integer, thereby contributing to the probability P2.

Theorem 6. By using the result by G Pólya in [52], we show below that

lim
r→1

P1 = 1−

[√
2

π
(1− r)

1
2 (1 + 2

∞∑
i=1

(e−0.5D2

)i
2

)

]
. (2.46)

Proof. Based on the partition and the XOR rule shown in Fig. 2.16, P1 =
∑∞

i=−∞ Ji, where

Ji ,
∫ (i+1)D

iD

∫ (i+1)D

iD

f(x, y; r)dxdy. (2.47)

A result from [52] is utilized to evaluate Ji, as r → 1. The notation of L(·) below and its

arguments are from this paper. We also utilize variables in equations (6.5) and (6.6) in [52].

Hence,

Ji = L(a, a
′
; b, b

′
; r), (2.48)

a = a
′
= iD, b = b

′
= (i+ 1)D,

α =
a+ a

′

21/2(1 + r)1/2
, β =

b+ b
′

21/2(1 + r)1/2
, δ
′
=
−a+ b

′√
2(1− r)

.

lim
r→1

α = iD, lim
r→1

β = (i+ 1)D.

By utilizing (6.8) in [52],

lim
r→1

Ji ∼ 2Ji1 + 2Ji2, (2.49)
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where

Ji1 = [G(β)−G(α)]G(δ
′
),

Ji2 = −ρ(g(α) + g(β))(g(0)− g(δ
′
)).

G(x) is de�ned as the area under the standard Gaussian density, g(y), over y ∈ (0, x), and

ρ =
(

1−r
1+r

) 1
2 . Based on (2.44), (2.47), and (2.49) and considering r → 1,

P1 = I1 −
2ρ√
2π
I2, (2.50)

where

I1 =
∞∑

i=−∞

[G((i+ 1)D)−G(iD)] = G(∞)−G(−∞) = 1,

I2 =
∞∑

i=−∞

g(iD) + g((i+ 1)D).

We will show that I2 <∞. Since g(−iD) = g(iD),

I2 = 4
∞∑
i=1

g(iD) + 2g(0), (2.51)

or, I2 = 4√
2π

∑∞
i=1(e−

D2

2 )i
2

+ 2√
2π
<∞. Now, using the de�nition of ρ given above,

lim
r→1

1− P1 =

√
2

π
(1− r)1/2

[
1 + 2

∞∑
i=1

(e−
D2

2 )i
2

]
. (2.52)

It is shown in Appendix E.1 that P2 decreases to zero exponentially fast and can be

neglected when compared to 1 − P1. Hence, the probability of false alarm, Pf = 1 − Pc0 =

1 − P1 − P2 goes to zero, at the rate
√

1− r, as shown in (2.52). The other conditional

probability of error, the probability of miss, is precisely the same as Pf . This can be seen
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from the following argument. Since the error in XORAP is caused by the pair of noise

samples, whenever XORAP makes an error under H0, the same noise pair would also cause

an error if H1 was true. Similar comments apply to non-error-causing events. Hence, the

probability of error of XORAP is PeX = Pf .

2.6.3 Simulation of XORAP Error

In this subsection, we study the probability of error behavior of XORAP, by generating

bivariate Gaussian samples with di�erent values of correlation coe�cient r, which can be

simulated by using the following equation.

N2 = N1 + εV, (2.53)

where N1 and V are i.i.d as Gaussian with zero mean and unit variance, i.e. ∼

Gaussian (0, 1), and ε =
√

1−r2
r

. Table 2.1 shows how the probabilities of error PeC and PeX ,

respectively for CLRT and XORAP, decrease towards zero as r increases towards 1. The error

probabilities for CLRT are based on an exact theoretical expression. The PeX values shown

in the Table II for r = (0.99, 0.999, 0.9999, 0.99999) are remarkably close to what one gets

from the asymptotic error expression for PeX ≈ 1−P1, shown as the last column in Table 2.1.

In this simulation study and the asymptotic error analysis, we assumed that the origin

coincides with T0 in Fig. 2.16. As can be seen from the proof of Theorem 4, if the origin

is o�set from T0, then the asymptotic error still decays as
√

1− r, but the proportionality

constant in equation (2.52) is slightly altered. Similarly, PeX values in Table 2.1 will change

a little.

The following subsection provides a graphical illustration of why XORAP probability

of error decreases much slower when compared to the CLRT rate of decrease.
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r Pec PeX 1− P1

0.3 0.3047 0.5 -
0.5 0.3085 0.5 -
0.9 0.2487 0.49 -
0.99 0.0306 0.2272 0.2257
0.999 1.05 E-08 0.071 0.0714
0.9999 1E-70 0.023 0.0226
0.99999 - 0.007 0.0071

Table 2.1: Performance comparison of CLRT and XORAP for s1 = 1, s2 = 0.5, and di�erent
r values.

2.6.4 Graphical Illustration of Di�erence in Performances of Centralized Likelihood Ratio

Test and XORAP

Consider an example with s1 = 1, s2 = 0.5, η = π0
π1

= 1. The illustration in Fig. 2.17

shows the decision regions of CLRT and XORAP in the (X1, X2) plane with s1 − s2 = 0.5.

The CLRT separation line is given by [8]

(s1 − rs2)x1 + (s2 − rs1)x2

H1

≷
H0

(1− r2)lnη +
s2

1 + s2
2 − 2rs1s2

2
. (2.54)

Assume ε = 1− r, as r → 1, ε→ 0. Then (2.54) is reduced to

x1

H1

≷
H0

1− 2ε

1 + ε
x2 +

0.25 + ε

1 + ε
. (2.55)

According to Taylor series expansion, by ignoring the second and higher orders of ε,

the CLRT separation line can be obtained as

x1

H1

≷
H0

(1− 3ε)x2 +
1 + 3ε

4
. (2.56)

The CLRT divides the plane into two parts, with those points (X1, X2) falling below

the straight line (X2 = X1 − 0.25, ε → 0) classi�ed as decision H1 and those falling above

the line classi�ed as decision H0.
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Figure 2.17: Graphical Illustration of XORAP and CLRT: Hatched green area XORAP
decides H1, CLRT decides H0; Hatched red area XORAP decides H0, CLRT decides H1.
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In Fig. 2.17, the line above the CLRT separation line is the line through the origin,

with slope 1, and the line below the CLRT separation line is represented as X2 = X1 − 0.5.

At r = 1, the probability distribution of (X1, X2) is degenerate along the line X1 = X2, when

H0 is true, and the distribution is degenerate along the line X2 = X1− 0.5, when H1 is true.

The shaded green area corresponds to the region where XORAP decides H1, whereas CLRT

decides H0. The opposite is true for the shaded red area. Under H0, as r gets closer and

closer to 1, the probability distribution keeps increasingly getting concentrated along the

X1 = X2 line. Hence, the CLRT will make less and less error (error happens when samples

fall below the CLRT separation line) as r gets closer and closer to 1. In the area above

the X1 = X2 line, there are regions labeled as `01' or `10', where the XORAP decides H1,

resulting in decision errors for XORAP, when H0 is true. However, the probability of this

happening will be negligible and will decrease exponentially to zero as r → 1.

Now, consider hypothesis H0 to be true. What di�erentiates the rates of decrease of

the probabilities of errors of CLRT and XORAP is the di�erence in the probability mass over

the areas within the band, �anked by the lines, X2 = X1 and X2 = X1 − 0.5, where the two

decision schemes make decision H1. The probability mass over the green shaded area, where

XORAP decision di�ers from CLRT, contributes to XORAP making an incorrect decision,

H1. In the shaded red area, where XORAP decision di�ers from CLRT, the XORAP makes

the correct decision, H0. Since the probability mass is increasingly concentrated along the

X2 = X1 line, as r tends to 1, the probability mass over the red area, which is below and

touching at points along the X2 = X1 − 0.25 line, decreases to zero very fast. Hence, this

addition to the probability of correct decision for the XORAP has no impact on the rate

at which XORAP error approaches zero. In contrast, as r tends to 1, the probability mass

over the green area, which is closer to, and touching at points along the X2 = X1 line, goes

to zero at a slower rate. Although one cannot predict from the graph the rate at which the

error would decrease to zero, the analytical expression in Theorem 4 shows that this is of

the order
√

1− r. A similar conclusion can be drawn when H1 is true.
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2.6.5 Suboptimal Solutions from GA

To further understand the behaviors of parallel and tandem cases, the genetic algo-

rithm is used to obtain the following results.

First, considering one-bit quantization of the observations, for di�erent r values with

r ∈ (0.93, 0.9999) and D = 0.5, we studied how one-bit quantization pattern might change

if LRT fusion with one-bit quantized data was optimized using the GA in the two-sensor

parallel topology, like the one used in [32]. It is interesting to notice that the best rules

identi�ed by GA are as follows. It is �ignore sensor 1� rule for r = 0.93, it is �AND� rule

for r = 0.95, and it is XORAP for r ≥ 0.999. For r = 0.99, GA yields the XOR rule,

which is a slightly di�erent from XORAP, where the quantization intervals of GA alternate

over a certain segment around the origin, but at the two ends, only one interval happens

for the remaining parts of the real line. Although GA can only claim suboptimal solutions,

nevertheless, it also shows that XORAP could be the optimal one-bit fusion rule for r close

to 1. We also observe that the rates of decrease of the detection errors to zero, for the cases

with the distributed detection, are extremely slow compared to the exponential decrease

exhibited by the CLRT.

Fig. 2.18 shows the rate of decrease to zero as r approaches 1 from 0.9. In this

case, s1 = 2, s2 = 4. Both parallel and tandem topologies in Fig. 2.1 are considered for

distributed detection with either one-bit or two-bit sensor reports. GA (see [32]) is used to

generate sub-optimal solutions to minimize detection error. The rates of decrease in di�erent

cases are compared. The bene�ts of using two-bit quantization over one-bit quantization can

also be observed.

In the GA simulation, the sensor rule, which includes both thresholds and codewords

assignment, is converted into a binary sequence representing a solution for GA to do crossover

and mutations. The solution with the highest �tness, i.e., minimum detection error, after

a number of iterations is selected as the sub-optimal solution. The di�erence between GA

being used in parallel and tandem topology is, for the parallel topology, the binary sequence
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is obtained by converting sensor rules of both sensors [11]. While for the tandem topology,

the binary sequence consists of the decision rule of sensor 1 only. The decision rule of sensor

2 is obtained by utilizing a person-by-person optimal decision, according to the tests in

(2.22) and (2.23). [11] shows in detail the complexity of GA in the parallel topology. The

complexity of GA used in the tandem topology is less than that in the parallel topology,

with half of the length in the solution binary sequence.

Figure 2.18: Rates of decrease to zero as r approaches 1. The rates of parallel and tandem
topologies using one-bit and two-bit sensor reports, and the CLRT are compared.
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CHAPTER 3 DISTRIBUTED COOPERATIVE COMPRESSIVE

WIDEBAND SPECTRUM SENSING

3.1 Cooperative Compressive Wideband Spectrum Sensing

This chapter proposes a Slepian-Wolf coding-based distributed cooperative compres-

sive wideband spectrum sensing system, exploiting the correlation existing in sensor ob-

servations. Compared with the traditional system, a larger number of measurements can

be obtained to improve the performance of spectrum reconstruction and detection in the

proposed system.

3.1.1 Quantized Compressive Sensing

CS is a technique that e�ectively samples and reconstructs a signal by exploiting

its sparsity. Consider a discrete-time K-sparse signal vector xsp = (x1, x2, . . . , xN)T and

x = xsp+n, where n is an additive white Gaussian noise (AWGN) vector. x is considered as

compressible if it is either a sparse signal withK non-zero values when n = 0 or a near-sparse

one when the power of n is su�ciently small.

A CS process includes two parts: signal acquisition and reconstruction. In the signal

acquisition part, a measurement vector y of length M � N is acquired by taking a linear

transformation of x, i.e., y = Φx, where Φ is an M × N sampling matrix. In quantized

CS, measurements in y have to be quantized before being encoded and transmitted. At the

receiving end, signal recovery will be based on the quantized measurement vector yq.

In the signal reconstruction part, since the exact reconstruction of x by minimizing

the l0-norm, i.e. searching for the sparsest signal representation, is an NP-hard problem, in

practice, minimizing the l1-norm by linear programming is often adopted to solve the inverse

problem. In our work, since both measurement noise and quantization error exist in the
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acquisition process, we consider both l1-norm and l2-norm in the signal recovery process.

Speci�cally, we use the least absolute shrinkage and selection operator (LASSO) method

for the inverse CS process. LASSO method minimizes the norm-two of the residual with a

norm-one constraint, i.e.,

min ‖Φx− yq‖2 s.t. ‖x‖1 ≤ δ, (3.1)

where δ is a constant indicating the constraint of l1-norm of solution. There are other

formulations of this inverse problem considering both l1-norm and l2-norm, such as basis

pursuit denoise (BPDN) problem, which �nds

min ‖x‖1 s.t. ‖Φx− yq‖2 ≤ e, (3.2)

where e estimates the noise level, and the penalized least-squares problem, which �nds

min ‖Φx− yq‖2 + λ‖x‖1, (3.3)

where λ is a parameter related to (3.1). It has been shown in [53] that all these methods are

equivalent based on certain conditions. Therefore, only the LASSO problem is considered in

this chapter.

3.1.2 Traditional Cooperative Sensing System

Consider a multi-carrier transmission system with NC sub-channels and assume that

the corresponding time-domain wideband signal is x. Let Ψ be the discrete Fourier transform

(DFT) matrix, then in the frequency domain, we have

X = Ψx + n, (3.4)

which can be regarded as the original spectrum to be sensed, and n is the noise vector

introduced by either sensing channels or the sensing process.
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Figure 3.1: Structure of a traditional quantized cooperative compressive wideband spectrum
sensing system.

Suppose there are two SUs in a cooperative wideband spectrum sensing system that

sense X using sensor 1 and 2. After X is sensed, each sensor generates one quantized

measurement vector and sends to the FC where the measurement vectors from both SUs

are combined for the spectrum reconstruction and detection. The system structure of the

traditional cooperative compressive wideband spectrum sensing system is depicted in Fig.

3.1. In the acquisition part, the original spectrum X is sampled by sensor 1 and sensor 2

separately, obtaining two measurement vectors with M1 and M2 measurements. All these

measurements are quantized using B1 bits per measurement and transmitted to the FC. ỹq,B1

1

and ỹq,B1

2 are the quantized measurement vectors obtained from the decoding of codeword

sequences b̃B1
1 and b̃B1

2 , which are the same as bB1
1 and bB1

2 when no bit errors occur from

SUs to the FC. That is,

ỹq,B1

1 = yq,B1

1 = QB1(Φ1X) (3.5)

ỹq,B1

2 = yq,B1

2 = QB1(Φ2X), (3.6)

where QB1(·) is the function of B1-bits quantization, Φ1 is an M1 × N sampling matrix in

sensor 1 and Φ2 is an M2 ×N sampling matrix in sensor 2.

In the reconstruction part, ỹq,B1

1 and ỹq,B1

2 will be stacked together to form an (M1 +

M2) × 1 vector ỹq,B1 . This vector together with the augmented sampling matrix [Φ1,Φ2]T
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Figure 3.2: Structure of an advanced quantized cooperative compressive wideband spectrum
sensing system exploiting correlation.

will be the input to the LASSO process to reconstruct the original spectrum, i.e.,

X̂T = CS−1(ỹq,B1), (3.7)

where CS−1(·) stands for the inverse CS process with the LASSO method.

3.2 Advanced Cooperative Sensing System Exploiting Correlation

3.2.1 System Diagram

The framework of the advanced cooperative compressive wideband spectrum sensing

system is presented in Fig. 3.2. Like the traditional system, the original spectrum is sampled

by sensor 1 and 2 separately, obtaining two measurement vectors. However, they are quan-

tized using di�erent number of bits per measurement to generate two codeword sequences

bB1
1 and bB2

2 . At the FC, these two sequences are jointly decoded to approximate the two

original measurement vectors for spectrum recovery.

In the acquisition part, both y1 and y2 in the advanced system are obtained in the

same way as in the traditional system. y1 will be quantized using B1 bits per measurement

as yq,B1

1 . To quantize y2, 2B1 quantization intervals are still used. However, instead of using

B1 bits per measurement for indexing each measurement, we use B2 ≤ B1 bits. As a result,

there are 2B1−B2 quantization intervals being indexed with the same B2-bit-codeword.
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The idea of Slepian-Wolf coding [33] is that in the reconstruction part, the correlation

provided by the side-information that is generated from the measurement vector of sensor

1 can be exploited to uniquely determine which one of the intervals that y2 was originally

quantized into. In short, by exploiting correlation, each measurement in y2 with accuracy

represented by B1 bits can be indexed by B2 bits. Consequently, a larger number of mea-

surements can be collected in the advanced system with a given bit budget, which ultimately

improves spectrum recovery.

Since B2 ≤ B1, to ensure ỹq,B2

2 ≈ yq,B1

2 , the decoding of the codeword sequence ỹq,B2

2

must be assisted with the side information ŷ2. This side information is obtained by taking

measurements of the recovered spectrum based on ỹq,B1

1 , i.e.,

ŷ2 = Φ2X̂
∗ = Φ2CS−1(ỹq,B1

1 ). (3.8)

Once ỹq,B2

2 is obtained, it will be stacked with ỹq,B1

1 to form a larger (M1 + M2) × 1 vector

ỹq,B1,B2 . This vector and the augmented sampling matrix will then be input to the LASSO

process to reconstruct the original spectrum. The recovered spectrum is given by

X̂A = CS−1(ỹq,B1,B2). (3.9)

3.2.2 Parameters Determination

In the advanced cooperative compressive wideband spectrum sensing system, assume

the entries in the measurement matrices Φ1 and Φ2 are drawn from Gaussian distribution

with zero mean and variance 1
NC

. Then each entry in measurement vector y1 and y2 is

Gaussian distributed as

y1i, y2j ∼ N
(

0, σ2 =
‖X‖2

NC

)
, i = 1, . . . ,M1; j = 1, . . . ,M2. (3.10)
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As illustrated in Fig. 3.2, the correlation between y1 and y2 is exploited by introducing ŷ2

as the side information,

ŷ2 = Φ2X̂
∗ = Φ2(X + X̂∗ −X) = y2 + Φ2(X̂∗ −X), (3.11)

where X̂∗ is the recovered spectrum based on ỹq,B1

1 . As a result, each component in y2 is

conditionally distributed on the corresponding entry in ŷ2 as

y2j|ŷ2j ∼ N
(
ŷ2j, σ̂

2 =

∥∥∥X̂∗ −X
∥∥∥2

NC

)
, j = 1, 2, ...,M2. (3.12)

In quantization, a B1-bits uniform scalar quantizer with bin size ∆ is used to obtain

ỹq,B1

1 from y1. To make sure that the range of quantizer covers a probability mass of p for

the distribution in (3.10), the size of quantization interval is designated by

∆ = Q−1

(
1− p

2

)
σ

2B1−1
, (3.13)

where Q−1(·) is the inverse Q-function. Q-function is the upper tail function of the standard

normal distribution. Accordingly, to cover the probability mass of p for the conditional

distribution in (3.12) with the same quantization interval size, we need

B2 = log2

2σ̂Q−1
(

1−p
2

)
∆

, (3.14)

where σ̂ is taken from (3.12). From (3.13) and (3.14), the relationship between B1 and B2

is given by

B2 = B1 + log2

σ̂

σ
= B1 + log2

∥∥∥X̂∗ −X
∥∥∥

2

‖X‖2

. (3.15)

Consider the case in which the total number of quantization bits is �xed as BT , i.e.

M1B1 +M2B2 ≤ BT . The objective of the advanced system is to make the total number of
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measurements (M1 + M2) as large as possible. Therefore, the optimization problem for the

system design is as follows.

max(M1 +M2)

s.t. M1B1 +M2B2 ≤ BT , 0 < M1 ≤ BT
B1
,M2 ≥ 0.

(3.16)

For any �xed B1, this simple optimization problem can be solved easily by iterating

over M1 from 1 to BT
B1
. For each M1, �rst σ and σ̂ are calculated, and then B2 and further

M2 can be decided.

3.2.3 Spectrum Detection

Spectrum detection can be made after the spectrum is recovered. Given original

spectrum X and the recovered spectrum vector X̂, where X̂ = X̂T for the traditional system

or X̂ = X̂A for the advanced system, the occupancy state of the i-th (i = 1, 2, ..., N) sub-

channel, whether busy or idle, is based on a binary hypothesis testing problem

Hi
0 : Xi = Vi, i = 1, 2, ..., N

Hi
1 : Xi = Si + Vi, i = 1, 2, ..., N

(3.17)

where Vi is the noise component given by AWGN and Si is the signal component at sub-

channel i. Given a threshold η, the decision of whether sub-channel i is occupied or not is

given by

Di =

 1, X̂i ≥ η

0, X̂i < η
, i = 1, 2, ..., N. (3.18)

Assume a set A including the occupied sub-channels A = {i1, i2, ..., iK} and Ac consists of

unoccupied sub-channels. The average probability of false alarm is given by

PF =
∑
i∈Ac

P (Di = 1|Hi
0)

N −K
=
∑
i∈Ac

P (X̂i ≥ η|Xi = Vi)

N −K
, (3.19)
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and the average probability of miss-detection is

PM =
∑
i∈A

P (Di = 0|Hi
1)

K
=
∑
i∈A

P (X̂i < η|Xi = Si + Vi)

K
, (3.20)

with PD = 1− PM indicating the average probability of detection. In this work, a Neyman-

Pearson test is applied to maximize PD for a given PF , with the receiver operating character

(ROC) curves plotted.

3.3 Simulation Results

For simplicity, consider a wideband spectrum covering N = 256 sub-channels. The

signal sparsity is K, which means K randomly picked sub-channels are used by the PUs. We

assume the occupied channels have a constant signal power. In the simulation, we consider

both the error-free case and the case with SNR = 20 dB. When SNR is considered, the noise

calculated based on the occupied sub-channels also exists in all other sub-channels.

After X is acquired, the quantizer parameters for the traditional and advanced sys-

tems need to be set. In simulations, the number of quantization bits B1 = 5 is �xed for

both quantizers in both sensors of the traditional system and the quantizer in sensor 1 of

the advanced system; while B2, with B2 ≤ B1, taking possible values from {1, 2, ..., 5}, is the

number of quantization bits in sensor 2. The total number of quantization bits BT varies

from 100 to 200 for K = 5 and from 200 to 300 for K = 10 with an increment of 10.

Sampling matrices are generated randomly with each component taken fromN (0, 1/NC).

However, for a fair comparison of the two systems, in each simulation, the sampling matrix

for the traditional system will also be included as the sub-matrix of the sampling matrix of

the advanced system.

3.3.1 Optimal Parameters

Since correlation is not considered in the traditional system, given a bit budget BT ,

the total number of measurements is M1 +M2 = BT
B1
, which is not changed with varying M1.
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Figure 3.3: Left, comparison of the average number of measurements for di�erent BT . Right,
di�erent M1 leads to di�erent total M1 +M2 for given BT .
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However, according to (3.16), M1 needs to be optimized in the advanced system since M1 is

the length of yq,B1

1 , which is used to get X̂∗. A straightforward way to estimate M1 is taking

each integer from 1 to BT/B1 as a possible choice of M1. For each choice of M1, 1000 trials

are examined to solve the optimization problem (3.16) and the mean of the total number

of measurements, M1 + M2 with corresponding M1 is calculated. Therefore, the estimated

optimal M1 given a restricted BT is determined by the one that gives a maximum mean

of the total number of measurements M1 + M2. Fig. 3.3 illustrates the comparison of the

average number of measurements given by the two systems and the estimates of M1 under

both the error-free and the SNR = 20 dB cases.

It can be observed that for di�erent bit budget BT , the average number of mea-

surements for the advanced system is more than the traditional system and the di�erence

becomes larger as BT increases. Since the correlation is exploited between the measurement

vectors in the advanced system, the saved quantization bits allow the advanced system to

take more measurements than the traditional system, and more bits saved as BT increases

leads to a larger di�erence of the number of measurements between the two systems.

The total number of M1 +M2 vs. the variation of M1 in the advanced system is also

shown in the �gure. The case of BT = 150 and K = 5 and another case of BT = 250 and

K = 10 are considered. M1 is estimated by testing each integer from 1 to 30 in the �rst case

and from 1 to 50 in the second case. As shown in Fig. 3.3 (right), whenM1 is initially small,

the average number of measurements remains the same. The advanced system fails to show

better performance because the number of measurements is too small in sensor 1 leading

to a weak correlation with measurements taken by sensor 2, even though sensor 2 may get

more measurements. However, M1 + M2 increases to reach the maximum at M1 = 25 in

the �rst case (and 45 in the second case) and then decreases to the original level. As M1

further increases, the performance reduces. The reason is quite similar to the case when

M1 is too small because when M1 increases to a huge value, M2 in sensor 2 becomes too

small to form a strong correlation between the measurements taken in sensor 2 and those
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Figure 3.4: Percentage of improvement in MSE reduction for K = 5 and 10 with no error
and 20dB error cases.

in sensor 1. Thus, given a �xed bit budget, the optimal choice of M1 exists where the

correlation between the two measurement vectors in sensor 1 and sensor 2 gives the largest

total number of measurements.

3.3.2 MSE Performance Comparison

The MSE between the original and recovered spectrum, given by 1
N

N∑
i=1

(Xi − X̂i)
2
,

provides a metric to evaluate the performance. Given a bit budget BT , denote ET and EA

the mean MSE of 1000 trials for the traditional and advanced system, respectively. To

compare the two systems, the percentage of decrement, i.e., ET−EAET
, is plotted for di�erent

values of the given bit budget BT .

As shown in Fig. 3.4, the advanced system consistently outperforms the traditional

system, and with increasing BT the percentage of MSE reduction becomes larger. Further-

more, it can be seen from Fig. 3.3 that a larger total number of measurements are provided

by the advanced system than the traditional one as BT increases, which indeed contributes

to more reduction in MSE.

It is also interesting to observe that with a relatively small BT , improvement with
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Figure 3.5: Two speci�c examples of spectrum detection with di�erent spectrum sparsity.
The performance of spectrum recovery for the proposed system is compared with that of the
traditional system. Di�erent parameters are compared with K = 5, 10, BT = 150, 250, and
SNR = 0, 20dB.

the SNR = 20 dB case is greater than that in the error-free case. It may suggest that over

a range of low bit budgets, the AWGN noise may neutralize the e�ect given by quantization

error, which nevertheless, may no longer take a signi�cant e�ect when BT is large enough.

3.3.3 Spectrum Detection

The ultimate purpose for spectrum sensing is to determine whether each sub-channel

is occupied or not. Fig. 3.5 provides two instances of the reconstructed spectrum signals

from the two systems under the same conditions. One is with BT = 150 for K = 5 and

the other is with BT = 250 for K = 10. It may visually suggest that better signal recovery

in terms MSE also helps spectrum detection. As the detection threshold η changes, for the

speci�c cases shown in Fig. 3.5 with K = 5 and K = 10, the ROC curves, which showing

both PD and PF , are also plotted in Fig. 3.6. It can be found that the advanced system again

outperforms the traditional one. It is worth pointing out that due to the sparse property

of the spectrum, the range of PF in the x-axis is narrowed to show a comparison. This

result indicates that with the advanced system, a larger number of measurements greatly

improve the signal reconstruction quality in terms of MSE and are speci�cally appropriate

for spectrum detection.
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Figure 3.6: Comparison of ROC curves between two systems. Di�erent parameters are
compared with K = 5, 10, BT = 150, 250, and SNR = 0, 20dB.
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3.4 Extra Discussion of Slepian-Wolf Coding Used in Narrowband Distributed Detection

Slepian-Wolf theorem has played an important role in exploiting correlation in sensor

observations, based on which system probability of error detection performance could be

improved. However, this technique is di�cult to apply in narrowband distributed detection

scenarios.

In a two-sensor parallel distributed detection network, two sensors collaborate to

detect the PUs, and their observations are quantized before being sent to the FC. Assume

the quantization bits for each sensor is B1 and B2 (B1 > B2) respectively, with quantization

level Q1 = 2B1 and Q2 = 2B2 . Assume the sensing range for sensor k (k = 1, 2) is divided

into Q1 non-overlapping intervals by thresholds tk,0 = −Inf and {tk,h}Q1

h=1 (tk,Q1 = Inf).

The encoding process is done separately by sensor 1 and sensor 2. At sensor 1, the

original data X1 is encoded and represented by codeword sequence c1, i.e., c1 = f1(X1).

According to the interval x1 falls in, the output of the encoder at sensor 1 is given by

c1,h =



c1,1, t1,0 < x1 < t1,1

c1,2, t1,1 ≤ x1 < t1,2
...

c1,Q1 , t1,Q1−1 ≤ x1 < t1,Q1

, (3.21)

where each interval is assigned with a unique codeword. Then c1 = [c1,1, c1,2, ..., c1,h].

At sensor 2, the original data X2 is encoded and represented by codeword sequence c2,

i.e. c2 = f2(X2). There are still Q1 non-overlapping intervals, but since Q2 < Q1, multiple

intervals are encoded with the same codewords according to a speci�c binning scheme. In

this work, the binning scheme is designed to ensure that the number of intervals with the

same codewords is the same, i.e., Q1/Q2. When x2 falls in the h-th interval, it is represented
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the codeword assigned for the h-th interval, denoted by:

c
′

2,h =



c1
2,1, t2,0 < x2 < t2,1

c1
2,2, t2,1 ≤ x1 < t2,2
...

...

c1
2,Q2

, t2,Q2−1 ≤ x2 < t2,Q2

...
...

c
Q1/Q2

2,1 , t2,Q1−Q2 ≤ x2 < t2,Q1−Q2+1

c
Q1/Q2

2,2 , t2,Q1−Q2+1 ≤ x2 < t2,Q1−Q2+2

...
...

c
Q1/Q2

2,Q2
, t2,Q1−1 ≤ x2 < t2,Q1

, (3.22)

where the binning scheme gives c
′

2,h = cw2,m, with m = h−Q2

⌊
h−1
Q2

⌋
and w = 1, 2, ..., Q1/Q2,

the index of bins. All intervals are divided into Q1/Q2 bins, and multiple intervals inside the

same bin share the same codeword. Hence, assume the set of unique codewords is given by

c2 = [c2,1, c2,2, ..., c2,Q2 ],
{
c1

2,m, c
2
2,m, ..., c

Q1/Q2

2,m

}
are inside the same bin and share the same

codeword c2,m.

At the FC, combinations of codewords from the encoder outputs of both sensors

(c1,h, c2,m), h = 1, 2, ..., Q1,m = 1, 2, ..., Q2, are received with P (c1,h, c2,m|Hi), i = 0, 1. Based

on the above information, the FC make its �nal decision in the following two ways:

3.4.1 Method 1: FC Makes Detection without Slepian-Wolf Decoding

In this case, while receiving (c1,h, c2,m), since P (c1,h, c2,m|Hi) =
∑Q1/Q2

w=1 P (c1,h, c
w
2,m|Hi),

the likelihood ratio test, denoted by L∗1, is given by

L∗1(c1,h, c2,m) =
P (c1,h,c2,m|H1)

P (c1,h,c2,m|H0)

=
P (c1,h,c

1
2,m|H1)+P (c1,h,c

2
2,m|H1)+...+P (c1,h,c

Q1/Q2
2,m |H1)

P (c1,h,c
1
2,m|H0)+P (c1,h,c

2
2,m|H0)+...+P (c1,h,c

Q1/Q2
2,m |H0)

H1

≷
H0

η.

(3.23)
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3.4.2 Method 2: FC Makes Detection with Slepian-Wolf Decoding

Let the objective codeword from sensor 2 is c∗2,m, at the FC, after receiving (c1,h, c2,m)

with the same probability mass P (c1,h, c2,m|Hi), i = 0, 1, the objective of Slepian-Wolf

decoding is to �nd c∗2,m in the set
{
c1

2,m, c
2
2,m, ..., c

Q1/Q2

2,m

}
and assume q(c1,h, c

∗
2,m|Hi) =

P (c1,h, c2,m|Hi). Therefore, the decision rule is based on the LRT L∗2, which is

L∗2(c1,h, c2,m) =
q(c1,h,c2,m|H1)

q(c1,h,c2,m|H0)
=

0+0+...q(c1,h,c
∗
2,m|H1)...+0

0+0+...q(c1,h,c
∗
2,m|H0)...+0

=
P (c1,h,c2,m|H1)

P (c1,h,c2,m|H0)

H1

≷
H0

η.

(3.24)

Thus, by comparing (3.23) and (3.24), it can be observed that the LRT L∗1 and L
∗
2 are

equivalent, and detection error Pe is the same irrespective of whether Slepian-Wolf decoding

is used or not. Moreover, at the FC, the size of the look-up table is never changed, i.e., the

summed probabilities of collected codewords combinations received at the FC do not change.

Therefore, the detection error is not changed irrespective of whether or not applying Slepian-

Wolf theorem.

72



CHAPTER 4 CONCLUSION

In this dissertation, in di�erent wideband and narrowband spectrum sensing scenarios,

approaches to the design of sound distributed sensing systems are presented with correlated

sensor observations.

A heuristic MCMC method is used to �nd suboptimal solutions for the decentralized

detection problem in which sensor observations are correlated. The solutions include sensor

rules, which consists of thresholds and codewords assignment, and the FC rules, which

make the �nal decision based on all gathered information from sensors. The sensor rules

are transformed as input for the MCMC method. It provides a converged and fast way of

optimizing the solutions given an initial state. Although the process of slice sampling is

random, the MCMC algorithm is still �exible to control the convergence speed of simulated

annealing by changing the cooling schedule and the required number of acceptance samples.

A two-sensor tandem con�guration for detecting a deterministic signal in correlated

Gaussian noise is considered. The �rst quadrant of the signal plane (s1, s2) is divided into

three regions according to a relation involving signal values and noise correlation coe�cient.

By focusing on the coupled single-threshold sensor rules, the properties of sensor decision

rules in each region are discussed and validated by numerical results. It is shown herein that

similar results can be determined for the third quadrant of the signal plane.

Comparison between the parallel and tandem topologies of two-sensor distributed

detection systems for detecting a deterministic signal in correlated Gaussian noise is analyzed.

Optimum sensor rules are obtainable for both topologies, given speci�c parametrization of

the 3-tuple (s1, s2, r). We apply the genetic algorithm to �nd suboptimal solutions for sensor

rules in other cases. The numerical results show the probability of error performance gap

between the parallel and tandem topology.
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The probability of error performance of an exclusive-OR fusion rule for detecting

the presence or absence of a known deterministic signal in correlated Gaussian noise is

considered. The XORAP's performance is perfect at r = 1, but far worse than the centralized

likelihood ratio test when 0.99 < r < 1. Our contributions are proving the optimality of the

XORAP rule for two-sensor tandem and parallel topologies, and analytically quantifying the

asymptotic error rate of the XORAP, as r → 1, and observing the pronounced di�erence

in the asymptotic performances between XORAP and the centralized likelihood ratio test.

Since XORAP is optimal for both two-sensor parallel and tandem topologies, as r → 1, this

error convergence result applies to both detection topologies.

An advanced distributed cooperative compressive wideband sensing system based on

Slepian-Wolf source coding is presented. Given the total quantization bits, the advanced

system exploits the correlation between two measurement vectors from two SUs to produce

a larger total number of measurements, leading to performance improvement in both MSE

and spectrum detection. Future work may include extending to the case with more SUs,

balancing the rate among these SUs and considering reporting channel errors.
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APPENDIX A

A.1 Proof of Theorem 1 in Section 2.4.1: Global Optimality of Sensor Rules in the Two-

Sensor Distributed Detection Network with Tandem Topology

Proof. Since the �nal decision is W2, the Bayes error can be written as

C(W2) = π0P (W2 = 1|H0) + π1P (W2 = 0|H1)

= π1 + π0P (W2 = 1|H0)− π1P (W2 = 1|H1).

(1.1)

The person-by-person optimal solution is obtained by �rst treating one of the sensor rules,

say sensor 1, as �xed and then sensor 2 rule is optimized for minimum Bayes error, followed

by the reverse operation of treating the sensor 2 rule being �xed and optimizing the sensor 1

rule. In the tandem structure, since the sensor 2 decision, W2, depends upon the �rst sensor

decision, which could be either a `1' or `0', decision regions where W2 = 1, i.e. the regions

in which sensor 2 decides favoring H1, would generally be di�erent for W1 = 0 and W1 = 1.

Hence, the decision regions where W2 decides H1 are denoted as RW2|W1=w, w = 0, 1. For

sensor 1, the decision region for H1 decision is denoted as RW1 . The regions where sensors

decide H0 are denoted as the complements of these regions. First, assuming that the sensor

2 decision rules are �xed, C(W2) is minimized by optimizing the sensor 1 decision rule.

Expanding equation (1.1),

P (W2 = 1|H0) =
∑
W1

∫
x1

∫
x2

P (W2 = 1|W1, x2, x1) ·P (W1|x2, x1) · p(x1, x2|H1)dx2dx1. (1.2)
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Since W2 depends upon W1 and x2 only, and W1 depends upon x1 only, equation (1.2) can

be reduced to

P (W2 = 1|H0) =
∑

W1

∫
x1

∫
x2
P (W2 = 1|W1, x2) · P (W1|x1) · p(x1, x2|H0)dx2dx1

=
∫
x1

∫
x2
P (W2 = 1|W1 = 0, x2)p(x1, x2|H0)dx2dx1 +

∫
x1
P (W1 = 1|x1)dx1

·
∫
x2

[
P (W2 = 1|W1 = 1, x2)− P (W2 = 1|W1 = 0, x2)

]
· p(x1, x2|H0)dx2.

(1.3)

Similarly,

P (W2 = 1|H1) =
∫
x1

∫
x2
P (W2 = 1|W1 = 0, x2) · p(x1, x2|H1)dx2dx1

+
∫
x1
P (W1 = 1|x1)dx1

·
∫
x2

[
P (W2 = 1|W1 = 1, x2)− P (W2 = 1|W1 = 0, x2)

]
· p(x1, x2|H1)dx2.

(1.4)

Therefore,

C(W2) = π1 + π0

∫
x1

∫
RW2|W1=0

p(x1, x2|H0)dx2dx1 − π1

∫
x1

∫
RW2|W1=0

p(x1, x2|H1)dx2dx1

+
∫
x1
P (W1 = 1|x2) ·

{
π0

[ ∫
RW2|W1=1

p(x1, x2|H0)dx2 −
∫
RW2|W1=0

p(x1, x2|H0)dx2

]
−π1

[ ∫
RW2|W1=1

p(x1, x2|H1)dx2 −
∫
RW2|W1=1

p(x1, x2|H0)dx2

]}
dx1.

(1.5)

To minimize C(W2), if the item inside the curly bracket of equation (1.5) is negative, P (W1 =

1|x2) = 1; otherwise, P (W1 = 1|x2) = 0. The condition in (2.24) is reached. Next, it is

assumed that sensor 1 rule is �xed so that the sensor 2 decision regions in order to minimize
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C(W2) can be found. Rewrite the Bayes cost as

C(W2) = π1 + (
∫
RW2|W1=1

[π0

∫
RW1

p(x1, x2|H0)dx1

−π1

∫
RW1

p(x1, x2|H1)dx1]dx2)

+(
∫
RW2|W1=0

[π0

∫
RW1

p(x1, x2|H0)dx1

−π1

∫
RW1

p(x1, x2|H1)dx1]dx2).

(1.6)

Each of the two integrals within the parentheses in the above equation, which contribute to

the Bayes error, can be individually minimized as they correspond to the cases ofW1 = 1 and

W1 = 0, respectively. The �rst integral is minimized by assigning all points x2 to RW2|W1=1,

making the integrand within the square brackets negative. It leads to equation (2.22) above.

Similarly, the second integral is minimized by assigning all points x2 to RW2|W1=0, making

the integrand within the square brackets negative. This leads to the equation (2.23).
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APPENDIX B

B.1 Proof of Theorem 2 in Section 2.4.3: When η = 1, A Unique Set of Solutions {tsW1
, tsW20

, tsW21
}

Exists That Simultaneously Satis�es L0(tW20) = 1, L1(tW21) = 1, LW1(tW1) = 1

Proof. Theorem 2 states that in region II, when η = 1, there exists a unique solution set

{tsW1
, tsW20

, tsW21
} with tsW1

= s1
2
and tsW20

+ tsW21
= s2 that satis�es equations in (2.30) si-

multaneously, i.e., making both sides of (2.22) and (2.23) equal and obtain the following



e−
s22
2 et

s
W20

s2
Q
(
−

s1
2
−rtsW20

−δ12
√

1−r2

)
Q
(
−

s1
2
−rtsW20√
1−r2

) = 1,

e−
s22
2 et

s
W21

s2
Q
( s1

2
−rtsW21

−δ12
√

1−r2

)
Q
( s1

2
−rtsW21√
1−r2

) = 1.

(2.1a)

(2.1b)

Step 1. Existence: As proven in [25], in both regions I and II, given a single threshold

rule in sensor 1, both L0 and L1 for sensor 2 are monotonically increasing. Therefore, it

proves the existence and the uniqueness of (tW20 , tW21) when tW1 is given. Now, if tW20 is a

solution of (2.1a) and tsW1
= s1

2
, assume tW21 = s2 − tW20 , then we have

e−
s22
2 et

s
W21

s2
Q
( s1

2 −rt
s
W21

−δ12√
1−r2

)
Q
( s1

2 −rt
s
W21√

1−r2

) = e−
s22
2 e(s2−tsW20

)s2
Q
( s1

2 −r(s2−t
s
W20

)−δ12√
1−r2

)
Q
( s1

2 −r(s2−t
s
W20

)
√

1−r2

)
= e

s22
2 e−t

s
W20

s2
Q
(
−
s1
2 −rt

s
W20√

1−r2

)
Q
(
−
s1
2 −rt

s
W20

−δ12√
1−r2

) = 1.

(2.2)

This obtains (2.1b). Therefore, {tsW1
, tsW20

, tsW21
}, with tsW1

= s1
2
and tsW20

+ tsW21
= s2, is a

coupled single-threshold solution.

Step 2. Uniqueness: Given tsW20
and tsW21

satisfying (2.1a) and (2.1b), it is shown that

tsW1
exists and is unique with tsW1

= s1/2. This can be achieved with Lemmas 1 and 2 in the

following.

Lemma 1. Given G(x) = Q(x)−Q(x+∆), at x = −∆
2
, when ∆ > 0, G(x) reaches maximum
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and when ∆ < 0, G(x) reaches minimum.

Consider ∆ > 0,
dG
dx

=
e−(x+∆)2/2 − e−x2/2√

2π
. (2.3)

G(x) is a monotonic increasing function when x ≤ −∆/2 because dG
dx
> 0 and monotonically

decreases as x ≥ −∆/2. G(x) reaches maximum at x = −∆
2
. Similarly, G(x) reaches

minimum at x = −∆
2
when ∆ < 0.

Lemma 2. With reference to (2.24),

A(tW1) = Q

(
tW21 − s2 − r(tW1 − s1)√

1− r2

)
−Q

(
tW20 − s2 − r(tW1 − s1)√

1− r2

)
(2.4)

and

B(tW1) = Q

(
tW21 − rtW1√

1− r2

)
−Q

(
tW20 − rtW1√

1− r2

)
. (2.5)

There exists a unique intersecting point of A(tW1) and B(tW1) between t
A
W1

= [tW21 + tW20 +

2(rs1 − s2)]/2r and tBW1
= (tW21 + tW20)/2r.

Figure B.1: Illustration of the intersecting point of A(tW1) and B(tW1).

As shown in Fig. B.1, assuming tW20 = tW21 + ∆
′
with ∆

′
> 0 and δ21 > 0, the

intersecting point is illustrated. A(tW1) reaches maximum at tAW1
= (tW21+tW20−2δ21)/2r and
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then monotonically decreases and approaches limtW1
→InfA(tW1) = 0 as tW1 > tAW1

. Similarly,

B(tW1) monotonically increases as tW1 < tBW1
and reaches maximum at tBW1

= (tW21+tW20)/2r.

It can be shown that A(tW1) and B(tW1) reach the same maximum value at tAW1
and

tBW1
respectively. Since in (tAW1

, tBW1
), A(tA1 ) > B(tA1 ) and B(tB1 ) > A(tB1 ), there must be a

unique intersecting point t∗W1
such that A(t∗W1

) = B(t∗W1
).

It can be found that t∗W1
= (tW21 + tW20 − δ21)/2r. In such a situation, from (2.28),

LW1(t
∗
W1

) = e−
s21
2 et

∗
W1

s21 is obtained. Then LV (tsW1
) = 1 with tW20 + tW21 = s2, tsW1

= s1
2

= t∗W1
.

When δ21 < 0 and/or ∆
′
< 0, tsW1

= s1
2
can be proven similarly.

As a result, combining both the existence and uniqueness of the coupled single-

threshold solution, Theorem 2 has been established.
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APPENDIX C

C.1 Proof of Theorem 3 in Section 2.5.1: Behaviours of Optimum Sensor Rules Considering

Independent Sensor Observations for Both Parallel and Tandem Topologies

Proof. In the parallel topology, according to the likelihood test under �AND� rule for sensor

j given senor i, i = 1, j = 2 or i = 2, j = 1, is given by

{
Xj :

∫
RVi

p(xi,xj |H1)dxi∫
RVi

p(xi,xj |H0)dxi

H1

≷
H0

η,

}
(3.1)

where η = π0
π1
.

With the assumption of independent sensor observations, i.e. r = 0, the FC has

the knowledge of the joint PDF p(xi, xj|Hv) = p(xi|Hv) · p(xj|Hv), v = 0, 1. Therefore, the

optimum detection becomes

{
Xj :

p(xj |H1)

p(xj |H0)
·
∫
RVi

p(xi|H1)dxi∫
RVi

p(xi|H0)dxi

H1

≷
H0

η.

}
(3.2)

Thus, the optimum test of sensor j's threshold still depends on sensor i. Other fusion rules

have similar results.

Consider an example with one-bit sensor reports, with π0 = π1 = 0.5, r = 0 and

s1 < s2. Assume both sensors have �lone-acting� sensor rules, i.e. RV1 = ( s1
2
,∞) and

RV2 = ( s2
2
,∞). Optimum fusion rule is given by the LRT

L(V1, V2) =
p(V1, V2|H1)

p(V1, V2|H0)
=
p(V1|H1) · p(V2|H1)

p(V1|H0) · p(V2|H0)
. (3.3)

Since one-bit sensor reports are considered,

L(1, 1) =
Q( s1

2
− s1)

Q( s1
2

)
·
Q( s2

2
− s2)

Q( s2
2

)
. (3.4)

Since Q(− s1
2

) > Q( s1
2

) and Q(− s2
2

) > Q( s2
2

), L(1, 1) > 1. Also, Q( s1
2

) > Q( s2
2

) and Q(− s2
2

) >
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Q(− s1
2

), leading to

L(0, 1) =
Q( s1

2
)

Q(− s1
2

)
·
Q(− s2

2
)

Q( s2
2

)
> 1. (3.5)

Similarly, we can obtain L(1, 0) < 1 and L(0, 0) < 1. Therefore, in this case, for any received

combination of V1 and V2, the FC always ignores sensor 1's decision rule, which is not an

optimum fusion rule when r = 0. �Lone-acting� sensor rules are not optimal.

In the tandem topology, the LRT for sensor 1 is [25]:

LW1(x1) =
p(x1|H1)·

[ ∫
RW2|W1=1

p(x2|H1)dx2−
∫
RW2|W1=0

p(x2|H1)dx2

]
p(x1|H0)·

[ ∫
RW2|W1=1

p(x2|H0)dx2−
∫
RW2|W1=0

p(x2|H0)dx2

]
= p(x1|H1)

p(x1|H0)
· Q(tW21

−s2)−Q(tW20
−s2)

Q(tW21
)−Q(tW20

)
.

(3.6)

When π0 = π1 = 0.5, it is proven in [32] that optimum fusion rule gives tW21 +tW20 = s2, thus

(3.6) is reduced to LW1(x1) = p(x1|H1)
p(x1|H0)

. Thus tW1 = s1/2, which corresponds to lone sensor 1

operating. When π0 6= π1, the decision rule of sensor 1 still depends on that of sensor 2.

For the conditionally independent sensor observation case considered in this Theorem

3, sensor 1 information is useful to sensor 2, however small the SNR of sensor 1 might be

(except the trivial case of sensor 1's SNR equal to zero). Hence, thresholds of sensor 2 will

be coupled with thresholds of sensor 1.
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APPENDIX D

D.1 Proof of Theorem 5 in Section 2.6.1: Optimum Sensor Rule of XORAP for Two-Sensor

Tandem Topology As r Approaches 1

Proof. This proof is provided using information from the proof in Appendix A.1.

Degenerate distributions: As shown below, a bivariate Gaussian distribution becomes

a degenerate distribution as r → 1 under both the hypotheses. Let ε = 1− r, then ε→ 0 as

r → 1. The joint probability density function (PDF) of bivariate Gaussian is given by

limr→1 p(x1, x2|H1) = limε→0 p(x1, x2|H1)

= limε→0
1

2π
√

1−(1−ε)2
· e−

(x1−s1)
2−2(1−ε)(x1−s1)(x2−s2)+(x2−s2)

2

2[1−(1−ε)2]

∼ 1√
2π
√

2ε
e−

[(x1−s1)−(x2−s2)]
2

4ε · 1√
2π
e−

2ε(x1−s1)(x2−s2)
4ε

∼ δ(x1 − (x2 + s1 − s2)) · 1√
2π
e−

(x2−s2)
2

2

∼ δ(x1 − (x2 + s1 − s2)) · p(x2|H1),

(4.1)

where p(x2|H1) is the marginal PDF of sensor 2 under H1. Similarly, under H0,

lim
r→1

p(x1, x2|H0) ∼ δ(x1 − x2) · p(x2|H0). (4.2)

Therefore, the joint pdf p(x1, x2) is degenerate with support x1 = x2 + s1− s2 under H1 and

x1 = x2 under H0.

Proceed by showing that the XORAP rule is the unique solution satisfying both

(2.22) and (2.23) when r → 1, and then showing that this solution also satis�es (2.24) when

r → 1, which hence establishes the optimality of the XORAP rule in the two-sensor tandem

topology.
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First, by applying (4.1) and (4.2) to (2.22) and (2.23), we have

L1(x2) =
p(x2|H1)

p(x2|H0)
·

∫
RW1

δ
(
x1 − (x2 + s1 − s2)

)
dx1∫

RW1
δ(x1 − x2)dx1

, (4.3)

and

L0(x2) =
p(x2|H1)

p(x2|H0)
·

∫
RW1

δ
(
x1 − (x2 + s1 − s2)

)
dx1∫

RW1
δ(x1 − x2)dx1

. (4.4)

Decision W2 is arrived at by examining L1(x2) in (4.3) and L0(x2) in (4.4), as long as

they are not indeterminate. We consider W1 = 1 and W1 = 0 within each of the following

four cases.

1. x2 + s1 − s2 ∈ RW1 and x2 ∈ RW1

WhenW1 = 0, due to
∫
RW1

δ
(
x1−(x2 +s1−s2)

)
dx1 =

∫
RW1

δ(x1−x2)dx1 = 0, L0(x2) is

indeterminate and after multiplying both sides with the denominator of the left-hand

side of (2.22), it shows that W2 can be either a `1' or a `0', without a�ecting the Bayes

error.

When W1 = 1,

L1(x2) = e−
s22
2 · es2x2 · 1

W2=1

≷
W2=0

η. (4.5)

2. x2 + s1 − s2 ∈ RW1 and x2 /∈ RW1

When W1 = 1, L1(x2) =∞⇒ W2 = 1, and when W1 = 0, L0(x2) = 0⇒ W2 = 0.

3. x2 + s1 − s2 /∈ RW1 and x2 ∈ RW1

When W1 = 1, L1(x2) = 0⇒ W2 = 0, and when W1 = 0, L0(x2) =∞⇒ W2 = 1.

4. x2 + s1 − s2 /∈ RW1 and x2 /∈ RW1

When W1 = 1, since
∫
RW1

δ
(
x1− (x2 + s1− s2)

)
dx1 =

∫
RW1

δ(x1−x2)dx1 = 0, L1(x2) is

indeterminate and after multiplying both sides with the denominator of the left-hand

side of (2.23), it shows that W2 can be either a `1' or a `0', without a�ecting the Bayes

95



error. When W1 = 0,

L0(x2) = e−
s22
2 · es2x2 · 1

W2=1

≷
W2=0

η. (4.6)

In case 1), W2 = 1 only when L1(x2) ≥ η, with x2 satisfying condition 1). Hence,

such a decision in this case will not lead to the zero probability of error, as r → 1. Contrast

this with the XORAP rule, which has zero probability of error as r → 1 (see section II and

[11] when r = 1). Hence, case 1) x2 + s1− s2 ∈ RW1 and x2 ∈ RW1 cannot be in the optimal

rule as r → 1.

Similarly in case 4), W2 = 1 only when L0(x2) ≥ η, with x2 satisfying condition 4).

Hence, such a decision in this case will not lead to the zero probability of error, as r → 1.

Contrast this with the XORAP rule, which will have zero probability of error as r → 1.

Hence, the case 4) x2 + s1− s2 /∈ RW1 and x2 /∈ RW1 cannot be in the optimal rule as r → 1.

Therefore, the optimal decision rule of sensor 1 will not encounter the cases of (x2 +

s2 − s1 ∈ RW1 , x2 ∈ RW1) and (x2 + s2 − s1 ∈ RW1 , x2 ∈ RW1). Since x2 is an arbitrary real

number, both x2 + s2 − s1 and x2 cannot simultaneously fall in RW1 or simultaneously fall

in RW1 . This tells us that the optimum partition of X1 to obtain RW1 and RW1 has to be

alternating segments of length |s1 − s2| as shown in Fig. 2.16.

Since only either x2 + s1 − s2 or x2 can be in any particular interval, let us focus on

where x2 falls in the partition in Fig. 2.16. Consider the case W1 = 1, if x2 ∈ RW1 (i.e., x2

falls in decision region `1'), from case 3), W2 = 0 due to L1(x2) = 0; if x2 ∈ RW1 , from case

2), W2 = 1 due to L1(x2) =∞. As a result,

W2 = (W1 = 1)⊕ I(x2 ∈ RW1). (4.7)

Now consider the case W1 = 0, if x2 ∈ RW1 from case 2), W2 = 0 due to L0(x2) = 0;

if x2 ∈ RW1 , from case 3), W2 = 1 due to L0(x2) =∞. As a result,

W2 = (W1 = 0)⊕ I(x2 ∈ RW1). (4.8)
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Therefore, according to (4.7) and (4.8), decisionW2 can be expressed as the Exclusive-

OR (XOR) rule between W1 and the condition of x2 ∈ RW1 , i.e., W2 = W1 ⊕ I(x2 ∈ RW1).

Next, XOR rule with alternating partition is shown to satis�es the other coupling

condition (2.24). Applying the degenerate distributions to (2.24), we obtain

RW1 =
{
x1 :

[ ∫
RW2|W1=1

δ(x2 − (x1 + s2 − s1))dx2 −
∫
RW2|W1=0

δ(x2 − (x1 + s2 − s1))dx2

]
>

π0
π1

p(x1|H0)
p(x1|H1)

[ ∫
RW2|W1=1

δ(x2 − x1)dx2 −
∫
RW2|W1=0

δ(x2 − x1)dx2

]}
.

(4.9)

Now, starting from the XOR rule with alternating partition obtained in the above

equations (4.7) and (4.8), and noticing that RW2|W1=1 = RW1 and RW2|W1=0 = RW1 , it is

easy to see that the XORAP rule satis�es the inequality in (4.9). In other words, the W1

partition of X1 by applying (2.24) to the original partition and XOR rule that are obtained

from (2.22), (2.23), results in no change to the original XORAP partition. Hence, identical

XORAP partition for W1 and W2 satisfy the coupled necessary conditions for the optimality

of tandem system, which closes the loop and asserts the global optimality of the rule when

r → 1.
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APPENDIX E

E.1 Proof of The Statement: P2 Decreases to Zero Exponentially Fast and Can Be Ne-

glected Compared to 1− P1

Proof. Consider the term P2 =
∑∞

i=−∞
∑∞

k=1 Sik, where Sik =
∫ (i+1)D

iD

∫ (i+1)D±k(2D)

iD±k(2D)
f(x, y; r)dxdy.

Since f(x, y; r) = f(x)f(y|x; r), where f(x) ∼ Gaussian(0, 1),

f(y | x; r) ∼ Gaussian(rx, (1− r2)),

Sik =

∫ (i+1)D

iD

g(x)

[
Φ

(
(i+ 1)D ± k (2D)− rx√

1− r2

)
− Φ

(
iD ± k (2D)− rx√

1− r2

)]
dx,

where Φ(·) is the CDF of standard Gaussian random variable and g(·) is the standard

Gaussian density. Without loss of generality, consider +k(2D) in the above integral. A

similar analysis for −k(2D) leads to the same conclusion.

As r → 1,

Sik =

∫ (i+1)D

iD

g(x)

[
Q

(
(i+ 2k)D − x√

1− r2

)
−Q

(
(i+ 2k)D +D − x√

1− r2

)]
dx.

Let z = x− iD, t = 2kD−z√
1−r2 . Observe that k = 1, 2, . . . ,

lim
r→1

Sik =

∫ D

0

g (z + iD) ·
[
Q (t)−Q

(
t+

D√
1− r2

)]
dz. (5.1)

As r → 1, t → ∞, both Q(·) terms above go towards 0. Using the asymptotic

expansion of Q(·) function, we get the di�erence of two Q(·) terms as

lim
t→∞

1

t
√

2π
e
−t2
2 − 1

√
2π
(
t+ D√

1−r2

)e− 1
2

(
t+ D√

1−r2

)2

= lim
t→∞

1

t
√

2π
e−

t2

2 .

98



Also, g(z + iD) ≤ g(iD), 1
2kD−z ≤

1
2kD−D . Hence,

lim
r→1

Sik ≤
g(iD)√

2π ((2k − 1)D)

√
1− r2 ·

∫ D

0

e
− (2kD−z)2

2(1−r2) dz. (5.2)

Since
∫ D

0
e
− (2kD−z)2

2(1−r2) dz < De
− [(2k−1)D]2

2(1−r2) ,

lim
r→1

Sik ≤ g(iD)

√
1− r2

√
2π(2k − 1)

e
− ((2k−1)D)2

2(1−r2) . (5.3)

Consider T ∗ ,
∑∞

k=1

√
1−r2√

2π(2k−1)
e
− ((2k−1)D)2

2(1−r2) . T ∗ is independent of i and the exponential term

goes to zero as r → 1. Hence, T ∗ goes to zero exponentially. Therefore,

lim
r→1

P2 ≤
∞∑

i=−∞

g(iD)T ∗ =

(
1 +

2√
2π

(e−
D2

2 + e−
4D2

2 + ..)

)
T ∗. (5.4)

goes to zero exponentially fast.
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