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Foreword

Modern wireless systems include key technologies such as multi-user diversity, adaptive
transmission, multiple-input multiple-output (MIMO) processing and cooperative data

communication networks. Common for all these technologies is that the feedback of chan-
nel state information (CSI) is necessary, as it is exploited for adapting the transmission

parameters, scheduling, etc.

The CSI is normally obtained by direct estimation of the channel coefficients at the
receiver and somehow informing the transmitter about the obtained complex fading coef-

ficients. The more information available at the transmitter, the better performance can be
achieved. However, depending on the channel characteristics, number of transmit/receive

antennas, etc., the rate of the feedback information may be so high that it will consume
much of the capacity in the reverse link, making the whole system impractical. Therefore,

it has often been questioned whether the improved system performance due to CSI feed-
back is worth the additional feedback rate and the increased implementation complexity.

Thus, different CSI feedback compression techniques have been of interest during the last
two decades.

In the thesis, we consider two different approaches, namely, quantized CSI feedback

and automatic repeat request (ARQ), providing the imperfect channel quality information

at the transmitter. Implementing a quantized CSI feedback scheme, the receiver provides
the transmitter with some rough measure of the channel gain before transmission, and the

transmitter adjusts its transmission parameters according to this imperfect information.
Rough CSI is normally produced by channel gain quantization at the receiver where the

set of all possible channel gains is partitioned into a number of non-overlapping regions.
The instantaneous channel gain being in a region, its representing symbol is sent back

and the transmitter selects the codewords transmission parameters such that the system
performance is optimized.

The ARQ, on the other hand, is a well-known approach applied in today’s networks

to increase the transmission reliability in the absence of the transmitter CSI. From an
information-theoretic point of view, the ARQ systems can be viewed as channels with

sequential feedback where the transmitter CSI is refined in the retransmissions based on
the message decoding status. In a general ARQ approach, the transmitter considers some

initial transmission rate and power with no pre-knowledge about the channel quality.
Then, with the help of ARQ, the decoding status at the receiver will be reported back to

the transmitter via one bit feedback. Based on the received feedback, it is decided by the
transmitter whether to retransmit the same (or an auxiliary) data or to move on to the
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next codeword.

In this perspective, this thesis attempts to study the effect of partial CSI feedback on
the performance of different communication networks. To be specific, the thesis investi-

gates the following issues:

• How the partial CSI feedback schemes affect the performance of the wireless net-

works,

• How we can improve the data transmission efficiency of the communication networks

via combination of different CSI feedback approaches,

• The effect of different quality-of-service requirements, e.g., the outage probability

or the other users’ received interference power, on the performance of the commu-
nication setups utilizing partial CSI feedback,

• The effect of power allocation on the performance of the communication systems in

different fading conditions.

The results are obtained under block-fading forward channel condition. Moreover,

different metrics such as the long-term throughput, the outage probability, the feedback
load, the expected delay and the average rate are considered as the performance yard-

stick, and the results are obtained for different peak and average data transmission power
constraints and/or with the other users’ received interference constraints.

Keywords: Channel state information, CSI quantization, Hybrid automatic repeat re-

quest (HARQ), Adaptive power allocation, Green communication, Outage probability,
Long-term throughput, Feedback compression, Bursty communication, Continuous com-

munication, Correlated fading channels, Block-fading channels
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Chapter 1
Introduction

1.1 Communication systems overview

A simplified model of a communication system can be illustrated as in Fig. 1.1. The

goal is to send a message from a transmitter to a receiver over a communication channel.
The channel is normally represented by Pr(y|x), i.e., a conditional probability density

of the output y given the input x. The channel represents the randomness added to

the transmitted signals, which may come from interference, thermal noise, the physical
medium, etc.

At the transmitter, an integer message m, taking values on the set {1, . . . , 2RL}, is
mapped into a sequence of symbols of length L and is sent to the receiver (encoding). This

sequence is denoted a codeword of length L channel uses (cu) and the set of all possible 2RL

codewords is called a codebook. The codebook is known by both the transmitter and the

receiver. At the receiver, the sequence y is received and the decoder attempts to detect

the transmitted message based on the received sequence (decoding). The result is the
decoded message m̂ ∈ {1, . . . , 2RL}, as shown in Fig. 1.1. In this way, the communication

system attempts to use L channel uses to convey RL bits of information. Thus, the rate
of the data is said to be R bits per channel use (bpcu).

In general, the objective is to increase the data rate as much as possible and, at the
same time, keep the error probability Pr(m 6= m̂, ∀m) as low as possible. The optimization

is normally carried out under some physical cost function associated with the codewords

such as average or peak transmission power constraints.

Encoder
Channel

Pr(y|x)
Decoder

m x y m̂

Figure 1.1: A simple illustration of a communication system.
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4 Introduction

1.2 Block-fading channels

According to the broad literature of wireless communications and the recent standard

models, there are many examples of practical communications taking place across block-
fading channels. This channel model implies that the fading coefficient between the trans-

mitter and the receiver remains constant over the duration of several symbol transmissions
and then it changes according to the fading probability density function (pdf). This time

duration is normally called channel coherence time , Lc, and every occurrence of the fading
channel is denoted a fading block.

In this way, considering a single-user single-antenna setup, the signal received at the
m-th time slot is obtained by

Ym[i] =
√

TmhmXm[i] + Zm[i], i = 1, . . . , L. (1.1)

Here, L ≤ Lc is the length of the codeword, Xm[i], i = 1, . . . , L, 1
L

∑L
i=1 |Xm[i]|2 = 1, is

the power-limited transmission codeword and hm is the fading coefficient. Also, Zm[i] ∼
CN (0, 1) denotes an independent and identically distributed (i.i.d.) complex Gaussian
noise added at the receiver and Tm is the transmission power that, because the noise

variance is set to 1, represents the transmission signal-to-noise ratio (SNR) as well (in
dB, the SNR is given by 10 log10(Tm)). Finally, we define gm = |hm|2 as the channel gain

random variable which follows the pdf fG(g).
The block-fading model is an appropriate model for slowly varying channels, which is

common in many practical wireless communication setups. For instance, the block-fading
channel is a suitable model for orthogonal frequency-division multiplexing (OFDM) trans-

mission over slowly-varying channels. This is interesting when we remember that OFDM
is currently employed as one of the core technologies in many wireless communication

standards, such as IEEE 802.11 wireless local area network (WLAN) [1], IEEE 802.16
worldwide interoperability for microwave access (WIMAX) [2] and the digital audio/video

broadcasting (DAB/DVB) systems [3, 4]. Also, it is well agreed that, with some opti-
mistic assumptions, the OFDM can often be applied to convert a frequency-selective

channel into a set of parallel block-fading channels [5]. Moreover, as demonstrated in,

e.g., [6, 7], frequency hopping techniques, as encountered in the global system for mo-
bile communications (GSM) and the enhanced data GSM environment (EDGE), can be

also modeled as a block-fading channel. Finally, for further discussions about the fading
channel models, the readers are referred to, e.g., [8, 9, 10, 11], which present remarkable

equivalences between the block-fading and continuous-fading models, when the Doppler
spectrum of the continuous-fading model is bandlimited.

For delay-insensitive applications, the receiver can wait for an unlimited amount of
time before decoding the message. Thus, a codeword can be assumed to span an infinite

number of fading blocks, and exploit a significant amount of time diversity. This setup
is normally referred to as an ergodic channel in the literature [5]. On the other hand, for

delay-sensitive applications such as real-time voice and video transmission, a codeword
can only span a finite, typically small, number of fading blocks. The length of each fading

block, where the channel gain remains constant, is normally large enough to allow infor-
mation theoretic bounds to kick in and average out the effect of the noise. Hence, studying
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the system behavior in the limit of long block length still makes sense. Throughout the

thesis, we study the delay-sensitive applications with codewords spanning a finite number
of blocks. More specifically, three different scenarios are studied as demonstrated in Fig.

1.2:

• Long-Lc scenario: In this case, the length of the blocks, Lc, is assumed to be so long

that many codewords are transmitted in a single fading block. That is, the channel
is supposed to remain fixed during the transmission period of many codewords and

then change according to the fading pdf. This is an appropriate model for networks

with stationary or slow-moving users [12, 13, 14, 15, 16] and we often refer to this
fading model as quasi-static.

• Short-Lc scenario: Here, the codewords lengths are considered to be the same as
the fading block length Lc such that the channel changes after each codeword trans-

mission. The results of this part are useful for modeling users with medium/fast
speeds and for the frequency hopping techniques [17, 18, 19, 20, 21, 22]. We denote

the channel model corresponding to the short-Lc scenario by slow-fading.

• Very short-Lc scenario: For fast-moving users or users with long codewords com-
pared to the channel coherence time, the channel may change during each codeword

transmission. For instance, the indoor ultra wideband (UWB) channels normally
vary smoothly during a codeword transmission [23, 24]. On the other hand, modern

codes often use very long codewords, which may exceed the channel coherence time

[14, 25, 26]. In these cases, a finite number of fading realizations may be experi-
enced during a codeword transmission. The fading model associated with the very

short-Lc scenario is denoted fast-fading throughout the thesis.

For the analytical analysis, the channel variations between the successive blocks are nor-

mally supposed to occur independently, i.e., the fading realizations are assumed to be
temporally-independent. In this chapter, the results are obtained for the temporally-

independent block-fading channels. Extension of the results to the temporally-correlated

block-fading channels can be found in paper B, which is appended to the thesis, as well
as in the related reports by us and others, e.g., [27, 28, 29, 30, 31, 32, 33, 34].

1.3 Channel state information

Due to the channel block-fading behavior, channel state estimation at the receiver is

relatively simple and incurs negligible loss in the transmission rate [5, 6, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 25, 26, 35]. A communication scheme that only relies on the channel

state information at the receiver (CSIR) is normally called an open-loop communication
system, as it only supports the forward link transmission1.

1Since there is no instantaneous information available at the transmitter, we denote this scheme no

knowledge case.



6 Introduction

Time (in channel uses)
0 Lc 2Lc

g

Gain realizations in Long-Lc
scenario (quasi-static channels)

...

...

Codewords

Time (in channel uses)
0 3Lc 6Lc

g

...

...

2Lc 5Lc4LcLc

Time (in channel uses)
0 6Lc 12Lc

g

...

...

4Lc 10Lc8Lc2Lc 11Lc9Lc7Lc5Lc3LcLc

Gain realizations in short-Lc
scenario (slow-fading channels)

Gain realizations in very short-Lc
scenario (fast-fading channels)

Figure 1.2: An illustration of different fading models considered throughout the thesis.

+×X Y

H Z

(a): Open-loop communication

+×X Y

H Z

FB

(b): Closed-loop communication

Figure 1.3: (a): Open-loop communication, (b): closed-loop communication setup. The
box FB represents the feedback process at the receiver.
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On the other hand, as shown in, e.g., [5, 6, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

25, 26, 35]2, having channel state information at the transmitter (CSIT), it is possible to
improve the data transmission efficiency via updating the transmission parameters relative

to the channel quality. Such a data transmission approach that, along with the CSIR,
exploits the CSIT is named as a closed-loop communication system. Performance of the

closed-loop systems depends on the mechanism conveying the channel state information
(CSI) from the receiver to the transmitter3. Therefore, as illustrated in Fig. 1.3, a closed-

loop model requires to establish a backward communication link providing the partial CSI
at the transmitter. The more the CSIT is, the better system performance is achieved,

because the communication parameters can be adapted based on the channel condition.
Therefore, it is desired to provide the transmitter with as much as possible CSI, which

in the asymptotic case leads to perfect CSIT. However, due to, e.g., limited feedback
resources, implementation complexity/delay and the other users’ interference constraints,

it is practically difficult to provide the full CSIT. Thus, the communication setups are
designed based on partial CSIT, where only a rough representation of the CSI is fed

back to the transmitter. Along with interference-avoiding signals, which only indicate the

presence of the other users [36, 37, 38], there are two main approaches to provide the
partial CSI at the transmitter:

• Quantized CSI: Implementing a quantized CSI feedback scheme, the receiver pro-
vides the transmitter with some rough measure of the channel gain before transmis-

sion, and the transmitter adjusts its rate, power, etc. according to this imperfect
information [22, 27, 28, 29, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,

55, 56, 57, 58, 59]. Rough CSI is normally produced by channel gain quantization at

the receiver where the set of all possible channel gains is partitioned into a number of
non-overlapping regions. The instantaneous channel gain being in a region, its rep-

resenting symbol is sent back and the transmitter selects the codewords transmission
parameters such that the system total performance is optimized. Quantized CSI is

often referred to as one-shot feedback approach, as the whole partial CSI is delivered
to the transmitter in one slot. In this way, the energy compression techniques which

use, e.g., discrete cosine transform (DCT) and quantization for feedback compres-
sion in the frequency-domain of OFDM systems [27, 39, 60, 61, 62, 63, 64, 65] can

be considered as a type of CSI quantization models.

• Automatic repeat request (ARQ): ARQ is a well-established approach aiming to-
wards high throughput reliable wireless communication [12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94]. Utilizing both forward error correction and

error detection, ARQ techniques reduce the data outage probability and/or increase

2Due to the large number of papers dealing with partial CSI, it is not possible to mention all related
works here. We apologize to the authors whose papers we have not included in our list and refer the
readers to the references in the cited works.

3Throughout the thesis, we consider the frequency division duplexing (FDD) systems where the chan-
nel correlation between the forward and backward links is negligible.
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the throughput by retransmitting the data which has experienced bad channel con-

ditions; using ARQ, the transmitter considers some initial transmission rate and
power with no pre-knowledge about the channel quality. Then, with the help of

ARQ, the decoding status at the receiver will be reported back to the transmitter
via acknowledgement/non-acknowledgement (ACK/NACK) feedback bits. Based

on the received feedback, it is decided by the transmitter whether to retransmit the
same (or an auxiliary) data or to move on to the next codeword. Thus, the ARQ is

a sequential feedback approach as the transmitter gets a finer and finer knowledge
of the channel in the successive time slots. ARQ is a technique already provided in

many wireless protocols, e.g., IEEE 802.11n [95] and IEEE 802.16e [96].

The quantized CSI and the ARQ schemes are discussed in the following. Also, it is

interesting to note that, as seen in the sequel, these two methods can be merged together
providing a unique channel quality information feedback technique [17, 97]. Finally, as all

results are obtained under the assumption of perfect receiver channel quality information,
in the following, the abbreviation CSI is only used for the transmitter channel state

information.

1.4 Quantized CSI feedback

In this section, we present the basics for studying the performance of communication

setups utilizing quantized CSI. Among our own works, [30, 49, 50, 60, 98, 99, 100, 101,
102, 103] deal with different aspects of the CSI quantization; the details are presented in

Section 1.7.

Implementing a quantized CSI feedback approach with N quantization regions, a
deterministic mapping function (quantizer)

C(g) = n, if g ∈ An = [g̃n−1, g̃n), n = 1, . . . , N, g̃0 = 0, g̃N = ∞ (1.2)

is implemented by the receiver which partitions the nonnegative real line into N non-
overlapping quantization regions An with quantization boundaries g̃n, n = 0, . . . , N .

Then, if the channel realization falls into the n-th quantization region, i.e., g ∈ An =
[g̃n−1, g̃n), the quantization index n is sent back to the transmitter, where the transmis-

sion rate and power are selected based on the received CSI. Note that the transmitter has
no CSI except the region in which the channel gain falls. Also, the feedback rate is given

by log2N bit-per-slot (bps). Finally, denoting the gain cumulative distribution function

(cdf) by FG(g), we define pn = Pr(g ∈ An) =
∫ g̃n

g̃n−1
fG(g)dg = FG(g̃n)− FG(g̃n−1) as the

probability of the gain belonging to An.

Given that the gain realization falls in the n-th quantization region An, defined in

(1.2), the data is transmitted with rate Rn = log(1+ g∗nTn) nats-per-channel-use (npcu)
4.

4As mentioned before, the results are given for sufficiently long codewords where the maximum achiev-
able rate is given by log(1 + x) with x representing the received SNR. A nat is a unit of information,
based on the natural logarithm [13, 14, 97, 104]. The results are presented in natural logarithm basis,
while they can be mapped to the bit unit if the logarithmic terms are presented in base 2.
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Here, g∗n is an auxiliary variable, one-to-one related with rate Rn, which simplifies the

equations (Thus, we may use Rn and g∗n interchangeably in the following discussions).
These parameters can be interpreted as fixed values estimated by the transmitter if g ∈
An. Note that, as the gain realization is in the region An = [g̃n−1, g̃n), the optimal value
of the auxiliary variable g∗n must be within this region as well, i.e., g∗n ∈ An. Finally, Tn
is the power considered for the case with g ∈ An.

If the gain instantaneous realization supports the rate, i.e., g ≥ g∗n, the data is success-

fully decoded, otherwise outage occurs. Therefore, the probability of successful decoding
in each region is

dn = Pr (Successful decoding|g ∈ An) =
FG(g̃n)− FG(g

∗
n)

pn
, (1.3)

and the channel average rate [12, 13, 22], also called the expected rate, is obtained by5

R̂QCSI =

N
∑

n=1

pndnRn =

N
∑

n=1

(FG(g̃n)− FG(g
∗
n)) log(1 + g∗nTn), (1.4)

which is the expectation of the achievable rates for different channel conditions. Moreover,

the outage probability is found as

Pr(Outage)QCSI =

N
∑

n=1

pn (1− dn) =

N
∑

n=1

(

FG(g
∗
n)− FG(g̃n−1)

)

. (1.5)

Finally, the average transmission power is simply found as

Φ̂QCSI =

N
∑

n=1

pnTn. (1.6)

In this perspective, considering T as the transmission power constraint, the power-
limited average rate optimization problem can be stated as

R̂QCSI,max = max
∀g∗n,g̃n,Tn

∑N
n=1

(

FG(g̃n)− FG(g
∗
n)
)

log(1 + g∗nTn)

s.t.
∑N

n=1 pnTn ≤ T,
(1.7)

which, based on the power allocation strategy and the fading distribution, can be solved
numerically or analytically.

Considering the power-limited average rate maximization, the same procedure as in

[13, 22] can be used to show that in the optimal case we have g∗n = g̃n−1, n > 1. This
optimality condition, which is independent of the power allocation strategy, is demon-

strated in Fig. 1.4 more clearly. This is an intuitive result, meaning that to maximize the
average rate in power-limited communication setups utilizing quantized CSI feedback, in

each quantization region except the first one, the rate is chosen equal to its worst case,
corresponding to the lowest gain in the region. In this way, the outage occurs if and only

if (iff) g < g∗1 (please see Fig. 1.4). Thus, the outage probability is obtained by

5For more detailed definition of performance metrics, please see Section 1.6.
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Figure 1.4: (a): Non-optimal and (b): optimal reconstruction points g∗
n
, n = 1, . . . , N, in

the quantized CSI-based approach.

Pr(Outage)QCSI = FG(g
∗
1), (1.8)

and the average rate is found as

R̂QCSI =

N
∑

n=1

βn log(1 + g∗nTn), (1.9)

where βn = FG(g
∗
n+1)− FG(g

∗
n). Note that βn = pn, n 6= 1 (please see Fig. 1.4 as well).

In this way, the power-limited average rate maximization problem (1.7) is rephrased as

R̂QCSI,max = max
∀g∗n,Tn

∑N
n=1 βn log(1 + g∗nTn),

s.t.
∑N

n=1 pnTn ≤ T.
(1.10)

Transmission power constraints: Based on the transmitter power adaptation capa-
bilities, there may be different power constraints; due to, e.g., hardware or complexity

limitations, there are cases where, independently of the feedback index, the power al-
located to each codeword can not exceed a maximum value T . In this case, as the

achievable rate of AWGN channels is an increasing function of the SNR [13, 14, 17, 22,
51, 56, 57, 85, 86, 105, 106], the optimal powers maximizing the average rate are obtained
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by Tn = T, ∀n. This constraint is normally called short-term, uniform or peak power

allocation [13, 14, 17, 22, 51, 56, 57, 85, 86].

Under the more relaxed long-term, also called adaptive, power allocation, the trans-
mitter can adapt the power based on the channel conditions such that Φ̂ ≤ T . In this

case, the optimal powers maximizing the average rate can be found based on (1.10) and

a Lagrange multiplier function Ω = R̂QCSI−λΦ̂QCSI leading to the following water-filling
[104, chapter 9.4] equation

∂Ω

∂Tn
= 0 ⇒ Tn =

⌈

βn

λpn
−

1

g∗n

⌉+

. (1.11)

Here, λ is the Lagrange multiplier satisfying Φ̂QCSI = T constraint and ⌈x⌉+
.
= max(0, x).

Intuitively, using long-term power allocation the power is not wasted on weak channel

realizations and the saved power is spent on strong gain realizations. Therefore, it is
obvious that, in comparison to the short-term power allocation, the long-term power

allocation results in higher average rates. However, as noticed in many reports, the

average rate increment is insignificant particularly at high SNRs.

1.4.1 Two extreme cases

It is interesting to determine the results under the two extreme conditions of full and no

transmitter CSI. Having full knowledge, i.e., letting N → ∞, (1.9) is rephrased as

R̂∞ =

∫ ∞

0

fG(g) log
(

1 + gT (g)
)

dg, (1.12)

where T (g) is the power allocation function optimally determined based on the power

constraint. For the short-term power constraint we have

R̂∞ =

∫ ∞

0

fG(g) log (1 + gT ) dg, (1.13)

which has the same value as the channel capacity with perfect CSI at both communication
sides and fixed transmission power.

Under the long-term power constraint, on the other hand, (1.9) is simplified to

R̂∞ =

∫ ∞

λ

log(
g

λ
)fG(g)dg (1.14)

where 1
λ is the water level satisfying

∫∞

λ
( 1λ − 1

g )fG(g)dg = T . Finally, note that under the

full knowledge assumption and with transmission rates limited to the maximum achiev-
able rates, the transmitted codewords are always decoded successfully and the outage

probability tends to zero.

On the other hand, with no information about the channel realization g, it is selected
as some fixed value g∗ and data transmission is done at rate R = log(1 + g∗T ). The data
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is successfully decoded iff g ≥ g∗. Consequently, the maximum power-limited average

rate is obtained by

R̂No,max = max
g∗≥0

{(

1− FG(g
∗)

)

log(1 + g∗T )

}

(1.15)

which can be solved numerically or analytically. For instance, consider Rayleigh fading

conditions where the fading coefficient follows h ∼ CN (0, 1µ) and, as a result, we have

fG(g) = µ−µg, g ≥ 0. In this case, the maximum average rate is found as

R̂No = Λ(
T

µ
)e−µ e

Λ( Tµ )
−1

T , (1.16)

in which Λ(.) is the Lambert W function defined as the solution to xex = y [14]. Also,

since the data is lost if the instantaneous channel realization is less than the considered
fixed value g∗, the outage probability under no knowledge assumption is

Pr(Outage)No = FG(g
∗) = 1− e−µg∗ , (1.17)

where the last equality is for the Rayleigh fading channels. Finally, note that, considering
fG(g) = µ−µg, g ≥ 0, (1.13) is rephrased as

R̂∞ =

∫ ∞

0

µe−µx log(1 + Tx)dx = −e
µ

T Ei(−
µ

T
),

with Ei(x) = −
∫∞

−x
e−t

t dt being the exponential integral function.

In order to study the average rate optimization problem in more detail, the readers
are referred to [22], where the Karush-Kuhn-Tucker (KKT) condition is derived. Fig. 1.5

compares the performance of the quantized CSI techniques with the ones in the cases uti-
lizing full and no CSI feedback. As demonstrated in the figure, considerable performance

improvement can be achieved even with feedback rates as low as 1 bps. Also, in harmony

with the literature, adaptive power allocation improves the data transmission efficiency
at low SNRs.

1.4.2 Discussions

To close the section, it is interesting to explain some of the possible extensions of the
quantized CSI approach as follows.

Multi-layer transmission approach: Multi-layer transmission (MLT) is a well-known

approach to increase the throughput in the presence or absence of quantized CSI feedback
[14, 22, 107, 108, 109]. The main idea behind the MLT is to adopt the multi-user broadcast

superposition code in single-user channels. Let K be the number of transmission layers.
The channel quantization is done in the same way as described before. The difference

with the single-layer transmission (SLT) approach is that, instead of considering a single
g∗n, K fixed values g∗n(k), k = 1, . . . , K, are considered where g∗n(k − 1) ≤ g∗n(k). In this
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Figure 1.5: Average rate vs the transmission SNR with different amount of CSI available
at the transmitter, Rayleigh fading channel, µ = 1.

way, receiving the quantization region n, the data is transmitted via superposition of K
codewords with powers Tn(k) and rates

Rn(k) = log

(

1 +
g∗n(k)Tn(k)

1 + g∗n(k)
∑K

j=k+1 Tn(j)

)

, k = 1, . . . , K. (1.18)

At the receiver, the data is decoded using a successive decoding procedure where, decoding
the k-th layer, all undecoded layers j = k+1, . . . , K, are added to the noise floor. Hence,

the code of the k-th layer is successfully decoded and subtracted from the provided signal
if g ≥ g∗n(k). Otherwise, the decoder gives up declaring an outage. Thus, the average rate

and the transmission power are obtained as

R̂MLT =

N
∑

n=1

K
∑

k=1

Rn(k) Pr
(

g ≥ g∗n(k) & g ∈ An

)

(1.19)

and Φ̂MLT =
∑N

n=1

∑K
k=1 pnTn(k), respectively, which change (1.10) correspondingly.

Theoretically, MLT outperforms the SLT in terms of average rate, particularly for

low feedback rates [14, 22, 107, 108, 109]. In practice, however, MLT suffers from error
propagation problems; depending on the gain realization, it may happen that only some

part of the data can be decoded at the receivers which leads to extra complications in
the upper layers in the network hierarchy (In these applications, ARQ schemes can be

combined with MLT). Further, MLT is not tolerable in all applications but only in suc-
cessive refinement systems that produce a coarse version of the information and gradually

improve it as more information is received. Also, although the average rate increases by
increasing the number of layers, the increment is negligible for many fading pdfs [14]. This

is specifically because of the self-interference created in the codewords where decoding a
layer all undecoded layers play the role of additive interference.
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On the effect of an unreliable feedback link: Throughout the section, we supposed the

feedback signals to be received by the transmitter error-free. However, in wireless networks
the feedback signals reach the transmitter through a communication link experiencing

different levels of noise and fading. Hence, it is possible to receive erroneous signals at the
transmitter which, if not handled suitably, can degrade the system performance severely

and make it even worse than an open-loop system. Therefore, an interesting extension
of the quantized CSI schemes is to consider the effect of feedback channel properties and

study the system performance in the presence of erroneous feedback signals. This problem
has been studied by, e.g., [35, 41, 51, 57] and by us in [49].

Exploiting the temporal correlation: Considering the block-fading channel, the fading
coefficients are normally assumed to be random variables that remain constant over time

intervals of fixed duration and vary across successive blocks in an i.i.d. manner. This is
a useful model particularly for analytical performance analysis. For the limited-feedback

schemes, however, we can extend the fading model to the temporally-correlated block-

fading channels and exploit the channel temporal correlations for feedback compression
[27, 28, 29, 30, 31, 32, 33]. There are a number of methods, such as feedback subsam-

pling [26, 27] and time differential information [32, 33], to exploit the channel temporal
dependencies. Time differential information approach refers to the technique reporting

the difference between the partial CSI of successive blocks [32, 33]. Using feedback sub-
sampling, which is explicitly explained in paper B appended to the thesis, the CSI is fed

back in specific time slots and in the other blocks it is estimated via, e.g., minimum mean
square error (MMSE) estimators. Moreover, the channel temporal dependencies can be

utilized to dynamically adjust the quantization boundaries, e.g., [30], and study the effect
of delayed feedback on the system performance [26, 110, 111].

It is worth noting that there are different transform coding approaches for exploiting
frequency-domain correlations [27, 39, 60, 61, 62, 63, 64, 65]. These works, which are nor-

mally considered for the OFDM setups, compress the feedback signal by implementation
of different energy compression techniques such as the DCT.

The results of the section were presented for the single-user single-antenna channels.

However, there are many papers dealing with CSI quantization in the multiple-input and
multiple-output (MIMO)/network MIMO and cooperative communication setups, e.g.,

[28, 29, 58, 112, 113, 114]. In these works, the random vector quantization approach is
normally considered, the quantization error is modeled by an additive Gaussian noise and

the goal is to design, e.g., the beamforming scheme optimizing the system performance.

1.5 ARQ feedback

Along with the quantized CSI, automatic repeat request is one of the most well-known
limited-feedback approaches increasing the data transmission efficiency and reliability

[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86]. It is a technique already provided in most wireless protocols.

Therefore, it needs no additional closed-loop design which introduces it as a cost- and
complexity-efficient approach. There are different ARQ schemes such as stop-and-wait
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[115], go-back-N [116] or selective-repeat [117] developed by the researchers during the

last decades. The main idea of the ARQ approaches is to increase the transmission
reliability by correcting erroneous data misdecoded by the receiver. For this reason, a

code with good error-detecting capability is used by the transmitter and then waits for
an acknowledgement from the receiver. A positive acknowledgement from the receiver

indicates that the data has been successfully decoded. Therefore, the transmitter moves
into the next codeword. On the other hand, a negative acknowledgement from the receiver

signals that the received data has been decoded imperfectly and so it should be corrected
by the transmitter. Therefore, the same or a new auxiliary codeword is retransmitted

by the transmitter. Retransmissions continue until the data is correctly decoded or the
maximum allowable retransmission rounds are used.

Throughout the thesis, we concentrate on different ARQ protocols; as the discussions of

this chapter are presented for single-input and single-output (SISO) setups, we concentrate
on the following protocols:

• Basic ARQ: The transmitter keeps sending the same codeword and the receiver

attempts decoding by using only the most recently received codeword. This loop
continues until the ACK is declared by the receiver or the maximum retransmission

rounds are used.

• Repetition time diversity (RTD): The transmitter sends the same codeword and
the receiver performs maximum ratio combining of all the received codewords, thus

realizing repetition time diversity. This scheme, which belongs to the diversity
combining category of hybrid ARQ (HARQ) protocols, is also known as Chase

combining [118].

• Incremental redundancy (INR): The INR belongs to the category of code combining
protocols [12, 13, 14, 16, 17, 68, 74]. Here, a codeword is sent with an aggressive

rate in the first round. Then, if the receiver cannot decode the initial codeword,

further parity bits are sent in the next retransmission rounds, and in each round
the receiver tries to decode the data based on all received signals.

In paper F, we also discuss space-time code (STC)-based MIMO-ARQ schemes.

In the following, we review the basic concepts of the ARQ protocols. Here, we study
the problem of power-limited long-term throughput/outage probability optimization for

the quasi-static channels. Our own work on ARQ schemes is found in [25, 34, 85, 119,
120, 121, 122, 123], where we study the performance of the ARQ-based systems from

different perspectives. Moreover, in [12, 13, 26, 86, 97, 109, 124] we demonstrate different

comparisons or combinations of the quantized CSI and the ARQ protocols. More detailed
descriptions of our developed works are presented in Section 1.7.

Consider a maximum of M retransmission rounds, i.e., the data is (re)transmitted a
maximum of M + 1 rounds. Moreover, assume that Q information nats are transmitted

in each packet transmission where a packet is defined as the transmission of a codeword
along with all its possible retransmission rounds. If the data is successfully decoded at any
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(re)transmission round, all the Q nats are received by the receiver. Hence, the expected

number of received information nats is found as

E{Q(g)} = Q (1− Pr(Outage)) = Q
(

1− Pr(S̄1, . . . , S̄M+1)
)

(1.20)

where E{.} represents the expectation operator, Sm is the event that the data is correctly

decoded at the end of the m-th round (and not before) and V̄ denotes the complement of
the event V .

If the message is correctly decoded at the end of the m-th (re)transmission round
(and not before), the total number of channel uses is l(m) =

∑m
n=1 ln where ln denotes the

length of the codeword sent in the n-th (re)transmission round. Also, the total number of

channel uses is l(M+1) =
∑M+1

n=1 ln if an outage occurs, where all possible retransmissions
are used. Therefore, the expected number of channel uses within a packet transmission

period is

E{τ(g)} =

M+1
∑

m=1

(

m
∑

n=1

ln

)

Pr(Sm) +

(

M+1
∑

n=1

ln

)

Pr(S̄1, . . . , S̄M+1). (1.21)

In this way, from (1.20), (1.21) and as the equivalent data rate at the end of the m-th

(re)transmission round is

R(m) =
Q

∑m
n=1 ln

, R(0)
.
= ∞, (1.22)

the long-term throughput, i.e., the ratio of the successfully decoded information nats and

the expected channel uses [12, 13, 14, 17, 68, 125], is found as6

η̂ =
E{Q(g)}

E{τ(g)}
=

1− Pr(S̄1, . . . , S̄M+1)
∑M+1

m=1
Pr(Sm)
R(m)

+
Pr(S̄1,...,S̄M+1)

R(M+1)

. (1.23)

Provided that the data (re)transmission terminates at the end of the m-th round (and
not before), the total consumed energy is ξ(m) =

∑m
n=1 Tnln. Therefore, the expected

energy consumed within a packet transmission period is obtained by

E{ξ(g)} =
∑M+1

m=1

(
∑m

n=1 Tnln
)

Pr(Sm) +
(

∑M+1
n=1 lnTn

)

Pr(S̄1, . . . , S̄M+1)

(a)
= Q

∑M+1
m=1

(

∑m
n=1 Tn

(

1
R(n)

− 1
R(n−1)

))

Pr(Sm)

+Q

(

∑M+1
n=1 Tn

(

1
R(n)

− 1
R(n−1)

))

Pr(S̄1, . . . , S̄M+1),

(1.24)

where (a) is due to the fact that lm = Q
R(m)

− Q
R(m−1)

. Finally, from (1.21), (1.24), R(m) =

6For more detailed definition of long-term throughput and average power, please see Section 1.6.
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Q
∑m

n=1 ln
and some manipulations, the average transmission power is rephrased as

T̂ =
E{ξ(g)}

E{τ(g)}
=

M+1
∑

m=1

Tm

(

1
R(m)

− 1
R(m−1)

)

(

1−
m−1
∑

n=1

Pr(Sn)

)

M+1
∑

m=1

Pr(Sm)
R(m)

+
Pr(S̄1,...,S̄M+1)

R(M+1)

. (1.25)

Therefore, the power-limited long-term throughput optimization problem can be ex-
pressed as

η̂ARQ,max = max
∀Tm,R(m)

1− Pr(S̄1, . . . , S̄M+1)
∑M+1

m=1
Pr(Sm)
R(m)

+
Pr(S̄1,...,S̄M+1)

R(M+1)

(1.26)

s.t.

M+1
∑

m=1

Tm

(

1
R(m)

− 1
R(m−1)

)

(

1−
m−1
∑

n=1

Pr(Sn)

)

M+1
∑

m=1

Pr(Sm)
R(m)

+
Pr(S̄1,...,S̄M+1)

R(M+1)

≤ T, (1.27)

where T denotes the average power constraint.

Notice that with uniform power allocation, the power constraint (1.27) simplifies to
Tm = T ′ ≤ T . Then, as the achievable rate of the AWGN channel is an increasing function

of the transmission power [13, 14, 17, 22, 51, 56, 57, 85, 86, 105, 106], maximizing the
achievable rate implies Tm = T, ∀m. Also, it is interesting to note that up to now all

equations are general, in the sense that they are independent of the fading pdf and the
ARQ protocol. Finally, from (1.20)-(1.27) it follows that the only difference between

different ARQ protocols is in the probability terms Pr(Sm). Moreover, to find the power-
limited throughput of different ARQ protocols, it is only required to determine their

corresponding probability terms in (1.23) and (1.25).
Remark 1: For fixed-length coding ARQ schemes (where all (re)transmissions have

the same number of channel uses), the maximum power-limited long-term throughput is

obtained by

η̂fixed-length ARQ,max = max
∀Tm,R

R(1− Pr(S̄1, . . . , S̄M+1))
∑M+1

m=1 mPr(Sm) + (M + 1)Pr(S̄1, . . . , S̄M+1)
(1.28)

s.t.

M+1
∑

m=1

Tm

(

1−
∑m−1

n=1 Pr(Sn)
)

∑M+1
m=1 mPr(Sm) + (M + 1)Pr(S̄1, . . . , S̄M+1)

≤ T, (1.29)

where R = Q
L is the initial codeword rate and L is the length of the codewords. This is

because using lm = L, ∀m, we have R(m) =
Q
mL

= R
m

which rephrases (1.23) and (1.25)

as in (1.28) and (1.29), respectively.
Finally, note that to study the problem of power-limited outage probability minimiza-

tion it is only required to replace (1.28) with the outage probability. In the sequel, the
general equations (1.23) and (1.25) are specialized for different ARQ protocols.
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1.5.1 RTD protocols

Utilizing the RTD HARQ, the same codeword is scaled and (re)transmitted in each

(re)transmission round and the receiver performs maximum ratio combining of the re-
ceived signals. This process effectively increases the received SNR to g

∑m
n=1 Tn and

reduces the equivalent data rate to R(m) = R
m in the m-th round. Define J(m)

.
=

1
m log(1+ g

∑m
n=1 Tn) as the instantaneous mutual information and Υm

.
= {J(m) ≥ R(m)}

as the event that the instantaneous mutual information exceeds the equivalent data rate
at the m-th (re)transmission round. The data is successfully decoded at the m-th re-

transmission round (and not before) if 1) the receiver has not decoded the message in the
previous (re)transmissions, i.e., J(n) <

R
n
∀n < m, and 2) using the m-th retransmission

round it can decode the information, that is, J(m) ≥
R
m
. Then, as Υm ⊂ Υn, n ≤ m, we

have

Pr(Sm) = Pr(Ῡ1, . . . , Ῡm−1,Υm)

= Pr
(

log(1 + g
∑m−1

n=1 Tn) < R ≤ log(1 + g
∑m

n=1 Tn)
)

= FG(
eR−1

∑m−1
n=1 Tn

)− FG(
eR−1

∑m

n=1 Tn
),

Pr(S̄1, . . . , S̄M+1) = Pr
(

log(1 + g
∑M+1

n=1 Tn) < R

)

= FG(
eR−1

∑M+1
n=1 Tn

).

(1.30)

Note that in (1.30) we have used the fact that with an equivalent SNR x the max-

imum decodable data rate is 1
m log(1 + x) if a codeword is repeated m times. Also,

Pr(S̄1, . . . , S̄M+1) represents the outage probability, i.e., the probability that the data

is lost while all retransmission rounds have been used. Moreover, using uniform power
allocation Tm = T, ∀m, (1.30) is rephrased as

Pr(Sm) = FG(
eR−1

(m−1)T
)− FG(

eR−1
mT

),

Pr(Outage) = FG(
eR−1

(M+1)T ).
(1.31)

Using (1.28), (1.29), (1.30) and some manipulations, the long-term throughput and
the average power of the RTD protocol are found as

η̂RTD =
R

(

1− FG(
eR−1

∑M+1
n=1 Tn

)
)

1 +
∑M

m=1 FG(
eR−1

∑m

n=1 Tn
)

(1.32)

and

T̂RTD =
T1 +

∑M+1
m=2 TmFG(

eR−1
∑m−1

n=1 Tn

)

1 +
∑M

m=1 FG(
eR−1

∑m

n=1 Tn
)

, (1.33)

respectively. Thus, the power-limited long-term throughput optimization problem of the
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RTD protocol can be represented as

η̂RTD,max = max
R,T1,...,TM+1

R

(

1−FG(
eR−1

∑M+1
n=1

Tn
)

)

1+
∑M

m=1 FG(
eR−1∑m
n=1 Tn

)

s.t.
T1+

∑M+1
m=2 TmFG(

eR−1
∑m−1

n=1
Tn

)

1+
∑M

m=1 FG(
eR−1∑m
n=1 Tn

)
≤ T,

(1.34)

which is a non-convex problem [14, 17, 85] and, depending on the fading pdf and the
number of retransmissions, may need to be solved numerically.

1.5.2 INR protocols

Using INR, new codewords are (re)transmitted in the (re)transmissions and in each round

the receiver combines all signals received up to the end of that round. Following the

discussions in [104, chapter 15], [126, chapter 7], [127], the probability terms Pr(Sm) and
Pr(S̄1, . . . , S̄M+1) are obtained by

Pr(Sm) = Pr
(

R(m) ≤
∑m

n=1 ln log(1+gTn)
∑m

j=1 lj
∩ R(m−1) >

∑m−1
n=1 ln log(1+gTn)

∑m−1
j=1 lj

)

Pr(S̄1, . . . , S̄M+1) = Pr

(

R(M+1) >
∑M+1

n=1 ln log(1+gTn)
∑M+1

j=1 lj

)

,
(1.35)

for INR. Here, (1.35) follows from the fact that using m different codewords of length
ln and power Tn, n = 1, . . . , m, the maximum decodable information rate is Um =
∑m

n=1
ln

∑m

j=1 lj
log(1 + gTn). Note that, based on (1.22), we have

ln
∑m

j=1 lj
= R(m)

(

1

R(n)
−

1

R(n−1)

)

(1.36)

and so Pr(Sm) is found as a function of R(n)’s. Hence, using (1.25), (1.35) and some

calculations, the average INR-based transmission power is obtained by

T̂ INR =

T1

R(1)
+
∑M+1

n=2 Tn(
1

R(n)
− 1

R(n−1)
)Θn

1
R(1)

+
∑M+1

n=2 ( 1
R(n)

− 1
R(n−1)

)Θn

,

Θn
.
= Pr(

n−1
∑

j=1

(
1

R(j)
−

1

R(j−1)
) log(1 + gTj) < 1). (1.37)

Also, following (1.23) and (1.35), the long-term throughput is found as

η̂INR =
Pr(
∑M+1

n=1 ( 1
R(n)

− 1
R(n−1)

) log(1 + gTn) ≥ 1)

1
R(1)

+
∑M+1

n=2 ( 1
R(n)

− 1
R(n−1)

)Θn

. (1.38)
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Moreover, the outage probability is given by

Pr(Outage)INR = Pr(

M+1
∑

n=1

(
1

R(n)
−

1

R(n−1)
) log(1 + gTn) < 1). (1.39)

Finally, assuming short-term power constraint, Tm = T, ∀m, (1.38) simplifies to

η̂INR =
1− FG(

e
R(M+1)−1

T
)

∑M+1
m=1

FG(
e
R(m−1)

−1
T

)−FG(
e
R(m)

−1
T

)
R(m)

+
FG(

e
R(M+1)

−1
T

)
R(M+1)

(1.40)

and the outage probability is rephrased as

Pr(Outage)INR = Pr(log(1 + gT ) < R(M+1)) = FG(
eR(M+1) − 1

T
). (1.41)

Variable-length INR results in high long-term throughput and low outage probability,
but it also leads to high complexity [13, 14, 17]. In order to reduce the complexity, fixed-

length coding INR scheme can be considered where setting lm = L, ∀m, in (1.37)-(1.38)
leads to R(m) =

R
m
,

T̂ INR,fixed-length =
T1 +

∑M+1
n=2 TnΘn

1 +
∑M+1

n=2 Θn

,

Θn = Pr(

n−1
∑

j=1

log(1 + gTj) < R), (1.42)

and

η̂INR,fixed-length =
RPr(

∑M+1
n=1 log(1 + gTn) ≥ R)

1 +
∑M+1

n=2 Θn

, (1.43)

where R denotes the initial codeword rate.
Considering different values of m, there is no general closed-form solution for Θm.

Thus, depending on the fading distribution and the number of retransmissions, Θm may
need to be calculated numerically. However, as R(n) < R(n−1), ∀n, the function Um(g) =

R(m)

∑m
n=1 (

1
R(n)

− 1
R(n−1)

) log(1 + gTn) is an increasing function of g and, therefore, for

a given set of {Tn, R(n), n = 1, . . . , m}, Θm can be uniquely obtained via, e.g., “fsolve”
function of MATLAB. However, to be more analytically trackable, several approximations

have been proposed for Θm in the literature [12, 74, 119, 128, 129]. The following lemma

demonstrates an example of such approximations.
Lemma 1: For the fixed-length INR protocol, the system performance is underes-

timated, i.e., the long-term throughput is lower bounded and the outage probability is
upper bounded, via the following inequalities

Θm ≤ FG(
e

R
m − 1

m
√
∏m

i=1 Ti
), ∀m. (1.44)
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Proof. Considering the data transmission policy of the INR protocol, it can be easily

shown that the performance of the fixed-length INR scheme is a decreasing function of
Θm [17, 119]. In other words, the system performance is underestimated if the maximum

decodable rates U
fixed-length
m = 1

m

∑m
i=1 log(1 + gTi) are replaced by their corresponding

lower bounds. From (1.42), we can write

Θm = Pr

(

Ufixed-length
m <

R

m

)

= Pr(Ψ < eR). (1.45)

Here, Ψ is defined as

Ψ
.
=

m
∏

i=1

(1 + gTi) = det(Im +C) (1.46)

with Im representing the m × m identity matrix and C = [ci,k] denoting the diagonal

matrix given by

ci,k =

{

gTi if i = k, i = 1, . . . , m,

0 if i 6= k.
(1.47)

Using the Minkowski’s inequality [130, Theorem 7.8.8] in (1.46) leads to

Ψ = det(Im +C) ≥ (1 + det(C)
1
m )m. (1.48)

Thus, from det(C) = gm
∏m

i=1 Ti, we have Ψ ≥ (1 + g m
√
∏m

i=1 Ti)
m and

Pr

(

m
∑

i=1

log(1 + gTi) < R

)

≤ Pr







1 + g m

√

√

√

√

m
∏

i=1

Ti





m

< eR



 = FG(
e

R
m − 1

m
√
∏m

i=1 Ti
),

(1.49)

as stated in the lemma.

Due to properties of the Minkowski’s inequality, the bounds are tight at low SNRs,

which is the range of interest in adaptive power allocation schemes [12, 13, 14, 17, 74, 85]
(For the simulation results and other approximations of Θm, please see paper G which is

appended to the thesis). Finally, further discussions about the performance analysis of
the INR ARQ will be presented later in papers A, C, D and F which are appended.

In general, the power-limited throughput/outage probability optimization of the ARQ
protocols are non-convex problems. Also, depending on the fading pdf and the maxi-

mum number of retransmissions, there is no general closed-form solution for the optimal
(re)transmission powers maximizing the throughput or minimizing the outage probability.

Several discussions about the optimal retransmission powers/rates of the ARQ schemes
have been presented in, e.g., [13, 14, 34, 73, 74, 85, 119]. Also, reviewing the literature,

one can find different comparisons between the ARQ protocols, particularly between the
RTD and the INR schemes [13, 14, 16, 17, 34, 119, 131]. The final conclusion of the
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comparisons is that INR outperforms RTD from different aspects. The superiority of INR

over RTD is due to the fact that a better code is implemented in INR, compared to RTD.
Therefore, we can use the same arguments as in [13, 14, 16, 17, 119, 131] to show that INR

outperforms RTD in terms of different metrics. Furthermore, as demonstrated in, e.g.,
[131], the gain of the INR protocol over the RTD increases with the initial transmission

rate. Also, [131] has previously shown that the difference between the performance of the
RTD and INR protocols decreases with the SNR variation between the retransmissions.

Thus, compared to the quasi-static fading model, the gain of INR over RTD decreases
in the slow- and fast-fading scenarios. Finally, the difference between the performance of

these methods decreases when the transmission power decreases [34, 85, 119] and when
the ARQ feedback bits become unreliable, i.e., there is some error probability for decoding

the ACK/NACK feedback bits [121].

1.5.3 Basic ARQ protocols

In basic ARQ protocols with adaptive power allocation, the transmitter keeps sending
scaled versions of the same codeword in the (re)transmission rounds and the receiver de-

codes only the most recently received signal, regardless of the previously received signals.

For a slow-fading channel (short-Lc scenario), [19] has previously shown that the trans-

mission powers in the basic ARQ protocol should increase with the number of retransmis-
sion round if the goal is to minimize the outage probability. Moreover, as mentioned in

[14], considering the quasi-static channel (long-Lc scenario) there is no use in basic ARQ
if uniform power allocation is implemented. The intuition behind this is that with a fixed

fading channel there is no time diversity to be exploited in the (re)transmission rounds.
Therefore, sending the same codeword with no power adaptation does not increase the

probability of decoding the message. The following lemma shows that, for a large range of
optimization objective functions and for any feedback channel conditions, the transmis-

sion powers in the basic ARQ scheme must be increasing in every round, if the channel
remains fixed within all (re)transmissions.

Lemma 2: Consider the long-Lc scenario, i.e., quasi-static fading model. In power-

adaptive basic ARQ schemes the optimal transmission powers, in terms of e.g., long-term

throughput or outage probability, must be increasing in every retransmission.

Proof. Using basic ARQ, the data is decodable at the m-th (re)transmission round if
log(1 + gTm) ≥ R where R = Q

L
is the initial codeword rate. Therefore, given that the

codeword is not decodable at the m-th round, i.e., g < eR−1
Tm

, retransmitting it with lower

(or equal) power at the (m + 1)-th round is useless as Pr(g < eR−1
Tm+1

|g < eR−1
Tm

& Tm ≥
Tm+1) = 1. Therefore, to have some chance for decoding the data, we should have
Tm ≤ Tm+1, ∀m. Note that the lemma is presented for the outage probability and long-

term throughput. However, the same argument holds for every other metric that we have
checked. Also, depending on the fading pdf, the optimal power allocation rule may be in

the form of Tm = 0, m 6= M +1, TM+1 > 0, in that case there is no use in basic ARQ.

Using Lemma 2, the long-term throughput and the average transmission power for the
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basic ARQ protocol in long-Lc scenario are obtained with the same equations as for the

RTD scheme, e.g., (1.34), while the probability terms Pr(Sm) and Pr(S̄1, . . . , S̄M+1) are
respectively replaced by

Pr (Sm) = Pr
(

log(1 + gTm−1) < R ≤ log(1 + gTm)
)

= FG

(

eR − 1

Tm−1

)

− FG

(

eR − 1

Tm

)

(1.50)

and

Pr (S̄1, . . . , S̄M+1) = Pr
(

R > log(1 + gTM+1)
)

= FG

(

eR − 1

TM+1

)

. (1.51)

As less information is exploited by the basic ARQ decoder, compared to the RTD, the

RTD outperforms the basic ARQ from different points of view.

1.5.4 Discussions

Some of the possible extensions of the ARQ-based systems are described as follows.

On the effect of temporal channel variations: We analyzed the performance of the

ARQ protocols under the quasi-static channel assumptions (long-Lc scenario), where the
channel remains fixed during all retransmissions. However, it is straightforward to extend

the results to the case with a slow-fading channel, in which the channel changes in each
round. In this case, while the long-term throughput, the average transmission power

and the outage probability, e.g., (1.23), (1.25) and (1.39), are obtained with the same
procedure as before, the probability terms Pr(Sm) and Pr(S̄1, . . . , S̄M+1) are replaced by

Pr(Sm) =















Pr
(

log(1 +
∑m−1

n=1 gnTn) < R ≤ log(1 +
∑m

n=1 gnTn)
)

For RTD

Pr
(

∑m−1
n=1 log(1 + gnTn) < R ≤

∑m
n=1 log(1 + gnTn)

)

For INR

Pr
(

log(1 + gnTn) < R, ∀n < m& log(1 + gmTm) ≥ R
)

For basic ARQ

(1.52)

Pr(S̄1, . . . , S̄M+1) =















Pr
(

log(1 +
∑M+1

n=1 gnTn) < R

)

For RTD

Pr
(

∑M+1
n=1 log(1 + gnTn) < R

)

For INR

Pr (log(1 + gnTn) < R, ∀n ≤ M + 1) For basic ARQ

(1.53)

where gm is the channel realization at the m-th round. As seen later in paper F,

many qualitative conclusions derived for the ARQ protocols are valid independent of
the fading model, as the arguments hold for every given probability terms Pr(Sm) and

Pr(S̄1, . . . , S̄M+1), independent of how they are found. Moreover, paper F presents map-
pings between the performance of the ARQ protocols with different fading models. Finally,

extension of the results to the cases with a fast-fading model (very short-Lc scenario) is
addressed in paper D.
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Noisy ARQ: The same as in the quantized CSI techniques, we can study the effect

of feedback channel noise on the performance of the ARQ protocols. With an unreliable
ARQ feedback, the data may be retransmitted while it was decoded before or the codeword

(re)transmission may stop while the message has not been correctly decoded. Among the
papers dealing with noisy ARQ protocols are, e.g., [76, 81, 82, 121, 132, 133, 134]. Here,

it is worth noting that, as demonstrated by us in [121], the ARQ protocols are not very
sensitive to feedback channel noise, when the goal is to maximize the throughput in a

practical range of feedback bit error probabilities. However, the erroneous feedback signal
affects the outage probability of the ARQ protocols considerably.

Combination of quantized CSI and ARQ protocols: The combination of the ARQ and

quantized CSI schemes can improve the performance of the limited-feedback communi-
cation setups, e.g. [17, 97, 135]. In this case, the quantized CSI provides some rough

pre-knowledge for the transmitter and then the ARQ protocols are implemented to com-

pensate the transmitter imperfect knowledge about the channel quality. Particularly, as
illustrated in paper E, there are cases where the combination of the ARQ and quantized

CSI schemes can be mapped to the case utilizing only one of them. However, as paper E
is appended to the thesis, we do not go into details here.

1.6 Performance metrics and data communication mod-

els

Considering delay-sensitive data transmission over a block-fading channel, there are differ-

ent metrics and data communication models that have been considered in the literature.

In the following, we briefly introduce these metrics and models.

1.6.1 Performance metrics

Some of the metrics that are normally considered for evaluating the system performance
are listed in the following. It is worth noting that some of the metrics that are studied in

this section have been used in the previous sections as well. However, for the completeness

of the text, their more detailed definitions are mentioned here.

• Outage probability: As mentioned before, the outage probability is defined as the

probability of the event that the message is not correctly decoded by the receiver,
when the data (re)transmission stops.

• Long-term throughput: As aforementioned, the long-term throughput is defined as,
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e.g., [12, 13, 14, 17, 68, 125]

η̂ =
Total number of successfully decoded nats

Total time for sending the codewords
= lim

I→∞

∑I
i=1Qi

∑I
i=1 τi

= lim
I→∞

1
I

∑I
i=1Qi

1
I

∑I
i=1 τi

(a)
=

lim
I→∞

1
I

∑I
i=1Qi

lim
I→∞

1
I

∑I
i=1 τi

(b)
=

E{Q(g)}

E{τ(g)}
. (1.54)

Here, Qi and τi are the number of successfully decoded information nats and the
number of channel uses in the i-th time slot, respectively. In general, Qi, τi are

random values which follow the random variables Q(g) and τ(g) with g representing
the channel condition. Moreover, (a) follows from the fact that the limits, e.g.,

lim
I→∞

1
I

∑I
i=1Qi, lim

I→∞

1
I

∑I
i=1 τi, exist [12, 13, 14, 17, 68] and (b) is based on the law

of large numbers.

• Average transmission power: Following, e.g., [12, 13, 14, 17, 68, 125] and the same

discussions as in Section 1.5, the average transmission power is defined as

T̂ =
Total consumed energy

Total time for sending the codewords
= lim

I→∞

∑I
i=1 ξi

∑I
i=1 τi

= lim
I→∞

1
I

∑I
i=1 ξi

1
I

∑I
i=1 τi

(a)
=

lim
I→∞

1
I

∑I
i=1 ξi

lim
I→∞

1
I

∑I
i=1 τi

(b)
=

E{ξ(g)}

E{τ(g)}
, (1.55)

where ξi denotes the consumed energy in the i-th slot, which follows the random

variable ξ(g). Also, (a) and (b) follow the same arguments as in (1.54).

• Average rate: The average rate, or the expected rate, is defined as

R̂ = lim
I→∞

1

I

I
∑

i=1

Ri = E{R(g)} (1.56)

where Ri represents the correctly-decoded data rate at the i-th time slot, e.g., [13,

22]. As seen in Section 1.6.2, depending on the data transmission model, there are
cases where the average rate coincides with the long-term throughput. Moreover, as

discussed in, e.g., [70, 71], the average rate is more capable to track the short time
system performance while the long-term throughput is useful when considering the

steady-state behavior of several packet transmissions as time goes to infinity.

• Feedback load: Feedback load is defined as the expected number of feedback bits

transmitted in the feedback channel. For the quantized CSI schemes with N quan-
tization regions, the feedback load is obtained as

B̂QCSI =

N
∑

n=1

pnbn, (1.57)
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where bn is the length of the codeword for encoding the n-th quantization region

symbol in (1.2). For the ARQ schemes with a maximum of M + 1 (re)transmission
rounds, the feedback load is obtained by

B̂ARQ =

M
∑

m=1

mPr(Sm) +M Pr(S̄1, . . . , S̄M ) (1.58)

(for more details, please see paper A).

• Expected number of retransmissions: This is a metric for evaluating the performance
of ARQ protocols which is defined as

D̂ARQ =

M
∑

m=1

mPr(Sm) + (M + 1)Pr(S̄1, . . . , S̄M ). (1.59)

Note that D̂ARQ = B̂ARQ + Pr(S̄1, . . . , S̄M ). That is, the only difference between
the expected number of retransmission rounds and the feedback load of the ARQ

schemes is in the last (re)transmission round where, while the data is retransmitted,
no feedback is sent to the transmitter. Moreover, with fixed-length coding, the

expected number of (re)transmission rounds is the expected number of channel uses
or the expected delay for a packet transmission scaled by a constant.

• Coverage region: The coverage region is an interesting metric particularly for the
relay networks which demonstrates the range of distances in which a certain sys-

tem performance is guaranteed. More detailed definition of the coverage region is
presented in paper G which is appended to the thesis.

• Expected information-per-energy: As demonstrated in, e.g., [136], the expected
information-per-energy is defined as

ê =
E{Q(g)}

E{ξ(g)}
(1.60)

with E{Q(g)} and E{ξ(g)} given in (1.54) and (1.55), respectively. That is, (1.60)
represents the expected number of nats which is successfully received per energy

unit.

• Service outage: The service outage is defined as the probability of the event that

the instantaneous received data rate is less than a given threshold [137, 138, 139].

In this case, the codeword may be decodable by the receiver while the data rate is
less than the desired value.

There are many papers dealing with the fairness particularly in multi-user networks,

e.g., [140, 141, 142, 143]. In these works, the goal is to provide some kind of equality
between the users. In many of the fairness-based approaches weighted metrics are consid-

ered where, for instance, the objective is to maximize the weighted sum rate with weights
coming from the fairness criteria.
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Following the outstanding work by Zheng and Tse [144], there are many papers consid-

ering the diversity-multiplexing-tradeoff (DMT) or diversity-multiplexing-delay-tradeoff
(DMDT) as the performance yardsticks, e.g., [69, 83, 88, 145, 146]. These metrics es-

tablish the necessary tradeoff between reliability and throughput in outage-limited fading
channels. However, as DMDT and DMT are metrics for the high SNR regimes and the

thesis concentrates on the finite SNR conditions, we do not study these metrics in detail.

Throughout the thesis, we mainly focus on the long-term throughput and the outage

probability as the performance yardsticks and the results are obtained under power-limited
conditions. Meanwhile papers A, F (resp. paper G), which are appended in the thesis,

present some discussions about the feedback load and the expected delay (resp. the

coverage region). Also, papers A and C study the system performance in the cases where,
along with the transmission power constraints, the outage probability and the other users’

received interference power are constrained to be less than given thresholds, respectively.

1.6.2 Data communication models

We consider two, namely, continuous and bursty data communication models [13, 14, 85,
97, 119], which are illustrated in Fig. 1.6. Under the continuous communication model, it

is assumed that there is an unlimited amount of information available at the transmitter,

which is always active. Under the bursty communication model, on the other hand, it
is assumed that there is a long idle period between the packet transmissions. To be

more clear, all the available channel uses are utilized in the continuous communication
model. This is because data is continuously transmitted, regardless of whether it is

decoded or not. In the bursty communication model, on the other hand, the number of
ARQ-based channel uses is a random variable which depends on the channel condition.

Continuous communication is an appropriate model for the cases where there is a large
pool of information nats to be sent to the receivers. On the other hand, the bursty model

is better for the cases where the spectrum is used sporadically [14, 85, 119, 147].

The data transmission model affects the performance of the ARQ-based schemes as
demonstrated in [13, 14, 66, 85, 97, 119] and in the following.

In general, the long-term throughput and the average transmission power are defined
as in (1.54) and (1.55), respectively. Assuming continuous communication and a quasi-

static channel, the long-term throughput can be calculated as follows. Let R(g) be the
instantaneous data rate of the ARQ approach for a given gain realization g. The total

number of information nats that can be decoded in each state is obtained by Q(g) =
LcR(g). Consequently, the long-term throughput is simplified to

η̂ =
E{LcR(g)}

Lc
= E{R(g)} = R̂, (1.61)

where R̂ is the channel average rate [14, 16, 51, 97].

We denote by T (g) the transmission power random variable of an ARQ scheme for
a channel gain realization g. Then, the average transmission power for the continuous
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Figure 1.6: An illustration of different data communication models considered throughout
the thesis.

communication model is obtained by

T̂ =
E{LcT (g)}

Lc
= E{T (g)} = Φ̂, (1.62)

as used in, e.g., (1.6).

In the bursty communication model, on the other hand, the elements of the denomi-
nator in, e.g., (1.54) and (1.55) are not constant. Hence, the long-term throughput and

the average transmission power should be directly calculated based on (1.54) and (1.55),
respectively, as in Section 1.5.

One of the differences between the bursty and continuous models returns back to the

way the fading channel is observed at the transmission endpoints. As demonstrated in
[12, 13, 14, 34, 66, 85, 119], for a large range of fading models, the empirical channel pdf

does not match the true channel distribution, if the ARQ packets are sent in a bursty
fashion. The reason is that if the channel is good, the packet transmission ends at the first

transmission round. However, many channel uses are utilized for sending a packet when
the channel is bad. Hence, a large portion of the data transmission is carried out when

the channel experiences low quality, while the transmitter is mostly off when the channel

is good. Thus, on average, the channel is seen as worse than what it is in reality7.
With a continuous communication model, on the other hand, the channel gains are

observed proportional to their realization probabilities, because the transmitter is always

7As discussed in paper F, with a temporally-independent slow-fading model the empirical channel pdf
matches the true one even if the data is transmitted in a bursty fashion.
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Figure 1.7: Throughput vs outage probability. Uniform power allocation, Rayleigh fading
channel, µ = 1, M = 1 bit ARQ feedback, fixed-length coding R = 1 npcu.
Circles (squares) represent the results with transmission power 0dB (3dB).

transmitting. Hence, the empirical channel pdf matches the true one, if the data is
transmitted continuously. In other words, a better empirical channel pdf is observed in

the continuous communication model, compared to the bursty model (please see [12, 13,
14, 34, 66, 85, 119] for more detailed discussions).

Considering Rayleigh fading quasi-static channels, Fig. 1.7 demonstrates the long-

term throughput versus the outage probability for different ARQ protocols and data
communication models. With the same transmission power, better system performance

is achieved by the INR protocol, compared to the RTD. As expected, the ARQ protocols
lead to better outage probability and long-term throughput, compared to the open-loop

communication setup. Also, higher throughput is achievable in the continuous model, in
comparison with the bursty data communication model.

Finally, note that the performance of the quantized CSI-based approaches is not af-
fected by the communication models. The reason is that each packet of the quantized CSI

schemes is of fixed length L, independent of the channel condition. That is, considering
(1.54) and (1.55), we have τi = L, ∀i, which is deterministic. Thus, we have

∑I
i=1 τi = IL

which leads to

η̂ = lim
I→∞

∑I
i=1Qi

∑I
i=1 τi

= lim
I→∞

∑I
i=1Qi

IL
= lim

I→∞

1

I

I
∑

i=1

Qi

L
= lim

I→∞

1

I

I
∑

i=1

Ri = E{R(g)} = R̂.

(1.63)

Therefore, independent of the communication model, the long-term throughput degener-
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ates to the average rate in the quantized CSI schemes (the same procedure can be applied

for the average power).
To further clarify the differences between the bursty and continuous models, we close

the section with the following example.
Example 1: Shen, et. al, have previously shown that:

• With M → ∞ retransmissions and a quasi-static fading model, the throughput of

the variable-length coding INR protocol converges to the channel ergodic capacity
C =

∫∞

0
fG(υ) log(1 + υ)dυ if the data is transmitted continuously [14, lemma 2].

• Using uniform power allocation, continuous communication and a quasi-static fading

model, the same throughput is obtained by the INR ARQ using a maximum of
M+1 (re)transmissions and the quantized CSI-based approach with N quantization

regions, if M + 1 = N [14, lemma 3].

However, using paper F and because of the worse empirical distribution, it can be easily
proved that there is no ARQ scheme that can reach the channel ergodic capacity, if

the data is transmitted in a bursty fashion and the channel is quasi-static. Also, the
throughput achieved by INR ARQ protocol using a maximum of M +1 (re)transmissions

is less than the throughput achieved by the quantized CSI approach having N = M + 1

quantization regions, if the data is sent in a bursty fashion and the channel is quasi-static.
These points, which are because the good channels are not fully utilized by the ARQ in

the bursty model, are further elaborated in paper F presented in Chapter 2.

1.7 Summary of our works

During the last five years, we have been working on different aspects of the partial CSI-
based networks. The results have been obtained in a wide range of network configura-

tions/fading models and for various performance metrics/constraints. As a result, it is
difficult to categorize them into non-overlapping groups. In the following, we attempt to

categorize the developed works from two perspectives. First, we group our works based on
the partial CSI model. Second, we categorize our papers from the network configuration

point of view.

1.7.1 Grouping our works based on the partial CSI model

From the partial CSI model point of view, the developed approaches can be divided into
four categories. These categories, which are demonstrated in Fig. 1.8, are as follows.

• CSI quantization: In [30, 49, 50, 60, 98, 99, 100, 101, 102, 103], we have studied
the performance of the communication setups in the presence of the quantized CSI.

In these works, we have followed the same approach as described in Section 1.4; a
quantization function is applied at the receiver and the transmitter is provided with

quantized CSI that is used for optimal rate/power allocation. Also, [60, 99] present
discussions on optimal feedback bit distribution in OFDM and MIMO broadcast
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Figure 1.8: Grouping our works based on the limited feedback model.

channels, respectively. In all papers, except [99] which is based on random vector
quantization, we have studied the optimal quantization boundaries and their effect

on the system performance. Moreover, in all of these works the goal is to maximize
the long-term (sum) throughput which is optimized in power-limited (resp. outage-

limited) condition [30, 60, 98, 99, 100, 101, 102, 103] (resp. [49, 50]). Meanwhile,
[98] presents different fairness schemes for the multi-user networks and [30] studies

the feedback load of the quantized CSI-based techniques using dynamic quantizers.
In [30, 50, 60, 98, 99, 100, 101, 102, 103], the feedback signal is supposed to be

received by the transmitter error-free. The system performance in the presence of
erroneous feedback signals is investigated in [49]. Finally, it is worth noting that, as

there is no closed-form solution for the optimal quantization boundaries maximizing
the throughput, [30, 49, 50, 60, 98, 99, 100, 101, 102] present discussions/algorithms

for the numerical solution of the optimal quantizers via implementation of iterative
optimization algorithms. Also, [98, 99, 103] demonstrate analytical approximations

for the power-limited throughput of the quantized CSI-based approaches.

• ARQ feedback: Considering different communication setups, we have investigated

the performance of the ARQ-based protocols in [25, 34, 85, 119, 120, 121, 122, 123].
Here, the results are obtained for the INR, the RTD and the basic ARQ protocols.

Also, [122] demonstrates the superiority of the hybrid ARQ protocols over the rep-
etition coding-based techniques and [119] analyzes the performance of STC-based

MIMO-ARQ protocols. In [25, 34, 119, 120, 121], it is attempted to develop a fairly
general framework for studying the data transmission efficiency of the ARQ proto-

cols. The system performance is evaluated for different quasi-static, slow- and fast-
fading models which, as shown in [25, 34, 119], can be mapped to each other. More-
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over, [34, 85, 119, 121, 122] present different comparisons between data transmission

efficiency of the ARQ protocols in the bursty and continuous data communication
models. The results have been obtained under power-limited condition and the

objective functions are the long-term throughput or the outage probability. Mean-
while, [119, 121, 122] (resp. [120]) study the feedback load/expected delay (resp.

coverage region) of the ARQ-based systems as well. The optimization parameters
are considered to be the (re)transmission powers/rates and we investigate the effect

of variable-length coding on the system performance, e.g., [34, 85, 119, 120, 121]. In
these works, the feedback bits are assumed to be received error-free, while [121, 148]

investigate the performance of the ARQ protocols in the presence of an unreliable
feedback channel. Finally, as some of the probability terms of the ARQ protocols

can not be expressed with a closed-form solution, different approximation/bounding
techniques are presented for the ARQ protocols in [119, 120, 122, 123].

• Combination/comparison of the quantized CSI and ARQ schemes: In [12, 13, 26, 86,
97, 109, 124], we demonstrate different comparisons or combinations of the quantized

CSI and the ARQ protocols8. In all papers, the feedback signal is supposed to be
received delay-free, while [26] evaluates the system throughput in the presence of

delayed quantized CSI feedback. In [12, 86], the CSI quantization is modeled by an
additive Gaussian noise, while the quantization model of [13, 26, 97, 109, 124] is the

same as the one presented in Section 1.4. In order to combine the ARQ and the
quantized CSI schemes, the quantized CSI provides some rough pre-knowledge for

the transmitter(s) and then the ARQ protocols are implemented to compensate the
transmitter(s) imperfect knowledge about the channel quality. As demonstrated

in [13, 97, 109, 124], depending on the fading model, there are cases where the
ARQ, the quantized CSI or their combinations can be mapped to each other, in

the sense that the same system performance, e.g., throughput, is achieved by these

schemes. Furthermore, [13, 26] present comparisons between the performance of the
quantized CSI and the ARQ protocols in different fading models. The comparisons

are in terms of the power-limited throughput, the outage probability, the feedback
load and the robustness to the erroneous feedback signal which demonstrate the

equivalency or the superiority of these approaches in different circumstances.

• Others: The performance of the communication setups in the presence of full CSI has
been studied in [149, 150, 151, 152]. Our reason for considering the full CSI assump-

tion is to simplify the analytical analysis and investigate the optimal rate/power
allocation problems in more details. In all these works, except [152] which deals

with coordinated multi-point (CoMP) networks, we have considered spectrum shar-
ing, also called cognitive radio, channels. Particularly, [149, 150, 151] analyze the

effect of sequential decoders, spatial correlation and the users’ security requirement

on the performance of the spectrum sharing networks, respectively. Finally, [153]
and [37, 38] investigate the data transmission efficiency of the spectrum sharing net-

works in the cases with no CSI and in the presence of one bit interference-avoiding

8The main focus of [12, 86, 109, 124] is on the quantized CSI approach.
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signal, respectively. The interference-avoiding feedback is a signal to indicate the

presence of the other users, based on which the users activeness is scheduled. As
demonstrated in all papers, considerable performance improvement is achieved with

feedback rates as low as 1 bps.

1.7.2 Grouping our works based on the network configuration

The partial CSI feedback is a challenging problem for (almost) all kinds of communication
setups. Therefore, it has been considered by the researchers for many network configu-

rations, ranging from the single-user single-antenna setups to the large-scale multi-user
network MIMO. In our works, the limited-feedback problem has been studied for the

following network configurations (please see Fig. 1.9 as well):

• Single-user single-antenna networks: In [13, 25, 26, 30, 34, 49, 50, 60, 85, 97, 101,

121], we consider the single-user single-antenna networks. This is the simplest net-
work configuration in which a single-antenna transmitter sends the data to its corre-

sponding receiver. Therefore, the network configuration allows us to study the effect
of partial CSI as well as the optimal quantization boundaries and the transmission

rates/powers in detail, without requiring many approximations, upper/lower bounds
or simplifying assumptions. Moreover, the results provide the basis for studying the

other network configurations such as the MIMO/network MIMO, the relay and the
spectrum sharing networks.

In [30, 49, 50, 60, 101] and [25, 34, 85, 121] the quantized CSI and the ARQ protocols

are considered, respectively, while [13, 26] consider the combination/comparisons of
the two schemes. Here, the network performance is studied from different aspects;
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the effect of noisy and delayed feedback signals is evaluated in [13, 49, 121] and

[26, 30], respectively. Moreover, [26, 30] exploit the channel temporal correlation
to increase the system throughput via implementation of feedback subsampling and

dynamic quantizers, respectively. In [34], we develop new reinforcement algorithms
for adaptive power allocation in temporally-correlated fading channels. The power-

limited throughput of the fast-fading channels utilizing ARQ and quantized CSI
feedback is studied in [25, 26], respectively. Also, [13] presents comparisons between

the ARQ and the quantized CSI schemes and demonstrates the equivalency or the
superiority of these schemes in different conditions. Furthermore, [97] combines the

quantized CSI and the ARQ protocols and shows the equivalency of these schemes
in quasi-static channels. Considering different fading models, [34, 49, 85, 121] obtain

the optimal power allocation of the ARQ schemes in terms of throughput and outage
probability. Also, the outage probability of the quantized CSI- and the ARQ-based

single-user networks is investigated in [34, 49, 50]. The results indicate that, with
limited feedback, optimal power allocation leads to substantial outage probability

reduction [34, 49, 121]. However, the effect of optimal power allocation on the

throughput is not significant at high SNRs [34, 49, 50, 85, 121].

• Spectrum sharing networks: Spectrum is a scarce valuable resource in today’s wire-
less communication networks; with ever-increasing number of wireless devices com-

municating at high data rates, there is growing demand for spectrum resources. This
point has led to complaints about spectrum shortage which is expected to grow even

more in the coming years.

To tackle the spectrum shortage problem, several dynamic spectrum management

solutions have been proposed among which spectrum sharing is one of the most

promising ones, e.g., [154, 155, 156, 157, 158]. In a spectrum sharing network, unli-
censed secondary users (SUs) are permitted to work within the spectrum resources

of licensed primary users (PUs) as long as the PUs quality-of-service (QoS) require-
ments are satisfied. In general, there are two methods for spectrum sharing. In

a method widely referred to as the interference-avoiding paradigm [154, 155, 156],
the SUs are not permitted to work within the PUs activation period. In another

scheme, normally denoted simultaneous or controlled transmission [157, 158, 159,
160, 161, 162, 163], a SU can simultaneously coexist with a PU as long as it works

under a certain interference level imposed by the PU QoS requirements.

In our works, we concentrate on the simultaneous transmission paradigm of the

spectrum sharing networks [12, 37, 38, 86, 123, 149, 150, 151, 153]. Here, the goal
is to maximize the SU achievable rates with different outage probability [123, 150],

received interference power [12, 37, 38, 86, 149, 150, 151, 153] or received signal-
to-interference-and-noise ratio (SINR) [37, 38, 151, 153] constraints for the PU.

The results are obtained in the presence of full CSI [149, 150, 151], no CSI [153],
interference-avoiding signal [37, 38], ARQ feedback [123] or the combination of the

ARQ and quantized CSI feedback [12, 86]. In [123, 150], we investigate the effect of
spatial correlation between the fading coefficients on the network achievable rates.
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Also, [149] develops an interference-free spectrum sharing scheme via implementa-

tion of sequential decoders. In [12, 86] (resp. [123]), the ARQ feedback is considered
for the SU (resp. for the PU) and adaptive power allocation is utilized to maxi-

mize the interference-limited (resp. outage-limited) throughput. The security of the
spectrum sharing users is addressed in [151] where the SU security is guaranteed

via rate allocation. Finally, [37, 38, 123, 149, 153] show that, depending on the PU
QoS requirements, there are cases where the maximum throughput is achieved by

combination of the simultaneous transmission and the interference-avoiding spec-
trum sharing paradigms. That is, to maximize the SU throughput, the SU should

work in a time division multiple access (TDMA) fashion, determined by the PU
QoS requirement.

• Scheduler-based multi-user networks: It has been demonstrated both practically and
theoretically [39, 52, 61, 65, 141, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174]

that employment of adaptive modulation and scheduling leads to substantial per-
formance improvement in multi-user systems, normally called multi-user diversity.

Traditionally, the fading is considered as an unreliability source which should be
mitigated. In the multi-user diversity context, however, the channel fading has a

positive impact and is helpful for improving the system performance [39, 52, 61,
65, 141, 164, 165, 166, 167, 168, 169]. This is because in a system with a number

of users experiencing independent fading conditions it is more likely that, at each
time instant, one of the users experiences good channel quality. Hence, the data

transmission efficiency is improved by always communicating the best users.

In order to prioritize among the users and select the proper modulation for the

best user, the scheduler must in theory know the channels perfectly which, due to

feedback signaling overhead, is not practically feasible. Hence, a quantized repre-
sentation of the CSI, expressed via a limited number of feedback bits, is normally

provided at the transmitters.

In [98, 100, 109], we analyze the performance of the multi-user networks in the pres-

ence of partial CSI feedback. Here, it is mainly focused on the CSI quantization,
while [109] presents some discussions about the ARQ protocols as well. The pro-

posed schemes are based on the implementation of the schedulers which exploit the
received CSI for selecting the best user maximizing the network sum throughput.

Moreover, [100] develops simple fairness schemes and investigates the system perfor-
mance in the cases with different users activeness probabilities. The effect of spatial

correlation on the performance of the scheduler-based multi-user networks is studied
in [98]. Finally, [109] proposes a two-step CSI feedback approach, where the users

scheduling is performed based on some rough initial CSI feedback from all users and
then the transmitter receives more accurate information about the channel quality

of the scheduled user. As demonstrated in [100, 109], optimal channel quantization
and the implementation of the proposed two-step CSI feedback approach lead to

substantial performance improvement for the multi-user networks with very limited
feedback load.
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• MIMO/network MIMO: MIMO transmission is one of the best approaches for ex-

ploiting the spatial diversity, particularly over rich scattered environments. MIMO
has revolutionized the modern wireless communications, is a key part of most cur-

rent standards such as WiFi (IEEE 802.11) and WiMax (IEEE 802.16) [1, 2], and
is expected to be the core technology for the next generation broadband wireless

communication systems. From another perspective, CoMP, also known as network
MIMO, is one of the most promising techniques for improving the data transmis-

sion efficiency of wireless cellular networks [175, 176, 177, 178]. The main idea of a
CoMP network is to allow geographically separated base stations (BSs) to cooper-

ate in serving the users. The cooperation is achieved through high speed backhaul
links such that the users’ data and CSI can be shared between the BSs. The per-

formance of the MIMO and network MIMO systems, however, depends strongly on
the amount of CSI provided at the transmitter(s). This is the main motivation for

studying the MIMO/network MIMO systems under limited CSI conditions, which
has become a hot topic during the last decade.

In [99, 102, 103, 119, 122, 124, 152], we evaluate the data transmission efficiency
of the MIMO and network MIMO systems in the presence of partial CSI feedback;

the performance of the MIMO-ARQ networks is studied in [119] where we consider

different aspects of the network such as the presence of power amplifiers nonlinearity,
large-scale MIMO, bursty/continuous communication and temporal/spatial power

allocation. The effect of CSI quantization and optimal feedback bit distribution on
the performance of the MIMO broadcast systems is studied in [99]. In [103], we

obtain the optimal, in terms of throughput, feedback bit distribution rules between
the phase and the amplitude of the multiple-input and single-output (MISO) setups.

The expected sum throughput of the CoMP networks is investigated in [102, 122,
124, 152]. Here, the results are obtained in the presence of the ARQ [122], the

quantized CSI [102, 124] or the full CSI [152]. Finally, [122] presents mappings
between the CoMP-ARQ and single-user ARQ systems and [152] determines the

optimal power allocation, in terms of the sum throughput, in the cases with different
users activeness probabilities.

• Relay networks: Relay-assisted communication is one of the promising techniques
that have been proposed for the wireless networks [179, 180, 181, 182, 183, 184, 185,

186, 187]. The main idea of a relay network is to improve the data transmission
efficiency by implementation of intermediate relay nodes which support the data

transmission from a source to a destination. The relay networks have been adopted
in the long-term evolution advanced (LTE-A) standardization [188] and are expected

to be one of the core technologies for the next generation cellular systems. The data
transmission efficiency of the limited-feedback relay networks have been studied in

many papers, e.g., [112, 189, 190, 191, 192, 193, 194].

In [120, 195], we have investigated the throughput, the outage probability and the

coverage region of the relay networks implementing different ARQ protocols. Here,
adaptive power allocation is utilized to improve the system performance under dif-
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ferent sum and individual power constraints for the source and the relay. In [120],

only one of the source or the relay is active in each retransmission round. In [195],
on the other hand, the source and the relay use STCs to make a distributed coop-

erative antenna and retransmit the data simultaneously in rounds when the relay is
active. As demonstrated in the papers, adaptive power allocation in the relay-ARQ

networks results in substantial coverage region increment and outage probability
reduction. Moreover, the papers present analytical upper/lower bounds for the

throughput and the outage probability of the relay-INR systems.

1.7.3 A summary of the appended papers

Among the developed works, papers A-G are appended to the thesis. The reason for

selecting the considered papers is that they provide an overview of our developed works.
In the following, we briefly introduce the appended papers.

Paper A (On Hybrid ARQ and Quantized CSI Feedback Schemes in Quasi-

Static Fading Channels): Considering continuous data communication over quasi-
static channels, this paper compares the data transmission efficiency of the communica-

tion setups using ARQ and quantized CSI. The problem is cast in form of maximizing
the throughput subject to transmission power and outage probability constraints. The

performance of the ARQ and quantized CSI schemes is compared from different points
of view, such as the outage-limited throughput, feedback load, complexity and robust-

ness to erroneous feedback signals, which show the equivalency or the superiority of these
approaches in different circumstances.

Paper B (Feedback Subsampling in Temporally-Correlated Slowly-Fading
Channels using Quantized CSI): In this paper, we study the problem of feedback sub-

sampling in temporally-correlated wireless networks. Under different power constraints,
the system data transmission efficiency is studied in two scenarios. First, we focus on the

case where the codewords span one fading block. In the second scenario, the throughput is
determined for the case where the codewords are so long that a finite number of correlated

gain realizations are experienced during each codeword transmission. The results show

the feedback subsampling as an efficient scheme increasing the throughput with limited
feedback rates.

Paper C (On the Average Rate of HARQ-Based Quasi-Static Spectrum
Sharing Networks): Here, we study the effect of ARQ protocols on the average rate

of spectrum sharing networks. With different SU transmission power constraints, the
results are obtained under the PU limited received interference condition, when there is

(im)perfect CSI about the SU-PU link. Finally, the results are extended to the cases where
the PU and the SU data transmissions are constrained to have limited outage probability.

Paper D (On ARQ-Based Fast-Fading Channels): This paper investigates the
performance of basic and INR ARQ protocols in fast-fading channels where a number of

channel realizations are experienced in each retransmission round. Different metrics are
evaluated in power-limited conditions and we present mappings/comparisons between the

performance of ARQ protocols in different fading conditions. For instance, compared to
slow-fading and quasi-static channels, a fast-fading channel results in a higher throughput
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for both basic and INR ARQ.

Paper E (On the Average Rate of Quasi-Static Fading Channels with ARQ
and CSI Feedback): The combination of the quantized CSI and ARQ protocols is

addressed in this paper; the transmitter is initially provided with quantized CSI, expressed
via a limited number of feedback bits, and then the ARQ is implemented to compensate

the transmitter imperfect knowledge about the channel quality. Particularly, it is shown
that, depending on the fading condition and the data communication model, there are

cases where the combination of the ARQ and quantized CSI schemes can be mapped to
the case utilizing only one of them.

Paper F (On the Performance of MIMO-ARQ Systems with Channel State
Information at the Receiver): Here, we try to develop a fairly general framework

for studying the performance of ARQ protocols. We show that, for many performance
metrics, the data transmission efficiency of MIMO-ARQ systems can be demonstrated as a

function of parameters which are scheme-dependent and not metric-dependent. Then, the
results are used to study different aspects of MIMO-ARQ such as the effect of nonlinear

power amplifiers, large-scale MIMO-ARQ, adaptive power allocation and different data

communication models. The results, which are valid for various forward and feedback
channel models, show the efficiency of the MIMO-ARQ techniques in different conditions.

Paper G (On a Relay-ARQ Network using Adaptive Power Allocation):
This paper investigates the performance of relay networks in the presence of ARQ feedback

and adaptive power allocation. The throughput and the outage probability of the RTD
and INR protocols are studied for independent and spatially-correlated fading channels.

The results are obtained for the cases where there is a sum power constraint on the source
and the relay or when each of the source and the relay are power-limited individually. With

adaptive power allocation, the results demonstrate the efficiency of relay-ARQ techniques
in different conditions.

1.8 Conclusion

In the introduction to the thesis, we present the basis for the performance analysis of the

limited-feedback schemes. We focus on the quantized CSI and the ARQ-based schemes
of the limited-feedback systems. Also, we discuss the possible extensions of the partial

CSI protocols and summarize the techniques that we have developed during the last five
years. More detailed discussions about the proposed partial CSI feedback approaches are

presented in the second part of the thesis.
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