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Cognitive Radio (CR) aims to access the wireless spectrum in an opportunistic
manner while the licensed user is not using it. To accurately determine the licensed
user’s existence, spectrum sensing procedure is vital to CR system. Energy detection-
based spectrum sensing techniques is favourable due to its simplicity and low complex-
ity. In addition, to improve the detection performance, cooperative spectrum sensing
technique exploits multi-user diversity and mitigates detection uncertainty. In this
thesis, we investigate several energy detection based cooperative spectrum sensing
techniques.

First, the closed-form analysis for the Equal Gain Combining based Soft Decision
Combining (EGC-SDC) scheme, in which all CR users forward its observation to the
fusion center, is derived. In order to reduce the communication overhead between
CR users and the fusion center, we proposed quantized cooperative spectrum sensing
technique, in which CR users quantize its local observation before forwarding to the
fusion center. Next, the Double Threshold scheme, where some users only forward its
local decision while other users forward its observation, is considered and analyzed.
To further reduce the communication overhead, we also proposed that quantization is
applied to the users who forward its observation. Later on, three sequential cooperative
spectrum sensing schemes in time-varying channel are considered. By aggregating past
local observations from previous sensing slots, CR users can improve the detection
performance. The Weighted Sequential Energy Detector (SED) scheme simply takes
fixed number of past local observations, while the other two schemes, Two-Stage SED
and Differential SED, adaptively determine the number of observations, based on its
decision towards primary user’s existence.

Simulation results show that the analysis on EGC-SDC scheme is accurate and the
quantized cooperative spectrum sensing technique can improve the performance and
approach the detection performance of EGC-SDC scheme with much less bandwidth
requirement. Also, the Double Threshold scheme can help improve the detection
performance over the conventional technique. Furthermore, the analysis on Double
Threshold provides a closed-form for the probability of false alarm and detection.
Additionally, the sequential spectrum sensing schemes are shown to improve the de-
tection performance and enable CR system to work in scenarios that the conventional
technique can not accommodate.
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I0(·) Modified Bessel function of the first kind and zero-order

k Degree of freedom

L0 Path loss at a reference distance d0

Ln(·) Laguerre polynomial of degree n
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λ Wavelength

λf Fusion decision threshold

λL Lower threshold (Double Threshold)

λU Upper threshold (Double Threshold)

λnc Noncentrality parameter (Non-Central Chi-Squared distribu-

tion)

m time-bandwidth product

M Number of quantization regions

µ Mean of a Gaussian Distribution

N Gaussian Distribution

Pd Probability of detection

Pf Probability of false alarm

Pt Transmit power

Qα αth quantization region

qα αth quanta value

Qd Cooperative probability of detection

Qf Cooperative probability of false alarm

Qm(·, ·) Marcum-Q function

s PU’s signal

S Set of PU’s state

Sactive Subset of S where PU is active

Sidle Subset of S where PU is idle

σ2 Variance of a Gaussian Distribution

σT RMS delay spread of the channel

Ts Symbol period

Tc Coherence time

v Speed of movement

W Weighting vector

x Distance between transmitter and receiver

y Received signal

Y Received signal vector
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Chapter 1

Introduction

1.1 Wireless and Mobile Communications

Over the years from the beginning of wireless communications, many aspects of the

personal mobile phone and wireless communications have changed and evolved in

order to cope with ever-increasing high demands and popularity. These aspects are

such as the move from analog to digital communications, from voice-centric to data-

centric systems [1]. Especially in recent decades, there has been rapid growing need for

the anytime, anywhere and always-connected communication [2]. With the number of

mobile subscribers grows exponentially from less than a hundred million subscribers in

1996 to more than five billions in 2010 [3], wireless networks have evolved over the year

since the first generation Advanced mobile phone system (AMPS) to the current fourth

generation Long Term Evolution (LTE) [4]. For each generation of wireless and mobile

communications, many technologies have been improved and enabled higher data rates,

better spectral efficiency. The move from analog to digital communication occurs in the

transition from first generation (1G) to second generation (2G). With spread spectrum

technologies, Wideband Code Division Multiple Access (WCDMA) becomes dominant

in the third generation (3G) mobile communication. With Orthogonal Frequency

Division Multiple Access (OFDMA), current 4G system supports higher data rates

and better spectral efficiency over existing 3G system.

In order to further cope with an increasing demand, a new paradigm and technolo-

gies that can enhance spectral efficiency and improve spectrum utilization are needed

19
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for the next generation beyond 4G mobile networks. The concept for the fifth gen-

eration (5G) are highlighted in [5] such that the 5G terminals will be equipped with

various technologies, able to combine different technologies and adapt itself to the

environment. Cognitive Radio (CR) is proposed and designed to tackle these chal-

lenges [6] and it is one of the enabling technologies and solutions for the future 5G

mobile networks.

1.2 Dynamic Spectrum Access and Cognitive Ra-

dio

Currently, spectrum assignment policy is fixed in terms of frequency band. As a result,

the spectrum usage is limited to a certain part of the frequency spectrum. With the

high and increasing demand of mobile services and current studies mentioning that the

rest of the spectrum remains under-utilized [7], dynamically accessing the spectrum

can help improve the spectrum utilization. CR is proposed and designed to sense

and learn from the environment in order to perform the best services to users [8]. By

opportunistically accessing the licensed spectrum without interfering the licensed user,

CR can improve the efficiency of spectrum usage [9]. Further details on CR will be

summarized in Chapter 3.

1.3 Motivations

CR aims to improve spectrum utilization and efficiency of spectrum usage by oppor-

tunistically accessing the licensed spectrum without interfering the licensed users [9].

To avoid using the spectrum at the same time with the licensed users, CR has to

determine the existence of primary user (PU) by sensing the wireless spectrum. It can

communicate to its receiver if the spectrum is vacant. However, when PUs retransmit

again, CR users should stop their transmission immediately to avoid creating interfer-

ence to the PUs. Hence, spectrum sensing is vital for CR. The better CR knows about

the PU’s existence, the better it can communicate and utilize the spectrum. There

are several types of spectrum sensing techniques for CR such as Energy Detection,
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Matched-Filtered Detection, Cyclostationary Detection [10]. In this thesis, we investi-

gate several energy detection based spectrum sensing techniques due to its simplicity,

low computational and implementation costs as well as its wider applicability as it

works irrespective of the signal format to be detected [11]. With the aim of improving

the detection performance, we have proposed several new techniques in this thesis.

1.4 Lists of Contributions

In this thesis, several energy detection based cooperative spectrum sensing techniques

have been investigated. The performance of these schemes have been improved over

existing schemes, not only on the detection performance aspects but also on the com-

munication overhead among the CR system. The main contributions of this thesis are

summarized as follows.

1. The approximation of statistical distribution related to the energy detection

based spectrum sensing as well as the approximated inverse probability of de-

tection under Rayleigh fading channel is proposed.

2. The closed-form analysis for Equal gain combining based SDC (EGC-SDC) Co-

operative spectrum sensing is derived, under both AWGN and Rayleigh fading

channels.

3. The quantization-based cooperative spectrum sensing is studied. Various quan-

tization techniques are applied to the CR’s observation before forwarding to the

fusion center. The simulation results show that these schemes provide compa-

rable detection performance to EGC-SDC, while requiring less communication

bandwidth.

4. The Double Threshold energy detection scheme is evaluated and analysed. To

improve the performance in terms of communication overhead, quantization is

applied towards the Double Threshold scheme. Simulation results show that the

Double Threshold scheme provides better detection performance as compared to

the conventional scheme. Moreover, the analysis on the detection performance

is provided.
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5. Sequential cooperative spectrum sensing is investigated. The PU activity is

considered as static and intermittent and the communication channel is modelled

as time-varying one. First, a Weighted SED, which is a fixed scheme, is studied.

Then, two adaptive schemes, namely Two-Stage SED and Differential SED, are

investigated to further improve the detection performance. Simulation results

show that the adaptive schemes provide better performance than the Weighted

SED scheme. In addition, the related probabilities are derived and the closed-

form analysis for the probability of false alarm and detection probability for

Weighted SED and Two-Stage SED scheme is provided.

1.5 Thesis Organization

This thesis consists of nine chapters. Introduction, motivation and description of

technical contributions in the thesis are presented in the first chapter.

In Chapter 2, background theories on wireless communications and its character-

istics are presented. Both large-scale and small-scale propagation are discussed along

with common channel models. Backgrounds of quantization, averaging models and

random variables are also presented.

Then, fundamentals of CR are presented in Chapter 3. This chapter covers the

CR architecture as well as background on spectrum sensing techniques. The brief

introduction on IEEE 802.22 WRAN standard is also presented. An overview on

energy detection based spectrum sensing technique is presented in Chapter 4. The

same chapter also presents the statistics related to energy detection as well as its

approximation. Cooperative spectrum sensing is also presented.

In Chapter 5, a soft decision combining rule based spectrum sensing technique,

namely the EGC-SDC scheme, is discussed. Its detection performance as well as the

closed-form analysis is presented.

The cooperative spectrum sensing scheme with quantization is discussed in Chapter

6. In order to reduce the communication overhead among cognitive radio system, while

retaining good detection performance, quantization is applied towards conventional

EGC-SDC scheme. Various quantization techniques are considered here. Simulation

results as well as the analysis on the detection performance are presented.
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In Chapter 7, the Double Threshold spectrum sensing scheme is discussed. First the

simple Double Threshold scheme is presented. Then, quantization is applied towards

this technique. Simulation results on the detection performance for these techniques

are shown. Finally, the closed-form analysis on its detection performance is presented.

Next, our previously proposed sequential cooperative spectrum sensing techniques

are presented in Chapter 8. First, the Weighted SED scheme which takes fixed num-

ber of past observations is presented. Then, Two-Stage and Differential SED schemes

which adaptively determine the number of past observations are shown. The math-

ematical analysis on probability of false alarm and detection for the Weighted and

Two-Stage SED is presented.

Finally, conclusions are drawn and possible future works are outlined in Chapter

9.
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Chapter 2

Background Theory

In this chapter, relevant background theory of wireless communications is presented.

First, wireless communication channel modellings, both large-scale and small-scale

propagations are described. Quantization and time-series averaging models are pre-

sented in Section 2.6 and 2.7 respectively. Then, statistical distributions and random

variables are discussed in Section 2.8.

2.1 Wireless Communication Channel

Wireless communication operates through the media which is the air interface. The

transmitted signal will travel along the transmission path from the transmitter to

the receiver. This path can be obstructed not only by objects in the line-of-sight

between them, but also objects that cause changes in the electromagnetic field at the

receiver [12]. As a result, the received signal will degrade and become different to

the transmitted signal. As the wireless channels are random, the wireless channel

modelling is typically done in a statistical way [13].

Wireless channel modelling is classified upon the variation in the channel. The

variation due to path Loss and shadowing occurring over relatively large distances is

referred as the large-scale propagation. On the contrary, the variation due to rapid

fluctuations and fading over a short distance or time is referred as the small-scale

propagation [14].

25



CHAPTER 2. BACKGROUND THEORY 26

2.2 Large-Scale Propagation

Large-scale propagation can be classified into two models; path loss and shadow-

ing. These models are used to predict the average received signal strength at large

transmitter-receiver distance [13].

2.2.1 Path Loss

Path loss is used to model the attenuation of the signal which travels from the transmit-

ter to the receiver. The further the signal travels, the more attenuation it experiences.

Hence, path loss increases exponentially with the increasing distance.

The propagation model for path loss at the distance x is given as

Pr

Pt

=
L0

xη
(2.1)

where η is path loss exponent which is different and dependent on the propagation

environment, for instance, it is 2 for free-space propagation and 4 to 6 under shadowed

urban cellular radio. Pr and Pt are respectively the received and transmitted power.

L0 is the path loss at a reference distance d0, which is given as [13]

L0 =
(4πd0)

2

λ2GtGr

(2.2)

L0(dB) = 10 log10

(

(4πd0)
2

λ2GtGr

)

(2.3)

where λ is the wavelength, Gt and Gr are the antenna gains for the transmitter and

receiver respectively.

2.2.2 Shadowing

Shadowing is an effect of the variation in terrain and presence of obstacles. This affects

the received power at different locations with a fixed distance x and is modelled as

log-normal distribution. The effect of shadowing can be expressed as [15]

L (dB) = L0(dB) + 10η log10

(

x

d0

)

+Xσ (2.4)

where the summation for first two terms (L0 and the log10 terms) are the path loss

at distance d and Xσ, which is a zero-mean Gaussian distributed random variable in

log-scale, represents log-normal shadowing effect.
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2.3 Small-Scale Propagation

Small-scale propagation is to characterize rapid fluctuations over short distance or

time. There are various factors which influence small-scale fading such as multipath

propagation, speed of the mobile, speed of surrounding objects, and the transmission

bandwidth of the signal.

2.3.1 Multipath Fading

Multipath fading occurs when signal arrives at the receiver through different paths,

as a result of reflection, diffraction or scattering. This creates many replicas of the

transmitted signal as each path can arrive with different gains, phases and delays.

Mathematically, the multipath channel with N number of multipath components can

be modelled as [13]

h(t, τ) =
N−1
∑

i=0

ai(t, τ) exp [jθi(t, τ)] δ(τ − τi(t)) (2.5)

where h(t, τ) is tap-filter representing multipath channel, ai(t, τ), θi(t, τ), τi(t) is gain,

phase and path excess delay respectively. There are two time-related variables in this

equation as t is time variation due to motion and τ is time variation due to multipath

delay.

2.3.2 Doppler Shift

Doppler shift is the shift in the received signal frequency due to the relative motion

of transmitter and receiver. This shift can influence small-scale fading and it depends

on the velocity and direction of motion of the mobile. The Doppler shift fd can be

expressed as

fd =
v

λ
cosψ (2.6)

where v, λ, ψ is the speed of movement, the wavelength and the angle between the

direction of motion and the wave’s arrival path.
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Figure 2.1: Types of Small-Scale Fading

2.4 Types of Small-Scale Fading

There are two types of small-scale fading. One is based on multipath time delay spread,

while the other is based on Doppler spread. However, these two types of fading are

not mutually exclusive. Fig. 2.1 summarizes small-scale fading based on multipath

time delay spread and Doppler spread [13].

2.4.1 Fading Effects due to Multipath Time Delay Spread

Signals can experience either flat fading and frequency selective fading, depending on

the Multipath time delay spread.

Flat Fading

Signal undergoes flat fading when coherence bandwidth, over which the mobile radio

channel has a constant gain and linear phase response, is greater than the bandwidth

of the signal, and the delay spread is smaller than the symbol period.

Flat fading can be summarized as

Bs << BC (2.7)
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and

TS >> σT (2.8)

where Bs, Bc, TS, σT is respectively the bandwidth of the signal, the coherence band-

width, symbol period and the rms delay spread of the channel.

Frequency Selective Fading

Signals undergo frequency selective fading when coherence bandwidth is smaller than

the bandwidth of the signal and the delay spread is greater than the symbol period. In

this case, the received signal is distorted because of multiple waveforms and channel

induces intersymbol interference (ISI) to the signal.

Frequency selective fading can be summarized as

Bs > BC (2.9)

and

TS < σT . (2.10)

2.4.2 Fading effects due to Doppler Spread

This type of fading is subject to the change of the channel due to motion. Channel

can be classified as fast fading or slow fading based on the symbol duration and the

change of channel.

Fast Fading

In fast fading, the channel impulse response changes rapidly within the symbol dura-

tion. In other words, coherence time, which is time duration that the fading parameters

remain fairly constant, is smaller than the symbol period. Fast fading is also called

time selective fading.

Fast fading can be summarized as

TS > TC (2.11)
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and

Bs > BD (2.12)

where TC , BD is the coherence time and the measure of spectral broadening caused by

the time variation of the channel. BD is defined as the range of frequencies where the

received Doppler spectrum is non-zero.

Slow Fading

In slow fading, the channel impulse response changes much slower than the transmitted

baseband signal. In other words, coherence time is greater than the symbol period.

The channel can be assumed to be static over one or several bandwidth intervals.

Slow fading can be summarized as

TS << TC (2.13)

and

Bs >> BD. (2.14)

2.5 Common Channel Models

In this section, four common channel models are presented; AWGN channel, Rayleigh,

Rician and Nakagami-m fading channel.

2.5.1 AWGN channel

The additive white Gaussian noise (AWGN) channel model is an ideal channel model

as it merely adds the white Gaussian noise linearly into the signal. Being the non-

fading channel model, the phenomenon of fading is not taken into account for this

channel type, where the channel gain is always 1.

2.5.2 Rayleigh fading channel

Rayleigh fading channel model is normally used to describe the time-varying nature

of the received envelope of a flat fading channel. This model is based on assumptions
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that there are infinite arrival paths at the same time at all angles, all paths have zero

mean and similar variance, which means there is no dominant path and all path gains

are statistically independent. By taking central limit theorem, I (In-phase) and Q

(Quadrature) components of the Rayleigh fading channel are Gaussian distributed.

In Rayleigh fading channel, the instantaneous SNR follows the probability density

function (PDF) given by

fγ(γ) =







1

γ̄
exp

(

−γ
γ̄

)

, γ ≥ 0

0 , otherwise (2.15)

where γ and γ̄ is respectively the instantaneous and average SNR [16].

2.5.3 Rician fading channel

Rician fading channel is used to model propagation paths between the transmitter and

the receiver, when there is a dominant line-of-sight path and many weaker multipaths.

Channel fading statistics in this case is Rician distributed as follows [17]

fγ(γ) =







γ

σ2
exp

(

−(γ2 + A2)

2σ2

)

I0

(

Aγ

σ2

)

, A ≥ 0, γ ≥ 0

0 , otherwise (2.16)

where A denotes the peak amplitude of the dominant signal and I0(·) is the modified

Bessel function of the first kind and zero-order.

The Rician distribution is also described in terms of a parameter K, which is the

ratio between the deterministic signal power and the variance of the multipath.

K =
A2

2σ2

K(dB) = 10 log10
A2

2σ2
dB . (2.17)

The Rayleigh distribution is a special case for Rician distribution where K ap-

proaches 0 or −∞ dB. Fig. 2.2 shows the distribution for Rayleigh and Rician fading

channel.

2.5.4 Nakagami-m fading channel

In Nakagami-m fading channel, the instantaneous SNR follows the PDF given by

fγ(γ) =
mmγm−1

γ̄mΓ(m)
exp

(

−mγ
γ̄

)

, γ ≥ 0 (2.18)
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Figure 2.2: Rayleigh and Rician Distribution

where m is the Nakagami-m parameter [18].

Rayleigh fading channel is a special case for Nakagami-m fading channel where m

equals to 1. Also, in the limit where m→ +∞, Nakagami-m fading channel converges

to an AWGN channel [16].

2.6 Quantization

Quantization is the process to represent a range of values using one quantum value.

As a result, an information is split into various regions, each of which is represented

by its corresponding quantum value. Its resolution or number of quantization regions

is defined by the number of quantization bits. If n-bit quantization is applied, this can

represent 2n quantization regions.

Quantization can be classified into two groups: uniform and non-uniform quanti-

zation. In uniform quantization, each quantization region is equally spaced and has

the same width, whereas the width is different for the non-uniform one. The over-

all distortion for a quantizer can be measured using the Mean-Squared Error (MSE),
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given in [19] as

MSE =

∫

Qα

(y − qα)
2 p(y) dy (2.19)

where Qα represents each quantization region, qα is the quanta for the α region, y is

input to the quantizer and p(y) is the PDF of the random variable Y.

By optimizing the quantizer characteristic and its associated quantization regions,

MSE can be minimized [19, 20]. The uniform quantization is optimal only for the

uniformly distributed random variable, while the non-uniform quantization is optimal

for the rest [21].

2.7 Time-Series Averaging Model

The averaging model is mainly used in time series to smoothen the data and remove

short-term fluctuations. This can be applied in CR spectrum sensing techniques such

that short-term fluctutations such as noise can be removed. There are two types of

averaging model; the autoregressive and moving average model.

2.7.1 Auto-Regressive Model

The autoregressive model can be written mathematically as [22]

y[n] = x[n]−
N
∑

k=1

a[k] · y[n− k]. (2.20)

This model is similar to the IIR filter, which takes the previous output into the sum-

mation for the current one. The diagram for autoregressive model is shown in Fig.

2.3. In terms of sensing and sequential detection, Auto-Regressive model was utilized

in [22,23].

2.7.2 Moving Average Model

The moving average model can be written mathematically as

y[n] =
N
∑

k=0

b[k] · x[n− k]. (2.21)
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Figure 2.3: Autoregressive model

This model is similar to the FIR filter, which takes the previous input into the sum-

mation for the current output. The output comes from the summation of the weighted

input value [24]. The diagram for moving average model is shown in Fig. 2.4. Later

in this thesis, Moving-Average model is applied towards CR’s observations in Chapter

8, where we investigate sequential cooperative spectrum sensing.

2.8 Statistical Distributions and Random Variables

A random variable (RV) is a variable whose value depends on the randomness and

is statistically modelled by the distribution or the PDF it follows. In this section,

commonly used statistical distributions in wireless communication are presented, along

with its PDF and cumulative density function (CDF).

2.8.1 Gaussian Distribution

If a RV follows a Gaussian or Normal distribution, its PDF is defined by

f(y) =
1√

2π
√
σ2
e−(y−µ)2/2σ2

,−∞ < y <∞ (2.22)
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Figure 2.4: Moving Average model

where µ, σ2 is the mean and variance [25]. The notation y ∼ N (µ, σ2) means that a

random variable y is Gaussian-distributed, with mean µ and variance σ2. Its CDF is

defined as

F (y) = P (Y ≤ y)

=

∫ y

−∞

f(y) dy

=
1

2

[

1 + erf

(

x− µ√
2σ2

)]

. (2.23)

Moreover, its complementary cumulative density function (CCDF) is defined as

CCDF(y) = P (Y > y)

= 1− F (y)

=
1

2
erfc

(

x− µ√
2σ2

)

. (2.24)

Fig. 2.5 shows PDF for two RVs following Gaussian distribution, with different mean

and variance.
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Figure 2.5: Gaussian Distribution

2.8.2 Chi-Squared Distribution

A Chi-Squared or a central Chi-Squared distribution is defined as a summation of

squares of independent standard normal RVs, Y , with zero mean and unit variance.

A RV Z is

Z =
k
∑

i=1

Y 2
i (2.25)

and it is distributed according to the Chi-Squared distribution with k degrees of free-

dom. It is also denoted as z ∼ X 2
k .

The PDF for the Chi-Squared distribution is

f(y) =







1

2
k
2Γ(k/2)

y
k
2
−1e−

y
2 , 0 ≤ y <∞

0 , otherwise. (2.26)

Its CDF is defined as

F (y) = P (Y ≤ y)

=

∫ y

0

f(y) dy

=
1

Γ(k/2)
γ

(

k

2
,
y

2

)

, 0 ≤ y <∞ (2.27)
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and its CCDF is defined as

CCDF(y) = P (Y > y)

= 1− F (y)

=
1

Γ(k/2)
Γ

(

k

2
,
y

2

)

, 0 ≤ y <∞. (2.28)

Fig. 2.5 shows PDF for two RVs following Gaussian distribution, with different mean

and variance.

2.8.3 Non-Central Chi-Squared Distribution

A Non-Central Chi-Squared Distribution is defined as a summation of squares of in-

dependent normal RVs, Y , with mean µ and variance σ2. A RV Z is

Z =
k
∑

i=1

(

Yi
σi

)2

(2.29)

and it is distributed according to the Non-central Chi-Squared distribution with k

degrees of freedom and the non-centrality parameter λnc, which is defined as

λnc =
k
∑

i=1

(

µi

σi

)2

. (2.30)

The PDF for Non-Central Chi-Squared distribution is

f(y) =











1

2
e−(y+λnc)/2

(

y

λnc

)k/4−1/2

Ik/2−1

(

√

λncy
)

, 0 ≤ y <∞

0 , otherwise (2.31)

and its CDF is defined as

F (y) = 1−Q k
2

(

√

λnc,
√
y
)

, 0 ≤ y <∞ (2.32)

where QM(a, b) is Marcum-Q function.

Fig. 2.6 shows PDF for two RVs following Chi-Squared and Non-central Chi-

Squared Distributions. The Chi-Squared distributed RV is with k = 4 and the Non-

central Chi-Squared distributed one is with k = 4 and λ = 6.
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Figure 2.6: Chi-Squared and Non-Central Chi-Squared Distribution

2.8.4 Summation of two Random Variables

Let X and Y be independent RVs with the PDF of fX(x) and fY (y). The summation

of these two independent RVs are Z = X + Y . The PDF of Z is given by

fZ(z) = fX(x) ∗ fY (y)

=

∫ ∞

−∞

fX(x) · fY (z − x) dx. (2.33)

In other words, fZ(z) is the convolution of fX(x) and fY (y) [26].

For instance, let Z be the summation of two independent Gaussian distributed X

and Y , with µx, σ
2
x, µy and σ2

y . The PDF of X can be written according to (2.22) as

fX(x) =
1√

2π
√

σ2
x

e−(x−µx)2/2σ2
x (2.34)

and similarly the PDF of Y is

fY (y) =
1√

2π
√

σ2
y

e−(y−µy)2/2σ2
y (2.35)
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The PDF of Z, which is Z = X + Y , becomes

fZ(z) = fX(x) ∗ fY (y)

=

∫ ∞

−∞

fX(x) · fY (z − x) dx

=

∫ ∞

−∞

1√
2π
√

σ2
x

e−(x−µx)2/2σ2
x · 1√

2π
√

σ2
y

e−(z−x−µy)2/2σ2
y dx. (2.36)

After some derivations, we have

fZ(z) =
1

√

2π(σ2
x + σ2

y)
exp

[−(z − (µx + µy))
2

2(σ2
x + σ2

y)

]

. (2.37)

This derivation shows that if X and Y are independent Gaussian distributed RVs such

that

X ∼ N (µx, σ
2
x)

Y ∼ N (µy, σ
2
y) (2.38)

then, Z which is a summation of X and Y , Z = X + Y is distributed as

Z ∼ N (µx + µy, σ
2
x + σ2

y). (2.39)

2.8.5 Central Limit Theorem

The Central Limit Theorem is defined that a sum of n independent, identically dis-

tributed (i.i.d.) RVs can be approximated as a normal distribution when there is a

large number of RVs and the contribution for each of them is small compared to the

total.

For instance, let X1, X2, ...Xn be i.i.d. RVs with mean µ and variance σ2 and let

Sn = Y1 + Y2 + ...+ Yn, then

lim
n→∞

P

(

Sn − nµ√
nσ2

≤ y

)

= F (y) (2.40)

where F (·) is the CDF for Gaussian distribution as in (2.23) [27].

2.9 Summary

In this chapter, relevant background theories of wireless communications are presented.

First, large-scale propagation including path loss and shadowing is discussed. Then,
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small-scale propagation including flat and frequency-selective fading, fast and slow

fading is summarized. Commonly used channel model such as AWGN, Rayleigh and

Rician fading channel as well as its related statistics are presented. Then, background

of quantizataion and the time-series averaging model is shown. Finally, fundamentals

of random variables along with Central limit theorem are summarized.



Chapter 3

Cognitive Radio System

In this chapter, we present Cognitive Radio (CR) networks, its architectures and

characteristics. Various aspects of spectrum sensing is discussed in Section 3.5. Then,

IEEE 802.22 WRAN Standard and prior works on spectrum sensing are presented in

Section 3.6 and 3.7.

3.1 Cognitive Radio Networks

Wireless networks are now based on fixed spectrum allocation policy. Spectrum can be

under-utilized in some area or some period of time, while some frequencies are highly-

utilized [7]. To maximize the frequency spectrum usage, some under-utilized wireless

spectrum should be exploited. CR aims to opportunistically access the spectrum as

the secondary-tier networks. CR user utilizes the spectrum while the licensed users or

primary users (PUs) are not using it, in order to maximize the spectrum utilization

[9]. As a secondary-tier user, CR user needs to vacate the spectrum whenever PU

retransmits again. CR is defined as a radio that can change its transmission parameters

based on interaction with the environment in which it operates [7]. CR enables its

users to

1. determine which portion of the spectrum is available and detect the presence of

licensed users when a user operates in a licensed band.

2. select the best available channel.

3. coordinate access to this channel with others.

41
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Figure 3.1: Cognitive Radio Concepts

4. vacate the channel when PU is detected.

Fig. 3.1 shows the concept of CR and Dynamic Spectrum Access. CR user dy-

namically and opportunistically accesses the spectrum hole or the white space, while

avoiding an access to the spectrum which is currently in use by the PUs.

3.2 Cognitive Radio Architectures

Cognitive Radio network architecture can be categorized into two groups, the primary

network and the cognitive radio network [7].

The primary network is an existing infrastructure which has an exclusive right

over a certain spectrum band, for example, the cellular networks and TV broadcast

networks. The components of the primary networks are

• Primary User (licensed user): a user which has a license to operate in a licensed

band. The PU operation should not be affected by the operations of CR users.

• Primary Base-Station (licensed base-station): a fixed infrastructure network

component with spectrum license.

The CR network does not have license to operate in a licensed band and its

spectrum access is allowed opportunistically. The components of the cognitive radio

networks are

• Cognitive Radio User (unlicensed user): a user who has no license over the

spectrum. CR user can access the spectrum opportunistically only when PU is

not present and CR user must vacate the channel immediately when the PU is

detected
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• Cognitive Radio Base-Station (unlicensed base-station): a fixed infrastructure

component with CR capabilities, providing a single-hop connection to CR users.

In cooperative spectrum sensing, the CR Base-Station also serves as a fusion cen-

ter to gather the information from cooperative users and make the final spectrum

sensing decision.

• Spectrum Broker (scheduling server): a central network entity that controls spec-

trum resource sharing among the CR users.

3.3 Cognitive Radio Characteristics

There are two main characteristics of cognitive radio, Cognitive Capability and Re-

configurability.

3.3.1 Cognitive Capability

CR’s cognitive capability allows CR to capture or sense the information from its radio

environment. This task is functioned in three steps, which are referred as the cognitive

cycle, shown in Fig. 3.2 [14].

• Spectrum Sensing: The radio environment and the available spectrum band are

monitored. Their information is captured and spectrum holes are detected.

• Spectrum Analysis: The characteristics of the spectrum holes detected are esti-

mated.

• Spectrum Decision: The appropriate spectrum band is chosen according to the

spectrum analysis and characteristics and user requirements: data rate, band-

width, and transmission mode.

Fig. 3.2 shows the cognitive cycle [7]. First, the CR user needs to sense the radio

environment once it wants to access the spectrum. In this step, spectrum sensing

captures the information and detects the spectrum holes. Afterwards, for the spec-

trum analysis, the characteristics of the spectrum holes are estimated. Then, for the

spectrum decision, CR determines the characteristics such as the data rate, the trans-

mission mode and the bandwidth of the trasmission. Then, once CR user starts to
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Figure 3.2: Cognitive Cycle

operate in determined spectrum band, it should keep track of the changes in the ra-

dio environment, as the radio environment can change over time and space. When

the current spectrum band becomes unavailable, CR user needs to stop utilizing that

channel immediately to avoid interference to the PU.

3.3.2 Reconfigurability

CR’s reconfigurability enables CR to be dynamically programmed according to the

radio environment, to transmit or to receive on a variety of frequency and different

transmission access. The configurable parameters in CR system are

• Operating frequency: CR user can change its operating frequency depending on

radio environment

• Modulation: CR user can adapt its modulation scheme to user requirements and

channel conditions

• Transmission Power: CR user can reduce it transmission power to a lower level

to allow more users to share the same channel and to decrease the interference.

• Communication Technology: CR user can provide interoperability among differ-

ent communication systems
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3.4 Spectrum Sharing

Based on the access technology, spectrum sharing can be classified as [7]

• Overlay spectrum sharing: In this spectrum sharing technique, a portion of

the spectrum that is not used by the licensed user is accessed by the CR users.

As a result, interference to the PU is minimized.

• Underlay spectrum sharing: This spectrum access technique exploits the

spread spectrum techniques developed for cellular networks. CR user begins

communication at the certain portion of the spectrum allocated by a spectrum

allocation map with transmission power regarded as noise by the licensed user.

This technique can utilize increased bandwidth compared to the overlay tech-

nique.

3.5 Spectrum Sensing

CR user can access spectrum band only when the licensed user does not exist and

it needs to vacate the channel immediately when the PU comes back. As a result,

spectrum hole detection plays an important role in the CR system. There are various

ways to detect the spectrum holes: transmitter detection, cooperative detection and

interference based detection. Fig. 3.3 shows the classification of spectrum sensing

techniques [7]. In this section, three different aspects for spectrum sensing techniques

are discussed.

3.5.1 Transmitter Detection

First, the transmitter detection is to detect spectrum holes, which CR can access and

utilize [28]. The transmitter detection detects the spectrum holes by detecting whether

any PU transmitter is operating or not. The basic hypothesis model here is that if PU

exists, the received signal at the CR user would consist of the PU’s signal and noise.

Otherwise, it would be noise only in case that PU does not exist. There are three

techniques generally used for transmitter detection in CR networks
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Figure 3.3: Classification of spectrum sensing techniques

Matched Filter Detection

In stationary Gaussian noise, the matched filter detection is optimal as it maximizes

signal-to-noise ratio (SNR). However, this technique requires an a priori knowledge of

the PU such as the modulation type and order, the pulse shape, and the packet format

[7]. An inaccuracy in this information can lead to poor performance. Nonetheless,

pilot, preambles, synchronization, or spreading codes can be used for this coherent

detection. Matched filter detection is robust to noise uncertainty and delivers good

performance under low SNR scenario [29].

Energy Detection

In this technique, energy of the received signal is compared to the threshold value to

decide whether the PU exists or not. This technique is simple to implement [14] and

does not require prior knowledge on PU. However, it cannot distinguish signal types

but can only determine the existence of signal. More details on Energy detection-based

spectrum sensing will be covered in Chapter 4.
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Cyclostationary Feature Detection

This technique differentiates noise energy from the modulated signal energy using

the fact that the noise is wide-sense stationary with no correlation, while modulated

signals are cyclostationary with spectral correlation due to the embedded redundancy

of signal periodicity [30]. This technique is robust in low SNR scenario and is also

robust to the interference. However, it requires partial information on PU and high

computational cost.

3.5.2 Cooperative Detection

The hidden terminal problem occurs in conventional energy detection as the CR can

experience deep fade and not be able to detect the PU. Furthermore, there is still a

chance when the CR user has a line-of-sight to the primary user but cannot detect

the PU’s existence due to shadowing uncertainty. When CR user experiences hidden

terminal problem or shadowing uncertainty, the transmitter detection cannot detect

the PU’s presence. As a result, cooperation among CR users can reduce an uncertainty

caused by the single user’s detection. Using multiple sensing nodes, cooperative sensing

can exploit spatial diversity and mitigate multipath fading and shadowing effects,

which are the main factors that deteriorate performance of single user’s detection.

The cooperative detection can provide more accurate performance [14]. However,

it requires additional operations and overhead traffic to communicate among CR users.

As a result, there can be an effect on the performance of resource-constrained networks.

3.5.3 Interference-Based Detection

In this technique, the interference level at the PU receivers is measured in order to

protect them from interference. CR user can access the spectrum bands as long as

its interference at the primary receiver does not exceed PU’s interference temperature

limit, which is the maximum amount of interference that the receiver can tolerate.

The interference temperature TI is defined as

TI(fc, B) =
PI(fc, B)

kB
(3.1)

where PI(fc, B) is the average interference power in Watts centered at fc, covering

bandwidth B and k is Boltzmann’s constant of 1.38× 10−23 J/K [31].
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Parameter Analog TV Digital TV Wireless Microphone

Probability of Detection 90% 90% 90%

Probability of False Alarm 10% 10% 10%

Channel Detection Time ≤ 2 s ≤ 2 s ≤ 2 s

Table 3.1: Receiver Parameter for 802.22 WRAN

3.6 IEEE 802.22 WRAN Standard

IEEE 802.22 Wireless regional area network (WRAN) is the standard based on the

CR technology. It focuses on utilizing and enabling un-licensed use on the UHF/VHF

TV bands (54-862MHz) [7]. Spectrum sensing is an important component for CR to

operate without interfering the PU system. The standard’s requirement on the receiver

parameters for 802.22 WRAN is shown in Table 3.1 [32]. It is shown that signals are

classified into three types; analog TV, digital TV and wireless microphone. However,

the requirements for probability of false alarm and detection are the same for all three

signals types. In later chapters, the simulation will consider the probability of false

alarm and detection as provided in Table 3.1.

3.7 Prior Works on Spectrum Sensing

With the aim to improve the detection performance in cooperative spectrum sensing,

many novel techniques have been investigated and proposed. Various aspects and

algorithms as well as the challenges for spectrum sensing are summarized in [33–35].

Cooperative detection with distributed sensors has been studied in [36, 37]. A

theory and application on detection of abrupt changes has been investigated in [38].

However, in terms of CR, cooperative spectrum sensing and its algorithms have been

proposed in [8] for two-user network and in [39] for multi-user network. Cooperative

spectrum sensing under fading channel as well as effect of shadowing is considered

in [40–42]. These works show that cooperation helps improve the overall performance

of the network. In [43], an energy detector based cooperative spectrum sensing is

improved under multiple antenna scenario.

In [44], a linear optimization is applied at fusion center for each local test statistics
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from individual CR user. The linear network coding is applied to the cooperative spec-

trum sensing in [45]. In [46], final decision is formed based on the result of a weighted

summation of the neighboring results. Variable weighting factors are considered here

such as the distance to neighboring nodes, influence of positive results and influence

of a node’s own result. In [47], weighting decision fusion scheme is also considered. A

spectrum sensing technique based on a Neyman-Pearson criterion is studied in [48].

Also, the detection techniques related to Log-likelihood based detector are proposed

in [49–51].

Apart from the above-mentioned spectrum sensing schemes, various different tech-

niques have been proposed. The quickest spectrum sensing is presented in [52]. Se-

quential spectrum sensing techniques are considered in [53–55]. Minimum-delay spec-

trum sensing considering both fixed sample size and sequential sensing algorithms are

investigated and developed in [56]. Adaptive sensing techniques are proposed in [57]

to maximize spectrum utilization such that CR performs channel sensing when it is

needed only. Hence, the unnecessary sensing can be avoided. In [58], the protoypes and

protocols are tested and built equipped with cooperative sensing, interference alerting

and frequency management. A cooperative sensing, in Heterogeneous Network (Het-

Net) with Joint sensing and belief propagation is proposed in [59]. Cyclostationary

sensing is considered in [60]. An advanced technique using OFDM-based MIMO is

proposed in [61] and is shown that it improves the detection performance. Spectrum

sensing of OFDM signals in known and unknown noise variance is considered in [50].

Imperfect reporting channel between CR and the fusion center as well as the error

it induces is studied in [34, 62]. In [63], local oscillator leakage power is exploited

and help to locate receivers. In [64], linear composite hypothesis in the case, where

knowledge on PU and channel statistics is incomplete, is proposed. An improvement

on blind spectrum sensing technique is proposed in [65]. A probability-based scheme

for combination of spectrum sensing information collected from cooperative cognitive

radio users is proposed in [66]. In [67], a technique in which PU helps with spectrum

sensing is proposed.
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3.8 Summary

In this chapter, fundamentals and backgrounds of CR networks along with its archi-

tectures and characteristics are presented. Being secondary-tier users, CR user needs

to be aware of the PU’s state and by dynamically accessing the under-utilized spec-

trum, CR could improve the spectrum utilization. Hence, spectrum sensing procedure

is essential in order to determine whether the spectrum is available for CR’s access or

not. Various aspects of spectrum sensing are summarised in this chapter as well as the

IEEE 802.22 WRAN standard and various prior research works on spectrum sensing.



Chapter 4

Cooperative Spectrum Sensing

An energy detection-based spectrum sensing is discussed in Section 4.1. Related math-

ematical statistics is presented and approximated in Section 4.2 and 4.3. Then, Section

4.4 discusses the cooperative spectrum sensing.

4.1 Energy Detection-Based Spectrum Sensing

The energy detection technique is a simple and effective spectrum sensing approach

whereby the received signal energy is compared to a detection threshold to determine

the existence of PUs [68]. The received signal energy (y) at the CR user can be

expressed as

y =











m
∑

i=1

|ni|2 H0

m
∑

i=1

|hisi + ni|2 H1

(4.1)

where m is the time-bandwidth product, hi, si and ni is the channel gain between PU

and CR, PU’s signal and noise in the ith time slot respectively. H0 and H1 represents

the case when PU is idle and active respectively.

The received signal energy is compared to the detection threshold (λ). A decision

saying that PU is idle (H0) is made if it is less than the threshold. Otherwise CR

thinks that PU is active (H1).

d =

{

H0 , if y < λ

H1 , otherwise . (4.2)

Fig. 4.1 shows the distribution for received signal energy and its corresponding

probabilities. P (Hi|Hj) defines the probability that CR decides that PU is in Hi state

51
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Figure 4.1: Probability density function of H0 and H1

while PU is in Hj state. The CR’s detection performance is commonly measured

by the probability of false alarm (Pf ) and detection (Pd), which are defined as the

probability of locally detecting H1, given that PU is idle and active respectively

Pf (λ) = P (H1|H0)

= P (y > λ|H0)

Pd(λ) = P (H1|H1)

= P (y > λ|H1). (4.3)

4.2 Related Mathematical Statistics

4.2.1 Probability of False Alarm

When PU is idle (H0), the received signal energy at the CR follows the Central Chi-

Squared distribution with 2m degree of freedom. Its PDF can be written as [42]

f(y|H0) =
ym−1e−y/2

Γ(m) · 2m (4.4)

where Γ(.) is the gamma function.
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As there is only noise in the received signal, when PU is idle (H0) as in (4.1), the

probability of false alarm is independent of the channel and can be given as [42]

Pf (λ) =

∫ ∞

λ

f(y|H0) dy

=
Γ(m,λ/2)

Γ(m)
. (4.5)

4.2.2 Probability of Detection

On the contrary, when PU is active (H1) as in (4.1), the received signal energy is de-

pendent on the channel type. The received signal energy for a particular instantaneous

SNR follows the Non-Central Chi-Squared distribution with degree of freedom of 2m

and non-centrality parameter of 2mγ, where γ is the instantaneous SNR. Its PDF can

be written as [42]

f(y, γ|H1) =
ym−1e−(y+2mγ)/2

2m · Γ(m)
0F1(m,

mγy

2
) (4.6)

where 0F1(., .) is the confluent hypergeometric limit function [69].

In an AWGN Channel, the instantaneous SNR at the CR user is constant at γ̄.

The PDF for the received signal energy is

f(y|H1) =
ym−1e−(y+2mγ̄)/2

2m · Γ(m)
0F1(m,

mγ̄y

2
). (4.7)

Hence, similarly to the Pf in (4.5), probability of detection (Pd) is

Pd(λ) =

∫ ∞

λ

f(y|H1) dy

= Qm(
√

2mγ̄,
√
λ). (4.8)

In fading channel, however, the instantaneous SNR at the CR user is random.

Assuming Rayleigh fading with a PDF of fh(γ), the PDF for the received signal energy

can be obtained by

f(y|H1) =

∫ ∞

0

f(y, γ|H1) · fh(γ) dγ

=

∫ ∞

0

ym−1e−(y+2mγ)/2

2m · Γ(m)
0F1(m,

mγy

2
) · 1
γ̄
e−

γ
γ̄ dγ. (4.9)

After some derivations, we obtain

f(y|H1) =
e−

1
2(1+mγ̄)

y ×
[

Γ(m− 1)− Γ(m− 1, mγ̄y
2+2mγ̄

)
]

2 · (1 +mγ̄) · ( mγ̄
1+mγ̄

)
m−1 · Γ(m− 1)

(4.10)
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where γ̄ is the average SNR received at the CR user.

Hence, in Rayleigh fading channel, the probability of detection (Pd) is

Pd(λ) =

∫ ∞

λ

f(y|H1) dy

=
Γ(m− 1, λ/2)

Γ(m− 1)

+ e−
λ

2(1+mγ̄) ×
(

1 +
1

mγ̄

)m−1

×
[

1−
Γ(m− 1, λmγ̄

2(1+mγ̄)
)

Γ(m− 1)

]

. (4.11)

While in the Nakagami fading channel, the derivation for Pd is presented in [41]

and as follows.

Pd,Nak(g,m, γ̄, λ) = α

[

G1 + β

m−1
∑

n=1

(λ/2)n

2(n!)
1F 1

(

g;n+ 1;
λ

2

γ̄

g + γ̄

)

]

α =
1

Γ(g)2g−1

(

g

γ̄

)g

β = Γ(g)
( 2γ̄

g + γ̄

)g

e−λ/2

G1 =
2g−1(g − 1)!

( g
γ̄
)g

γ̄

g + γ̄
e

−λ
2

g
g+γ̄

[

(

1 +
g

γ̄

)( g

g + γ̄

)g−1

× Lg−1

(

− λ

2

γ̄

g + γ̄

)

+

g−2
∑

n=0

( g

g + γ̄

)n

Ln

(

− λ

2

γ̄

g + γ̄

)

]

(4.12)

where 1F 1(.; .; .), Ln(.), g, m is the confluent hypergeometric function, Laguerre poly-

nomial of degree n, Nakagami parameter and time-bandwidth product respectively

[69].

4.2.3 Cumulative Density Function

As CDF is the probability that a random variable is smaller than a particular level,

the CDF under H0 and H1 case can be defined as

CDF (λ) =







1− Pf (λ)

1− Pd(λ)

, H0

, H1.
(4.13)

4.3 Statistical Approximation

Here, we propose a statistical approximation for the Pd and PDF of H1 in (4.11) and

(4.10) respectively. The approximation is useful in the case that the closed-form is
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difficult to use such that derivation for inverse of Pd. The approximation on Pd will

be used in Chapter 6, while that of PDF of H1 will be in Chapter 7 and 8.

4.3.1 Probability of Detection

The incomplete gamma function is given by [69] as

Γ(s, x)

Γ(s)
= e−x

s−1
∑

k=0

xk

k!
. (4.14)

When x is sufficiently large and s is small, this function will approach zero, due to

the dominance of e−x over the summation term. Consider the two incomplete gamma

functions in the first and last term of (4.11). In case that λ is large and m−1 is small,

these two incomplete gamma functions will tend to zero.

Γ(m− 1, λ/2)

Γ(m− 1)
≈ 0

Γ(m− 1, λmγ̄
2(1+mγ̄)

)

Γ(m− 1)
≈ 0. (4.15)

Hence, the approximated probability of detection (P̃d) in Rayleigh fading channel

becomes

Pd(λ) =
Γ(m− 1, λ/2)

Γ(m− 1)

+ e−
λ

2(1+mγ̄) ×
(

1 +
1

mγ̄

)m−1

×
[

1−
Γ(m− 1, λmγ̄

2(1+mγ̄)
)

Γ(m− 1)

]

.

P̃d(λ) = 0 + e−
λ

2(1+mγ̄) ×
(

1 +
1

mγ̄

)m−1

[1− 0]

P̃d(λ) = e−
λ

2(1+mγ̄) ×
(

1 +
1

mγ̄

)m−1

. (4.16)

Given that the time-bandwidth product in CR is usually a small integer, the ap-

proximation will be valid if the detection threshold is high. Fig. 4.2 compares this

approximation to the exact value of Pd, when m is set to 3 and PU’s SNR is 5dB. The

approximation is very accurate when λ is large while a slight error occurs when λ is

small.



CHAPTER 4. COOPERATIVE SPECTRUM SENSING 56

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Detection Threshold (λ)

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

 

 
Exact
Approximated

Figure 4.2: Approximated and Exact Probability of Detection

4.3.2 Probability Density Function on H1

Similarly to Pd approximation, the incomplete gamma function terms in (4.10) could

be approximated to zero.

Γ(m− 1, mγ̄y
2+2mγ̄

)

Γ(m− 1)
≈ 0. (4.17)

And the PDF of H1 under Rayleigh fading channel is approximated as

f(y|H1) =
e−

1
2(1+mγ̄)

y×
2 · (1 +mγ̄) · ( mγ̄

1+mγ̄
)
m−1

[

1−
Γ(m− 1, mγ̄y

2+2mγ̄
)

Γ(m− 1)

]

f̃(y|H1) =
e−

1
2(1+mγ̄)

y×
2 · (1 +mγ̄) · ( mγ̄

1+mγ̄
)
m−1 [1− 0]

=
e−

1
2(1+mγ̄)

y

2 · (1 +mγ̄) · ( mγ̄
1+mγ̄

)
m−1 . (4.18)

Fig. 4.3 compares this approximation to the exact PDF, when m is set to 3 and

PU’s SNR is 5dB. The simulation result also proves that the approximation is very

accurate when λ is large while an error occurs when λ is small.
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Figure 4.3: Approximated and Exact Probability Density Function H1

4.4 Cooperative Spectrum Sensing

Detection performance metrics in cooperative spectrum sensing are the cooperative

probability of false alarm (Qf ) and detection (Qd). Being a cooperative system, a final

decision needs to be made from various local information. Hence, decision combining

rule plays an important role here. Cooperative spectrum sensing can be classified into

Hard Decision Combining (HDC) and and Soft Decision Combining (SDC). For HDC,

only local decision from sensing nodes is forwarded to the fusion center, while the local

observation is forwarded for SDC.

4.4.1 Hard Decision Combining Rules

In HDC rules based cooperative spectrum sensing, CR users forward its local decision

to the fusion center to make a final decision. Assuming that the energy observations

at each CR user is independent and identically distributed (i.i.d.), the Qf and Qd can

be expressed according to the combining rules as follows [42,70].
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OR Rule

In OR-rule based HDC, the final decision of H1 is made when at least one CR user

reports H1 local decision. The Qf and Qd is given as

Qf (λ) = 1− (1− Pf (λ))
N

Qd(λ) = 1− (1− Pd(λ))
N (4.19)

where N is the number of cooperative CR users.

AND Rule

In AND-rule based HDC, the final decision of H1 is made only when all CR users

report H1 local decision. The Qf and Qd is given as

Qf (λ) = (Pf (λ))
N

Qd(λ) = (Pd(λ))
N . (4.20)

k-out-of-n Rule

In k-out-of-n-rule based HDC, the final decision of H1 is made only at least k CR users

report H1 local decision. The Qf and Qd is given as

Qf (λ) =
n
∑

l=k

(

n

l

)

(Pf (λ))
l (1− Pf (λ))

n−l

Qd(λ) =
n
∑

l=k

(

n

l

)

(Pd(λ))
l (1− Pd(λ))

n−l . (4.21)

4.4.2 Soft Decision Combining Rules

In SDC rules based cooperative spectrum sensing, CR users forward its local obser-

vation to the fusion center to make a final decision. The fusion center then combines

the forwarded observations and compares the aggregated energy value to the fusion

threshold. The Qf and Qd can be expressed as follows

Qf (λf ) = P{T > λf |H0}

Qd(λf ) = P{T > λf |H1} (4.22)
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Figure 4.4: Simulation Setup Scenario

where T = WY =
N
∑

i=1

wiyi, W is weighting vector and λf is the fusion center detection

threshold.

If the fusion center equally weighs and aggregates the forwarded observations, it is

called Equal Gain Combining based SDC (EGC-SDC) approach. More detail on the

EGC-SDC will be presented in Chapter 5.

4.5 Simulation Setup Scenario

Along this thesis, we assume that the simulation scenario is set up as illustrated in

Fig. 4.4. We adopt the energy detection based transmitter detection technique to

detect whether PU is transmitting or not. It is assumed that CR users are separately

placed. The sensing procedure is that the CR users locally sense the PU. Then, they

collaboratively forward either its decision or observation to the fusion center. In this

step, we assume that the reporting channel is error-free such that the fusion center

receives exactly the same information as sent. Finally, the fusion center makes final

decision and inform all CR users.

Later in this thesis, OR rule is chosen at the fusion center where hard decision is

forwarded to the fusion center. This is due to the PU’s protection property of OR

rule such that all CR users will stop its transmission as long as only at least one CR

user reports the PU’s existence. Moreover, OR rule was shown to deliver a better
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performance over the other rules for many cases of practical interest [42].

4.6 Summary

In this chapter, an energy detection-based spectrum sensing was discussed. First,

related mathematical statistics including probability of false alarm and detection under

AWGN, Rayleigh and Nakagami fading channel was presented. Then, the PDF and

probability of detection under Rayleigh fading channel were approximated. Both HDC

and SDC-based cooperative spectrum sensing were discussed. Finally, the cooperative

spectrum sensing scenario is illustrated.



Chapter 5

EGC-SDC Cooperative Spectrum

Sensing

5.1 Introduction

In this chapter, we present the EGC-SDC cooperative spectrum sensing scheme, where

all cooperating CR users forward its received signal energy to the fusion center. The

forwarded signal energy are then equally combined for decision making. First, we

present the detailed sensing procedures for EGC-SDC scheme and its sensing perfor-

mance. Then, we derive and present the analysis for the closed-form of probability of

false alarm and detection under AWGN and Rayleigh fading channel in Section 5.4.

5.2 EGC-SDC Sensing Procedures

As briefly mentioned in Chapter 4, the detailed sensing procedures for EGC-SDC

scheme are as follows.

1. First, every CR user gathers its information using energy detection technique

and then forwards its local observation to the fusion center.

2. The fusion center equally weighs the forwarded observation and aggregate all of

them.

3. Then, the aggregated value (T ) is compared to the fusion center decision thresh-

old (λf ).

61
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Figure 5.1: Detection Performance on EGC-SDC and OR-HDC scheme, SNR= 3dB

4. The final decision H0 is made, if T is less than λf , otherwise final decision H1 is

made.

d =

{

H0 , if T < λf

H1 , otherwise . (5.1)

5. Then, the final decision, either H0 or H1, is sent back to inform all CR users

whether to transmit on the spectrum or not.

5.3 EGC-SDC Sensing Performance

The detection performance for EGC-SDC spectrum sensing scheme is shown in Fig.

5.1 and 5.2 and compared with that of OR-HDC scheme. The simulation parameters

are three cooperative CR users with time-bandwidth product m of 3 and SNR of 3dB

and 5dB respectively. Simulation results show that EGC-SDC scheme achieves good

performance by equally combining the local observations from the sensing nodes and

especially, the detection performance achieved by EGC-SDC scheme is much better

than that of OR-HDC under the same scenario.
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Figure 5.2: Detection Performance on EGC-SDC and OR-HDC scheme, SNR= 5dB

5.4 Analysis on EGC-SDC scheme

In this section, we provide the analysis for the probability of false alarm and detection

for the EGC-SDC scheme. First, the detection performance under AWGN channel

is considered. Then, the detection performance under Rayleigh fading channel is

investigated. As local observations are forwarded to the fusion center, the closed-form

for both Qf and Qd can serve as the upper bound performance for the CR’s spectrum

sensing.

5.4.1 EGC-SDC scheme under AWGN channel

The analysis on EGC-SDC scheme under AWGN channel was presented in [42] and

the probability of false alarm and detection were given conditioned on the SNR of

fading channel. Here, we presented the closed-form analysis for the probability of false

alarm and detection under AWGN channel.

As previously mentioned in the EGC-SDC sensing procedures, the fusion center

simply weighs and aggregates the forwarded observation from CR users [71]. When

PU is idle (H0), the local observation at CR user is Central Chi-Squared distribution

with 2m degree of freedom [72]. Hence, at the fusion center, the equally weighed and



CHAPTER 5. EGC-SDC COOPERATIVE SPECTRUM SENSING 64

aggregated energy value comes from N cooperative users. Hence, the distribution here

becomes Central Chi-Squared distribution with 2Nm degree of freedom, with a scaling

factor of 1
N

on the energy value as all forwarded observation is equally weighed.

Similarly, when PU is active (H1), the local observation at CR user is Non-Central

Chi-Squared distribution with 2m degree of freedom and non-centrality parameter of

2mγ̄. Hence, similarly to the false alarm, the aggregated distribution at the fusion

center becomes Non-Central Chi-Squared distribution with with 2Nm degree of free-

dom and non-centrality parameter of 2Nmγ̄, with a scaling factor of 1
N

on the energy

value.

Hence, the closed-form of Qf and Qd for EGC-SDC channel under AWGN channel

is as follows.

Qf (λf ) =
Γ(Nm,Nλf/2)

Γ(Nm)
.

Qd(λf ) = QNm(
√

2Nmγ̄,
√

Nλf ). (5.2)

Note that the detection threshold (λf ) here needs a scaling factor of N as fusion

center equally weighs forwarded local observations, while the theoretical distribution

considers simple aggegration.

5.4.2 EGC-SDC scheme under Rayleigh fading channel

In Rayleigh fading channel, Qf is simple and exactly the same with the one in AWGN

channel in (5.2), as there is only noise in H0 and the received energy is channel-

independent.

Qf (λf ) =
Γ(Nm,Nλf/2)

Γ(Nm)
. (5.3)

In order to consider the Qd here, Pd in Nakagami channel, presented in (4.12), are

revisited. The sum of multiple i.i.d. Rayleigh faded signals is Nakagami distributed

[73,74]. Hence, the aggregated value at the fusion center is also Nakagami distributed.

Here, the formula for Pd,Nak presented in (4.12) is adopted and modified in terms of

the system parameters to create a closed-form Qd for EGC-SDC scheme.

First, consider Pd,Nak(g,m, γ̄, λ) as a function of Nakagami parameter, time-bandwidth

product, average SNR and decision threshold. Then, for parameter adjustments, Table

5.1 shows comparison between system parameters used in Nakagami-m and EGC-SDC
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Table 5.1: Comparison between system parameters used in Nakagami-m and EGC-
SDC scheme

Nakagami-m EGC-SDC

Diversity g N

Time-bandwidth product m Nm

Average SNR γ̄ Nmγ̄

Detection Threshold λ Nλf

scheme. Hence, a closed-form for Qd in EGC-SDC scheme becomes a function of Pd,Nak

in (4.12) with the modified parameters as

Qd,Rayl(N,m, γ̄, λf ) = Pd,Nak(N,Nm,Nmγ̄,Nλf ). (5.4)

5.4.3 EGC-SDC Analysis and Simulation Results

Fig. 5.3 compares Qf and Qd, obtained from the simulation and the closed-form anal-

ysis. The simulation parameters are three cooperative CR users with time-bandwidth

product m=3 and SNR= 3dB under Rayleigh fading channel. The result shows that

the closed-form analysis perfectly matches with the simulation results.

Fig. 5.4 compares Qf and Qd, obtained from the simulation and the closed-form

analysis. Apart from SNR being 5dB here, other simulation parameters are set exactly

the same with the previous simulation. Similarly here, the figure also shows that the

closed-form analysis perfectly matches with the simulation results.

5.5 Summary

In this chapter, a closed-form analysis for the Qf and Qd in EGC-SDC cooperative

spectrum sensing scheme is provided. By knowing that a sum of Central Chi-Squared

distributed RVs is also a Central Chi-Squared distributed RV with higher degree of

freedom. Also, sum of Non-Central Chi-Squared distributed RVs is also Non-Central

Chi-Squared distributed. Qf and Qd under AWGN channel is derived. Similarly, by

knowing that a sum of i.i.d. Rayleigh distributed RVs is Nakagami distributed, and by

modifying the Pd formula in Nakagami fading channel, the closed-form of EGC-SDC



CHAPTER 5. EGC-SDC COOPERATIVE SPECTRUM SENSING 66

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Detection threshold   λ
f

P
ro

ba
bi

lit
y

EGC−SDC Spectrum Sensing Scheme

 

 
Simulation
Analytical

Qd

Qf

Figure 5.3: EGC-SDC Scheme : Probability of False Alarm and Detection with 3dB
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scheme under Rayleigh fading channel is achieved. The simulation results shown under

different scenarios prove that the closed-form analysis of EGC-SDC spectrum sensing

scheme is accurate.



Chapter 6

Quantized Cooperative Spectrum

Sensing

6.1 Introduction

As mentioned in Chapter 4, the hidden terminal problem occurs in conventional en-

ergy detection as the CR user can experience deep fade and not be able to detect the

PU. Using multiple sensing nodes, cooperative sensing can exploit spatial diversity and

mitigate this problem. EGC-SDC cooperative scheme achieves good performance by

equally combining the local observations from the sensing nodes. However, forwarding

those observations require large feedback overheads. In order to reduce the communi-

cation overheads among CR users, quantization is applied to reduce these overheads.

Applying quantization towards the observations under multisensor detection was pre-

viously proposed in various literatures such as those in [75–81].

In this chapter, we propose and investigate three quantized cooperative spectrum

sensing schemes. Instead of sending the received signal energy values as in conven-

tional SDC schemes, the CRs quantize their observations according to their received

signal energy and the quantization boundaries. Then, the quantized level is forwarded

to the fusion centre, which sums up all the received quantum it re-creates and com-

pares to the fusion threshold. First the optimization for both uniform and non-uniform

quantization for cooperative spectrum sensing is considered. Then, the low complex-

ity quantized approach using an approximated CDF on H1 is investigated. In these

schemes, the optimization is based only on H1 in order to minimize the quantization

68
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uncertainty for the PU’s signal, and hence improve the detection probability.

6.2 Sensing Procedures

The sensing procedures for the Quantized cooperative spectrum sensing scheme are as

follows.

1. First, every CR user gathers its information using energy detection technique

then quantizes its local observation, depending on the quantization scheme it

uses.

2. Being aware of the quantization scheme including the quantization boundaries

and the quanta, the fusion center then recreates the forwarded quantized energy

and aggregates all of them.

3. Then, the aggregated value (T ) is compared to the fusion center decition thresh-

old (λ).

4. The final decision H0 is made, if T is less than λ, otherwise final decision H1 is

made.

d =

{

H0 , if T < λ

H1 , otherwise . (6.1)

5. Then, the final decision, either H0 or H1, is sent back to inform all CR users

whether to transmit on the spectrum or not.

6.3 Uniform Quantization

For uniform quantization, the quanta for each region lies midway between its bound-

aries such that

qi =
(2i− 1) ·Q

2
for i = 1, 2, ...,M (6.2)

where Q represents the width of each quantization region,M is number of quantization

regions which equals to 2n with n being the number of quantization bits.
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The overall distortion for a quantizer can be measured using the MSE, given in

(2.19) as

MSE =

∫

Qα

(y − qα)
2 p(y) dy. (6.3)

When PU is active (H1), the MSE of quantizing the local observations is

MSE(Q) =
M−1
∑

i=1

iQ
∫

(i−1)Q

[

y − (2i− 1) ·Q
2

]2

f(y|H1) dy

+

∞
∫

(M−1)Q

[

y − (2M − 1) ·Q
2

]2

f(y|H1) dy. (6.4)

The optimal width of each quantization boundaries, i.e. the optimal Q, is the one that

minimizes the MSE in (6.4). Hence, it can be derived by solving

d MSE(Q)

dQ
= 0. (6.5)

However, due to the complexity of f(y|H1) in (4.10), a closed-form solution is not

available for (6.5). Hence, a numerical solution is required to obtain the optimal Q.

6.4 Non-uniform Quantization

The uniform quantization is optimal only for uniformly distributed RVs, while the non-

uniform quantization is optimal for all the others [21]. Thus, we consider a non-uniform

quantization approach that optimizes the quantization level based on the CDF of H1.

The quantization boundaries are set to equally split the CDF of signal distribution

in the H1 case, such that each region has similar probability of occurrences. In other

words, this scheme applies quantization boundaries according to the percentiles of

PU’s signal distribution. The quantization boundaries, Bi, are defined as a quantile

function or an inverse CDF function such that

Bi = CDF−1(
i

M
), for i = 1, 2, ...,M − 1. (6.6)

For instance, if 2-bit quantization is used, there are 4 quantization levels, and 3 quan-

tization boundaries. The quantization boundaries are at 25th, 50th and 75th percentile

of PU’s signal distribution respectively.
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Due to the non-uniformity here, the quanta for each region is represented by the

centre of mass, which can be obtained using

qα =

∫

Qα
y · f(y|H1) dy

∫

Qα
f(y|H1) dy

for α = 1, 2, ..., N. (6.7)

In order to compute the closed-form solutions for quantization boundaries in this

scheme, an inverse CDF function is needed. However as the inverse CDF function

cannot be analytically obtained, a numerical solution is used to find the quantization

boundaries as well as the quanta.

6.5 Approximated Scheme

In Section 6.6, it will be shown that the Non-uniform scheme performs close to the non

quantized EGC-SDC scheme, presented in Chapter 5. However, a numerical solution

is required to obtain the quantization boundaries, which has high computational com-

plexity. Here, consider an approximated scheme, which makes use of Pd approximation

so that an approximated inverse CDF can be obtained. As presented in (4.16), the

approximated probability of detection is

P̃d(λ) = e−
λ

2(1+mγ̄) ×
(

1 +
1

mγ̄

)m−1

. (6.8)

Hence, the approximated inverse CDF function can be obtained as

λ = CDF−1(x)

=−2(1 +mγ̄)× loge
[

(1− x) · (1 + 1

mγ̄
)1−m

]

. (6.9)

Since the approximation is accurate when λ is large, it is used to determine the

quantization boundaries in high quantization levels, but not those where λ is small.

Specifically, the approximated inverse CDF function is used for boundaries above the

50th percentile. For the lower λ region, uniform quantization is used such that all the

levels are equally spaced. The quantization boundaries are therefore defined as

Bi =







2i
M

· CDF−1(1
2
) , i = 1, 2, .., M

2
− 1

CDF−1( i
M
) , i = M

2
, M

2
+ 1, ..,M − 1.

(6.10)

For implementation simplicity, it is assumed that the quanta for each region lies mid-

way between its boundaries. For the last region, since the upper limit is infinity, this
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approach cannot be used. In order to maintain the low complexity of this scheme, the

same spacing is kept between the quanta and the boundary of the previous region (i.e.,

BM−1 − qM−1, which equals to (BM−1−BM−2)/2) for this region. Therefore, the quanta

are computed by

qi =







Bi−1+Bi

2
, i = 1, 2, ..,M − 1

3BM−1−BM−2

2
, i =M

(6.11)

where B0 = 0. The rest of the sensing procedures are similar with two previously

mentioned techniques.

6.6 Simulation Results

Here, the three schemes are evaluated using computer simulation. Three spatially

separated users are considered for cooperative spectrum sensing. The time-bandwidth

product is set to 3 for each observation. The PU’s SNR is 5dB and the channel is

modelled as Rayleigh fading channel and the communication channels between CR

users and the fusion center is assumed error-free.

The detection performance for these proposed schemes are evaluated and compared

to the OR-HDC and EGC-SDC scheme. Both schemes serve as the lower bound and

upper bound performance of the proposed quantized approaches. In the Uniform and

Non-uniform scheme, the width of each quantization boundaries needs to be numer-

ically optimized. The optimal Q is found to be 14.56 in 3-bit Uniform scheme for

current simulation parameters. In the Non-uniform scheme, the optimal quantization

boundaries and quanta are numerically obtained according to (6.6) and (6.7). In the

Approximated scheme, the quantization boundaries and quanta are calculated accord-

ing to (6.10) and (6.11). The quantization boundaries and quanta for the Non-uniform

and Approximated scheme are shown in Table 6.1 and Table 6.2 respectively. It is

shown that the approximation is accurate in the region where the detection threshold

is high, i.e. 4th region onwards, as the approximated quantization boundaries are very

close to those in the Non-uniform scheme.

Fig. 6.1 and 6.2 show the detection performance for the proposed schemes with

three and four quantization bits respectively. Simulation results show that with

the same number of quantization levels, the Non-uniform and Approximated scheme



CHAPTER 6. QUANTIZED COOPERATIVE SPECTRUM SENSING 73

Region Boundaries Quanta

1st 0 to 6.483 4.315

2nd 6.483 to 10.103 8.292

3rd 10.103 to 14.032 12.021

4th 14.032 to 18.737 16.301

5th 18.737 to 24.775 21.612

6th 24.775 to 33.279 28.740

7th 33.279 to 47.817 39.715

8th 47.817 onwards 68.791

Table 6.1: Quantization boundaries and quanta for Non-uniform scheme with 3-bit
quantization

Region Boundaries Quanta

1st 0 to 4.685 2.342

2nd 4.685 to 9.371 7.028

3rd 9.371 to 14.056 11.713

4th 14.056 to 18.742 16.399

5th 18.742 to 24.775 21.758

6th 24.775 to 33.279 29.027

7th 33.279 to 47.817 40.548

8th 47.817 onwards 55.086

Table 6.2: Quantization boundaries and quanta for Approximated scheme with 3-bit
quantization
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achieve better performance than the Uniform scheme. This verifies that for non-

uniform distribution, uniform quantization is not a suitable approach. Both figures

show that the detection performance achieved by the Approximated scheme is very

close to that of the Non-uniform scheme, which is numerically optimized. In par-

ticular, the detection performance for 4-bit Non-uniform and Approximated scheme

closely approaches that of EGC-SDC.

The Uniform and Non-uniform schemes require numerical calculation for quanti-

zation boundaries and quanta, which are complex. These issues can be solved by an

offline calculation and CR users only need to store the values for the particular cases.

Another approach is for the fusion centre to provide these values to the CR users and

update their quantization boundaries and quanta. Nevertheless, these schemes place

high computational burden on CR system.

On the contrary, the Approximated scheme is simple to implement and the quanti-

zation boundaries can be computed at the CR users. With a close performance to the

Non-uniform and EGC-SDC scheme, the approximated approach is highly beneficial

for cooperative spectrum sensing. Moreover, in terms of the communication overheads,

only three or four bits are required in this scheme to achieve the performance close to

that of EGC-SDC scheme.

6.7 Analysis on Quantized Cooperative Spectrum

Sensing

The generic form for the probability of false alarm and detection, Qf and Qd for

this quantized cooperative spectrum sensing scheme is analysed in this section. In

fact, both Qf and Qd are the probability mass function (PMF) summation of the dis-

crete CR’s forwarded quanta value, where the summation is larger than the detection

threshold. It can be formulated as

Qf =
∑

∀i, qsi>λf

pi|H0

Qd =
∑

∀i, qsi>λf

pi|H1 (6.12)
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Figure 6.1: Detection performance for the proposed schemes with three-bit quantiza-
tion
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Figure 6.2: Detection performance for the proposed schemes with four-bit quantization
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where pi and qsi represents the PMF and the value for the ith quanta sum at the fusion

center.

For illustration, we assume that two-bit quantization is applied to two cooperative

users. First, the probability of occurence of the area under curve, where the quantiza-

tion boundaries split, is defined. The probability of having each quanta representing

the received energy when PU is active (H1) is as follows.

γ1 = 1− Pd(B1)

γ2 = Pd(B1)− Pd(B2)

γ3 = Pd(B2)− Pd(B3)

γ4 = Pd(B3) (6.13)

where γi represents the probability that CR user quantizes its received energy as qi.

For the Non-uniform scheme, where the received energy is equally split under the case

when PU is active (H1), the value for each γi is the same. Then, at the fusion center,

the sum of quanta which are forwarded from each user are also discrete. Qf and Qd

can be obtained by the summation of all pi where the corresponding qsi is larger than

the detection threshold, as shown in (6.12).

Fig. 6.3 shows the PMF for quanta value at the local CR user when Non-uniform

scheme with two-bit quantization is applied. The PU’s SNR is 5dB with time-bandwidth

of 3. Fig. 6.4 shows the PMF for quanta value at the fusion center under the same

scenario. Note that the first quanta sum value is similar to the first quanta at CR

users, since the quanta sum are weighted by the number of cooperative CR users.

Finally, Fig. 6.5 compares Qf and Qd from this analysis with the simulated results,

and shows that the analytical Qf and Qd closely match with the simulated results

6.8 Summary

In this chapter, the quantization-based cooperative spectrum sensing techniques were

investigated. By applying quantization to local observations, the communication over-

head among CR users are reduced while retaining a good detection performance. Sim-

ulation results showed that the proposed schemes can achieve good detection perfor-

mance. In particular, the detection performance of the Non-uniform scheme almost
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Figure 6.3: PMF for the quanta value at CR users when PU is active (H1)
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Figure 6.4: PMF for the quanta sum value at the fusion center when PU is active (H1)
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Figure 6.5: Quantized Cooperative Spectrum Sensing schemes: Probaility of false
alarm and detection

matches that of the EGC-SDC scheme. By applying an approximation to the CDF

of H1, the computational complexity is significantly reduced while retaining similar

detection performance to the numerically optimized non-uniform scheme. This Ap-

proximated scheme allows CR users to adapt its sensing parameters with very low

complexity and make it suitable for real-time cooperative spectrum sensing. The

generic analysis for Quantized Cooperative spectrum sensing scheme is also derived.

An illustratation on the analysis under Non-uniform scheme is also provided.



Chapter 7

Double Threshold Cooperative

Spectrum Sensing

7.1 Introduction

The main difference for the Double Threshold Energy Detection scheme to SDC and

HDC scheme is the type of data which is forwarded to the fusion centre. In SDC

scheme, local observation is forwarded to the fusion centre. In HDC scheme, one-bit

local decision is forwarded, while, in Double Threshold scheme, information which is

forwarded to the fusion centre could be either local observation or local decision.

Various techniques, related to the Double Threshold scheme, have been previously

proposed. Censoring method on the uncertain area is considered in [82–85] in order to

decrease the bandwidth constraints and average number of sensing bits. Any CR user,

with local observation falling in uncertain area, will stay silent and send nothing to the

fusion centre, as its own observation is not reliable enough. If all CR users stay silent,

it will cause a fail sensing problem. This scheme can greatly help decrease the average

number of sensing bits to the fusion centre with only little loss in performance. Also

in [86], neither local observation or decision is sent to the fusion centre, if the local

observation falls in the uncertain area. However, fail sensing can occur when no CR

reports its decision. This scheme aims to solve the fail sensing problem by applying the

reputation score. If fail sensing occurs, the fusion centre will ask the CR user with the

highest reputation to make a local decision based on the conventional single threshold

method. Instead of leaving the uncertain area out, the work proposed in [87] makes

79
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Figure 7.1: Double Threshold Energy Detection Technique

use of the uncertain area. The local observation, in the uncertain area, is forwarded

to the fusion centre. This method can improve the overall detection performance for

the CR system. However, AWGN channel is considered here and both lower and

upper threshold are defined using the area between two thresholds without defining

where both thresholds are. Throughput benefit of using double threshold is illustrated

in [88]. In [89], the Double threshold scheme is proposed to tackle untrusted nodes

with malicious effects such as always reporting PU’s absence or existence.

In this chapter, we investigate the scheme proposed in [87] and propose a modified

version of that technique in terms of the detection scheme and sensing procedures.

7.2 Double Threshold Spectrum Sensing Procedures

Here, sensing procedures for Double Threshold schemes are presented. First, in Section

7.2.1, sensing procedure for the simple Double Threshold scheme is covered. Then,

in Section 7.2.2, the procedures for the Double Threshold scheme with quantization

applied to the forwarded local observations are presented.

7.2.1 Double Threshold Scheme

In Double Threshold energy detection scheme, the local observation at CR users is

divided into three regions by two thresholds, which are the lower threshold and upper

threshold λL and λU respectively as shown in Fig 7.1. Local decision is made when

received energy signal falls into the region below λL or above λU . Otherwise, it is

not sufficient for making a local decision as the local observation falls in the uncertain

area.

The detailed sensing procedures for Double Threshold scheme are as follows.
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1. First, the local energy observation is compared to λL and λU . CR user makes

a local decision of H0, if the observation is less than λL. However, if it is more

than λU , the local decision of H1 is made. Otherwise, the local decision is not

made as the CR is uncertain about its observation.

Di =















H0 for yi < λL

H1 for yi > λU

no decision made and Li is forwarded otherwise (7.1)

where Di is the forwarded local decision.

2. Then, either local decision or observation is forwarded to the fusion center.

3. At the fusion center, all forwarded local observations (Li) are aggregated and

compared to the fusion threshold λf to make a fusion decision.

fusion decision =

{

H0 for
∑

Li < λf

H1 otherwise (7.2)

where Li is the forwarded local observation.

4. Finally, all forwarded decision (Di) and the fusion decision are combined using

the OR-rule to make the final decision.

final decision =

{

H0 if all Di and fusion decision is H0

H1 otherwise (7.3)

7.2.2 Double Threshold Scheme with Quantization

In the previous section, it is assumed that the local observation forwarded to the fusion

centre is non-quantized such that there is no distortion between the local observation at

CR user and the one received at the fusion centre. Here, to reduce the communication

overhead between CR users and the fusion center, we proposed that quantization is

applied to the forwarding process for the uncertain users, i.e. users forwarding its local

observation. Hence, the only difference here to the scheme mentioned above are the

additional quantization process. The rest of the sensing procedures are similar to the

Double Threshold scheme. On the quantization scheme, the uniform quantization is

very simple on how to define the quantization boundaries and the quanta. Hence, for

this reason, we only apply the uniform quantization to the uncertain area and do not

consider the non-uniform one, which we considered in Chapter 6.

The details of quantization procedures are as follows
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1. A uniform quantization is applied to the local observation in the unknown area.

The area between lower and upper threshold are divided into a number of areas,

depending on number of quantization-bit.

2. Then, CR user forwards the quantized value of local observation to the fusion

centre.

3. As the fusion center is aware of the quantization, it re-creates the local obser-

vation to the quantum value for each region. We assume that the quantum for

each region lies midway between its quantization boundaries. The fusion center

then sums all the quantum up and compares to fusion threshold to make fusion

decision, as shown in (7.2).

7.3 Double Threshold Analysis

In this section, an analysis on the Double Threshold scheme is provided. An analytical

closed-form for cooperative probability of false alarm and detection as well as the

bandwidth requirement is given.

7.3.1 Regions defined by Lower and Upper Threshold

In order to analyze the detection performance on the Double Threshold scheme, the

related fundamental statistics need to be defined first. Here, parameters α, β, γ, illus-

trated in Fig. 7.2 and 7.3 respectively for H0 and H1, define the probability that the

local observation is less or more than a particular threshold, conditioned on the PU’s

state, such that

αi = P {y < λL|Hi}

βi = P {λL < y < λU |Hi}

γi = P {y > λU |Hi}

αi + βi + γi = 1 (7.4)
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Figure 7.2: Double Threshold Scheme : Three regions separated by λL and λU on H0.

In case that PU is idle (H0), these parameters are statistically given as

α0 = 1− Pf (λL)

β0 = Pf (λL)− Pf (λU)

γ0 = Pf (λU)

α0 + β0 + γ0 = 1. (7.5)

Similarly, when PU is active (H1), they are given as

α1 = 1− Pd(λL)

β1 = Pd(λL)− Pd(λU)

γ1 = Pd(λU)

α1 + β1 + γ1 = 1. (7.6)

7.3.2 Communication Overhead Requirement

In Double Threshold scheme, either local decision or local observation is sent to the

fusion center. Hence, the communication overhead requirement is defined by whether

and how often a CR user forwards its decision or observation.
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Figure 7.4: Double Threshold Scheme : Frame structure for the forwarding process



CHAPTER 7. DOUBLE THRESHOLD COOPERATIVE SPECTRUM SENSING85

First, a frame structure for the forwarding process is modelled and illustrated here

in Fig.7.4. For completeness of the scheme to identify whether either local decision or

observation is forwarded, the first one-bit identifier is used to inform the fusion center

about the following data. Then, either local observation or one-bit decision follows.

If the local observation forwarded is quantized, then n quantization bits are required.

However, if local observation forwarded is non-quantized, 16 bits are required assuming

that binary16, IEEE754 half precision floating-point format [90] is adopted.

Then, to consider bandwidth requirement, the probability that the received signal

falls within uncertain area and CR user forwards its local observation is defined as

follows.

P{local observation is forwarded} =

{

β0 , PU is idle

β1 , PU is active (7.7)

In case that PU is idle (H0), the communication overhead requirement is

required bits = [(1 + 1) · (1− β0) + (1 + n) · β0] (7.8)

assuming that n bits are required for forwarding the observation.

Similarly, when PU is active (H1), it is

required bits = [(1 + 1) · (1− β1) + (1 + n) · β1] . (7.9)

Hence, an average bandwidth requirement is given as

average bits = P (H0) ∗ [(1 + 1) · (1− β0) + (1 + n) · β0]

+ P (H1) ∗ [(1 + 1) · (1− β1) + (1 + n) · β1]

= 2 + (n− 1) · [P (H0) · β0 + P (H1) · β1] . (7.10)

7.3.3 Cooperative Probablility of False alarm and Detection

In this section, an analysis on cooperative probability of false alarm and detection

is presented. First, the generic form for Qf and Qd is investigated in this section.

Then, the detection performance bounds are considered in Section 7.3.4. Finally, the

analytical Qf and Qd is compared to the simulation results in Section 7.4.3.

The probability of correct rejection, Qcr is defined as the probability that CR

correctly decides that PU is idle. In other words, it is the probability that the final
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decision (F ) is H0, while PU is idle (H0). First, let N be the number of all cooperating

users, k is the number of certain users reporting local decision, L is the forwarded local

observation and D is the forwarded local decision.

Qcr = P{F = 0}

= P{F = 0, k 6= N}+ P{F = 0, k = N}

= P{
∑

Li = 0, k 6= N} · P{D = 0, k 6= N}

+ P{
∑

Li = 0, k = N} · P{D = 0, k = N}

=





N−1
∑

k=0





N

k



 · αk
0 · βN−k

0 · P{
N−k
∑

i=1

Fi < λf}



+
[

αN
0 · (1)

]

. (7.11)

Then, Qf is

Qf = 1−Qcr. (7.12)

The probability of missed detection, Qm can be derived, similarly with the deriva-

tion of Qcr in (7.11), as

Qm =





N−1
∑

k=0





N

k



 · αk
1 · βN−k

1 · P{
N−k
∑

i=1

Fi < λf}



+
[

αN
1 · (1)

]

. (7.13)

Then, Qd is

Qd = 1−Qm. (7.14)

7.3.4 Bounds on Detection Performance

In this section, the detection performance bounds of this scheme are investigated. The

lower and upper bounds on both Qf and Qd are analyzed.

Lower Bound on Qf and Qd

The lower bound occurs when the fusion decision is always H0 such that

P{
N−k
∑

i=1

Fi > λf} = 0 (7.15)
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or

P{
N−k
∑

i=1

Fi < λf} = 1. (7.16)

Hence, considering (7.11), Qcr becomes

Qcr =





N−1
∑

k=0





N

k



 · αk
0 · βN−k

0 · P{
N−k
∑

i=1

Fi < λf}



+
[

αN
0 · (1)

]

=





N−1
∑

k=0





N

k



 · αk
0 · βN−k

0 · (1)



+
[

αN
0 · (1)

]

=





N
∑

k=0





N

k



 · αk
0 · βN−k

0 · (1)





= (α0 + β0)
N (7.17)

Hence, lower bound on Qf is

Qf = 1− (α0 + β0)
N

= 1− (1− γ0)
N (7.18)

Applying similar derivation in (7.17) and (7.18) to (7.13), the lower bound on Qd is

Qd = 1− (α1 + β1)
N

= 1− (1− γ1)
N (7.19)

This lower bound is equivalent to the detection performance obtained from the

OR-HDC scheme with the local detection threshold of λU .

Upper Bound on Qf and Qd

The upper bound occurs when the fusion decision is always H1 such that

P{
N−k
∑

i=1

Fi > λf} = 1 (7.20)

or

P{
N−k
∑

i=1

Fi < λf} = 0. (7.21)
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Hence, considering (7.13), Qcr becomes

Qcr =





N−1
∑

k=0





N

k



 · αk
0 · βN−k

0 · P{
N−k
∑

i=1

Fi < λf}



+
[

αN
0 · (1)

]

=





N−1
∑

k=0





N

k



 · αk
0 · βN−k

0 · (0)



+
[

αN
0 · (1)

]

= (α0)
N (7.22)

Hence, upper bound on Qf becomes

Qf = 1− (α0)
N (7.23)

Applying similar derivation in (7.22) and (7.23) to (7.13), upper bound on Qd is

Qd = 1− (α1)
N (7.24)

Similarly to the lower bound, this upper bound is equivalent to the detection

performance obtained from the OR-HDC scheme with the local detection threshold

of λL. This relationship explains why Receiver Operating Characteristic (ROC) curve

for Double Threshold scheme adjoins with that of OR-HDC in Fig.7.5, 7.6 and 7.7.

7.3.5 Qf and Qd for Two-User Double Threshold scheme

In this section, the closed-form of Qf and Qd for this Double Threshold scheme is con-

sidered for the case with two cooperating users. Refering to (7.11) to (7.14), the closed-

form of Qf and Qd is dependent on the probability of fusion decision, P{
N−k
∑

i=1

Fi < λf}.
As this term is the linear summation of the forwarded observation from each uncertain

user,
N−k
∑

i=1

Fi becomes a joint distribution. Hence, the Qf and Qd analysis are dependent

on the number of users reporting local observations. It was shown in previous section

that λL and λU define the lower and upper bounds of Qf and Qd. Here, we consider

the case when at least one CR user has its received signal energy falling within the

uncertain region, i.e. between λL and λU . First, it is considered when only one uncer-

tain user reports its local observation. Then, two uncertain users case is considered.

We do not further proceed to consider the three users case, as the summation of three

independent RVs is much more complicated and makes the analysis more difficult.

Moreover, later in this section, it will be shown that the summation of RVs in two user
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cases is complicated and we resolve this by approximating the PDF of received signal

energy.

One uncertain user

Here, the term P{
N−k
∑

i=1

Fi < λf}, when only one user reports local observation, is con-

sidered. CR user only reports local observation when it is between λL and λU . As PU

could be either idle or active, the probability is separately considered.

First, consider when PU is active (H1). Let z represents the forwarded observation

received at the fusion center.

z =

{

yuser1 , for λL < yuser1 < λU

0 , otherwise (7.25)

where yuser1 is the forwarded local observation from CR user 1.

As a result, z becomes a truncated RV for which the PDF is the normalised and

truncated version of the PDF when PU is active as shown in (4.10) and is given as

fz(z|H1) =

{

f(y|H1)/β1 , for λL < z < λU

0 , otherwise . (7.26)

Therefore, the CDF of z or P{
1
∑

i=1

Fi < λf |H1} becomes

P{
1
∑

i=1

Fi < λf |H1} =















0 , for 0 < λf < λL
Pd(λL)− Pd(λf )

β1
, for λL < λf < λU

1 for λf > λU . (7.27)

Then, similar to the above, when PU is idle (H0), the PDF of z is given as

fz(z|H0) =

{

f(y|H0)/β0 , for λL < z < λU

0 , otherwise (7.28)

and the CDF of z or P{
1
∑

i=1

Fi < λf |H0} becomes

P{
1
∑

i=1

Fi < λf |H0} =















0 , for 0 < λf < λL
Pf (λL)− Pf (λf )

β0
, for λL < λf < λU

1 , for λf > λU . (7.29)
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Two uncertain users

Here, consider the case that there are two uncertain users reporting its local observa-

tion. Hence, z becomes

z =

{

yuser1 + yuser2 , for λL < yuser1 < λU and λL < yuser2 < λU

0 , otherwise . (7.30)

which is a RV of a distribution which follows a summation of two truncated distribu-

tions.

First, consider when PU is active (H1). Both PDFs of yuser1 and yuser2 become

a truncated PDF of (4.10) as

ftrun,y(y|H1) =

{

fy(y|H1)/β1 , for λL < y < λU

0 , otherwise . (7.31)

However, as mentioned in Section 4.3 that the PDF fy(y|H1) is complicated, the

approximated version f̃(y|H1), presented in (4.18), is adopted here for simplicity pur-

pose.

f̃(y|H1) =
e−

1
2(1+mγ̄)

y

2 · (1 +mγ̄) · ( mγ̄
1+mγ̄

)
m−1

.

(7.32)

Hence (7.31) becomes

ftrun,y(y|H1) =







f̃y(y|H1)

β1
, for λL < y < λU

0 , otherwise . (7.33)

or

ftrun,y(y|H1) =











e−
1

2(1+mγ̄)
y

A1 · β1
, for λL < y < λU

0 , otherwise . (7.34)

where

A1 = 2 · (1 +mγ̄) · ( mγ̄

1 +mγ̄
)
m−1

. (7.35)

Consequently, PDF for a summation z is obtained by integrating the PDF of both

RVs such that

fz(z|H1) =

∫ ∞

−∞

ftrun,y(z − y|H1) ftrun,y(y|H1) dy. (7.36)
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As ftrun,y is a truncated distribution, an integration region for both y and z− y needs

to be considered. ftrun,y(y|H1) and ftrun,y(z−y|H1) has value or is not zero only when

λL ≤ y ≤ λU (7.37)

for ftrun,y(y|H1).

Whereas for ftrun,y(z − y|H1), the relevant y is

λL ≤ z − y ≤ λU

λL − z ≤ −y ≤ λU − z

z − λU ≤ y ≤ z − λL. (7.38)

Hence, the integration region needs to be restricted according to (7.37) and (7.38).

For this reason, integration region are splitted into two cases, 2λL < z < λL + λU and

λL + λU < z < 2λU .

After some derivations, fz(z|H1), when 2λL < z < λL + λU , is

fz(z|H1) =

∫ z−λL

λL

f̃(z − y|H1)f̃(y|H1)dy

=

∫ z−λL

λL

e−
1

2(1+mγ̄)
(z−y)

A1 · β1
· e

− 1
2(1+mγ̄)

y

A1 · β1
dy

=
1

A2
1β

2
1

(z − 2λL) e
− 1

2(1+mγ̄)
z (7.39)

and fz(z|H1), when λL + λU < z < 2λU , is

fz(z|H1) =

∫ λU

z−λU

f̃(z − y|H1)f̃(y|H1)dy

=

∫ λU

z−λU

e−
1

2(1+mγ̄)
(z−y)

A1 · β1
· e

− 1
2(1+mγ̄)

y

A1 · β1
dy

=
1

A2
1β

2
1

(2λU − z) e−
1

2(1+mγ̄)
z (7.40)

The CDF of z or P{
2
∑

i=2

Fi < λf |H1} then becomes

P{
2
∑

i=1

Fi < λf} =



























































0 for 0 < λf < 2λL
∫ λf

2λL

f̃z(z|H1) dz for 2λL < λf < λL + λU

P{
2
∑

i=1

Fi < λL + λU}

+

∫ λf

λL+λU

f̃z(z|H1) dz for λL + λU < λf < 2λU

1 for λf > 2λU . (7.41)
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And then for 2λL < z ≤ λL + λU , the CDF becomes

P{
2
∑

i=2

Fi < z} =
2(1 +mγ̄)

(

2(1 +mγ̄)e−
λL

(1+mγ̄) − e−
z

2(1+mγ̄) [2(1 +mγ̄) + z − 2λL]
)

A2
1 β

2
1

(7.42)

and for λL + λU < z ≤ 2λU

P{
2
∑

i=1

Fi < z} = P{
2
∑

i=1

Fi < λL + λU}+

2(1 +mγ̄)
(

e−
z

2(1+mγ̄) [2(1 +mγ̄) + z − 2λU ]− e
−λL−λU
2(1+mγ̄) [2(1 +mγ̄) + λL − λU ]

)

A2
1 β

2
1

(7.43)

Then, consider when PU is idle (H0). Similarly to the analysis above on H1,

both PDF of yuser1 and yuser2 are truncated PDFs of (4.4) as

ftrun,y(y|H0) =

{

fy(y|H0)/β0 , for λL < y < λU

0 , otherwise . (7.44)

or

ftrun,y(y|H0) =







ym−1e−y/2

A0 · β0
, for λL < y < λU

0 , otherwise . (7.45)

given that

A0 = Γ(m) · 2m. (7.46)

Consequently, a PDF of z is obtained by integrating the PDF of both RVs such

that

fz(z|H0) =

∫ ∞

−∞

ftrun,y(z − y|H0) ftrun,y(y|H0) dy. (7.47)

Based on the integration regions as in (7.37) and (7.38), when 2λL < z < λL + λU ,

fz(z|H0) is

fz(z|H0) =

∫ z−λL

λL

ftrun,y(z − y|H0) ftrun,y(y|H0)dy

=
1

A2
0 β

2
0

∫ z−λL

λL

(z − y)m−1e−(z−y)/2ym−1e−y/2dy

=
1

A2
0 β

2
0

e−z/2

∫ z−λL

λL

(yz − y2)
m−1

dy (7.48)
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and fz(z|H0), when λL + λU < z < 2λU , is

fz(z|H0) =

∫ λU

z−λU

ftrun,y(z − y|H0) ftrun,y(y|H0)dy

=
1

A2
0 β

2
0

e−z/2

∫ λU

z−λU

(yz − y2)
m−1

dy (7.49)

Both integration terms in (7.48) and (7.49) are complicated. Hence, an approximation

on P{
2
∑

i=1

Fi < z} is considered as follows. A monotonically increasing linear equation

is adopted to approximate CDF of z under this scenario such that

P{
2
∑

i=2

Fi < z} =















0 for 0 < λf < 2λL
1

2(λU − λL)
(z − 2λL) for 2λL < z < 2λU

1 for λf > 2λU . (7.50)

7.4 Simulation Results

In this section, the simulation results for the Double Threshold scheme are evaluated

and compared to that of the OR-HDC and EGC-SDC scheme. Three spatially sep-

arated users are considered for cooperative spectrum sensing. The time-bandwidth

product is set to 3 for each observation. The PU’s SNR is 3dB and the channel is

modelled as Rayleigh fading channel. Also, it is equally probable that the PU is active

and idle.

7.4.1 Double Threshold Scheme

Fig. 7.5 shows the detection performance when λL and λU is 7.841 and 16.82 which

respectively are the 75th and 99th-quantile of the distribution when PU is idle. It shows

that the performance of this Double Threshold scheme is better than that of OR-HDC,

and approaches that of EGC-SDC scheme. Moreover, the communication overhead

between CR and the fusion center is reduced as only 29.5% of local observations are

forwarded, whereas all of them need to be forwarded for EGC-SDC scheme.

Fig. 7.6 shows the detection performance when λL and λU is 5.348 and 16.82

which respectively are the 50th and 99th-quantile of the distribution when PU is idle.

Moreover, Double Threshold scheme is better than that of OR-HDC and approaches

that of EGC-SDC scheme. The communication overhead here is also reduced as only

47.8% of local observations are forwarded.
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Figure 7.5: Detection performance for Double Threshold Scheme with λL = 7.841 and
λU = 16.82

In addition, from Fig. 7.5 and 7.6, it can be seen that the detection performance of

Double Threshold scheme are bound at a point where it adjoins the curve of OR-HDC

scheme. This is due to the choice of the upper threshold, λU as analysed in the previous

section. The lower bound on Qf in both figures follows is 1− (1− 0.01)3 = 0.0297, as

the λU is set up as the 99th-quantile of the distribution when PU is idle.

7.4.2 Double Threshold Scheme with Quantization

Here, quantization is applied to the forwarded local observations in Double Threshold

scheme with λL and λU is set to 5.348 and 16.82 respectively. The rest of the system

parameters are set exactly the same with previously presented results. Fig. 7.7 shows

the detection performance when 2-bit and 3-bit quantization is applied to the uncertain

area and compares them with the detection performance when the local observation is

forwarded non-quantized. As the thresholds here are set the same with those of Fig.

7.6, 47.8% of local observations are forwarded similarly. However, the communication

overhead is effectively reduced due to quantization. For instance, on average

2 + (2− 1) · (0.478) = 2.478 ≈ 2.5 bits
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Figure 7.6: Detection performance for Double Threshold Scheme with λL = 5.348 and
λU = 16.82

are forwarded for Double Threshold (2-bit) scheme and

2 + (3− 1) · (0.478) = 2.956 ≈ 3 bits

are forwarded for Double Threshold (3-bit) scheme compared to 16 bits for EGC-SDC.

7.4.3 Simulation Results for Double Threshold Analysis

In this section, the closed-form analysis for the Double Threshold scheme with two

cooperating users, as provided in Section 7.3.5, is evaluated and compared with the

simulation results. Fig. 7.8 and 7.9 show Qf and Qd for the Double Threshold scheme

with two cooperating users with time-bandwidth product m=3, SNR= 3dB, λL and

λU is 10 and 15 respectively. The simulation result shows that the analytical Qf and

Qd matches with the simulation result, with slight error in Qf due to an approximation

in (7.50). As there are two cooperative users, the summation for the forwarded local

observation can only be between 10 to 15 (when one user forwards its observation) and

between 20 to 30 (the summation when two users forward their observation). Hence, a

capped level for Qf and Qd occurs between the region when fusion threshold is between

15 and 20.
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Figure 7.7: Detection performance for Double Threshold Scheme with two and three
bit quantization and λL = 5.348 and λU = 16.82
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Figure 7.8: Double Threshold Scheme : Probability of False Alarm λL = 10 and λU =

15.
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Figure 7.9: Double Threshold Scheme : Probability of Detection λL = 10 and λU =

15.

Fig. 7.10 and 7.11 show Qf and Qd for Double Threshold scheme with λL and

λU is 7 and 17.5 respectively. The rest of the parameters are set similar to previous

simulation results. Similar to the above, the simulation result shows that the ana-

lytical Qf and Qd matches with the simulation result, with an error in Qf due to an

approximation in (7.50).
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Figure 7.10: Double Threshold Scheme : Probability of False Alarm λL = 7 and λU =

17.5.
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Figure 7.11: Double Threshold Scheme : Probability of Detection λL = 7 and λU =

17.5.
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7.5 Summary

In this chapter, the Double Threshold cooperative spectrum sensing scheme was pre-

sented. By forwarding its local observation when CR is uncertain, the detection per-

formance is improved. In order to reduce the communication bandwidth among CR

users, quantization is applied to the forwarded local observations. Simulation results

showed that the Double Threshold scheme improves the detection performance while

requiring less communication bandwidth than the EGC-SDC scheme. In addition, the

closed-form analysis for Qf and Qd for the Double Threshold scheme is provided in

this chapter.



Chapter 8

Sequential Cooperative Spectrum

Sensing

8.1 Introduction

In wireless communication simulation, the channel is usually assumed to be quasi-

static. However, in reality, the channel is time-varying and there is a correlation be-

tween channel gain in consecutive time slots. The details on time-varying channel will

be presented in Section 8.2.1. First, the detection performance for conventional OR-

HDC scheme is considered in different channel types. Fig. 8.1 shows that the detection

performance in quasi-static and correlated channel is exactly the same. Although there

is a correlation in the channel for each successive energy detector observation, this en-

ergy detector technique does not make use of it.

In this chapter, the exploitation on the previous observation and channel corre-

lation will be studied to show that relying on the previous observation could help

improve the detection performance without taking more observation or using compli-

cated techniques. Then, we present our previously proposed schemes and their related

analysis. The rest of this chapter is organised as follows. First, Sequential cooperative

spectrum sensing and its background are presented. Then, three sequential energy de-

tection (SED) schemes, which we previously proposed in [91, 92], are presented. The

three schemes are the Weighted SED scheme, which simply takes a fixed number of

past observations, and another two adaptive schemes, namely Two-Stage SED and

100
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Figure 8.1: Cooperative detection performance for energy detection for correlated and
quasi-static channel

Differential SED, which determine the number of past observations, based on its de-

cision on PU’s state. Finally, a closed-form analysis for the probability of false alarm

and detection in the SED schemes are analyzed.

8.2 System Model

In this section, the system model for SED schemes are presented. First, the time

varying channel as well as its simulation technique is considered. Then, the sensing

procedures for sequential spectrum sensing is presented.

8.2.1 Time Varying Channel

Fig. 8.2 and Fig. 8.3 shows the real part of the channel gain in Rayleigh fading

channel with Doppler frequency (fd) of 10Hz and 50Hz respectively, while the sampling

frequency fs is set to 105 Hz. It can be seen that there is a correlation between channel

gain between consecutive time slots. When fd is low, the channel variation is less from

time slot to the next time slot, compared to when fd is high.

Further details on time-varying channel can be found in [93,94].
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Figure 8.2: Real part of the channel gain in correlated channel with fd = 10 Hz
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Figure 8.3: Real part of the channel gain in correlated channel with fd = 50 Hz
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Figure 8.4: System model for correlated channel sensing framework

8.2.2 Sensing Procedures

The sequential sensing procedure is shown in Fig. 8.4. The sensing period occurs

periodically at the beginning of each packet, followed by the data transmission part.

The number of observation samples taken in the sensing period is defined by the time-

bandwidth product.

8.2.3 Primary User activity

The PU activity is modelled according to a two-state Markov chain [95] as shown

in Fig. 8.5. The parameter α and β represents the probability of PU changing its

state from active (H1) to idle (H0) and vice versa, while the notation 1− α and 1− β

represents the probability of PU remains in active (H1) and idle (H0) state respectively.

Figure 8.5: Two-state Markov chain on primary user’s activity model

8.3 Weighted SED

In this section, a previously proposed cooperative spectrum sensing technique [91]

that uses the previously received energy observations are presented. The Weighted

SED scheme is designed to exploit channel correlation by utilizing observations from

previous slots. The current and previous observations are weighted and aggregated.

It employs the moving average model to combine the energy observations.
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Then, the weighted output is compared to the threshold locally at the CR node.

The local decision is then forwarded to the fusion center. At the fusion centre, OR-rule

is used for global decision making due to its simplicity and PU’s protection purpose.

In other words, this approach makes use of soft combining for local decision and the

OR-rule for global decision at the fusion center.

8.3.1 Sensing Procedures

The detailed sensing procedure for Weighted SED is as follows. First, the energy

observations are weighted and aggregated with the moving average model at the kth

sensing slot such that

Tk = WYk =
N−1
∑

i=0

wiyk−(i+N−1) (8.1)

where T is the weighted sum energy, N is number of energy observations taken into

weighting process, andYk is the local observation vector at the kth sensing slot denoted

as

Yk =
[

yk−(N−1) yk−(N−2) · · · yk

]T

where yk is the current received signal and yk−i is the observation from the ith sensing

slot before. W is the weighting vector such that

W =
[

w0 w1 · · · wN−1

]

where wi is the i
th weighting factor. W is a normalized vector such that

(w0 + w1 + ...+ wN−1) = 1.

Then, the decision dk is made by comparing Tk to the threshold λ.

dk =







H0 , if Tk < λ

H1 , otherwise

Finally, the local decision dk is sent to the fusion centre to make a final decision

on PU’s existence using the OR-rule.
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Weight Computation

The weighting vector W is a key component of sequential cooperative sensing. Ideally,

this vector should be optimized by minimizing the false alarm (Pf ) and miss detection

probability (Pm) [70]. The optimization criteria then becomes

W∗ = arg min
W

( Pf + Pm )

where Pf and Pd are the CCDF for weighted sum of N -RVs as

Pf = P (T > λ|H0)

= P (w0yk−N+1 + w1yk−N+2 + ...+ wN−1yk > λ|H0) (8.2)

and

Pd = P (w0yk−N+1 + w1yk−N+2 + ...+ wN−1yk > λ|H1). (8.3)

Hence optimizing W is complicated and the closed-form and optimal solution is diffi-

cult to obtain [41].

Sub-Optimal Weight Vector

Since the optimal solution is difficult to obtain, a sub-optimal weight calculation ap-

proach is proposed here. Consider an example of the PDF of received energy when

PU is idle (H0) and active (H1) as shown in Fig. 4.1. The optimal detection approach

is one that can jointly minimize the false alarm probability Pf and missed detection

Pm, i.e., the shaded area in Fig. 4.1. Conventional approach is to determine the

optimal detection threshold to minimize this area. With SED, we can include past

observations to vary the PDF of the weighted sum energy such that the shaded area

is minimized. This can be achieved, if possible, by separating the means of received

energy, or minimizing the variance of the received energy in H0 and H1 case. However,

we will show first that applying weighting will not be able to vary the mean by the

following proposition.

Proposition 1. For a normalized weight vector, the mean of the weighted sum energy

equals to the mean of the local observation (i.e. E [T ] = E [Y ]) if the channel and PU

activity is static
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Proof.

Tk =
N−1
∑

i=0

wiyk−(i+N−1)

=w0 · yk−(N−1) + ...+ wN−1 · yk
E [T ] =w0 · E [YN−1] + ...+ wN−1 · E [Y0]

where Y0 and Yk are set of current received signal and that of the kth sensing slot

before. Since the channel and PU activity is static,

E [Y ] =E [YN−1] = ... = E [Y0] .

Hence, E [T ] = (w0 + w1 + ...+ wN−1) · E [Y ] = E [Y ] .

The importance of this proposition is that the mean of the weighted sum energy will

not be affected by the choice of the weighting vector W, and is the same as the mean

of a single observation. In other words, the separation between the mean of received

energy in H0 and H1 case will not be affected by varying W. Hence, to minimize the

shaded area, the other option is to reduce the variance of these PDFs. The effect of

variance on the distribution of received energy in H0 and H1 case is illustrated in Fig.

8.6. When more observations are taken, the variance for both received energy in two

cases will be reduced. Hence, the separation between the distribution inH0 andH1 case

is more evident and this leads to better detection performance. Proposition 2 shows

that when equal weighting is applied in H0 and H1 case under quasi-static channel,

variance of T equals to variance of Y divided by the number of total observations

taken. Thus when N increases, the variance of T decreases linearly with it.

Proposition 2. When equal weighting is applied, the variance decreases proportionally

to the number of samples taken.

Proof. First, the variance of T in correlated channel H1 case is derived

V ar (T ) = V ar

(

N−1
∑

i=0

wiYi+N−1

)

.
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From the property for variance of the weighted sum of several random variables [96],

it leads to

V ar (T ) =
N−1
∑

i=0

w2
i · V ar (Yi+N−1)

+ 2
∑

i,j;i<j

wiwj · Cov (Yi+N−1, Yj+N−1) (8.4)

For equal weighting, the weighting vector W is

W =
[

1
N

1
N

... 1
N

]

Thus,

V ar (T ) =
N−1
∑

i=0

(

1

N

)

2 · V ar (Yi+N−1)

+ 2
∑

i,j;i<j

(

1

N

)

2 · Cov (Yi+N−1, Yj+N−1) (8.5)

In quasi-static fading channel, observation in each frame is independent to its

previous and next observation. Hence Cov (Yi, Yj) = 0 for all i and j. Then,

V ar (T ) =

(

1

N

)

2 ·
N−1
∑

i=0

V ar (Yi+N−1)

For each Yi+N−1, its variance is the same such that V ar (Y ) = V ar (YN−1) = ... =

V ar (Y0) which leads to

V ar (T ) =
V ar (Y )

N
. (8.6)

8.3.2 Weight Vector for Static PU Activity

As discussed above, the optimal weighting is one that can minimize the variances of

received energy in T in H0 and H1 case. However, its complexity involves minimizing

both distributions at the same time. Hence, we propose a sub-optimal approach to

obtain the weighting vector by minimizing the variance of the received energy in H0

or H1 case separately. When the PU activity is static (i.e. the PU is either always on

or always off), the following can be defined.
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Figure 8.6: Energy distribution for weighted local observation with different number
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Proposition 3. In quasi-static fading channel, the optimal weight vector that min-

imises the variance of H0 and H1 is the equal weighting.

Proof. In quasi-static fading case, there is no correlation between each observation

and hence (8.5) becomes

V ar (T ) =
N−1
∑

i=0

w2
i · V ar (Yi+N−1).

Since the PU activity is assumed to be static, the variance of the energy observations

are identical. Thus the optimization criteria to minimize variance of T is

Min
N
∑

i=1

w2
i

s.t. (w1 + w2 + ...+ wN) = 1.

By using standard Lagrange multiplier, the solution is

wA = wB = ... = wN =
1

N
. (8.7)
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Hence, in quasi-static fading channel, equal weighting is optimal as it gives the lowest

variance.

Corollary 1. In time-varying channel, the optimal weight vector that minimises the

variance of H0 is the equal weighting.

Proof. As the primary user does not exist inH0, the channel will not affect the received

energy observation. Hence, the proof follows that of Proposition 3.

Consequently, the remaining problem here is the optimization of weight vector for

H1 case in time varying channel. This involves the computation of the covariances be-

tween observations. A closed form solution for minimizing (8.5) could not be obtained

and thus we resolved to computing it using numerical methods.

8.3.3 Weight Vector for Intermittent PU Activity

When PU activity is intermittent, the value of received energy value at the CR could

change suddenly between observations. Hence, a practical approach is to rely more on

the newer observations for detection. Thus, we propose the use of a simple exponential

weighting, whereby each past observation is weighted less by a factor of 1
e

W =
1

K

[

e1 e2 . . . eN
]

where K =
N
∑

i=1

ei is the normalisation factor.

8.3.4 Simulation Results

Simulation results, the more details of which will be discussed in Section 8.7, show that

the proposedWeighted SED scheme can improve the detection performance by utilizing

past observations. It provides significantly better detection performance than the

conventional OR-rule energy detection scheme, when PU is static. However, when PU

is intermittent, simulation result shows that the Weighted SED with equal weighting

vector is worse due to PU activity, especially when it varies a lot. This is due to the

heavy reliance on past observations which are already outdated, i.e. PU has already

changed its state.
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8.4 Two-Stage SED

As briefly discussed in the previous section, Weighted SED can improve the detection

performance by utilizing past observations. However, when PU is intermittent and

regularly changes its state, the detection performance is worsened as Weighted SED

relies on the outdated past observations.

This section considers an adaptive technique which does not set a fixed number of

previous observations but adaptively determines the number of past observation used

for the weight combination. The fundamental concept is that if the PU activity has

not changed, past observations should be used for weighting to improve performance.

However, if the PU has changed its state, past observations should be discarded as

they will lead to erroneous detection. Hence, the adaptive SED approaches will need

to know when the PU has changed its activity. As CR users perform blind detection

and can not precisely know PU’s state, the CR’s local observation will be used to

perform an initial estimation. With the transition of PU’s activity determined, the

CR user then decides how many past observations it should rely on and take into the

weighting process. The current and previous observations are then equally weighted

before compared to the threshold locally at the CR node.

Here, a previously proposed scheme adaptive Two-Stage SED scheme [92] is dis-

cussed. While Differential SED scheme, which is slightly different to this scheme, is

presented in the next section. The Two-Stage SED scheme consists of a two stage en-

ergy detection procedure. In the first stage, CR users perform simple single threshold

energy detection to decide PU’s existence. Based on this sensing decision, CR users

estimate whether PU has changed its activity and decide how many past observations

to be taken for equal weighting. If CR users think that PU does not change its state, it

will include this energy observation value into weighting procedure. The second stage

is then the previously mentioned Weighted SED to determine the existence of PU.

8.4.1 Two-Stage SED Sensing Procedures

The detailed sensing procedure for Two-Stage SED is as follows

1. First, CR users locally perform a conventional sensing by comparing the received

energy observations to the first stage threshold λ1.
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2. Based on the sensing result in the first stage, CR users adaptively determine the

number of past observations to be taken into the weight computation. If the

past local decisions are the same as this initial detection (i.e., the PU presum-

ably maintained its activity), they will be used for the weighting procedure. In

other words, CR users ignore the previous observations once the sensing decision

becomes different to the current one, as they think that PU has changed its

state.

3. To avoid CR users relying on too many past observations and degrade the per-

formance, we limit the number of past observations to be taken in to weight

computation to a certain number.CR users then apply equal weighting to all

energy observations that are taken into weight computation in the second stage.

The weighted observations are then aggregated such that

Tk = WYk =
N−1
∑

i=0

wiyk−(i+N−1) (8.8)

where W =
[

1
N

1
N

· · · 1
N

]

.

4. The local decision dk is made by comparing Tk to the second stage threshold λ2.

dk =







H0 , if Tk < λ2

H1 , otherwise

5. Finally, the local decision dk is sent to the fusion centre to make a final decision

on PU’s existence using the OR-rule.

Simulation results for this Two-Stage SED will be shown in Section 8.7.2.

8.5 Differential SED

The Two-Stage SED performs an instantaneous sensing decision and compares with

previous decisions to determine the number of observations included. Here, we consider

another approach called the Differential SED. In slow fading channel, the channel gains

for consecutive sensing slots do not vary much. Hence, the received energy values for

those consecutive sensing slots will be similar as well, provided that the PU does

not change its state. On the contrary, when PU changes its state, the difference
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between consecutive observations would be high. In this scheme, CR users estimate

the PU’s state based on this difference. If the difference between two consecutive

energy observations is less than a certain threshold, the CR system will consider that

the state of PU remains unchanged. As a result, it uses this new energy observation

and weighted with past observations to perform detection. On the other hand, if

the difference between consecutive observations are larger than the threshold, the CR

system will consider that the PU has changed its state. Hence, all previous observations

will be discarded and the detection will be based only on this new observation.

The detailed sensing procedure for Differential SED is as follows

1. First, each CR users locally calculates the difference between two consecutive

energy observations.

2. If this difference is less than the variable threshold, λd. The previously received

energy observations will be taken into weight computation. In other words, CR

users ignore the previous observation once the difference is greater than λd, as

they think that PU has changed its state.

3. Similarly to the Two-Stage SED, in order to avoid CR users relying on too many

past observations, we limit the number of past observations to be taken in to

weight computation to a certain number. CR users then apply equal weighting

to all energy observations that are taken into weight computation. The weighted

observations are then aggregated as given in (8.8).

4. Then, the rest of the sensing procedures follows the previously proposed Two-

Stage SED scheme.

Simulation results for this Differential SED will be shown in Section 8.7.3.

8.6 SED Analysis

In this section, the Weighted SED and Two-Stage SED scheme are analysed. Also, the

generic form for probability of false alarm and detection in both schemes is presented.

As the global decision in cooperative spectrum sensing is made using the OR-rule from

local decisions, i.e. OR-HDC decision combining rule is used at the fusion center, Qf
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and Qd has a one-to-one relationship to Pf and Pd as shown in (4.19). Hence, later on

in this section, the analysis can be simplified by only considering the Pf and Pd in a

single user case.

8.6.1 Primary User activity model

In this part, the probability of PU’s transition, either changing state or remaining

in the same state, is analysed. The two-stage markov chain PU’s activity model

was shown in Fig.8.5. In order to evaluate Pf and Pd for the proposed schemes, the

probabilities related to PU activity needs to be analysed. Let P (Hi) denotes the

probability that PU is in Hi state and P (Hi → Hj) denotes the probability that PU

was in Hi state and is in Hj state in the next sensing slot. For example, P (H0 → H0)

means that PU remains idle and unchanged from previous to current sensing slot. The

probabilities related to the PU’s state and transition are defined as follows [97].

P (H0) =
α

(α + β)

P (H1) =
β

(α + β)

P (H0 → H0) = (1− β) · P (H0)

=
α · (1− β)

α + β

P (H0 → H1) = β · P (H0)

=
αβ

α + β

P (H1 → H0) = α · P (H1)

=
αβ

α + β

P (H1 → H1) = (1− α) · P (H1)

=
(1− α) · β
α + β

. (8.9)

In addition, the PU’s state in each sensing slot is analyzed here because the pro-

posed techniques do not only consider the current sensing slot, but also the previous

slots. Let S be a set of PU’s state in the current and previous time-slots, such that

S = [s0, s1, s2, ..., s2N−1]. Sidle and Sactive defines a subset of S where the PU is re-

spectively idle and active in the current sensing-slot, regardless of its state in previous
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Table 8.1: S : Set of PU’s state
PU’s State One Previous Slot Current Slot

Sidle
s0 H0 H0

s2 H1 H0

Sactive
s1 H0 H1

s3 H1 H1

slots. Relationship between each element of Sidle , Sactive and each PU’s state is shown

in Table 8.1, assuming that two energy observations are weighted. Furthermore, the

probabilities on PU’s transition are shown in (8.10), where P (si|Hl) is the conditional

probability that PU belongs to si state given that it is in Hl state in the current sensing

slot.

P (s0|H0) = P (H0 → H0|H0)

= P (H0→H0)/P (H0)

= (1− β)

and similarly

P (s1|H1) = α

P (s2|H0) = β

P (s3|H1) = (1− α). (8.10)

8.6.2 Weighted SED

Here, we analyse the probability of false alarm and detection for Weighted SED scheme,

where a fixed number of local observations from energy detector are taken into weight-

ing process as in (8.1). The probability of false alarm and the probability of detection

can be formulated as a summation of the probability that CR user makes an H1

decision in each PU’s state (si).

Pf,WS(λ) =
∑

∀si∈Sidle

P ( T > λ| si) · P (si)

Pd,WS(λ) =
∑

∀si∈Sactive

P ( T > λ| si) · P (si). (8.11)

This generic form can be used to formulate these probabilities with any number

of local observations. Here, for illustration purposes, we consider taking only two
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observations in the weighting process. According to the transitional probability in

(8.10), Pf,WS and Pd,WS from (8.11) can be expanded into

Pf,WS(λ) = (1− β) · P (T > λ | s0)

+ β · P (T > λ | s2)

Pd,WS(λ) = α · P (T > λ | s1)

+ (1− α) · P (T > λ | s3). (8.12)

In order to obtain these probabilities, the weighted sum of observations under

different PU’s state needs to be evaluated. For instance, in the s1 case where PU’s

state has changed from idle to active, obtaining P (T > λ | s1) needs an integration for

PDF for T , which is difficult to find as follows.

P (T > λ | s1) =
∫ ∞

λ

∫ t

0

f(y1|H0) · f(y2|H1) dy2 dt

=

∫ ∞

λ

∫ t

0

f(2t− y2|H0) · f(y2|H1) dy2 dt (8.13)

where t = 1
2
(y1 + y2), a weighted sum of received energy from previous and current

sensing slot. For this reason, we resolve this complexity by numerically evaluating

these terms using computer simulation. Due to mathematical difficulty to obtain the

exact closed-form for Pf,WS and Pd,WS, we present an approximated version here. The

term P (T > λ | si) are highly dependent on PU’s state as the received energy follows

different PDF when PU is idle and active. Hence, we need to consider this probability

case by case.

First, consider s0 case where PU is idle (H0) in both current and previous sensing

slots.

P (T > λ | s0) = P

(

(y1 + y2)

2
> λ

)

= P
(

y1 + y2 > 2λ
)

. (8.14)

Both y1 and y2 follow central Chi-Squared distribution with 2m degree of freedom as

shown in (4.4). From this, y1 + y2 which is a summation of two RVs also follows Chi-

squared distribution with 4m degree of freedom. Hence, P (T > λ | s0) is approximated
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as the CCDF in (2.28)

P (T > λ | s0) ≈
Γ(2m,λ)

Γ(2m)
. (8.15)

Then, for s1 case, PU is idle in previous sensing slot and then becomes active in

current slot. The received energy y1, y2 follows f(y|H0) and f(y|H1) as in (4.4) and

(4.10) respectively. However, it was shown in (8.13) that the closed form is difficult to

obtain. Here, we adopt the central limit theorem and approximate that y1, y2 follows

Gaussian distribution [98] where

y1 ∼ N (2m, 4m)

and

y2 ∼ N
(

2m(1 + γ̄), 4m(1 + γ̄)2
)

.

From this, y1 + y2 which can be approximated as derived in (2.39) as

y1 + y2 ∼ N
(

2m(2 + γ̄), 4m+ 4m(1 + γ̄)2
)

.

Hence, P (T > λ | s1) can be approximated as CCDF for Gaussian distribution in (2.24)

P (T > λ | s1) ≈
1

2
erfc

(

2λ− 2m(2 + γ̄)
√

2 · (4m+ 4m(1 + γ̄)2)

)

≈ 1

2
erfc

(

λ−m(2 + γ̄)
√

2 · (m+m(1 + γ̄)2)

)

. (8.16)

Then, the approximation for the case of s2 is similar to the above case for s1 because

PU is active in one slot and idle in the other slot. Hence, P (T > λ | s2) also follows

(8.16).

Finally, PU is active in both current and previous sensing slots for s3 case. Consid-

ering that Doppler frequency and channel variation is low, the channel gain for y1 and

y2 would approximately be the same. It is approximated that y1 + y2 follows (4.10)

with extended time-bandwidth product of 2m. Hence, P (T > λ | s3) can be approxi-

mated as a modified version of probability of detection in (4.11), with time-bandwidth

product of 2m and detection threshold of 2λ.
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Table 8.2: D : Set of CR’s decision
CR’s Decision One Previous Slot Current Slot

d0 H0 H0

d1 H0 H1

d2 H1 H0

d3 H1 H1

8.6.3 Two-Stage SED

In this section, we analyse the probability of false alarm and detection for Two-Stage

SED scheme, Pf,TS and Pd,TS. In this scheme, CR users adaptively determine the

number of past observations based on the sensing result in the first stage. Hence,

in addition to considering a set of PU’s state (S), like in the Weighted SED scheme,

the CR’s first-stage decision also needs to be considered. Let D be a set of CR’s

decision from the first stage in the current and previous time-slots, such that D =

[d0, d1, d2, ..., d2N−1]. Relationship between each element of D and the CR’s first-stage

decision is shown in Table 8.2, assuming that a maximum of two energy observations

are considered. First, the conditional probability related to CR making the decision,

when PU is idle and active is defined here. Let P (Hi|Hj) be the probability that CR

makes its first stage Hi decision when PU is in Hj state.

F = P (H1|H0)

= Pf (λ1)

D = P (H1|H1)

= Pd(λ1). (8.17)

Pf and Pd for Two-Stage SED scheme can be formulated in a generic form as a

summation of the probability that CR makes each first-stage decision (di) in each PU’s

state (si), as

Pf,TS(λ2) =
∑

∀si∈Sidle,∀dj∈D

P (T > λ2|si, dj) · P (si, dj)

Pd,TS(λ2) =
∑

∀si∈Sactive,∀dj∈D

P (T > λ2|si, dj) · P (si, dj) (8.18)

where λ2 is the detection threshold in the second stage. Similarly to the analysis for

Weighted-SED scheme, this generic form can be used to formulate the probability
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of false alarm and detection with any number of local observations. However, the

complexity increases with the number of local observations.

For instance, assuming that a maximum of two observations are allowed in the

second stage, Pf,TS and Pd,TS can be expanded as follows, according to the probability

of PU’s transition in (8.10) and the probability related to the first-stage detection in

(8.17).

Pf,TS(λ2) = (1− F ) · (1− F ) · (1− β) · P (T > λ2|s0, d0)

+ (1− F ) · F · (1− β) · P (T > λ2|s0, d1)

+ F · (1− F ) · (1− β) · P (T > λ2|s0, d2)

+ F · F · (1− β) · P (T > λ2|s0, d3)

+ (1−D) · (1− F ) · β · P (T > λ2|s2, d0)

+ (1−D) · F · β · P (T > λ2|s2, d1)

+ D · (1− F ) · β · P (T > λ2|s2, d2)

+ D · F · β · P (T > λ2|s2, d3).

Pd,TS(λ2) = (1− F ) · (1−D) · α · P (T > λ2|s1, d0)

+ (1− F ) ·D · α · P (T > λ2|s1, d1)

+ F · (1−D) · α · P (T > λ2|s1, d2)

+ F ·D · α · P (T > λ2|s1, d3)

+ (1−D) · (1−D) · (1− α) · P (T > λ2|s3, d0)

+ (1−D) ·D · (1− α) · P (T > λ2|s3, d1)

+ D · (1−D) · (1− α) · P (T > λ2|s3, d2)

+ D ·D · (1− α) · P (T > λ2|s3, d3). (8.19)

The Pf,TS and Pd,TS shown above is in a fullly-expanded generic form and it can be

categorized into three special cases depending on the value of first-stage and second-

stage threshold (λ1 and λ2).

λ2 is less than λ1

Consider the term P (T > λ2|si, d1) from (8.19). As CR’s decision d1 is different

between previous and current sensing slot, only then observation from the current slot
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is taken into second stage. Due to the CR’s first-stage decision H1 for current sensing

slot, it deduces that the observation is larger than λ1. Consequently, it means that T

is larger than λ1. Hence, P (T > λ2|si, d1) is always 1 here as λ2 is less than λ1.

Similarly to above for the term P (T > λ2|si, d3), two observations are taken into

weighting process here. Due to CR’s decision H1 for both previous and current sensing

slot, this also deduces that both observations are larger than λ1. As T is a weighted

summation from both observations, T here is also larger than λ1. Hence, P (T >

λ2|si, d3) is also always 1 here as λ2 is less than λ1.

Pf and Pd from (8.19) can be shortened into (8.20).

Pf,TS(λ2) = F + (1− F ) · (1− F ) · (1− β) · P (T > λ2|s0, d0)

+ F · (1− F ) · (1− β) · P (T > λ2|s0, d2)

+ (1−D) · (1− F ) · β · P (T > λ2|s2, d0)

+ D · (1− F ) · β · P (T > λ2|s2, d2)

Pd,TS(λ2) = D + (1− F ) · (1−D) · α · P (T > λ2|s1, d0)

+ F · (1−D) · α · P (T > λ2|s1, d2)

+ (1−D) · (1−D) · (1− α) · P (T > λ2|s3, d0)

+ D · (1−D) · (1− α) · P (T > λ2|s3, d2). (8.20)

Then, to obtain the closed-form for the probability terms, consider CR’s decision

d2 where the decision from the previous and current sensing slot is different. Hence,

only energy observation from the current slot is taken into weighting process such that

T = Y . With the first-stage decision of H0, this deduces that T follows truncated

distribution, following either H0 or H1 but only restricted from 0 to λ1. Consider

P (T > λ2|si, d2) which is defined by the probability that T is larger than λ2. Conse-

quently, P (T > λ2|si, d2) term in (8.20) analytically becomes

P (T > λ2|si ∈ Sidle, d2) =
Pf (λ2)− Pf (λ1)

1− Pf (λ1)

P (T > λ2|si ∈ Sactive, d2) =
Pd(λ2)− Pd(λ1)

1− Pd(λ1)
. (8.21)

Next, consider P (T > λ2|si, d0) where CR’s decision is d0 and the decision from

the previous and current sensing slot is similar and two observations are taken into

weighting process. Here, T follows a joint distribution, based on si. For example, in the
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s1, d0 case, T is a weighted summation from the two observations which respectively

follows truncatedH0 in previous slot and truncatedH1 in current sensing slot. Because

T follows a distribution from summation of two truncated distributions, it is difficult

to analytically obtain the term P (T > λ2|si, d0), as it involves various integrations of
PDF for different truncated distributions as follows.

for 0 < t < λ1

2
,

ft(t|s1, d0) =

∫ 2t

0

f(y1|H0) · f(y2|H1) dy2

=

∫ 2t

0

f(2t− y2|H0) · f(y2|H1) dy2

for λ1

2
< t < λ1,

ft(t|s1, d0) =

∫ λ1

2t−λ1

f(2t− y2|H0) · f(y2|H1) dy2

and for otherwise,

ft(t|s1, d0) = 0. (8.22)

Then, to find the probability that T is greater than λ2, we need

P (T > λ2) =

∫ ∞

λ2

ft(t) dt. (8.23)

For this reason, it makes the analysis mathematically difficult and we resolve this

complexity by numerically evaluating these terms using computer simulation. Later

on, the approximated version of these terms will be discussed in Section 8.6.4.

λ2 equals to λ1

Here when λ2 equals to λ1, the terms P (T > λ2|si, d1) and P (T > λ2|si, d3) from

(8.19) are always 1, as mentioned above. Contrarily, for the terms P (T > λ2|si, d0)
and P (T > λ2|si, d2), the observations here, for both previous and current sensing slot,

are less than λ1. When λ2 equals to λ1, we can deduce that the terms P (T > λ2|si, d0)
and P (T > λ2|si, d2) are always 0. Consequently, Pf,TS and Pd,TS can be shortened to

Pf,TS(λ2) = F

= Pf (λ1)

Pd,TS(λ2) = D

= Pd(λ1). (8.24)
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The relationship in this special case explains why there is a dip on the Receiver Op-

erating Characteristic (ROC) curve, where the detection performance for Two-Stage

SED is exactly the same as conventional scheme, as shown in Fig. 8.9.

λ2 is larger than λ1

Similarly to above, when λ2 is larger than λ1, the terms P (T > λ2|si, d0) and P (T >

λ2|si, d2) are always 0, as the observations are always lower than λ1 and λ2.

Consequently, Pf,TS and Pd,TS become

Pf,TS(λ2) = (1− F ) · F · (1− β) · P (T > λ2|s0, d1)

+ F · F · (1− β) · P (T > λ2|s0, d3)

+ (1−D) · F · β · P (T > λ2|s2, d1)

+ D · F · β · P (T > λ2|s2, d3)

Pd,TS(λ2) = (1− F ) ·D · α · P (T > λ2|s1, d1)

+ F ·D · α · P (T > λ2|s1, d3)

+ (1−D) ·D · (1− α) · P (T > λ2|s3, d1)

+ D ·D · (1− α) · P (T > λ2|s3, d3). (8.25)

Here, when CR’s decision is d1, the analysis is similar to (8.21) and its consideration

on CR’s decision d2 above. For the CR’s decision d1 here, where the decision from

the previous and current sensing slot is also different, P (T > λ2|si, d1) terms in (8.20)

analytically becomes

P (T > λ2|si ∈ Sidle, d1) =
Pf (λ2)

Pf (λ1)

P (T > λ2|si ∈ Sactive, d1) =
Pd(λ2)

Pd(λ1)
. (8.26)

Finally, when CR’s decision is d3, two observations are weighted. As T follows

a joint distribution from two truncated distributions, it is difficult to analytically

obtain the term P (T > λ2|si, d3). We also resolve it by numerically evaluating these

probability terms.
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8.6.4 Two-Stage SED Approximation

Due to mathematical difficulty to obtain the exact closed-form for some terms in Pf,TS

and Pd,TS, we present an approximation to these terms where two obseravations are in

the weighting process. Here, we adopt Gaussian distribution for the approximation,

similarly to the Weighted SED scheme above. Although T is the summation of two

RVs which follow truncated distribution, for simplicity, we do not consider truncation

but consider approximation to T as a summation of two Gaussian RVs. However,

truncation is considered when evaluating the term P (T > λ2|si, di). When λ2 is less

than λ1,

P (T > λ2|si, di) ≈
CCDF(λ2)− CCDF(λ1)

1− CCDF(λ1)
(8.27)

given that CCDF(.) is a CCDF function for a Gaussian distribution as shown in (2.24).

And when λ2 is larger than λ1,

P (T > λ2|si, di) ≈
CCDF(λ2)

CCDF(λ1)
. (8.28)

For instance, in s1 and λ2 is larger than λ1 case, T can be approximated to follow

N
(

m(2 + γ̄),m+m(1 + γ̄)2
)

.

Then,

P (T > λ2|s1, d3) ≈
CCDF(λ2)

CCDF(λ1)

≈
erfc

(

λ2−m(2+γ̄)√
2·(m+m(1+γ̄)2)

)

erfc

(

λ1−m(2+γ̄)√
2·(m+m(1+γ̄)2)

) . (8.29)

8.6.5 Differential SED

Similar to the Two-Stage SED scheme, Differential SED scheme also adaptively de-

termines the number of local observations. Hence, to consider Pf,Diff and Pd,Diff

for this Differential SED, the probability that the difference between two consecutive

observations is less than λd is needed, such that

P (δk < λd)

where δk = |yk − yk−1|, i.e. the difference between two consecutive observations.
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Table 8.3: C : Set of condition towards number of local observations in Differential
SED

Condition N
c1 δk > λd 1
c2 δk < λd and δk−1 > λd 2
c3 δk < λd and δk−1 < λd and δk−2 > λd 3
c3 δk < λd and δk−1 < λd and δk−2 < λd 4

First, the probability that defines how many past observations are taken into

weighting process needs to be considered. Table 8.3 shows C, a set of different condi-

tions towards number of local observations which are taken into weighting process in

Differential SED, assuming that it is in the kth sensing-slot and a maximum of four

observations, i.e. three past observations, are allowed in the weighting process and N

represents number of local observations in the weighting process.

Then, Pf,Diff and Pd,Diff for this Differential SED scheme can be defined as

Pf,Diff (λ2) =
∑

∀si∈Sidle,∀cj∈C

P (T > λ2|si, cj) · P (si, cj)

Pd,Diff (λ2) =
∑

∀si∈Sactive,∀cj∈C

P (T > λ2|si, cj) · P (si, cj). (8.30)

However, to track this probability P (si, cj), it involves two or more random vari-

ables, each of which is either H0 or H1-distributed, and its difference. The analysis,

therefore, becomes very difficult and, to the author’s best knowledge, is mathemat-

ically un-trackable. For this reason, we do not further analyze the Pf and Pd for

Differential SED in this thesis.

8.7 Simulation Results

In this section, three SED schemes are evaluated using computer simulation with the

following parameters. Three spatially separated users are considered for cooperative

sensing. The time-bandwidth product is set to 3 for each observation. Each packet

has length of 100 symbols and the sampling frequency is 100 kHz. The PU’s SNR

is 3dB and the channel is modelled as a time-varying Rayleigh fading channel with

Doppler frequency of 50 Hz. For the two adaptive schemes, we set a maximum of three

previous observations in the weighting process. Some parameters, which are specific

to any particular scheme, are mentioned within its own part.
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8.7.1 Weighted SED

As shown in Section 8.3, when the PU activity is static, equal weighting is the optimal

weight for theH0 case, but not for theH1 case. Hence we first evaluate the performance

for optimal weighting under the two cases. Then, the intermittent PU activity is

modelled and the detection performance of the proposed Weighted SED with equal

and exponential weighting is evaluated.

Optimal H0 and H1 weighting vector

To evaluate the weight vector for static PU activity, PU is modelled such that it is

either always on or always off. The equal weighting W = [ 0.25 0.25 0.25 0.25 ]

is optimal when three previous observations are taken. However for the H1 case, we

found by numerical methods that the set of optimal weighting vector which minimizes

the variance of H1 is W = [ 0.334 0.166 0.166 0.334 ].

The detection performance for the Weighted SED scheme in 50 Hz correlated chan-

nel with the optimized weight vectors is shown in Fig.8.7, where Qf and Qd represent

the probability of false alarm and detection for cooperative spectrum sensing. We

model that it is equally probable for PU to be idle and active. The results show that

the Weighted SED provides significantly better detection performance than the con-

ventional cooperative OR-rule energy detection scheme. This is due to the use of past

observations that are available locally. The equal weighting is shown to outperform

the weighting that minimizes the variance in H1 case. Moreover, the advantage of

using equal weighting is that it is SNR and channel correlation independent, while the

optimization by search algorithm for minimum variance in H1 case is dependent upon

the SNR and channel correlation.

Then, intermittent PU activity is introduced and the detection performance from

equal and exponential weighting vector are considered in Fig. 8.8. Similar to the above,

we consider three past observations for Weighted SED scheme. The PU activity factor

α and β are both set equal to 0.001 and 0.1 for the case that PU seldom and regularly

changes its state respectively. First, we investigate the detection performance for the

proposed Weighted SED scheme on equal weighting. Simulation result shows that the

PU activity affects the detection performance. When PU movement is low in the α

and β equal to 0.001 case, the proposed Weighted SED scheme with equal weighting
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Figure 8.7: Detection performance for Weighted SED scheme with three previous
observations on optimal H0 and optimal H1 weighting vector, when PU is static

is better than the conventional technique in high false alarm region, but still worse

than the conventional technique in low false alarm region. However, when α and β

are equal to 0.1, the detection performance is worsened and it is even worse than the

conventional energy detection technique which does not take any previous observation.

This is because when the PU activity varies a lot, equal weighting relied too heavily

on past observation that is already outdated. Hence, it is better to simply use the

current observation. Then, the detection performance for the proposed Weighted SED

scheme on exponential weighting is investigated. The PU activity is set similarly to

the previous one with equal weighting. The result shows that the proposed exponential

weighting provides an improvement on detection performance when α and β equal to

0.1, the proposed exponential weighting improves the detection performance in the high

false alarm area above the conventional technique. By applying exponential weighting,

the more recent observations get higher weighting than the older observation, while the

equal weighting one gives the same weight for every observation. When PU changes

its activity between idle and active, previous observations in further time slot can be

outdated and affect the sum T , which then also affect sensing result and the detection

performance.
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Figure 8.8: Detection performance for Weighted SED scheme with static and inter-
mittent PU activity in 50 Hz correlated channel

8.7.2 Two-Stage SED

Here, we evaluate the detection performance for the proposed Two-Stage SED scheme,

where a maximum of three previous observations are taken. Other simulation param-

eters are set up similarly to the Weighted SED scheme above. The PU activity is

modelled with high variation such that α and β is 0.1. The detection performance

for the proposed Two-Stage SED is evalutaed and compared to the Weighted SED

scheme on equal weighting with one previous observation, which has best performance

and the conventional scheme. The weighted SED with one previous observation has

the best detection performance due to its reliance on past observations to improve the

performance, but not too much that the performance will be affected in the case that

PU has changed its state. The detection performance for this scheme is shown in Fig.

8.9.

Simulation results show that the detection performance is improved in the high

probability of detection area, in which the spectrum sensing procedure is expected to

operate. In this scheme, there is a dip on the ROC curve, at that point the detection

performance is the same as conventional scheme. This occurs when the value of two

thresholds (λ1 and λ2) are the same. The reason for this behavior was analytically
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Figure 8.9: Detection performance for the Two-Stage SED scheme in 50 Hz correlated
channel case

explained in Section 8.6.3. Besides, in terms of the sensing requirement under this

simulation settings, the Two-Stage SED can meet the IEEE 802.22 WRAN spectrum

sensing requirement on the probability of false alarm (10%) and detection (90%) [99],

while the conventional and Weighted SED scheme can not.

8.7.3 Differential SED

In this scheme, simulation parameters are set up as similar to the Two-Stage SED, i.e.

a maximum of three previous observations are taken with time-bandwidth of 3. The

detection performance for the Differential SED is shown in Fig. 8.10. This scheme

can provide an improvement on detection performance in high probability of detection

area, but without a performance dip as occurred in the Two-Stage SED scheme. It

also outperforms both the Weighted SED and the conventional scheme. Moreover,

similarly to the Two-Stage SED, the Differential SED can also meet the IEEE 802.22

spectrum sensing requirement, while Weighted SED and conventional scheme fail to

do so.
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Figure 8.10: Detection performance for the Differential SED scheme in 50 Hz corre-
lated channel case

8.7.4 SNR requirement for IEEE 802.22 standard

In this part, both adaptive schemes are evaluated in terms of the minimum required

SNR to achieve the IEEE 802.22 target Qf and Qd in different scenarios of PU activity.

The simulation parameters are set up similarly to the previous part. The two schemes

are evaluated and compared with the conventional single threshold scheme.

Fig. 8.11 shows a minimum SNR for achieving the target of 90% probability of

detection and 10% probability of false alarm under different PU activity. Simulation

result, shown in Fig. 8.11, shows that the weighted SED provides an advantage over

the conventional scheme when PU activity is low. However, in the case that PU

activity is high, where PU frequently changes its state, its performance degrades as

Weighted SED still relies on the previous observation which is already outdated.

In addition, the result shows that the Two-Stage SED outperforms the Weighted

SED and conventional scheme. In case when PU activity is low, high performance gain

can be achieved. For instance, when α and β is 0.01, SNR needs to be at least 3.35

dB for the conventional scheme to achieve the detection performance target, while it

is only 0 dB for the Two-Stage SED and Differential SED. Furthermore, in case when

PU activity is high such as α and β is 0.1, only 2.6 and 2.85 dB of SNR is required
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Figure 8.11: Minimum required SNR for target probability of detection and false alarm

respectively for the Two-Stage SED and Differential SED to acheive the detection

target, while conventional scheme requires 3.35 dB.

8.7.5 Analysis for probability of false alarm and detection

Here, we show the probability of false alarm and detection, which is obtained from the

generic form, discussed in Section 8.6.2. First, we consider the Weighted SED. Then,

the adaptive Two-Stage SED scheme is considered.

Weighted SED

Fig. 8.12 show the analytical result and its approximation on Pf and Pd for equal

weighting Weighted SED scheme with two local observations in the weighting process

and compare them with Pf and Pd obtained entirely from the simulation. The other

simulation parameters are set as similar in the previous section. PU acitivity is mod-

elled intermittent with α and β set to 0.1. The results show that both the probabilities

obtained numerically closely match with those obtained entirely from the simulation.

In addition, the approximation is also shown to be accurate.
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Figure 8.12: Probability of false alarm and detection in Weighted SED scheme

Two-Stage SED

We consider Pf,TS and Pd,TS for Two-Stage SED scheme. Unlike the Weighted SED

scheme where only PU’s state is considered, the analysis here considers both PU’s

state and CR’s decision in the first-stage sensing.

Fig. 8.13 show Pf and Pd in Two-Stage SED scheme with a maximum of two local

observations in the weighting process and compare them with Pf and Pd obtained

entirely from the simulation. We set the first stage threshold to 8 and the other

simulation parameters are set as similar in the previous results. The results show

that both probability of false alarm and detection obtained from the analysis match

with those entirely from simulation and the analysis is accurate. In addition, the

approximation is also shown to be accurate in high Pd region, within which the CR

system is expected work on.

8.8 Summary

In this chapter, three sequential cooperative spectrum sensing techniques are pre-

sented. By taking energy observations in previous sensing slots, these schemes can
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Figure 8.13: Probability of false alarm and detection in Two-Stage SED scheme

exploit the time varying nature of the channel. Simulation results show that these

Weighted SED, Two-Stage SED and Differential SED can improve the detection per-

formance. Especially in the Two-Stage SED and Differential SED, by adaptively

relying on the past observations upon the CR’s decision on the PU’s state, further

improvement on detection performance can be achieved. Moreover, both schemes are

shown to provide a performance gain on minimum required SNR to achive the IEEE

802.22 standard of 10% false alarm and 90% detection. When PU activity is low, a

significant gain can be achieved by using the adaptive schemes. Effectively this allows

the CR system to work in scenarios that conventional techniques can not accommodate

the requirements.

Furthermore, a detailed analysis on the probability of false alarm and detection in

Weighted SED and Two-Stage SED schemes are derived. The approximated version

for these SED schemes is also given and shown to match with the simulated result.

In addition, this analysis can help further optimize the cooperative spectrum sensing

performance.



Chapter 9

Conclusions and Future Works

9.1 Conclusions

In this thesis, various techniques for cooperative spectrum sensing for CR have been

extensively studied. First, the background theory and related statistics for CR spec-

trum sensing is summarized. By forwarding CR’s local observations to the fusion

center, an EGC-SDC cooperative spectrum sensing scheme can improve the detection

performance. However, this scheme requires large communication overhead from the

CR users and the fusion center. To reduce the overhead, a Quantized cooperative

spectrum sensing scheme quantizes its local observations and forwards to the fusion

center to make the final decision. Alternatively, Double Threshold cooperative spec-

trum sensing technique only forwards CR’s local observation when CR user is not

certain about its observation and cannot make its own decision. Quantization is also

applied to this scheme to further reduce the communication overhead.

In addition, the other aspects of improving the detection performance are stud-

ied in Sequential Energy Detector, where CR users periodically sense the spectrum.

By relying on the previous observations, the detection performance is improved in

the Weighted SED scheme. However, relying on fixed number of observations can

deteriorate the sensing performance when PU is highly intermittent as the previous

observations are outdated. Two adaptive schemes, which aim to detect when PU

changes its state and adapt its sensing parameter accordingly, are proposed. It was

shown that the adaptive schemes can improve the detection performance as well as

enable the CR to work within IEEE802.22 WRAN standard under lower minimum

132



CHAPTER 9. CONCLUSIONS AND FUTURE WORKS 133

SNR requirement than that of the conventional OR-HDC scheme.

Moreover, the closed-form analysis for various spectrum sensing schemes are in-

vestigated. The derivation for probability of detection and false alarm in EGC-SDC,

Double Threshold, Weighted SED and Two-Stage SED scheme are also presented. We

also provided an approximation for Pf and Pd under Weighted SED and Two-Stage

SED scheme.

9.2 Future Works

In this section, we list the following possible future works

1. Closed-form analysis for Probability of Detection and False alarm

In order to optimize the sensing parameters at CR users, it is vital that the

closed-form for Pf and Pd is available. In this work, we showed that closed-

form derivation is possible and can be approximated. However, it comes with

high computational complexity. If an exact closed-form is available with low

complexity, the optimization for Quantized, Double Threshold and Sequential

cooperative spectrum sensing schemes may be derivable.

2. Quantized Cooperative Spectrum Sensing

There are various quantization schemes apart from ones that are studied in this

thesis, for instance, an iterative Linde-Buzo-Gray algorithm. The challenge here

is how to choose an appropriate scheme which has low complexity burden on CR

system and provides better detection performance.
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