66 research outputs found

    GPU-resident sparse direct linear solvers for alternating current optimal power flow analysis

    Get PDF
    Integrating renewable resources within the transmission grid at a wide scale poses significant challenges for economic dispatch as it requires analysis with more optimization parameters, constraints, and sources of uncertainty. This motivates the investigation of more efficient computational methods, especially those for solving the underlying linear systems, which typically take more than half of the overall computation time. In this paper, we present our work on sparse linear solvers that take advantage of hardware accelerators, such as graphical processing units (GPUs), and improve the overall performance when used within economic dispatch computations. We treat the problems as sparse, which allows for faster execution but also makes the implementation of numerical methods more challenging. We present the first GPU-native sparse direct solver that can execute on both AMD and NVIDIA GPUs. We demonstrate significant performance improvements when using high-performance linear solvers within alternating current optimal power flow (ACOPF) analysis. Furthermore, we demonstrate the feasibility of getting significant performance improvements by executing the entire computation on GPU-based hardware. Finally, we identify outstanding research issues and opportunities for even better utilization of heterogeneous systems, including those equipped with GPUs

    GPU-Resident Sparse Direct Linear Solvers for Alternating Current Optimal Power Flow Analysis

    Full text link
    Integrating renewable resources within the transmission grid at a wide scale poses significant challenges for economic dispatch as it requires analysis with more optimization parameters, constraints, and sources of uncertainty. This motivates the investigation of more efficient computational methods, especially those for solving the underlying linear systems, which typically take more than half of the overall computation time. In this paper, we present our work on sparse linear solvers that take advantage of hardware accelerators, such as graphical processing units (GPUs), and improve the overall performance when used within economic dispatch computations. We treat the problems as sparse, which allows for faster execution but also makes the implementation of numerical methods more challenging. We present the first GPU-native sparse direct solver that can execute on both AMD and NVIDIA GPUs. We demonstrate significant performance improvements when using high-performance linear solvers within alternating current optimal power flow (ACOPF) analysis. Furthermore, we demonstrate the feasibility of getting significant performance improvements by executing the entire computation on GPU-based hardware. Finally, we identify outstanding research issues and opportunities for even better utilization of heterogeneous systems, including those equipped with GPUs

    Accelerating advanced preconditioning methods on hybrid architectures

    Get PDF
    Un gran número de problemas, en diversas áreas de la ciencia y la ingeniería, involucran la solución de sistemas dispersos de ecuaciones lineales de gran escala. En muchos de estos escenarios, son además un cuello de botella desde el punto de vista computacional, y por esa razón, su implementación eficiente ha motivado una cantidad enorme de trabajos científicos. Por muchos años, los métodos directos basados en el proceso de la Eliminación Gaussiana han sido la herramienta de referencia para resolver dichos sistemas, pero la dimensión de los problemas abordados actualmente impone serios desafíos a la mayoría de estos algoritmos, considerando sus requerimientos de memoria, su tiempo de cómputo y la complejidad de su implementación. Propulsados por los avances en las técnicas de precondicionado, los métodos iterativos se han vuelto más confiables, y por lo tanto emergen como alternativas a los métodos directos, ofreciendo soluciones de alta calidad a un menor costo computacional. Sin embargo, estos avances muchas veces son relativos a un problema específico, o dotan a los precondicionadores de una complejidad tal, que su aplicación en diversos problemas se vuelve poco práctica en términos de tiempo de ejecución y consumo de memoria. Como respuesta a esta situación, es común la utilización de estrategias de Computación de Alto Desempeño, ya que el desarrollo sostenido de las plataformas de hardware permite la ejecución simultánea de cada vez más operaciones. Un claro ejemplo de esta evolución son las plataformas compuestas por procesadores multi-núcleo y aceleradoras de hardware como las Unidades de Procesamiento Gráfico (GPU). Particularmente, las GPU se han convertido en poderosos procesadores paralelos, capaces de integrar miles de núcleos a precios y consumo energético razonables.Por estas razones, las GPU son ahora una plataforma de hardware de gran importancia para la ciencia y la ingeniería, y su uso eficiente es crucial para alcanzar un buen desempeño en la mayoría de las aplicaciones. Esta tesis se centra en el uso de GPUs para acelerar la solución de sistemas dispersos de ecuaciones lineales usando métodos iterativos precondicionados con técnicas modernas. En particular, se trabaja sobre ILUPACK, que ofrece implementaciones de los métodos iterativos más importantes, y presenta un interesante y moderno precondicionador de tipo ILU multinivel. En este trabajo, se desarrollan versiones del precondicionador y de los métodos incluidos en el paquete, capaces de explotar el paralelismo de datos mediante el uso de GPUs sin afectar las propiedades numéricas del precondicionador. Además, se habilita y analiza el uso de las GPU en versiones paralelas existentes, basadas en paralelismo de tareas para plataformas de memoria compartida y distribuida. Los resultados obtenidos muestran una sensible mejora en el tiempo de ejecución de los métodos abordados, así como la posibilidad de resolver problemas de gran escala de forma eficiente

    Algebraic, Block and Multiplicative Preconditioners based on Fast Tridiagonal Solves on GPUs

    Get PDF
    This thesis contributes to the field of sparse linear algebra, graph applications, and preconditioners for Krylov iterative solvers of sparse linear equation systems, by providing a (block) tridiagonal solver library, a generalized sparse matrix-vector implementation, a linear forest extraction, and a multiplicative preconditioner based on tridiagonal solves. The tridiagonal library, which supports (scaled) partial pivoting, outperforms cuSPARSE's tridiagonal solver by factor five while completely utilizing the available GPU memory bandwidth. For the performance optimized solving of multiple right-hand sides, the explicit factorization of the tridiagonal matrix can be computed. The extraction of a weighted linear forest (union of disjoint paths) from a general graph is used to build algebraic (block) tridiagonal preconditioners and deploys the generalized sparse-matrix vector implementation of this thesis for preconditioner construction. During linear forest extraction, a new parallel bidirectional scan pattern, which can operate on double-linked list structures, identifies the path ID and the position of a vertex. The algebraic preconditioner construction is also used to build more advanced preconditioners, which contain multiple tridiagonal factors, based on generalized ILU factorizations. Additionally, other preconditioners based on tridiagonal factors are presented and evaluated in comparison to ILU and ILU incomplete sparse approximate inverse preconditioners (ILU-ISAI) for the solution of large sparse linear equation systems from the Sparse Matrix Collection. For all presented problems of this thesis, an efficient parallel algorithm and its CUDA implementation for single GPU systems is provided

    Resilience for Asynchronous Iterative Methods for Sparse Linear Systems

    Get PDF
    Large scale simulations are used in a variety of application areas in science and engineering to help forward the progress of innovation. Many spend the vast majority of their computational time attempting to solve large systems of linear equations; typically arising from discretizations of partial differential equations that are used to mathematically model various phenomena. The algorithms used to solve these problems are typically iterative in nature, and making efficient use of computational time on High Performance Computing (HPC) clusters involves constantly improving these iterative algorithms. Future HPC platforms are expected to encounter three main problem areas: scalability of code, reliability of hardware, and energy efficiency of the platform. The HPC resources that are expected to run the large programs are planned to consist of billions of processing units that come from more traditional multicore processors as well as a variety of different hardware accelerators. This growth in parallelism leads to the presence of all three problems. Previously, work on algorithm development has focused primarily on creating fault tolerance mechanisms for traditional iterative solvers. Recent work has begun to revisit using asynchronous methods for solving large scale applications, and this dissertation presents research into fault tolerance for fine-grained methods that are asynchronous in nature. Classical convergence results for asynchronous methods are revisited and modified to account for the possible occurrence of a fault, and a variety of techniques for recovery from the effects of a fault are proposed. Examples of how these techniques can be used are shown for various algorithms, including an analysis of a fine-grained algorithm for computing incomplete factorizations. Lastly, numerous modeling and simulation tools for the further construction of iterative algorithms for HPC applications are developed, including numerical models for simulating faults and a simulation framework that can be used to extrapolate the performance of algorithms towards future HPC systems

    Implicit Hari–Zimmermann algorithm for the generalized SVD on the GPUs

    Get PDF
    A parallel, blocked, one-sided Hari–Zimmermann algorithm for the generalized singular value decomposition (GSVD) of a real or a complex matrix pair (F,G) is here proposed, where F and G have the same number of columns, and are both of the full column rank. The algorithm targets either a single graphics processing unit (GPU), or a cluster of those, performs all non-trivial computation exclusively on the GPUs, requires the minimal amount of memory to be reasonably expected, scales acceptably with the increase of the number of GPUs available, and guarantees the reproducible, bitwise identical output of the runs repeated over the same input and with the same number of GPUs

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest
    • …
    corecore