
Old Dominion University
ODU Digital Commons
Modeling, Simulation & Visualization Engineering
Theses & Dissertations Modeling, Simulation & Visualization Engineering

Spring 2019

Resilience for Asynchronous Iterative Methods for
Sparse Linear Systems
Evan Coleman
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/msve_etds

Part of the Applied Mathematics Commons, and the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Modeling, Simulation & Visualization Engineering at ODU Digital Commons. It has
been accepted for inclusion in Modeling, Simulation & Visualization Engineering Theses & Dissertations by an authorized administrator of ODU
Digital Commons. For more information, please contact digitalcommons@odu.edu.

Recommended Citation
Coleman, Evan. "Resilience for Asynchronous Iterative Methods for Sparse Linear Systems" (2019). Doctor of Philosophy (PhD),
dissertation, Modeling Simul & Visual Engineering, Old Dominion University, DOI: 10.25777/hbwj-sd39
https://digitalcommons.odu.edu/msve_etds/48

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds/48?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

RESILIENCE FOR ASYNCHRONOUS ITERATIVE METHODS

FOR SPARSE LINEAR SYSTEMS

by

Evan Coleman
B.S., March 2009, Oregon State University

M.S., May 2011, Syracuse University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

MODELING & SIMULATION

OLD DOMINION UNIVERSITY
May 2019

Approved by:

Masha Sosonkina (Director)

Ross Gore (Member)

Duc Nguyen (Member)

Hong Yang (Member)

ABSTRACT

RESILIENCE FOR ASYNCHRONOUS ITERATIVE METHODS FOR
SPARSE LINEAR SYSTEMS

Evan Coleman
Old Dominion University, 2019
Director: Dr. Masha Sosonkina

Large scale simulations are used in a variety of application areas in science and engi-

neering to help forward the progress of innovation. Many spend the vast majority of their

computational time attempting to solve large systems of linear equations; typically arising

from discretizations of partial differential equations that are used to mathematically model

various phenomena. The algorithms used to solve these problems are typically iterative in

nature, and making efficient use of computational time on High Performance Computing

(HPC) clusters involves constantly improving these iterative algorithms. Future HPC plat-

forms are expected to encounter three main problem areas: scalability of code, reliability of

hardware, and energy efficiency of the platform. The HPC resources that are expected to

run the large programs are planned to consist of billions of processing units that come from

more traditional multicore processors as well as a variety of different hardware accelerators.

This growth in parallelism leads to the presence of all three problems.

Previously, work on algorithm development has focused primarily on creating fault tol-

erance mechanisms for traditional iterative solvers. Recent work has begun to revisit using

asynchronous methods for solving large scale applications, and this dissertation presents

research into fault tolerance for fine-grained methods that are asynchronous in nature. Clas-

sical convergence results for asynchronous methods are revisited and modified to account for

the possible occurrence of a fault, and a variety of techniques for recovery from the effects of

a fault are proposed. Examples of how these techniques can be used are shown for various

algorithms, including an analysis of a fine-grained algorithm for computing incomplete fac-

torizations. Lastly, numerous modeling and simulation tools for the further construction of

iterative algorithms for HPC applications are developed, including numerical models for sim-

ulating faults and a simulation framework that can be used to extrapolate the performance

of algorithms towards future HPC systems.

iii

Copyright, 2019, by Evan Coleman, All Rights Reserved.

iv

This thesis is dedicated to my family; especially Sara, for always being there to support me.

v

ACKNOWLEDGEMENTS

There are many people who deserve recognition for the help they have provided me.

First, my committee members: Dr. Masha Sosonkina, Dr. Ross Gore, Dr. Duc Nguyen, and

Dr. Hong Yang. Second to my family and friends. Thank you for all of your understanding

and support.

Throughout the course of my studies I’ve had the opportunity to work and have inter-

esting discussions with a large number of wonderful colleagues located at many different

institutions; many of whom I’ve been lucky enough to collaborate with on various studies

and papers. The experiences have been overwhelmingly positive and have helped me grow

immensely as a researcher.

A special thanks to my major advisor, Dr. Masha Sosonkina, for all of the support and

encouragement that she has provided over the last several years. I appreciate all of the

opportunities and guidance that you’ve given to me; thank you.

Throughout my research, I have benefited from the use of several different computing

facilities. My work was primarily conducted on the computers at Old Dominion University,

primarily the Turing cluster but additionally on the Borges and Rulfo computers; however,

some experiments were also conducted at the National Energy Research Scientific Computing

Center (NERSC) on both the Hopper and Edison supercomputers.

Lastly, I would also like to acknowledge the support I’ve received from the Naval Surface

Warfare Center, Dahlgren Division. In addition to the direct funding of my graduate studies

at Old Dominion University, I have also received support from the Academic Fellowship

Program and the In-house Laboratory Independent Research Program. The support from

these programs helped me greatly during my pursuit of higher education.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES. xi

Chapter

1. INTRODUCTION . 1
1.1 MOTIVATION . 2
1.2 PROBLEM . 7
1.3 CONTRIBUTIONS . 8
1.4 OUTLINE . 10

2. BACKGROUND MATERIAL . 12
2.1 LITERATURE REVIEW . 12
2.2 KRYLOV SUBSPACE SOLVERS . 25
2.3 PRECONDITIONERS . 30
2.4 ASYNCHRONOUS ITERATIVE METHODS . 39

3. TECHNIQUES FOR RESILIENCE TO SOFT FAULTS . 50
3.1 MODELING THE IMPACT OF SOFT FAULTS . 52
3.2 RESILIENCE STRATEGIES . 76
3.3 SUMMARY . 83

4. NUMERICAL MODELING OF FAULTS . 84
4.1 SIMULATING SOFT FAULTS . 86
4.2 NUMERICAL RESULTS . 98
4.3 SUMMARY . 123

5. USE CASE: FINE-GRAINED INCOMPLETE FACTORIZATIONS. 125
5.1 FINE-GRAINED PARALLEL ALGORITHM . 127
5.2 CONVERGENCE OF THE ALGORITHM . 129
5.3 SOFT FAULT RESILIENCE . 138
5.4 NUMERICAL RESULTS . 156
5.5 SUMMARY . 176

6. FRAMEWORK FOR MODELING AND ANALYSIS . 182
6.1 DESIGN OF SIMULATION FRAMEWORK . 183
6.2 FRAMEWORK EXTENSION FOR FAULT-TOLERANCE 203
6.3 NUMERICAL EXPERIMENTS . 204
6.4 SUMMARY . 207

vii

7. CONCLUSIONS. 209
7.1 THEORETICAL RESULTS AND TECHNIQUES . 209
7.2 NUMERICAL SOFT FAULT MODELING . 209
7.3 FAULT TOLERANT FINE-GRAINED INCOMPLETE FACTORIZATIONS . 210
7.4 FRAMEWORK FOR MODELING AND ANALYSIS . 210
7.5 FUTURE WORK . 211

REFERENCES . 213

VITA . 236

viii

LIST OF TABLES

Table Page

1 Comparison of different fault injection techniques . 93

2 Comparison of SBSFM and PBSFM . 94

3 Comparison of fault effects, LAPLACE2D . 96

4 Full fault simulation results, sticky faults . 114

5 Input parameters the value of which varied in the experiments 116

6 Summary of beneficial results - persistent fault injection . 122

7 Progression of residual norms . 144

8 Example of progression of nonlinear residual norm . 145

9 Fault model comparison . 159

10 Symmetric problem summary . 160

11 Symmetric condition numbers . 161

12 Non-symmetric problem descriptions . 171

13 Effect of increasing α . 172

14 Results for non-symmetric problem set . 173

15 Increase in non-zeros for different levels of ILU fill-in . 174

16 Krylov subspace solver resilience - non-symmetric problem set 175

17 Mean times for copy, compute, and update operations . 196

18 Boundary conditions for the second implementation of the Laplacian 199

19 Mean iteration time and standard deviation by thread count 200

20 Comparisons of run times between parallel executions and simulation 203

ix

LIST OF FIGURES

Figure Page

1 Nominal HPC program flow . 4

2 Potentially faulty HPC program flow . 5

3 Breakdown of Types of Soft Faults . 7

4 Example of the effects of fill-in . 32

5 Demonstration of ARMS block factorization . 35

6 Second level ARMS factorization . 36

7 Final Schur complement for ARMS demonstration . 36

8 Convergence rate comparison for FGMRES . 39

9 Component-wise progression of common termination conditions for the asyn-
chronous Jacobi algorithm . 74

10 Simple fault injection baseline example . 87

11 BFSFM injection example . 88

12 PBSFM injection example . 89

13 SBSFM injection example . 91

14 Breakdown of Types of Soft Faults . 91

15 Distribution of run times in a fault-free environment . 101

16 Effect of bit-flip faults in the exponent and sign bits . 102

17 Effect of bit-flip faults in the mantissa bits . 103

18 Effect of faults injected using the SBSFM . 104

19 Effect of faults injected using the PBSFM. 105

20 Effect of recovery with bit-flip faults in the exponent and sign bits 106

21 Effect of recovery with bit-flip faults in the mantissa bits . 107

x

22 Effect of fault recovery with the SBSFM . 108

23 Effect of fault recovery with the PBSFM . 109

24 Effect of soft faults, sticky faults, small problem . 113

25 Effect of soft faults, sticky faults, large problem . 114

26 Effect of soft faults, persistent faults, outer matvec, varied l2-norm 117

27 Effect of soft faults, persistent faults, outer matvec, decreasing l2-norm 118

28 Effect of soft faults, persistent faults, application of preconditioner 120

29 Effect of soft faults, persistent faults, outer matvec and application of precondi-
tioner, decreasing l2-norm . 121

30 Effect of soft faults, persistent faults, outer matvec and application of precondi-
tioner, small faults . 122

31 Sparsity plots, symmetric matrices, unordered . 162

32 Sparsity plots, symmetric matrices, Reverse Cuthill-Mckee ordering 178

33 Example of impact of a fault . 179

34 Success rates - Perturbation-based faults, symmetric problems 179

35 Success rates - Bit-flip faults, symmetric problems . 180

36 Krylov subspace solver performance - Perturbation-based faults, symmetric prob-
lems . 180

37 Krylov subspace solver performance - Bit-flip faults, symmetric problems 181

38 Results of resilience testing, non-symmetric problems . 181

39 Stages in the proposed framework development . 184

40 Block diagram of the simulation framework . 185

41 Example of nominal performance of the synchronous Jacobi iteration. 189

42 Example of experiments within the simulation framework. Each line shows the
effect of slowing down a single processor to some factor of the (synchronous)
performance of the other processors. 190

xi

43 Example of experiments within the simulation framework. Each line shows the
effect of increasing the variance in processor performance from 1 to 5 to 10. 191

44 Performance variations between Safe and Race as a function of thread count. . . 195

45 Safe copy, compute, and update histograms with kernel fits. 197

46 Race copy, compute, and update histograms with kernel fits. 198

47 Iteration time histograms with kernel fits. 201

48 Block diagram of the simulation framework with added support for fault tolerance
mechanisms . 204

49 Effect of differing values of γ on the progression of the residual 206

1

CHAPTER 1

INTRODUCTION

Many advancements in science in engineering stem from high fidelity simulations that are

very large scale in nature. The computational requirements of such simulations naturally

lend them to be executed on the largest High Performance Computing (HPC) platforms

available. As the requirements of these simulations continue to grow, increasingly larger

scales of computation must be provided by the HPC resources.

Future HPC platforms continue to scale in the number of processing elements as they

progress towards performing exascale levels of computation. Several reports from various

sources including the U.S. Department of Energy (e.g., [1]–[3]) and collaborations between

academic, industrial, and government entities (e.g., [4]–[9]) have identified major challenge

areas as HPC platforms progress towards exascale. At a high level, these challenges can be

broadly categorized as follows:

1. Scalability: designing applications that are able to efficiently make use of the greatly

increased level of parallelism that will be present on exascale capable machines.

2. Resilience: exascale level HPC platforms are expected to experience hardware errors

at an increased rate and algorithms and applications will need to be designed to deal

with such errors.

3. Energy: current techniques and methodologies would create exascale level systems

that consumed over 100 MW of power [10]; this is not sustainable, and energy-aware

computing needs to be employed to help drive the total amount of energy consumed

down.

2

Asynchronous iterative methods are a class of parallel algorithm in which a processor

does not need to wait upon input from other processors before proceeding in the compu-

tations assigned to it. Removing synchronization between the processors offers a means

to increase performance. More traditional synchronous algorithms may have the follow-

ing drawbacks [11]: synchronism may be hard or computationally expensive to enforce in

practice, communication delays may introduce computational bottlenecks, the act of syn-

chronizing may cause far more communication to occur than is necessary for convergence of

the algorithm, and natural variance among processors (even in a homogeneous computing

environment) may lead to having many processors idle for large amounts of time. The ability

for an algorithm to function in an asynchronous manner allows it to help tolerate latency in

HPC environments.

1.1 MOTIVATION

Looking forward to the future of HPC, it is important to develop algorithms that are

resilient to faults. On future platforms, the rate at which faults occur is expected to decrease

dramatically [4]–[7], which will cause the mean time between failures (MTBF) to continue

to decrease. Analysis of components has led to the conclusion that future components will

suffer similar failure rates [12], [13], which, when combined with the drastic increase in the

number of components, could cause MTBF to be on the order of tens of hours [14]. This

calls for the design of fault-tolerant computational algorithms that are robust in the face of

these failures. Development of such algorithms has become one of many priorities on the

road towards exascale.

Many large scale simulations spend the vast majority of their computational time at-

tempting to solve large sparse systems of linear algebraic equations, typically arising from

discretizations of (systems of) partial differential equations that are used to mathematically

model various phenomena. Examples of such applications include tools for computational

fluid dynamics such as FUN3D [15] and OpenFOAM [16], simulations of shock hydrodynamics

3

like LULESH [17], as well as libraries designed to help with solving partial differential equa-

tions (e.g., FEniCS [18]) or finite elements problems (e.g., deal.II [19]), or even multiphysics

simulations such as those built around the MOOSE framework [20]. The algorithms used to

solve these problems are typically iterative in nature, and making efficient use of compu-

tational time on high performance computing clusters involves constantly improving these

iterative algorithms.

Fine-grained parallel methods decompose a problem into a large number of small tasks.

If these tasks can be performed independently, then the computation can be done asyn-

chronously. These methods are beginning to be used more prevalently due to their ability

to be parallelized naturally on modern co-processors such as GPUs and Intel Xeon PhisR©1.

Many examples of recent work using fine-grained parallel methods are available including

work on fine-grained relaxation methods [21], [22], studies concerning the use of fine-grained

methods as preconditioners [23], [24], and fine-grained solvers for triangular systems [25].

Asynchronous iterative methods describe the more specific class of fine-grained parallel

iterative algorithms where each computing element is allowed to perform its task without

waiting for updates from any of the other processes. This dissertation aims to examine

the class of algorithms that are captured by fixed point iterative methods for solving linear

systems of equations. This class of algorithms encompasses many recent techniques that

are of great use in both solving and preconditioning sparse linear systems. A fixed point

iteration,

x(k+1) = G
(
x(k)

)
, (1)

can be updated in an asynchronous manner, with the ultimate goal of finding a fixed point,

i.e. a location x∗ in the domain such that x∗ = G(x∗). This class of problems has been

used in a wide variety of applications including: the solution of linear systems [21], [26], [27],

the preconditioning of linear solvers [23], [24], optimization [28], [29], and techniques for

1Intel Corp., Santa Clara, CA

4

solving partial differential equations [30], among many others. The prevalence of fixed point

iterations, especially within the realm of asynchronous algorithms, provides a focal point for

much of the analysis presented throughout this dissertation; however, many of the techniques

extend naturally to other domains.

The expected flow of any program that is executed on a high-performance computing

(HPC) environment is provided in Fig. 1. Generally, the program starts computing, some

sequence of operations is executed and then program execution terminates as expected.

Fig. 1: Nominal HPC program flow

However, if faults are introduced during the operations step, there are a range of potential

outcomes that become possible. In total, the following scenarios may occur:

• the computations involved in the operations step could enter an infinite loop and

continue indefinitely;

• the computations could suffer a failure such that the operations step is aborted entirely

and the program exits;

• the operations step could complete successfully, but the failure that is encountered

could corrupt the output; or

• the operations step could complete successfully, and the output could be within the

initial tolerance.

This range of potential outcomes is depicted in Fig. 2.

Faults can broadly be divided into two categories: hard faults and soft faults [31], [32].

5

Fig. 2: Potentially faulty HPC program flow

• Hard faults: cause immediate program interruption and typically come from negative

effects on the physical hardware components of the system or on the operating system

itself.

• Soft faults: represent all faults that do not cause the executing program to stop and

are the primary focus of this work. Most often, soft faults refer to some form of data

corruption that is occurring either directly inside of, or as a result of, the algorithm

that is being executed.

At a high level, successful fault tolerance for asynchronous iterative methods with respect

to hard faults relies chiefly upon successful detection of the fault itself. This will most likely

be handled by the HPC platform; however, the successful recovery of the iterative method

in question requires the iterative algorithm itself to have the knowledge that a hard fault

has occurred. This could be achieved internally in the algorithm by declaring a hard fault

if components belonging to a particular block (corresponding to some specific processing

element) fail to be updated within some stated time bound.

Similar to the case of a hard fault, the most important aspect to recovering from a soft

6

fault is successful fault detection. However, this is often more difficult in the case of a soft

fault since – though it corrupts data – it does not cause direct interruption to the flow of

the iterative process. Many detection techniques rely on choosing an appropriate tolerance

to check a property of the algorithm that has predictable behavior (e.g. a residual that

is monotonically decreasing, a known property concerning a vector/matrix norm, etc); a

tolerance that is too loose will allow potentially harmful errors to go undetected, while a

tolerance that is too strict may report a fault when none actually occurred (“false positive”)

and cause the program to do extra work to recover from a non-existent problem.

Historically, one of the first approaches towards this goal was the implementation of

checksums in the computation of matrix operations [33]. In this approach, each matrix or

vector is extended with additional memory that encodes a checksum that can be used to

detect and correct single upset faults caused by the hardware. This was the beginning of an

algorithmic based approach towards fault tolerance. This style of fault tolerance can allow

for more efficient recovery from soft faults, but oftentimes it is harder to detect the fault

initially. The balance in choosing the correct fault tolerance method to recover from soft

faults is typically application dependent.

Following the taxonomy presented in [31], [32], soft faults can be further divided into

three categories:

• Transient Faults: temporary and can be viewed as faults that occur only once.

Example: Changing a single floating point number at a single point during execution

• Sticky Faults: linger and can affect multiple operations. It is always possible to

remedy the cause of these faults if the root cause can be determined.

Example: There is a fault in a data copy, and the incorrect data will be used (resulting

in faulty results) until the data is recopied

• Persistent Faults: persist during a large part of the computing time. It is not always

possible to remedy the cause of these faults even if it can be detected.

7

Example: A hardware problem (processor or RAM) that causes results to be computed

incorrectly, but does not terminate program execution

A pictorial representation of this taxonomy is provided in Fig. 3.

Fig. 3: Breakdown of Types of Soft Faults

1.2 PROBLEM

Being able to improve the iterative algorithms in use requires analyzing the combination

of the algorithm itself, the problem domain, and future HPC platforms. The combination of

future high performance computing platforms and current algorithms and applications has

led to three main problem areas being identified in the community: scalability of existing

and future code, reliability of the hardware environment, and the energy efficiency of the

computing cluster. The future high performance computing resources that are expected

to run the large programs discussed above are planned to consist of billions of processing

units that come from more traditional multicore processors as well as a variety of different

hardware accelerators. This expected growth in parallelism and scale leads to the presence

8

of all three of the identified problems.

Recent work in the community has hinted that asynchronous iterative algorithms may

be able to address the scalability concern. However, with this new direction of research

comes a new question: how can the resiliency of these asynchronous algorithms be guaran-

teed? Existing work on algorithm development for the next generation HPC systems tends to

focus primarily on developing fault tolerance mechanizations for traditional iterative solvers.

While some recent work has begun to revisit the tractability of using asynchronous methods

for solving large scale problems, this dissertation presents research into fault tolerance for

(fine-grained) asynchronous methods. These methods tend to scale well to both large systems

and to systems of differing architectures since they attempt to completely remove the syn-

chronization delay present in all traditional iterative methods. Additionally, asynchronous

methods tends to be more energy efficient since they are able to take advantage of energy

saving mechanisms present in the hardware and tend to maximize time spent computing,

consequently minimizing the idle time of the system. As this dissertation aims to address

the question of resilience of asynchronous methods directly, all three of the main challenges

facing future large scale simulation will be addressed by the results presented in this work.

1.3 CONTRIBUTIONS

From a high-level point of view, this dissertation makes the following contributions to

the field:

• The theory and mathematical analysis needed to make general statements about the

convergence of fine-grained methods subject to the potential impact of a fault. These

developments provide a better understanding of the behavior of the algorithms under

study, facilitating development of fault tolerant variants.

• Examples of using the theory in applications. Specifically an examination of fault tol-

erant variants of fine-grained preconditioning algorithms for preparing preconditioners

9

for solving linear systems. A realistic use case helps establish the efficacy of the the-

ory that is developed, and provides a model for how other similar algorithms can be

modified to become resilient.

• Generalized soft fault models that can be used to simulate the occurrence of a fault in

a generic sense that is not tied to a specific manifestation of an error. The use of these

fault models will be used in the development of fault tolerant algorithms. The use

of numerical soft fault models abstracts away any connection to a particular method

that a fault may manifest, and allows experiments to carefully control the amount of

corruption induced to ensure that they consistently force sufficiently bad behavior to

drive a reaction from the algorithm.

• Simulation tools capable of modeling the performance of asynchronous variants of fine-

grained algorithms for various hardware architectures that can be utilized in algorithm

development. Specifically, the simulation framework that is developed allows for quick,

easy experimentation to be conducted on a variety of potential algorithmic modifica-

tions.

Developing algorithms that are resilient to faults is of paramount importance and fine-

grained parallel methods are no exception. This dissertation aims to offer a means of gener-

ating resilient fine-grained asynchronous methods by putting forth: a simulation framework

for experimenting with these methods, predictive performance models capable of extrapolat-

ing the performance of algorithms to future HPC hardware, a generalized fault model for use

in designing resilient algorithms, mathematical theory for dealing with this class of methods,

and a detailed example of how the theory can be used to develop fault tolerant variants of

existing fine-grained algorithms.

10

1.4 OUTLINE

This work is organized into seven chapters in total. Chapter 2 provides a literature

review of all recent related studies and introduces the background material necessary for

understanding the later studies. In particular, an overview of classical and asynchronous

iterative methods is provided and the mathematical framework for studying asynchronous

iterative methods is introduced.

Next, Chapter 3 discusses in greater detail existing results concerning the convergence of

asynchronous iterative methods and introduces several new results that cover the convergence

of asynchronous iterative methods in the case that a soft fault occurs. Additionally, this

chapter proposes several different techniques that can be used to recover from the occurrence

of a fault and provides quick examples that show how each strategy can be used to ensure

resilience of the asynchronous Jacobi algorithm.

Chapter 4 develops the novel numerical soft fault model that is used in many of the

subsequent experiments that attempt to judge the impact a soft fault may have an on algo-

rithm. A comparison and analysis of this numerical soft fault model with similar techniques

developed in the community as well as with the direct effects of injecting a bit flip directly

are provided, as well as experiments and analysis of the impact that the fault model may

have on asynchronous iterative methods. These results are used to help create efficient fault

tolerant algorithmic variants. This chapter also conducts similar analysis for traditional it-

erative methods used in HPC applications (specifically FGMRES) in order to demonstrate

that this fault model can also be used in other environments.

Chapter 5 takes the techniques and results that were proposed in Chapter 3 and applies

them to a popular fine-grained algorithm: the fine-grained parallel incomplete LU factoriza-

tion. This algorithm represents a more complicated alternative to the asynchronous Jacobi

algorithm that is quickly explored in Chapter 3, and the techniques are examined in much

greater detail in order to provide an example of how they can be used in the most general

sense. The fault tolerant variants that are created are then tested using both the numerical

11

soft fault model developed in Chapter 4 as well as direct injection of bit-flips, and the results

are explored.

The development of a simulation framework that can be used for modeling and analysis is

then detailed in Chapter 6. This includes the development and validation of the framework

based on empirical data generated from shared memory experiments. A series of numerical

experiments demonstrating the utility of the simulation tools developed is presented, includ-

ing a use case demonstrating how the simulation framework can be used to help generate

efficient fault tolerant algorithms.

Lastly, Chapter 7 provides summaries of all experiments and several different possible

directions for future work.

12

CHAPTER 2

BACKGROUND MATERIAL

This chapter provides a literature review that covers recent related studies being con-

ducted around the HPC community, as well as introductory background material that is

common to, and needed for a full understanding of, later chapters.

2.1 LITERATURE REVIEW

This section presents a review of the literature that is divided further into three parts:

1. iterative methods,

2. fault tolerance, and

3. performance modeling.

The studies that are discussed in the subsection on iterative methods covers recent work

for both classical (i.e. synchronous) and asynchronous iterative methods. Again, these stud-

ies are important to build a foundation for all of the work presented in this thesis. Particular

care is taken to highlight the historical development of asynchronous iterative methods in-

cluding the resurgence in interest in these methods in recent years, and to show how the

results that have been obtained relate to the results that are presented here. Chapters 3

and 5 most directly relate to these studies, but the results do carry significant weight to all

of the work presented in this dissertation.

The section on fault tolerance is designed to capture results from the recent literature that

detail the increased expectation of faults to occur and to discuss some high level techniques

that have been employed for mitigating faults. Additionally, a subsection is included that

13

details recent work in the numerical modeling of faults. This work is relevant throughout all

of this dissertation, but also directly applies to the work shown in Chapter 4.

The next section on performance modeling covers a wide variety of techniques and frame-

works that have been used to attempt to extrapolate results forward to future hardware and

software environments. This work is pertinent to the new work presented in Chapter 6.

2.1.1 ITERATIVE METHODS

2.1.1.1 Classical Iterative Methods

The work done in this dissertation to show the effectiveness of many of the linear solvers is

built upon one of the more popular Krylov subspace methods (see the classic text by Saad [34]

for an overview). This class of methods includes two of the main methods that are focused on

here. The first is the Conjugate Gradient method, used when the associated linear system

is symmetric positive-definite (SPD), and the second is GMRES [35], developed by Saad

and Schultz and useful for non-symmetric or highly indefinite linear systems. The “flexible”

variant of GMRES, i.e. FGMRES – also developed by Saad, is used when appropriate as

well [36]. FGMRES is very similar to GMRES with the notable exception of allowing the

preconditioner to change adaptively at each iteration. More details are provided in the

pertinent background section (Section 2.2).

Krylov subspace solvers have been studied extensively. Van der Vorst provides an

overview of how these solvers can be nested for improved convergence [37], a similar ap-

proach in spirit to the FGMRES solver [36] that is used in the studies shown in Chapter 4.

Applications in computational fluid dynamics (CFD) have been considered extensively in the

past (see [38]–[41]); this application domain is a great example of problems that could benefit

from the resilient solvers developed here and the work in Chapter 5 includes an example of a

problem from the CFD domain. A study by Sosonkina, Saad, and Cai [42] provides examples

of the use of Krylov subspace solvers in many other realistic domain areas and introduces

14

several computational manipulations that can be used to help with convergence such as the

idea of a positive diagonal shift. This last idea is experimented with in Chapter 5 to see the

effect it has on the use of nonlinear fixed point iterations for non-symmetric problems.

Perhaps most relevant to the work presented in this dissertation is the work on inexact

Krylov subspace methods. These are a class of iterative methods that examine whether the

computationally expensive operations during a Krylov subspace method can be replaced with

approximations. For example, one of the most computationally expensive operations during

the iteration is the matrix-vector multiply that is used to expand the basis for the Krylov

subspace. If instead of performing the multiplication exactly the computation is performed

approximately, i.e. instead of computing

w = Av (2)

one can instead compute the matrix-vector multiplication approximately which results in an

equation of the following form,

w ≈ Av + Ev (3)

where E is an appropriate error matrix. In essence, the computation may be sped up by

allowing computationally expensive routines to be computed approximately without any sig-

nificant degrade in convergence. An overview of this idea is given by van den Eshof [43]. The

study presented by Simoncini and Szyld [44] investigates what properties the matrix E must

have, and their later paper [45] looks into the instances when using approximate computa-

tion can actually speed up convergence as well as what these approximate computations can

have on the Krylov subspace itself. This is relevant to a study on fault tolerance for Krylov

subspace solvers since a fault can be viewed by some fault models as a perturbation that

causes an operation, such a matrix-vector multiply, to become inexact even if the routine is

computed exactly. Further, instance of superlinear convergence such as those studied in [45]

15

were seen in the work on the effect of persistent faults on Krylov subspace solvers that is

detailed in Section 4.2.2.

Another area of interest is in the use of accelerators (e.g., Intel Xeon Phis R©or GPUs)

for iterative methods. The study by Li and Saad [46] shows how GPU-acceleration can be

used for preconditioned iterative linear solvers, including both the Conjugate Gradient and

Flexible GMRES algorithm which are both featured prominently in the work presented in

this dissertation. The work shown by Jamal et al. [47] presents a technique for creating a

hybrid parallel iterative linear solver based upon the pARMS library and solver [48]–[50]

which is also featured heavily in the experiments that are showcased in Chapter 4.

Research into the convergence of iterative methods when solving non-symmetric problems

has been studied previously as well. Chow and Saad [51] present an experimental study on

the convergence of Krylov subspace solvers with various incomplete LU factorizations, with

a focus on the performance of the algorithm used to generate the incomplete factorization.

They enumerate a large number of problems that cannot be solved with the baseline incom-

plete LU factorization (i.e. ILU(0)) and investigate methods for improving the performance

of both the algorithm to generate the incomplete factorization and the associated Krylov

Subspace solver.

Benzi et al. [52] also study convergence of non-symmetric and indefinite matrices. They

were motivated by problems from a wide variety of application areas through science and

engineering (e.g. chemical engineering, economic modeling, circuit simulation, etc) where the

structure of the discretized system is not as nice as the structure of problems arising from

the discretization of many common elliptic partial differential equations. Similar to [51], the

authors present experimental results for a wide variety of problems. Their experiments use a

variety of different preconditioning techniques (including an approximate inverse algorithm

not similar to anything used in [51]) and they analyze the results to attempt to find beneficial

modifications that can be made to the problem (e.g., reorderings, scalings, etc). Both of these

studies [51], [52] were used as a starting point for the work presented here on non-symmetric

16

problems.

The effect of matrix reordering on convergence was studied in the previously mentioned

works on non-symmetric problems (i.e. [51], [52]) and has been focused on exclusively in pa-

pers such as a study of the effect of reorderings on incomplete factorizations by Benzi, Szyld,

and Van Duin [53]. That work focuses on how different reorderings affect the convergence

of Krylov subspace solvers for non-symmetric problems. In their study, a variety of different

solvers and incomplete LU factorizations are used. The analysis presented there inspired

some of the work done here to judge how matrix reorderings affect the nonlinear fixed point

iteration for generating incomplete LU factorizations (see Chapter 5).

2.1.1.2 Asynchronous Iterative Methods

Fine-grained parallel methods, specifically parallel fixed point methods, are an area of

increased research activity due to the practical use of these methods on HPC resources. An

initial exploration of fault tolerance for stationary iterative linear solvers (i.e. Jacobi) is

given by Anzt, Dongarra, and Quintana-Ort́ı [26] and expanded on in their later study [21].

Fault tolerance for synchronous fixed point algorithms from a numerical analysis has been

investigated by Stoyanov and Webster [54]. Error correction and mixed precision techniques

for GPU based oriented asynchronous methods were investigated by Anzt et al. [55].

The general convergence of parallel fixed point methods has also been explored exten-

sively. Addou and Benahmed present an overview of parallel nonlinear fixed point iterations

with an emphasis on synchronous results [56], and Benahmed later described the specific

extensions needed to ensure the results extend to the scenario of asynchronous updates [57].

A survey that presents a wide range of different methods is given by Frommer and Szyld [58].

The general theory of parallel fixed point methods is captured well by the seminal text-

book by Bertsekas and Tsitsiklis [59]. Results specific to parallel nonlinear fixed point

methods can be obtained from the class text by Ortega and Rheiboldt [60].

The class of asynchronous iterative problems that the simulation framework proposed in

17

this dissertation (see Chapter 6) addresses are stationary solvers (also referred to as relax-

ation methods). The focus is on the behavior of these methods in asynchronous computing

environments; however, the framework also easily admits synchronous updates; the key is

the fine-grained nature of the algorithm. Fine-grained parallel methods, specifically parallel

fixed point methods, are an area of increased research activity due to the practical use of

these methods on HPC resources.

While many recent research results for asynchronous iterative methods are focused on im-

plementations that utilize a shared memory architecture, one area of asynchronous iterative

methods that has seen significant development using a distributed memory architecture is

optimization. Cheung and Cole provide an asynchronous coordinate descent algorithm [29],

Hong developed a distributed asynchronous ADMM routine specific to nonconvex prob-

lems [61], and Boyd et al. present an asynchronous approach to the alternating direction

method of multipliers (ADMM) routine designed to apply to machine learning problems [62].

Rechet et al. [27] and Tsitsiklis et al. [11] present investigations into changing the nature of

steepest descent (i.e. gradient descent) optimization routines to make them suited for asyn-

chronous behavior. Lastly, both Zhong and Cassandras [63] and Srivastava and Nedic [64]

focus on the communication patterns needed for distributed asynchronous optimizations.

Nonlinear fixed point iterations have also found a use in modern practical applications.

For example, the fine-grained parallel incomplete LU (FGPILU) factorization uses a nonlin-

ear fixed point iteration to compute incomplete factorizations that can be used as precondi-

tioners for more traditional linear solvers; Chow and Patel describes the algorithm itself [24],

while Chow, Anzt, and Dongarra describe how the algorithm may be implemented efficiently

on GPUs using what is referred to as a block-asynchronous method [23]. Later, Anzt et al.

showed how this algorithm could be used efficiently when solving a series of related linear

systems in model order reduction applied to physical problems [65]. Note that this algo-

rithm is the focus of the chapter of this dissertation (see Chapter 5) that shows how the

theory developed earlier can be used to make the necessary algorithmic modifications to an

18

asynchronous algorithm to ensure fault tolerance.

Asynchronous methods themselves have a long and storied history. The development

initially began in earnest in the late 1960’s and continued into the 1970’s. The paper that

started investigation into asynchronous iterative methods was by Chazan and Miranker [66]

and investigated whether the updates when solving a linear system via a relaxation method

(e.g., Jacobi) could occur in a random, uncoordinated manner that they termed “chaotic”.

This work was immediately expanded on by other authors, see the work on developing

periodic chaotic relaxations documented by Donnelly [67].

Development continued throughout the 1970’s. Work of note includes a generalization

of the results presented by Chazan and Miranker to nonlinear operators by Miellou [68]

and the paper by Kung [69] that provides an overview of research effort on parallel syn-

chronous and asynchronous algorithms to that date (1976). Much of the work on nonlinear

asynchronous iterative methods stems from the work by Ortega and Rheinboldt [60] that

analyzed (synchronous) nonlinear operators of several variables in great depth. Later, work

continued towards further generalizing results in the seminal work by Baudet [70], where

a framework for analyzing asynchronous iterative methods was proposed that can still be

seen in the modern frameworks (including the one used throughout this dissertation). The

results for linear and nonlinear operators were reframed so that the assumption of bounded

delay was unnecessary, and some initial work to analyze and bound the convergence rate

of asynchronous iterative methods was documented. A related work by the same author

provides an initial set of guidelines that can be used in the development of asynchronous

iterative methods [71].

In the 1980’s there came a focus on detailing criteria for convergence (i.e. establishing

the necessary conditions for proposed algorithms to have eventual convergence) [72], [73]

and termination conditions [74], [75]. Of note due to the relation of the subject matter to

the algorithms studied here, Tsitsiklis analyzed differences in the convergence rate of Jacobi

and Gauss-Seidel in the asynchronous paradigm [76]. Additional work during this time fo-

19

cused on adapting the general results put forth previously towards specific algorithms: for

example, Bojańczyk analyzed an asynchronous implementation of Newton’s method for op-

timization [77], Anwar and El Tarazi examined equations specific to the solution of Poisson’s

equation [78], Spiteri looked into asynchronous methods for boundary value problems [79],

and Smart and White showed results for circuit problems [80]. Asynchronous implementa-

tions of gradient algorithms also began to be explored for the first time, see [11], [81], [82].

General results continued to be put forth throughout the 1980’s in an effort to provide

incremental results to continually try to further the theory. The two main techniques used

to prove convergence of an asynchronous algorithm were both introduced in the early 1980’s:

Bertsekas introduced the idea of finding a suitable sequence of nested sets [83] while El

Tarazi brought forth the idea of using an appropriate weighted maximum norm [84]. General

results for distributed networks were developed by Bertsekas [85], generalized asynchronous

iterations were studied by Uresin and Dubois [86], and results for non-negative matrices were

introduced by Lubachevsky and Mitra [87] during this time period. The last study to be

noted during this time is a study on the stability of this class of methods by Tsitsiklis [88]

that provided an investigation into the sufficient conditions needed for convergence that is

similar to Lyapunov stability theory.

Work on asynchronous methods picked up during the 1990’s and early 2000’s on both the

theoretical and applied results. A survey was provided in the early 1990’s by Bertsekas and

Tsitsiklis that captured results to that point [89], general convergence results were examined

[90], [91], studies were conducted for linear (or almost linear) equations [92]–[95], two-stage

iterations were introduced [96], [97], and termination conditions were examined [98].

A few of the different mathematical models that have been used to analyze asynchronous

iterative methods historically were compared by Szyld [99], who also investigated “the mys-

tery of asynchronous iterations convergence when the spectral radius is one,” i.e. for op-

erators that are not strictly contractive. This leads into the work that was done to ex-

pand existing results to broader classes of iterative methods. Some of the strong results

20

for contractive linear systems were expanded to apply to nonexpansive linear systems by

Bahi [100], to parallel synchronous algorithms by Addou and Benahmed [56] and then fi-

nally to fully asynchronous algorithms by Benahmed [57]. Additionally, asynchronous iter-

ative methods specific to the solution of partial differential equations began to be examined

more [101], [102], and stability of the solutions of these methods was revisited [103]. A prob-

abilistic approach governing which component each processor should update was introduced

by Strikwerda [104], which served as a precursor to the much more recent work by Avron,

Druinsky, and Gupta that proved bounds on convergence rates for this stochastic class of

asynchronous iterative methods [105]. A few final works of particular note from this era are

the great survey of classical and modern results provided by Frommer and Szyld [58]), and

the text by Bahi [106] that captures many results on parallel iterative algorithms, including

a large section on asynchronous iterative methods.

While the incredible amount of work contributed to the field from the first paper in

1969 until the mid 2000’s provides a firm foundation that will be referenced and called upon

frequently in both this work and other modern work in the field of asynchronous methods, the

development of asynchronous results become more pertinent to the work of this dissertation

with the influx of work performed in roughly the last 10 years. The more recent studies

dedicated to this field tend to be related to the goal of removing the synchronization delay

from high performance computing clusters that are comprised of heterogeneous components,

e.g. systems that make use of co-processors such as GPUs or Intel Xeon Phi R©’s.

Additional recent efforts include performance analysis of asynchronous methods by Bethune

et al. [107], [108], as well as similar analysis presented by Hook and Dingle [109]. Anzt et al.

explored the suitability of GPUs for use with asynchronous iterative methods [110], [111],

as well as performance tuning of block-asynchronous methods [112]. Asynchronous methods

have also been modified to efficiently execute triangular solves [25], [113], very commonly used

computations in numerical linear algebra. Asynchronous optimization methods have also

been explored; Recht et al. proposed a gradient descent method [27], Cheung and Cole stud-

21

ied coordinate descent [29], and Aybat et al. studied methods for convex optimization [28].

Magoules et al. investigated techniques for solving partial differential equations [30]. In an

effort to help ease the development of asynchronous iterative methods, recent years have

seen several modifications to existing parallel programming paradigms (such as the Message

Passing Interface, MPI). These include Casper [114], JACK [115], and a direct modification

to MPI [116].

2.1.2 FAULT TOLERANCE

The expected increase in faults for future HPC systems is detailed in a variety of sources.

The general expectation is that as HPC platforms continue to evolve towards exascale levels

of computation, they will become more prone to errors. Geist published a famous article

detailing the expected increase in failure rate from a reasonably non-technical point of view

that is available in the various versions of the “Monster in the Closet” talk [117] and paper

[118], as well as an article for a more general audience [119].

More technical and detailed reports that speak to the increase in faults are given in

a variety of sources composed of groups of different researchers from both academia and

industry. A report from the University of California, Berkeley led by Asanovic et al. famously

identifies the “seven dwarfs” facing modern HPC [6]. A group of academics from various

institutions put together a report in 2009 that listed the challenges that would need to be

overcome as the HPC community moved towards exascale levels of computation [4] and then

provided an update in 2014 [5]. Geist and Lucas provide a detailed list and discussion of the

major challenges that will need to be overcome on the road to exascale [7], and Snir et al.

specifically address the manner in which faults and failures in the computing environment

will need to be dealt with [8].

Additionally, the Department of Energy has commissioned two very detailed reports

about the progression towards exascale level computing, one from a general computing

standpoint [1] (summarized in [2]), and a report aimed specifically at applied mathemat-

22

ics for exascale computing [3]. Both reports provide detailed road maps that the authors

believe will need to followed in order to achieve successful use of exascale level supercom-

puters. Changes to the underlying parallel framework (e.g. MPI) have been considered as

an alternative to direct modification of the algorithm under analysis. These include work

by Fagg et al. on Fault Tolerant MPI extensions (FT-MPI) [120], [121], which subsequently

evolved into an effort by Bland et al. to extend the MPI standard in an effort called User

Level Failure Mitigation (ULFM) [122], [123], as well as work similar to that by Zheng et al.

on fault tolerant extensions to MPI as it interfaces with Charm++ [124].

The variants of the fine-grained algorithms that are discussed in this dissertation build

upon ideas from various methods for fault tolerance. Sao and Vuduc proposed the idea of

self-stabilizing iterative algorithms [125], where the process naturally corrects any faults that

occur. Bridges et al. put forth the idea of selective reliability whereby certain computations

are computed in “high reliability” mode with the expectation that they will not be nega-

tively effected by a fault and others are computed in a faster “low reliability” mode where

computations are not protected, but may be able to be executed faster [31], [32].

2.1.2.1 Fault Tolerance for Classical Iterative Methods

Fault tolerance for traditional iterative methods (i.e. both stationary solvers and Krylov

subspace solvers) has been studied extensively in recent years. Characterization of the effects

of the faults on such solvers has been conducted by both Bronvetsky and de Supinski [126]

and Shantharam et al. [127], and fault detection for iterative methods in linear algebra has

been studied as well by Chen [128] and Sloan, Kumar, and Bronevetsky [129]. Fault tolerance

for specific iterative methods has also been studied; see for example work on modifications to

the FGMRES algorithm by Hoemmen and Heroux [31] and modifications to the Conjugate

Gradient algorithm by Shantharam et al. [127]. Elliott, Hoemmen, and Mueller conducted a

study on the development of reliable fault detectors [130], as well as an investigation into how

much data corruption (i.e. due to a fault) can be tolerated while still ensuring convergence

23

of the iterative method [131].

The use of a periodic correction step is one alternative class of methods for fault tolerance

proposed by Sao and Vuduc [125] that offers several advantages. First, these methods provide

a way to avoid the cost of checkpointing which has been suggested to be prohibitively high

on future exascale platforms [4], [5], [7]. Second, they do not necessarily rely on any sort of

fault detection. If a fault is not detected successfully in a traditional checkpointing algorithm

it can cause catastrophic effects, a self-stabilizing method based upon a periodic correction

step should be designed in such a way that it will return a valid answer without falling back

on traditional fault detection mechanisms.

2.1.2.2 Numerical Soft Fault Modeling

Traditionally, when performing experiments to analyze the potential impact of soft faults

upon a computing environment, researchers have relied primarily upon the injection of bit

flips into a particular portion of the routine (see, for example [126], [132]). The idea of

treating faults as numerical corruption as opposed to attempting emulate the manner that

a fault currently occurs has gained momentum over the last decade. A general position

paper by Elliot, Hoemmen, and Mueller on the efficacy of treating soft faults has numerical

corruption was provided [133] that outlines several reasons for adopting this approach, and

several numerically based fault models have been utilized in recent studies. These include

a “numerical” fault model that is predicated on shuffling the components of an important

data structure by Elliot et al. [134], a perturbation based model put forth by Stoyanov

and Webster [54], and an approach that induces a small shift to a single component of a

vector [31], [32]. This numerical approach models the impact of soft faults by disregarding

the actual source of the fault and allowing the fault injector to create as large or as small a

fault as necessary for the experiment.

Whether a given study chooses to model faults using bit flips or adopt a more numerical

analysis style approach, much of the previous work on the impact of silent data corruption

24

(SDC) has to do with modeling transient errors. One of the goals of this effort is to present

a fault model that can accurately predict the impact of either sticky or persistent soft faults.

The models presented here is general enough that they can be adapted to simulate the

impact of any persistent error, including those caused by hardware malfunction. Traditional

analysis of potential persistent type errors has rested more in the hardware domain than in

the algorithmic domain, with analysis of both processor based faults by both Li et al. [135]

and Bower et al. [136] and memory based faults by Schroeder et al. [12], though the impact

of persistent faults on iterative methods does not seem to have been explored to a great

extent.

2.1.3 PERFORMANCE MODELING

Development of computational frameworks for the purposes of simulating performance

has a long history in the literature. Examples of such frameworks include SimGrid by

Casanova et al. [137], [138] which focuses on modeling the performance of distributed exper-

iments, GangSim by Dumitrescu and Foster [139] and GridSim by Buyya and Murshed [140]

which both focus on grid scheduling, as well as CloudSim [141], [142] which models perfor-

mance of cloud computing environments. These environments focus on specific HPC imple-

mentation features, such as job scheduling and data movement, and attempt to provide a

view of how the systems themselves behave in HPC-like scenarios.

Bahi et al. demonstrate the efficacy of asynchronous methods, especially for grid systems,

and propose a system for classifying parallel iterative algorithms, based on computational and

communication strategies [143], [144]. Jager and Bradley demonstrate superior performance

of asynchronous methods for solving large sparse linear fixed-point problems [145]. Voronin

compares three parallel implementations using MPI and OpenMP R©1, with asynchronous

threads, and finds that utilizing a “postman” thread within each computational node to

perform communications delivers superior performance, compared to the alternative hybrid

1OpenMP Architecture Review Board, Austin, TX

25

MPI-OpenMP R©implementation [146].

2.2 KRYLOV SUBSPACE SOLVERS

Krylov subspace solvers are a popular class of iterative methods for solving the sparse

linear systems that arise naturally in many domain areas of science and engineering. An

in-depth tutorial is beyond the scope of this dissertation; however, a brief introduction

is warranted since two different Krylov subspace solvers are used in the various studies

presented in this dissertation (see Chapters 4 and 5).

It is possible to derive this class of solver entirely from an optimization point of view, but

the approach here is to follow the text [34] and introduce them as projection based methods.

When solving the linear system,

Ax = b (4)

where A ∈ R
n×n the idea behind projection based techniques is to search for the solution in a

subspace K of dimension m where m < n. In order to uniquely define a solution in the search

subspace, a total of m constraints must be imposed. This can be done by choosing m inde-

pendent orthogonality constraints on the solution vector. These m orthogonality constraints

define another subspace, L, that contains the m vectors that the solution must be orthogonal

to. These orthogonality requirements are known as the Petrov-Galerkin condition.

The idea behind projection based methods is that the solution x∗ ∈ K is sought such

that the residual, r∗ = b−Ax∗, is orthogonal to L. If an initial guess x0 is to be used, then

the solution x∗ is searched for in the affine space x0 +K.
Krylov subspace methods have in common that they all search for the solution vector x∗

in the Krylov subspace, i.e. the subspace defined by,

K = Km

(
A, r(0)

)
= span{r(0), Ar(0), A2r(0), . . . , Am−1r(0)}. (5)

26

Broadly speaking, where the various methods differ is in how they define the subspace L.
To help improve the performance of sparse linear solvers solvers, such as Krylov subspace

solvers, a preconditioner is often used to help accelerate convergence [34], [147]. The use of

a preconditioner transforms the system of linear algebraic equations into a preconditioned

system. A preconditioned system writes the general linear system of equations

Ax = b (6)

in the form

M−1Ax = M−1b, (7)

when preconditioning is applied from the left, and

AM−1y = b (8)

with x = M−1y, when preconditioning is applied from the right. The matrix M is a nonsin-

gular approximation to A, and is called the preconditioner.

2.2.1 CONJUGATE GRADIENT

The Conjugate Gradient (CG) method selects the subspace of orthogonality constraints

to be the Krylov subspace itself, i.e., L = Km

(
A, r(0)

)
. If the matrix A is symmetric and

positive-definite (SPD) then this choice of L minimizes the A-norm of the error [34], [148].

Because of this, the CG method is typically used when A is SPD. In the case that A is

non-symmetric, this choice of L defines the full orthogonalization method (FOM) which is

mathematically equivalent to CG [34]; however, the symmetry of A can be used to help

lessen the memory requirements of the algorithm.

The right-preconditioned CG algorithm, as described in [34], p. 263 is provided in Algo-

rithm 1.

27

Algorithm 1: Conjugate Gradient algorithm

Input: A linear system Ax = b, a preconditioner M , and an initial guess at the
solution, x0

Output: An approximate solution xj for some j ≥ 0
1 r0 := b− Ax0,
2 z0 := M−1r0
3 p0 := z0
4 for j = 1, 2, . . . do
5 αj = (rj, zj)/(Apj, pj)
6 xj+1 = xj + αjpj
7 rj+1 = rj − αjApj
8 zj+1 = M−1rj+1

9 βj = (rj+1, zj+1)/(rj, zj)
10 pj+1 = zj+1 + βjpj

2.2.2 FLEXIBLE GMRES

The General Minimal Residual method (GMRES) and its variants are all defined by the

choice of L = AK where K is the Krylov subspace. This choice of L minimizes the 2-norm

of the residual. This method is very popular for general (i.e. not necessarily SPD) systems.

The right-preconditioned GMRES algorithm, as described in [34], p. 269 is provided in

Algorithm 2.

The flexible variant of GMRES (FGMRES) is similar in its nature to the standard GM-

RES with the notable exception of allowing the preconditioner to change at each iteration

by storing the result of each preconditioning operation (cf. matrix Zm in Line 11 of Al-

gorithm 3). In the studies conducted here, FGMRES was selected because it is a robust

solver proven to converge under variable preconditioning, including converging in situations

where the variability comes as a result of some sort of anomaly in the preconditioning op-

eration. Here, such an anomaly may be due to a fault injected during the experiments.

The right-preconditioned FGMRES algorithm, as described in [34], p. 273 is provided in

Algorithm 3.

In particular, in the studies presented throughout this dissertation, faults were injected

28

Algorithm 2: GMRES algorithm

Input: A Linear system Ax = b and an initial guess at the solution, x0

Output: An approximate solution xn for some n ≥ 0
1 r0 := b− Ax0,
2 β := ||r0||2, v1 := r0/β
3 for j = 1, 2, . . . ,m do
4 zj = M−1vj
5 w = Azj
6 for i = 1, 2, . . . , j do
7 hi,j := w · vi
8 w := w − hi,jvi
9 hj+1,j := ||w||2, vj+1 := w/hj+1,j

10 Vm := [v1, . . . , vm], H̄m := hi,j1≤i≤j+1;1≤j≤m

11 ym := argminy||H̄my − βe1||2, xm := x0 +M−1Vmym
12 if Convergence was reached then
13 return xm

14 else
15 go to to Line 1

Algorithm 3: Flexible GMRES algorithm

Input: A linear system Ax = b and an initial guess at the solution, x0

Output: An approximate solution xm for some m ≥ 0
1 r0 := b− Ax0,
2 β := ||r0||2, v1 := r0/β
3 for j = 1, 2, . . . ,m do
4 zj = M−1

j vj
5 w = Azj
6 for i = 1, 2, . . . , j do
7 hi,j := w · vi
8 w := w − hi,jvi
9 hj+1,j := ||w||2

10 vj+1 := w/hj+1,j

11 Zm := [z1, . . . , zm]
12 H̄m := hi,j1≤i≤j+1;1≤j≤m

13 ym := argminy||H̄my − βe1||2
14 xm := x0 + Zmym
15 if Convergence was reached then
16 return xm

17 else
18 go to line 1

29

at two distinct locations inside the FGMRES algorithm: Line 1, called here the outer matvec

operation, and Line 4, which is the application of the preconditioner M . These locations

were selected since they are two of the most computationally expensive operations inside of

the algorithm, and therefore the risk of a fault occurring during these operations is naturally

higher since the algorithm will spend more time executing them.

2.2.2.1 Fault Detection and Resilience in FGMRES

Fault detection inside of FGMRES can be achieved in many different ways. Upon each

restart of FGMRES, the norm of the residual is computed, and in a fault-free environment

these norms should be monotonically decreasing. A cheap fault detector could be imple-

mented to check that the progression of the norm of the residual is in fact non-increasing [34].

This would be an intuitive way to attempt to detect faults that occur during the outer sparse

matrix-vector multiply. Another way to detect errors was proposed in [130] and consists of

bounding the entries of the upper Hessenberg matrix, H by either ||A||2 or ||A||F in an at-

tempt to detect faults that cause the values of H to be larger than is theoretically possible.

It will be shown experimentally (see Section 4.2.2) that if the fault that is injected into

the outer sparse matrix-vector multiply does not increase the norm of the initial residual,

then it has a significantly less negative effect on the convergence of FGMRES than a similar

fault injected into the preconditioning operation. Generally speaking, the effect that a fault

may have on the norm of the data structure inside the Krylov subspace solver is indicative

of the effect that it may have on the overall performance of the solver [130], [131], [149].

One of the key observations made in [32] was that since the preconditioner is allowed

to change on every iteration in the FGMRES algorithm, faults that occur during the pre-

conditioning operation (Line 4 in Algorithm 3) can be modeled as different preconditioners.

As such, if a fault were to occur anywhere inside of the preconditioning operation it can be

modeled by injecting a fault into the result of the preconditioning operation (zj in Algo-

rithm 3). The numerical soft fault models used in these studies allow the size of the fault to

30

be controlled by offering direct control on the size of the perturbation that is injected.

Further, it will be shown that FGMRES is capable of proceeding through many faults

occurring in the preconditioning operation by accepting the faulty output as a different

preconditioner. This natural adaptive response in the FGMRES algorithm to faults that

occur during preconditioning should also cause faults that occur during the outer sparse

matrix-vector multiply to have more of an impact on the convergence of FGMRES. This was

also shown experimentally, and results are provided in Section 4.2.2.

2.3 PRECONDITIONERS

2.3.1 INCOMPLETE FACTORIZATIONS

Incomplete LU factorization methods (ILUs) are effective preconditioning techniques for

solving linear systems. In this case, the preconditioning matrix M has the form,

M = L̄Ū , (9)

where L̄ and Ū are approximations to the L and U factors of the standard LU decomposi-

tion of A. The incomplete factorization may be computed using the Gaussian elimination

algorithm, by discarding some entries in the L and U factors. In the ILUT preconditioner

used throughout the experiments, a dual non-zero threshold (τ, ρ) is used. In particular, this

causes all computed values that are smaller than τ ||ai||2 to be dropped, where ||ai||2 is the

norm of a given row of the matrix A, and only the largest ρ elements of each row are kept.

Typically, to generate a complete LU factorization of a given matrix A such that

A = LU, (10)

a Gaussian elimination process is used. However, when this process is carried out, fill-in will

usually occur. This causes the triangular factors L and U to tend to have significantly more

31

non-zero elements. This destruction of sparsity can be prohibitive when solving large sparse

problems (for example, those arising from three-dimensional boundary value problems [147])

due to space and time constraints. An example of the amount of fill-in that is possible during

the process of finding complete L and U factors is provided by Fig. 4. In this example, the

initial matrix A is taken to be a three dimensional finite-difference approximation of the

Laplacian,

Δu = f, (11)

over a 50 × 50 × 50 grid using a nine-point stencil. Note that the number of non-zero

terms increases from 3.3 million elements in A to 312.9 million elements in both L and U ,

respectively, after the factorization is performed. Even more drastic examples of fill-in are

possible for many other problems throughout science and engineering.

To avoid this effect, an incomplete LU factorization is typically computed instead. An

incomplete factorization process generates an approximate factorization of the matrix A such

that,

A ≈ LU. (12)

While this incomplete factorization cannot be used to solve a linear system directly (as the

exact LU factorization can), it can be used as a preconditioner that helps to accelerate the

convergence of an iterative method for solving linear systems. For example, when solving a

linear system,

Ax = b, (13)

the full LU factorization can be used to reduce the system to,

LUx = b, (14)

32

(a) Original matrix (b) Full lower triangular factor

(c) Full upper triangular factor

Fig. 4: Example of the effects of fill-in during the Gaussian Elimination process. Note the
relative sparsity of the input matrix A (Fig. 4a) compared to the factors L and U (Figs. 4b
and 4c respectively), especially in the total number of non-zero elements in each matrix.

which can be solved completely with two triangular solves. In the case of an incomplete

factorization, a nonsingular approximation to A can be used to transform the given linear

system, described by Eq. (13), into one that is easier to solve. In particular, the linear system

M−1Ax = M−1b (15)

will have the same solution as the original system but may be easier to solve, especially when

33

used in conjunction with an iterative method. In the case of an incomplete LU factorization,

the incomplete LU factors that are obtained can be used to create this approximation, i.e.,

M = LU .

In order to create an incomplete factorization, first define a set S which specifies the

locations of the non-zero elements in the incomplete factorization. Specifically, if (i, j) ∈ S

then there will be a non-zero at the corresponding location in either the factor L if i > j, or

U if i < j. Given this set, an algorithm that provides incomplete factorization of a matrix A

is given by Algorithm 4. Note that the set S can be defined before the start of the algorithm,

or can be updated dynamically over the course of the algorithm.

Algorithm 4: Conventional Incomplete LU Factorization

Input: Input matrix A
1 for i = 1, 2, . . . , n do
2 for k = 1, 2, . . . , i− 1 and (i, k) ∈ S do
3 aik = aik/akk
4 for j = k + 1, k + 2, . . . , n and (i, j) ∈ S do
5 aij = aij − aikakj

The major problem with this type of algorithm is the difficulty in parallelizing it. Re-

ordering the matrix can introduce more parallelism, although often parallelism is limited

below a level that would be desired for the scale of problems that are considered. Alterna-

tively, several variants of conventional incomplete LU factorization have been proposed in

an attempt to increase the benefit of the preconditioner (see e.g., ILUT [150], ILUM [151],

BILUTM [152], among many others).

2.3.1.1 Algebraic Recursive Multilevel Solver (ARMS)

The next preconditioner to be introduced is the Algebraic Recursive Multilevel Solver

(ARMS). This preconditioner is considered since it serves as an example of a type of precon-

34

ditioning that is more powerful (i.e., able to accelerate the convergence of a Krylov subspace

method more effectively) than the traditional incomplete factorization preconditioners intro-

duced in the previous subsection.

Several different multi-level ILU preconditioners take advantage of the fact that sets of

unknowns that are not coupled to each other can be eliminated simultaneously in Gaussian

elimination; these collections of unknowns are commonly referred to as independent sets.

A block independent set is a set of groups (blocks) of unknowns such that there is no

coupling between unknowns of any two different groups (blocks) [151], [153]. For a given

linear system, represented by the matrix A, that contains n linear algebraic equations (and

therefore n unknowns), if m of the independent unknowns are numbered first, and the other

n − m unknowns last, the coefficient matrix of the system is permuted in a 2 × 2 block

structure.

PAP T =

⎛⎜⎝ D F

E C

⎞⎟⎠ , (16)

where D is a diagonal matrix of dimension m that contains the m independent unknowns,

C is a square matrix of dimension n−m that contains the remaining variables, and P is the

appropriately chosen permutation matrix.

In multi-elimination methods [34], p. 392, a reduced system is recursively constructed

from the permuted system performing a block LU factorization of PAP T as follows

PAP T =

⎛⎜⎝ D F

E C

⎞⎟⎠ ≈

⎛⎜⎝ L 0

G In−m

⎞⎟⎠×

⎛⎜⎝ U W

0 A1

⎞⎟⎠ , (17)

where P is a permutation matrix, D is a diagonal matrix (or block-diagonal if independent

sets of unknowns are used), L and U are the triangular factors of the LU factorization of D,

and

A1 = C − ED−1F (18)

35

is the Schur complement with respect to C, In−m is the identity matrix of dimension n−m,

G = EU−1 and W = L−1F .

As a visual example of this process, consider the 3D convection-diffusion problem dis-

cretized using finite differences. A sparsity plot of the original matrix is shown next to an

image of this first level of decomposition, which is generated by software tools [154] in Fig. 5.

Fig. 5: Demonstration of ARMS block factorization.

Note that in this factorization the m independent variables make up the large block

diagonal matrix D in the upper left of the image, and the matrix C should have a size

significantly smaller than the original matrix A. The reduction process can be applied

another time to the reduced system, A1, by performing the same factorization for the next

lower level. An image of the second level factorization, i.e., the block decomposition of A1

as shown in Fig. 5 is given in Fig. 6.

In general, this recursion follows the pattern,

PlAlP
T
l =

⎛⎜⎝ Dl Fl

El Cl

⎞⎟⎠ ≈

⎛⎜⎝ Ll 0

Gl In−m

⎞⎟⎠×

⎛⎜⎝ Ul Wl

0 Al+1

⎞⎟⎠ , (19)

and this process can then be applied recursively to each consecutively reduced system until

36

Fig. 6: Second level ARMS factorization.

the Schur complement is small enough to be solved with a standard method. This can be

determined a priori by specifying a number of levels of recursion, a desired size of the Schur

complement, a desired ratio of the size of the final Schur complement to the original matrix,

etc. For the example given, the process of the Algebraic Recursive Multilevel Solver (ARMS)

exits after the second factorization since the size of the next block diagonal matrix (e.g., D3)

constitutes the entirety of the matrix A2. An image showing the location of the non-zeros

of the final Schur complement is given in Fig. 7.

Fig. 7: Final Schur complement for ARMS demonstration.

37

The ARMS preconditioner [153] uses block independent sets to discover sets of indepen-

dent unknowns and computes them by using the greedy algorithm. In the ARMS implemen-

tation used here, the incomplete triangular factors L̄, Ū of D are computed by one sweep

of ILU using dual non-zero thresholds (ILUT) [34]. In the second loop, an approximation Ḡ

to EŪ−1 and an approximate Schur complement matrix Āl are derived. This holds at each

reduction level while the recursive process is employed.

In this dissertation, two distinct variants of ARMS are used. For the studies on sticky

faults (see Section 4.2.2.2) an implementation of ARMS called ARMS RBT [155] is used,

where the last Schur complement system is small enough to be converted into a dense matrix

and randomized using Random Butterfly Transformations [156], [157] to avoid pivoting in

the Gaussian elimination. Pivoting during the Gaussian Elimination process is one of the

more computationally expensive steps in the process, and there has been prior research on

the use of Random Butterfly Transformations to avoid pivoting in direct methods such as

Gaussian Elimination [158].

After the transformation, the linear system that results from the randomization step is

then solved via an LAPACK-like [159] routine that performs Gaussian elimination with no

pivoting, followed by two triangular solves. The ARMS RBT version has shown satisfactory

numerical behavior [155] and can potentially benefit from GPU computing [47]. It appeared

also in the experiments conducted in our study that the convergence results with ARMS and

ARMS RBT have been quite similar.

Conversely, in the studies on persistent faults (see Section 4.2.2.3) the final system is

solved according to the original methodology proposed in [153] and implemented in [50]. In

this implementation, at the last level, another final sweep of ILUT is applied to the last

reduced system which is maintained in sparse format throughout.

38

2.3.2 PRECONDITIONING EXAMPLE

As an example of the effect that preconditioning can have on the solution of a linear

system, consider here the 3D convection-diffusion problem discretized over a 15 × 15 × 10

domain using finite differences with a nine-point stencil. This results in a matrix, A, that

is symmetric positive-definite (SPD) and has size 2, 250× 2, 250. The solution to the linear

system of algebraic equations,

Ax = b, (20)

is sought using FGMRES and the two preconditioning techniques discussed in the previous

subsections. The right-hand side of the equation, b, is initialized as,

b = Av (21)

where v = (1, 2, 3, . . . , n)T with n equal to the size of matrix, 2, 250. The initial guess, x0, is

set to random numbers sampled from a uniform distribution over the interval [−1, 1].
The FGMRES routine uses a restart parameter of 40 (i.e., the Krylov subspace is restarted

every 40 iterations), and the routine exits after the residual is reduced below the thresh-

old value of 10−6. Progress of the solver routine over the first 100 iterations is given in

Fig. 8 for the case of: preconditioning FGMRES with ARMS (ARMS-FGMRES), precondition-

ing FGMRES with ILUT (ILUT-FGMRES), and the base GMRES with no preconditioning

(NoPC-GMRES).

Note the superior performance of ARMS preconditioning as compared to ILUT pre-

conditioning. The ARMS preconditioning routine is more computationally expensive than

most common incomplete factorization preconditioners, but can often provide better over-

all performance by decreasing the total number of iterations required more than enough to

compensate for the increased computational cost. Performance of GMRES with no precon-

ditioning is included as a baseline to help motivate the use of preconditioners in the solution

39

Fig. 8: Convergence rate comparison for FGMRES.

of linear systems of algebraic equations.

2.4 ASYNCHRONOUS ITERATIVE METHODS

In fine-grained parallel computation, each component of the problem, i.e. a matrix or

vector entry, is updated in a manner that does not require information from the computations

involving other components while the update is being made. This allows for each computing

element (i.e. a single processor, CUDAR©2 core or Xeon Phi R©core) to act independently from

all other computing elements. Depending on the size of both the problem and the computing

environment, each computing element may be responsible for updating a single entry, or may

2NVIDIA Corp., Santa Clara, CA

40

be assigned a block that contains multiple components.

This section provides first a review of synchronous iterations, wherein all components are

updated at the same time, followed by an introduction to the asynchronous case, which allows

component updates to occur at different times. The discussion surrounding the asynchronous

case develops the mathematical machinery that will be used to develop results concerning

the convergence of asynchronous iterative methods in environments that are susceptible to

faults.

2.4.1 REVIEW OF SYNCHRONOUS ITERATIONS

Fixed point iterations are concerned with finding solutions to the iteration

x(k+1) = G(x(k)) (22)

where G : Rn → R
n is composed of component functions Gi such that

x1 = G1(x)

x2 = G2(x) (23)

...

xn = Gn(x)

where the subscript represents the component, the iteration superscripts have been removed,

and the vector notation is added to emphasize that each individual component function used

to update a specific component can (potentially) rely on all other components.

In a parallel computing environment, the task of finding the update for an individual (or

set of) component(s) can be assigned to an individual processing element. In a system that

relies on synchronous updates, the component functions all utilize the same components of

41

x. In particular,

x
(k+1)
i = Gi(x

(k)) (24)

for all components i ∈ {1, 2, . . . , n}, or, breaking this equation into the individual component

functions,

x
(k+1)
1 = G1

(
x
(k)
1 , x

(k)
2 , x

(k)
3 , · · · , x(k)

n

)
x
(k+1)
2 = G2

(
x
(k)
1 , x

(k)
2 , x

(k)
3 , · · · , x(k)

n

)
x
(k+1)
3 = G3

(
x
(k)
1 , x

(k)
2 , x

(k)
3 , · · · , x(k)

n

)
(25)

...

x(k+1)
n = Gn

(
x
(k)
1 , x

(k)
2 , x

(k)
3 , · · · , x(k)

n

)
.

2.4.2 FRAMEWORK FOR ASYNCHRONOUS ITERATIONS

Asynchronous computation of fixed point iterations follows similarly to the synchronous

scenario; however, in the asynchronous case processors will use the latest local information

available to them without waiting for global synchronization. There are several ways to

define this mathematically (see, for example [30], [56], [58], [66], [70], [100] among many

others); informally, the data for each component, xi, may or may not be from the iteration

that just occurred. Following standard assumptions about the amount of allowable delay on

updates for the different components [30], [58], [59], convergence of many iterative algorithms

is preserved.

This type of updating will lead to different update patterns for the individual component

functions, each of which will be utilizing components that may be updated a different number

of times. The convergence of parallel fixed point iterations is discussed in the literature for

both the synchronous [56] and asynchronous [58] cases among many other sources [57], [59],

42

[60], [70]. Note that there are many combinations of synchronous and asynchronous updates

possible. For example, blocks of components could be scheduled for updates asynchronously,

but the individual component updates could be made in a synchronous manner inside of the

blocks.

The generalized mathematical model that is used throughout this dissertation comes

primarily from [58], which in turn has evolved from sources such as [66], [70], [84], [99].

Small differences exist between the mathematical models proposed for asynchronous iterative

methods, but most share the same core tenets. A detailed comparison of the different

mathematical models used for asynchronous linear operators (with an emphasis on models

that allow for overlapping subdomains) is provided by [99].

To keep the mathematical model as general as possible, consider a function G : D → D

where D is a domain that represents a product space D = D1×D2×· · ·×Dm. The goal is to

find a fixed point of the functionG inside of the domainD. To this end, a fixed point iteration

is performed such that, x(k+1) = G(x(k)), and a fixed point is declared if x(k+1) ≈ x(k). Note

that the function G has internal component functions Gi, for each sub-domain, Di inside of

the product space, D. In particular, Gi : D → Di, which gives that

x = (x1, x2, . . . , xm) ∈ D −→ G(x) = G(x1, x2, . . . xm)

= (G1(x), G2(x), . . . , Gm(x)) ∈ D. (26)

Example:
Let each Di = R. Forming the product space of each of these Di’s gives that D =

R
m. This leads to the more formal component function mapping, f : R

m → R
m.

Additionally, let f(x) = 2x. In this case, each of the individual fi component functions

is defined by fi(x) = 2xi. Note that each component function operates on all of the

vector x even if the individual function definition does not require all of the components

of x to perform its specific update.

43

Further, the assumption is also made that there is some finite number of processing

elements P1, P2, . . . , Pr each of which is assigned to a block B of components B1, B2, . . . , Bm

to update. Note that the number of processing elements, r, will typically be significantly

smaller than the number of blocks,m, to update. With these assumptions, the computational

model can be stated in Algorithm 5.

Algorithm 5: General Computational Model

1 for each processing element Pl do
2 for i = 1, 2, . . . until convergence do
3 Read x from memory

4 Compute x
(i+1)
j = Gj(x) for all j ∈ Bl

5 Update xj in memory with x
(i+1)
j for all j ∈ Bl

Note that the computational model presented in Algorithm 5 allows for either syn-

chronous or asynchronous computation; it only prescribes that an update has to be made as

an “atomic” operation (in line 5), i.e., without interleaving of its result. If each processing

element Pl is to wait for the other processors to finish each update, then the model describes

a parallel synchronous form of computation. On the other hand, if no order is established

for Pls, then an asynchronous form of computation arises.

To continue formalizing this computational model a few more definitions are neces-

sary. First, set a global iteration counter k that increases every time any processor reads

x from common memory. At the end of the work done by any individual processor, p,

the components associated with the block Bp will be updated. This results in a vector,

x = (x
s1(k)
1 , x

s2(k)
2 , . . . , x

sm(k)
m) where the function si(k) indicates how many times an spe-

cific component has been updated. Finally, a set of individual components can be grouped

into a set, Ik, that contains all of the components that were updated on the kth iteration.

Given these basic definitions, the three following conditions (along with the model presented

in Algorithm 5) provide a working mathematical framework for fine-grained asynchronous

44

computation.

Definition 1. If the following three conditions hold:

1. si(k) ≤ k, i.e. only components that have finished computing are used in the current

approximation.

2. limk→∞ si(k) =∞, i.e. the newest updates for each component are used.

3. |k ∈ N : i ∈ Ik| =∞, i.e all components will continue to be updated.

Then given an initial x(0) ∈ D, the iterative update process defined by,

xk
i =

⎧⎪⎪⎨⎪⎪⎩
xk−1
i i /∈ Ik

Gi(x) i ∈ Ik

where the function Gi(x) uses the latest updates available is called an asynchronous iteration.

This basic computational model (i.e. the combination of Algorithm 5 and Definition 1

together) allows for many different results on fine-grained iterative methods that are both

synchronous and asynchronous, though the three conditions given in Definition 1 are unnec-

essary in the synchronous case.

Using these definitions, the iterative updates expressed in Eq. (25) can be expressed in a

possibly asynchronous format using the functions si(k) that keep track of how many updates

have occurred for each individual component.

x
(k+1)
1 = G1

(
x
(s1(k))
1 , x

(s2(k))
2 , x

(s3(k))
3 , · · · , x(sm(k))

m

)
x
(k+1)
2 = G2

(
x
(s1(k))
1 , x

(s2(k))
2 , x

(s3(k))
3 , · · · , x(sm(k))

m

)
x
(k+1)
3 = G3

(
x
(s1(k))
1 , x

(s2(k))
2 , x

(s3(k))
3 , · · · , x(sm(k))

m

)
(27)

...

x(k+1)
n = Gn

(
x
(s1(k))
1 , x

(s2(k))
2 , x

(s3(k))
3 , · · · , x(sm(k))

m

)
.

45

The following two examples show how the framework detailed above can be used to

express common fixed point iterations.

Example:
Using the terminology adopted in Section 2.4, synchronous iterations are given by

enforcing the additional condition that si(k) = k for all i and for each iteration k.

Example:
The Jacobi method, both the synchronous and asynchronous case, is given by letting

Ik = {1, 2, . . . p} for all k, i.e., all components are updated on every iteration. Further,

the synchronous case is given by enforcing si(k) = k (as noted in Line 5). The Gauss-

Seidel method, specifically the synchronous case, can be defined by letting si(k) = k

and Ik = {k mod p+ 1}.

2.4.3 ASYNCHRONOUS RELAXATION METHODS

Relaxation methods have been the focus of many of the works mentioned in Section 2.1

such as [66] and [70]; a much more detailed description can be found in [59] among many

other sources. This section provides an introduction that will serve as a reference for the

later work in this dissertation.

Relaxation methods can be expressed as general fixed point iterations of the form

xk+1 = Cxk + d , (28)

where C is the n × n iteration matrix, x is an n-dimensional vector that represents the

solution, and d is another n-dimensional vector that can be used to help define the particular

problem at hand.

The Jacobi method is an asynchronous relaxation method built for solving linear systems

of the form,

Ax = b, (29)

46

and following the methodology put forth in [59], this can be broken down to view a specific

row – say the ith – of the matrix A,

n∑
j=1

aijxj = bi, (30)

and this equation can be solved for the ith component of the solution, xi, to give,

xi =
−1
aii

[∑
j �=i

aijxj − bi

]
. (31)

This equation can then be computed in an iterative manner in order to give successive

updates to the solution vector. In synchronous computing environments, each update to an

element of the solution vector, xi, is computed sequentially using the same data for the other

components of the solution vector (i.e. the xj in Eq. (31)). Conversely, in an asynchronous

computing environment, each update to an element of the solution vector occurs when the

computing element responsible for updating that component is ready to write the update to

memory and the other components used are simply the latest ones available to the computing

element.

Expressing Eq. (31) in a block matrix form more similar to the original form of the

iteration expressed in Eq. (28),

x = −D−1((L+ U)x− b) (32)

= −D−1(L+ U)x+D−1b , (33)

where D is the diagonal portion of A, and L and U are the strictly lower and upper triangular

portions of A respectively. This gives an iteration matrix of C = −D−1(L+ U).

Convergence of asynchronous fixed point methods of the form presented in Eq. (28) is

determined by the spectral radius of the iteration matrix, C, and dates back to the pioneering

work done by both [66] and [70]:

47

Theorem 1. For a fixed point iteration of the form given in Eq. (28) that adheres to the

asynchronous computational model provided by Algorithm 5 and Definition 1, if the spectral

radius of C, ρ(|C|), is less than one, then the iterative method will converge to the fixed point

solution.

As noted in [160], the iteration matrix C that is used in the Jacobi relaxation method

serves as a worst case for relaxation methods of the form discussed here. However, because

of the ubiquitous use of the Jacobi method in parallel solutions of large problems in many

different domains in science and engineering, the asynchronous (block) Jacobi method is

used predominantly throughout the remainder of this dissertation. However, many of the

concepts and ideas expressed in this dissertation can be easily adapted to more complex

algorithms.

2.4.3.1 Asynchronous Jacobi

In science and engineering, partial differential equations (PDEs) mathematically model

systems in which continuous variables, such as temperature or pressure, change with respect

to two or more independent variables, such as time, length, or angle [161]. Laplace’s equation

in two dimensions,

∇2φ =
∂2φ

∂x2
+

∂2φ

∂y2
= b, (34)

is fundamental for modeling equilibrium and steady state problems, such as incompressible

fluid flow or heat transfer, and maintains that the rate at which a fluid enters a domain

is equal to the rate at which a fluid leaves the domain. In practice, the partial differential

equation is discretized such that a finite difference operator computes difference quotients

over a discretized domain. For example, the two-dimensional discrete Laplace operator,

48

(∇2f
)
(x, y) = f(x− 1, y) + f(x+ 1, y) + f(x, y − 1)

+ f(x, y + 1)− 4f(x, y), (35)

approximates the two-dimensional continuous Laplacian using a five-point stencil [162]. A

special case of the Jacobi algorithm,

(
vk+1
l,m =

1

4
(vkl+1,m + vkl−1,m + vkl,m+1 + vkl,m−1

)
, (36)

may be applied to solve a two-dimensional sparse linear system of equations [102]. This work

uses the Jacobi algorithm to solve a two-dimensional finite-difference discretization of the

Laplacian with Dirichlet boundary conditions. This can be viewed as a heat diffusion prob-

lem, in which a plate is held to specific temperatures along the boundary [163]. Pseudocode

for this algorithm is provided below in Algorithm 6. Note that each processor, Pl, may not

Algorithm 6: Asynchronous Jacobi

Input: aij ∈ A, initial guess for x(0)

Output: Solution vector x
1 Assign elements xi ∈ x to each processing element
2 for t = 1, 2, . . . until convergence do
3 for each processor Pl do
4 if Pl is ready to compute updates then
5 for each element xi ∈ x assigned to Pl do

6 xi =
−1
aii

[∑
j �=i aijxj − bi

]
7 Calculate the residual, b− Ax(t)

8 Check termination conditions

be available to compute updates at the same time. This lack of determinism in the update

order (i.e. the amount of time it will take a processor to perform the Jacobi relaxation for

49

the components that are assigned to it) leads to the asynchronous nature of the algorithm.

In more powerful solvers for solving PDEs, including Krylov subspace solvers such as

GMRES and Flexible GMRES, the level of parallelism can be limited compared to asyn-

chronous solvers such as Jacobi, and the penalty associated with having multiple spots in

the algorithm that require synchronization (as is the case in all Krylov subspace solvers)

could provide reasons to not use them on future HPC platforms.

50

CHAPTER 3

TECHNIQUES FOR RESILIENCE TO SOFT FAULTS

Asynchronous iterative methods describe a class of parallel iterative algorithms where

each computing element is allowed to perform its task without waiting for updates from

other processes. Asynchronous iteration is often applied to the parallel solution of fixed

point problems, whereby a fixed point iteration,

x(k+1) = G(x(k)), (37)

is updated in an asynchronous manner with the ultimate goal of finding a fixed point, i.e.

a location x∗ in the domain such that x∗ = G(x∗). This class of problems has been used in

a wide variety of applications including: the solution of linear systems [21], [26], [27], the

preconditioning of linear solvers [23], [24], optimization [28], [29], and techniques for solving

partial differential equations [30], among many others. Note that the analysis of fixed point

iterations presented here consider both linear and nonlinear maps.

Asynchronous linear solvers tend not to converge to high precision as quickly as their

Krylov subspace counterparts [105]; however, they can approach a low level of accuracy

very quickly. This loss of accuracy may cause the use of asynchronous linear solvers to be

suboptimal for some applications, but may increase their utility in certain scenarios. For

example, possible use cases include using the asynchronous linear solver as a preconditioner

to a traditional Krylov subspace solver (e.g. using an asynchronous stationary method solve

with low accuracy to precondition a flexible Krylov subspace solver) or to solve systems that

only require lower accuracy solutions (e.g. big data, machine learning) [105]. The amount

of computational work done during an asynchronous iteration can be greater compared to a

synchronous solver; however, the cost of synchronization can cause the asynchronous variant

51

to be faster. Convergence rate and related theoretical results are not very developed in the

asynchronous case relative to the synchronous case; however, there has been a resurgence in

interest in asynchronous iterative methods in recent years which has caused new results to

emerge.

At a high level, fault tolerance may be divided into efforts to compensate for the effects

of hard faults, and efforts to mitigate the impact of soft faults. Successful fault tolerance for

hard faults relies chiefly upon detection of the fault itself. This will most likely be handled

by the HPC platform; however, the successful recovery of the iterative method in question

requires the algorithm to have the knowledge that a hard fault has occurred. This could be

achieved internally in the algorithm by declaring a hard fault if components belonging to a

particular block (corresponding to some specific processing element) fail to be updated within

some stated bound. An alternative to this approach is to adopt a randomized approach to-

wards which processors are assigned to work on specific tasks. Utilizing randomization in

this manner allows progress on any given task to continue if a processor or node experi-

ences a fault, since as long as a single processor is still capable of completing tasks it will

eventually complete all required work by virtue of being randomly assigned each iteration.

Work evaluating the performance of various methods of weighting the random selection was

performed in [164], but is not included in this dissertation.

Similar to the case of a hard fault, the most important aspect to recovering from a soft

fault is successful detection. This is often more difficult in the case of a soft fault since, though

it corrupts data, it does not cause direct interruption to the flow of the iterative process.

Many detection techniques rely on choosing an appropriate tolerance to check a property of

the algorithm that has predictable behavior (e.g. a residual that is monotonically decreasing,

a known property concerning a vector/matrix norm); a tolerance that is too loose will allow

potentially harmful errors to go undetected, while a tolerance that is too strict may report a

fault when none actually occurred (“false positive”) and cause the program to do extra work

to recover from a non-existent problem. The balance in choosing the correct fault tolerance

52

method to recover from soft faults can be application or problem dependent.

Most often, soft faults refer to some form of data corruption in the algorithm being

executed. The focus of the theoretical analysis presented in this chapter is to analyze the

effect that soft faults might have on fine-grained iterative methods used for calculating a fixed

point, specifically the effect of faults that are transient in nature (i.e. faults whose impact

is generated over a very short period of time). A common example of such a fault is a bit-

flip that causes one bit of data in unprotected memory to become corrupted. Additionally,

a variety of recovery techniques are discussed that may be able mitigate the effect of a

computing fault. Several examples are provided for popular classes of algorithms, and a

more in-depth analysis of an algorithm will be presented in Chapter 5. Portions of this

chapter have been captured in other papers: [165]–[167].

The structure of this chapter is organized as follows: Section 3.1 discusses the impact

a soft fault may have on an asynchronous iterative method and presents new results re-

garding the convergence of asynchronous iterative methods based upon given observations.

Section 3.2 goes over techniques for the resilience of asynchronous iterative methods, while

Section 3.3 provides a summary.

3.1 MODELING THE IMPACT OF SOFT FAULTS

Before providing results, it is necessary to make some further definitions and assumptions

to clarify the scope that the presented results are intended to apply to. This begins with

clarifying the expected impact of a soft fault. A soft fault is an error that is undetected

by the algorithm and the operating system and introduces silent data corruption into the

result of the operation that it occurs on. This section takes two distinct views on how a fault

may manifest. The first is given in the following definition and the second is a probabilistic

viewpoint (based on the work in [54]) that is detailed in Section 3.1.2.

Definition 2. A fault experienced by the computing element Pj is realized as a delay, df ,

in the computation of the update for the component function, Gj, that Pj was assigned to

53

update at the time that the fault occurred.

This definition implies that if a component function, Gi, were to perform an update at

the kth iteration, it would updated at the (k + df)
th iteration.

Remark 1. The definition of a fault given in Definition 2 also applies to hardware mal-

function or hard faults. That is, if the fault is detected and the underlying hardware is able

to correct the associated error (e.g., by restarting the work assigned to a specific computing

element), the result will naturally manifest as described in Definition 2.

The limitation of a fault to an effect that is felt by the algorithm as a delay may be hard

to enforce in practice; however, adopting a selective reliability computational model [31], [32]

– which allows certain computations to be executed safely in a high reliability mode, while

allowing other calculations to occur in a potentially faster lower reliability mode (also referred

to as a fast mode of computation) – may allow restriction of the occurrence of faults to

data locations that only affect allowable portions of the data structures. In conjunction

with scanning for extreme values such as NaN, INF, as well as values over some prespecified

extreme value threshold, it is not unreasonable to expect that faults may be restricted in

such a way that they only manifest as delays. Additionally, if fault tolerance strategies

such as checkpointing are allowed, it becomes even more reasonable to expect that certain

components may just be set farther back along their individual iterative path. Examples

of potential applications of the theory developed in this subsection as well as strategies for

detecting and correcting the effects of a fault are discussed in Section 3.2.

Section 3.1.1 extends classical results that are often used as building blocks for new

asynchronous algorithms to cope with the introduction of faults as defined in Definition 2.

The second subsection, Section 3.1.2, takes a much more general viewpoint and attempts

to find ways to bound the amount of total error introduced when very few assumptions are

made regarding the impact that the fault may have.

54

3.1.1 GENERAL CONVERGENCE RESULTS

The following standard assumption (see [56], [58], [59], [85], [100] among many others)

specifies a few further conditions on the fixed point operation that are needed in order to

proceed with proving results.

Assumption 1. Given a domain D and an operator G as outlined by Definition 1, there is

a sequence of nonempty sets {Dk} such that the following three conditions hold:

1. (Nested set condition) The sequence of sets {Dk} satisfy the condition that Dk+1 ⊂ Dk

for all k. Further, the image of each set under G is contained in the next set in the sequence,

i.e.,

G(Dk) ⊂ Dk+1 (38)

2. (Synchronous convergence condition) There exists a point x∗ such that a sequence {yk}
that satisfies yk ∈ Dk for all k has the property that,

lim
k→∞

y(k) = x∗ (39)

i.e., that every limit point of a sequence that is taken with one element from each of the

nested sets is a fixed point of the operator G.

3. (Box condition) For every Dk in the collection {Dk} there are sets Dk
i ⊂ Dk such that,

Dk = Dk
1 ×Dk

2 × · · · ×Dk
m (40)

The general convergence theorem for traditional, fault-free fixed point algorithms, is

provided below in Theorem 2.

Theorem 2. If all of the conditions from both Definition 1 and Assumption 1 hold, and the

initial guess x0 is in the set D0, then the sequence of iterates {x(k)} given by Algorithm 5

converge to x∗, the fixed point of G.

55

The proof from [59] proceeds by induction and showing that there will be a time (e.g., an

iteration count, t) where eventually all of the individual components of x(k) (i.e., x
(k)
1 , x

(k)
2 , . . .)

will be in Dk.

The next result provides convergence of the asynchronous fixed point algorithm subject

to a single fault that is realized as a delay.

Theorem 3. If all of the conditions from both Definition 1 and Assumption 1 hold, the

initial guess x(0) is in the set D0, and a single fault is encountered at some unspecified time

tf during the execution of the algorithm that manifest according to Definition 2, then the

sequence of iterates {x(k)} given by Algorithm 5 converge to x∗, the fixed point of G.

Proof. The proof proceeds by induction. Similar to the proof of Theorem 2 provided in [59],

the goal is to show that there is a time, tk, such that for sufficiently large k, the values

of si(k) will all be large enough to guarantee that the individual components inside of the

respective domains Di, and thus G(x(t)), are in Dk for all t ≥ tk.

The base case of the induction, i.e. the case corresponding to k = 0, is true from the

assumption that x0 ∈ D0 which is made in the statement of Theorem 3.

Next, the proof proceeds by assuming that the statement is true for a given k and

establishing that it is true for k + 1. In particular, a time, tk+1 is sought such that for all

times t that are larger than tk+1. To this end, introduce a new collection of sets, T i, that,

matching the notation in [59], represent the set of times that xi is updated. Note that this

can be recovered from the sequence of sets {Ik} that represent the collection of components

that are updated at each iteration, k.

Using this, for each domain index, i = 1, 2, 3, . . . ,m, let t̄i represent the first time that

each component i would be updated in a fault-free environment after the time tk. Equiva-

lently, this will be the smallest element of the set T i that is larger than tk. Assume without

loss of generality that the single fault effects component if . Because of condition 2 of Def-

inition 1 (i.e. that all components will continue to be updated) and the fact that a fault is

realized as a delay df , set t
i to be the smallest entry in the set T i that is larger than t̄i + df .

56

Then, the synchronous box condition gives that,

Gi

(
x(ti)

)
∈ Dk+1, (41)

or that if all components have been updated sufficiently to ensure there individual update

counts are larger than tk – accounting for the occurrence of a fault – the operator G will

move the domain to the next subdomain in the sequence of nested subdomains.

Next, using the box condition, this gives that,

x
(ti+1)
i = Gi

(
x(ti)

)
∈ Dk+1

i , (42)

i.e., that each component resides in the appropriate subdomain in the decomposition of the

nested set, Dk. Set t′k = maxi{ti}+1. Then for all t ≥ t′k each component function, Gi, will

have moved the components it is responsible for into the subdomain, Dk+1
i , and therefore

using the box condition it can be said that,

x(t) ∈ Dk+1, (43)

which shows that the iterates will continue progressing through the nested sets until they

arrive at the fixed point, completing the proof.

Theorem 3 addresses only the case of a single fault. While faults on next generation

HPC platforms are expected to be rare occurrences, there is certainly no guarantee that

only a single soft fault will be experienced during the runtime of an application. In fact,

large-scale, long running simulations may encounter many soft faults based on the predicted

worst case MTBF [1]. The next result addresses the case of a general fixed point algorithm

encountering multiple faults during a single execution.

Theorem 4. If all of the conditions from both Definition 1 and Assumption 1 hold, the initial

guess x(0) is in the set D0, and a finite number of faults are encountered at some unspecified

57

time tf during the execution of the algorithm that manifest according to Definition 2, then

the sequence of iterates {x(k)} given by Algorithm 5 converge to x∗, the fixed point of G.

Proof. Proceed again by induction. Base case is given by Theorem 3. Assume true for k

faults, and the modification for k + 1 faults follows from the same logic that is used in the

proof of Theorem 3. In particular, it is possible to pick a sufficiently large time to ensure

that all components have been updated sufficiently to guarantee regardless of how many

faults occur, under the critical assumption that faults manifest as delays to the updates of

individual components.

3.1.1.1 Nonexpansive Operators

There are many special cases of the general theory presented in the previous subsection

that merit further attention. One in particular that will be examined here is the case where

G is a nonexpansive operator. Before proceeding further, however, several more concepts

need to be defined more precisely. The goal in this subsection is to examine results for

nonexpansive operators, which represent a slight generalization to the standard results, and

to adjust the results as necessary to apply to the case where a fault occurs. Since results

concerning nonexpansive operators are a little more general than the results presented in the

previous subsection, additional assumptions need to be defined to ensure that the algorithm

converges properly.

The theory behind asynchronous iterative methods for nonexpansive operators was first

detailed in [59], and then generalized for the case of linear operators in [100]. Next, [56]

examined parallel fixed point iterations and expanded the class of operators to include non-

linear nonexpansive operators; however, the paper [56] restricted the parallelism to only

include synchronous updates; the subsequent paper [57] generalized this further and allowed

for the case of asynchronous updates. The additional assumptions (relative to the conditions

assumed for Theorem 2) made by all four of these works are similar, but not identical.

58

To develop theoretical results related to nonexpansive operators, a few more concepts

must be clearly defined. First, it must be noted that the convergence results presented that

relate to nonexpansive operators all require the concept of bounded delay. This concept has

also been referred to as partial asynchronism [59], and is made more precise in the following

definition.

Definition 3. An asynchronous iteration with bounded delay is one that enforces a bound

on how far behind the updates to one component can lag behind another. This can be viewed

as a constant, tb, such that for any given iteration count, k, the following inequality holds:

(
max

i
si(k)−min

i
si(k)

)
≤ tb. (44)

Next, the concepts of nonexpansive and paracontracting operators need to be clearly

defined.

Definition 4. An operator, G : D → D is said to be nonexpansive with respect to the norm

|| · || if it satisfies,
||G(x)−G(y)|| ≤ ||x− y|| (45)

for all x, y ∈ D. Note that if the operator G is linear, it can be expressed as a matrix, and

that this identity can then be written more simply as,

||Gx|| ≤ ||x|| (46)

for all x ∈ D.

In order to examine this class of operators, certain restrictions need to be placed upon the

subdomains, Di, that make up the entire product space, D. In particular, each subdomain

Di needs to be assumed to be a normed linear space, (Di, || · ||i). With this assumption,

the weighted maximum norm can be defined. Note that the definition used here follows

from [100] and [58].

59

Definition 5. The weighted maximum norm of a vector x ∈ D, denoted ||x||w is given by,

||x||w = max
1≤i≤m

||x||i
wi

(47)

where ||x||i is the norm that exists on the normed subdomain, Di, and w = (w1, w2, . . . , wm)

is a positive vector that satisfies wi > 0 for all i = 1, 2, . . . ,m.

Before proceeding to the development of results on nonexpansive results, [58] provides a

result, originally due to El Tarazi [84], that is related to the nested set result presented in

Theorem 2, but that makes use of the idea of weighted norms.

Theorem 5. Assume that G : D → D has a fixed point x∗, and that there exists a constant,

γ with 0 ≤ γ < 1 such that for all iterations, k, the following is satisfied,

||G(x)− x∗||w ≤ γ · ||x− x∗||w. (48)

Then the asynchronous iterates defined by the sequence {x(k)} converge to x∗.

This is just a slightly more specific instance (i.e., one where each of the subdomains is

required to have a norm) of Theorem 2. As pointed out in [59], one possible motivation

for examining contractive mappings with respect to weighted norms is that the unit sphere

defined by such a weighted norm satisfies the nested set criteria imposed in Assumption 1.

In general, showing that an asynchronous iterative algorithm converges requires showing

one of two things:

1. there is an appropriate sequence of nested sets (see Assumption 1) or

2. the operator that generates the sequence is contractive under an appropriate weighted

maximum norm.

Here, the additional assumptions are taken from [57] and are adopted in Theorem 6 that

provides convergence in the fault-free case (also taken from [57]) below.

60

Theorem 6. Let the following hypotheses hold:

h0 There exists a subsequence, {pk} such that for all i ∈ {1, 2, 3, . . . , p}, the conditions

i ∈ I(pk) and si(pk) = pk for all i

h1 The asynchronous iterative procedure has bounded delay with constant tb

h2 There exists a fixed point x∗ in the domain D such that G(x∗) = x∗

h3 The operator G is nonexpansive with respect to the maximum norm

h4 The condition,

||G(x)−G(y)||2 ≤ 〈G(x)−G(y), x− y〉 (49)

for all x, y ∈ D

Then the asynchronous iteration defined by Algorithm 5 and Definition 1 converges to a fixed

point x∗ ∈ D.

The hypothesis h0 dictates that there are a set of times that all processors are synchro-

nized, a hypothesis that can be enforced by the programmer, while the condition in h4 is

satisfied by a large number of operators (e.g. G is linear, symmetric, and positive; G is a

maximal monotone operator; G is strongly convex; etc [56], [57]).

Extending this analysis to the case of a fault follows a similar pattern to the development

from Theorem 2 to Theorem 3. In particular, the new result will assume the occurrence of

a single, undetected computing fault to one of the processors at some point throughout the

iterative procedure. This result can be stated as follows.

Theorem 7. Let the following hypotheses hold:

h0 There exists a subsequence, {pk} such that for all i ∈ {1, 2, 3, . . . , p}, the conditions

i ∈ I(pk) and si(pk) = pk for all i

h1 The asynchronous iterative procedure has bounded delay with constant tb

h2 There exists a fixed point x∗ in the domain D such that G(x∗) = x∗

61

h3 The operator G is nonexpansive with respect to the maximum norm

h4 The condition,

||G(x)−G(y)||2 ≤ 〈G(x)−G(y), x− y〉 (50)

for all x, y ∈ D

h5 A single soft fault, as defined by Definition 2, occurs at an undetermined time during

execution but before convergence is reached

Then the asynchronous iteration defined by Algorithm 5 and Definition 1 converges to a fixed

point x∗ ∈ D.

Proof. Similar to the proofs in both [56] and [57], this proof proceeds in three steps. Each

of the three steps is very similar to those presented in [57] with small additions made to

account for the occurrence of a fault.

Step 1 The first step is to show that the sequence generated by the iterates {xp} is bounded.
This is done by considering that the sequence generated by {||xp − x∗||∞}p∈N, for some fixed

point x∗ of the operator G is convergent.

To do this, consider a collection of iterates, x(p), x(p−1), x(p−2), . . . , x(p−tb), and define z(p)

such that,

z(p) = max
0≤l≤tb

||x(p−l) − x∗||∞ = max
p−tb≤l≤p

||x(l) − x∗||∞ (51)

Then, for each processor i ∈ {1, 2, . . . , r} one of two conditions much be true: either i ∈ Ip,

meaning that processor i will perform an update at the pth iteration, or i /∈ Ip so that

processor i will not perform an update at the pth iteration; either way, the distance between

the ith block of components (assigned to the ith processor) and the corresponding components

62

in the fixed point, x∗, can be bounded. In the case that i ∈ Ip,

||x(p+1)
i − x∗

i ||i = ||x(pi) − x∗
i ||i (52)

≤ ||x(p) − x∗||∞
≤ max

0≤l≤tb
||x(p−l) − x∗||∞

= z(p)

Or, in the case that i /∈ Ip,

||x(p+1)
i − x∗

i ||i = ||Gi(x
(s1(p))
1 , x

(s2(p)
2), . . . , x(sm(p))

m)−Gi(x
∗)||i (53)

≤ ||G(x
(s1(p))
1 , x

(s2(p))
2 , . . . , x(sm(p))

m)−G(x∗)||∞
≤ ||(x(s1(p))

1 , x
(s2(p))
2 , . . . , x(sm(p))

m)− x∗||∞ (54)

= ||x(sj(p))
j − x∗

j ||j (55)

≤ ||x(sj(p)) − x∗||∞
≤ max

p−tb≤l≤p
||x(l) − x∗||∞ (56)

= z(p) (57)

where Eq. (54) follows from the assumption that the operator G is nonexpansive (i.e. h3),

Eq. (55) follows from the previous line since the equality must hold for some j ∈ {1, 2, . . . , r},
and Eq. (56) follows from the assumption of bounded delay.

In either the case of i ∈ Ip or i /∈ Ip, there is a chance that a fault occurs during the

update process that is considered in the inequalities. In the first case, i ∈ Ip, this only

affects the range that the maximum is taken over; instead of taking the maximum over

the range 0 ≤ l ≤ tb, the maximum needs to be taken over the (possibly) extended range,

0 ≤ l ≤ max(tb, df). Similar to the extensions made to the proof in Theorem 3, this ensures

that the delay caused by potential hardware malfunction has time to be corrected by the

63

natural iterative update process in the algorithm. In the case i /∈ Ip, by definition no update

is being made, so therefore no adjustments need to be made.

With this, for all i ∈ {1, 2, . . . , r},

||x(p+1)
i − x∗

i ||i ≤ zp (58)

which establishes that,

||x(p+1) − x∗||∞ ≤ zp, (59)

and therefore,

z(p+1) = max
0≤l≤tb

||x(p+1−l) − x∗||∞ (60)

= max{ max
0≤l≤tb−1

||x(p−l) − x∗||∞, ||x(p+1) − x∗||∞}

≤ z(p).

This shows that the sequence defined by {zp} is decreasing, and since it is also positive as it

is defined to be a norm, this combines to show that the sequence is convergent.

Expanding the definition of {z(p)},

lim
p→∞

zp = lim
p→∞

max
0≤l≤tb

||x(p−l) − x∗||∞ (61)

= lim
p→∞

||x(p−j(p)) − x∗||∞ for 0 ≤ j(p) ≤ tb

= lim
p→∞

||x(p) − x∗||∞,

which shows that the sequence defined by {||x(p) − x∗||∞} is convergent, which implies that

the sequence {x(p)} is bounded, which in turn completes Step 1 of the proof.

Step 2 The second step is to show that the subsequence of iterates that is defined by the

(sub)sequence provided by the hypothesis h0, i.e. the sequence {x(pk)}, converges to a fixed

64

point of G.

First, since the sequence {x(p)} is bounded by Step 1, the subsequence defined by {x(pk)}
is also bounded. Note that even if a fault were to occur at one of the times pk that by the

way a fault has been defined, this will just slow the progression of the sequence {x(pk)} and

will not affect the boundedness. In order to show that the subsequence {x(pk)} converges to
a fixed point x∗ of the operator G, first define another sequence,

{y(p) = x(p) −G(x(p))} (62)

and the desired result follows from showing that the subsequence of {y(p)} generated by the

indices pk, i.e. {y(pk)} converges to 0.

To do this, start by establishing a bound on the norm of {y(pk)}. Note that,

||x(pk) − x∗||2 = ||y(pk) +G(x(pk))− x∗||2 (63)

= ||y(pk)||2 + ||G(x(pk))− x∗||2 + 2〈G(x(pk))− x∗, y(pk)〉,

which gives an estimates of ||y(pk)||2 as,

||y(pk)||2 = ||x(pk) − x∗||2 − ||G(x(pk))− x∗||2 − 2〈G(x(pk))− x∗, y(pk)〉 (64)

This can be expanded further using the hypothesis h4 since,

〈G(x(pk))− x∗, y(pk)〉 = 〈G(x(pk))−G(x∗), x(pk) −G(x(pk))〉 (65)

= 〈G(x(pk))−G(x∗), [x(pk) −G(x∗)]− [G(x(pk))−G(x∗)]〉

= 〈G(x(pk))−G(x∗), x(pk) − x∗〉 − ||G(x(pk))−G(x∗)||2

≥ 0.

65

Which provides a bound on ||y(pk)||2 as,

||y(pk)||2 ≤ ||x(pk) − x∗||2 − ||G(x(pk))− x∗||2 (66)

= ||x(pk) − x∗||2 − ||(x(pk+1))− x∗||2,

where the latter equality follows since G(x(pk)) = (x(pk+1)) by following the iterates defined

in the subsequence created by h0. Here, it is possible that a fault could cause a delay in the

update of the iterate x(pk). In particular, if a fault were to occur,

G(x(pk)) = G(x(pk−df)). (67)

However, the bound on ||y(pk)||2 is still valid since, due to the assumptions made about the

nature of a fault in Definition 2, the sequence {x(pk)} will eventually successfully reach the

value x(pk+1).

Next, from Step 1, the sequence generated by {||x(p)−x∗||∞} is convergent, even if a soft

fault is to occur. This further implies that the sequence {||x(p) − x∗||} is convergent with

or without the occurrence of a soft fault. The limit of the sequence {||x(p) − x∗||} is then

independent of the occurrence of a soft fault and is given by,

lim
p→∞

||x(p) − x∗|| = lim
pk→∞

||x(pk) − x∗|| (68)

= lim
pk→∞

||x(pk+1) − x∗||

= lim
pk→∞

||x∗ − x∗||.

This shows that,

lim
pk→∞

||y(pk)|| = 0, (69)

which additionally gives that,

lim
pk→∞

y(pk) = 0. (70)

66

Because of how the sequence {y(pk)} is defined, this establishes that the subsequence {x(pk)}
converges to x∗, which is a fixed point of the operator G.

Step 3 The last step is to combine the results of the first two steps to show that the

sequence of iterates, {x(p)} converges to x∗. This follows naturally because {x(p)} is bounded
(as shown in Step 1), as the iterates generated by {x(pk)} progress, the sequence {x(p)} also

moves towards x∗ since the progression of {x(pk)} towards x∗ will be the same, i.e.,

lim
p→∞

||x(p) − x∗||∞ = lim
pk→∞

||x(pk) − x∗||∞ = 0 (71)

which shows that the sequence {x(p)} converges to x∗ with respect to the norm || · ||∞. Note

again that the results that are being combined from both Step 1 and Step 2 have taken into

account the possible occurrence of a soft fault, and therefore the sequence of asynchronously

generated iterates will converge for the given nonexpansive operators (i.e. operators that

satisfy the hypotheses h0, h1, h2, h3, and h4) even if a soft fault were to occur.

This result on nonexpansive operators represents a result for a more specific class of

operators than is given in Section 3.1. Extending the result in Theorem 7 to account for

multiple faults follows in the same manner as the extension of the proofs from Theorem 3

to Theorem 4 and the formal statement and proof are omitted.

3.1.2 BOUNDS ON INDUCED ERROR

With a fault as defined by Definition 2, the effects of a fault do not propagate between

the various components in the vector x ∈ D. However, this is not always possible to enforce

in practice. The purpose of this subsection is to explore the possible negative effect of an

undetected soft fault. In order to keep the analysis as general as possible it is necessary

to take a probabilistic viewpoint. The analysis presented here follows closely the work

shown in [54] where the authors presented a probabilistic analysis of the possible error

introduced for synchronous fixed point iterations. The work shown here restates many

67

results for completeness and takes special care to ensure that the parallel, asynchronous

nature of the algorithms that are the focus of this work is accounted for.

An undetected computing fault that occurs may end up causing either divergence or

stagnation of the iterative algorithm. In order to determine the conditions for convergence if

some bounded amount of data corruption is injected into the algorithm (i.e. by an undetected

soft fault), the amount of data corruption must first be quantified.

For any operation G on the vector x ∈ D where G : D → D, some number of components,

xi, from the output can be affected by a fault that occurs. Even for a relatively trivial map

G it is often hard to pin down exactly where the error occurs if the corrupted output is the

only location that the fault visibly manifests. Further, the corruption from one component

can spread to other components and this proliferation of data corruption often occurs in a

non-deterministic manner that depends on the timing and magnitude of the error in question.

With this in mind, in order to attempt to provide some bound on the amount of acceptable

error for a parallel fixed point algorithm, a probabilistic approach similar to the one taken

in [54] is adopted. The work presented in [54] provides a strong foundational framework

for how to analyze soft faults for generic computational tasks and provides an example

that shows how this framework can be adapted to fit with synchronous parallel fixed point

problems. The extension provided here provides a further adaptation to the asynchronous

case.

In the case of a fault occurring when computing a vector x ∈ D, the resultant vector,

denoted by x̄ ∈ D, can be expressed as

x̂ = x+ x̃ (72)

for some random vector x̃ ∈ D. That is, the vector obtained differs from the vector that

would arise in the fault-free case by some unknown amount that is linked to an unknown

probability distribution. This is captured more precisely by the following assumptions.

68

Assumption 2. Soft faults are independent events.

Assumption 3. For every operation not conducted in a high reliability mode there is a

positive probability of having a soft fault occur.

Many studies make Assumption 2 above; namely that soft faults are independent events

(e.g., [54], [126], [129]); however, data collected on DOE supercomputers has suggested that

failure rates may not follow an exponential distribution exactly [13], especially near the

beginning and end of the life of the HPC platform. Some recent research efforts have used

mathematical strategies with respect to the timing and occurrence of faults [130] in an effort

to quantify the possible numerical error. Following the majority of studies, soft faults are

assumed to be independent in this work; however, a pessimistic view on the effect of a fault,

where arbitrarily large perturbations are allowed to occur on every iteration, and stringent

convergence criteria are imposed in order to ensure that the effects of a fault will not hinder

an algorithm variant proposed here when it is used in application.

Similar to [54], these assumptions allow the modeling of faults to be done via a two level

probability mixture. The first level indicates whether or not a fault has occurred as a given

step and is represented by a sequence of discrete Bernoulli parameters, p = {p1, p2, p3, . . .},
signifying that a fault has or has not occurred at iteration k. Note that in the parallel

asynchronous case, this iteration counter is incremented every time that a processor reads

the vector

xk =
(
x
(s1(k))
1 , x

(s2(k))
2 , · · · , x(sm(k))

m

)
(73)

from memory. As such the relative value of k may be significantly higher in the asynchronous

case than it is in the synchronous case.

Next, since the effect of the fault is realized as a random perturbation, x̃, to the value of

the iterate that would have been calculated in a fault-free calculation, this can be modeled

as a sequence of unknown probability distributions, P = {P1, P2, P3, . . .}, associated with

69

each Bernoulli parameter. This creates a list of pairs, (p,P) = (pi, Pi), that are associated

with each computational step that is not executed in high reliability mode.

Following still the notation from [54], let e represent the difference between one series of

iterations, possibly subject to the effects of soft faults and the result that would occur in a

fault-free environment. To be precise, assume that in the nominal, fault-free environment

the iterative fixed point algorithm terminates after M1 iterations to an initial vector x, while

when subject to faults, M2 iterations to an initial vector y are required. This error term, e,

can be expressed formally as

e =
∥∥x(M1) − y(M2)

∥∥ (74)

in the desired norm. Note that e itself is a random variable that depends on the sequence of

random variable pairs (pi, Pi). The strict approach is to assume that the effect of the fault

has no impact on the outcome of the fixed point iteration, i.e., that the random variable e

always returns 0. This is captured in the following definition.

Definition 6. (Def. 2 from [54]) An iterative algorithm is convergent when subject to soft

faults if the mean and variance of e can be made arbitrarily small with a finite amount of

computational effort. Denoting mean with E and variance with V this can be expressed by

requiring that

sup
P

E(p,P)(e) < ε (75)

sup
P

V(p,P)(e) < ε (76)

for every ε > 0, every series of (unknown) probability distributions P can be achieved in a

finite amount of computation.

Note that this ensures that the final iterate when subject to faults will be the same as

the final iterate in a fault-free case, which does not require either of the following to be true:

70

• the algorithm that allows the occurrence of hardware faults finishes in the same number

of iterations, or

• every iterate of the algorithm continues to satisfy the desired properties concerning e,

i.e., a fault may have an impact so long as it is corrected.

Returning more specifically to the case of fixed point iteration, each iterative update can

be expressed as shown in Algorithm 7.

Algorithm 7: Parallel Fixed Point Iteration

1 for each processing element Pl do
2 for k = 1, 2, . . . until convergence do

3 Compute x
(k+1)
j = Gj(x

(k)) for all j ∈ Bl

The iterative nature of the algorithms being considered offers a natural ability to correct

for many faults. As such, if more can be known about the probability distributions pairs

(pi, Pi) it may be possible to guarantee convergence of the algorithm without requiring any

algorithmic modifications.

For example, if a fault occurs on the (F − 1)th iteration, then the resultant F th iteration

can be written

x̂(F) = G
(
x(F−1)

)
+ x̃(F) (77)

x̂(F) = x(F) + x̃(F) (78)

for some unknown perturbation x̃(F). However, following Section 3.1 of [54], so long as

x̂(F) ∈ D and x̂
(F)
i ∈ Di for all i ∈ {1, 2, . . . , n}, this can be seen to generate a new sequence

that will still converge to the desired fix point.

71

The next step is to introduce new criteria for convergence that can more easily be ex-

ploited in the building of resilient fixed point algorithms. While Theorem 2 and Theorem 5

provide sufficient conditions for convergence, the next result, often referred to as the Banach

Fixed Point Theorem, provides an alternative set of conditions required for the convergence

of a fixed point algorithm.

Theorem 8 (Banach Fixed Point Theorem). Assume that the space D is complete with

respect to the norm ‖ · ‖. If the operator G : D → D is a contraction map with respect to the

same norm ‖ · ‖ then there is a unique fixed point x∗ ∈ D such that the sequence defined by

x(k+1) = G
(
x(k)

)
, converges to the fixed point x∗.

This has been restated slightly for asynchronous fixed point iterations in the case where

G : D → D is a linear operator (see Theorem 4.1 of [58]) and the case where G is a nonlinear

operator (see Theorem 4.4 of [58]). In both cases, convergence is reframed in terms of

ensuring that the spectral radius of the operator |G| (if the operator is linear) or the spectral
radius of the Jacobian of G, |G′| (when the operator is nonlinear) is less than 1.

For the case of asynchronous fixed point iterations, a further condition is assumed. This

is detailed in the following result.

Theorem 9. Assume that the space D is complete with respect to the norm ‖ · ‖. Let

D = D1 ×D2 × · · · ×Dn. Let G : D → D be expressed as,

x
(k+1)
1 = G1

(
x
(s1(k))
1 , x

(s2(k))
2 , x

(s3(k))
3 , · · · , x(sn(k))

n

)
x
(k+1)
2 = G2

(
x
(s1(k))
1 , x

(s2(k))
2 , x

(s3(k))
3 , · · · , x(sn(k))

n

)
x
(k+1)
3 = G3

(
x
(s1(k))
1 , x

(s2(k))
2 , x

(s3(k))
3 , · · · , x(sn(k))

n

)
(79)

...

x(k+1)
n = Gn

(
x
(s1(k))
1 , x

(s2(k))
2 , x

(s3(k))
3 , · · · , x(sn(k))

n

)
.

72

using the framework defined by Algorithm 5 and Definition 1. Let

x(s(k)) =
(
x
(s1(k))
1 , x

(s2(k))
2 , x

(s3(k))
3 , · · · , x(sn(k))

n

)
. (80)

If each component function, Gi : D → Di, is a contraction mapping then the asynchronous

fixed point iteration defined by

x(k+1) = G
(
x(s(k))

)
=

(
G1

(
x(s(k))

)
, G2

(
x(s(k))

)
, . . . , Gn

(
x(s(k))

))
(81)

converges to x∗, the unique fixed point of G : D → D.

Proof. Since each Gi is individually contractive, there exists a sequence of constants {γi}ni=1

that are all less than 1, such that

‖Gi(x)−Gi(y)‖ ≤ γi‖x− y‖ (82)

for all x, y ∈ Di. Set γ = max
i∈{1,...,n}

γi. Then γ < 1 and

‖Gi(x)−Gi(y)‖ ≤ γ‖x− y‖ (83)

which also gives that

‖G(x)−G(y)‖ ≤ γ‖x− y‖ (84)

for all x, y ∈ D.

For some fixed point algorithms there are residuals that can be checked to judge progress

of an algorithm, but the computation of residuals tends to be expensive. Generally, since

the goal of fixed point iteration is to find a point in the domain such that

x(k) ≈ G
(
x(k)

)
, (85)

73

one termination criterion that can be used is to monitor the progression of the successive

iterates. In particular, this involves defining a tolerance ε with respect to a desired norm

and declaring convergence if

‖x(k+1) − x(k)‖ < ε. (86)

Note that this will detect convergence, but runs a risk of declaring convergence prema-

turely if progression of the fixed point iteration reaches a region of the domain D where

progression of the successive iterates falls below the specified threshold. Next, set

δ(k+1) = ‖x(k+1) − x(k)‖ (87)

and additionally, define

δ
(k+1)
i = ‖x(k+1)

i − x
(k)
i ‖ (88)

specific to the individual subdomains Di. Then, for fixed point iterations that satisfy the

component-wise contractive property specified in Theorem 9, the following relation holds:

δ
(k+1)
i ≤ γiδ

(k)
i . (89)

This can then be used to help develop a fine-grained fixed point algorithm that is capable

of being employed asynchronously. The idea being that if δ
(k)
i is computed every iteration

then it can be monitored to see if it ever increases. Any increase can be seen as indicative

of a fault. This idea is detailed further in Algorithm 8.

This algorithm presents a fine-grained approach towards fault tolerance that does not

require any recovery technique or global communication. However, it is possible that Algo-

rithm 8 accepts false positives and using a number γ̃j > γj may help prevent this. Addition-

ally, there is still danger of accepting convergence and terminating the fixed point iteration

74

Algorithm 8: Resilient Parallel Fixed Point Iteration

1 for each processing element Pl do
2 for k = 1, 2, . . . until convergence do

3 Compute x
(k+1)
j = Gj(x

(k)) for all j ∈ Bl

4 Compute δ
(k+1)
j = ‖x(k+1)

j − x
(k)
j ‖

5 if δ
(k+1)
j ≤ γjδ

(k)
j then

6 Accept the update x
(k+1)
j

7 else

8 Reject the update x
(k+1)
j

Fig. 9: Component-wise progression of common termination conditions for the asynchronous
Jacobi algorithm.

too early if the criterion δ(k+1) < ε is used. Lastly, there is a danger of stagnation if too

many consecutive iterates are rejected. For many algorithms, asynchronous updates to both

component-wise differences and residuals remove the guarantee of monotonicity. An example

of this non-monotonic behavior for the solution of the Laplacian discretized over a 10 by 10

grid with centered finite differences by the asynchronous Jacobi behavior is shown in Fig. 9.

The performance of two processors each assigned to perform updates for half of the 100

total components whose updates patterns are randomized using the simulation framework

described in [168] is captured.

75

One potential solution to these difficulties is to introduce a new parameter, α, that delays

the frequency with which the check on progression (c.f. Line 5 of Algorithm 8) is made. In

particular, the check on δ is between the (k+α)th iterate and the (k)th iterate. This is shown

in Algorithm 9 (see in particular, Line 7).

Example:
For the asynchronous Jacobi algorithm as shown in Fig. 9, the behavior of the local

part of the residual exhibits far less monotonic behavior than the norm of the local

difference between two successive iterates, suggesting that a larger value of α may be

necessary.

The initial value for each of the values δ
(k0)
j is set to some user defined values N0 that can

be set to any sufficiently large value. Computing the first update in a highly reliable com-

putational mode allows this value to be set appropriately, but the algorithm should proceed

as expected for other values since the values of δ
(k0)
j will be updated every α iterations.

Algorithm 9: Modified Resilient Parallel Fixed Point Iteration

1 for each processing element Pl do

2 Set δ
(k0)
j = N0

3 for k = 1, 2, . . . until convergence do

4 Compute x
(k+1)
j = Gj(x

(k)) for all j ∈ Bl

5 if mod (k, α) ≡ 0 then

6 Compute δ
(k+α)
j = ‖x(k)

j − x
(k)
j ‖

7 if δ
(k+α)
j ≤ γjδ

(k0)
j then

8 Accept the update x
(k+1)
j

9 else

10 Reject the update x
(k+1)
j

11 Set δ
(k0)
j = δ

(k+α)
j

There is discussion in [54] regarding convergence rate, stagnation, and guarding against

false positives with respect to the synchronous parallel fixed point iteration, with a focus

on the Jacobi algorithm. The final version of their resilient fixed point iteration was built

76

around a series of synchronous updates to the fixed point equation; however, key points

include putting in safeguards to avoid rejecting two consecutive iterates, checking termination

conditions against both the current iterate and (a slightly lessened criterion) against the

previous iterate. Using properties related to the monotonic progression of the component-

wise differences, they are also able to establish practically useful theoretical bounds (c.f. α

and β from Algorithm 3 in [54]) that help detect faults with more precision.

A modified version of the check presented here in Algorithm 8 that is specific to the

asynchronous Jacobi algorithm with extended discussion of the other points is developed

in [21], [26]. The solution presented therein is discussed here in Section 3.2.1 as an example

of algorithm based fault tolerance for parallel asynchronous fixed point iterations.

3.2 RESILIENCE STRATEGIES

This section proposes a variety of recovery techniques that can be used to help ensure that

convergence of a given asynchronous iterative method occurs without suffering from either

an incorrect or significantly delayed result. The first subsection discusses the techniques

from a more general, theoretical viewpoint, and the next subsection provides examples of

how to use these techniques for specific algorithms.

3.2.1 RECOVERY TECHNIQUES

This subsection will discuss a few methods for ensuring recovery in the df iterations

specified in Definition 2, or otherwise correcting the behavior of the algorithm. In some

cases, the df extra iterations can be viewed as corresponding to the self correcting behavior

via checkpointing or another type of self corrective behavior.

The several fault mitigation strategies that will be discussed in more detail below are:

migration, checkpointing, partial checkpointing, and algorithm based fault tolerance. Each

of these methods is capable of restoring nominal performance of an iterative algorithm, and

as such, each is capable of bringing the iterative method back to a location in the domain

77

where the algorithm can converge to the intended result. Throughout the subsequent series

of subsections, the examples presented are intentionally kept similar in order to clearly

delineate the differences between the various techniques for recovery.

3.2.1.1 Migration

If the processing element, Pk, assigned to compute the updates for block Bk fails, the

elements in Bk can be migrated to another block/processing element pair, Bl/Pl. Success-

ful migration requires either a flexible component assignment structure, or holding extra

processing elements in reserve.

Example:
Consider the centered finite-difference discretization of the two-dimensional Laplacian,

Δu = f, (90)

conducted over an n×n grid. This results in a matrix, A ∈ R
n2×n2

, that has N non-zero

elements. The discrete version of this partial differential equation can then be written

as,

Ax = b, (91)

and the solution to this discretization of the Laplacian can be generated by a stationary

fixed point iteration, such as the Jacobi method. If Jacobi is used, the solution for each

non-zero element can be written as,

xi =
−1
aii

[∑
j �=i

aijxj − bi

]
. (92)

If the fixed point iteration is asynchronous, each update to every element xi is made

with the latest information available. In this particular example, assume that the

computation is being made on a system that has P > N available processors. Further,

assume that the work is initially assigned to processors 1, 2, . . . , p. If during the course of

78

the iteration, faulty or delayed performance is detected in processor 1, then the system

can assign the work that was originally assigned to processor 1 to processor p + 1 and

let the computation continue as before. If processor p + 1 starts with the initial guess

at the value of x1 then this can be viewed as a delay in the convergence of element x1.

Note that the migration could happen with no input or plan a priori by the user,

e.g., a user requests the use of 10 nodes, each consisting of 20 processors on an HPC

platform, if one of the nodes crashes the system could potentially restart the processes

that were assigned to the faulty node on another node of the HPC system.

Recently, several research efforts have proposed the use of what effectively amounts to a

migration technique by way of using randomization in the selection of which component to

update (see [105]). Following this methodology, each processor selects randomly which com-

ponent to update before beginning its computation. While this technique is more suitably

viewed as a possible mitigation to hard faults (e.g. if a particular processor fails to post an

update or has a significant delay in updating due to a hardware malfunction), it may be able

to help in the case of soft faults as well.

3.2.1.2 Checkpointing

During the course of the fixed point iteration, at periodic intervals, all elements of the

current iterate, x(k), are saved to memory. If a fault is detected, all elements of the corre-

sponding iterate, x(F), are reset to the last known good state, x(k). This method tends to be

robust to the occurrence of a soft fault, but may be very slow computationally. Addition-

ally, creating reliable techniques for detecting whether or not a soft fault has occurred often

require global communication.

Example:
Consider again the centered finite-difference discretization of the two-dimensional

Laplacian over an n × n grid, where the matrix equation is solved by asynchronous

Jacobi. At regular (or semi-regular) intervals during the asynchronous fixed point it-

79

eration, the latest information available can be used to calculate the current residual,

r = b− Ax, (93)

and valid values of the iterate x(k) can be written to memory. By keeping track of the

residual over time, a fault can be declared if,

‖r(k+dr)‖ > γ‖r(k)‖, (94)

where dr is the delay in calculating the residual and γ is a constant selected by the user.

Values of γ close to 1 assume monotonic decrease in the residual and may therefore

declare false positives by detecting a non-existent fault, while values significantly larger

than 1 may not detect anomalous behavior if the effect is not sufficiently large.

If a fault is detected all elements of the current iterate, x(F) are reset to the last

known good iterate. This reset can be viewed as a delay in the convergence of all

components.

3.2.1.3 Partial Checkpointing

As in the case of checkpointing above, all elements of the current iterate, x(k), are saved to

memory with some regularity. The difference with this method is that if a fault is detected,

only some subset of the current iterate, x(F), is reset to the last known good state. In

particular, only the components that are determined to be affected by the fault need to be

rolled back.

This method requires a finer-grained check on whether or not a fault has occurred, so

that the location of the fault can be specified more precisely. Because of this, the partial

checkpointing methodology has more natural synergy with fine-grained iterative methods;

i.e., it is possible for individual components to detect faults and act accordingly. Further,

the computational model of fine-grained (asynchronous) iteration allows for the components

80

to become out-of-sync with one another. Convergence of the fine-grained iterative is not

typically affected negatively if the components that are assigned to a particular processor

are reset to a state multiple iterations behind the other components.

Example:
Consider again the centered finite-difference discretization of the two-dimensional

Laplacian over an n × n grid, where the matrix equation is solved by asynchronous

Jacobi. Similar to the checkpointing example given in Section 3.2.1.2, at regular in-

tervals during the asynchronous fixed point iteration each processor can independently

write the latest valid version of the portion of the iterate x(k), denoted x
(k)
i , to memory.

The latest information available can then be used to calculate the current residual. As

opposed to Section 3.2.1.2 where the global residual is calculated, in this method only

the local portion of the residual

ri = bi − Axi (95)

is monitored. By monitoring the progression of the local portion of the residual over

time, a fault can be declared if,

‖r(k+dr)
i ‖ > γ‖r(k)i ‖, (96)

where dr is the delay in calculating the residual and γ is a constant selected by the

user. Compared with Section 3.2.1.2, the value of γ may be significantly higher since

the decrease of the local residual may not be monotonic. As before in Section 3.2.1.2,

values of γ close to 1 assume monotonic decrease in the residual and may therefore

declare false positives by detecting a non-existent fault, while values significantly larger

than 1 may not detect anomalous behavior if the effect is not sufficiently large.

If a fault is detected, then all of the elements of the current iterate x(F) that are

assigned to the processor that detects a fault (i.e., x
(F)
i) are reset to the last known

81

good iterate. This reset can be viewed as a delay in the convergence of the components

inside of the block xi.

3.2.1.4 Algorithm Based Fault Tolerance

Algorithm Based Fault Tolerance (ABFT) is a wide class of algorithms that contains many

different techniques for making algorithmic modifications that do not necessary rely on more

traditional checkpointing style techniques. This includes a sub-class called self-stabilizing

techniques as introduced in [125] for the Conjugate Gradient method. Self-stabilizing meth-

ods are a type of Algorithm-Based Fault Tolerance (ABFT) that are generally defined as

methods that return a system to a valid state within some finite number of steps. This prop-

erty provides a means for fault tolerance; if a non-persistent fault occurs, the self-stabilizing

method should correct any impact such that the algorithm will converge. This technique

tends to be application specific as it relies on correcting the values in the current iterate

without saving a state to memory, and (if possible) avoiding an explicit fault detection

mechanism. ABFT techniques include a wide variety of methodologies that are all capable

restoring the performance of an algorithm. The example given below provides a method

for restoring the convergence of asynchronous Jacobi without requiring computation of the

residual.

Example:
Consider again the centered finite-difference discretization of the two-dimensional

Laplacian over an n × n grid, where the matrix equation is solved by asynchronous

Jacobi. In this method, due to computational expense, the residual is not calculated.

Instead, this method comes from [21], [26] and functions on an individual component

level. For each individual component, xi, there is a constant, φi (0 < φi < 1), such

that,

|xk
i − xk−1

i | ≤ φi|xk−1
i − xk−2

i | ≤ φ2
i |xk−2

i − xk−3
i | ≤ · · · . (97)

Each difference can then be grouped together for convenience – i.e. let zki = |xk
i −xk−1

i |.

82

If the problem in question defined by the matrix A has a linear convergence rate, than

the component specific convergence ratio, ci =
zk−1
i

zki
, can be used in place of a traditional

fault detector since the value for ci should remain constant. In particular, one should

compute component wise convergence ratio values for every element and use them to

detect faults throughout the algorithm. In particular, given a valid estimate of ci, the

following bound can be used,

∣∣∣∣zk−1
i

zki
− ci

∣∣∣∣ ≤ ci · δ, (98)

where δ is a user-defined threshold parameter. This leads to an algorithm very similar

to the one defined by Section 3.2.1.2 where the fault detection is replaced by Eq. (98),

and instead of rolling back all the components of the current iterate, x(k), to a previous

good state. In this variant, the updates to individual components can be either accepted

or rejected on a case-by-case basis.

3.2.1.5 Discussion of Techniques

Generally, the methods for recovering from any fault in the case of a fine-grained (asyn-

chronous) iterative method are concerned with making the program in question robust to

any negative numerical or fault-induced effects. Given the computational model presented

here, it is important to note that typical convergence results will still hold naturally – assum-

ing that the recovery process is executed in a reliable manner – for the following methods:

migration, checkpointing, partial checkpointing. This is due to the asynchronous nature

which allows for certain elements to be updated significantly after others. If the components

associated with a failed block BF are not updated for some finite amount of time, the asyn-

chronous fine-grained iterative algorithm will still converge so long as the components are

eventually updated. This eventual update is guaranteed by each of the three methods listed.

Convergence for both the general ABFT method and the specific self-stabilizing methodol-

83

ogy tend to be both application and problem specific. Examples of such results are presented

in [26] (ABFT) and [169] (self-stabilizing) for fine-grained iterative methods.

3.3 SUMMARY

This chapter has presented a survey of basic results concerning asynchronous, fine-grained

iterative methods for solving fixed point problems, attempted to develop some general ana-

lytical statements about how fault tolerance methods can be used for this class of iterative

method, and provided examples of how these techniques can be applied to practical prob-

lems in High Performance Computing environments. The new theoretical results establish

conditions that ensure convergence can still be achieved despite the occurrence of faults.

All of the techniques for recovery that are presented in Section 3.2 provide examples based

upon the asynchronous Jacobi algorithm, which is a popular asynchronous algorithm and as

such provides a meaningful, practical connection between the theoretical results presented

in Section 3.1 and the real usage that a user could expect to get. The foundation provided

by the theoretical results here can serve as a basis for developing fault tolerant fixed point

algorithms which will be shown in detail in the use case presented in Chapter 5.

84

CHAPTER 4

NUMERICAL MODELING OF FAULTS

The focus of the studies and experiments presented in this chapter is to develop methods

for simulating the occurrence of a soft fault, and to to understand the soft error vulnerability

of iterative methods with a focus on asynchronous iterative methods. By modeling a soft fault

using a more numerical approach, it is possible to drive algorithm development for large scale

HPC platforms. When developing a fault tolerant algorithm for future HPC platforms, it is

important to ensure that the algorithm is capable of making progress through the worst case

behavior that can be induced by faults. Due to the fact that the exact manner that a fault

will manifest on future HPC platforms remains unknown, protecting an algorithm against

a more generic, numerical form of data corruption may potentially protect an algorithm

against ill-effects going forward. Moreover, large-scale sampling of typical fault injection

techniques such as inducing bit-flips tends to showcase average behavior rather than worst

case behavior [133]. By using numerical approaches, it is much easier to control the size of

the effect of a fault and therefore to study the progression of the algorithm when subject to

potentially catastrophic impacts due to faults.

One key area is the use of iterative methods for solving sparse linear systems of algebraic

equations. Iterative linear solvers constitute a very large use case of computational science

and find use throughout different areas in both science and engineering. Much of the previous

work on the impact of soft faults (including work on iterative linear methods) has to do with

modeling the impact of transient errors. Recent research efforts (see [54], [130], [131], [149],

[170]) have focused on modeling the impact of soft faults with a numerical approach that

quantifies the potential impact by generating an appropriately sized fault using a more

numerically-based scheme; similar to the efforts presented here.

85

In this chapter, an effort has been made to present data and subsequent analysis on

areas that have not been studied as fully. The first area to be studied is the impact of

transient soft faults on asynchronous iterative methods. The impact of transient soft faults

on traditional, synchronous iterative algorithms has been explored previously (e.g., [126],

[130], [131]); however, asynchronous algorithms present a viable means for the creation of

scalable algorithms for next generation HPC platforms that are not bottlenecked by the

increasing cost of synchronization [1], [2]. The second focus area presented here is on the

impact of recurring soft faults (e.g., sticky and persistent faults from Fig. 3) on traditional

Krylov subspace methods, where the effect of error magnitude and timing is evaluated for

the FGMRES convergence in the solving of an elliptical PDE problem on a regular grid.

The implementations make use of both hybrid parallelism, where the computational work is

distributed over multiple nodes using MPI and parallelized on each node using OpenMP R©,

as well as more traditional parallelizations where the distribution of work is done entirely

using MPI.

In all of the analysis presented here, the emphasis is on examining the impact that a soft

fault may have on an iterative algorithm, and presenting that data in such a way that it can be

usefully exploited in the development of fault tolerant algorithms for future HPC platforms.

The data shows that the numerical soft-fault models tested here more consistently than a

“bit-flip” model produce bad enough behavior to accurately judge the impact that a soft

fault may have. This allows for development of successful recovery strategies that will allow

for successful algorithm completion despite the occurrence of soft faults. Specifically, two

numerical fault simulation schemes are detailed and analyzed in depth alongside the direct

injection of bit-flips. Recovery techniques are discussed, and some numerical results related

to recovering from the impact of a soft fault are given, however the focus is on observing the

impact a soft fault may have. The current expectation is that soft faults will still continue

to overwhelmingly manifest as bit-flips, which provides a means of comparison between the

numerical models and the direct injection of a bit-flip that can be used as a starting point

86

for the use of the numerical soft fault models in the development of algorithmic variants.

Some results that are provided here have been previously published in [149], [171]–[174].

The structure of this chapter is organized as follows: in Section 4.1, an extended discus-

sion of the numerical modeling of soft faults is provided, along with a discussion of different

techniques for recovering from soft faults. Next, in Section 4.2, a series of numerical results

are provided (Section 4.2.1 focuses on asynchronous iterative methods and Section 4.2.2

focuses on Krylov subspace methods), while Section 4.3 concludes.

4.1 SIMULATING SOFT FAULTS

In a majority of studies conducted on the fault tolerance of iterative methods, the oc-

currence of an undetected soft fault is overwhelmingly treated as a bit flip (see [126]). Tra-

ditionally, bit flips are injected randomly according to a given distribution (e.g., a Poisson

or Weibull distribution) or in a more frequent manner designed to showcase worst case be-

havior. However, as the effect of a bit-flip (i.e., the amount of data corruption introduced)

can vary wildly depending on which bit is affected, this necessitates a large number of runs

to reveal statistically average behavior [133]. In this dissertation, a series of experiments

utilizing the direct injection of bit flips into memory is presented; additionally, more generic

fault injection techniques are included. Generally, the following outcomes are most likely to

occur when a fault occurs during the execution of an iterative solver [126], [134]:

• The solver will converge in the approximately the same number of iterations, with an

error in the final solution.

• The solver will converge in the approximately the same number of iterations, with no

error in the final solution.

• The solver will converge in more iterations than in a fault free run; with or without an

error in the final solution.

• The progress of the solver towards the solution will stagnate, and it will fail to converge.

87

Following the methodology outlined in [133], the numerical fault models used here are

inspired by the idea of modeling an undetected soft fault as data corruption. That is, instead

of trying to model the exact impact of a fault on future large scale HPC machines, faults

are treated as corrupted data where the size of the corruption can be controlled in an effort

to produce consistent worst case behavior and help with the development of fault tolerant

algorithms. To help illustrate the effect of each soft fault model that is discussed, a simple

visualization is presented for each model. In these examples, there is a single data structure,

a vector x that consists of 8 elements, and two processors that are each assigned 4 consecutive

elements of the vector x. This set-up is depicted in Fig. 10.

Fig. 10: Simple fault injection baseline example.

The goal of considering a variety of soft-fault models is to produce fault-tolerant algo-

rithms that are not too dependent on the precise mechanism of a fault injection, such as a

bit-flip, in future computing platforms. Note that, in this work, faults are injected only into

the data used by the algorithm as opposed to the metadata that includes pointers, indices,

and other data-structure descriptions, because the metadata, while necessary to be fault-free

also, is tied to a specific implementation of the given algorithm on a given architecture, which

is beyond the scope of this dissertation.

88

4.1.1 BIT-FLIP SOFT FAULT MODEL (BFSFM)

The first method of simulating a fault adopted in this dissertation is via the direct

injection of a bit-flip into a data structure. While it is important for future computing

platforms not to become too dependent on the precise mechanism that is used to model

the instantiation of a fault, since bit-flips are currently the most likely form of a soft fault

to affect HPC hardware, it is important to include analysis that responds to the effects of

having a bit-flip occur during the run.

The visualization of this fault injection is very simple. A domain assigned to a particular

processing element is designated to suffer a fault and an element is selected at random to

encounter a bit-flip in a randomly selected bit. This corruption is illustrated in Fig. 11. Note

that the element x2 differs from x̃2 by a single (randomly selected) bit.

Fig. 11: BFSFM injection example.

89

4.1.2 PERTURBATION-BASED SOFT FAULT MODEL (PBSFM)

This approach models faults as perturbations inside of a single subdomain, and has been

already used in several other recent studies (see [54], [149], [169], [170], [175]) along with

similar approaches. In the PBSFM, a small random perturbation τ that is sampled from a

uniform distribution of a given size is injected transiently into each component representing

a value of the targeted data structure. For example, if the targeted data structure is a vector

x and the maximum size of the perturbation-based fault is ε, then proceed as follows: (1)

generate a random number εi ∈ (−ε, ε), (2) set x̂i = xi + εi for all values of i. The resultant

vector x̂ is, thus, perturbed away from the original vector x.

A visualization of this process is provided in Fig. 12. In this simple example, all 4 of the

elements in the affected subdomain have been adjusted by unique random perturbations,

εi, i = 1, 2, 3, 4.

Fig. 12: PBSFM injection example.

4.1.3 SHUFFLE-BASED SOFT FAULT MODEL (SBSFM)

This approach models faults primarily as a shuffling of the elements inside of a subdomain.

This approach was originally detailed in [134] and simulates the occurrence of a soft fault by

90

a permutation of the components inside of the subdomain in which a fault was injected, a

scaling of the data inside of the subdomain in which a fault was injected, or a combination

of these two effects.

Since progression of the iterative methods studied here relies on the progression of the

L− 2 norm of the residual, the effect of the SBSFM can be divided into three scenarios:

1. α = 1: ‖x‖2 = ‖x̂‖2

2. 0 ≤ α < 1: ‖x‖2 > ‖x̂‖2

3. α > 1: ‖x‖2 < ‖x̂‖2 ,

where α is the scaling factor, x the original vector, and x̂ is the vector with an injected fault.

The analysis that was performed in [131], [134] details the impact of the SBSFM model in

the case where it is modeling transient soft faults with various scaling values for traditional

synchronous iterative methods; specifically Krylov subspace methods such as GMRES and

CG. The focus in this chapter is on the effect of the SBSFM for transient faults with respect

to asynchronous iterative methods, and for sticky faults for Krylov subspace methods. The

impact of this fault model relative to the impact of a single bit flip is studied in [134] and

shows that regardless of where the bit flip occurs, the SBSFM will perform in a similar way

to the worst case scenario induced by BFSFM. Analysis showing the impact of a bit flip

based on where in the storage of a floating point number it occurs is given in [132].

A visualization of the effects of the SBSFM is provided in Fig. 13.

4.1.4 ADAPTATIONS FOR NON-TRANSIENT FAULTS

As shown in Fig. 14, soft faults can be divided into three distinct categories: transient

faults, sticky faults, and persistent faults. Throughout this work, transient faults are modeled

with an instantaneous error, injected at the specified point of execution, and the remaining

two types of faults are modeled through the use of recurring injection of data corruption.

91

Fig. 13: SBSFM injection example.

Fig. 14: Breakdown of Types of Soft Faults.

Sticky faults are meant to represent all soft errors whose effect lingers for a long enough

period of time to force the fault to be treated as something other than instantaneous, but

where the source of the data corruption related to the fault eventually (naturally) stops

corrupting data. Note that this does not remediate the effect of the fault that was caused

while the fault was occurring, but simply means that the fault causing mechanism ceases

to continue to occur. Here, sticky faults were simulated through calling the routine that

implements the specified numerical soft fault model (for sticky faults, either the PBSFM or

92

the SBSFM) on consecutive iterations. In this manner, for a period of time – controlled by

the specified number of iterations – the iterative solver is being executed by hardware in a

temporarily faulty state.

Persistent faults are representative of hardware malfunctions or errors that induces un-

detectable data corruption into the data elements that they are processing. Note that if

the hardware malfunction were detectable by the HPC platform, it is likely that execution

would be terminated. The focus throughout this chapter is on soft faults which represent

those faults linked to undetected data corruption.

Persistent faults were simulated through calling the routine that implements the specified

numerical soft fault model (for persistent faults, the PBSFM) for every iteration from when

the fault is designated to begin until the solver execution terminates. For example, if the

persistent fault was scheduled to begin occurring on the 20th iteration then the numerical

soft fault model would be called upon to inject data corruption into the desired component

for every iteration from the 20th until the routine finished.

4.1.5 ANALYSIS OF FAULT INJECTION UTILITIES

4.1.5.1 Comparison of PBSFM, SBSFM, and BFSFM

To compare the potential effects of the various fault injection techniques used here—with

an emphasis on the total amount of data corruption induced—a short analysis is presented

for the problem studied in Section 4.2.1. The discretization of the Laplacian described in

Section 4.2.1.1 results in a matrix of size 160000× 160000 if the problem is converted to the

matrix form Ax = b. Letting the initial x be a vector of all zeros and the initial b be a vector

of all ones, the iterate of x examined here is the 50th iterate, denoted x(50).

For this iterate of x from the matrix representation of the problem, the first quarter of the

elements are isolated (i.e., to correspond to one of the four subdomains that is assigned to a

single MPI process as described in Section 4.2.1.1), and then the first tenth of these elements

93

are isolated (corresponding to the components assigned to the first OpenMP R©thread) and

the effect of fault-models is examined for this localized subdomain in terms of corruption

of the vector x. This reflects the mechanism with which faults are expected to appear,

i.e. as isolated incidents, and the experiments conducted here limit them to the most local

subdomain resident to them. The methods that are compared are as follows:

• PBSFM large: τi ∈ (10−16, 1016), medium: τi ∈ (10−8, 108), and small: τi ∈ (10−2, 102).

• SBSFM large: α = 1014, medium: α = 106, and small: α = 102.

• BFSFM: one vector component randomly selected, in which one bit is randomly se-

lected.

A total of 10,000 trials were run, and aggregate data is presented in Table 1. The total

amount c of data corruption is measured as c = ||x − x̂||, where x̂ represents the iterate

under study with the specified fault injected. Mean and median information is provided over

the 10,000 trials as well as the average and standard deviation of the logarithm of c, which

provides some insight into the average order of magnitude of corruption and how wide the

spread of potential outcomes is. Note that the range of impacts is wider for the BFSFM,

but the average impact is the worst for the numerical fault models.

Table 1: Comparison of different fault injection techniques.

Mean(c) Median (c) Mean(log(c)) Std(log(c))
PBSFM (L) 3.65E+17 3.65E+17 40.44 0.007
PBSFM (M) 3.65E+09 3.65E+09 22.02 0.007
PBSFM (S) 3.65E+03 3.65E+03 8.20 0.007
SBSFM (L) 5.77E+17 5.77E+17 40.90 7.30E-12
SBSFM (M) 5.77E+09 5.77E+09 22.48 7.41E-09
SBSFM (S) 5.74E+05 5.74E+05 13.26 7.51E-05
BF 1.13E+304 3.05E-05 -0.81 52.8

94

4.1.5.2 Comparison of PBSFM and SBSFM

Examining this for the test problem that is focused on in Section 4.2.2, the result of

the outer matvec operation in the FGMRES algorithm is a zero vector initially and as the

FGMRES algorithm progresses closer to the solution, this vector will begin to approach the

original right hand side of the equation, b. In the iteration associated with this problem, the

entries in the final iterates of the product Axi before convergence will have entries, bi, where

−0.01 ≤ bi ≤ 0.01 forms a loose bound on all entries of b = Axi. To show the potential

difference in magnitude between a given vector b and a vector b̂ representing the vector b

with a fault injected, 1000 random vectors were generated in MATLAB R©1 for vectors b of

varying sizes (to represent varying problem sizes) and the l2 norm of ‖b− b̂‖ was calculated
for each of the two fault models. These results are shown in Table 2.

Table 2: Difference in the effect of each of the fault models on random vectors with entries
in (-0.01, 0.01). Note: The scaling factor in the SBSFM was set to 1.0 and the fault size in
the PBSFM was set to 5 × 10−4. Columns 2 and 3 represent average differences over 1,000
runs.

Vector Size ‖b− b̂‖2 - SBSFM ‖b− b̂‖2 - PBSFM
10 0.0238 0.0009
100 0.0814 0.0029
1,000 0.2581 0.0091
10,000 0.8166 0.0289
100,000 2.5824 0.0913
1,000,000 8.1650 0.2887

The SBSFM allows slightly more exact statements to be made concerning the effect of the

injected fault on the l2-norm, as the l2-norm will be the exact same for all but the affected

subdomains since shuffling the elements of a vector does not change the l2-norm. However,

the size of the fault, measured as a difference from a fault free run, is dependent on both

the problem size and the size of the entries in the data structure in the case of the SBSFM.

1MathWorks, Inc., Natick, MA

95

For example, if the size of the entries in b is allowed to increase to the range (−1, 1), the
size of the fault for a subdomain with 1,000 entries for the SBSFM (c.f., Row 3, Column

2 of Table 2) increases from an average of 0.2581 to 538.1. On the other hand, statements

concerning the l2-norm are inherently less exact when the PBSFM is used, as the l2-norm

of the faulty subdomain is not precisely controlled, but the difference from a fault free run,

i.e. the “size” of the fault, is easier to control by way of simply adjusting the bounds on the

perturbation that is used.

In looking to see which of the two fault models induces a “larger” fault, in general it will

be the case that the SBSFM will create a larger difference between a given data structure

with a fault injected and the same data structure in a fault free environment.

4.1.5.3 Comparison of BFSFM and PBSFM

Next, a further comparison between the bit-flip model and the PBSFM is presented. As

stated above, each fault model works on an input vector, x, and corrupts in some way the

specified component(s). In order to illustrate the potential impact of each fault model, x is

taken to be the initial set of non-zero components for the 2D finite difference discretization

of the Laplacian. The matrix was symmetrically scaled to have unit diagonal, so that the

entries in the vector x are bounded inside of [−1, 1].
Due to the non-deterministic nature of both of these fault models, the comparison between

them was made over 1000 trials. In each trial, a fault is injected according to one of the

methodologies in order to create a vector with a fault x̂, and the norm of the difference in

these two quantities,

d = ||x− x̂|| (99)

was computed. In this comparison, the magnitude of x̂ is bounded for the perturbation-

based fault model, but it is possible for the bit-flip fault model to produce a result of either

NaN or INF for certain combinations of component and bit selected. For the purposes of this

96

Table 3: Comparison of the effects between the various fault models used for the matrix
LAPLACE2D.

Bit-flip
Model

Bit-flip
Model
(bounded)

PBSFM (s) PBSFM
(m)

PBSFM (l)

mean(d) — 8.2388e-02 6.4500e+00 6.4499e+02 6.4499e+04
max(d) 4.4942e+307 1.0000e+00 6.4593e+00 6.4575e+02 6.4584e+04

mean(log(d)) -3.2281e+00 -7.0040e+00 8.0956e-01 2.8096e+00 4.8096e+04
std(log(d)) 3.4646e+01 5.0639e+00 1.7075e-04 1.7287e-04 1.7194e-04

quick look analysis, these results were discarded since scanning for either of these incorrect

values is not a difficult problem. Summary results are provided in Table 9.

In Table 3, the ‘Bit-flip Model’ column corresponds to randomly selecting a single com-

ponent of the vector x, randomly selecting a bit to flip, and injecting a single bit-flip. The

column ‘Bit-flip Model (bounded)’ corresponds to the same bit-flip model, but where bit-

flips that caused large magnitude changes due to bit-flips in exponent bits were removed. In

particular, any instance where d > 10000 was removed from the data. The three columns

corresponding to the perturbation-based soft fault model (PBSFM) are separated by the

bounds on the range that the perturbations were sampled from. The (s) column corresponds

to faults in ri ∈ (−0.01, 0.01), the (m) column to faults in ri ∈ (−1, 1), and the (l) column

relates to faults in ri ∈ (−100, 100). The vector d corresponds to the size of the fault intro-

duced by the given fault model. In the table, the mean of the 1000 entries of d is provided,

along with the maximum value, and the mean and standard deviation of the log of the entries

in d.

The data presented in Table 3 shows the potential impact of a fault introduced by each

of the fault models. Note that the ‘Bit-flip Model’ contained 12 cases (1.2%) that exceeded

the threshold of ||x− x̂|| > 10000, indicating that while a severely large impact is possible, it

is not probable. The statistics on the log values of the entries in d gives some indication as

to the relative order of magnitude of the various fault models, and the spread of the level of

impact. Generally, the size of the faults induced by the bit-flip model are much more varied

97

than those created by the perturbation-based soft fault model.

4.1.6 TECHNIQUES FOR RECOVERY FROM SOFT FAULTS

Formulating efficient techniques that allow an algorithm to recover from soft faults is

an important area of research as HPC platforms progress towards exascale. The prevailing

wisdom is that globally checkpointing all processors will not be feasible computationally

for large-scale problems due to the immense costs of reading/writing data and globally

communicating [4], [5].

While this is true for any iterative method, for the fine-grained asynchronous iterative

algorithms the use of global (or even large-subgroup) communication is prohibitive because

synchronization used in such communications goes against the very nature of these algo-

rithms, which rely on a great number of light-weight thread or process computations. In the

investigation into the impact of the numerical soft fault models on asynchronous iterative

methods, a partial checkpointing method is used that avoids many of the communication

related pitfalls inherent in the simple global checkpointing algorithm. This method is sim-

ilar to the partial checkpointing method used for the fine-grained parallel incomplete LU

factorization in [169], [170], [176].

In order to devise a mechanism that can be used to indicate the presence of a fault, the

algorithm under study needs to be examined to find suitable metrics that can be used to

monitor the progression of the algorithm itself. Ideally, obtaining these values will present

a very minimal computational effort. Progress of the Jacobi algorithm – either in the syn-

chronous or asynchronous case – is often judged by the progression of the norm of the residual

vector,

‖r‖ = ‖b− Ax(k)‖. (100)

However, checkpointing based on the progression of the residual after it is recovered from

all components of x(k) necessitates communication among all the OpenMP R©threads as well

as all the MPI processes. Additionally, the regular computation of the residual can present

98

a relatively significant computational burden; i.e., the amount of effort required to compute

the residual is not trivial compared with the amount of effort required to compute an update

to the individual components, xi.

The partial checkpointing method studied here checkpoints only based on the norm of the

local portion of the residual vector, denoted rl for the lth component. As the asynchronous

computation progresses, each thread writes periodically the current value of the components

xl that reside in the block for which it is responsible to compute updates to a checkpoint.

The periodicity is treated as a parameter, denoted m in Eq. (101), which is studied in

Section 4.2.1.

After the thread updates its components in the kth iteration, x
(k)
l , it checks the current

local residual to see if a fault has occurred:

‖r(k)l ‖ > γ · ‖r(k+m)
l ‖, (101)

where γ is the checkpoint threshold explored in Section 4.2.1, and r
(k)
l and r

(k+1)
l are local

residuals for the iteration k and k + 1, respectively.

4.2 NUMERICAL RESULTS

4.2.1 ASYNCHRONOUS ITERATIVE METHODS

4.2.1.1 Parallel Implementation

The asynchronous Jacobi implementation used in this portion of the dissertation makes

use of hybrid MPI-OpenMP R©parallelism. This implementation focuses on solving a two

dimensional finite-difference discretization of the Laplacian on a 400×400 grid; including the

boundary values the total problem size is 402× 402. The problem is solved by a matrix-free

implementation of the Jacobi algorithm whereby the approximate solution to the Laplacian

99

is stored in place at the appropriate grid values. Matrix-free implementations provide an

efficient means to solve PDEs on regular structured grids.

The work is divided among five MPI processes, but only four perform computations.

One MPI process acts as a master process, which communicates with workers for memory

transfer and global residual calculations. Each of the four worker processes is assigned an

equal amount of the entire domain, which leads to each subdomain consisting of 200 × 200

grid points. Note that the working size of each subdomain grid will be 202 × 202 due to

keeping track of the necessary halo values (i.e. a mixture of values from the boundary

and neighboring subdomains). The work is parallelized inside of each subdomain using

OpenMP R©.

For an n by n grid that is equally divided among the np threads, each thread solves for

n2/np grid points, such that the grid is evenly partitioned along the y-axis. Ten OpenMP R©threads

were used for each MPI process, which gives each thread 200×20 = 4000 vector components

to compute updates for.

Internally, two matrices U0 and U1 store the grid point values that each thread reads,

e.g. from U1, to compute newer values to write, e.g. to U0. As the method is asynchronous,

each thread independently determines which matrix stores its newer u(t+1)(i, j) values and

older u(t)(i, j) values. When a thread copies grid-point values located above or below its

domain, OpenMP R©locks are employed to ensure that data is captured accurately, from a

single iteration.

Further, locks are used when updating values on boundary rows and subdomain halos, and

when copying subdomain boundaries. Each thread pn computes its local residual value every

kth iteration, which it contributes to the set of residual values for the subdomain. Using an

OpenMP R©atomic operation, a single thread copies the set of subdomain residuals, computes

a sum, and sends the sum to the master MPI process. The subdomain is equally divided

among all OpenMP R©threads, but in order to avoid a negative effect on the performance of a

single OpenMP R©thread, communication with the master MPI process is rotated among the

100

threads.

4.2.1.2 Experiment Set-up

Experiments were conducted on the Turing High Performance Computing cluster at Old

Dominion University, which contains 190 standard compute nodes, 10 GPU nodes, 10 Intel

Xeon Phi R©Knight’s Corner nodes, and 4 high memory nodes, connected with a Fourteen

Data Rate (FDR) InfiniBand R©2 network. Compute nodes contain 16–32 cores and 128 GB

of RAM. Data were collected on sockets consisting of 10 Intel Xeon R©E5-2670 v2 2.50 Ghz

cores.

4.2.1.3 Baseline Case

Before delving into the results regarding the impact and recovery of soft faults on the

hybrid parallel iterative solver used here, a set of baseline runs is presented. The problem

described in Section 4.2.1.1 is solved 500 times, and a histogram showing the distribution of

total run times, and mean and standard deviation, is presented in Fig. 15. Some variation in

run time is observed, but this is not unexpected for an asynchronous solver. A wide variation

in iterations until convergence is seen in [108], and [177] shows increased run time variation

for asynchronous solvers. Here, the run time for +3 standard deviations is 1.31 times the

minimum run time. Almost 98% of runs are less than +3 standard deviations.

4.2.1.4 Impact of Soft Faults

The following model parameter values were used

• For PBSFM, the pertubation τ values were taken from a set of intervals (10−2j, 102j)

for j = 1, . . . , 8.

• For SBSFM, the α values were 102, 106, 1010, and 1016.

2InfiniBand Trade Association, Beaverton, OR

101

mean
3.19

2.75
3.41

2.52
3.63

mean = 2.97
std = 0.222

2.5 3 3.5 4
Time (s)

0

50

100

150

200

250

300

350

C
ou

nt

Fig. 15: Distribution of run times in a fault-free environment.

Based on the mean runtime of 2.97s shown in Fig. 15, three different fault injection times

were used as follows: early, equal to 0.1s, middle, equal to 1.2s, and late equal to 2.5s.

Figures 16 to 19 show the effects from faults injected by each model at early, middle,

and late time points. In addition, the effects of bit flips restricted to sign or exponent

are distinguished from those restricted to mantissa in separate plots, Fig. 16 and Fig. 17,

respectively. Each experiment was replicated seven times on Turing. The plots show the

results from the fastest, slowest, and average of these seven runs. In all experiments, the

solver converged to a correct solution, within a tolerance of 1e−4.

Figure 16 shows that flipping an exponent bit early in the run, when grid point values

may still be small, might not be as harmful as a later bit flip. Across all the faults models,

faults injected early tend to have more of an effect on the total time for the solve to complete.

Note also that, while bit-flip faults in the exponent and sign bits can have a catastrophic

effect, bit-flips occurring in the mantissa have very little impact on the performance of

the solver (cf. Fig. 15). PBSFM and SBSFM force more consistently bad behavior. This

102

54 56 58 60 62 64
Bit Position Flipped

0

100

200

300

400

Ti
m

e
(s

)

Fastest Mean Slowest
Run

(a) Early

54 56 58 60 62 64
Bit Position Flipped

0

50

100

150

200

250

300

Ti
m

e
(s

)

Fastest Mean Slowest
Run

(b) Middle

54 56 58 60 62 64
Bit Position Flipped

0

50

100

150

200

250

300

Ti
m

e
(s

)

Fastest Mean Slowest
Run

(c) Late

Fig. 16: Effect of bit-flip faults in the exponent and sign bits.

reinforces experimental outcome (see Table 1 in Section 4.1): a numerical soft-fault model

can more effectively force an algorithm to run through bad behavior, while a stochastic bit-

flip injection may force an extreme behavior, but may have little effect. Numerical soft fault

models afford users a higher level of control.

4.2.1.5 Recovery from Soft Faults

Consider the partial checkpointing scheme detailed in Section 4.1.6. The fault is injected

near the middle time, at 1.4s, in each run. The values of γ in Eq. (101) are 1.01, 1.05 and

103

10 20 30 40 50
Bit Position Flipped

2.5

3

3.5

4

4.5

5
Ti

m
e

(s
)

Fastest Mean Slowest

(a) Early

10 20 30 40 50
Bit Position Flipped

2

3

4

5

6

7

Ti
m

e
(s

)

Fastest Mean Slowest

(b) Middle

10 20 30 40 50
Bit Position Flipped

2

3

4

5

6

7

Ti
m

e
(s

)

Fastest Mean Slowest

(c) Late

Fig. 17: Effect of bit-flip faults in the mantissa bits.

1.25 to test for very, moderate, and least sensitive fault detection, respectively.

At the end of an iteration, a thread compares the current component residual value to

a previous value. If a fault is detected as an increase of the residual by more than the

specified γ, the thread(s) that detected the increase roll(s) all of the components present in

their subdomain back to the last checkpoint and continue(s) calculating updates as before.

A thread checkpoints after completing four iterations that do not require a rollback.

Figure 20, compared with Fig. 16, shows that the checkpointing and rollback technique

employed for this work effectively managed the exponent bit-flip fault injections. Comparing

104

100 105 1010 1015

Scalar Size

2

4

6

8

10

12

14

16
Ti

m
e

(s
)

Fastest Mean Slowest

(a) Early

100 105 1010 1015

Scalar Size

4

6

8

10

12

14

16

Ti
m

e
(s

)

Fastest Mean Slowest

(b) Middle

100 105 1010 1015

Scalar Size

4

6

8

10

12

14

16

18

Ti
m

e
(s

)

Fastest Mean Slowest

(c) Late

Fig. 18: Effect of faults injected using the SBSFM.

Fig. 21 with Fig. 17 yields little difference—as expected—while attesting to only a moderate

overhead of checkpointing. In particular, the largest mean value in Fig. 17(b) was ∼3.5s
while the largest mean value in Fig. 21(c), i.e., for the least sensitive fault detection, at

γ = 1.25, was ∼3.8s
If corrupted values are on the edge of a thread compute region, they may spread to

the compute region of a neighboring thread and compromise resiliency. This behavior is

more readily observed when using numerical soft fault models, such as PBSFM and SBSFM,

since they impact all of the components assigned to the thread, including boundary values.

105

100 105 1010 1015

Perturbation Size

2

4

6

8

10

12

14
Ti

m
e

(s
)

Fastest Mean Slowest

(a) Early

100 105 1010 1015

Perturbation Size

0

5

10

15

20

Ti
m

e
(s

)

Fastest Mean Slowest

(b) Middle

100 105 1010 1015

Perturbation Size

2

4

6

8

10

12

14

16

Ti
m

e
(s

)

Fastest Mean Slowest

(c) Late

Fig. 19: Effect of faults injected using the PBSFM.

Hence, a trade-off between the sensitivity of the fault-detection and checkpointing overhead

is desirable. For example, compare plots for γ = 1.05 in Figs. 22 and 23 with the ones for

smaller and larger γ values for SBSFM and PBSFM respectively.

Note also that the recovery with SBSFM in Fig. 22 exhibits consistently increasing dif-

ference between the slowest and fastest runs with the increase in pertubation size. Fault

recovery mechanisms in some cases are able to correct PBSFM and SBSFM faults, depend-

ing on the circumstances of the run, i.e. if the fault thread is able to detect the fault and

roll back before adjacent threads copy bad values to their compute regions. Successful and

106

failing recovery outcomes are shown in Fig. 22, where the fastest runs indicate successful

recovery and the slowest runs correspond to recovery failure. The implementation tested in

this work corrected SBSFM faults at a higher rate than it did so for the PBSFM faults.

54 56 58 60 62 64
Bit Position Flipped

8

8.5

9

9.5

Ti
m

e
(s

)

Fastest Mean Slowest
Run

(a) γ = 1.01

54 56 58 60 62 64
Bit Position Flipped

4.5

5

5.5

Ti
m

e
(s

)

Fastest Mean Slowest
Run

(b) γ = 1.05

54 56 58 60 62 64
Bit Position Flipped

3.5

4

4.5

Ti
m

e
(s

)

Fastest Mean Slowest
Run

(c) γ = 1.25

Fig. 20: Effect of recovery with bit-flip faults in the exponent and sign bits.

107

10 20 30 40 50
Bit Position Flipped

8

8.5

9

9.5

10
Ti

m
e

(s
)

Fastest Mean Slowest

(a) γ = 1.01

10 20 30 40 50
Bit Position Flipped

4

4.5

5

5.5

6

Ti
m

e
(s

)

Fastest Mean Slowest

(b) γ = 1.05

10 20 30 40 50
Bit Position Flipped

3.5

4

4.5

Ti
m

e
(s

)

Fastest Mean Slowest

(c) γ = 1.25

Fig. 21: Effect of recovery with bit-flip faults in the mantissa bits.

4.2.2 KRYLOV SUBSPACE METHODS

108

100 105 1010 1015

Scalar Size

5

10

15

20

25

30

35

40
Ti

m
e

(s
)

Fastest Mean Slowest

(a) γ = 1.01

100 105 1010 1015

Scalar Size

5

10

15

20

Ti
m

e
(s

)

Fastest Mean Slowest

(b) γ = 1.05

100 105 1010 1015

Scalar Size

2

4

6

8

10

12

14

16

Ti
m

e
(s

)

Fastest Mean Slowest

(c) γ = 1.25

Fig. 22: Effect of fault recovery with the SBSFM.

4.2.2.1 Experiment Set-up

The test problem for both the series of experiments on sticky faults and the series of

experiments concerning persistent faults comes from the pARMS library [50], and represents

the discretization of the following elliptic 2D partial differential equation,

−Δu+ 100
∂

∂x
(exyu) + 100

∂

∂y
(e−xyu)− 10u = f (102)

109

100 105 1010 1015

Perturbation Size

5

10

15

20

25

30

35
Ti

m
e

(s
)

Fastest Mean Slowest

(a) γ = 1.01

100 105 1010 1015

Perturbation Size

0

5

10

15

20

Ti
m

e
(s

)

Fastest Mean Slowest

(b) γ = 1.05

100 105 1010 1015

Perturbation Size

2

4

6

8

10

12

14

16

Ti
m

e
(s

)

Fastest Mean Slowest

(c) γ = 1.25

Fig. 23: Effect of fault recovery with the PBSFM.

on a square region with Dirichlet boundary conditions, using a five-point centered finite-

difference scheme on an nx × ny grid, excluding boundary points. The mesh is mapped to

a virtual px × py grid of processors, such that a subrectangle of rx = nx/px points in the x

direction and ry = ny/py points in the y direction is mapped to a processor.

The size of the problem was varied and controlled by changing the size of the mesh

that was used in the creation of the domain. In the first series of experiments, related to

sticky faults, the mesh sizes that were considered corresponded to a “small” problem with

nx = ny = 200 and a “large” problem variant with nx = ny = 400. Both of these two

110

problem sizes were run on a px = py = 20 grid of 400 processors in total. This leads to

problem sizes of 16, 000, 000 and 64, 000, 000, respectively (n = px × py × nx × ny). For the

results on sticky faults, only the SBSFM and PBSFM were considered since the emphasis

was on creating a comparison between the generalized numerical methods for simulating the

occurrence of a fault.

For the experiments related to the effect of persistent faults, the two problem sizes that

were used correspond to nx = ny = 200 and a “large” problem variant with nx = ny = 500.

Only the PBSFM was considered for these experiments since the algorithm was not able

to converge for a meaningful number of parameter combinations for the other fault models.

Examining the convergence of FGMRES with respect to the effects of the PBSFM gives

some indication of how much data corruption the FGMRES algorithm is able to tolerate

before diverging. Combining these observations with the comparison between the PBSFM,

SBSFM, and BSFM provided in Section 4.1.5) can provide insight into the performance that

would be achieved with the other numerical soft fault models.

Two set of fault injection locations were used. Both were selected due to the high

computational cost associated with them, making the algorithm more likely to spend more

time executing them and therefore more likely to be executing those instructions if a fault

were to occur. The first location is the “outer matvec” operation in the FGMRES algorithm

in Line 1 of Algorithm 10), and the second is the application of the preconditioner shown in

Line 4 of Algorithm 3) in the FGMRES algorithm.

One point of focus is on comparing the resiliency of the two preconditioners introduced

earlier, ILUT and ARMS, to evaluate their respective performance when faults are intro-

duced. In all of the experiments that were conducted, multiple sets of runs were executed

for each set of parameters (i.e. perturbation size, iteration number at which the fault was

first injected) and their effect on the convergence of FGMRES was averaged across all other

runs with the same parameters for analysis.

111

Algorithm 10: Flexible GMRES algorithm

Input: A linear system Ax = b and an initial guess at the solution, x0

Output: An approximate solution xm for some m ≥ 0
1 r0 := b− Ax0,
2 β := ||r0||2, v1 := r0/β
3 for j = 1, 2, . . . ,m do
4 zj = M−1

j vj
5 w = Azj
6 for i = 1, 2, . . . , j do
7 hi,j := w · vi
8 w := w − hi,jvi
9 hj+1,j := ||w||2

10 vj+1 := w/hj+1,j

11 Zm := [z1, . . . , zm]
12 H̄m := hi,j1≤i≤j+1;1≤j≤m

13 ym := argminy||H̄my − βe1||2
14 xm := x0 + Zmym
15 if Convergence was reached then
16 return xm

17 else
18 go to line 1

4.2.2.2 Sticky Faults

The experiments that attempt to model the impact of sticky faults have been carried

out on the computing platform Edison which was located at the National Energy Research

Scientific Computing Center (NERSC). It was a Cray XC30 with 134, 064 cores and 357 TB

memory across a total of 5586 nodes. Each node had two sockets, with a 12-core Intel R©“Ivy

Bridge” processor at 2.4 GHz per socket. Edison is scheduled to be decommissioned in March

of 2019. All the experiments in this subsection were conducted on a subset of 400 cores.

For the experiments related to persistent faults, the mesh sizes that were considered

ranged from nx = ny = 100 to nx = ny = 500, and these mesh sizes were run on numbers

of processors that varied from 4 (px = py = 2) to 100 (px = py = 10). For the experiments

related to persistent faults, only the PBSFM was used. Use of the SBSFM in a recurring

manner would have precluded convergence of the FGMRES algorithm and not provided a

112

meaningful point of comparison. The tests performed for both the large and small problem

include a fault-free run, a series of runs using the SBSFM model and a series of runs using

the PBSFM model. For the SBSFM, the variable that will have the largest impact upon

the fault injected is the scaling factor α while for the PBSFM the largest contributor to the

impact of the fault is the size of the perturbation ε. For these experiments, three values of

both α and ε were used:

• α = 1/2, 1, 2, and

• ε = 1e−3, 5e−4, 1e−4.

All three variants of the PBSFM were utilized. To compare with the runs of the SBSFM

runs using α = 1/2, α = 1, and α = 2, were compared to the three variants of PBSFM that

decreases the norm, that leaves the norm approximately the same (referred to as “neutral” in

the remainder), and that increases the norm, respectively (see Section 4.2.1.4). Sticky faults

were conservatively defined to be present during the first 1000 iterations of the iterative

solver execution. While the number of iterations required for convergence in a fault-free

environment is a factor of many variables (problem size, preconditioner, error tolerance,

inner iterations of FGMRES, etc), for the fault-free test, the small problem converged in

roughly 1500 iterations, and the large problem in approximately 3500 iterations.

The plots are only presented for the neutral norm variants of the fault models in Figs. 24

and 25. To be specific, this involves the variants of the PBSFM where the norm remains

approximately the same, and the version of the SBSFM where the scaling factor α is set to

1. Each figure shows five different fault methods: a nominal (fault-free) run, a PBSFM run

with a “small” fault (1e−4), a PBSFM run with a “medium” fault (5e−4), a PBSFM with

a “large” fault (1e−3), and a SBSFM run with α = 1. Complete results, including PBSFM

variants that decrease or increase the norm, are provided in Table 4 for all the experiments.

The first plots that are shown in Fig. 24a depict the effects of the various soft faults

injected into the outer matrix vector operation of the FGMRES algorithm when solving the

113

small problem. In this figure, it is apparent that for the neutral variants, for both the ARMS

and ILUT preconditioners (see the background information in Section 2.3), the SBSFM has

a more negative effect on the convergence of the FGMRES algorithm than the PBSFM does.

For instance, compared to the fault-free runs, the SBSFM runs needed more than 1000

additional iterations to converge for both preconditioners while the additional number of

iterations is at most around 150 for the different PBSFM variants. Fig. 24b shows the results

when the faults are injected into the vector resulting from the preconditioner application.

(a) Outer matvec (b) Application of preconditioner

Fig. 24: Soft fault comparison on total number of iterations for the small problem for faults
injected at the indicated operation using ARMS and ILUT preconditioners. Fault methods
are displayed along the x-axis and total iterations required for convergence are represented
by the y-axis.

Figure 25a displays the number of iterations to convergence when injecting faults into the

outer matrix vector operation for the large problem. As in Fig. 24a, the results in Fig. 25a

show a steady increase in the delay in the convergence of FGMRES from the nominal case

to the PBSFM cases (ordered by the increasingly sized faults), then to the faults simulated

by the SBSFM case.

The plots in Fig. 25b depict the injection of faults into the result of the preconditioning

operation for the large problem. Note the one instance where the “large” fault size associated

114

Table 4: Full results for the small (SP) and large (LP) problems with the neutral, decrease,
and increase norm variants in rows represented by signs =, −, and +, respectively. The †
symbol indicates that the corresponding solver does not converge. We recall that in SBSFM,
the cases =, −, and + correspond to α = 1, 1/2, and 2, respectively.

|| ||2 Nominal PBSFM-S PBSFM-M PBSFM-L SBSFM
SP LP SP LP SP LP SP LP SP LP

IL
U
T m
a
tv
ec = 1542 3496 1380 3300 1477 3797 1624 3969 2590 4768

– 1542 3496 2236 3807 2318 4170 2352 4380 2565 4660
+ 1542 3496 2241 3603 2326 4140 2358 4386 2637 4788

p
re
co
n
d = 1542 3496 1487 3523 2243 6703 3811 11156 2355 4022

– 1542 3496 1499 3280 2155 5163 2782 7639 2324 4093
+ 1542 3496 1499 3518 2168 5162 2780 7735 † †

A
R
M
S

m
a
tv
ec = 1359 3357 1538 3790 1585 4594 1764 4727 2698 5456

– 1359 3357 2323 4199 2426 4810 2459 7639 2697 5375
+ 1359 3357 2339 3825 2423 4655 2459 5059 2646 5426

p
re
co
n
d = 1359 3357 1700 4349 2336 8221 4125 13607 2518 4550

– 1359 3357 1706 4010 2201 6063 2925 9492 2570 4493
+ 1359 3357 1657 3989 2205 6061 2927 9005 † †

(a) Outer matvec (b) Application of preconditioner

Fig. 25: Soft fault comparison on total number of iterations for the large problem for faults
injected at the indicated operation. Fault methods are displayed along the x-axis and total
iterations required for convergence are represented by the y-axis.

with the PBSFM (1e−3) causes a larger delay in the convergence of the FGMRES solver than

the corresponding run of the SBSFM does. For this specific case, the same observation holds

for all the three norm variants (cf. Table 4).

115

For a fault-free case, the FGMRES algorithm converged in fewer iterations when using the

ARMS preconditioner compared to the use of the ILUT preconditioner. This remained true

when faults were injected into the application of the preconditioner; however, the injection

of faults into the outer matrix vector operation caused FGMRES to converge in roughly the

same number of iterations whether it was preconditioned with ILUT or with ARMS. This

suggests that for faults occurring at the outer matrix vector operation, the advantage of the

ARMS preconditioner is not as present as it is elsewhere. Note that, for both ILUT and

ARMS preconditioners, faults injected into the outer matrix vector operation had a larger

impact than did identical faults injected into the resulting vector from the preconditioner

application. Similar results were obtained in [149]. In addition, the impact of the faults

injected using each of the two soft fault models with effects on the norm seems to be more

pronounced in the PBSFM case; although, this is clearly adjustable through the use of the

parameters available to both soft fault models. For instance, using larger values for α in the

SBSFM may provide a better comparison.

When comparing the two fault models presented here directly, it is evident that the

SBSFM has a larger negative impact on the convergence of the iterative FGMRES than the

PBSFM in most scenarios. In every instance tested except for preconditioner faults on the

larger problem size, the comparable version of the SBSFM delayed convergence longer than

the PBSFM did. This is in part due to the fact that the SBSFM moves the vector where a

fault is injected much further from its original location than the PBSFM does (see Table 2).

In summary, for recurring faults specifically, the PBSFM offers a greater level of fine-tuned

control over the fault impacts. However, the size of the fault in the PBSFM does not seem

to have as large of an impact on the convergence of FGMRES in the runs that attempted to

manipulate the norm.

116

4.2.2.3 Persistent Faults

The experiments related to the impact of persistent faults were executed on two differ-

ent hardware platforms. The first test environment was a workstation with an Intel Core

i7 R©processor having four physical cores at 2.50 GHz each and 16 GB of main memory. The

second was the Hopper supercomputer, which was a compute resource of the National Energy

Research Scientific Center (NERSC) that was decommissioned in December 2015. Hopper

had a total of 153,216 compute cores, 212 Terabytes of memory and nodes are connected

with a custom high-bandwidth, low-latency network provided by Cray. Up to five compute

nodes of Hopper were utilized. The problem size was scaled appropriately for each environ-

ment, by adjusting the size of the square mesh per subdomain; namely, 200 and 500 points

for the Intel Core i7 R©and Hopper, respectively. The parameters that were varied in these

experiments are detailed in Table 5.

Table 5: Input parameters the value of which varied in the experiments.

Parameter Acceptable Values
Global Preconditioner Block Jacobi
Local Preconditioner ILUT, ARMS
Tolerance Required for Convergence 10−6

Starting Iteration at which Fault Appears ≥ 5
Order of Perturbation 10−6, . . . , 10−4

Effect on l2-norm Any, Decrease, Increase

Since the fault model presented here is based on a series of random perturbations, multiple

runs/solves were conducted for each set of parameters, and the results were averaged and

depicted in the plots of this section. In all of the experiments, a maximum number of

iterations was instituted and, if a run did not converge within this preset number of iterations,

then it was terminated, and determined to have failed.

The results shown in all the figures of Section 4.2.2.3 come from runs on the Intel Core

117

i7 R©platform using four MPI ranks, one per core. The results from the runs with larger prob-

lem sizes performed on Hopper showed similar convergence tendencies under perturbation-

based faults considered here. Note that, in all the plots, the x-axis represents the fraction

(as %) of the execution when a fault begins and the y-axis shows the increase (or decrease)

in the number of iterations with respect to non-perturbed case. For example, a data point

with x coordinate of 50% shows an effect from the fault injected halfway through the number

of iterations that would be required by a fault-free run. This effect is quantified by the y

coordinate of the point, such that, if y = +100%, e.g., then the run corresponding to this

data point required twice as many iterations to converge than that did in a fault free case.

The following results are provided the instance where the sign of the perturbation (and

hence, the magnitude of the l2-norm) was not controlled by the fault model.

(a) ARMS (b) ILUT

Fig. 26: Outer matvec perturbation faults with varied l2-norm. On y- and x-axis, % of
extra iterations and of fault-commencing iteration, respectively, compared to the number of
iterations in the fault-free run.

Figure 26 shows the effects of faults with various perturbation sizes in outer matvec when

the ARMS (Fig. 26a) or ILUT (Fig. 26b) local preconditioner is used. Only perturbation

sizes no larger than 5× 10−5 are shown since for larger values the solver failed to converge.

118

Comparing the results in Fig. 26a and Fig. 26b, a similar convergence behavior may be

observed. However, the faults corresponding to smaller perturbations (10−6, . . . , 5 × 10−5)

have a slightly greater negative effect on the runs with the ILUT preconditioner than on

those with ARMS.

When examining effects of very small perturbations (on the order of convergence toler-

ance, which is 10−6 here), it was found that they had either no effect at all on the convergence

rate or slightly decreased the total number of iterations. This beneficial effect was noted re-

gardless of when the fault started during the run, and it appears more often with the ARMS

preconditioner than with ILUT.

Next, results for the case where the sign of the perturbation was matched with the sign of

the existing vector component in order to ensure that the l2-norm of the perturbed operation

result decreased (Fig. 27). In order to match the sign appropriately, the fault model checks

the sign of the original vector component before applying the fault.

(a) ARMS (b) ILUT

Fig. 27: Outer matvec perturbation faults with decreasing l2-norm. On y- and x-axis, % of
extra iterations and of fault-commencing iteration, respectively, compared to the number of
iterations in the fault-free run.

It is interesting to observe in Fig. 27 the increased rate of successful convergence for a

119

much larger range of fault magnitudes. A larger spectrum of perturbation sizes resulted

in successful convergence and, hence, is represented in Fig. 27. Comparing the effects of

injecting faults that vary the l2-norm (Fig. 26) to those that shrink the l2-norm (Fig. 27),

there is also a decrease in the negative effect that a fault of the same magnitude has upon

the FGMRES algorithm.

In general, the performance of the two preconditioners is fairly similar in the case when

faults are incurred in the outer matvec operation. For instance, as expected, there is a

tendency for the fault to have more of an impact on the convergence if the fault commences

later in the execution; smaller perturbations show little effect while larger perturbations

produce a much higher variations of convergence results. Perturbed executions resulting in

fewer iterations than non-perturbed ones appear to arise with about equal frequency between

scenarios using either the ARMS or the ILUT preconditioner. These results are seen for all

the fault sizes—although much more commonly for faults of size ≤ 10−4—and are observed

most when faults occur before the run reaches approximately 60% of completion of a fault-

free run.

Here, the results of applying the perturbation-based soft fault model to the result of

the preconditioner application in the FGMRES algorithm. Results (Fig. 28) are presented

for each of the two preconditioners, ARMS and ILUT, and exclusively for the version of

the perturbation-based soft fault model that decreases the l2-norm of the vector that it is

applied to.

Comparing the results with the ILUT preconditioner to those with ARMS, it again

appears that the runs with the latter suffer less of a negative effect than those with the

former for the faults of an equivalent size. Next, when examining results with the ARMS

preconditioner (in Fig. 28a), it is clear that injecting a perturbation-based fault into the

result of the application of the preconditioner (from Line 4 in Algorithm 3) has less of an

effect on a FGMRES solve using the ARMS preconditioner than that from injecting a similar

fault into the result of the outer matvec iteration (Fig. 27a).

120

(a) ARMS (b) ILUT

Fig. 28: Preconditioner perturbation faults with decreasing l2-norm. On y- and x-axis, % of
extra iterations and of fault-commencing iteration, respectively, compared to the number of
iterations in the fault-free run.

Even a magnitude of fault (e.g., 10−4) that may cause stagnation when injected into the

outer matvec operation, causes only a 40–50% increase in the total number of iterations

here and only has a large impact if injected throughout the majority of the run. Similar

observations may be made for the ILUT preconditioning in Fig. 28b: less of a negative effect

is evident when perturbation-based faults appear in this preconditioning operation than in

the outer matvec (c.f. Fig. 27b). In general, FGMRES, being able to converge with a

preconditioner that changes at each iteration, does not negatively react to preconditioner

changes due to faults in the course of linear system solution.

The graphs in Fig. 29 show the effect of injecting a fault into the two fault sites considered

simultaneously (i.e., at the same FGMRES iteration), the outer matvec and preconditioner

application, such that the l2-norm decreases.

In Fig. 29, notice that, for large faults (starting at 10−4), the increase in the number of

iterations required to converge was very high—between 400-600% at times. This increase is

also much higher than that for either matvec- or preconditioner-only incurred faults produc-

ing the highest increases of ∼60% and ∼55%, respectively, for the same perturbation value

of 10−4.

121

(a) ARMS (b) ILUT

Fig. 29: Outer matvec and preconditioner application faults with decreasing l2-norm. On y-
and x-axis, % of extra iterations and of fault-commencing iteration, respectively, compared
to the number of iterations in the fault-free run.

Conversely, for perturbation sizes of 10−5 and smaller (shown in Fig. 30), the effect

on convergence appears similar to that of matvec faults. This suggests that the ability of

FGMRES to accept faulty preconditioners is inhibited by the coexistence of a matvec fault.

Note also, there were fewer cases where the number of iterations to converge decreased due

to faults in the scenarios with small faults.

All of the experiments were also performed with a variant of this perturbation-based fault

model that increased the l2-norm of the operation result. In all instances, smaller fault sizes

caused FGMRES to fail to converge compared with the other l2-norm variants of the fault

model, and for the cases in which the iterative solver converged, many more iterations were

required. Despite these differences, the overall trends are similar and the graphs featuring

this data are not displayed here.

The series of runs using persistent fault simulation showcased experiments designed to

exhibit a persistent fault model with faults affecting bounds within an iterative solver, which

may be monitored and plays a role in the solvers reaction to faults. Specifically, similar to the

conclusions in [131], effects on the l2-norm of the fault-perturbed vector were explored and

it was found that persistent faults may be treated similarly to episodic faults in quantifying

122

(a) ARMS (b) ILUT

Fig. 30: Outer matvec and preconditioner application faults with decreasing l2-norm. On y-
and x-axis, % of extra iterations and of fault-commencing iteration, respectively, compared
to the number of iterations in the fault-free run. Small fault sizes only.

Table 6: Summary of Beneficial Results- Note: Its (Iteration), PC (Preconditioner)

Fault Size Fault Location Starting Its l2-norm Effect PC Improvement
5× 10−5 matvec 0% - 30% Varied ARMS 2% - 4%
10−6 matvec (anywhere) Varied ARMS 0% - 1%
10−6 − 10−5 matvec (anywhere) Varied ILUT 0% - 1%
(any size) matvec 0% - 60% Decreasing ARMS, ILUT 0% - 1%
≤ 5× 10−5 PC (anywhere) Decreasing ARMS 0% - 5%
≤ 5× 10−6 PC (anywhere) Decreasing ILUT 0% - 2%

their effects except that the application possibly needs to adjust to continuing operation

“under failure”. In particular, persistent faults that shrink the l2-norm have less of a negative

effect upon the convergence of the iterative solver. It was also found that injecting faults into

the outer matvec operation, in general, had a greater impact upon the FGMRES convergence

than doing so for the preconditioner application—including causing more cases in which the

iterative solver failed—which was observed for both the ARMS and ILUT preconditioners.

It appears that runs using the ARMS preconditioner are more naturally resilient to the

injection of persistent perturbation-based faults than runs using the ILUT preconditioner,

regardless of which of the two fault sites is chosen. In addition, a small fault injection

123

resulted in several runs that converged in up to 5% fewer iterations than would be typically

required. Table 6 summarizes beneficial outcomes from the results presented in here.

4.3 SUMMARY

This chapter presented analysis of numerical soft fault models for the development of

fault tolerant algorithms, including the development of a novel fault model that can be

used for either synchronous or asynchronous iterative methods. Results were presented for

asynchronous iterative methods; specifically for a hybrid parallel implementation of the asyn-

chronous Jacobi algorithm, as well as for a Krylov subspace solver implemented in a typical

distributed parallel computing environment using MPI. The results indicate that the use of

numerical soft fault models can be useful for the development of fault tolerant algorithms

for future High Performance Computing platforms since the average impact induced by the

numerical soft fault models is large enough to cause detrimental effect to the execution of

the iterative algorithm.

The testing conducted here was designed to be exhaustive with respect to the number of

numerical soft fault models, including representing a variety of different methods for simulat-

ing the occurrence of a fault in addition to presenting results for a variety of parameters that

control the fault models. The elliptic partial differential equations (e.g., the two dimensional

discretization of the Laplacian for the asynchronous iterative methods, and the test problem

given by Eq. (102) for the Krylov subspace solver experiments) that were used serve as com-

mon test problems, due to their close connection with many important problems throughout

science and engineering. The numerical simulation of soft faults provides a consistent, reli-

able way to force sufficient data corruption to examine the behavior of iterative algorithms.

This makes numerical soft fault models a valuable means of developing novel fault tolerant

algorithms; an activity that will become increasingly important as HPC environments edge

closer to exascale levels of performance. The comparison and analysis of multiple numerical

soft fault models provided in this dissertation offers shows the potential benefit offered by

124

this line of research.

125

CHAPTER 5

USE CASE: FINE-GRAINED INCOMPLETE

FACTORIZATIONS

The fine-grained parallel incomplete LU factorization (FGPILU) algorithm is a nonlinear

fixed point iteration that can be used for finding an approximate factorization of an input

matrix A, such that

A ≈ LU (103)

in the case that A is non-symmetric, referred to as incomplete LU factorization, or such that,

A ≈ LLT (104)

in the case that A is symmetric, referred to as incomplete Cholesky factorization. This fac-

torization is suitable for use as a preconditioner in a linear solver routine, or when rough

approximations to the solution of a linear system are acceptable. In practice, these incom-

plete factorizations are commonly used in conjunction with a Krylov subspace solver such

as Conjugate Gradient of FGMRES [34], [147].

The FGPILU algorithm can be used as a building block for iterative linear-system solvers

geared towards novel computing platforms, including accelerators and co-processors. Typi-

cally when working with difficult problems, preconditioning techniques move beyond simple

incomplete LU factorizations, such as those generated by the FGPILU algorithm, to more

complex routines. These include routines such as ILUT and ARMS (see Section 2.3). A more

complex variant of fine-grained factorization that attempts to improve upon the performance

of the FGPILU algorithm studied here has been recently proposed [178]. Alternatively, work

on using conventional incomplete LU factorizations for solving difficult problems from var-

126

ious disciplines has been conducted previously, including the more general studies found

in [51] and [52].

This chapter examines the FGPILU algorithm proposed by Chow and Patel [24] that can

be used to generate incomplete factorizations in a highly parallel fashion. Several variants of

the FGPILU algorithm are presented, each capable of converging despite the occurrence of

soft computing faults. A discussion of the mathematical theory behind the convergence of

such techniques is presented, extensive numerical results concerning the performance of these

fine-grained incomplete factorizations with respect to faults are provided. In the numerical

experiments, the potential impact of soft faults on the fine-grained parallel incomplete LU

factorization is studied from several different perspectives. Specifically, the ability of the

algorithm to converge successfully despite the occurrence of a fault is evaluated, as well

as the performance of the incomplete factor(s) that are generated when they are used as

preconditioners for Krylov subspace solvers. This theory and the variants of the algorithm

that are developed build on the more general theory presented in Chapter 3. Each of the

techniques proposed for recovery in Chapter 3 is adapted to the FGPILU algorithm and

included in the numerical experiments.

Another aspect of the work presented in this chapter is that the convergence of the

FGPILU algorithm is analyzed, building upon the initial convergence analysis presented

in [24], and this convergence is then explored numerically with several test problems from

varying domains in science and engineering. These test problems include a set of problems

that are relatively well behaved (i.e. SPD) as well as a set of problems that are more difficult

for the algorithm to solve; i.e., non-symmetric, indefinite and ill-conditioned problems. The

majority of the work on the FGPILU algorithm so far has focused on matrices that are SPD

[23], [24], and the performance of the algorithm on non-symmetric and indefinite matrices

has not been firmly established. Moreover, if the convergence of the algorithm for these

classes of problems is less than desirable, they may be more prone to suffer divergence

when faced with a fault. These more difficult problems are also included in the numerical

127

experiments concerning the impact that a fault may have. Some results provided here have

been previously published [169], [170], [175], [176].

The structure of this chapter is organized as follows: in Section 5.1, an overview of

the fine-grained parallel incomplete factorization algorithm itself is given. In Section 5.2, a

theoretical underpinning of the fine-grained parallel incomplete LU algorithm with respect to

its convergence is explored. Section 5.3 provides an overview of the variants of the FGPILU

algorithm that have been proposed for their resilience to soft faults, in Section 5.4, a series of

numerical results are provided, while Section 5.5 provides a summary of the work discussed

in this chapter.

5.1 FINE-GRAINED PARALLEL ALGORITHM

The FGPILU algorithm approximates the true LU factorization and writes a matrix A

as the product of two factors L and U where,

A ≈ LU. (105)

Normally, the individual components of both L and U are computed in a manner that does

not allow easy use of parallelization (see Section 2.3.1 for more details). The recent FGPILU

algorithm proposed in [24] allows each element of both the L and U factors to be computed

independently. Because of this, the level of parallelism in the algorithm scales as the number

of non-zero terms in the factorization increases.

The algorithm progresses towards the incomplete LU factors that would be found by a

traditional algorithm in an iterative manner. To do this, the FGPILU algorithm uses the

property

(LU)ij = aij (106)

for all (i, j) in the sparsity pattern S of the matrix A, where (LU)ij represents the (i, j) entry

of the product of the current iterate of the factors L and U . This leads to the observation

128

that the FGPILU algorithm (given in Algorithm 11) is defined by the following two nonlinear

equations:

lij =
1

ujj

(
aij −

j−1∑
k=1

likukj

)
(107)

uij = aij −
i−1∑
k=1

likukj. (108)

Following the analysis presented in [24], it is possible to collect all of the unknowns lij

and uij into a single vector x, then express these equations as a fixed point iteration,

x(p+1) = G
(
x(p)

)
, (109)

where the function G implements the two nonlinear equations described above and the

current iteration ((p + 1) or (p) respectively) is given by the superscript. The FGPILU

algorithm is given in Algorithm 11.

Algorithm 11: FGPILU algorithm as given in [24]

Input: Initial guesses for lij ∈ L and uij ∈ U
Output: Factors L and U such that A ≈ LU

1 for sweep = 1, 2, . . . ,m do
2 for (i, j) ∈ S do in parallel
3 if i > j then

4 lij = (aij −
∑j−1

k=1 likukj)/ujj

5 else

6 uij = aij −
∑i−1

k=1 likukj

Keeping with the terminology used in [23], [24] each pass the algorithm makes in updating

all of the lij and uij elements (alternatively: each element of the vector x) is referred to

as a “sweep”. After each sweep of the algorithm, the L and U factors progress towards

129

convergence.

At the beginning of the algorithm, the factors L and U are set with an initial guess. In

this dissertation, the initial L factor will be taken to be the lower triangular part of A and the

initial U will be taken to be the upper triangular portion of A (as in [24], [65], [169], [170]).

Adopting a technique used in [23], [24], [169], [170], a scaling of the input matrix A is first

performed such that the diagonal elements of A are equal to one. As pointed out in [24], this

diagonal scaling is imperative to maintain reasonable convergence rates for the algorithm,

and the working assumption throughout this chapter is that all matrices have been scaled

appropriately.

5.2 CONVERGENCE OF THE ALGORITHM

This section serves to provide a discussion of the convergence of the FGPILU algorithm.

The work here to examine the properties related to the convergence of the algorithm (i.e.

the rate at which it converges, from which initial conditions, what can cause divergence, etc)

serves to provide a foundation for the algorithmic variants that are proposed in Section 5.3

which attempt to provide soft fault resilience for the FGPILU algorithm.

The analysis to show convergence of the FGPILU algorithm relies on properties of the

Jacobian associated with the nonlinear mapping that defines the FGPILU factorization

(Eq. (107) and Eq. (108)) which when collected together as suggested by Eq. (109) define a

map

G : Rm → R
m (110)

where m represents the number of non-zero terms in the matrix A. In order to discuss

the properties of this function and it’s Jacobian, it is necessary to define an order on the

elements that make up the vector x upon which G operates. Every element in x is one of

the non-zero elements in either the matrix L or the matrix U ; with the initial guess taken

as defined in Section 5.1 this corresponds to non-zero elements in the original input matrix,

130

A. The following definition formalizes the concept of an ordering.

Definition 7. An ordering of the elements mij ∈M is a bijective function from the sparsity

pattern S of M to the set 1, 2, . . . , N . Formally, this is a map T : S → 1, 2, . . . , N .

Less formally, every non-zero element that will be updated needs to be given an order

to make the algorithm well defined. In the case of this specific algorithm, it is of interest

to have an ordering that arranges the elements in the order they would be updated follow-

ing a traditional Gaussian Elimination style process; similar to what would be used in a

conventional incomplete LU factorization. This style of ordering can be described as follows:

1. The first row of M

2. The remainder of the first column of M

3. The remainder of the second row of M

4. The remainder of the second column of M

5. · · ·

The following definition captures this more precisely:

Definition 8. A Gaussian Elimination partial ordering of the elements mij ∈M is a partial

ordering of the elements in the sparsity pattern, S, of M (using MATLAB R©1 style notation):

(1, 1 : n) ∩ S < (2 : n, 1) ∩ S < · · · < (k + 1 : n, k) ∩ S < (n, n)

As stated above, in order to define the Jacobian of the nonlinear map G that defines the

FGPILU factorization, an order of the elements in both the L and U factors which together

constitute all of the elements in a single vector �x (e.g., as discussed in Section 2.4) needs to

be defined. Call this ordering h. The ordering h will map a given pair of (i, j) coordinates

1MathWorks, Inc., Natick MA

131

specifying the location of a non-zero term in either L or U to an index of the vector x. The

indices of the vector x will be the set {1, 2, 3, . . . ,m} where m = nnz(L) +nnz(U). That is,

xh(i,j) =

⎧⎪⎪⎨⎪⎪⎩
lij i > j

uij i ≤ j .

(111)

Given this, the two nonlinear equations that define the FGPILU factorization, i.e.,

Eq. (107) and Eq. (108), can be rewritten to account for this ordering. Doing this gives,

Gh(i,j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

xh(j,j)

(
aij −

∑
1≤k≤j−1

xh(i,k)xh(k,j)

)
i > j

aij −
∑

1≤k≤i−1

xh(i,k)xh(k,j) i ≤ j ,

(112)

where both sums are taken over all pairs, (i, k) and (k, j) ∈ S(A).

The Jacobian itself can then be written as a function, G′(x) = J(G(x)), where

J : R|S| → R
|S|×|S| (113)

and is defined by the partial derivatives of the map given by Eq. (112). These partial

derivatives are given by the following equations [24]:

∂Gh(i,j)

∂xh(k,j)

= −xh(i,k)

xh(j,j)

, k < j

∂Gh(i,j)

∂xh(i,k)

= −xh(k,j)

xh(j,j)

, k < j (114)

∂Gh(i,j)

∂xh(j,j)

= − 1

x2
h(j,j)

(
aij −

j−1∑
k=1

xh(i,k)xh(k,j)

)

for a row in the Jacobian where i > j (i.e., corresponding to an unknown lij ∈ L). Conversely,

for a row i ≤ j (i.e., corresponding to an unknown uij ∈ U), the partial derivatives are given

by:

132

∂Gh(i,j)

∂xh(i,k)

= −xh(i,k), k < i, (115)

∂Gh(i,j)

∂xh(k,j)

= −xh(i,k), k < i. (116)

Under the assumption that there is a single fixed point solution x∗ of the nonlinear

iteration defined by G(x) in Eq. (112), the following result given in Theorem 10 provides

convergence for the nominal, fault-free version of the FGPILU algorithm:

Theorem 10 ([58]). Assume that x∗ lies in the interior of the domain of G and that G is

F-differentiable at x∗. If ρ(G′(x∗)) < 1, then there exists some local neighborhood of x∗ such

that the asynchronous iteration defined by G converges to x∗ given that the initial guess is

inside of this neighborhood.

The partial derivatives are continuous and well-defined anywhere on the domain of G as

defined above so G is F-differentiable on its domain. What remains to be shown is that

the spectral radius ρ(G′(x∗)) < 1. The Gaussian Elimination partial ordering proposed in

Definition 8 leads to the following result from [24] that details the structure of mapping, G,

defined by Eq. (112):

Theorem 11 (Chow and Patel). The function G(x) with a Gaussian Elimination partial

ordering has a strictly lower triangular form. Formally,

Gk(x) = Gk(x1, . . . , xk−1).

This leads to the following related result that also comes from Chow and Patel in [24]:

Theorem 12. Given a Gaussian Elimination partial ordering for the mapping G(x), the as-

sociated Jacobian, J(G(x)), has a strictly lower triangular structure. In particular, Jacobian

has zeros along the diagonal and a spectral radius of 0.

133

This result can be combined with results from Theorem 10 to show that there is some

neighborhood of the fixed point of the mapping where the FGPILU algorithm will converge.

Extended details of this analysis are provided in [24].

However, in order to determine if the mapping will converge from its current location in

the domain of the mapping G defined by Eq. (112) it is necessary to define what it means

for a mapping to be a contraction:

Definition 9. The function G : D ⊆ R
m → R

n is a contraction on D if there exists a

constant α < 1 such that,

||G(x)−G(y)|| ≤ α||x− y||,

for some x, y ∈ D.

Note that an iterate of the function G, written x ∈ D, is a collection of all the non-zero

values in both L and U . The form of the Jacobian is determined by the ordering of the

elements inside of x, but the norm of the Jacobian (for any matrix norm) is associated with

the value of the elements in the current iterate, x. In particular, the spectral radius of the

Jacobian is determined by the (partial) ordering imposed upon the mapping G, but the norm

of the Jacobian changes as the FGPILU algorithm progresses. The following helps identify

when the fixed point iteration associated with the FGPILU algorithm is a contraction:

Definition 10. The function G : D ⊆ R
m → R

n is a contraction at the location of the

current iterate x∗ ∈ D if ||J(G(x∗))|| < 1 for some matrix norm || · || and the domain

D ⊆ R
m is convex.

For the mapping G defined by Eq. (112), the domain is not necessarily convex [24], but the

norm of the associated Jacobian is still indicative of whether or not the corresponding fixed

point iteration will converge [24].

With respect to the occurrence of a fault, the fault model proposed in this dissertation

limits the effects of a fault to the values stored in L and U and not the coordinates of the

values. As such, it is not possible for a fault (as defined here) to change the spectral radius of

134

the mapping associated with the FGPILU algorithm; however, a fault can (and often does)

change the norm of the corresponding Jacobian since it changes the values of the entries

xi ∈ x.

This leads to the following sequence of computational steps to identify if the mapping G

is still a contraction:

1. Define a Gaussian Elimination partial ordering of the elements in L and U

2. Form the Jacobian, J , according to the partial derivatives defined in Section 5.1

3. Calculate the norm of J as found in step 2

To be clear, if the norm of the Jacobian is less than 1 and the current iterate is located in a

convex portion of the domain then the mapping is still a contraction and it will eventually

converge; however, if the norm of the Jacobian is greater than or equal to 1 then the mapping

is not a contraction and further iteration will not bring the current iterate, x∗, closer to the

fixed point.

One consequence of Theorem 10 is that the algorithm will be successful when the norm

of the Jacobian is small. Examining the equations that define the partial derivatives inside

of the Jacobian, this implies that the FGPILU algorithm will be effective when the terms

on the diagonal are large and the off diagonal terms are small; indicating that the FGPILU

algorithm will perform well for matrices that are diagonally dominant.

In previous work on the FGPILU algorithm, much of the emphasis has been placed

on symmetric, positive definite (SPD) matrices that are symmetrically scaled to have unit

diagonal [23], [169]. One notable exception is the 2D convection-diffusion problem that is

presented in [24]. The problem,

−
(
∂2u

∂x2
+

∂2u

∂y2

)
+ β

(
∂exyu

∂x
+

∂e−xyu

∂y

)
= g (117)

is examined for two different values of β; the resultant finite-difference matrix being in-

creasingly non-diagonally dominant and non-symmetric for larger values of β. In [24], the

135

authors recommend using a minimum degree ordering (as opposed to the Reverse Cuthill-

Mckee (RCM) ordering used in the rest of the work) and find success producing stable

preconditioning factors using the SYMAMD (e.g. symmetric approximate minimum degree

permutation) ordering implemented in MATLAB R©2. Because of this, in the testing on non-

symmetric problems that is presented here (previously captured in [175]), the same SYMAMD

reordering is included in the experiments.

5.2.1 IMPROVING THE CONVERGENCE OF THE FGPILU ALGORITHM

Here, an investigation is made into the performance of the FGPILU algorithm, and vari-

ous attempts are made at improving both the rate of convergence and the effect of the gen-

erated FGPILU preconditioning factors. Generally speaking, the FGPILU algorithm works

well on symmetric, positive-definite problems and the techniques detailed in this section are

designed to be used with more difficult problems; i.e., problems that are non-symmetric,

indefinite, or poorly conditioned. As such, in Section 5.4 these techniques are only applied

to the more difficult problems featured in Section 5.4.4.

For a given problem, the FGPILU algorithm may fail to converge; i.e., a desired residual

fails to decrease below a given threshold or else the iterates of the factorization diverge

entirely. Additionally, the structure of the input matrix may preclude unmodified use of the

FGPILU algorithm; e.g., due to zeros on the diagonal. If the progression of the algorithm

reaches a point where the norm of the Jacobian is greater than one, the fixed point iteration

no longer represents a (local) contraction and further sweeps will not help the algorithm

make progress towards the desired preconditioning factors.

Even if the FGPILU algorithm converges to a set of preconditioning factors, it is possible

that, if the system was changed too much – either intentionally in order to ensure convergence

or by the occurrence of an undetected computing fault – the preconditioning factors will not

aid in the convergence of the associated Krylov subspace solver. In fact, it is possible for the

2MathWorks, Inc., Natick MA

136

resulting L and U factors to actually slow convergence or prevent convergence entirely (see

both Table 13 and [179]).

In an effort to improve the convergence of the FGPILU algorithm, this study focuses on

employing two techniques that have been previously associated with either the preparation of

more conventional incomplete LU factorizations or with the solution of a linear system using

a Krylov subspace solver. Both of these techniques aim to increase the diagonal dominance

of the original matrix, which should in turn reduce the norm of the Jacobian and help ensure

that the fixed point iteration continues to make progress. Note that while these techniques

may improve the convergence of the algorithm, care must be taken to ensure that they truly

improve the overall time to solution.

The first technique involves reordering the matrix in order to aid the convergence of the

algorithm. Three reorderings are considered here. The first is the MC64 reordering that

attempts to permute the largest entries of the matrix to the diagonal [180]. The MC64 al-

gorithm has been successful at improving the performance of algorithms requiring diagonal

dominance, but is one of the more expensive reordering algorithms computationally. The

second is the approximate minimum degree (AMD) as implemented in MATLAB R©3. As stated

before, this reordering has previously been observed to help convergence of the FGPILU

algorithm on non-symmetric problems [24] and has also seen success with conventional in-

complete LU factorizations for non-symmetric and indefinite problems [52]. The third and

final ordering algorithm to be considered is the Reverse Cuthill-Mckee (RCM), which attempts

to reduce the bandwidth of the matrix. This can potentially aid in the convergence of the

FGPILU algorithm and has shown to be effective in the case of symmetric, positive-definite

(SPD) matrices [23], [24], [169], [170]. It is important to note that some of these reorderings

may not have a positive effect on other algorithms. For example, [181] shows that the RCM

algorithm does not work as well as several other reorderings when applied to problems using

sparse approximate inverses.

3MathWorks, Inc., Natick MA

137

After the ordering is applied, the second technique consists of an α-shift that is performed

in the manner originally suggested in [179]. Specifically, the original input matrix A can be

written,

A = D − B, (118)

where D holds only the diagonal elements of A, and B contains all other elements. Instead

of performing the incomplete LU factorization on the original matrix A, the factorization

is instead applied to a matrix that is close to A but has an increased level of diagonal

dominance. In particular, the incomplete LU factorization can be applied to

Â = (1 + α)D − B, (119)

where Â ≈ A but the size of the diagonal has been increased. This α-shift technique has

been used historically for improving the stability of the preconditioning factors generated

by conventional incomplete LU factorizations, but given the discussion above in Section 5.2

concerning the fine-grained incomplete LU factorization that is the subject of this work,

it is reasonable to expect this shift to improve the convergence of the FGPILU algorithm.

Note that it is possible for the incomplete factorization to be applied to a matrix that

has been shifted too far from the original matrix where even if the FGPILU algorithm

converges successfully, the associated Krylov subspace solver may not be able to make use

of the generated preconditioning factors. A brief summary of this algorithm is presented in

Algorithm 12.

Since incomplete LU factorizations are by nature, approximate, using the preconditioning

factors obtained from applying the FGPILU algorithm to Â before a Krylov solve of the

original matrix A can be expected to accelerate the overall convergence for reasonable values

of α. These claims will be explored numerically in Section 5.4.4.

138

Algorithm 12: Modified FGPILU algorithm for non-symmetric and indefinite ma-
trices
Input: Input matrix A, shift factor α
Output: Factors L and U such that A ≈ LU

1 Perform matrix reordering.
2 Factor the reordered matrix: A = D − B
3 Perform diagonal scaling: A = (1 + α)D − B
4 Generate initial guesses for L and U from the reordered and scaled input matrix A
5 for sweep = 1, 2, . . . ,m do
6 for (i, j) ∈ S do in parallel
7 if i > j then

8 lij = (aij −
∑j−1

k=1 likukj)/ujj

9 else

10 uij = aij −
∑i−1

k=1 likukj

5.3 SOFT FAULT RESILIENCE

In this section, several variants of the FGPILU factorization are proposed in an effort

to provide soft fault resilience to the algorithm. First, general comments concerning the

convergence of the algorithm with respect to soft faults and generalized and idealized notions

about how to create fault tolerant variants are discussed, and then specific variants of the

algorithm are proposed in the following subsections. The efficacy of these algorithms is tested

numerically in Section 5.4.

The idea of creating fault tolerant algorithms has taken a renewed place of prominence

in the research community due to the expected increase in the rate that faults will occur

for future HPC platforms [1], [2], [4]–[6]. In this study, the focus is on creating so called

self-stabilizing variants of the algorithm.

Self-stabilizing iterative methods stem from the idea of creating an algorithm that is

capable of starting from any state and returning to a valid state within a finite number of

steps. This can be viewed to encompass both traditional approaches towards resilience such

as checkpointing, as well as different algorithmically based variants. It is also important to

design self-stabilizing algorithms such that the computational cost of ensuring resilience is

139

minimal, especially in the case that no faults happen to occur.

In [125], a self-stabilizing variant of the Conjugate Gradient solver was proposed that

made use of a periodic correction step to ensure that the algorithm returned to a valid state

and proceed to convergence successfully. The work performed here proposes variants that

take advantage of both checkpointing and the use of a periodic correction step. A notional,

prototypical variant of the FGPILU algorithm that utilizes a periodic correction step is given

by Algorithm 13.

Algorithm 13: Prototype algorithm for a Self-stabilizing FGPILU

Input: Initial guesses for lij ∈ L and uij ∈ U
Output: Factors L and U such that A ≈ LU

1 for sweep = 1, 2, . . . ,m do
2 if sweep ≡ 0 mod F then
3 (Perform self-stabilizing computation)
4 else
5 for (i, j) ∈ S do in parallel

6 if i > j then lij = (aij −
∑j−1

k=1 likukj)/ujj

7 else uij = aij −
∑i−1

k=1 likukj

In the prototypical self-stabilizing algorithm provided by Algorithm 13, every F th itera-

tion a yet-to-be-defined series of calculations is executed in order to ensure that the algorithm

continues to progress towards convergence. The goal of this periodic correction step is that

the computation done every F iterations in the periodic correction step will sufficiently cor-

rect the course of the algorithm to where it will converge. These calculations also need to

ensure that they do not harm the convergence of the algorithm in the case that no fault

occurred where no corrective action needed to be taken. Note that a selective reliability

mode [31], [32] where some calculations occur in a high reliability mode that is assumed to

be safe from the occurrence of faults, must be assumed since the computations performed

during the correcting step need to be executed successfully.

140

As discussed in Section 5.2, convergence of the FGPILU algorithm is strongly related to

the Jacobian of the functional iteration, G (i.e. Eq. (112)). In order to determine what steps

need to be taken during the periodic correction step, it is important to make note of what

needs to be accomplished. The mapping defined by G is a contraction if ||G′(x)|| < 1 for some

matrix norm || · ||. Therefore, if the initial guess x0 has the property that ||G′(x0)|| < 1 then

the algorithm should converge so long as the domain is locally convex. However, if a fault

occurs on the f th iteration that causes the Jacobian to move into a region of the domain

where G is no longer a contraction, or the domain is no longer convex, then subsequent

iterations will not aid in convergence. Following this reasoning, a näıve correction step that

constitutes a hybrid use of checkpointing and a periodic correction step would: (1) form the

Jacobian explicitly, (2) calculate a matrix norm of the Jacobian, and (3) reset all non-zeros

in both L and U (i.e. all elements of x) to the last known good state. By occasionally saving

off the vector x when no fault has been detected to have occurred, the algorithm can avoid

reverting back to the initial guess. Pseudocode for this algorithm is given by Algorithm 14.

Algorithm 14: Näıve algorithm for a hybrid self-stabilizing/checkpointing FGPILU

Input: Initial guesses for lij ∈ L and uij ∈ U
Output: Factors L and U such that A ≈ LU

1 for sweep = 1, 2, . . . ,m do
2 if sweep ≡ 0 mod F then
3 Form the Jacobian of the current iterate, J
4 Evaluate τ = ||J ||
5 if τ < 1 then Continue
6 else
7 Set lij and uij to the last known good state

8 else
9 for (i, j) ∈ S do in parallel

10 if i > j then lij = (aij −
∑j−1

k=1 likukj)/ujj

11 else uij = aij −
∑i−1

k=1 likukj

Note that, while the algorithm presented in Algorithm 14 is most likely not viable due

141

to the high cost in both computation and memory associated with forming the Jacobian

and calculating a matrix norm for such a large matrix, it illustrates the goal of all the

fault resilient variants of any fixed point iterative method, including the FGPILU algorithm:

ensure that the algorithm is still making progress towards the eventual solution.

In the case of nonlinear fixed point methods, this can be ensured by calculating the local

Jacobian, and ensuring that the associated spectral radius still indicates that the mapping

is locally a contraction. While the methods proposed in the subsequent subsections do not

form and evaluate the Jacobian explicitly, the goal of each of them is to ensure progress of

the FGPILU algorithm. Therefore the variants should have the same effect on the FGPILU

algorithm as the näıve check presented in Algorithm 14.

If checkpointing is desired to be excluded entirely from the process of creating factors

L and U with the FGPILU algorithm, then a failed check will result in a restart using the

initial guess. Two large problems with Algorithm 14 are as follows:

1. The expense of the correction step. The cost of forming the Jacobian and evaluating

its norm may be restrictive for many problems.

2. The reliance on knowing a previous good state. The quick convergence of the algorithm

to usable L and U factors [23], [24] mitigates this issue somewhat since the original

guess can always be reused, but if a higher level of fidelity is desired, then the runtime

could be prohibitively long.

Convergence of this prototypical algorithm is captured in the following result.

Theorem 13. For any state of lij ∈ L and uij ∈ U , if a correction is performed in the kth

sweep, and all subsequent iterations are fault-free then Algorithm 14 will converge.

Proof. Since the Jacobian at the fixed point of the algorithm has spectral radius less than 1

(see [58]) and the correcting step of Algorithm 14 ensures that the 1-norm of the Jacobian

associated with the current iterate is less than 1 – which forces the algorithm to stay in a

142

region of the problem domain where the asynchronous mapping defined by the algorithm is

a contraction – Algorithm 14 will converge.

While the method proposed by Algorithm 14 is not computationally viable, it does suggest

a mechanism for creating a successful self-stabilizing variant of the FGPILU algorithm. First,

a bound on the norm of the Jacobian that can be computed efficiently needs to be determined,

and then a correcting mechanism that does not require (pseudo) checkpointing will need to

be created. For the first issue, the following result from [24] can be used:

Theorem 14. (Chow and Patel) Given a matrix A and G as defined above, the 1-norm

of the current iterate G′
i can be bounded,

||G′
i||1 ≤ max(||Ui||∞, ||Li||1, ||RL

i ||1)

where RL is the strictly lower triangular part of R = A− T and the matrix T is defined by,

Tij =

⎧⎪⎪⎨⎪⎪⎩
(LU)ij (i, j) ∈ S

0 o/w

However there is still a larger than desirable computational burden in forming the matrix

R = A− T and the bound itself may not be sharp enough for practical use since the result

is only useful if,

α = max(||Ui||∞, ||Li||1, ||RL
i ||1) < 1 (120)

In the case that the input matrix comes from a 5-point or 7-point finite difference dis-

cretization of a partial differential equation, the Theorem 14 simplifies further to the result

provided below in Theorem 15.

Theorem 15. (Chow and Patel) If A is a 5-point or 7-point finite different matrix, and

if L and U have sparsity patterns equal to the strictly lower and upper triangular portions of

143

A respectively, then for G as defined above, the 1-norm of the current iterate G′
i is given by,

||G′
i||1 = max(||Ui||max, ||Li||max, ||AL||1)

where AL is the strictly lower triangular part of A.

Development of a traditional checkpointing variants will be examined in the next subsec-

tions Section 5.3.1, while development of a checkpointing variant that attempts to leverage

the fine-grained nature of the FGPILU algorithm is provided in Section 5.3.2. The use of

a periodic correction step will be examined in the following two subsections: Section 5.3.3

provides a computationally light variant designed around the performance of the algorithm

on finite-difference discretization of partial differential equations, and Section 5.3.4 provides

a checkpoint free variant based upon the progression of a residual.

5.3.1 CHECKPOINTING

In this section, some theoretical bounds on the impact of a fault on the FGPILU algorithm

are developed, and these projected impacts are used to develop checkpointing based fault

tolerant adaptations to the original FGPILU algorithm. If a fault occurs at the computation

of the kth iterate (affecting the outcome of the (k + 1)st vector), it is possible to write the

corrupted (k + 1)st iteration of x as

x̂(k+1) = G
(
x(k)

)
+ r (121)

where the vector r accounts for the occurrence of a fault. Note that the magnitude of

r corresponds only to the soft fault that was injected and is not a part of the FGPILU

algorithm itself: for a sweep of the algorithm that does not contain a fault, r = 0. To track

the progression of the FGPILU algorithm, it was proposed in [24] and [23] to monitor the

144

nonlinear residual norm. This is a value

τ =
∑

(i,j)∈S

∣∣∣∣∣∣aij −
min(i,j)∑
k=1

likukj

∣∣∣∣∣∣ (122)

which decreases as the number of sweeps progresses the factors produced by the algorithm

closer to the conventional L and U factors that would be computed by a traditional ILU

factorization. Note that the min(i, j) notation is used to emphasize that computation will

be minimized and superfluous pairs of components will not be considered. Alternatively, the

ILU residual can be considered which evaluates the same difference (i.e. the Frobenius norm

of A) but over all entries as opposed to restricting the calculation to the sparsity pattern

of S. Sample values for both the nonlinear residual and the ILU residual for the first few

iterations / sweeps of the FGPILU algorithm on the Apache2 problem are given in Table 7.

Apache2 is a finite-difference problem featured in the numerical experiment on symmetric

problems given in Section 5.4.3. See Table 10 for descriptions of the symmetric example

problems. Note that the nonlinear residual norm will continue decreasing, but that the ILU

residual quickly settles to a non-zero value.

Table 7: Typical progression of both the nonlinear residual norm and ILU residual norm for
the Apache2 test problem.

Sweep Non-linear residual (τ) ILU residual
1 1.05e+02 379.88
2 8.81e+01 376.74
3 2.38e+01 367.10
4 1.36e+01 366.45
5 2.39e+00 366.45
6 1.21e+00 366.45
7 5.24e-01 366.45
8 2.24e-02 366.45
9 1.05e-03 366.45

145

The Apache2 test problem in Table 7 is a three dimensional finite-difference discretiza-

tion of partial differential equations that is one of the best conditioned matrices from the

symmetric problem set shown in Table 11. Alternatively, Table 8 shows the nonlinear resid-

ual progression for the Apache2 problem featured above, the offshore problem (which is the

most ill-conditioned problem from the symmetric problem set), and the two non-symmetric

problems that are studied more extensively in the non-symmetric problem set. The two

non-symmetric problems are studied more extensively in Section 5.4.4, with details provided

in Table 12. The large difference in initial nonlinear residual norm between the different

problems shows how far the standard initial guess for each problem is from the standard

incomplete factorization using the same sparsity pattern as the input matrix.

Table 8: Typical progression of the nonlinear residual norm for a variety of test problems.

Sweep Apache2 offshore ecl32 fs 760 3
0 202.4 103.31 2128 13986
1 96.176 38.501 771.55 62.755
2 106.01 26.026 37.636 165.74
3 53.639 12.65 117.59 217.54
4 87.454 9.2839 5.1749 20.338
5 2.6809 4.9959 57.625 8.6786
6 0.87554 29.425 1.1898 8.2413
7 0.16503 79.832 1.879 11.663
8 0.055735 70.867 0.1794 6.3104
9 0.017221 5.6606 0.13366 0.64612
10 0.006134 0.9699 0.04506 0.19334

If a fault occurs on a given sweep, then one or both nonlinear equations from the FGPILU

algorithm (c.f. Algorithm 11) will have some amount of error. In particular, the update

146

equations for lij and uij will become

lij =
1

ujj

(
aij −

j−1∑
k=1

likukj

)
+ rij (123)

uij = aij −
j−1∑
k=1

likukj + rij , (124)

where rij represents the component of the vector r that maps to the (i, j) location of the

matrix. Comparing Eqs. (123) and (124) with Eq. (122) shows that, if a fault occurs during

the computation of the incomplete LU factors, then the nonlinear residual norm τ will be

affected.

In order to ensure that a fault does not negatively effect the outcome of the algorithm,

the first checkpointing variant that is proposed involves a simple monitoring of the nonlinear

residual norm τ . In principle, since S ⊂ A, when the FGPILU algorithm converges, the

nonlinear residual norm will be at a minimum, τ ≈ 0. Call this variant the Checkpoint All

variant (CPA-FGPILU). The pseudo-code for this algorithm is provided in Algorithm 15.

Algorithm 15: Checkpoint-All-Based Fault Tolerant FGPILU (CPA-FGPILU)

Input: Initial guesses for lij ∈ L and uij ∈ U
Output: Factors L and U such that A ≈ LU

1 for sweep = 1, 2, . . . ,m do
2 if Fault then
3 Rollback L and U
4 Fault = FALSE
5 sweep = sweep− 1

6 else
7 for (i, j) ∈ S do in parallel

8 if i > j then lij = (aij −
∑j−1

k=1 likukj)/ujj

9 else uij = aij −
∑i−1

k=1 likukj

10 τ (sweep) =
∑

(i,j)∈S
∣∣∣aij −∑min(i,j)

k=1 likukj

∣∣∣
11 if τ (sweep) > γ · τ (sweep−r) then
12 Fault = TRUE

147

In this case, a fault is declared if the currently computed nonlinear residual norm τ (sweep)

is some factor γ greater than the previously computed nonlinear residual norm τ (sweep−r),

where r provides a delay that determines how frequently the factors L and U are stored to

memory.

Note that, due to a combination of the asynchronous nature of the the FGPILU al-

gorithm and the nature of the input matrix itself, the nonlinear residual norm may not be

strictly monotonically decreasing, especially as the algorithm proceeds closer to convergence.

Therefore using the factor γ = 1, i.e., expecting a strict monotonic decrease, may cause the

algorithm to report false positives, especially when nearing convergence (as judged by the

progression of the nonlinear residual).

Additionally, while this method can be very effective for both detecting and recovering

from faults, the computation of the global nonlinear residual is a relatively expensive com-

putationally. This variant of the algorithm may induce more overhead then desired if the

frequency of the check is not severely limited, which would in turn lower the effectiveness of

the algorithm.

5.3.2 PARTIAL CHECKPOINTING

Next, note that since there is a contribution from every (i, j) ∈ S, the individual nonlinear

residual norms for each (i, j) ∈ S, denoted here by τij, can be defined as

τij =

∣∣∣∣∣∣aij −
min(i,j)∑
k=1

likukj

∣∣∣∣∣∣ (125)

where the total nonlinear residual norm can always be recovered by taking the sum of all

the individual nonlinear residual norms over all (i, j) ∈ S. To establish a baseline for fault

tolerance, define individual nonlinear residual norms τij for each (i, j) ∈ S based on the

initial guess that is used to seed the iterative FGPILU algorithm. In particular, if L∗ and

U∗ are the initial guesses for the incomplete L and U factors, then take l∗ij ∈ L and u∗
ij ∈ U

148

and define baseline individual nonlinear residual norms τ ∗ij using the original values τij and

the values l∗ij ∈ L and u∗
ij ∈ U .

Since for each sweep of the FGPILU algorithm, the components lij ∈ L and uij ∈ U can

be computed, by testing the individual nonlinear residual norms it is possible to determine if

a large fault occurred. Specifically, it is of interest to determine if a fault occurred that was

large enough to cause a potential divergence of the algorithm. To do this, first a tolerance t

is set and then a fault is signaled if

τij > t (126)

since the individual nonlinear residual norms are generally decreasing as the FGPILU algo-

rithm progresses. Set the value t as t = max(τ ∗ij) initially (Line 3 of Algorithm 16), and

then update t during the course of the algorithm if desired. It is also possible to use the

previous individual nonlinear residual norms as opposed to a maximum that is taken across

all current nonlinear individual norms. In particular, similarly to the global checkpointing

variants advocated in Section 5.3.1, a fault can be declared if,

τ sweep
ij > γ · τ sweep−r

ij (127)

for parameters γ and r similar to those in the CPA-FGPILU variant.

Note that if a fault is signaled by any of the individual nonlinear residual norms, it is

only known that a fault occurred somewhere in the current row of the factor L or the current

column of the factor U . As such, the conservative approach would require the rollback of

both the current row of L and the current column of U to their values at the previous

checkpoint (e.g., Lines 5 to 9 of Algorithm 16).

It is possible for the individual nonlinear residuals as defined to increase by a small

amount, especially at very early or very late iterations in the progression of the algorithm.

To counteract the potential for reporting false positives on fault detection, the derivative of

149

the global nonlinear residual, Δτ
Δt

, can be checked to ensure that it is also increasing before

switching the current row and/or column (see Line 15 of Algorithm 16).

Algorithm 16: Partial Checkpoint-Based Fault Tolerant FGPILU (CP-FGPILU)

Input: Initial guesses for lij ∈ L and uij ∈ U
Output: Factors L and U such that A ≈ LU

1 for (i, j) ∈ S do in parallel

2 τij =
∣∣∣aij −∑min(i,j)

k=1 likukj

∣∣∣
3 t = max(τij)
4 for sweep = 1, 2, . . . ,m do
5 if Fault then
6 Set i = maxi,j(k

1
ij) and j = maxi,j(k

2
ij)

7 Rollback {lik}i−1
k=1 and {ukj}j−1

k=1

8 Fault = FALSE
9 sweep = sweep− 1

10 else
11 for (i, j) ∈ S do in parallel

12 if i > j then lij = (aij −
∑j−1

k=1 likukj)/ujj

13 else uij = aij −
∑i−1

k=1 likukj

14 Compute τ
15 if τij > t and τ ′ > 0 then
16 Set k1

ij = i and k2
ij = j

17 Fault = TRUE

Note that if a fault is detected, the algorithm only restores (i.e., “rolls back”) the affected

row of L and column of U . Additionally, since in practice it has been proposed [23], [24]

to use a limited number of sweeps of the FGPILU algorithm as opposed to converging the

algorithm according to the global nonlinear residual norm, the number of sweeps conducted

is decremented so that all elements of L and U are updated at least the desired number of

times. Also note that the for loop on Line 11 of Algorithm 16 extends over all elements

(i, j) ∈ S so that every individual nonlinear residual norm is checked. Because of this, if

there are multiple faults that cause the individual nonlinear residual norms to exceed the

threshold τij, they should all be detected.

150

While no global communication is required to check for the presence of a fault via the

individual nonlinear residual norms, τij, there is global communication required to compute

the derivative of the global nonlinear residual norm. A simple (forward) finite difference

scheme is used to approximate this derivative to minimize the global communication required

by Algorithm 16. The frequency with which the global nonlinear residual norm is computed

can be determined independently of the rest of the algorithm. Specifically, it may be possible

to compute these updates less frequently in order to minimize the communication that takes

place between the different components.

Additionally, if a fault is detected there will be some communication required between

processes in order to fix the effects of the fault. Since the component detecting a fault will

have to roll back elements that it is not directly responsible for updating, further computation

on all affected elements will have to cease momentarily. Note also that when using the CP-

FGPILU algorithm, the size of the faults that are not caught by the algorithm are determined

by the tolerance that is set. In particular,

||r|| ≤ t (128)

where r represents a fault that was not caught by the proposed checkpointing scheme, since

if ||r|| > t then the fault would be caught by the check on Line 15 of Algorithm 16. This, in

turn, affects the update equations: Eq. (121) as well as Eqs. (123) and (124).

151

5.3.3 PERIODIC CORRECTION STEP

The periodic correction step must be computed reliably regardless of what actions are

undertaken during the periodic correction in order to ensure that the algorithm will continue

to progress towards convergence. In particular, it cannot be negatively affected by the

occurrence of a fault. Despite the robustness of an explicit check on the norm of the Jacobian

as proposed in the beginning of this section (see Algorithm 14), the emphasis here will be

upon developing variants of the FGPILU algorithm that are able to mitigate the impact of

a soft fault without requiring the explicit formation of the Jacobian for the current iterate.

The first variant of the FGPILU algorithm that makes use of a periodic correction step

is shown in Algorithm 17. An update sweep is expected every F iterations. The implicit

expectation is that the steps that are undertaken during this periodic correction step will

be able to mitigate any potential consequences of a soft fault that occurs during the prior

F − 1 iterations.

Algorithm 17: Self-Stabilizing Fault Tolerant FGPILU (SS-FGPILU)

Input: Initial guesses for lij ∈ L and uij ∈ U , parameter F that defines the
frequency of the periodic correction step, and a parameter β to determine
the strictness of the component level check

Output: Factors L and U such that A ≈ LU
1 for sweep = 1, 2, . . . ,m do
2 if sweep ≡ 0 mod F then
3 for (i, j) ∈ S do in parallel
4 if {‖lij‖, ‖uij‖} � ‖aij‖ or |{lij, uij} − aij|/|aij| > β or

{lij, uij} = {0, NaN} then {lij, uij} = aij
5 if i > j then lij = (aij −

∑j−1
k=1 likukj)/ujj

6 else uij = aij −
∑i−1

k=1 likukj

7 else
8 for (i, j) ∈ S do in parallel

9 if i > j then lij = (aij −
∑j−1

k=1 likukj)/ujj

10 else uij = aij −
∑i−1

k=1 likukj

152

Algorithm 17 was designed to correct problems arising from simple finite difference dis-

cretizations of partial differential equations (i.e. L2D and APA from Table 10). The tech-

nique of observing the magnitude of the elements used in the fixed point iteration and their

relative change was created after observing the component-wise progression of all of the el-

ements in the preconditioning factors that are generated for the discretization of the two

dimensional Laplacian with a 5-point stencil. As will be discussed further in Section 5.4

(see specifically, Section 5.4.3.1) this technique will not generalize to all other problems but

may extend to other similar matrices (i.e. symmetric positive definite, strongly diagonally

dominant, small bandwidth, etc).

The following result establishes a convergence property for the variant of the FGPILU

algorithm proposed in Algorithm 17.

Theorem 16. For any state of lij ∈ L and uij ∈ U , if a correction is performed in the kth

sweep, all subsequent iterations are fault-free, no elements in the final L and U factors differ

by more than β percent from the original factors in the matrix A, and β is chosen such that

if a fault occurs a fault is signaled, then the algorithm using a periodic correction step that

is featured in Algorithm 17 will converge.

Proof. This follows from noticing that the correcting (or “stabilizing”) step (Lines 2 to 6

of Algorithm 17) ensures that the state lij ∈ L and uij ∈ U of the incomplete L and U

factors will be in the original domain of the problem and then invoking the convergence

arguments for the original FGPILU algorithm (see [24]) which rely upon the assumptions

and base arguments from [58].

5.3.4 COMPONENT-WISE RESIDUAL CHECK

The last resilient variant of the FGPILU algorithm to be discussed relies on tracking

the component-wise progression of the individual nonlinear norms (Eq. (125)), in a manner

similar in spirit to Algorithm 16. Recall from Section 5.4.3.1 that the individual nonlinear

153

residual norms are not strictly monotonic in their decrease; however, by periodically checking

the progression of the individual τij’s it is possible to use them to detect faults without relying

on computation of the global nonlinear residual norm which requires communication between

all of the components. This scheme is detailed in Algorithm 18.

Algorithm 18: Component-Wise Residual Check for FGPILU (CW-FGPILU)

Input: Initial guesses for lij ∈ L and uij ∈ U , parameters F and α that define the
frequency and strictness of the periodic correction step respectively

Output: Factors L and U such that A ≈ LU
1 for sweep = 1, 2, . . . ,m do
2 if sweep ≡ 0 mod F then
3 for (i, j) ∈ S do in parallel

4 if τ sweep
ij > γ · τ sweep−F

ij then
5 Set k1

ij = i and k2
ij = j

6 Set i = maxi,j(k
1
ij) and j = maxi,j(k

2
ij)

7 Rollback {lik}i−1
k=1 and {ukj}j−1

k=1

8 else
9 for (i, j) ∈ S do in parallel

10 if i > j then lij = (aij −
∑j−1

k=1 likukj)/ujj

11 else uij = aij −
∑i−1

k=1 likukj

The CW-FGPILU algorithm variant (Algorithm 18) can be seen as a modified version of

the partial checkpointing method from Algorithm 16, where the check on the global nonlinear

residual norm τ is omitted but the frequency of the check on the progression of the individual

nonlinear residual norms is increased to compensate. This method can limit the amount of

communication that takes place between the individual components in the factors L and U .

The convergence of the CW-FGPILU is related primarily to two key factors: (1) the

detection rate and (2) the periodicity of the check. In a practical sense, the rate of detection of

the CW-FGPILU algorithm is determined by a combination of the size of the fault, measured

by the impact of the fault on the nonlinear residual norm, τ , and the size of the factor γ

which helps control the amount of false positives that the algorithm reports. The periodicity

154

of the check is controlled by the parameter F . The smaller F is, the more frequently the

checks occur; raising both the computational burden on the program and the likelihood

of detecting a fault before it is able to propagate to other elements in the preconditioning

factors L and U . Reducing F to 1 allows the check on the individual nonlinear residual

norms to be applied each time an update is computed, and, hence, provides a fine-grained

fault detector to each new value and accept or reject it based upon the tolerance defined by

γ.

Since the convergence of the algorithm is determined by a combination of these two

factors, the algorithm will converge if the periodicity is small enough, such that faults are

detected before they have a chance to propagate much their effects into too many elements of

L and U , and γ is selected such that faults that have a negative impact on the convergence of

algorithm are detected. Even if certain component updates are rejected due to an increase in

the corresponding individual nonlinear residual norm τij, the FGPILU algorithm is designed

to converge in an asynchronous computing environment under the standard mild assumptions

about the nature of the asynchronous computing set-up (see Theorem 3.5 of [24]). As such,

even though the updates may become out-of-sync due to the rejection of certain updates,

the algorithm will still converge to the intended result.

5.3.5 NOTES ON THE CONVERGENCE OF THE FGPILU VARIANTS

The main result concerning the convergence of the FGPILU algorithm comes from [58],

but this result only guarantees a neighborhood of the fixed point (i.e. the final incomplete L

and U factors) in which the algorithm is convergent. For certain problems, this neighborhood

may be quite large (in a practical sense), where many different initial guesses will exhibit

good convergence properties. In such a scenario, a fault may delay convergence by moving

the current iterate farther away from the fixed point, but not cause divergence by moving

the current iterate outside of the neighborhood of the fixed point guaranteed by the main

convergence result.

155

For other problems (specifically with matrices that are far from symmetric or highly

indefinite) this neighborhood may not encapsulate a large portion of the problem domain.

In this case, care must be taken to use a good initial guess to get the FGPILU algorithm to

converge at all. Additionally, if a fault does occur it is quite possible for the fault to move

the current iterate to a location in the domain where further iterations will not help the

algorithm progress towards convergence.

Convergence of the FGPILU algorithm is closely related to the Jacobian associated with

the nonlinear update equations Eq. (112). If a fault occurs that is not caught by the fault

detection (either the periodic correction step, or by the fault detection mechanisms in the

checkpointing variants) of the FGPILU algorithm, then it is possible for the Jacobian to

move to a regime of the domain where the fixed point mapping that represents the FGPILU

algorithm is no longer a contraction (i.e. ||J || > 1). In this case, the fault tolerance mecha-

nisms of the FPGILU variants will not help, and subsequent iterations of the algorithm will

not aid in convergence.

The convergence of the checkpoint-based variants of the FGPILU variants follows directly

from the convergence of the original FGPILU algorithm. Assuming that faults do not occur

after a certain number of sweeps, the algorithm will converge under the assumption that it

was successfully returned to a state not affected by a fault. Note that if a fault is detected,

the state is restored to the last known good state - how recent that state is depends on the

frequency with which the checkpoint is stored. More frequent storage of a “good” state via

checkpointing will slow down the overall progression of the algorithm, but will provide a

more recent fail-safe state if a fault is detected.

Additionally, note that an application of the FGPILU preconditioner is effectively only

an approximation of the conventional ILU preconditioner. The application of the generated

preconditioners can be expressed as, z̃j ≈ P−1vj. Both [23], [24] have shown that it is possible

to successfully use the incomplete LU factorization resulting from the FGPILU algorithm

before it has converged completely – when convergence is judged by the progression of the

156

nonlinear residual norm, τ , below some threshold tolerance, ε. It is therefore possible that

any adverse affects that a fault may have on the convergence of the FGPILU algorithm

itself will not have sufficient time to propagate throughout the entirety of the computed L

and U factors to have a meaningful impact on the performance of the overarching iterative

method (e.g. CG, GMRES) that the computed factors are used as preconditioner for. These

potential impacts will be explored numerically in Section 5.4.

5.4 NUMERICAL RESULTS

5.4.1 EXPERIMENTAL SET-UP

The experiments were all conducted on the Turing High Performance computing cluster at

Old Dominion University. For the experiments with symmetric matrices, a NVIDIA TeslaR©4

K40m GPU was used, while for the experiments featuring the non-symmetric problem set

a NVIDIA Tesla R© K80 GPU was used. The nominal, fault-free iterative incomplete factor-

ization algorithms and iterative solvers were taken from the MAGMA open-source software

library [182], and minimal modifications were made to the existing MAGMA source code in

order to implement the modifications to the FGPILU algorithm, add the α-shift, and to in-

ject faults into the algorithm. Note that this approach causes the preconditioning factors to

be applied in a manner more similar to conventional incomplete factorizations whereby the

application is not fine-grained or asynchronous. In both the symmetric problems presented

in Section 5.4.3 and the non-symmetric problems presented in Section 5.4.4, a set of param-

eters were chosen for each of the algorithm variants that apply to all matrices reasonably

well; however, parameter choices for a specific problem could be tuned more efficiently. All

of the results provided in this dissertation reflect double precision, real arithmetic.

4NVIDIA Corp., Santa Clara CA

157

5.4.2 FAULT MODEL

Three fault-size ranges (corresponding to differing orders of magnitude) for the faults

injected by the perturbation-based model (c.f., PBSFM from Chapter 4) were considered:

ri ∈ (−0.01, 0.01) (129)

ri ∈ (−1, 1) (130)

ri ∈ (−100, 100) (131)

The bit-flip model was included to appropriately gauge the worst case scenario, but no

effort was made to force the bit selected to be in a particular position. Because of this, the

impact of a a bit-flip ranges from almost none (bit-flip in less significant bit of mantissa)

to catastrophic (bit-flip in exponent or sign). Results for both the perturbation-based soft

fault model (PBSFM) and the bit-flip model (BFSFM) are presented separately, but as

averages over all trials executed for each methodology. Note that the working assumption

is that faults only effect the values of the entries lij and uij. If faults are also allowed to

affect the indices used in the sparse storage scheme, then it is possible that the strictly lower

triangular structure of the Jacobian could be altered which would have a large impact on

the convergence of the FGPILU algorithm.

5.4.2.1 Comparison of fault models

In order to provide a better feel for the effect that each of these fault models can have, a

quick investigation into the relative effects of each fault model is presented in this subsection.

Each of these methods for simulating the occurrence of a fault works on an input vector, x,

and corrupts in some way the specified component(s).

In order to illustrate the potential impact of each fault model for the FGPILU algorithm

under study in this chapter, x is taken to be the initial set of non-zero components for the

158

2D finite difference discretization of the Laplacian that is used (i.e. the LAPLACE2D matrix

detailed in Table 10). Recall that all of the matrices in this dissertation are symmetrically

scaled to have unit diagonal, so that the entries in the vector x are bounded inside of [−1, 1].
Due to the non-deterministic nature of both of these fault models, the comparison between

them was made over 1000 trials. In each trial, a fault is injected according to one of the

methodologies in order to create a vector with a fault, x̂, and the norm of the difference in

these two quantities,

d = ||x− x̂|| (132)

was computed. In this comparison, the magnitude of x̂ is bounded for the perturbation-

based fault model, but it is possible for the bit-flip fault model to produce a result of either

NaN or INF for certain combinations of component and bit selected. For the purposes of this

quick look analysis, these results were discarded since scanning for either of these incorrect

values is not a difficult problem. Summary results are provided in Table 9.

In the table, the ‘Bit-flip Model’ column corresponds to randomly selecting a single

component of the vector x, randomly selecting a bit to flip, and injecting a single bit-flip.

The column ‘Bit-flip Model (bounded)’ corresponds to the same bit-flip model, but where

bit-flips that caused large magnitude changes due to bit-flips in exponent bits were removed.

In particular, any instance where d > 10000 was removed from the data. The three columns

corresponding to the perturbation-based soft fault model (PBSFM) are separated by the

bounds on the range that the perturbations were sampled from. The (s) column corresponds

to faults in ri ∈ (−0.01, 0.01), the (m) column to faults in ri ∈ (−1, 1), and the (l) column

relates to faults in ri ∈ (−100, 100).
The vector d corresponds to the size of the fault introduced by the given fault model. In

the table, the mean of the 1000 entries of d is provided, along with the maximum value, and

the mean and standard deviation of the log of the entries in d.

The data presented in Table 9 shows the potential impact of a fault introduced by each

159

Table 9: Comparison of the effects between the various fault models used for the matrix
LAPLACE2D.

Bit-flip Model Bit-flip Model (bounded) PBSFM (s) PBSFM (m) PBSFM (l)
mean(d) — 8.2388e-02 6.4500e+00 6.4499e+02 6.4499e+04
max(d) 4.4942e+307 1.0000e+00 6.4593e+00 6.4575e+02 6.4584e+04

mean(log(d)) -3.2281e+00 -7.0040e+00 8.0956e-01 2.8096e+00 4.8096e+04
std(log(d)) 3.4646e+01 5.0639e+00 1.7075e-04 1.7287e-04 1.7194e-04

of the fault models. Note that the ‘Bit-flip Model’ contained 12 cases (1.2%) that exceeded

the threshold of ||x− x̂|| > 10000, indicating that while a severely large impact is possible,

it is not probable. The statistics on the log values of the entries in d gives some indication

as to the relative order of magnitude of the various fault models, and the spread of the level

of impact. Generally, the size of the faults induced by the bit-flip model are much more

varied than those created by the perturbation-based soft fault model. The perturbation-

based model was selected in order to model the typical worst case effect on the FGPILU

algorithm, and the inclusion of the bit-flip model was intended to provide completeness

and show that the fault tolerant variants proposed throughout this chapter are capable of

handling large errors.

5.4.3 RESULTS FOR SYMMETRIC MATRICES

The test matrices that were used in this set of experiments predominantly come from

the University of Florida sparse matrix collection maintained by Tim Davis [183], and the

matrices selected for this dissertation are the same as the ones that were selected for the

studies [23], [169], [170] that looked into the performance of the FGPILU algorithm on

GPUs both with and without the presence of faults. Note that these problems also include

the problems selected by NVIDIA R©5 for testing the incomplete LU factorization that is part

of the CUDA R© library [184].

There are six matrices selected from the University of Florida sparse matrix collection,

and the two other test matrices that were used come from the finite difference discretization

5Nvidia Corporation, Sunnyvale CA

160

of the Laplacian in both 2 and 3 dimensions with Dirichlet boundary conditions. For the

2D case, a 5-point stencil was used on a 500 × 500 mesh, while for the 3D case, a 27-point

stencil was used on a 50× 50× 50 mesh.

All of the matrices considered in this portion of the dissertation are symmetric positive-

definite (SPD) and as such the symmetric version of the FGPILU algorithm (i.e. the incom-

plete Cholesky factorization) was used. Also, recall from Section 5.1 that each of the eight

matrices used in this dissertation will be symmetrically scaled to have a unit diagonal in

order to help improve the performance of the FGPILU algorithm. A summary of all of the

matrices that were tested is provided in Table 10.

Table 10: Summary of the 8 symmetric positive-definite matrices used in this dissertation.
Descriptions come from [183].

Matrix Name Abbreviation Dimension Non-zeros Description
APACHE2 APA 715,176 4,817,870 SPD 3D finite difference
ECOLOGY2 ECO 999,999 4,995,991 circuit theory applied to ani-

mal/gene flow
G3 CIRCUIT G3 1,585,478 7,660,826 circuit simulation problem
OFFSHORE OFF 259,789 4,242,673 3D FEM, transient electric

field diffusion
PARABOLIC FEM PAR 525,825 3,674,625 parabolic FEM, diffusion-

convection reaction
THERMAL2 THE 1,228,045 8,580,313 unstructured FEM, steady

state thermal problem
LAPLACE2D L2D 250,000 1,248,000 Laplacian 2D finite difference,

5-point stencil
LAPLACE3D L3D 125,000 3,329,698 Laplacian 3D finite difference,

27-point stencil

Plots of where the non-zeros are located in the matrix are provided for all eight matrices

in Fig. 31 for the case where the matrices are unordered, and in Fig. 32 for the case where all

of the matrices have been reordered using a Reverse Cuthill-Mckee (RCM) algorithm. The

RCM algorithm is designed to reduce the bandwidth of the input matrix, and this effect can

be seen in the clustering of non-zero terms around the main diagonal in the images shown in

Fig. 32 relative to the dispersal of non-zero elements shown in Fig. 31. This reordering was

shown to be effective for similar matrices with respect to the convergence of the FGPILU

161

algorithm in [23], [24], [169], [170]

Additionally, the condition number of each of these matrices (as estimated by the condest

function in MATLAB R© gives some further indication of how easy the problem will be to solve.

Matrices with a lower condition number tend to have better performance in iterative meth-

ods.

Table 11: Condition number for each of the symmetric positive-definite problems.

Matrix Condition Number
APACHE2 5.3169E+06
ECOLOGY2 6.6645E+07
G3 CIRCUIT 2.2384E+07
LAPLACE2D 6.0107E+03
LAPLACE3D 1.1060E+03
OFFSHORE 2.2384E+13

PARABOLIC FEM 2.1108E+05
THERMAL2 7.4806E+06

The experiments in this section are divided into two sets. This first set of experiments

focuses on the convergence of the FGPILU algorithm despite the occurrence of faults and

features comparisons of the L and U factors produced by the preconditioning algorithms.

The second set of experiments shows the impact of using in a Krylov subspace solver the

preconditioners obtained from the first set of experiments. Note that in all of the experiments

conducted, the condition ujj = 0 was never encountered. Since all the test matrices are

SPD, the preconditioning algorithms are Incomplete Cholesky variants, and the solver is the

preconditioned conjugate gradient (PCG), as implemented in the MAGMA library [182].

Finally, note that the implementation of the variants that were examined in this chapter

is not necessarily optimal from a performance point of view. The goal of the experiments

was to quantify the ability of each of the variants proposed to provide a measure of resilience

to the FGPILU algorithm when it is forced to run through undetected (by the system) soft

faults. This focus translates to the observing the efficacy of the various algorithms which is

162

Fig. 31: Sparsity plots showing the location of all non-zeros for each of the 8 matrices with
no reordering applied that were considered in the first set of experiments.

163

captured in the results that are presented throughout the remainder of this section. Because

of this focus, the excessively small convergence chosen to declare the FGPILU algorithm

converged (i.e. 10−8), and some issues with resource contention, the time for all of the

FGPILU variants (e.g. Fig. 36 (right) and Fig. 37 (right)) may be inflated relative to the

performance of traditional incomplete factorization (IC). Further optimization, including

the use of optimal checkpointing libraries for GPU based applications (i.e. [185], etc) and

extended performance analysis would be needed to produce performance-oriented prototypes

of each of the variants.

5.4.3.1 Convergence of FGPILU algorithm

Here, the FGPILU algorithm is said to have converged successfully if the nonlinear resid-

ual norm progresses below 10−8. Although this threshold is unnecessarily small from a

practical point of view—it is possible to achieve good performance from a preconditioner

with a larger nonlinear residual norm—it was chosen so that more sweeps would have to be

conducted before the algorithm converges to better judge the impact of faults. The progres-

sion of the nonlinear residual norm for a single fault-free run of each problem is depicted in

Fig. 33 (left), which is a as an example of the typical progression of the nonlinear residual

norm as the algorithm progresses towards convergence.

To illustrate the potential impact of a fault, Fig. 33 (right) shows the impact a fault

can have on the FGPILU algorithm when it is injected (and ignored) at the beginning, the

middle, or near the end of how long it would take the algorithm to converge with no faults

present. Note that the Apache2 test problem converges to the desired level of nonlinear

residual in 20 iterations when faults are not present.

From Fig. 33 (right), it may be observed that it took about twice as many sweeps for

FGPILU to converge under a single occurrence of a fault; and the number of these extra

sweeps is similar for each of the three injection locations. Although the example shown in

Fig. 33 (right) is typical of what was observed experimentally with the test cases selected,

164

it is by no means general or conclusive. Faults may cause the FGPILU algorithm to diverge

entirely or cause the resulting L and U factors to cause the Krylov subspace solver to

stagnate or even diverge. A major point of the example in Fig. 33 (right) is to show the

non-monotonous decrease of the FGPILU residual norm after a fault takes place.

Aggregate results for the performance of several variants of FGPILU algorithm are pro-

vided in the following figures as follows:

• when no attempt is made to mitigate the impact of the faults (No FT),

• the CPA-FGPILU variant wherein the L and U factors may be replaced in their entirety

and is described in Algorithm 15 (CPA),

• the CP-FGPILU which rolls back a single row and column of the L and U factors and

is described in Algorithm 16 (CP),

• the periodic correction step based on checking component-wise progression of the ele-

ments in the L and U factors and is given in Algorithm 17 (SS),

• the periodic correction step based on checking component-wise progression of the in-

dividual nonlinear residuals, τij which is given in Algorithm 18 (CW).

Perturbation-Based Faults Now, the effects of a soft fault (modeled as a perturbation

as described in Chapter 4) on the FGPILU algorithm and the variants discussed throughout

this chapter are examined. The convergence of the FGPILU algorithm itself - as judged by

the number of sweeps until the desired tolerance is met and the percent of trials that resulted

in preconditioning factors that led to a successful solve of the associated linear system - is

given in Fig. 34.

Figure 34 (left) shows the average number of sweeps to reach convergence for the cases

that were successful. Note that this number is generally lower for the checkpoint-based

schemes but that this is not the case for all of the problems that were tested. However, the

higher success rate of the CPA-FGPILU and CP-FGPILU algorithms combined with the

165

generally faster convergence of those methods suggests that, with the parameters used in

this dissertation, they are more effective at mitigating faults.

The small degradation in the number of sweeps to convergence depicted in Fig. 34 (left)

for certain problems (i.e., L3D) for the No FT variant reflects the fact that only successful

runs are included in the averages here. In Fig. 34 (right), a corresponding drop in the “success

rate” can be seen for the problems where the increase in the number of sweeps required is not

as large as expected for variants without fault mitigation. Here, a preconditioner is deemed

as resulting in success if both the FGPILU converges, and the PCG solve using it terminates

before the maximum number of iterations is reached. Practically, this means that if a fault

caused the FGPILU algorithm to diverge and/or produce preconditioning factors that could

not lead to convergence inside of the PCG solver, then the amount of sweeps required for

the FGPILU algorithm would not be included in the left images of either Fig. 34 or Fig. 35,

but that this run would cause the success rates captured in the right of Fig. 34 and Fig. 35

to decrease.

For the FGPILU variants tested, the success rates captured in Fig. 34 (right) show that

both of the checkpoint-based variants are usually more successful than the self-stabilizing

one at mitigating faults modeled as perturbations and producing acceptable preconditioners.

It is important to note that a large, unoptimized value of β = 4 was used for the percent

difference check inside of the SS runs, and that this value may certainly be improved and

tuned for the particular case at hand. The lower success rates associated with the SS-

FGPILU algorithm are due to the fact that some of the smaller faults are not caught by this

large value of β and the Jacobian moves to a portion of the domain where the mapping is

not a contraction. It is possible that the method presented by this algorithm could be tuned

to the specific problem at hand in a manner that efficiently made the FGPILU algorithm

resilient to soft faults.

166

Bit-Flip Faults Next, results concerning the convergence of the FGPILU algorithm (and

the variants presented in this work) when subjected to faults directly corresponding to a

bit-flip are provided. The range of impacts possibly induced by a bit flip fault is wider than

those caused by the perturbation-based fault model that was used above in the previous

subsection. This gives the possibility of creating a fault that drastically impedes the ability

of the FGPILU algorithm to converge as well as making it possible for a fault to have an

almost negligible impact; detectable by only the strictest of fault detection mechanisms. As

before, the results are averaged over multiple trials and aggregate results are presented.

Figure 35 (left) shows the number of sweeps until convergence for each of the FGPILU

algorithm variants when subjected to a single bit-flip fault. The number of sweeps in this

case (i.e. with a bit flip instead of a perturbation) is fairly consistent across the methods

tested, especially when compared with Fig. 34. The success rates for the trials run with

bit flips (see Fig. 35 (right)) are significantly higher relative to the success rates when the

algorithm variants were subject to perturbation-based faults. This owes to the fact that only

a single component is affected by the faults injected using a bit-flip based methodology.

Generally speaking, the higher variance with the amount of data corruption associated

with a random bit flip causes the trials using a bit-flip fault methodology to have either very

little or catastrophic impact. This is seen when comparing Fig. 34 and Fig. 35 in that in

the number of sweeps taken until convergence on the successful runs (i.e. the left images

of each figure) the number of sweeps until convergence is generally lower for faults modeled

as bit flips and that the variance in performance (as judged by the number of sweeps until

convergence) between the different variants of the FGPILU algorithm is lower.

5.4.3.2 Preconditioner Performance in Iterative Methods

In this set of experiments, a maximum number of 3000 PCG iterations was used; any

run that had not converged by that point was declared to have diverged. While all of

the preconditioners to be evaluated are forms of incomplete LU decomposition, they are

167

constructed by algorithms described in Section 5.4.3.1. For the purpose of an extended

comparison, results are provided for the traditional Incomplete Cholesky (IC) and the Fine

Grained Parallel Incomplete Cholesky (ParIC); neither of these two variants is subjected to

faults.

Perturbation-Based Faults Figure 36 captures only the cases in which a preconditioner

was successfully prepared (c.f. Fig. 34 (right)). Figure 36 (left) indicates that a successful

FGPILU variant is typically capable of accelerating the PCG solve to the levels similar to

those achieved by the no-fault constructions of a more traditional incomplete LU factor-

ization. The few anomalous bars from Fig. 36 (left) correspond to runs of the FGPILU

algorithm where no fault tolerance was attempted (NoFT) and enough of these runs were

able to produce a PCG solve that converged in far more iterations than would typically

be required to skew the averages. This seems to suggest that this behavior is not entirely

anomalous and that the FGPILU algorithm has some nature level of resilience (else, the

solves would not have been “successful” in the first place) to soft faults.

The timing results presented in Fig. 36 (right) are for the total time required for the

preconditioner preparation and PCG solve. While the former may vary greatly depending

on which variant is considered, the latter is rather uniform across the variants due to their

similar numbers of iterations performed to convergence. More efficient implementations of

the fault tolerance mechanisms and a more realistic tolerance for the nonlinear residual norm

may improve the performance of the three fault-tolerant variants of the FGPILU algorithm,

however the initial results show that the periodic correction step proposed in Algorithm 18

and represented by CW may be one of the more efficient variants.

Bit-Flip Faults Again, the differing impacts caused by a fault modeled as a bit-flip -

as opposed to the perturbation-based data corruption that corresponds to the bit flip fault

injection methodology described in Chapter 4 - are explored at the level of timing and

accuracy results in the corresponding PCG solve.

168

Figure 37 (left) shows that the number of sweeps required for the PCG solver to conver-

gence is even across all FGPILU algorithm variants. This shows that when the corresponding

FGPILU algorithm variant successfully produces preconditioning factors the effect that the

factors have on the PCG solver is similar. The fact that no runs without fault tolerance

(NoFT) were able to converge in a large number of iterations similar to Fig. 36 (left) is

also indicative of the dichotomy of possible effects caused by a bit-flip; either the effect is

fairly negligible and the preconditioning factors that are produced accelerate the PCG solve

as expected, or the effect is large enough that incomplete factorization does not lead to a

successful solve of the associated linear system.

Conversely, Fig. 37 (right) shows that the time required for both preconditioner prepa-

ration and the PCG solve vary more from on method to another. There is more overhead

associated for the two checkpointing schemes than the other variants and this could be (at

least partially) mitigated by optimizing the number of times the required checkpoint data is

stored to limit the data transfer and read/write overhead, or improving the implementation

that is used for checkpointing. This is seen as well in Fig. 36 (right) but the discrepancy

between the checkpointing based variants (CP and CPA) and the other variants is not as great.

In the case of the periodic correction step variants (SS and CW) the overhead is possibly due

to the extra work required on the component level since the perturbation-based faults tend to

corrupt all of the components in the preconditioning factors L and U whereas in the bit-flip

fault only a single component is corrupted. In general, the CW variant seems to exhibit the

least amount of overhead from a time oriented perspective.

5.4.3.3 Discussion of FGPILU algorithm variants in the symmetric case

The experiments conducted here have shown that (1) the FGPILU algorithm is naturally

resilient to smaller faults as modeled here—either by perturbations or bit-flips that affect

less significant bits in the mantissa—and (2) larger faults can cause FGPILU to diverge and

produce L and U factors that (if used) prohibit the corresponding Krylov subspace method

169

from solving the original linear system Ax = b successfully. Examining the images on the

right side of Fig. 34 and Fig. 35 a few conclusions can be drawn:

• The data indicates that the FGPILU algorithm and the variants discussed here tend

to be more resilient to errors that only corrupt a single component.

• The rates of successful convergence within the desired tolerance are higher for all the

proposed variants then for the original algorithm, regardless of the generated fault

types.

Highlights of FGPILU variant differences The component-wise check put forth in

Algorithm 18 (CW) has the ability to be implemented in a very efficient manner, but it may

not detect faults as well as the CP algorithm (Algorithm 16) from which it stems. For

particular problems that have a higher natural success rate (see the NoFT columns from the

images on the right side of both Fig. 34 and Fig. 35), the CW variant could provide a low

overhead approach to fault tolerance for the FGPILU algorithm.

The two checkpointing-based algorithms (CP and CPA) offer the highest likelihood of

achieving the correct final answer, but also tend to rank quite highly with respect to the time

required for convergence. One possibility to alleviate this additional computational burden

is to adjust their input parameters to lessen the amount of checkpointing that occurs based

on problem at hand, which is beyond the scope of the work presented in this dissertation.

Hence, the results reported here focused only on a single set of parameters designed to

compare the variants and show their potential efficacy.

The self-stabilizing variant (SS) may need the most work of any of the variants in terms of

tuning parameters for success with a given problem, but is the only one of the four variants

tested that avoids computing (global or individual) nonlinear residual norms entirely. As

such, one may implement it very efficiently, and SS-FGPILU may be very effective if the

problems of interest are similar enough to leverage the same values of the input parameters.

170

Lastly, note that while the variants presented here do perform differently and may be

best suited to different use cases, when they are able to successfully converge they tend to

produce very similar performance in the associated Krylov subspace solver.

Error detection capability The proposed fault-tolerant variants of the FGPILU algo-

rithm are designed not to detect every fault that occurs but rather to make the end user

unaware of the negative convergence effects of any faults that do occur. Such a design

choice has been made, in part, because some faults may have a negligible effect and because

comprehensive error detection additional modification to the original FGPILU routine.

For example, while in the CPA variant (Algorithm 15), it is straightforward to define

detection as a positive check on the progression of the global nonlinear residual norm, for

the other variants it is not as simple. The success of Algorithm 18 is very closely related to

the ability of the algorithm to detect the presence of a fault on the fine-grained level. Large

faults tend to be easy to detect looking solely at changes in the individual nonlinear residual

norms τij’s and the FGPILU algorithm tends to converge naturally through faults that have

a sufficiently small impact. However, detection of the more moderately sized faults is key to

ensuring a high success rate and is related to the parameters γ and F (see Section 5.3.4 for

their discussion).

5.4.4 RESULTS FOR NON-SYMMETRIC MATRICES

This section provides a set of results complementary to what was presented in Sec-

tion 5.4.3, by examining problems that are more difficult to solve. The test problems that

were used in this portion of the dissertation are intended to form a representative but not

complete set of matrices that are harder to solve than the simpler SPD problems that have

been utilized previously. The convergence of the fixed point iteration associated with the FG-

PILU algorithm displays good convergence with problems that are SPD [23], [24], [169]; how-

ever, solving fixed point iterations that feature nonlinear functionals (i.e., in Algorithm 11)

171

is often difficult. Developing the associated convergence theory, especially results that carry

practical meaning, is also typically hard to accomplish (see for example: [59], [60]).

The test matrices used here come from a variety of sources. The first comes from the

seminal work on the performance of incomplete LU factorization for indefinite matrices [51],

fs 760 3. The next matrix comes from the domain of circuit simulation, ecl32, and has been

studied previously [186], [187]. The last matrix comes from the set of 8 SPD matrices that

were studied in Section 5.4.3, and is the matrix among those eight with the largest condition

number (as estimated by MATLAB R©’s CONDEST function); ’offshore’. Condition numbers for

the 8 previously studied SPD problems range from 1.11e+03 to 2.24e+13. A brief summary

of all three matrices is provided in Table 12.

Table 12: Characteristics of the matrices used: Column Sym? reflects the symmetry, PD?
provides positive-definiteness, Dim—number of rows, and Non-zeros–number of non-zeros in
each matrix.

Matrix Name Abbr. Sym? PD? CONDEST Dim. Non-zeros Description
fs 760 3 FS N N 9.93E+19 760 5,816 chemical engi-

neering
ecl32 ECL N N 9.41E+15 51,993 380,415 circuit simulation

OFFSHORE OFF Y Y 2.24E+13 259,789 4,242,673 electric field diffu-
sion

The matrices that are presented here attempt to give some indication as to the per-

formance of the nonlinear fixed point iteration associated with the FGPILU algorithm with

respect to matrices that are more challenging computationally than the problems that are fea-

tured in the majority of the previous work on the algorithm (i.e. [23], [24], [169], [170], [175]).

Lastly, it is important note that many other problems from both [51], [52], [183], and

the domain of circuit simulation were considered; only about 7% of the problems studied

were able to converge with the standard initial guess and no fundamental alterations to

the matrix. While this percentage could be increased with a more careful analysis of each

problem it is brought up here to emphasize the difficulty this fixed point algorithm can have

172

with non-symmetric and indefinite problems.

5.4.4.1 Convergence of the FGPILU algorithm

In these fault-free experiments, the convergence of the FGPILU algorithm is examined

for three different levels (0,1, and 2) of the incomplete LU factorization (see [147] or [34] for

a clear description of levels of incomplete LU factorizations), and three different values of α

in the α-shift described in Section 5.2.1. Note that regardless of the ordering being utilized,

all runs start with a symmetrically scaled matrix such that the entries on the diagonal are

less than or equal to 1. As such, appropriate values for α range from 0 to 1 and in this

dissertation three discrete values were selected from this range: 0, 0.5, 1.0.

More extreme values for α can help improve the convergence of the FGPILU algorithm by

increasing the diagonal dominance of the matrix that the FGPILU algorithm is applied to,

but this comes at the expense of preparing the preconditioner for a problem increasingly less

related to the original problem. As an example, for the OFFSHORE problem with AMD ordering

and symmetrical scaling, the FGPILU algorithm converges in a progressively smaller number

of sweeps for increasing values of α. However, the overall performance of the Krylov subspace

solver deteriorates. Details are provided in Table 13. Note that as α is increased, the number

of sweeps required for the FGPILU algorithm to reduce the nonlinear residual norm below

the desired tolerance is greatly decreased, but both the number of iterations and the time

required for convergence of the Krylov subspace solver are greatly increased.

Table 13: Effects of increasing α for the OFFSHORE problem.

α FGPILU Sweeps Krylov solver iterations Krylov solver time
0 24 30 24.8067
1 9 56 46.4995
10 5 144 130.0958

For each of the three matrices: four orderings were tested (MC64, AMD, RCM, and the

173

natural ordering), 3 level of ILU fill-in were tested (levels 0, 1, and 2), and 3 factors for α

were used (0, 0.5, and 1.0). This leads to a total of 108 permutations to test. Of these 108

combinations, 84 (77.78%) led to a case were the FGPILU algorithm converged, but only 29

(26.85%) resulted in a successful GMRES solve of the entire linear system using a restart

parameter of 50 and a tolerance of 1e-10. Details for those 29 cases are provided below in

Table 14.

Table 14: Successful runs with their parameter combinations.

Matrix Ordering α ILU Level Sweeps Krylov Its. Time (s)
offshore AMD 0 0 19 30 18
offshore AMD 0.5 0,1,2 10,11,11 40,34,34 24,55,144
offshore AMD 1 0,1,2 8,9,9 56,54,54 34,96,229
offshore RCM 0 0 19 19 35
offshore RCM 0.5 0,1,2 10,11,11 37,34,34 68,306,771
offshore RCM 1 0,1,2 9,9,9 54,54,54 101,484,1226
offshore Natural 0 0 22 22 84
offshore Natural 0.5 0,1,2 11,12,12 38,34,34 146,312,695
offshore Natural 1 0,1,2 9,10,10 54,54,54 210,491,1104
ecl32 AMD 0 2 15 127 104
ecl32 RCM 0 2 24 9 39
ecl32 Natural 0 2 18 11 16
fs 760 3 AMD 0 2 55 3 0.4
fs 760 3 RCM 0 1,2 52,63 2,2 0.4,0.4
fs 760 3 MC64 0 1 16 3 0.3
fs 760 3 Natural 0 1 16 3 0.3

In general, higher levels of fill are capable of producing better preconditioning factors

[51], [52], but come at the cost of increased storage and computational costs. There is an

inherent trade-off in using higher fill levels to produce incomplete factors that are closer to

the full L and U factors that must be evaluated. A few other general observations:

• the two non-symmetric problems tend to perform better with smaller values of α and

higher levels of fill-in allowed, and

174

• the level of ILU fill-in tends to not have as much of an impact on whether or not the

problem can be solved when compared to the ordering or value for α, but affects the

performance. In the results found here, the benefit of having more complete L and

U factors from going to a higher fill-in level tends to be outweighed by the increased

computational cost of the fixed point iteration associated with the FGPILU algorithm

for a drastically larger number of elements.

As an example of the drastic increase in the number of non-zero elements for each of the

matrices, consider the data in Table 15.

Table 15: Increase in non-zeros for different levels of ILU fill-in. The data in the first two
rows is given in millions (m) of non-zero elements, and the last row specifies thousands (k)
of non-zero elements.

Matrix nnz(ILU-0) nnz(ILU-1) nnz(ILU-2)
offshore 4.5m 10.0m 21.7m
ecl32 0.4m 1.0m 2.0m
fs 760 3 6.5k 17.6k 32.3k

5.4.4.2 Resilience of the FGPILU algorithm

The experiments conducted in this section reflect the resilience of the FGPILU algorithm

with respect to transient soft faults for this section set of problems. The only variant con-

sidered for this set of experiments is the CPA-FGPILU variant detailed in Algorithm 15. The

reason for this selection is that the success of the FGPILU algorithm for these problems

in a fault-free case was low enough that only the most successful variant of the FGPILU

algorithm was considered for this problem set.

Further, in evaluating the resilience of the FGPILU algorithm, only combinations of

ordering, ILU-level, and α from Section 5.3.5 that were successful in the fault-free scenario

have been selected for experimentation. A single set of parameters for the fault detection

175

check in Algorithm 15, τ (sweep) > γ · τ (sweep−r), was used. In these experiments, γ and r

were set to one so that a strict check on the monotonicity of the nonlinear residual norm

is performed after every sweep. For SPD problems, this level of check may be unnecessary

[169], [170], but this provides the maximum level of protection for the FGPILU algorithm

and provides a measure of how effective this check can be for the more difficult problems

under investigation in this dissertation.

A summary of the data found in these experiments is provided in Table 16, which depicts

the percentage of runs that succeeded—resulted in a successful linear system solve—subject

to faults (column Scenario), when no fault tolerance (column NoFT) and the checkpointing

FGPILU variant (column CPA) were employed, respectively. Three ratios of the results with

CP and NoFT are shown in Table 16 as Timing, Sweeps, and Its, defining the timing increase,

reduction in the total number of sweeps needed, and the change in the GMRES iterations,

respectively. As an alternative representation, a visual representation of portions of this data

is provided in Fig. 38.

Table 16: Solver performance using FGPILU with no fault tolerance (NoFT) and checkpoint-
ing (CPA).

Scenario Success
Rate
(NoFT)

Success
Rate
(CPA)

Timing
Ratio

Sweeps
Ratio

Its. Ratio

Total 46.65% 100.00% 1.02 0.63 1.01
Small
fault

88.59% 100.00% 1.03 0.69 1.03

Medium
fault

42.94% 100.00% 1.01 0.48 1.00

Large
fault

14.71% 100.00% 1.00 0.73 0.99

The checkpointing algorithm mitigates well the potential impact of a fault. Note that the

largest benefit comes from correcting the impact of a large fault. Smaller faults—which cause

176

effects similar to those produced by bit flips in a less significant bit of the mantissa—tend

to be corrected naturally by the iterative nature of the fixed point iteration.

Another important factor in comparing any fault tolerance methods is quantifying how

much overhead they introduce. Due to the non-deterministic block-asynchronous nature of

the GPU implementation of the FGPILU algorithm in the absence of faults and the inherent

randomness involved in the fault model utilized in this dissertation, it is difficult to compare

individual cases. However, comparing runs utilizing the same parameters over all cases

where both the fault-free variants and the checkpointing variant solved the linear system

successfully, there is about a 2% increase in the time required to reach a solution in order

to provide fault tolerance to the FGPILU algorithm using this methodology. There is more

of an impact on cases with small faults since it is often possible for the iterative nature

of the algorithm to correct the impact of a sufficiently small fault. Note that varying the

parameters γ and r that determine the frequency and strictness of the check could change

both the efficiency and efficacy of the checkpointing variant of the FGPILU.

5.5 SUMMARY

This chapter of the dissertation has examined the impact of soft faults on the FGPILU

algorithm, and proposed several variants to remedy the impact. Soft faults which are unde-

tected by the original FGPILU algorithm have the potential to cause severe disruption to the

preconditioning routine; and, even if the FGPILU algorithm reports successful convergence,

the solver that uses the incomplete factors generated by the FGPILU algorithm as a pre-

conditioner may be affected. The ability of the FGPILU algorithm to tolerate and mitigate

certain soft faults arising in the construction of L and U factors has been explored using

several algorithm variants and two distinct ways of modeling the impact of a soft fault. The

results shown here indicate that any undetected soft fault that affects multiple components

will be significantly more compromising for the FGPILU algorithm. The variants of the

FGPILU algorithm developed in this chapter have provided mechanizations that supply a

177

measure of resilience to the procedure and allow it to converge successfully. Additionally,

the techniques discussed offer an abundance of methods that can be used to create further

variants that may provide better performance and/or resilience for specific problem domains.

This chapter has presented some experiments and analysis concerning the convergence

and resilience of the FGPILU factorization with respect to both symmetric and non-symmetric

problems. The use of fine-grained preconditioning algorithms is increasing in general, and

as new fine-grained preconditioning algorithms are developed, some may use the FGPILU

algorithm as a building block and require the FGPILU algorithm to execute successfully in-

side of a more complex preconditioning scheme. In these cases, it may be critical to have the

FGPILU algorithm converge more completely, and the work presented here could be used as

a starting point towards ensuring that can happen successfully even when computing faults

occur.

178

Fig. 32: Sparsity plots showing the location of all non-zeros for each of the 8 matrices with
the Reverse Cuthill-Mckee (RCM) reordering applied that were considered in the first set of
experiments.

179

Fig. 33: The progression of the nonlinear residual for 30 sweeps of a typical fault-free run
for each of the 8 test problems (left). The progression of the nonlinear residual for the
Apache2 test problem for three different fault injection times and fault size in the (−1, 1)
range (right). The horizontal dashed line is indicated the FGPILU convergence tolerance of
10−8.

Fig. 34: For perturbation-based faults (PBSFM): the number of sweeps required for con-
vergence for each of the 8 test problems (left). The percentage of runs that produced a
preconditioner that corresponded to a successful PCG solve (right).

180

Fig. 35: For bit-flip (BF) faults: the number of sweeps required for convergence for each
of the 8 test problems (left). The percentage of runs that produced a preconditioner that
corresponded to a successful PCG solve (right).

Fig. 36: For perturbation-based faults (PBSFM): the number of iterations required for suc-
cessful PCG solves for each of the 8 test problems (left). The time required for successful
PCG solves for each of the 8 test problems (right).

181

Fig. 37: For bit-flip (BF) faults: the number of iterations required for successful PCG solves
for each of the 8 test problems (left). The time required for successful PCG solves for each
of the 8 test problems (right).

Fig. 38: Percentage of successful runs for no fault tolerance (NoFT) and checkpointing (CPA)
(left), ratios showing relative performance of the checkpointing variant to the nominal FG-
PILU algorithm (right).

182

CHAPTER 6

FRAMEWORK FOR MODELING AND ANALYSIS

When constructing any algorithm that is designed to be used on future hardware, it is

important to take into account as many properties of the potential systems as possible. Since

the variability of future hardware, both individual processor performance and the make-up

of the HPC system itself, contribute directly to the amount of asynchronism that can be

expected, it is necessary to keep in mind a range of potential performance characteristics.

The amount of delay between the fastest and slowest processors (see Chapter 3) can have

an impact on the convergence rate of different algorithms, and it is possible to develop an

intuitive understanding of reasonable delays through simulation.

In this chapter, a simulation framework1 is proposed and tested to examine the potential

benefit of asynchronous iteration for various HPC accelerator architectures, which typically

admit different granularities of computations. Additionally, an example of a case study us-

ing the simulation framework is presented to examine the efficacy of different checkpointing

schemes for asynchronous relaxation methods. The simulation framework discussed is capa-

ble of simulating the potential performance of a variety of asynchronous iterative methods

for a range of difference performance parameters. The construction of the framework is mod-

ular which allows the performance of new algorithms (and variants) to be examined. Some

of the results presented here have been previously published [168]. Related work creating

predictive models for the performance of iterative methods is captured in [188], [189] but is

not included in this dissertation.

The structure of this chapter is organized as follows: Section 6.1 describes the shared

memory experiments, and introduces the simulation framework. The subsections contained

1Send requests for source code to evan.coleman1@navy.mil

183

inside of Section 6.1 detail results and validation efforts for two different solver implemen-

tations. Next, Section 6.2 provides an example of a use case that shows how to extend

the simulation framework to experiment with fault tolerant algorithms, Section 6.3 provides

some tests using this extension, and Section 6.4 concludes.

6.1 DESIGN OF SIMULATION FRAMEWORK

The simulation framework proposed here is designed to simulate the performance of an

asynchronous iterative method operating on multiple computing elements using a single

processing element. In this simulation framework, the emphasis is on fixed-point iterations

x = G(x), (133)

for some x ∈ R
n. In the framework, certain components are assigned (possibly distinct) times

for performing an update to their components, and the effects of various delay structures

can be examined.

The development of the present computational framework may be described by the flow

diagram given in Fig. 39, which is typical for computation frameworks, except for the third

Timing Distributions stage, which is used for the proposed framework as described below

along with other stages from Fig. 39. A mathematical formulation of a problem (e.g., as

a set of equations) is presented first (Mathematical Model in Fig. 39). The mathemati-

cal model is then implemented in an HPC environment (Parallel Implementation stage).

Timing and algorithm-performance data (e.g., iterations to convergence) are collected from

parallel executions on a subset of configurations and problem sizes, such that, in the pro-

posed framework, timing distributions may be constructed (Timing Distributions stage) and

used to simulate the performance of the mathematical model for target configurations and

requirements. Since such simulations are faster and less-cumbersome to set-up, they al-

low for easy experimenting with variations of the underlying mathematical model, parallel

184

implementation type and environment, or, eventually, in showing the expected performance.

Fig. 39: Stages in the proposed framework development.

The simulation framework developed here works to simulate the performance of generic

asynchronous relaxation methods in shared memory environments. The simulation frame-

work can then be modified to reflect changes in the environment, or it can be utilized to

demonstrate the effectiveness of algorithmic modifications.

As a simple example, take n = 2. Then x = (x1, x2) ∈ R
2 and, using the terminology of

Section 2.1.1.2,

x1 = G1(x) = G1(x1, x2), (134)

x2 = G2(x) = G2(x1, x2). (135)

In a traditional fully synchronous environment, both functions, G1 and G2, would be called

simultaneously and no subsequent calls would be executed until both functions had returned

and synchronized all results. In a fully asynchronous environment, both functions would be

allowed to execute again immediately upon their own return, leading to a case where one of

x1 or x2 may be updated more frequently than the other. Per Definition 1, both functions

use the latest values of all components x that are available to them when the function call is

initiated. For instance, if the processing element that was assigned to update the component

x1 was ten times as fast as the processing element assigned to update x2, then in the amount

of time needed to update x2 once, the component x1 will have been updated ten times, and

185

when G2 is called for the second time it will be called using the latest component of x1

(which has been updated 10 times), and the latest component of x2 (which has only been

updated once).

A block diagram showing the flow of the simulation framework is provided in Fig. 40.

The framework models the performance of methods that solve the linear system

Ax = b (136)

using relaxation methods in either a synchronous or asynchronous manner.

Fig. 40: Block diagram of the simulation framework.

The simulation requires as input the matrix A, the right hand side b and an initial guess

at the solution, x0. The important pieces of the simulation are all passed as functions to the

tool. There are three functions required:

1. An update function that specifies how to perform the relaxation. A common technique

186

for this is given by Eq. (92). It is certainly possible to modify this equation to obtain

different updates, as described, e.g., in [34].

2. An update pattern function that determines which elements of the matrix A are as-

signed to each simulated processor. A common approach for this assignment is to

evenly divide the work among all of the available processors; however, other patterns

are also possible. For example, the use of randomization in the solution of linear sys-

tems via relaxation methods has gained some popularity in the fields of optimization

and machine learning (see [105] and references therein) and update patterns such as

this are easy to implement inside of this framework.

3. An update time function that captures the empirical information that was captured

from parallel performance runs on the HPC hardware. This function will typically be

used to sample from the timing distribution that was generated beforehand. Note that,

since each simulated processor makes calls to this function independently, the simulated

performance will be asynchronous so long as the function returns different values upon

different calls. Defining an update time function that has constant return (or constant

return for every processor) provides a means to show synchronous performance.

By varying the three functions that are passed to the framework, not only can the HPC

performance be predicted by making changes to the update time function, but various modi-

fications to the basic algorithm can be quickly and easily compared in a manner that reflects

real world asynchronous performance. With the renewed research interest in asynchronous

iterative methods that perform relaxation updates, oftentimes performance between new

variants and existing algorithms is only compared in simple synchronous experiments; the

simulation framework proposed here allows for a more meaningful comparison between meth-

ods that does not require development of parallel implementations of all the methods or

algorithm variations that are involved.

The simulation framework requires some data that specifies parameters concerning the

187

particular run of the simulation such as the desired tolerance, the number of processors to

simulate, and a computational scale factor. The framework itself is developed in MATLAB R©and

the three required functions are passed as function handles.

The simulation itself (see Simulation block in Fig. 40) progresses by reading in the user

provided input data, assigning an initial update pattern and time to each processor, and

then beginning the main loop. Inside of the main loop, the time increments and a check

is performed to see if the current time matches with the scheduled update time for any

of the processors, if so, the update function is called and then a time for the next update

is assigned to the processor that just updated and (if desired) the update pattern for the

current processor is changed. After this, a check is performed on the size of the residual to

determine if the exit criteria is met before the time is incremented again and the loop starts

over. A pseudocode representation of the simulation framework for simulated asynchronous

Jacobi is given in Algorithm 19.

Algorithm 19: Asynchronous Jacobi simulation

Input: aij ∈ A, initial guess for x0, a number of processing elements p, an input
random number distribution

Output: Solution vector x
1 Assign processor update times, τ1, τ2, . . . , τp, by sampling from an appropriate

random number distribution
2 Assign elements xi ∈ x to each simulated processing element
3 for t = 1, 2, . . . until convergence do
4 for each processing element Pl do
5 if τl = t then
6 for each element xi ∈ x assigned to Pl do

7 xi =
−1
aii

[∑
j �=i aijxj − bi

]
8 Retrieve a new update time τl by sampling from the input distribution

9 Calculate the residual as in Eq. (138) and check termination conditions

In Algorithm 19, a given update time τl will often not be sampled as an integer. The

simulation adjusts for this by scaling the number that is sampled by the appropriate order

188

of magnitude, adjusting the maximum value allowed for t accordingly, and then scaling back

the final time calculated by the simulation. For example, if the desired time precision is

hundredths of a second, and the time resulting for the first sampling of τl was 1.234 seconds,

then the simulation would perform the following steps:

1. τ newl = s× τ oldl

2. tnewmax = s× toldmax

3. tnewfinal = (1/s)× toldfinal .

where s is the “scale factor” defined in the block diagram given by Fig. 40. For example, if

the desired precision is hundredths of a second, s = 102, and the sampled value τl becomes

τl = 1.234− initial sample

τl = 123.4− apply scale factor

τl = 123− round to nearest integer.

Inside of the simulation framework, time is abstracted away to “units of time”, and then the

final time is scaled back into the appropriate units. This allows the framework to be adapted

to future HPC environments, as well as examining the impact of the standard variance of

single core performance on multi-core hardware elements if the method that is used is tuned

to be completely asynchronous.

6.1.1 SAMPLE USE-CASES FOR THE FRAMEWORK

Let the matrix A result from a simple two dimensional finite-difference discretization of

the Laplacian over a 10 × 10 grid, resulting in a 100 × 100 matrix with an average of 4.6

non-zero entries per row. Once the PDE is discretized over the desired grid, the linear system

Ax = b (137)

189

is set up to be solved for a random right-hand side b that represents the desired bound-

ary conditions. All problems considered in this chapter use Dirichlet boundary conditions.

For the examples in this particular subsection, the right-hand side is generated by taking

each component sampled as a uniform random number between −0.5 and 0.5, and then

normalizing the resultant vector. The iterative Jacobi method proceeds until the residual

r = b− Ax (138)

is reduced past some desired threshold.

To begin with, an example of nominal performance of the solution of the two dimensional

Laplacian in a synchronous environment is provided by Fig. 41. Next, consider the same

0 100 200 300 400 500 600 700 800 900 1000
Units of time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
es

id
ua

l

Nominal Jacobi performance for 2D Laplacian

Fig. 41: Example of nominal performance of the synchronous Jacobi iteration.

problem from above, but in two slightly more complicated scenarios. In Fig. 42 one of the

190

ten processors involved in updating blocks of components of x is provided updates more

slowly than the other processors. This could reflect the scenario where updates are either

performed synchronously or asynchronously, where the effect of variance in performance is

negligible, and a single processor has degraded performance. This can also be viewed as a

look at the impact of asynchronous behavior on the Jacobi algorithm. Each curve shows the

progression of the (global) residual subject to having a single slower processor with different

degrees of slowdown (from zero to 11x).

0 100 200 300 400 500 600 700 800 900 1000
Units of time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
es

id
ua

l

Effect of slowing down a single processor

No slow down
Slowdown of 3x
Slowdown of 5x
Slowdown of 7x
Slowdown of 9x
Slowdown of 11x

Fig. 42: Example of experiments within the simulation framework. Each line shows the
effect of slowing down a single processor to some factor of the (synchronous) performance of
the other processors.

In Fig. 43 the processor updates are not restricted to occur synchronously. Instead,

the processors are assumed to have similar performance and perform their updates in time

ti ∼ N(μ, σ2), where the mean is set to 10 units of time and the variance is different for each

curve depicted in the plot. An increase in the variance of processor performance, regardless

191

of the timing distribution, could come about for a variety of reasons; an example of a scenario

in the future could be having chips with more cores and lower voltage that are designed to

address the challenges in creating very large scale HPC environments.

0 100 200 300 400 500 600 700 800 900 1000
Units of time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
es

id
ua

l

Effect of variance

Variance of 1
Variance of 5
Variance of 10

Fig. 43: Example of experiments within the simulation framework. Each line shows the
effect of increasing the variance in processor performance from 1 to 5 to 10.

6.1.2 ASYNCHRONOUS JACOBI IMPLEMENTATIONS FOR THE FRAME-

WORK

Figures 42 and 43 show relative differences in compute times among shared-memory

computing elements for a specific problem and a specific asynchronous iterative method.

A more general simulation framework, which can be used for modeling and testing any

synchronous or asynchronous iterative relaxation method, is presented here. Baseline, non-

resilient method behavior may be reproduced in the framework; further, the user may also

192

investigate fault injection and checkpointing.

The user decomposes the method according to the input parameters required by the

simulation framework. The update function that performs the relaxation has an associated

operational time, both of which are defined by the user. Functionality within the relaxation

may be isolated into discrete operations with corresponding time information; the level of

granularity is decided by the user. For example, time to complete an operation in the simu-

lation framework may be modeled with a probability density function derived from empirical

data. To model time to perform specific operations or calculations during method execu-

tion, data is collected from the application during execution. In the implementation code,

operations are enclosed within calls to time functions, which measure time to perform the

operations. In this work the OpenMP R©library function omp get wtime() is used to measure

wall time. For HPC implementations that use MPI, MPI Wtime() may be used to measure

wall time. Fine-grained operations in the code should not overlap such that measurements

overlap, i.e. for one operation, do not measure time function calls of another operation. Af-

ter taking sufficient measurements, an operation is modeled by fitting a probability density

function to a normalized histogram of the time data. This function may be included as part

of the input to the framework. Note that when comparing simulated run times with HPC

run times, it may be preferable to use an unmodified version of the HPC implementation

code that does not have time function falls and mechanisms for storing or printing times.

These functions and activities may increase run time and provide an inaccurate metric for

comparison.

This section describes two asynchronous relaxation method implementations and two

corresponding use cases of the simulation framework. For both implementations, the test

problem is a two dimensional discretization of the Laplacian where the right-hand side is ini-

tialized with Dirichlet boundary conditions. Both implementations use OpenMP R©for shared-

memory parallelism and are executed on the shared-memory computing platform nicknamed

193

Rulfo, which is an Intel Xeon Phi
TM

Knight’s Landing2 having 7210 model processor with 64

cores, Each core may optimally execute 4 threads for 256 threads total, and runs at 1.30 GHz.

The simulation framework and experiments were implemented in MATLAB R©R2018a, while the

Jacobi implementations were written in C/C++ using the IntelR©C compiler version 17.04

and OpenMP R©version 4.5.

6.1.3 IMPLEMENTATION 1: GENERAL JACOBI SOLVER

In this case, Laplacian is represented mathematically by a sparse matrix, which is solved

by an asynchronous general Jacobi method. The Laplacian is generated over a 100 × 100

grid resulting in a matrix of size 10, 000× 10, 000 with 49, 600 non-zeros with an average of

4.96 non-zeros per row. The vector b from the resulting linear system,

Ax = b, (139)

is initialized such that the final solution vector has xi = 1 for all i. The initial guess x(0) is

all zeros.

In this implementation, all threads but one perform relaxations on assigned components,

and a dedicated thread computes the global residual norm value b − Ax(t) that determines

satisfactory convergence. Each thread retrieves the data it needs from shared memory,

performs the necessary computations, and, in the case of the relaxation threads, writes

the result back to shared memory. Synchronous shared-memory implementations of all

classes of algorithms commonly use mutex locks to avoid race conditions with read and write

operations. However, this type of asynchronous relaxation method may be less dependent

on these safeguards for two reasons: (1) iterative methods can correct some errors with

more iterations, if necessary, and (2) threads executing operations in asynchronous iterative

methods are more likely to be at different stages of the iterative cycle, meaning fewer threads

2Rulfo is a part of computing resources of the Department of Modeling, Simulation and Visualization
Engineering at Old Dominion University.

194

may be writing to and reading from the same memory location concurrently. This general

Jacobi solver has two varieties: (a) Safe which uses mutex locks to avoid race conditions, and

(b) Race which permits race conditions. Safe uses OpenMP R©locks to copy x(t) safely from

shared memory and to update x(t+1). Pseudocode for this process is given in Algorithm 20,

where bold upper-case text indicates that OpenMPR©locks are employed. The algorithm for

Race is identical to Algorithm 20, with the exception that locks are omitted.

Figure 44 compares Safe and Race calculation times and number of iterations. Calcu-

lation times and average iteration counts are similar for thread counts up to 81, but behavior

diverges beyond that. For thread counts 101 through 501, Race requires more iterations,

perhaps to compensate for threads reading and computing with inaccurate x vectors. De-

spite this, Fig. 44a shows that Race is still quicker for the largest thread counts, perhaps

because threads do not use locks to access data and eliminate that overhead cost. Figure 44a

also shows that perhaps locks are not too costly for intermediate thread counts 101, 201,

and 251, where Safe outperforms Race in terms of calculation time.

Algorithm 20: OpenMP R©Implementation 1 (a) Safe

Input: aij ∈ A, b, initial guess for X0, n processing elements p
Output: Solution vector X

1 Assign elements Xi ∈ X to n− 1 processing elements, i = [α, ω]
2 for parallel each processing element in p1 . . . pn do
3 while residual norm > tolerance do
4 COPY global X(t) from shared memory to local x(t)

5 if p1 then
6 Compute residual norm ||b− Ax||2
7 else if p2 . . . pn then
8 for x index i = α . . . ω do

9 Compute x
(t+1)
i = −1

aii

[∑
j �=i aijx

(t)
j − bi

]
10 UPDATE X

(t+1)
i in shared memory with x

(t+1)
i for all i belonging to

processing element

Both Safe and Race were executed over several trials and varying thread counts on the

195

0 100 200 300 400 500 600
Number of Threads

0

50

100

150

200

250

Ti
m

e
(s

)

Safe
Race

Thread Safety

(a) Calculation time

0 100 200 300 400 500 600
Number of Threads

4000

5000

6000

7000

8000

9000

N
um

be
r o

f I
te

ra
tio

ns

Safe
Race

Thread Safety

(b) Number of iterations, average per thread

Fig. 44: Performance variations between Safe and Race as a function of thread count.

experimental HPC platform. For each trial, the times for a thread to access the solution in

shared memory (Line 4 of Algorithm 20), compute the relaxation for the rows assigned to it

(Line 9), and to update the solution in shared memory (Line 10) were captured. This data

was used to generate MATLAB R©kernel probability density functions for modeling the amount

of time a thread takes to complete a copy, compute, or update operation. These distributions

may be used in the simulation framework as an input parameter, for the generation of ran-

dom variables corresponding to key operational times in the HPC architecture. Algorithm 19

demonstrates the use of a time distribution in the framework. Thread counts of 11, 21, 41,

196

81, 101, 201, 251, and 401 were used to collect data for the generation of distributions, some

of which are in Fig. 45 and Fig. 46 For 201 threads, Safe in Fig. 45d and Fig. 45f shows the

tendency of locks to stratify copy and update times, compared with Race in Fig. 46d and

Fig. 46f, which are less uniform. These findings are mirrored in Table 17, which provides

mean times for each of the three operations that were benchmarked in this implementation,

for Safe and Race. Race copy and update times are slightly or significantly quicker than

comparable Safe times. Compute times typically dominate total iteration time, except for

Safe copy and update times for threads 201, 251, and 401. Table 17 shows that increas-

ing the number of threads decreases Race copy, compute, and update times until cores

are sufficiently over-subscribed: at 201 threads, these operations have become significantly

more costly, as compared with 101 threads. This cost may be attributed to thread con-

text switching. Compute times for Safe do not increase with higher thread counts because

thread behavior is controlled controlled explicitly using locks. These statistics can be used

to validate the performance of the time distributions, so that the framework provides results

comparable to the HPC hardware.

Table 17: Mean times for copy, compute, and update operations.

Safe Race
Threads Copy Compute Update Copy Compute Update

(10−5s) (10−4s) (10−6s) (10−5s) (10−4s) (10−6s)
11 1.28 167 7.76 1.15 167 2.79
21 1.31 84.3 6.98 1.17 83.6 1.96
41 1.38 43.0 7.09 1.23 43.1 1.63
81 2.98 27.3 20.6 1.43 27.2 1.79
101 36.7 23.4 357 1.64 25.2 1.79
201 251 15.3 2500 11.8 74.3 4.33
251 345 13.3 3440 16.6 90.9 4.55
401 1880 8.23 18 700 20.2 91.6 4.52

197

1 1.5 2 2.5 3 3.5
Time (s) 10-5

0

0.5

1

1.5

2

2.5

Pr
ob

ab
ili

ty
 D

en
si

ty
106

data
fit

(a) x copy, 11 threads

0.014 0.016 0.018 0.02
Time (s)

0

500

1000

1500

2000

2500

Pr
ob

ab
ili

ty
 D

en
si

ty

data
fit

(b) x compute, 11 threads

0.5 1 1.5 2 2.5 3
Time (s) 10-5

0

0.5

1

1.5

2

2.5

3

Pr
ob

ab
ili

ty
 D

en
si

ty

106

data
fit

(c) x update, 11 threads

0 0.5 1 1.5
Time (s) 10-4

0

0.5

1

1.5

2

2.5

Pr
ob

ab
ili

ty
 D

en
si

ty

105

data
fit

(d) x copy, 81 threads

2 2.5 3 3.5 4
Time (s) 10-3

0

2000

4000

6000

8000

10000

12000
Pr

ob
ab

ili
ty

 D
en

si
ty

data
fit

(e) x compute, 81 threads

0 0.5 1 1.5
Time (s) 10-4

0

1

2

3

4

5

Pr
ob

ab
ili

ty
 D

en
si

ty

105

data
fit

(f) x update, 81 threads

2 2.2 2.4 2.6 2.8 3
Time (s) 10-3

0

1000

2000

3000

4000

5000

Pr
ob

ab
ili

ty
 D

en
si

ty

data
fit

(g) x copy, 201 threads

1.2 1.4 1.6 1.8 2 2.2
Time (s) 10-3

0

1000

2000

3000

4000

5000

6000

Pr
ob

ab
ili

ty
 D

en
si

ty

data
fit

(h) x compute, 201 threads

2 2.2 2.4 2.6 2.8 3
Time (s) 10-3

0

1000

2000

3000

4000

5000

Pr
ob

ab
ili

ty
 D

en
si

ty

data
fit

(i) x update, 201 threads

Fig. 45: Safe copy, compute, and update histograms with kernel fits.

6.1.4 IMPLEMENTATION 2: FINITE DIFFERENCE JACOBI SOLVER

This second implementation performs the Jacobi relaxation on the grid directly using

the neighboring points required by the 5-point stencil as opposed to explicitly forming the

matrix A, and in a sense implements a matrix-free solution. For this implementation, the

Laplacian was discretized over a 600 × 600 grid with boundary conditions set according to

Table 18.

198

0.5 1 1.5 2 2.5 3
Time (s) 10-5

0

1

2

3

4

5
Pr

ob
ab

ili
ty

 D
en

si
ty

106

data
fit

(a) x copy, 11 threads

0.0155 0.016 0.0165 0.017 0.0175 0.018
Time (s)

0

500

1000

1500

2000

2500

Pr
ob

ab
ili

ty
 D

en
si

ty

data
fit

(b) x compute, 11 threads

0 0.2 0.4 0.6 0.8 1
Time (s) 10-5

0

5

10

15

Pr
ob

ab
ili

ty
 D

en
si

ty

106

data
fit

(c) x update, 11 threads

0 2 4 6
Time (s) 10-5

0

0.5

1

1.5

2

Pr
ob

ab
ili

ty
 D

en
si

ty

106

data
fit

(d) x copy, 81 threads

2 2.5 3 3.5 4
Time (s) 10-3

0

2000

4000

6000

8000

10000
Pr

ob
ab

ili
ty

 D
en

si
ty

data
fit

(e) x compute, 81 threads

1 2 3 4
Time (s) 10-6

0

1

2

3

4

5

Pr
ob

ab
ili

ty
 D

en
si

ty

107

data
fit

(f) x update, 81 threads

1 1.2 1.4 1.6 1.8 2
Time (s) 10-4

0

0.5

1

1.5

2

2.5

Pr
ob

ab
ili

ty
 D

en
si

ty

105

data
fit

(g) x copy, 201 threads

6 8 10 12
Time (s) 10-3

0

500

1000

1500

Pr
ob

ab
ili

ty
 D

en
si

ty

data
fit

(h) x compute, 201 threads

0 2 4 6
Time (s) 10-5

0

1

2

3

4

5

Pr
ob

ab
ili

ty
 D

en
si

ty

106

data
fit

(i) x update, 201 threads

Fig. 46: Race copy, compute, and update histograms with kernel fits.

The implementation used here stems from code provided by [190]; similar code solves a

three dimensional discretization of the Laplacian in the study featured in [107] and [108].

The routine solves a heat diffusion problem, in which a two-dimensional heated plate has

Dirichlet boundary-condition temperatures. Two matrices, u0 and u1, store grid point values

that each thread reads, e.g., from u1, to compute newer values to write, e.g., to u0. As the

method is asynchronous, each thread independently determines which matrix stores its newer

u(t+1)(i, j) values and older u(t)(i, j) values. For an N + 2 by N + 2 grid, each thread solves

199

Table 18: Boundary conditions for the second implementation of the Laplacian.

0 100 100 0
75 XXX XXX 50
... XXX XXX

...
... XXX XXX

...
75 XXX XXX 50
0 0 0 0

for N2 grid points divided by n processing elements, such that the grid is evenly divided

along the y-axis. When a thread copies grid point values above or below its domain for the

computation, OpenMP R©locks are employed to ensure that data is safely captured from a

single iteration. Further, locks are used when updating values on domain boundaries. Each

thread pn computes its local residual value every kth iteration, which it contributes to the

global residual value using an OpenMPR©atomic operation, such that it adds the local residual

from the current iteration and subtracts the local residual from the previous iteration. A

single thread checks for convergence with an atomic capture operation, and updates a shared

flag variable if the criterion is satisfied. Pseudocode for this implementation is provided

in Algorithm 21, where bold upper-case text indicates that OpenMPR©locks are employed.

Locks are used only with interior boundary rows, meaning they are unnecessary for the first

and last rows in the domain.

In this implementation, data was collected only for the time to complete an iteration.

Thread counts of 10, 25, 50, 75, 100, and 150 were used in this series of experiments. The

average total iteration time for the varying

Figure 47 provides histograms and kernel fits for each of the thread counts. Table 19 and

Fig. 47 show that with increasing thread count, mean iteration time decreases, but iteration

times variance increases. This increase in iteration time variation may result from increased

opportunities for lock collisions with greater thread counts.

Since this implementation is even more compute bound than the first one, Table 19 shows

200

Algorithm 21: OpenMP R©Implementation 2

Input: Initial guess for u(0)(i, j), n processing elements p
Output: Solution vector u(i, j)

1 Assign rows u(i) ∈ u to each processing element, i = [α, ω]
2 for parallel each processing element in p1 . . . pn do
3 while residual norm > tolerance do
4 for row index i = α . . . ω do
5 if i �= 1 AND i �= N i = α OR i = ω then
6 COPY neighbor pn−1 or pn+1 boundary row values u(t)(i, j) for

u(t+1)(i, j)

7 Compute

u(t+1)(i, j) = 1/4∗ (u(t)(i+1, j)+u(t)(i−1, j)+u(t)(i, j+1)+u(t)(i, j−1)
8 if i �= 1 AND i �= N i = α OR i = ω then

9 UPDATE own pn boundary row values u
(t)
j (i, j) in shared memory

with u
(t+1)
j (i, j)

Table 19: Mean iteration time and standard deviation by thread count.

Threads Mean Std.
(10−5s) (10−6s)

10 8.86 3.87
25 3.92 2.08
50 2.55 2.34
75 2.53 5.80
100 2.61 5.95
150 2.64 5.76

a general decrease in the time for each iteration as the thread count is increased. While

there is no inflection point evident in the data presented in Table 19, compared to Race in

Table 17, Table 19 still suggests that once the number of threads outnumbers physical cores,

performance gains diminish. For denser matrices, or for different applications on different

systems, these trends could change as the memory-based activities become relatively more

expensive. The finite difference discretization of the Laplacian is a very sparse matrix that

does not require much data movement.

201

8 9 10 11
Time (s) 10-5

0

2

4

6

8

10

12
Pr

ob
ab

ili
ty

 D
en

si
ty

106

data
fit

(a) 10 threads

3.5 4 4.5 5 5.5
Time (s) 10-5

0

0.5

1

1.5

2

2.5

3

Pr
ob

ab
ili

ty
 D

en
si

ty

107

data
fit

(b) 25 threads

2 2.5 3 3.5 4
Time (s) 10-5

0

2

4

6

8

10

Pr
ob

ab
ili

ty
 D

en
si

ty

106

data
fit

(c) 50 threads

2 2.5 3 3.5 4
Time (s) 10-5

0

0.5

1

1.5

2

Pr
ob

ab
ili

ty
 D

en
si

ty

106

data
fit

(d) 75 threads

1 2 3 4 5
Time (s) 10-5

0

5

10

15
Pr

ob
ab

ili
ty

 D
en

si
ty

105

data
fit

(e) 100 threads

1 2 3 4 5 6
Time (s) 10-5

0

0.5

1

1.5

2

Pr
ob

ab
ili

ty
 D

en
si

ty

106

data
fit

(f) 150 threads

Fig. 47: Iteration time histograms with kernel fits.

6.1.5 IMPLEMENTATION COMPARISON

The Safe variant of the first implementation incurs significant overhead costs for x copy

and update operations, as thread count increases, because each thread must copy the entire

x vector. In the second implementation, data shared between threads is differentiated and

specific to domain location; therefore specific locks may be used when copying and updating

segments of the subdomain. Assuming an appropriate number of processing elements for

a given grid, i.e. a thread has significantly more middle rows than boundary rows, copy

operations, and the associated variability and costs, are minimal compared with compute

operations. The Race implementation of the general solver eliminates much of the overhead

cost from mutex locks, and convergence time is satisfactory for the given system. Implemen-

tation 2 is more constrained than Implementation 1, generalizing only to finite difference

discretizations of partial differential equations over rectangular grids. Implementation 1

202

generalizes further to any sparse matrix, A, with which the Jacobi method can be used. Ac-

cording to Theorem 1, convergence will occur if the spectral radius of the iteration matrix,

C, is less than 1. In the case of the Jacobi method, the iteration matrix is given by

C = −D−1(L+ U). (140)

Note that in the two dimensional discretization of the Laplacian, the spectral radius of the

Jacobian is less than l, which says that both the synchronous and asynchronous variants of

the Jacobi algorithm will converge. Note Race behavior is unknown for different problems

and HPC systems.

The purpose of the two distinct implementations is to emphasize that the simulation

framework proposed here can adapt to the behavior of different problems and platforms.

The framework may be adapted to any asynchronous iterative method through the process

of collecting data representative of individual update times and using the resultant data to

model the system in the framework.

6.1.6 FRAMEWORK VALIDATION

To validate the performance of the simulation framework when initialized with appro-

priate distributions, a case study utilizing output from Implementation 1 (see Section 6.1.3

for details) was considered. Data was collected for a smaller problem size only in order to

facilitate the collection of data over a large number of runs. Specifically, the Laplacian was

discretized over a 20×20 grid resulting in a matrix of size 400×400. Similarly to the process

in Section 6.1.3, distributions were fit to the output of the OpenMP R©implementation, and

these distributions were used in the simulation framework to provide update times to the

simulated processors that are reflective of the HPC hardware that the data was collected

on. Output from the average of these runs is provided in Table 20. The leftmost column

provides the number of threads that were used (or simulated), the middle column shows the

203

average over multiple runs of the parallel implementation, and the rightmost column shows

the average over multiple runs of the simulation generated by the simulation framework. In

the case of this small problem, the similarity of actual and simulated run times helps to

validate the model. Running multiple trials of larger problems in the framework is currently

time-prohibitive, which is an issue that may be improved with framework implementation

changes.

Table 20: Comparisons of run times between parallel executions and simulation.

Thread Count Run Average (s) Simulation Average (s)
11 0.01 0.01
21 0.02 0.02
41 0.04 0.04
51 0.04 0.05
81 0.09 0.09
101 0.12 0.12
201 0.34 0.35

6.2 FRAMEWORK EXTENSION FOR FAULT-TOLERANCE

The modular nature of this framework allows for extra functionality to be easily added

to the framework itself that can be used to adapt the base algorithm to suit a specific set of

requirements. With the projected increase of faults, development of fault tolerant algorithms

is an important endeavor. A block diagram showing the additional functionality dealing with

fault-tolerance is shown in Fig. 48. The new functionality is achieved by passing in another

function handle that performs the fault tolerance check and recovery work. The contents of

the newly added Fault tolerance check module may be organized as follows: Each processor

makes a call to find the global residual and rolls the state back to the previous known good

state if the behavior of the residual is not as expected. See Section 6.3 for more details. Note

that this strategy is not being advocated for due to its optimality, but is being shown as

204

Fig. 48: Block diagram of the simulation framework with added support for fault tolerance
mechanisms

an example of how to extend the framework for algorithm development. Techniques such as

monitoring the progression of the component-wise residuals (e.g., [21], [26]) or only rolling

back portions of the state vector (e.g., [165], [170]) would probably be more computationally

efficient.

6.3 NUMERICAL EXPERIMENTS

For the numerical experiments shown in this chapter, faults are modeled using only

the perturbation-based soft fault model (PBSFM) detailed in Chapter 4. Similar to the

earlier results in the chapter using the nominal simulation framework, these experiments

cover the solution of the linear system resulting from a two-dimensional finite difference

discretization of the Laplacian. Before presenting simulation results, it is important to note

that faults, as modeled here, will not prevent the eventual solution of the linear system using

the (asynchronous) Jacobi method. Since the spectral radius of the associated iteration

matrix is strictly less than 1, it will converge for any initial guess x(0).

205

Since faults are assumed to only affect the memory storing the vector x and are assumed

to occur in a transient manner, if a fault occurs on iteration F then the subsequent iterate,

x(F+1) can be taken to be the new starting iterate and eventual convergence is guaranteed

due to the iteration matrix which has remained the same throughout the occurrence of the

fault. This model can reflect the scenario where certain parts of the routine are designated

to run on hardware with a higher reliability threshold, and other parts of the algorithm are

allowed to run on hardware that may be more susceptible to the occurrence of a fault. This

sandbox type design has been suggested as a possible means for providing energy efficient

fault tolerance on future HPC environments [31], [32], [125].

While eventual convergence may be guaranteed, greatly accelerated convergence is possi-

ble through a simple checkpointing scheme. An example of such a scheme (as an extension of

the asynchronous Jacobi simulation provided by Algorithm 19) is provided in Algorithm 22.

Algorithm 22: Asynchronous Jacobi simulation with checkpointing

Input: aij ∈ A; initial guess x0; number of processing elements p; input random
number distribution; checkpointing tolerance γ; checkpointing frequency ω

Output: Solution vector x
1 Assign processor update times τ1, τ2, . . . , τp by sampling from an appropriate

random number distribution
2 Assign a part of x to each processing element
3 Initialize rold to a large value
4 for t = 1, 2, . . ., until convergence do
5 for each processing element, Pl do
6 if τk = t then
7 for each element xi ∈ x assigned to Pl do

8 xi =
−1
aii

[∑
j �=i aijxj − bi

]
9 Retrieve a new update time τk by sampling from the input distribution

10 Inject a fault if appropriate
11 Calculate the residual rnew as in Eq. (138)
12 if rnew > γ × rold then
13 x← xcp

14 if mod (t, ω) == 0 then
15 xcp ← x
16 Check termination conditions

206

Note that the asynchronous nature of the iterative method means that a strict check on

the decrease of the residual (i.e. expecting monotonic decrease) is not possible. In particular,

the checkpointing tolerance γ needs to be taken such that γ > 1. However, the expected

manifestation of faults as rare, transient events allows γ to be taken fairly large. Taking γ too

large results in a fault having a substantial impact on the convergence rate of algorithm since

large faults will be allowed to impact the algorithm with no correction. Conversely, taking

γ too small causes the algorithm to checkpoint more frequently than needed. Examples of

the effects of a fault with different values selected for γ are given by Fig. 49.

0 500 1000 1500
Units of time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
es

id
ua

l

Effect of fault - no checkpointing

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Units of time 104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
es

id
ua

l

Effect of fault - = 1

0 200 400 600 800 1000 1200
Units of time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
es

id
ua

l

Effect of fault - = 2

0 200 400 600 800 1000 1200
Units of time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
es

id
ua

l

Effect of fault - = 10

Fig. 49: Effect of differing values of γ on the progression of the residual

Note in Fig. 49 that no checkpointing results in a delay to convergence relative to the

207

use of checkpointing with either γ = 1 or γ = 10. The size of the fault selected in this study,

ri ∈ (−100, 100), which may be reflective of an exponent or sign bit flip [170], results in the

values γ = 1 and γ = 10 having the same performance since the error induced by the fault is

sufficiently large that the new residual is more than γ = 10 times the prior residual. Faults

that induce a smaller error may be detected by certain values of γ and not by others which

would lead to differing performance.

The residual progress in the plot showing the effects of using γ = 1 can be explained by

the updates provided by certain simulated processing elements being rejected despite being

necessary for the convergence of the algorithm. This can be seen in the small, momentary

jumps in the progression of the residual visible in the other graphs. These rejections lead to

stagnation in the progression of the algorithm and show why the value of γ = 1 should not

be selected for a checkpointing scheme for an asynchronous iterative method.

6.4 SUMMARY

This work has developed a framework that can be used to efficiently simulate the outcomes

of asynchronous methods for future High Performance Computing environments. Given that

asynchronous methods are notoriously difficult to study theoretically, their simulation is an

invaluable tool for observing behavior and making quantitative and qualitative assertions.

The modular and extensible nature of the framework proposed here allows for easy experi-

mentation with modifications to a popular class of algorithms that finds uses in many areas

of science and engineering.

The work presented was designed to show the ability of the framework to adapt to new

algorithm variants, such as those capable of handling algorithm recovery in the presence of

transient soft faults as was shown by example in Section 6.3. The simulation framework

presented here is extensible and flexible and is able to:

1. admit a variety of asynchronous methods (i.e., beyond the simple Jacobi algorithm)

2. incorporate different fault models and recovery techniques for the development of fault

208

tolerant algorithms, and

3. vary hardware parameters such as thread and processor counts and the performance

of those parameters as governed by the timing distributions that are supplied.

209

CHAPTER 7

CONCLUSIONS

This dissertation has examined the impact of soft faults on fine-grained parallel iterative

algorithms. Distributed and shared memory HPC environments have been studied, and mod-

eling and simulation tools to study such algorithms when implemented either synchronously

or asynchronously have been developed.

7.1 THEORETICAL RESULTS AND TECHNIQUES

The theoretical results provide extensions to existing theorems that help define the con-

ditions required for asynchronous iterative algorithms to converge despite the occurrence of

a fault. Two approaches to modeling the impact of a fault were considered; one that assumes

the effect of the fault is contained, and another that allows for arbitrary data corruption.

The theoretical results developed led to the categorization of several techniques that can be

used for recovery, and a series of specific examples showing how the techniques can be applied

to popular linear solvers were included. The theory can be applied to other algorithms for

the development of further fault tolerant algorithms.

7.2 NUMERICAL SOFT FAULT MODELING

A novel technique for simulating the occurrence of a soft fault on an HPC environ-

ment based upon injecting random perturbations to pertinent data structures was developed

and tested. Experiments were conducted on both distributed and shared memory appli-

cations, with a focus on fine-grained parallel iterative techniques and popular projection

based solvers. Further, a comparison and analysis of the proposed model with an existing

fault model currently used in the research community was presented. These techniques were

compared against each other as well as direct simulation of faults and analyzed for their

210

ability to aid in the development of fault tolerant algorithms. Results were presented for

asynchronous iterative methods, including a hybrid parallel implementation of the asyn-

chronous Jacobi algorithm. The results indicate that the use of numerical soft fault models

may be useful for the development of fault tolerant algorithms for future High Performance

Computing platforms. The testing show that numerical simulation of soft faults provides

a consistent, reliable way to force sufficient data corruption to examine the behavior of it-

erative algorithms. This makes numerical soft fault models a valuable means of developing

novel fault tolerant algorithms; an activity that will become increasingly important as HPC

environments progresses towards exascale levels of performance.

7.3 FAULT TOLERANT FINE-GRAINED INCOMPLETE

FACTORIZATIONS

This dissertation provided a use case of how the proposed techniques for resilience can

be combined with the novel modeling and simulation tools to develop fault tolerant vari-

ants of algorithms used in HPC applications. These examples use the fine-grained parallel

incomplete factorization (FGPILU) algorithm that can be used to generate preconditioners

for the large sparse linear systems that often arise in large scale simulation of phenomena in

science and engineering. The impact of soft faults on the FGPILU algorithm was studied,

and several variants to remedy their negative effects were proposed. The variants offer a

means to safely use the algorithm in HPC environments that may not be fault-free.

7.4 FRAMEWORK FOR MODELING AND ANALYSIS

Multiple performance models based upon the evaluation of asynchronous iterative meth-

ods performing tasks central to large scale simulation were developed, and were used in the

development of a framework to efficiently simulate the outcomes of asynchronous methods for

future HPC environments. The modular and extensible nature of the framework proposed

here allows for easy experimentation with modifications to a popular class of algorithms that

finds uses in many areas of science and engineering. The work presented in this dissertation

211

was designed to show the ability of the framework to adapt to new algorithm variants, such

as those capable of handling algorithm recovery in the presence of transient soft faults.

7.5 FUTURE WORK

As the HPC environments that aid in large scale modeling and simulation efforts continue

to progress towards exascale levels of performance, there are many areas to expand upon

the line of research presented in this dissertation. Moving forward, it will be important to

continue expanding on the general theory of fault tolerance for fine-grained iterative methods

in order to further develop understanding for how this large class of methods will respond

to any unforeseen errors that arise during computing. One manner that this could be done

beneficially is in the development of results that have meaningful bounds on convergence rate.

Many of the results developed are asymptotic in nature, guaranteeing eventual convergence,

but being able to bound the maximum required time to convergence can be very beneficial.

Further, it is always important to continue applying it to specific applications that make use

of asynchronous fixed point methods.

Similarly, it would also be helpful to extend the testing to a larger suite of algorithms.

Examining the performance of the techniques and models developed here on a suite of prob-

lems and solvers may help improve the quality of the analysis. Examples of other fine-

grained parallel iterative algorithms include randomized linear solvers (e.g., [104], [105]), ran-

domized optimization routines (e.g., [27], [64], [191]), weighted asynchronous linear solvers

(e.g., [160], [192]), and more robust incomplete factorizations (e.g., [178]). The iterative

methods used were limited to Conjugate Gradient for symmetric problems and GMRES

for non-symmetric problems; while these are the most popular choices, extending to other

routines may help increase the value of the analysis. The use of recent parallel computing

constructs such as one-sided remote memory access [116] may help improve the performance

of the implementations shown here.

One other area that the techniques developed could positively impact is in scenarios

212

where the given HPC architecture is heterogeneous in nature, e.g., where some compute

resources are strictly CPU based, some are GPU based, and the size of the problem assigned

to each component or node is not necessarily uniform. In this scenario, the asynchronous

nature of the algorithms under study throughout this dissertation may be able to help with

load balancing enough to make a large class of algorithms able to be viably deployed on this

heterogeneous system. A series of studies dedicated to proving the efficacy of these ideas

would help pave the way for new techniques.

While this dissertation has made a thorough study of the effect of soft faults on asyn-

chronous iterative methods, the effect of hard faults is an area that has not been examined

much in the literature. The use of randomization in the selection of components to update

is one manner in which hard faults may be dealt with successfully, and it is worth exploring

in the future. Additionally, it would be beneficial to create more streamlined performance

prototypes of each of the variants in order to get a more accurate gauge of the relative per-

formance among them. Lastly, it may be helpful to tie the parameters of the algorithm to

intrinsic properties of the problem itself, in order to alleviate the burden of any performance

tuning from the user.

213

REFERENCES

[1] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford, J. Dongarra,

D. Kothe, R. Lusk, P. Messina, et al., “Ascac subcommittee report: The opportunities

and challenges of exascale computing,” tech. rep., Technical report, United States

Department of Energy, Fall, 2010.

[2] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford, J. Dongarra,

D. Kothe, R. Lusk, P. Messina, et al., “The opportunities and challenges of exascale

computing–summary report of the advanced scientific computing advisory committee

(ascac) subcommittee,” US Department of Energy Office of Science, 2010.

[3] J. Dongarra, J. Hittinger, J. Bell, L. Chacon, R. Falgout, M. Heroux, P. Hovland,

E. Ng, C. Webster, and S. Wild, “Applied mathematics research for exascale comput-

ing,” tech. rep., Lawrence Livermore National Laboratory (LLNL), Livermore, CA,

2014.

[4] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir, “Toward exascale

resilience,” The International Journal of High Performance Computing Applications,

vol. 23, no. 4, pp. 374–388, 2009.

[5] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir, “Toward exascale

resilience: 2014 update,” Supercomputing frontiers and innovations, vol. 1, no. 1, 2014.

[6] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.

Patterson, W. L. Plishker, J. Shalf, S. W. Williams, et al., “The landscape of parallel

computing research: A view from Berkeley,” tech. rep., Technical Report UCB/EECS-

2006-183, EECS Department, University of California, Berkeley, 2006.

[7] A. Geist and R. Lucas, “Major computer science challenges at exascale,” International

Journal of High Performance Computing Applications, 2009.

214

[8] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Balaji, J. Belak,

P. Bose, F. Cappello, B. Carlson, et al., “Addressing failures in exascale computing,”

International Journal of High Performance Computing Applications, 2014.

[9] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon,

W. Harrod, K. Hill, J. Hiller, et al., “Exascale computing study: Technology chal-

lenges in achieving exascale systems,” Defense Advanced Research Projects Agency

Information Processing Techniques Office (DARPA IPTO), Tech. Rep, vol. 15, 2008.

[10] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre, D. Barkai,

J.-Y. Berthou, T. Boku, B. Braunschweig, et al., “The international exascale software

project roadmap,” International Journal of High Performance Computing Applica-

tions, vol. 25, no. 1, pp. 3–60, 2011.

[11] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deterministic

and stochastic gradient optimization algorithms,” IEEE transactions on automatic

control, vol. 31, no. 9, pp. 803–812, 1986.

[12] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in the wild: a large-scale

field study,” in ACM SIGMETRICS Performance Evaluation Review, vol. 37 (no. 1),

pp. 193–204, ACM, 2009.

[13] B. Schroeder and G. Gibson, “A large-scale study of failures in high-performance com-

puting systems,” IEEE Transactions on Dependable and Secure Computing, vol. 7,

no. 4, pp. 337–350, 2010.

[14] M. R. Varela, K. B. Ferreira, and R. Riesen, “Fault-tolerance for exascale systems,” in

Cluster Computing Workshops and Posters (CLUSTER WORKSHOPS), 2010 IEEE

International Conference on, pp. 1–4, IEEE, 2010.

215

[15] R. T. Biedron, J.-R. Carlson, J. M. Derlaga, P. A. Gnoffo, D. P. Hammond, W. T.

Jones, B. Kleb, E. M. Lee-Rausch, E. J. Nielsen, M. A. Park, et al., “Fun3d manual:

13.3,” 2018.

[16] H. Jasak, A. Jemcov, Z. Tukovic, et al., “Openfoam: A c++ library for complex physics

simulations,” in International workshop on coupled methods in numerical dynamics,

vol. 1000, pp. 1–20, IUC Dubrovnik, Croatia, 2007.

[17] I. Karlin, J. Keasler, and J. Neely, “Lulesh 2.0 updates and changes,” tech. rep.,

Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2013.

[18] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson,

J. Ring, M. E. Rognes, and G. N. Wells, “The fenics project version 1.5,” Archive of

Numerical Software, vol. 3, no. 100, pp. 9–23, 2015.

[19] W. Bangerth, R. Hartmann, and G. Kanschat, “deal. iia general-purpose object-

oriented finite element library,” ACM Transactions on Mathematical Software

(TOMS), vol. 33, no. 4, p. 24, 2007.

[20] D. Gaston, C. Newman, G. Hansen, and D. Lebrun-Grandie, “Moose: A parallel com-

putational framework for coupled systems of nonlinear equations,” Nuclear Engineering

and Design, vol. 239, no. 10, pp. 1768–1778, 2009.

[21] H. Anzt, J. Dongarra, and E. S. Quintana-Ort́ı, “Fine-grained bit-flip protection for

relaxation methods,” Journal of Computational Science, 2016.

[22] H. Anzt, Asynchronous and multiprecision linear solvers-scalable and fault-tolerant

numerics for energy efficient high performance computing. PhD thesis, Karlsruhe,

Karlsruher Institut für Technologie (KIT), Diss., 2012, 2012.

216

[23] E. Chow, H. Anzt, and J. Dongarra, “Asynchronous iterative algorithm for computing

incomplete factorizations on GPUs,” in International Conference on High Performance

Computing, pp. 1–16, Springer, 2015.

[24] E. Chow and A. Patel, “Fine-grained parallel incomplete LU factorization,” SIAM

journal on Scientific Computing, vol. 37, no. 2, pp. C169–C193, 2015.

[25] H. Anzt, E. Chow, and J. Dongarra, “Iterative sparse triangular solves for precondi-

tioning,” in European Conference on Parallel Processing, pp. 650–661, Springer, 2015.

[26] H. Anzt, J. Dongarra, and E. S. Quintana-Ort́ı, “Tuning stationary iterative solvers

for fault resilience,” in Proceedings of the 6th Workshop on Latest Advances in Scalable

Algorithms for Large-Scale Systems, p. 1, ACM, 2015.

[27] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach to parallelizing

stochastic gradient descent,” in Advances in neural information processing systems,

pp. 693–701, 2011.

[28] N. Aybat, Z. Wang, and G. Iyengar, “An asynchronous distributed proximal gradient

method for composite convex optimization,” in International Conference on Machine

Learning, pp. 2454–2462, 2015.

[29] Y. K. Cheung and R. Cole, “A unified approach to analyzing asynchronous coordinate

descent and tatonnement,” arXiv preprint arXiv:1612.09171, 2016.

[30] F. Magoules, D. B. Szyld, and C. Venet, “Asynchronous optimized Schwarz methods

with and without overlap,” Numerische Mathematik, pp. 1–29, 2015.

[31] M. Hoemmen and M. A. Heroux, “Fault-tolerant iterative methods via selective re-

liability,” in Proceedings of the 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis (SC). IEEE Computer Society, vol. 3,

p. 9, Citeseer, 2011.

217

[32] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen, “Fault-tolerant linear

solvers via selective reliability,” arXiv preprint arXiv:1206.1390, 2012.

[33] K.-H. Huang et al., “Algorithm-based fault tolerance for matrix operations,” IEEE

transactions on computers, vol. 100, no. 6, pp. 518–528, 1984.

[34] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

[35] Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual algorithm for

solving nonsymmetric linear systems,” SIAM Journal on scientific and statistical com-

puting, vol. 7, no. 3, pp. 856–869, 1986.

[36] Y. Saad, “A flexible inner-outer preconditioned GMRES algorithm,” SIAM Journal

on Scientific Computing, vol. 14, no. 2, pp. 461–469, 1993.

[37] H. A. Van der Vorst and C. Vuik, “Gmresr: a family of nested gmres methods,”

Numerical linear algebra with applications, vol. 1, no. 4, pp. 369–386, 1994.

[38] L. B. Wigton, N. Yu, and D. P. Young, “Gmres acceleration of computational fluid

dynamics codes,” NASA Technical Report SEE A85-40926 19-34, 1985.

[39] A. Chapman, Y. Saad, and L. Wigton, “High-order ilu preconditioners for cfd prob-

lems,” International Journal for numerical methods in fluids, vol. 33, no. 6, pp. 767–

788, 2000.

[40] J. Zhang, “Preconditioned krylov subspace methods for solving nonsymmetric matri-

ces from cfd applications,” Computer methods in applied mechanics and engineering,

vol. 189, no. 3, pp. 825–840, 2000.

[41] Y. Saad, A. Soulaimani, and R. Touihri, “Variations on algebraic recursive multi-

level solvers (arms) for the solution of cfd problems,” Applied numerical mathematics,

vol. 51, no. 2-3, pp. 305–327, 2004.

218

[42] M. Sosonkina, Y. Saad, and X. Cai, “Using the parallel algebraic recursive multilevel

solver in modern physical applications,” Future Generation Computer Systems, vol. 20,

no. 3, pp. 489–500, 2004.

[43] J. van den Eshof and G. Sleijpen, “Inexact Krylov subspace methods for linear sys-

tems,” SIAM Journal on Matrix Analysis and Applications, vol. 26, no. 1, pp. 125–153,

2004.

[44] V. Simoncini and D. B. Szyld, “Theory of inexact Krylov subspace methods and ap-

plications to scientific computing,” SIAM Journal on Scientific Computing, vol. 25,

no. 2, pp. 454–477, 2003.

[45] V. Simoncini and D. B. Szyld, “On the occurrence of superlinear convergence of exact

and inexact krylov subspace methods,” SIAM review, vol. 47, no. 2, pp. 247–272, 2005.

[46] R. Li and Y. Saad, “Gpu-accelerated preconditioned iterative linear solvers,” The

Journal of Supercomputing, vol. 63, no. 2, pp. 443–466, 2013.

[47] A. Jamal, M. Baboulin, A. Khabou, and M. Sosonkina, “A hybrid cpu/gpu approach

for the parallel algebraic recursive multilevel solver parms,” in Symbolic and Numeric

Algorithms for Scientific Computing (SYNASC), 2016 18th International Symposium

on, pp. 411–416, IEEE, 2016.

[48] Y. Saad and M. Sosonkina, “parms: A package for solving general sparse linear systems

on parallel computers,” in International Conference on Parallel Processing and Applied

Mathematics, pp. 446–457, Springer, 2001.

[49] Z. Li, Y. Saad, and M. Sosonkina, “parms: a parallel version of the algebraic recursive

multilevel solver,” Numerical linear algebra with applications, vol. 10, no. 5-6, pp. 485–

509, 2003.

219

[50] Y. Saad and M. Sosonkina, “parms: A package for the parallel iterative solution of

general large sparse linear systems users guide,” Minneapolis: MN, 2004.

[51] E. Chow and Y. Saad, “Experimental study of ilu preconditioners for indefinite matri-

ces,” Journal of Computational and Applied Mathematics, vol. 86, no. 2, pp. 387–414,

1997.

[52] M. Benzi, J. C. Haws, and M. Tuma, “Preconditioning highly indefinite and nonsym-

metric matrices,” SIAM Journal on Scientific Computing, vol. 22, no. 4, pp. 1333–1353,

2000.

[53] M. Benzi, D. B. Szyld, and A. Van Duin, “Orderings for incomplete factorization

preconditioning of nonsymmetric problems,” SIAM Journal on Scientific Computing,

vol. 20, no. 5, pp. 1652–1670, 1999.

[54] M. Stoyanov and C. Webster, “Numerical analysis of fixed point algorithms in the

presence of hardware faults,” SIAM Journal on Scientific Computing, vol. 37, no. 5,

pp. C532–C553, 2015.

[55] H. Anzt, P. Luszczek, J. Dongarra, and V. Heuveline, “GPU-accelerated asynchronous

error correction for mixed precision iterative refinement,” Euro-Par 2012 Parallel Pro-

cessing, pp. 908–919, 2012.

[56] A. Addou and A. Benahmed, “Parallel synchronous algorithm for nonlinear fixed

point problems,” International Journal of Mathematics and Mathematical Sciences,

vol. 2005, no. 19, pp. 3175–3183, 2005.

[57] A. Benahmed, “A convergence result for asynchronous algorithms and applications,”

Proyecciones (Antofagasta), vol. 26, no. 2, pp. 219–236, 2007.

[58] A. Frommer and D. B. Szyld, “On asynchronous iterations,” Journal of computational

and applied mathematics, vol. 123, no. 1, pp. 201–216, 2000.

220

[59] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numerical

methods, vol. 23. Prentice hall Englewood Cliffs, NJ, 1989.

[60] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several

variables. SIAM, 2000.

[61] M. Hong, “A distributed, asynchronous and incremental algorithm for nonconvex op-

timization: An admm approach,” IEEE Transactions on Control of Network Systems,

2017.

[62] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and

statistical learning via the alternating direction method of multipliers,” Foundations

and Trends R© in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[63] M. Zhong and C. G. Cassandras, “Asynchronous distributed optimization with event-

driven communication,” IEEE Transactions on Automatic Control, vol. 55, no. 12,

pp. 2735–2750, 2010.

[64] K. Srivastava and A. Nedic, “Distributed asynchronous constrained stochastic opti-

mization,” IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 4, pp. 772–

790, 2011.

[65] H. Anzt, E. Chow, J. Saak, and J. Dongarra, “Updating incomplete factorization pre-

conditioners for model order reduction,” Numerical Algorithms, vol. 73, no. 3, pp. 611–

630, 2016.

[66] D. Chazan and W. Miranker, “Chaotic relaxation,” Linear algebra and its applications,

vol. 2, no. 2, pp. 199–222, 1969.

[67] J. Donnelly, “Periodic chaotic relaxation,” Linear algebra and its Applications, vol. 4,

no. 2, pp. 117–128, 1971.

221

[68] J. C. Miellou, “Chaotic relaxation algorithms delays,” Revue fran c c automatic,

computer science, operational research. Numerical analysis, vol. 9, no. R1, pp. 55–82,

1975.

[69] H. Kung, “Synchronized and asynchronous parallel algorithms for multiprocessors,”

New Directions and Recent Results in Algorithms and Complexity, 1976.

[70] G. M. Baudet, “Asynchronous iterative methods for multiprocessors,” Journal of the

ACM (JACM), vol. 25, no. 2, pp. 226–244, 1978.

[71] G. M. Baudet, “The design and analysis of algorithms for asynchronous multiproces-

sors.,” tech. rep., CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COM-

PUTER SCIENCE, 1978.

[72] A. Üresin and M. Dubois, “Sufficient conditions for the convergence of asynchronous

iterations,” Parallel Computing, vol. 10, no. 1, pp. 83–92, 1989.

[73] D. P. Bertsekas and J. N. Tsitsiklis, “Convergence rate and termination of asyn-

chronous iterative algorithms,” in Proceedings of the 3rd International Conference on

Supercomputing, pp. 461–470, ACM, 1989.

[74] E. W. Dijkstra and C. S. Scholten, “Termination detection for diffusing computations,”

Information Processing Letters, vol. 11, no. 1, pp. 1–4, 1980.

[75] S. Li and T. Basar, “Asymptotic agreement and convergence of asynchronous stochastic

algorithms,” IEEE Transactions on Automatic Control, vol. 32, no. 7, pp. 612–618,

1987.

[76] J. N. Tritsiklis, “A comparison of jacobi and gauss-seidel parallel iterations,” Applied

Mathematics Letters, vol. 2, no. 2, pp. 167–170, 1989.

[77] A. Bojańczyk, “Optimal asynchronous Newton method for the solution of nonlinear

equations,” Journal of the ACM (JACM), vol. 31, no. 4, pp. 792–803, 1984.

222

[78] M. Anwar and M. N. El Tarazi, “Asynchronous algorithms for Poisson’s equation with

nonlinear boundary conditions,” Computing, vol. 34, no. 2, pp. 155–168, 1985.

[79] P. Spiteri, “Parallel asynchronous algorithms for solving boundary value problems,”

in Proceedings of the international workshop on Parallel algorithms & architectures,

pp. 73–84, North-Holland Publishing Co., 1986.

[80] D. Smart and J. White, “Reducing the parallel solution time of sparse circuit matrices

using reordered Gaussian elimination and relaxation,” tech. rep., MASSACHUSETTS

INST OF TECH CAMBRIDGE MICROSYSTEMS RESEARCH CENTER, 1988.

[81] D. Mitra, “Asynchronous relaxations for the numerical solution of differential equations

by parallel processors,” SIAM journal on scientific and statistical computing, vol. 8,

no. 1, pp. s43–s58, 1987.

[82] W. K. Tsai, “Convergence of gradient projection routing methods in an asynchronous

stochastic quasi-static virtual circuit network,” IEEE transactions on automatic con-

trol, vol. 34, no. 1, pp. 20–33, 1989.

[83] D. P. Bertsekas, “Distributed asynchronous computation of fixed points,”Mathematical

Programming, vol. 27, no. 1, pp. 107–120, 1983.

[84] M. N. El Tarazi, “Some convergence results for asynchronous algorithms,” Numerische

Mathematik, vol. 39, no. 3, pp. 325–340, 1982.

[85] D. Bertsekas, “Distributed dynamic programming,” IEEE transactions on Automatic

Control, vol. 27, no. 3, pp. 610–616, 1982.

[86] A. Uresin and M. Dubois, “Generalized asynchronous iterations,” CONPAR 86,

pp. 272–278, 1986.

223

[87] B. Lubachevsky and D. Mitra, “A chaotic asynchronous algorithm for computing the

fixed point of a nonnegative matrix of unit spectral radius,” Journal of the ACM

(JACM), vol. 33, no. 1, pp. 130–150, 1986.

[88] J. N. Tsitsiklis, “On the stability of asynchronous iterative processes,” Mathematical

systems theory, vol. 20, no. 1, pp. 137–153, 1987.

[89] D. P. Bertsekas and J. N. Tsitsiklis, “Some aspects of parallel and distributed iterative

algorithmsa survey,” Automatica, vol. 27, no. 1, pp. 3–21, 1991.

[90] E. Kaszkurewicz, A. Bhaya, and D. Šiljak, “On the convergence of parallel asyn-

chronous block-iterative computations,” Linear Algebra and its Applications, vol. 131,

pp. 139–160, 1990.

[91] A. ”Uresin and M. Dubois, “Parallel asynchronous algorithms for discrete data,” Jour-

nal of the ACM (JACM), vol. 37, no. 3, pp. 588–606, 1990.

[92] A. Frommer, “Generalized nonlinear diagonal dominance and applications to asyn-

chronous iterative methods,” Journal of Computational and Applied Mathematics,

vol. 38, no. 1-3, pp. 105–124, 1991.

[93] J. M. Bull and T. Freeman, “Numerical performance of an asynchronous jacobi itera-

tion,” in Parallel Processing: CONPAR 92VAPP V, pp. 361–366, Springer, 1992.

[94] A. Bhaya, E. Kaszurewicz, and F. Mota, “Asynchronous block-iterative methods for

almost linear equations,” Linear algebra and its applications, vol. 154, pp. 487–508,

1991.

[95] P. Tseng, “Distributed computation for linear programming problems satisfying a cer-

tain diagonal dominance condition,” Mathematics of Operations Research, vol. 15,

no. 1, pp. 33–48, 1990.

224

[96] A. Frommer and D. B. Szyld, “Asynchronous two-stage iterative methods,” Nu-

merische Mathematik, vol. 69, no. 2, pp. 141–153, 1994.

[97] R. Bru, V. Migallón, J. Penadés, and D. B. Szyld, “Parallel, synchronous and asyn-

chronous two-stage multisplitting methods,” Electronic Transactions on Numerical

Analysis, vol. 3, pp. 24–38, 1995.

[98] S. A. Savaŕı and D. P. Bertsekas, “Finite termination of asynchronous iterative algo-

rithms,” Parallel Computing, vol. 22, no. 1, pp. 39–56, 1996.

[99] D. B. Szyld, “Different models of parallel asynchronous iterations with overlapping

blocks,” Computational and applied mathematics, vol. 17, pp. 101–115, 1998.

[100] J. M. Bahi, “Asynchronous iterative algorithms for nonexpansive linear systems,” Jour-

nal of Parallel and Distributed Computing, vol. 60, no. 1, pp. 92–112, 2000.

[101] A. Frommer, H. Schwandt, and D. B. Szyld, “Asynchronous weighted additive Schwarz

methods,” Electronic Transactions on Numerical Analysis, vol. 5, no. 48-61, pp. 1–5,

1997.

[102] J. C. Strikwerda, Finite difference schemes and partial differential equations, vol. 88.

Siam, 2004.

[103] A. Bhaya, E. Kaszkurewicz, and Y. Su, “Stability of asynchronous two-dimensional

Fornasini–Marchesini dynamical systems,” Linear Algebra and Its Applications,

vol. 332, pp. 257–263, 2001.

[104] J. C. Strikwerda, “A probabilistic analysis of asynchronous iteration,” Linear algebra

and its applications, vol. 349, no. 1-3, pp. 125–154, 2002.

[105] H. Avron, A. Druinsky, and A. Gupta, “Revisiting asynchronous linear solvers: Prov-

able convergence rate through randomization,” Journal of the ACM (JACM), vol. 62,

no. 6, p. 51, 2015.

225

[106] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, Parallel iterative algorithms: from

sequential to grid computing. Chapman and Hall/CRC, 2007.

[107] I. Bethune, J. M. Bull, N. J. Dingle, and N. J. Higham, “Investigating the Performance

of Asynchronous Jacobi’s Method for Solving Systems of Linear Equations,” To appear

in International Journal of High Performance Computing Applications, 2011.

[108] I. Bethune, J. M. Bull, N. J. Dingle, and N. J. Higham, “Performance analysis of

asynchronous Jacobi’s method implemented in MPI, SHMEM and OpenMP,” The

International Journal of High Performance Computing Applications, vol. 28, no. 1,

pp. 97–111, 2014.

[109] J. Hook and N. Dingle, “Performance analysis of asynchronous parallel jacobi,” Nu-

merical Algorithms, pp. 1–36, 2013.

[110] H. Anzt, S. Tomov, J. Dongarra, and V. Heuveline, “A block-asynchronous relaxation

method for graphics processing units,” Journal of Parallel and Distributed Computing,

vol. 73, no. 12, pp. 1613–1626, 2013.

[111] H. Anzt, J. Dongarra, and E. Chow, “On block-asynchronous execution on GPUs,”

Preprint, 2015.

[112] H. Anzt, S. Tomov, J. Dongarra, and V. Heuveline, “Weighted Block-Asynchronous

Iteration on GPU-Accelerated Systems.,” in Euro-Par Workshops, pp. 145–154,

Springer, 2012.

[113] H. Anzt, E. Chow, D. B. Szyld, and J. Dongarra, “Domain Overlap for Iterative Sparse

Triangular Solves on GPUs,” in Software for Exascale Computing-SPPEXA 2013-2015,

pp. 527–545, Springer, 2016.

[114] M. Si, A. J. Pena, J. Hammond, P. Balaji, M. Takagi, and Y. Ishikawa, “Casper: An

asynchronous progress model for MPI RMA on many-core architectures,” in Parallel

226

and Distributed Processing Symposium (IPDPS), 2015 IEEE International, pp. 665–

676, IEEE, 2015.

[115] F. Magoulès and G. Gbikpi-Benissan, “JACK: an asynchronous communication kernel

library for iterative algorithms,” The Journal of Supercomputing, pp. 1–20, 2016.

[116] R. Gerstenberger, M. Besta, and T. Hoefler, “Enabling highly-scalable remote memory

access programming with MPI-3 one sided,” Scientific Programming, vol. 22, no. 2,

pp. 75–91, 2014.

[117] A. Geist, “What is the monster in the closet?,” in Invited Talk at Workshop on Ar-

chitectures I: Exascale and Beyond: Gaps in Research, Gaps in our Thinking, vol. 2,

2011.

[118] A. Geist, “Exascale monster in the closet,” in 2012 IEEE Workshop on Silicon Errors

in Logic–System Effects, Champaign-Urbana, IL, March, pp. 27–28, 2012.

[119] A. Geist, “Supercomputing’s monster in the closet,” IEEE Spectrum, vol. 53, no. 3,

pp. 30–35, 2016.

[120] G. Fagg and J. Dongarra, “Ft-mpi: Fault tolerant mpi, supporting dynamic applica-

tions in a dynamic world,” Recent advances in parallel virtual machine and message

passing interface, pp. 346–353, 2000.

[121] G. E. Fagg, A. Bukovsky, and J. J. Dongarra, “Harness and fault tolerant mpi,” Parallel

Computing, vol. 27, no. 11, pp. 1479–1495, 2001.

[122] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J. Dongarra, “An

evaluation of user-level failure mitigation support in mpi,” in European MPI Users’

Group Meeting, pp. 193–203, Springer, 2012.

[123] W. Bland, “User level failure mitigation in mpi.,” in Euro-Par Workshops, pp. 499–504,

Springer, 2012.

227

[124] G. Zheng, L. Shi, and L. V. Kalé, “Ftc-charm++: an in-memory checkpoint-based

fault tolerant runtime for charm++ and mpi,” in Cluster Computing, 2004 IEEE

International Conference on, pp. 93–103, IEEE, 2004.

[125] P. Sao and R. Vuduc, “Self-stabilizing iterative solvers,” in Proceedings of the Workshop

on Latest Advances in Scalable Algorithms for Large-Scale Systems, p. 4, ACM, 2013.

[126] G. Bronevetsky and B. de Supinski, “Soft error vulnerability of iterative linear algebra

methods,” in Proceedings of the 22nd annual international conference on Supercom-

puting, pp. 155–164, ACM, 2008.

[127] M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Characterizing the impact of

soft errors on iterative methods in scientific computing,” in Proceedings of the inter-

national conference on Supercomputing, pp. 152–161, ACM, 2011.

[128] Z. Chen, “Online-abft: An online algorithm based fault tolerance scheme for soft error

detection in iterative methods,” in ACM SIGPLAN Notices, vol. 48, pp. 167–176,

ACM, 2013.

[129] J. Sloan, R. Kumar, and G. Bronevetsky, “Algorithmic approaches to low overhead

fault detection for sparse linear algebra,” in Dependable Systems and Networks (DSN),

2012 42nd Annual IEEE/IFIP International Conference on, pp. 1–12, IEEE, 2012.

[130] J. Elliott, M. Hoemmen, and F. Mueller, “Evaluating the impact of sdc on the gmres

iterative solver,” in Parallel and Distributed Processing Symposium, 2014 IEEE 28th

International, pp. 1193–1202, IEEE, 2014.

[131] J. Elliott, M. Hoemmen, and F. Mueller, “Tolerating Silent Data Corruption in Opaque

Preconditioners,” arXiv preprint arXiv:1404.5552, 2014.

228

[132] J. J. Elliott, F. Mueller, M. K. Stoyanov, and C. G. Webster, “Quantifying the im-

pact of single bit flips on floating point arithmetic,” tech. rep., Oak Ridge National

Laboratory (ORNL), 2013.

[133] J. Elliott, M. Hoemmen, and F. Mueller, “Resilience in numerical methods: a position

on fault models and methodologies,” arXiv preprint arXiv:1401.3013, 2014.

[134] J. Elliott, M. Hoemmen, and F. Mueller, “A Numerical Soft Fault Model for Itera-

tive Linear Solvers,” in Proceedings of the 24nd International Symposium on High-

Performance Parallel and Distributed Computing, 2015.

[135] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and Y. Zhou, “Trace-

based microarchitecture-level diagnosis of permanent hardware faults,” in Dependable

Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE International

Conference on, pp. 22–31, IEEE, 2008.

[136] F. A. Bower, D. J. Sorin, and S. Ozev, “Online diagnosis of hard faults in micropro-

cessors,” ACM Transactions on Architecture and Code Optimization (TACO), vol. 4,

no. 2, p. 8, 2007.

[137] H. Casanova, “Simgrid: A toolkit for the simulation of application scheduling,” in Clus-

ter computing and the grid, 2001. proceedings. first ieee/acm international symposium

on, pp. 430–437, IEEE, 2001.

[138] H. Casanova, A. Legrand, and M. Quinson, “Simgrid: A generic framework for large-

scale distributed experiments,” in Computer Modeling and Simulation, 2008. UKSIM

2008. Tenth International Conference on, pp. 126–131, IEEE, 2008.

[139] C. L. Dumitrescu and I. Foster, “Gangsim: a simulator for grid scheduling studies,” in

Cluster Computing and the Grid, 2005. CCGrid 2005. IEEE International Symposium

on, vol. 2, pp. 1151–1158, IEEE, 2005.

229

[140] R. Buyya and M. Murshed, “Gridsim: A toolkit for the modeling and simulation of

distributed resource management and scheduling for grid computing,” Concurrency

and computation: practice and experience, vol. 14, no. 13-15, pp. 1175–1220, 2002.

[141] R. N. Calheiros, R. Ranjan, C. A. De Rose, and R. Buyya, “Cloudsim: A novel frame-

work for modeling and simulation of cloud computing infrastructures and services,”

arXiv preprint arXiv:0903.2525, 2009.

[142] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya, “Cloudsim:

a toolkit for modeling and simulation of cloud computing environments and evaluation

of resource provisioning algorithms,” Software: Practice and experience, vol. 41, no. 1,

pp. 23–50, 2011.

[143] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, “Performance comparison of par-

allel programming environments for implementing aiac algorithms,” The Journal of

Supercomputing, vol. 35, no. 3, pp. 227–244, 2006.

[144] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, “Coupling dynamic load balancing

with asynchronism in iterative algorithms on the computational grid,” in Parallel and

Distributed Processing Symposium, 2003. Proceedings. International, pp. 9–pp, IEEE,

2003.

[145] D. V. De Jager and J. T. Bradley, “Extracting state-based performance metrics using

asynchronous iterative techniques,” Performance Evaluation, vol. 67, no. 12, pp. 1353–

1372, 2010.

[146] K. Voronin, “A numerical study of an mpi/openmp implementation based on asyn-

chronous threads for a three-dimensional splitting scheme in heat transfer problems,”

Journal of Applied and Industrial Mathematics, vol. 8, no. 3, pp. 436–443, 2014.

[147] M. Benzi, “Preconditioning techniques for large linear systems: a survey,” Journal of

computational Physics, vol. 182, no. 2, pp. 418–477, 2002.

230

[148] E. Chow, Robust preconditioning for sparse linear systems. PhD thesis, University of

Minnesota, 1997.

[149] E. Coleman and M. Sosonkina, “Evaluating a Persistent Soft Fault Model on Precondi-

tioned Iterative Methods,” in Proceedings of the 22nd annual International Conference

on Parallel and Distributed Processing Techniques and Applications, 2016.

[150] Y. Saad, “Ilut: A dual threshold incomplete lu factorization,” Numerical linear algebra

with applications, vol. 1, no. 4, pp. 387–402, 1994.

[151] Y. Saad, “Ilum: a multi-elimination ilu preconditioner for general sparse matrices,”

SIAM Journal on Scientific Computing, vol. 17, no. 4, pp. 830–847, 1996.

[152] Y. Saad and J. Zhang, “Bilutm: a domain-based multilevel block ilut preconditioner for

general sparse matrices,” SIAM Journal on Matrix Analysis and Applications, vol. 21,

no. 1, pp. 279–299, 1999.

[153] Y. Saad and B. Suchomel, “ARMS: An algebraic recursive multilevel solver for general

sparse linear systems,” Numerical linear algebra with applications, vol. 9, no. 5, pp. 359–

378, 2002.

[154] Saad, Yousef, “Matlab suite.” http://www-users.cs.umn.edu/~saad/software/,

Accessed 2017.

[155] M. Baboulin, A. Jamal, and M. Sosonkina, “Using random butterfly transformations

in parallel Schur complement-based preconditioning,” in 2015 Federated Conference on

Computer Science and Information Systems, FedCSIS 2015, Lódz, Poland, September

13-16, 2015, pp. 649–654, 2015.

[156] D. S. Parker, “Random butterfly transformations with applications in computational

linear algebra,” Technical Report CSD-950023, 1995.

231

[157] M. Baboulin, J. Dongarra, J. Herrmann, and S. Tomov, “Accelerating linear system

solutions using randomization techniques,” ACM Transactions on Mathematical Soft-

ware (TOMS), vol. 39, no. 2, p. 8, 2013.

[158] M. Baboulin, X. S. Li, and F.-H. Rouet, “Using random butterfly transformations to

avoid pivoting in sparse direct methods,” in International Conference on High Perfor-

mance Computing for Computational Science, pp. 135–144, Springer, 2014.

[159] E. Andersen, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, et al., LAPACK Users’ Guide. SIAM,

1999.

[160] J. Wolfson-Pou and E. Chow, “Reducing communication in distributed asynchronous

iterative methods,” Procedia Computer Science, vol. 80, pp. 1906–1916, 2016.

[161] G. D. Smith, Numerical solution of partial differential equations: finite difference meth-

ods. Oxford university press, 1985.

[162] T. Lindeberg, “Scale-space for discrete signals,” IEEE transactions on pattern analysis

and machine intelligence, vol. 12, no. 3, pp. 234–254, 1990.

[163] S. C. Chapra and R. P. Canale, Numerical methods for engineers, vol. 2. McGraw-Hill

New York, 1998.

[164] E. Coleman, E. Jensen, and M. Sosonkina, “Enhancing Asynchronous Linear Solvers

through Randomization,” in Proceedings of the 2019 Spring Simulation Multiconference

(Submitted), Society for Computer Simulation International, 2019.

[165] E. Coleman and M. Sosonkina, “Fault Tolerance for Fine-Grained Iterative Methods,”

in Proceedings of the 7th annual Virginia Modeling, Simulation, and Analysis Center

Capstone Conference, Virginia Modeling, Simulation, and Analysis Center, 2017.

232

[166] E. Coleman, E. Jensen, and M. Sosonkina, “Fault Tolerance for Asynchronous Linear

Solvers,” Journal TBD, 2019.

[167] E. Coleman and M. Sosonkina, “Analysis of Soft Fault Resilience for Parallel Asyn-

chronous Fixed Point Problems,” Naval Surface Warfare Center, Dahlgren Division

Technical Report TR-19/41 (Under review), 2019.

[168] E. Coleman, E. Jensen, and M. Sosonkina, “Simulation Framework for Asynchronous

Iterative Methods,” Journal of Simulation Engineering, 2018.

[169] E. Coleman, M. Sosonkina, and E. Chow, “Fault Tolerant Variants of the Fine-Grained

Parallel Incomplete LU Factorization,” in Proceedings of the 2017 Spring Simulation

Multiconference, Society for Computer Simulation International, 2017.

[170] E. Coleman and M. Sosonkina, “Self-Stabilizing Fine-Grained Parallel Incomplete LU

Factorization,” Sustainable Computing: Informatics and Systems, 2018.

[171] E. Coleman and M. Sosonkina, “A Comparison and Analysis of Soft-Fault Error Models

using FGMRES,” in Proceedings of the 6th annual Virginia Modeling, Simulation, and

Analysis Center Capstone Conference, Virginia Modeling, Simulation, and Analysis

Center, 2016.

[172] E. Coleman, A. Jamal, M. Baboulin, A. Khabou, and M. Sosonkina, “A Compari-

son of Soft-Fault Error Models in the Parallel Preconditioned Flexible GMRES,” in

Proceedings of the 12th International Conference on Parallel Processing and Applied

Mathematics, ACM, 2017.

[173] E. Coleman, E. Jensen, and M. Sosonkina, “Impacts of Three Soft-Fault Models on

Hybrid Parallel Asynchronous Iterative Methods,” in 30th International Symposium

on Computer Architecture and High Performance Computing, 2018.

233

[174] E. Coleman, E. Jensen, and M. Sosonkina, “Numerical Soft Fault Simulation for It-

erative Algorithm Development,” Naval Surface Warfare Center, Dahlgren Division

Technical Report TR-18/280 (Under review), 2018.

[175] E. Coleman and M. Sosonkina, “Convergence and Resilience of the of the Fine-Grained

Parallel Incomplete LU Factorization for Non-Symmetric Problems,” in Proceedings of

the 2018 Spring Simulation Multiconference, Society for Computer Simulation Inter-

national, 2018.

[176] E. Coleman and M. Sosonkina, “Soft Fault Resilience for Fine-Grained Parallel In-

complete Factorizations,” Naval Surface Warfare Center, Dahlgren Division Technical

Report TR-18/176 (Submitted), 2018.

[177] F. Jezequel, R. Couturier, and C. Denis, “Solving large sparse linear systems in a grid

environment: the gremlins code versus the petsc library,” The Journal of Supercom-

puting, vol. 59, no. 3, pp. 1517–1532, 2012.

[178] H. Anzt, E. Chow, and J. Dongarra, “Parilut—a new parallel threshold ilu factoriza-

tion,” SIAM Journal on Scientific Computing, vol. 40, no. 4, pp. C503–C519, 2018.

[179] T. A. Manteuffel, “An incomplete factorization technique for positive definite linear

systems,” Mathematics of computation, vol. 34, no. 150, pp. 473–497, 1980.

[180] I. S. Duff and J. Koster, “On algorithms for permuting large entries to the diagonal of

a sparse matrix,” SIAM Journal on Matrix Analysis and Applications, vol. 22, no. 4,

pp. 973–996, 2001.

[181] M. Benzi and M. Tuma, “Orderings for factorized sparse approximate inverse pre-

conditioners,” SIAM Journal on Scientific Computing, vol. 21, no. 5, pp. 1851–1868,

2000.

234

[182] Innovative Computing Lab, “Software distribution of MAGMA.” http://icl.cs.

utk.edu/magma/, 2015.

[183] T. A. Davis, “The University of Florida Sparse Matrix Collection.” http://www.cise.

ufl.edu/research/sparse/matrices/, 1994.

[184] M. Naumov, “Incomplete-lu and cholesky preconditioned iterative methods using cus-

parse and cublas,” Nvidia white paper, 2011.

[185] A. Nukada, H. Takizawa, and S. Matsuoka, “Nvcr: A transparent checkpoint-restart

library for nvidia cuda,” in Parallel and Distributed Processing Workshops and Phd

Forum (IPDPSW), 2011 IEEE International Symposium on, pp. 104–113, IEEE, 2011.

[186] X. S. Li and J. Demmel, “A scalable sparse direct solver using static pivoting.,” in

PPSC, 1999.

[187] A. Gupta, “Improved symbolic and numerical factorization algorithms for unsymmetric

sparse matrices,” SIAM Journal on Matrix Analysis and Applications, vol. 24, no. 2,

pp. 529–552, 2002.

[188] E. Jensen, E. Coleman, and M. Sosonkina, “Using Modeling to Improve the Per-

formance of Asynchronous Jacobi,” in Proceedings of the 24th annual International

Conference on Parallel and Distributed Processing Techniques and Applications, 2018.

[189] E. Jensen, E. Coleman, and M. Sosonkina, “Predictive Modeling of the Performance

of Asynchronous Iterative Methods,” Journal of Supercomputing, 2019.

[190] G. Hager and G. Wellein, Introduction to high performance computing for scientists

and engineers. CRC Press, 2010.

[191] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asynchronous distributed opti-

mization using a randomized alternating direction method of multipliers,” in Decision

235

and Control (CDC), 2013 IEEE 52nd Annual Conference on, pp. 3671–3676, IEEE,

2013.

[192] J. Wolfson-Pou and E. Chow, “Distributed southwell: an iterative method with low

communication costs,” in Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, p. 48, ACM, 2017.

236

VITA

Evan Coleman

Department of Modeling & Simulation

Old Dominion University

Norfolk, VA 23529

Education

Doctor of Philosophy, Engineering with a concentration in Modeling & Simulation,

Old Dominion University, 05/2019

Master of Science, Mathematics, Syracuse University, 05/2011

Bachelor of Science, Mathematics, Oregon State University, 03/2009

Employment

Scientist, Naval Surface Warfare Center, Dahlgren Division, Dahlgren, VA, 10/2011 - Present

Selected Publications

1. Predictive Modeling of the Performance of Asynchronous Iterative Methods, Erik Jensen,

Evan Coleman and Masha Sosonkina, Journal of Supercomputing, 02/2019

2. Simulation Framework for Asynchronous Iterative Methods, Evan Coleman, Erik Jensen

and Masha Sosonkina, Journal of Simulation Engineering, 06/2018

3. Self-Stabilizing Fine-Grained Parallel Incomplete LU Factorization, Evan Coleman and

Masha Sosonkina, Sustainable Computing: Informatics and Systems, 02/2018

Awards & Grants

• Naval Surface Warfare Center Dahlgren Division In-house Laboratory Independent

Research Grant (100k/yr), Fault Tolerant Methods in Scientific Computing,

Fiscal Year 2017, 2018, 2019

• Naval Surface Warfare Center Dahlgren Division Academic Fellow,

Fiscal Year 2016, 2019 (Additional funding in: Fiscal Year 2015, 2017, 2018)

	Old Dominion University
	ODU Digital Commons
	Spring 2019

	Resilience for Asynchronous Iterative Methods for Sparse Linear Systems
	Evan Coleman
	Recommended Citation

	Dissertation Coleman - Final.pdf

