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Algebraic, Block and Multiplicative Preconditioners based on Fast Tridiag-
onal Solves on GPUs This thesis contributes to the field of sparse linear algebra,
graph applications, and preconditioners for Krylov iterative solvers of sparse linear
equation systems, by providing a (block) tridiagonal solver library, a generalized
sparse matrix-vector implementation, a linear forest extraction, and a multiplicative
preconditioner based on tridiagonal solves. The tridiagonal library, which supports
(scaled) partial pivoting, outperforms cuSPARSE’s tridiagonal solver by factor five
while completely utilizing the available GPU memory bandwidth. The extraction
of a weighted linear forest (union of disjoint paths) from a general graph is used
to build algebraic (block) tridiagonal preconditioners and deploys the generalized
sparse-matrix vector implementation of this thesis for preconditioner construction.
During linear forest extraction, a new parallel bidirectional scan pattern, which can
operate on double-linked list structures, identifies the path ID and the position of a
vertex. The algebraic preconditioner construction is also used to build more advanced
preconditioners, which contain multiple tridiagonal factors, based on generalized ILU
factorizations. Additionally, other preconditioners based on tridiagonal factors are
presented and evaluated in comparison to ILU and ILU incomplete sparse approximate
inverse preconditioners (ILU-ISAI) for the solution of large sparse linear equation
systems from the Sparse Matrix Collection. For all presented problems of this thesis,
an efficient parallel algorithm and its CUDA implementation for single GPU systems
is provided.

Algebraic, Block and Multiplicative Preconditioners based on Fast Tridiag-
onal Solves on GPUs Diese Promotion macht Beiträge im Bereich dünnbesetzter
linearer Algebra, Graphanwendungen und Vorkonditionierer für iterative Krylov-Löser
indem sie eine Bibliothek zum Lösen von (block-) tridiagonalen linearen Gleichungs-
systemen, eine Implementierung für ein generalisiertes dünnbesetztes Matrix-Vektor
Produkt, eine Extraktion für lineare Bäume von Graphen und einen multiplikativen
auf tridiagonalen Faktoren basierenden Vorkonditionierer vorstellt. Die tridiagonale
Bibliothek unterstützt (skaliertes) partielles Pivoting und übertrifft die Performanz
des Tridiagonallösers in cuSPARSE um Faktor fünf während die volle Bandbreite
des GPU Speichers ausgenutzt wird. Die Extraktion der gewichteten linearen Bäume
(Vereinigung von disjunkten Pfaden) von allgemeinen Graphen, wird verwendet um
einen algebraischen (block-) tridiagonalen Vorkonditionierer zu konstruieren und ver-
wendet dazu das generalisierte Matrix-Vektor Produkt dieser Thesis. Während der
Baumextraktion, wird ein neuer paralleler bidirektionaler Scan verwendet um die ID
und Position eines Knoten innerhalb eines Pfades zu bestimmen. Die Konstruktion
des algebraischen Vorkonditioners wird ebenfalls verwendet um fortgeschrittene Vor-
konditionierer zu konstruieren, die mehrere tridiagonale Faktoren enthalten und auf
einer Generalisierung von ILU-Vorkonditionierern basieren. Zusätzlich evaluiert diese
Thesis noch andere Vorkonditionierer, die auf tridiagonalen Systemen basieren und
vergleicht diese mit ILU und ILU-ISAI Vorkonditionierern für die Lösung von großen
dünnbesetzten linearen Gleichungssystemen aus der Sparse Matrix Collection. Für alle
hier vorgestellten Problemklassen, stellt diese Thesis effiziente parallele Algorithmen
und deren CUDA Implementierung für Computersysteme mit einer GPU vor.
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1. Introduction

In the first decades of processor development, performance was mainly improved by
accelerating the frequency of the core, which results in an increased computational speed.
This was comfortable for the programmer because a code did not require any changes:
once written, it could be executed on newer hardware to speed up the runtime. However,
hardware limitations like heat conduction, cooling, and semiconductor scales required
the development of multiprocessors to fulfill Moore’s law [87]. The multiprocessor was a
turning point for the single processor paradigm, and other more heterogeneous computer
systems, with e.g. graphics processing units (GPUs), emerged. This was uncomfortable
for the programmer because now a code required changes to be executed efficiently on
newer hardware. While making a parallel version of a sequential algorithm on CPUs is
difficult, GPU programming is even more complex, and the development of fully optimized
GPU kernels is a tedious process. Usually, the sequential algorithmic structure must
completely be replaced with a new parallel formulation in combination with a tricky
technical implementation to achieve maximum GPU performance. Nevertheless, the
popularity of GPUs in heterogeneous compute clusters has been an unbroken growing
trend for the last decades, and many of the most powerful supercomputers worldwide use
GPUs as accelerators1, which makes the necessity for fully optimized GPU kernels an
up-to-date issue. GPUs are throughput optimized architectures, which comes at the cost
of relaxed memory consistent models, and usually have thousands of cores with several
streaming multiprocessors. Contrary CPUs are latency optimized architectures which
usually have a few cores on each processor. Between GPUs and CPUs, the maximum
hardware performance in terms of floating point operations per second, memory bandwidth,
or energy efficiency is often found in GPU architectures, which makes them attractive
accelerators. However, speedups of GPU accelerated programs which significantly exceed
the actual hardware performance differences between CPU and GPU often indicate poorly
CPU reference versions.

This thesis contributes with highly parallel algorithms and their efficient GPU imple-
mentations to the field of sparse linear algebra, graph computations, and preconditioners
for iterative Krylov solvers. Problem statements of these fields can be found in many
applications as essential building blocks, which make up a large part of the application’s
runtime. Thus, optimizing these building blocks to the full hardware capacity is of high
relevance for many applications.

The rest of the thesis is structured as follows: In Chapter 2, a (block) tridiagonal library
(tridigpu) for GPUs with (scaled) partial pivoting is presented, which solves scalar
tridiagonal systems by utilizing the full GPU memory bandwidth. A tridiagonal system is
a linear set of equations in which only the lower diagonal, the diagonal, and the upper
diagonal have non-zero coefficients. tridigpu also solves block tridiagonal systems with
small coefficient blocks of size n× n with 1 ≤ n ≤ 4, efficiently, and includes optimizations
for small tridiagonal systems & multiple (sparse) right-hand sides. Strengths of the library
are the support for (scaled) partial pivoting and the full bandwidth utilization, whereas
the underlying hierarchical algorithm is limited by the conditioning of the coarser systems

1https://www.top500.org/
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in the hierarchy.
In Chapter 3, a generalized sparse matrix–vector (SpMV) implementation for GPUs

(SRCSR) is presented, which uses segmented reduction algorithms as a building block. The
challenge for highly parallel SpMV implementations is the work balancing of the irregularly
distributed non-zero matrix coefficients to the GPU threads, which is often resolved by
using specialized implementations depending on the sparsity pattern. SRCSR does not
contain any specializations, which depend on the sparsity pattern, and also provides a
general type and operator abstraction such that it can be used for much more problem
statements beyond normal SpMV. Different SRCSR schemes, which make different trade-
offs between work-balancing, additional kernel launch overhead, and type and operator
generality, are evaluated with respect to large sparse matrices from the Sparse Matrix
Collection [27].
Based on the SpMV kernel of Chapter 3, another contribution is made to the field of

graph applications in Chapter 4 by a weighted linear forest extraction, which is an acyclic
subgraph with maximum degree two, and weighted [0,n]-factor computations, which is a
subgraph with maximum degree n. Linear forests can be represented with appropriate
vertex permutations by a tridiagonal adjacency matrix. In that way, an algebraic tridiagonal
preconditioner is constructed. Another algebraic 2× 2 block tridiagonal preconditioner is
constructed by computing a [0, 1]-factor, coarsen the graph by contracting the vertex pairs,
and extracting the linear forest from the coarser graph. The (block) tridiagonal systems
are solved with the tridigpu library from Chapter 2 and evaluated with a biconjugate
gradient stabilized (BiCGStab) iterative solver. The field of preconditioners is an active
research area [94], with the aim to reduce the iterations and time to the solution for
iterative methods. Some preconditioner approaches make use of the underlying problem,
and problem-specific preconditioners might be used for optimal convergence. However,
the new preconditioners presented in this thesis are constructed without knowing the
underlying problem but algebraically from the system matrix, which makes them applicable
to many sparse matrices.

A more complex multiplicative preconditioner is presented in Chapter 5, which uses the
graph algorithms from Chapter 4 for preconditioner construction and the tridiagonal solver
from Chapter 2 to apply the preconditioner. This approach represents an improvement
of simple scalar or block tridiagonal preconditioners and shows how multiple tridiagonal
systems are combined into one single preconditioner application. However, the ansatz is not
restricted to tridiagonal systems only but is rather a generalization of ILU factorizations
to multiple factors.

Also note that every for every problem statement of this thesis a parallel algorithm and
an efficient GPU implementation has been developed.

Regardless of the order in which the chapters are arranged, each chapter is self-contained
and the reader might choose a different order. Most parts of the chapters have already
been published before, which is indicated by an additional note at the beginning of each
chapter.

14



2. tridigpu: A GPU library for block
tridiagonal and banded linear equation
systems

References: Most parts of this chapter were already published in [72] and [75]. The
new contributions are the survey of scalar tridiagonal solvers in Section 2.2, Figure 7,
Section 2.5.1 with Figure 8, and Algorithm 1 & 2, which are modified versions of the
algorithms from [72] but with support for block tridiagonal systems.

Abstract In this thesis we present a CUDA library with a C API for solving
block cyclic tridiagonal and banded systems on one GPU . The library can
process block tridiagonal systems with block sizes from 1x1 (scalar) to 4x4
and banded systems with up to 4 sub- and superdiagonals. For the compute
intensive block size cases and cases with many right-hand sides, we write out
an explicit factorization to memory, however, for the scalar case the fastest
approach is to only output the coarse system and recompute the factorization.
Prominent features of the library are (scaled) partial pivoting for improved
numeric stability, highest performance kernels, which completely utilize GPU
memory bandwidth, and support for multiple sparse or dense right-hand side
and solution vectors. The additional memory consumption is only 5% of
the original tridiagonal system, which enables the solution of systems up to
GPU memory size. The performance of the state-of-the-art scalar tridiagonal
solver of cuSPARSE is outperformed by factor 5 for large problem sizes of 225

unknowns, on a GeForce RTX 2080 Ti.

2.1. Introduction

tridigpu is a library for the solution of scalar and block tridiagonal linear equation
systems with multiple right-hand sides

AX = D, with (1)

AX :=



b0 c0 a0
a1 b1 c1

a2 b2 c2
. . .

. . .
. . .

aN̂−2 bN̂−2 cN̂−2

cN̂−1 aN̂−1 bN̂−1





x0,0 · · · x0,nr−1

x1,0 · · · x1,nr−1

x2,0 · · · x2,nr−1

...
. . .

...
xN̂−2,0 · · · xN̂−2,nr−1

xN̂−1,0 · · · xN̂−1,nr−1


,

D :=



d0,0 · · · d0,nr−1

d1,0 · · · d1,nr−1

d2,0 · · · d2,nr−1

...
. . .

...
dN̂−2,0 · · · dN̂−2,nr−1

dN̂−1,0 · · · dN̂−1,nr−1


,
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and A ∈ FN×N , small coefficient blocks ai, bi, ci ∈ Fn×n, xi, di ∈ Fn×1, and i = 0, . . . , N̂−1,
where F is the field of real R or complex numbers C. Matrix A has N̂ block rows with
block size n ∈ N and N = N̂n scalar rows. The number of right-hand sides of the equation
system is denoted with nr ∈ N.
Solving scalar tridiagonal systems (n = 1) is required in many applications, e.g. in

electrodynamics [63], fluid dynamics [68, 60], or computer graphics [67], semicoarsening
for multigrid solvers [101], and preconditioning for multigrid solvers [53]. The solution of
block tridiagonal systems (n > 1) is required in computational finance [48], computational
fluid dynamics [102], or image restoration problems [20].

Equation 1 encompasses multiple problem classes which tridigpu can solve efficiently.
These problem classes guide our discussion of the C API, the algorithms, the implementa-
tions and the results throughout this chapter.

Problem Class Cyclic cyclic tridiagonal systems with multiple right-hand sides (a0, cN̂−1 ̸=
0),

Problem Class Scalar scalar tridiagonal systems with multiple right-hand sides (n = 1),

Problem Class Block block tridiagonal systems with multiple right-hand sides (n > 1),

Problem Class DIA banded systems with multiple right-hand sides (n > 1),

Problem Class ScalarCSC2Dense scalar tridiagonal systems with multiple sparse right-
hand sides, AX = D, with a CSC encoded sparse matrix D,

Problem Class ScalarCSC2CSC scalar tridiagonal systems with many sparse right-hand
sides and a pruned incomplete result, AX = D, with CSC encoded large sparse
matrices D and X .

In the following we list one small example for each problem class. Obviously, one example
cannot express all possible parameter variations within the corresponding problem class,
but only highlight a certain characteristic aspect.

Example of Problem Class Cyclic is a system with a0, cN̂−1 ̸= 0, nr = 1, N = 6, and
n = 1

AX =



7 13 1
2 8 14

3 9 15
4 10 16

5 11 17
18 6 12





x0,0
x1,0
x2,0
x3,0
x4,0
x5,0

 =



1
2
3
4
5
6

 = D. (2)

Example of Problem Class Scalar is a system with nr = 3, N = 6, and n = 1

AX =



6 12
1 7 13

2 8 14
3 9 15

4 10 16
5 11





x0,0 x0,1 x0,2
x1,0 x1,1 x1,2
x2,0 x2,1 x2,2
x3,0 x3,1 x3,2
x4,0 x4,1 x4,2
x5,0 x5,1 x5,2

 =



1 7 13
2 8 14
3 9 15
4 10 16
5 11 17
6 12 18

 = D. (3)
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Example of Problem Class Block is a system with nr = 1, N = 8, N̂ = 4, and n = 2

AX =



13 15 29 31
14 16 30 32

1 3 17 19 33 35
2 4 18 20 34 36

5 7 21 23 37 39
6 8 22 24 38 40

9 11 25 27
10 12 26 28




x0,0
x1,0
x2,0
x3,0

 =



1
2
3
4
5
6
7
8


= D. (4)

Example of Problem Class DIA is a pentadiagonal system with nr = 1, N = 8, N̂ = 4,
and n = 2

AX =



13 15 29
14 16 30 32

1 3 17 19 33
4 18 20 34 36

5 7 21 23 37
8 22 24 38 40

9 11 25 27
12 26 28




x0,0
x1,0
x2,0
x3,0

 =



1
2
3
4
5
6
7
8


= D. (5)

Example of Problem Class ScalarCSC2Dense is a system with nr = 6, N = 6,
N̂ = 6, n = 1, sparse matrix D ∈ R6×6 and a dense solution

AX =


6 12
1 7 13

2 8 14
3 9 15

4 10 16
5 11




x0,0 x0,1 x0,2 x0,3 x0,4 x0,5

x1,0 x1,1 x1,2 x1,3 x1,4 x1,5

x2,0 x2,1 x2,2 x2,3 x2,4 x2,5

x3,0 x3,1 x3,2 x3,3 x3,4 x3,5

x4,0 x4,1 x4,2 x4,3 x4,4 x4,5

x5,0 x5,1 x5,2 x5,3 x5,4 x5,5

 =


1 2 3 4
5 6 7

8 9
10
11 12 13

 = D.

(6)

Note, that sparse matrix D contains the right-hand sides and we calculateX = A−1D.

Example of Problem Class ScalarCSC2CSC is a system with nr = 6, N = 6, N̂ = 6,
n = 1, and sparse matrices D,X ∈ R6×6, which is inverted exactly, but the output is
written in a sparse form by omitting small values

AX =


6 12
1 7 13

2 8 14
3 9 15

4 10 16
5 11




x0 x6

x7

x1 x4 x8 x11

x2 x9 x12

x3 x5 x10

 =


1 2 3 4
5 6 7

8 9
10
11 12 13

 = D.

(7)

The calculated sparse matrix X := prune(X,Sp) is the dense result X := A−1D,
pruned to the sparsity pattern Sp (all coefficient outside Sp are discarded), The
sparsity pattern Sp is chosen such that the maximum absolute values of the dense
result are included in the sparse result.

The rest of the chapter is organized as follows: Section 2.2 gives an overview about the
development of parallel scalar tridiagonal solvers and algorithms. Section 2.3 discusses
related work and Section 2.4 gives an overview of the contributions of this chapter.
Algorithmic intrinsics are presented in Section 2.5 and the implementation details in
Section 2.6. We conclude the chapter with the numerical and performance results in
Section 2.7.
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Symbol Meaning

A block tridiagonal matrix or banded matrix of size N ×N
N number of unknowns in the linear equation system
n size of one coefficient block, n = 1, 2, 3, 4

N̂ number of block rows in the linear equation system (N = N̂n)
ai lower band of coefficient blocks in the block tridiagonal matrix
bi diagonal of coefficient blocks in the block tridiagonal matrix
ci upper band of coefficient blocks in the block tridiagonal matrix
kl number of lower bands in a banded matrix, kl = 0, 1, 2, 3, 4
ku number of upper bands in a banded matrix, ku = 0, 1, 2, 3, 4
nr number of right-hand sides of the linear equation system
D dense right-hand sides; matrix of size N × nr

D sparse right-hand sides encoded as a CSC matrix of size N × nr

X dense solution vectors; matrix of size N × nr

X sparse solution vectors encoded as a CSC matrix of size N × nr

Sp sparsity pattern matrix of size N × nr

M number of block rows per partition of the tridiagonal system
L number of partitions of size M , which are processed by one CUDA block
n̂r number of right-hand sides, which are kept simultaneously in on-chip memory
n′
r number of right-hand sides per batch of function tridigpu<t>gtsv csc2csc

Table 1.: Symbols and their meanings in this chapter. The upper part refers to the interface
of tridigpu, whereas the lower part refers to internal library parameters.

2.2. Scalar Tridiagonal Solver Survey

In this section an overview of the development of scalar tridiagonal solvers is given.

2.2.1. Thomas Algorithm

The Thomas Algorithm [109] represents the cassical sequential algorithm to solve tridiagonal
systems. In fact, it is a systematic Gaussian elimination with a complexity of O(2N). In
the first phase (Figure 1b) the entries ai on the lower diagonal are eliminated and the
values on the other bands (bi and ci) are modified. Afterward, the solution for xN−1 is
known because the last row of the matrix contains only one non-zero value, which is the
diagonal value. With the solution for xN−1, the solution for xN−2 is calculated because
the equation at row N − 2 contains only two unknowns after the previous elimination

(a) Initial tridiagonal system (b) Downwards oriented elim-
ination phase

(c) Upwards oriented substitu-
tion phase

Figure 1.: Different phases of the Thomas Algorithm. The blue squares represent non-zero
entries in the matrix, whereas white squares represent zero entries.
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(a) Initial tridiagonal system.
(b) First reduction step. The

yellow entries form a
smaller tridiagonal sys-
tem.

(c) Second reduction step.
The green entries form a
2x2 system.

Figure 2.: Reduction phases of the Cyclic Reduction.

phase of the algorithm. In that manner all solutions for the xi are computed (Figure 1c).

2.2.2. Cyclic Reduction

The Cyclic Reduction represents the first parallel algorithm to solve tridiagonal systems,
and was first proposed by Hockney [63]. Similar to the Thomas Algorithm, it consists of
a reduction and a substitution phase. After one reduction step, the tridiagonal system
is reduced to a smaller system with half the size. In Figure 2b, a thread with index t
operates on row 2t, and uses row 2t+1 and 2t−1 to eliminate the dependency to x2t+1 and
x2t−1. During the elimination process additional entries for x2t−2 and x2t+2 are created.
The yellow rows in Figure 2b form a smaller tridiagonal system, and the same reduction
process is applied again (see Figure 2c) until the system has two unknowns only, which
is solved directly. Afterward, two solution values of the small system are substituted in
each equation of the larger system and the remaining value represents the divisor of the
right-hand side to obtain the next solution value. This is shown in Figure 2c: once the
solutions for the green system are calculated, they are substituted in the yellow system. A
good overview of the access pattern is also explained by Kim et al. [69].

2.2.3. Recursive Doubling

Recursive Doubling (RD) was first proposed by [107], and Eǧecioǧlu et al. [43] reformulates
the solution of a tridiagonal system as the calculation of a prefix sum with blocks Ci, Bi ∈
C3×3 defined as

C0 := B0, (8)

Ci := BiCi−1, 1 ≤ i ≤ n− 1, (9)

and the recursively defined solution vectors

Xi :=

 xi
xi−1

1

 = Ci−1X0, (10)

where X0 is calculated from Cn−1, and the Bi are constructed from the coefficients of
equation i of the tridiagonal system. The Recursive Doubling allows the recursive solution
of a tridiagonal system in three steps:

1. Compute all Ci with a parallel prefix sum (Equation 9).
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(a) Partitioned tridiagonal system (b) Diagonalized partitions.

Figure 3.: Example of a partition method.

2. With CN−1, obtain X0.

3. Solve all Xi in parallel (Equation 10).

Since prefix sums are a well studied problem on parallel architectures, RD can be imple-
mented using already existing algorithms. A disadvantage of this approach is that the
prefix sum is calculated with 3× 3 blocks,which must be saved in memory because these
are required in the substitution phase again (step III).

For a detailed explanation see [43], and for a short coneceptual one [112] or [122].

2.2.4. Parallel Cyclic Reduction

The Parallel Cyclic Reduction (PCR) is based on the Cyclic Reduction (CR) (see Sec-
tion 2.2.2) and was also proposed by Hockney et al. [41]. Contrary to the Cyclic Reduction,
the parallel version does not have a substitution phase. Typically a CR implementation
assigns every second row to a thread, whereas a PCR implementation assigns each row to
a thread, which does the elimination explained in Section 2.2.2. After the first reduction
step, the original system of size N is reduced to two systems of size N/2. After thex next
reduction step, there are four systems of size N/4. This pattern continues until there are
N systems of size one, which are solved directly. A good overview of the access pattern is
given by [69].

2.2.5. Partition Methods

Partition methods decompose the tridiagonal matrix into small partitions, which are
diagonalized in parallel, with the cost of so called ’fill-ins’. E.g. Figure 3a shows a
tridiagonal matrix of size N = 16, which is partitioned into 4 blocks of size 4. Next to that,
Figure 3b shows the matrix after each block is diagonalized with Wang’s approach [115].
The vertical spikes which occur for this diagonalization method can either be resolved
sequentially, or the same technique can be applied to the smaller tridiagonal system, which
is marked in yellow. Amodio et al. [4] formalized the concept of parallel factorization and
Polizzi [100, 99] proposed a hybrid banded linear solver ’SPIKE’ for parallel architectures.
For the first time a numerically stable tridiagonal solver for the GPU was developed
by Chang et al. [19, 18], which uses diagonal pivoting by Erway et al. [42]. Chang’s
implementation was improved regarding the numeric stability by Venetis et al. [113], which
point out the problematic behaviour of diagonal pivoting in combination with singular
submatrices and therefore proposed g-Spike.
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(a) Initial system (b) 1. reduction (c) 2. reduction (d) 3. reduction

Figure 4.: Matrix patterns of Redundant Reduction with Kogge Stone pattern (see Fig-
ure 5).

Figure 5.: Kogge-Stone reduction scheme of Redundant Reduction (see Figure 4). Image
taken from [31].

2.2.6. Divide and Conquer

The Divide and Conquer approach by Wang et al. [116] is based on the idea that two
adjacent N-shaped partitions (see Figure 3b) can be combined into one larger N-shaped
partition. First, the last equation in the upper partition is used to eliminate the left fill-in
of the lower partition. Second, The first equation of the lower partition is used to eliminate
the right fill-in of the first partition. If one thread is assigned to one equation, the inter
thread communication forms a critical performance bottleneck if the first and last equation
is exchanged between the threads. Therefore, each thread saves the first and last equation
of its partition redundantly.

The Divide and Conquer algorithm was implemented on a GPU by Lobeiras et al. [81]
(BPLG) to solve small tridiagonal systems in shared memory. Moreover, Déguez et al. [32]
developed an implementation for one GPU and benchmarked their application for problem
sizes up to 219 = 524288 equations with an extension to larger system sizes for multiple
GPUs in [96].

2.2.7. Redundant Reduction

The Redundant Reduction by Diéguez et al. [31] is used to solve small tridiagonal systems
in GPU on-chip memory. As a first step, each equation Ei is split into two identical
equations Iki and Ck

i , which doubles the size of the equation system (Figure 4). If two
equations Ei and Ej are combined with the elimination operator, Iki and Ck

j have two
variables in common, which can both be eliminated. Figure 4 shows that the rightmost
variable of each equation stays fixed, whereas each reduction step shifts the most left xi to
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the left. In the last step, every equation contains one unknown, as the solution of the first
variable is obtained from the last equation.

2.3. Related Work

On sequential architectures the Thomas Algorithm [109] is the classical choice to solve
tridiagonal systems. Due to the increasing amount parallel computer architectures, parallel
Algorithms like the Cyclic Reduction [63] (CR), the Parallel Cyclic Reduction [41] (PCR),
the Partition Method [115], and the Divide and Conquer [116] approach were developed.
the Cyclic Reduction and the Parallel Cyclic Reduction were implemented by many

authors [67, 26, 69, 53, 2] for a GPU. With the diagonal pivoting from Erway et al. [42],
the first numerically stable tridiagonal solver for the GPU was implemented by Chang
et al. [19, 18] and improved in aspects of numeric stability by Venetis et al. [113], who
pointed out the problematic behaviour of diagonal pivoting and singular submatrices
and therefore proposed g-spike. Two tridiagonal solvers were proposed by Diéguez et
al. [31, 96, 32, 30, 29]: The Tree Partitioning Reduction (TPR) and a Wang and Mou
implementation with their Butterfly Processing Library for GPUs (WM BPLG). The
tridiagonal partitioning scheme deployed in this thesis, is also used by Giles et al. [50] and
Lászlo et al. [77], to solve many independent small tridiagonal systems with a size of up to
1000 unknowns. The same partitioning scheme is also used by Klein and Strzodka [72] to
solve large non-cyclic scalar tridiagonal systems with a single right-hand side, and Kim
et al. [70], who proposed PaScaL TDMA, which is a tridiagonal solver without pivoting
for distributed memory machines, which communicate with MPI, to solve very large
tridiagonal systems.
Batched block tridiagonal solvers [77] or batched scalar pentadiagonal solvers [49, 51]

(PCR-Penta and cuPentBatch) for GPUs were proposed, but only Kamra and Rao [66]
solved large block tridiagonal systems, who developed a parallel algorithm (DPBWZA) for
block tridiagonal toeplitz-block-toeplitz linear systems. Ghosh and Mishra [49] proposed a
Parallel Cyclic Reduction algorithm (PCR-Penta) to solve batched pentadiagonal systems.
The above mentioned papers only treat special cases (batched, Toeplitz, pentadiagonal),
whereas our tridigpu library solves a much more general problem (Eq. 1) including large
cyclic block tridiagonal systems with multiple right-hand sides and support for (scaled)
partial pivoting. Moreover, tridigpu solves general block tridiagonal systems without
requiring symmetry and provides a comprehensive C API for multiple value types, as well
as solving and factorizing operations.

2.4. Contributions

The contributions of this thesis regarding the tridiagonal solver library were published
in [72, 75]. We developed a multi-functional GPU library (tridigpu) and made the
following contributions:

• solution of scalar tridiagonal systems,

• support of different types of matrix coefficients and vector elements,

• solution of cyclic tridiagonal systems (a0 ̸= 0, cN̂−1 ̸= 0),

• multiple right-hand sides (nr > 1),

• performance optimizations for small scalar systems (N < 106),
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• block tridiagonal systems and their factorization (n > 1, nr ≥ 1),

• banded systems with up to four sub- and super-bands on each side of the diagonal,

• calculation of A−1D for sparse matrices D.

2.4.1. Limitations

Internally tridigpu uses the Recursive Partitioned Schur Complement Algorithm (RPTS)
[72], in order to expose sufficient parallelism and solve large systems hierarchically. RPTS
is based on the static partition methods, accuracy of which are limited by the conditioning
of the coarse system, which is not controlled explicitly. Therefore, ill-conditioned coarse
systems can negatively affect the quality of the calculated solution, although in practice
this is a seldom occurrence. In case of scalar values, (scaled) partial pivoting works as
expected by comparing the absolute values and implicitly permuting the rows. In case of
small coefficient blocks (ai,bi,ci), the determinants are compared and the block rows are
implicitly permuted, but no row permutations within a block row occur. This imposes
assumptions on the determinants of certain blocks and thus omits some opportunities for
better numerical stability in favor of a unified code basis.

2.4.2. C API Overview

tridigpu follows the BLAS naming convention

tridigpu<t><format><operation>,

where <t> can be S, D, C, Z, which represent the types float, double, cuComplex, and
cuDoubleComplex, respectively. As a placeholder for the corresponding types we use <T>
and [c] denotes an optional character ’c’ in a function name. <format> is either ’[c]gt’
for (cyclic) general tridiagonal systems, ’[c]bgt’ for (cyclic) block general tridiagonal
systems, or ’gb’ for general banded systems. <operation> is either ’sv’ for a solving
operation, ’f’ for a factorizing operation, or ’fs’ for a solving operation with a given
factorization. tridigpu provides the following functions:

• tridigpu<t>[c]gtsv: This function solves Problem Class Cyclic and Problem
Class Scalar, which are scalar (cyclic) general tridiagonal systems with multiple
right-hand sides.

• tridigpu<t>[c]bgtsv: This function solves Problem Class Block, which are
(cyclic) block general tridiagonal systems with multiple right-hand sides.

• tridigpu<t>bgtf, tridigpu<t>bgtfs: These functions solve Problem Class Block,
where bgtf factorizes the matrix explicitly and bgtfs solves the system for a specific
right-hand side and a given factorization.

• tridigpu<t>gbsv: This function solves Problem Class DIA, which are general
banded systems with multiple right-hand sides.

• tridigpu<t>gtsv csc2dense: This function solves Problem Class ScalarCSC2Dense,
which are scalar tridiagonal systems with multiple sparse right-hand sides and dense
solutions.

• tridigpu<t>gtsv csc2csc: This function solves Problem Class ScalarCSC2CSC,
which are scalar tridiagonal systems with many sparse right-hand sides and sparse
solutions.
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Figure 6.: Matrix graph representation and matrix patterns during different phases of
RPTS assuming no row permutations took place. The partition size M is equal
to 7 and the system size is N̂ = 21.
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Figure 7.: Size of the coarse system N ′ = 2N/M relative to the fine system size N in
dependency of the partition size M . The line representing N ′ = N/M is for
comparison.

A detailed explanation of the C API is located in the Appendix A.1. The API design
follows the conventions from cuSPARSE [90] and LAPACK [5], e.g., only the factorizing
function bgtf overwrites the input tridiagonal system. Except tridigpu<t>gtsv csc2csc,
all function do not allocate any extra storage, enqueue the calculation into a CUDA stream,
and are non-blocking, i.e., they may return control back to the host before the result is
ready.

2.5. Recursive Partitioned Schur Complement Algorithm

During the work for this thesis, the Recursive Partitioned Tridiagonal Schur Complement
Algorithm with scaled partial pivoting was proposed [72] and extended [75] to solve
Equation 1. Viewed as a graph a tridiagonal system A is a long chain of connected nodes
as shown in Figure 6 on the left. We partition this chain into regular partitions of size M
with 2 interface nodes and M − 2 inner nodes in each partition. Here, a node can be a
scalar or a block matrix. Let I be the index set of all interface nodes and P be the index
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set of all inner partition nodes. With respect to these index sets matrix A can be reordered
by a permutation Q into the (M − 2) × (M − 2)-block diagonal APP , the 2 × 2-block
diagonal AII , the wide AIP , and the tall API . The Schur-complement factorization then
reads to:

QAQT =

(
APP API

AIP AII

)
=

(
I 0

AIPA
−1
PP I

)(
APP API

0 S

)
, (11)

S := AII −AIPA
−1
PPAPI , (12)

with the Schur-complement S. In Equation 11, QAQT is a permuted form of A from
Equation 1. The above factorization allows the recursive solution of

QAQTx =

(
APP API

AIP AII

)(
xP
xI

)
=

(
dP
dI

)
= d (13)

in three steps

Reduce: Compute the coarse system S and the new right-hand side d′I := dI−AIPA
−1
PPdP .

Solve coarse system: Solve SxI = d′I by recursively applying the partitioning and factor-
ization to S.

Substitute: Back-substitute xI to obtain d′P := dP −APIxI and solve for the inner nodes
xP := A−1

PPd
′
P .

For a general A, the Schur-complement S has a different sparsity pattern than A, in fact
S is usually dense. However, in this special case S is also tridiagonal, so we can recursively
partition and factorize S in the same fashion as A until we arrive at a very small tridiagonal
system which is solved directly. During the reduction step the inner of each partition is
diagonalized, which produces fill-ins in the left-most and right-most columns, as seen after
step I in Figure 6. For all partitions in parallel, the downwards oriented elimination of the
lower band and the upwards oriented elimination of the upper band is realised by applying
sequential elementary row operations with pivoting as shown in Figure 6 after step I. Our
diagonalization of the reduction phase has an increased amount of parallelism because the
upwards and downwards oriented elimination is calculated in parallel, which is indicated
by the split matrix visualization in Figure 6.
After one reduction step, a smaller tridiagonal system is obtained with the size of

N̂ ′ = 2N̂/M , which is marked in yellow in Figure 6. In the following, the smaller system
is referred to as the coarse system and the input system as the fine system. The reduction
kernel of tridigpu is applied recursively, until the size of the system is sufficiently small, to
be solved directly (step III in Figure 6).

The size of the coarse system is only a small fraction of the fine system, e.g. for M = 37
the size of coarse system is just 5% of the fine system, which can be seen in Figure 7. Thus
from the computational point of view, increasing M further hardly yields any benefits.
For comparison we plot the size of the coarse system if only one equation of each partition
would contribute to the coarse system size, which shows only little improvements for large
M > 25.

During the substitution phase, the solution of the coarse system is already known, and
the corresponding values are substituted, which is shown in Figure 6 after step IV. The
green values are known and can be substituted. In the substitution phase, the downwards
oriented elimination is recalculated without fill-ins (step V) because the substitutions from
the coarse system make each partition of the fine system independent of each other. The
recalculation obviously incurs additional arithmetic operations, but we minimize the data
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movement because neither the diagonalized system nor the permutation (pivot locations)
must be written to memory after the reduction step. Since RPTS is still a bandwidth
limited algorithm, trading additional computation for minimal data movement is beneficial.
In particular, on GPUs with so many compute units, the additional calculations can be
hidden behind the memory movement operations.

After step V in Figure 6, the solution of the j = M − 2 column is already available in
each partition and is then substituted in the above equation to calculate the solution of
the j = M − 3 column. This upwards oriented substitution continues in the same fashion
until all solutions of the inner M − 2 block rows are computed (step VI). Steps IV, V
and VI represent the substitution step of RPTS, which exposes less paralellism than the
reduction step because the upwards oriented substitution is executed after the downwards
oriented elimination.

Algorithm 1 sketches the calculation of the reduction step for one partition (see Figure 6);
in the actual implementation many partitions are treated in parallel in this way. The
indexing starts with zero and refers to the starting row of the current partition. a, b, c,
d are vectors of length M , which represent the lower, middle, and upper band; and the
right-hand side vector. sc and sp are temporary register arrays and denote the current and
previous set of values, respectively (s[0] is the spike, s[4] is the right-hand side). rc, rp,
mc, and mp are matrices of block size n. The function reverse view reverses the view on
the ranges a, b, c, or d (e.g. reverse view(a)[0] = a[M − 1]). We use ’;’ as a delimiter
between different instructions on the same line. ϵ is a threshold parameter, and ϵ̃ is a
diagonal matrix of size n with the smallest representable value in the current data format
on the diagonal. The function apply threshold maps blocks smaller than ϵ to zero blocks.
This option allows the user to increase numeric stability in the case of noisy input values.
Setting ϵ = 0 switches off this behavior. In Line 43 and 44 the function eliminate band

is called in parallel for the upwards and downwards oriented elimination, which is possible
because nothing needs to be saved in memory during the elimination.

Algorithm 2 shows the substitution step, which cannot execute the downwards oriented
elimination and upwards oriented substitution in parallel. During the downwards oriented
elimination, the row indices of the pivots must be saved on-chip so that the upwards
oriented substitution finds the coefficients with respect to the correct pivot locations. As
each interface has two nodes, the solution of x[M − 2] and x[1] can be obtained in two
different ways, which is implemented in Lines 26-30 and Lines 38-42 of Algorithm 2, where
the selection follows the partial pivoting criteria.

The pivoting of the Algorithms can be changed by choosing mp and mc accordingly:

no pivoting mp = mc = 0,

partial pivoting mp = mc = 1,

scaled partial pivoting shown in Algorithm 1 and 2.

2.5.1. Remark on Pivoting

Figure 8 shows an exemplaric downwards oriented elimination process during the reduction
step of RPTS with implicit row permutations. Note that the coarse system is not built
from the first and last row of a partition any more. The second row of the coarse system is
not shown in the figure because it is calculated by the thread, which computes the upwards
oriented elimination. During the upwards oriented substitution phase, some equations
are unchanged with three unknowns and others only contain two unknows. No additional
if-statement is required during the substitution phase in Algorithm 2 Line 39 because the
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Algorithm 1: Reduction kernel of RPTS within a partition (step I & II, Figure
6).

1 Function apply threshold(x, y)
2 if |det(x)| ≤ ϵ then x = ϵ̃
3 if |det(y)| ≤ ϵ then y = 0

4 end
5 Function get max abs(X0, X1, . . . , Xl−1)

6 P ∈ Rn×n

7 P = 0
8 for i = 0, . . . , l − 1 do
9 for j = 0, . . . , n− 1 do

10 for k = 0, . . . , n− 1 do
11 Pjj = max(|(Xi)jk|, Pjj)
12 end

13 end

14 end
15 return P

16 end
17 Function eliminate band(a, b, c, d)
18 sp[0] = a[1]; sp[1] = b[1]; sp[2] = c[1]
19 sp[3] = 0; sp[4] = d[1]

20 for j = 2, . . . ,M − 1 do
21 sc[1] = a[j]; sc[2] = b[j]
22 sc[3] = c[j]; sc[4] = d[j]

23 if (M = N̂) && is cyclic && (j = M − 1) then
24 sc[0] = c[M − 1]

25 else
26 sc[0] = 0
27 end
28 apply threshold(sp[1], sc[1])
29 mp =get max abs(sp[0], sp[1], sp[2])
30 mc =get max abs(sc[1], sc[2], sc[3])
31 if |det(mp · sc[1])| ≤ |det(mc · sp[1])| then
32 rp = −(sp[1])−1sc[1]; rc = 1
33 else
34 rp = 1; rc = −(sc[1])−1sp[1]
35 end
36 for k = 0, 2, 3, 4 do
37 sp[k] = rpsp[k] + rcsc[k]
38 end
39 sp[1] = sp[2]; sp[2] = sp[3]; sp[3] = 0

40 end
41 return sp[0], sp[1], sp[2], sp[4]

42 end

43 ab, bb, cb, db = eliminate band(a, b, c, d) // lower band

44 ct, bt, at, dt = eliminate band(reverse view(c), reverse view(b),
reverse view(a), reverse view(d)) // upper band

45 write coarse system(ab, bb, cb, db, at, bt, ct, dt)
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Algorithm 2: Substitution kernel of RPTS within a partition (step IV, V, and
VI in Figure 6).

1 d[M − 2] = d[M − 2]− c[M − 2]x[M − 1]; c[M − 2] = 0
2 sp[1] = b[1]; sp[2] = c[1]
3 sp[3] = 0; sp[4] = d[1]− a[1]x[0]; ip = 1
4 for j = 2, . . . ,M − 2 do
5 sc[1] = a[j]; sc[2] = b[j]; sc[3] = c[j]; sc[4] = d[j]
6 apply threshold(sp[1], sc[1])
7 mp =get max abs(sp[1], sp[2])
8 mc =get max abs(sc[1], sc[2], sc[3])
9 if |det(mp · sc[1])| ≤ |det(mc · sp[1])| then

10 a[ip] = sp[1]; b[ip] = sp[2]
11 c[ip] = 0; d[ip] = sp[4]
12 i[j − 1] = ip
13 rp = −(sp[1])−1sc[1]; rc = 1
14 ip = j

15 else
16 i[j − 1] = j
17 rp = 1; rc = −(sc[1])−1sp[1]

18 end
19 for k = 2, 3, 4 do
20 sp[k] = rpsp[k] + rcsc[k]
21 end
22 sp[1] = sp[2]; sp[2] = sp[3]; sp[3] = 0

23 end
24 mp =get max abs(sp[1], sp[2])
25 mc =get max abs(a[M − 1], b[M − 1], c[M − 1])
26 if |det(mc · sp[1])| ≥ |det(mp · a[M − 1])| then
27 x[M − 2] = (sp[1])

−1sp[4]

28 else
29 x[M − 2] = (a[M − 1])−1(d[M − 1]− b[M − 1]x[M − 1]− c[M − 1]x[M ])
30 end
31 for j = M − 3, . . . , 2 do
32 k = i[j]
33 x[j] = (a[k])−1(d[k]− b[k]x[j + 1]− c[k]x[j + 2])

34 end
35 k = i[1]
36 mp =get max abs(a[k], b[k], c[k])
37 mc =get max abs(a[0], b[0], c[0])
38 if |det(mc · a[k])| ≥ |det(mp · c[0])| then
39 x[1] = (a[k])−1(d[k]− b[k]x[2]− c[k]x[3])

40 else
41 x[1] = (c[0])−1(d[0]− b[0]x[0]− a[0]x[−1])
42 end
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Figure 8.: Example for downwards oriented elimination during reduction step of RPTS
with partial pivoting.

equations with two unknowns are shifted one column to the left in memory. Thus, the
coefficient on the diagonal is saved on the lower diagonal and the coefficient of the upper
diagonal is saved on the diagonal band.

2.5.2. Cyclic Systems

In case of cyclic tridiagonal systems (a0, cN−1 ≠ 0), the coarser system S of Equation 12
is also cyclic. During the RPTS reduction step (Figure 6, step II), the values a0 and
cN−1, or due to pivoting their scaled values, are written to the upper right and lower left
corner of the coarse equation system. In the higher stages, either the direct solver (step
III) must be able to solve cyclic tridiagonal systems, or the system is reduced to a size of
N = 2. In the latter case, the RPTS reduction step (Algorithm 1, Line 23) considers the
values a0 and cN−1 during the elimination of the last values because the fill-in and the
a0, cN−1 are located in the same column.

downwards



b0 c0 a0
a1 b1 c1
l2 b2 c2
l3 b3 c3
l4 b4 c4
c5 a5 b5

 ,



b0 c0 a0
a1 b1 r1

a2 b2 r2
a3 b3 r3

a4 b4 c4
c5 a5 b5

 upwards (14)

In a system, where no row permutations take place, and the last variables are about to be
eliminated, which is a5 in the downwards and c0 in the upwards oriented elimination, as
shown in Equation 14, the left fill-in l4 refers to the same unknown as c5.

2.5.3. Block Tridiagonal Systems

To solve block tridiagonal systems, the RPTS reduction and substitution Algorithms 1
and 2 support the non-commutativity of matrix-matrix and matrix-vector operations.
Assume, there is the previous equation bj , cj and the current equation aj+1, bj+1, cj+1,
during the downwards oriented elimination, where bj or aj+1 is about to be eliminated.

. . .
. . .

. . .

0 bj cj
aj+1 bj+1 cj+1

. . .
. . .

. . .


(15)
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For that purpose, the previous equation can be multiplied with (−1)aj+1b
−1
j and be added

to the current equation, or the current equation can be multiplied with (−1)bja−1
j+1 and

be added to the previous equation. So implicitly we require that at least bj or aj+1 is
invertible.

Whereas the scalar pivoting decision is made based on the absolute value of a scalar,
the pivoting for block types is made based on the absolute value of the determinant of the
block, which is shown in Algorithm 1, Line 5. To make the pivoting decisions invariant to
the scaling of the linear system by a diagonal matrix, the scaled partial pivoting decision is
made with respect to the maximum absolute value within each row of the equation system
(diagonal matrices mp and mc).

2.5.4. Separate Factorization and Solve

An explicit factorization of the tridiagonal matrix is beneficial, if the diagonalization
cannot be hidden behind data movement any more, which is the case for block tridiagonal
systems and multiple right-hand sides. After the downwards oriented elimination (step I,

Figure 6), the calculated LU-factorization of the inner partitions (L
(d)
PP + I)U

(d)
PP := APP

is saved in memory, where L
(d)
PP is strictly lower triangular and U

(d)
PP upper triangular. As

a consequence of saving the modified coefficients, the upwards and downwards oriented
elimination are not executed in parallel, but in two subsequent steps: upwards, and then
downwards. The latter only affects the order of computations and the coarse system S
of the factorization is the same as that of Equation 12. During the upwards oriented

elimination, which computes the UL-factorization (U
(u)
PP + I)L

(u)
PP := APP , with strictly

upper triangular matrix U
(u)
PP and lower triangular matrix L

(u)
PP , the coefficients of L

(u)
PP are

discarded, but U
(u)
PP is kept, which is required to calculate the coarse right-hand side d′I for

a right-hand side d. Similar to the solve of scalar tridiagonal systems, the solution of the

inner nodes xP with a given factorization is obtained by xP := ((L
(d)
PP + I)U

(d)
PP )

−1d′P .

2.6. Implementation

The core implementation of the tridigpu<t><format>sv functions, consists of two CUDA
kernels: the reduction kernel and the substitution kernel, which compute the reduction and
substitution step of RPTS (see Section 2.5) for arbitrary types of the matrix coefficients
and vector elements. In fact, the templatized source code for solving the inner partitions is
the same for all problem classes, whereas the source code, which loads the data to on-chip
memory and writes the result to global memory, differs between the problem classes.

2.6.1. Active Warps

The number of processed partitions per CUDA block is usually L = 32 because we want a
large M (shallow recursion) and the product LM is limited by the amount of available
shared memory per block. For L = 32, there are two CUDA warps in the reduction kernel
and one CUDA warp in the substitution kernel solving the inner partitions actively. The
other threads in the CUDA block only participate during data load and store operations.

2.6.2. Data Layout

The block tridiagonal matrix is saved in a banded format, which are three buffers (ai, bi,
ci) of length N̂ . a0 and cN̂−1 can be unequal to zero and represent the coefficients, which
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(a) Loading into shared memory
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(b) Processing in shared memory

Figure 9.: Data transposition in shared memory of RPTS. A band (e.g. ai) is loaded
coalesced into shared memory and subsequently processed sequentially by a
thread; different threads appear in different colors.

start

eq.
j + 1

0

eq. j

eq.
j + 1

eq.
j + 1

0

eq. j

...0

...
1

1

0

eq. j1

1

Figure 10.: Pivoting decisions represented as a binary tree and encoded as the bit pattern
0b000...1101. Either the current equation j or the next equation j + 1 is
used to eliminate the coefficient in column j.

couple the first and last equation. The additional memory consumption of RPTS, which is
required by the higher stages in the hierarchy, is very little, and for nr = 1, N̂ = 225 or
N̂ = 220 and M = 41 only ≈ 5% of the input data.

2.6.3. Shared Memory Layout

To ensure full memory bandwidth the threads must load the bands and right-hand side of
their partitions in a coalesced way into shared memory. Figure 9a shows an example for
one thread block of 6 threads, which load their data into shared memory. Subsequently,
Figure 9b demonstrates that during the elimination each thread processes the values of its
partition (with size M = 7) sequentially. Thread 0 reads element 0 while thread 1 reads
element 7. All threads participate in reading and writing data, but not necessarily all
threads of a block participate in the elimination process due to the fact that the number of
partitions per block L is another tuning parameter. Generally, L = 32 is already sufficient
because then one full CUDA warp calculates the elimination. The example in Figure 9
shows that only 5 threads process a partition, although 6 threads load the data into shared
memory. In general N is not divisible by M and the last thread in the last block, which
participates in the elimination process, processes less than M equations.

In case of one right-hand side, the overall shared memory consumption per block is
(3Mn2 +Mn)L elements, i.e., the three bands a, b, c plus right-hand side d. During the
substitution phase it is necessary to save the solution x in shared memory, but only 2Ln
additional shared memory elements must be occupied because x may reuse the buffer for
the right-hand side.
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2.6.4. Storage Format for Row Interchanges during Pivoting

The array, which saves pivot locations, denoted by i[j] in Algorithm 2 requires M entries.
Thus if the array is saved trivially as indices, additional memory of M · L integers would
be required for each CUDA thread block. This could be saved in either shared memory or
registers. If i[j] were saved in shared memory, the overall shared memory consumption per
CUDA thread block would increase unneccassarily limiting the maximum possible value
for M . Saving i[j] in registers, on the other hand, would decrease the occupancy and thus
the latency hiding ability of the GPU. Therefore, we develop a minimal storage format for
the pivot locations.

When a thread calculates the downwards oriented elimination, there are only two options,
the current or the previous row is scaled and added to create a zero in the column j. Hence
it is sufficient to use only one bit to distinguish between these two options, and M bits are
required to save the pivoting locations for one partition. This is visualized as a binary tree
in Figure 10. During the upwards oriented substitution, the actual index i[j] is efficiently
reconstructed from the bit pattern with bitwise operations. In the current implementation,
a int64 t with 64 bits saves the bit pattern. This limits M to 64, however, larger values
of M are not required, because the size of the coarse system is already negligible in
comparison to the fine system (see Figure 7).

2.6.5. Complete Avoidance of SIMD Divergence

At first look, Algorithm 1 and 2 appear to have an overly complicated access to the bands
and values of a, b, c, d through sp[0], sp[1], sp[2], sp[3], sc[0], sc[1], sc[2], sc[3]. This is
the result of a carefully crafted algorithmic formulation of the elimination in which all
data-dependent conditionals assume the form of a value selection

result = condition ? value1 : value0

and only a little predication is required in the computation of value1 and value0. Note,
the writing of the coefficients in Lines 10 and 11 in Algorithm 2 can be placed in front of the
if-statement at the cost of writing them redundantly in every iteration. Therefore, every
if-statement is replaced with the aforementioned value selection in the implementation.
The elimination of the coefficient in column j is then formulated as a linear combination
(Alg. 1, Line 37) of two equations where the scaling factors of the equations depend on
the pivoting decision. Consequently, the profiler reports zero SIMD divergence despite all
threads making data-dependent pivoting decisions in parallel.

2.6.6. Avoidance of shared memory bank conflicts

The reduction kernel is completely free of shared memory bank conflicts because all pivoting
decisions are processed in registers and the elimination of the lower and upper band is
done by two different CUDA warps independently. If M is even, the shared memory arrays
are padded by 1 ensuring zero bank conflicts in the parallel access. In the substitution
kernel, bank conflicts cannot be avoided completely because the access to shared memory
depends on the pivot locations.

2.6.7. Multiple Right-Hand Sides

The reduction kernel of tridigpu coarsens the tridiagonal system, until it is small enough
to be solved directly. Subsequently, the substitution kernel recalculates the diagonalization
of the partitions, but without any fill-in to obtain the fine solution vector. For the solution
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kernel read elements written elements read & written

reduction 3N + nrN 3 2N
M

+ nr
2N
M

3N + nrN + 2N
M

(3 + nr)
(A + D) (coarse A + coarse D)

substitution nr
n̂r

3N + nrN + nr
2N
M

nrN
nr
n̂r

3N + 2nrN + nr
2N
M

(A + D + coarse X) (fine X)

total 3N(nr
n̂r

+ 1) + 2nrN + nr
2N
M

2N
M

(3 + nr) + nrN 3N(nr
n̂r

+ 1 + nr) +
2N
M

(2nr + 3)

(fine system + coarse system)

Table 2.: Data reads and writes from global GPU memory for one stage and different
kernels of tridigpu<t>gtsv in case of a scalar tridiagonal system. See Table 1
for the meaning of the variables.

of one scalar tridiagonal system the solver reads and writes in total 9N elements on the
first stage. This can be seen in Table 2, where n̂r is the number of right-hand sides,
which are kept simultaneously in on-chip memory, such that the amount of executed
diagonalizations is reduced. Now setting nr = 1, n̂r = 1, and neglecting the terms of
the coarse system with factor 2N/M , 9N elements are read and written in total. With a
coarse system size of 2N/M , the amount of data which is read and written in higher stages
is of order ∼ 9 · 2N/M = 18N/M , which is one order of magnitude smaller than the fine
system (9N) because typical values for M for a scalar tridiagonal system are in the range
31 ≤M ≤ 41. For multiple right-hand sides, the tridiagonal system is only loaded once
into on-chip memory in the reduction kernel because the tridiagonal system is not changed
in memory during the diagonalization. The same optimization cannot be applied to the
substitution kernel because the tridiagonal system is modified during the diagonalization,
but the tridiagonal system is only loaded once for n̂r right-hand sides. In comparison to a
naive repeated solver execution, which needs to process E = nr9N elements, solving nr

right-hand sides with one single solver execution only processes E′ = 3N(nr/n̂r + 1 + nr)
elements, which in relation to E is only

E′/E =
3N(nr/n̂r + 1 + nr)

nr9N

=
nr3N(1/n̂r + 1/nr + 1)

nr9N

(n̂r = 4) =
1/4 + 1/nr + 1

3

(nr ≫ 1) ≈ 5/4

3
≈ 42%.

2.6.8. Optimizations for small tridiagonal systems

For a static partition size M , we observe that solving small tridiagonal systems is not
utilizing all available GPU resources, which is expected because M determines the work per
CUDA thread and is chosen as a trade-off between available shared memory and number
of stages. For smaller M , less shared memory is used per CUDA block, therefore more
CUDA blocks can be resident per streaming multiprocessor, but the size of the coarser
tridiagonal system N ′ increases because of N ′ = 2N/M . For larger M , the shared memory
consumption is high, and less CUDA blocks are resident per streaming multiprocessor,
which is inefficient in the limit of only one active CUDA block because for each CUDA
block only one warp is calculating the tridiagonal factorization in the substitution kernel.
To achieve maximum GPU performance it is essential to make use of latency hiding
techniques, which is achieved by changing the context to another warp, if the current
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warp is idling. The latter is impossible, if only one CUDA block is resident per streaming
multiprocessor, thus, M must not be chosen too large. Therefore, our aim is to decrease
the number of the stages and to increase the GPU utilization. To address the former point,
we developed a fused final stage kernel (FFSK), which is able to solve tridiagonal systems
of size warpSize ·M on chip, and to address the latter point we use a dynamic choice of
M , which depends on the GPU occupancy.

Fused Final Stage Kernel

The FFSK is a kernel fusion of the reduction kernel, single thread final stage kernel, and
substitution kernel of RPTS. The single thread final stage kernel of RPTS [72] only uses
one single CUDA thread to solve tridiagonal systems of maximum size Ñ = 32. Ñ is the
maximum tridiagonal system size of the final stage tridiagonal solver. The FFSK loads the
tridiagonal system once into shared memory, calculates the RPTS reduction step, saves
the coarse tridiagonal system in shared memory, solves the coarse system, calculates the
RPTS substitution step to obtain the fine solution, and stores the fine solution back to
global GPU memory. It is possible to use other well known parallel algorithms, like the
(Parallel) Cyclic Reduction, as a final stage solver, but in our experiments we observed
that these algorithms are less numerically stable. The FFSK is implemented with partial
pivoting for improved numeric stability.

Algorithm 3: Dynamic choice of the partition size Mi for each stage i of RPTS.

input :N , sorted {M̃j}, n̂r

output : {Ni}, {Mi}
1 jmax = maxj({M̃j})
2 Ñ = warpSize · M̃jmax

3 N0 = N
4 i = 0

5 M0 = M̃jmax

6 while Ni > Ñ do
7 j = jmax − 1

8 while grid dim(Ni,Mi) < max concurrent blocks(Ni,Mi, n̂r) ∧ Mi ̸= M̃0

do

9 Mi = M̃j

10 j = j − 1

11 end
12 i = i+ 1
13 Ni = 2 · ceil(Ni−1/Mi−1)− (Ni−1 % Mi−1 == 1 ? 1 : 0)

14 Mi = M̃jmax// set M for next loop iteration

15 end

16 Mi = get smallest final stage M(Ni, {M̃j})

Dynamic Choice of M

Algorithm 3 shows the dynamic choice of the partition size for each stage i of RPTS,
where we denote an array of elements with curly braces { · }. The {M̃j} are the sorted
partition sizes, whereas Mi is the partition size and Ni the tridiagonal system size for
stage i. In Line 1 the index jmax of the largest admissible partition size is obtained. In
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kernel bytes read bytes written

factorization 3N̂n2st (3N̂n2 + 2N̂n2 + 3 2N̂
M

n2)st + 2 N̂
M

si
bgtf (fine A) (factorized A + ru and rd+ coarse A + pivots)

reduction (2N̂n2 + nN̂nr)st + 2N̂/Msi nr
2N̂
M

nst
bgtfs (factorized A + fine D + pivots) (coarse D)

substitution (N̂n2 + 3N̂n2 + nrN̂n+ nr
2N̂
M

n)st +
N̂
M

si nrN̂nst
bgtfs (rd + factorized A + fine D + coarse X + pivots) (fine X)

Table 3.: Data reads and writes from global GPU memory for one stage and different
kernels of tridigpu<t>bgtf and tridigpu<t>bgtfs. st is sizeof(T) and si is
sizeof(int64 t). See Table 1 for the meaning of the variables.

Line 6, the while-loop processes every stage configuration until the system is small enough
to be solved directly. In Line 8, a maximum value for Mi is chosen, such that the CUDA
grid is at least as large as the maximum possible number of concurrently running blocks.
Subsequently, in Line 13, the size of the coarser tridiagonal system is calculated, and the
algorithm ends by calculating the smallest possible partition size for the final stage solver
in Line 16.

2.6.9. Block Tridiagonal Systems

The kernels of tridigpu are implemented for general numerical types, which support
+,-,*,/,abs. Commutativity for operator ’*’ is not required as this is not fulfilled for
block types either. Operator ’/’ for block types is equal to the multiplication with the
inverted block, and abs calculates the absolute value of the determinant of the block, which
is required to make the pivoting decisions. In the kernel implementation, the pivoting
scheme is passed in as a template parameter, which avoids any uneccessary operations at
runtime. Due to generic programming and templates, no seperate code paths are required
to support block tridiagonal systems. Instead of instantiating the kernels with scalar value
types, they are instantiated with a block matrix of fixed size when solving block tridiagonal
systems.

2.6.10. Factorization of a Block Tridiagonal Matrix

The computational effort of the kernels, which always calculate the factorization (functions
tridigpu<t><format>sv), is increasing with O(n3). Therefore, a large block size prevents
the kernels from running at full GPU memory bandwidth. In that case, it is efficient to
precalculate the tridiagonal matrix factorization, such that no block inversions, determinant
calculations and matrix-matrix operations are calculated redundantly. The overall data
movement is shown in Table 3. The factorization kernel calcuates the coarse system
(2N̂/M blocks), the pivot decisions (N̂/M elements of type int64 t), the inverted blocks
ru,rd (2N̂ blocks), and the modified tridiagonal system after the downwards oriented
elimination (3N̂ blocks). With ru and rd we denote the row multiplication factors of
the upwards and downwards oriented elimination, respectively. In the lower band of the
factorized matrix, we save the inverted blocks a−1

i as these values must be inverted in the
upwards oriented substitution step of RPTS (Algorithm 2 in [72], Line 31) to obtain the
solution values. Therefore, the substitution and reduction kernel, which solve a system
with a given factorization, are completely free of block inversions.

Given a precomputed factorization, the reduction kernel only reads 2N̂ inverted blocks
(ru, rd), the pivot decisions, which are efficiently saved in bits, and the right-hand sides
with N̂nr blocks; and only the coarse right-hand sides are written to global memory. The
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Figure 11.: Banded format to block tridiagonal format conversion. Each color refers to
one band. Here, n = 2, N = 14, N̂ = 7, kl = 2, and ku = 2.

upwards and downwards oriented elimination is calculated in parallel and only consists
of matrix-vector multiplications and vector additions. When we neglect the reading of
the pivot decisions, the amount of read data is reduced by N̂ for the reduction kernel of
bgtfs by N̂ elements in comparison to bgtsv. The substitution kernel of bgtfs reads one
additional band of N̂ elements in comparison to bgtsv, which are the inverted blocks rd
of the downwards oriented elimination, and the pivot decisions. The downwards oriented
elimination must be calculated for the right-hand sides with the already available inverted
blocks and pivot decisions. This cannot be pre-calculated in the reduction kernel because
the solution from the coarse system is not available yet.

2.6.11. Banded Format to Block Tridiagonal Conversion

To solve banded systems with tridigpu<t>gbsv, the system is converted into block
tridiagonal form while reading the bands from global to on-chip memory, as shown in
Figure 11. Afterwards, the RPTS algorithm, can be used to solve the on-chip block
tridiagonal system. To save a banded matrix with kl + ku + 1 bands as a block tridiagonal
matrix, the blocks must be of of size max(kl, ku), and for each matrix row max(kl, ku)− 1
zeros are additionally saved. Therefore, the memory consumption of a block tridiagonal
matrix representation is increased by factor 1 + max(kl,ku)−1

kl+ku+1 in comparison to the banded
matrix representation. For full pentadiagonal systems (kl = ku = 2) this is an increase
of 20%. Note that the block tridiagonal representation of the initial banded system is
never saved in global GPU memory, but in on-chip memory. Only the intermediate results
in the higher stages of the solver write and read block tridiagonal systems. However,
this contributes little to additional data movement, because the coarse systems are small.
Instead, the speed of the block tridiagonal solver is bounded by the limited thread
parallelism in the computation.

2.6.12. Calculation of A−1D with Sparse Right-Hand Sides and Solutions

Function gtsv csc2csc is built of gtsv csc2dense and a k-selection algorithm, which
selects the k largest elements without sorting them with respect to their absolute value.
The right-hand sides are processed in batches of n′

r vectors. For each n′
r right-hand sides,

gtsv csc2dense is called once, and the k-selection algorithm is called n′
r times, which

results into 4n′
r histogram calculations in the worst case for single precision floating-point

numbers. Our k-selection algorithm is similar to the BucketSelect of Alabi et al. [1], but
has a fixed histogram size of 256 bins. We exploit that positive floating point numbers
(IEEE 754-1989) remain their ordering when they are reinterpreted as unsigned integers
based on their bit pattern. For single precision floating point numbers, a maximum of four
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histograms are calculated to find the kth largest number. In the first histogram, each of
the 256 bins represent the occurrence of a specific four byte prefix. Afterwards, one single
CUDA block calculates the prefix sum and determines if an accumulated bin contains
exactly k numbers. In that case, all numbers with the byte prefix represented by that bin
are selected with CUB’s select if device primitive [84]. If there is no accumulated bin,
which contains k numbers, the histogram and the prefix sum is calculated for the next four
byte pattern until a bin contains the remaining number of required maximum elements, to
obtain a byte prefix, which is used to select the k maximum values with CUB’s select if

with respect to their absolute value.

For each right-hand side, which is processed by gtsv csc2csc, k is set to the number
of non-zero values in the corresponding sparse result matrix column.

2.7. Results

For the results presented in this chapter, we use a machine with a GeForce RTX 2080 Ti,
CUDA 11.2.142, CentOS7, GCC 10.2.0, CUDA driver 450.57, and an Intel Xeon Silver
4110 @ 2.10 GHz. For performance results single-precision is chosen because the GeForce
RTX 2080 Ti has very few double-precision arithmetic units. Throughout this section, we
use partial pivoting if the pivoting scheme is not mentioned explicitly.

2.7.1. Numerical Results

There are four parameters, which control the numerical results of RPTS: First, the partition
size M , second, the upper limit for the coarse system size Ñ , which is solved directly (see
Figure 6 step III), third, the threshold parameter ϵ, and fourth, the solver, which is used
to solve the coarsest system directly. In the following results Ñ = 32, ϵ = 0 and a single
CUDA thread with an adjusted version of Algorithm 2 is used to solve the coarsest system.
The partition size is set to Mn = 32 block rows, such that there is only one reduction and
one substitution step for the presented test cases.

For the evaluation, all calculations are done in double-precision and the solution vector
xt is generated with a normal distribution of floating-point numbers with a mean value of 3
and standard deviation of 1. The forward relative error is then calculated by |x−xt|2/|xt|2,
where x is the calculated solution and xt is the exact solution.

Scalar Tridiagonal Systems

RPTS as a scalar tridiagonal solver is compared against four other numerically stable
tridiagonal solvers: First, cuSPARSE (gtsv2), which according to Venetis et al. [113] was
a SPIKE implementation for GPUs by Chang et al. [19, 18] with diagonal pivoting [42].
Currently, the cuSPARSE documentation is not stating the specific algorithm, which is
used by gtsv2, but the kernel names shown by the CUDA profiler, indicate that the
aforementioned algorithm is still in use. Second, g-spike by Venetis et al. [113], which is
an improvement regarding the numeric stability of the SPIKE implementation by Chang
et al. [19]. Third, LAPACK’s tridiagonal solver (gtsv). And fourth, the sparse LU
decomposition implemented in Eigen3 [57].

Following the literature [113, 19, 30, 78], we use the matrices listed in Table 4 as
scalar tridiagonal test cases for the numerical evaluation. All calculations are done in
double-precision and the forward relative error is shown in Table 5.
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ID condition number Description

1 1.58e+03 tridiag(a, b, c) with a, b, c sampled from U(−1, 1)
2 1.00e+00 b=1e+8*ones(N, 1); a, c sampled from U(−1, 1)
3 3.52e+02 gallery(’lesp’, N)

4 2.93e+03 same as #1, but a(N/2+1, N/2) = 1e-50*a(N/2+1,N/2)

5 1.59e+03 same as #1, but each element of a, c has 50% chance to be zero
6 1.04e+00 b=64*ones(N,1); a, c sampled from U(−1, 1)
7 9.00e+00 inv(gallery(’kms’, N, 0.5)) Toeplitz, inverse of Kac-Murdock-Szegö
8 1.02e+15 gallery(’randsvd’, N, 1e15, 2, 1, 1)

9 8.74e+14 gallery(’randsvd’, N, 1e15, 3, 1, 1)

10 1.11e+15 gallery(’randsvd’, N, 1e15, 1, 1, 1)

11 9.57e+14 gallery(’randsvd’, N, 1e15, 4, 1, 1)

12 3.07e+23 same as #1, but a = a*1e-50

13 1.40e+17 gallery(’dorr’, N, 1e-4)

14 8.17e+14 tridiag(a, 1e-8*ones(N,1), c) with a,c sampled from U(−1, 1)
15 2.15e+20 tridiag(a, zeros(N,1), c) with a,c sampled from U(−1, 1)
16 3.27e+02 tridiag(ones(N-1,1), 1e-8*ones(N,1),ones(N-1,1))

17 1.00e+00 tridiag(ones(N-1,1), 1e8*ones(N,1),ones(N-1,1))

18 3.00e+00 tridiag(-ones(N-1,1), 4*ones(N,1),-ones(N-1,1))

19 1.12e+00 tridiag(-ones(N-1,1), 4*ones(N,1),ones(N-1,1))

20 2.30e+00 tridiag(-ones(N-1,1), 4*ones(N,1),c), c sampled from U(−1, 1)

Table 4.: Scalar tridiagonal matrix collection for numerical-stability analysis (taken
from [113]). MATLAB functions are used. Function tridiag(a,b,c) returns a
tridiagonal matrix with main diagonal b and sub and superdiagonals a and c.
U(−1, 1) is the uniform distribution between one and minus one. All matrices are
of the same size N . The condition number was calculated with the JacobiSVD

function of the Eigen3 library for matrices of size N = 512.

Block Tridiagonal and Banded Systems

In case of RPTS as a block tridiagonal and banded solver (n = 2), the results are
compared, with well established and numerically stable CPU solvers: LAPACK (gbsv)
and the sparse LU decomposition implemented in Eigen3 [57], as well as with the QR
factorization implemented in cuSPARSE for the solution of batched pentadiagonal systems
(DgpsvInterleavedBatch).

We create the 2x2 block tridiagonal test matrices by transforming the scalar tridiagonal
test matrices from Table 4: If As ∈ RN/2×N/2 is a test matrix from Table 4, we obtain a
2x2 block tridiagonal test matrix Ab ∈ RN×N with the same condition as As by

(A′
b)ij :=


(As)⌊i/2⌋,⌊j/2⌋ if i = j

(As)⌊i/2⌋,⌊j/2⌋−1 if i− 2 = j

(As)⌊i/2⌋,⌊j/2⌋+1 if i+ 2 = j

0 otherwise

(16)

Ab := Ol A
′
bOr, (17)

where Ol and Or are orthogonal 2x2 block diagonal matrices. With a uniformly distributed
floating-point number α ∈ [0, π], a single 2x2 orthogonal block in Ol or Or is generated by(

cos (α) − sin (α)
sin (α) cos (α)

)
. (18)

We create the pentadiagonal test matrices analogously to the tridiagonal numerical test
cases in Table 4, which are listed in Table 6.
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matrix ID Eigen3 RPTS cuSPARSE g-spike LAPACK

1 5.72e-15 5.24e-15 5.05e-15 7.53e-15 5.78e-15
2 8.39e-17 8.32e-17 1.18e-16 1.30e-16 8.39e-17
3 1.28e-16 1.32e-16 1.44e-16 1.65e-16 1.29e-16
4 5.62e-15 5.25e-15 6.17e-15 1.55e-14 6.12e-15
5 1.19e-15 9.03e-16 1.94e-15 1.13e-15 8.85e-16
6 9.33e-17 9.57e-17 1.32e-16 1.50e-16 9.33e-17
7 2.33e-16 2.76e-16 2.53e-16 2.74e-16 2.34e-16
8 1.18e-04 4.53e-04 1.29e-05 5.52e-05 1.26e-04
9 4.01e-05 5.07e-05 2.77e-05 1.73e-05 5.73e-05
10 4.66e-05 1.25e-05 1.85e-05 4.88e-06 5.19e-05
11 5.35e-05 2.87e-04 1.46e-03 2.89e-03 3.57e-04
12 9.45e+03 1.35e+05 7.63e+05 2.51e+05 9.45e+03
13 1.08e+00 2.45e+00 1.33e+00 1.21e+00 4.37e-01
14 1.08e-03 1.76e-03 2.89e-03 9.05e-02 1.28e-03
15 5.21e+02 5.01e+02 9.24e+02 4.45e+02 5.21e+02
16 8.67e-16 1.37e-15 3.49e-15 3.89e-15 7.75e-16
17 1.14e-16 1.16e-16 1.60e-16 1.53e-16 1.14e-16
18 8.94e-17 1.04e-16 1.36e-16 1.42e-16 8.94e-17
19 1.10e-16 1.11e-16 1.51e-16 1.57e-16 1.10e-16
20 1.18e-16 1.11e-16 1.46e-16 1.51e-16 1.17e-16

Table 5.: Forward relative error of double-precision results for numerical-stability analysis
of scalar tridiagonal solvers.

The double-precision results for 2x2 block tridiagonal matrices are shown in Table 8 and
for pentadiagonal matrices in Table 7. The right part of each Table shows the conditioning
of the coarse tridiagonal system, which has a size of N ′ = 2N

Mn . The condition is NA if the
coarse system could not be calculated due to numerical issues in the reduction step. The
results of RPTS are comparable to that of Eigen3 and LAPACK, with exception of matrix
9 in Table 8; and matrix 12 and 17 in Table 7, which is caused by high coarse system
condition numbers as a result of the static partitioning and blocking.

Additionally to the hard-to-solve synthetic problems, we show the forward relative error
for real-world problems from the Sparse Matrix Collection in Table 9. Although the Sparse
Matrix Collection contains many matrices, only few matrices have at most four sub- and
super-bands on each side of the diagonal. In five cases, RPTS achieves a better error as
LAPACK or Eigen3 but for matrices olm1000 and spmsrtls, LAPACK and Eigen3 is
clearly better (see Section 2.4.1).

2.7.2. Performance Results

Scalar Tridiagonal Systems

The reduction kernel of RPTS reads 4N elements, which are the three bands and the
right-hand side, and writes 8N/M elements of the coarse system. The substitution kernel
reads 4N + 2N/M elements, because only the solution of the coarse system is required,
and writes the solution vector of length N . The throughput, which is shown in Figure 12,
is measured with the nvprof for the GTX 1070 and with NVIDIA Nsight Compute for the
RTX 2080 Ti. For comparison, the performance of a simple copy kernel, which just copies
a certain amount of data is shown. Although the throughput of the copy kernel does not
reach the theoretical memory bandwidth, the copy kernel performance usually displays
the hardware performance limit for memory-bound algorithms. Whereas the copy kernel
reads and writes N elements, this is different for the kernels of RPTS, which read more
data than they write. Therefore higher throughputs than for the copy kernel are possible.
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ID condition number description

1 3.45e+02 pentadiag(U(−1, 1), U(−1, 1), U(−1, 1), U(−1, 1), U(−1, 1))
2 1.00e+00 pentadiag(U(−1, 1), U(−1, 1), 1e8*ones(N), U(−1, 1), U(−1, 1))
3 3.45e+02 same as #1, but dll[N/2+1] = 1e-50*dll[N/2+1]

4 3.43e+02 same as #3, but dl[N/2+1] = 1e-50*dl[N/2+1], dll[N/2+2] = 1e-50*dll[N/2+2]

5 3.43e+03 same as #1, but each element of dll, duu has 50% chance to be zero
6 7.78e+03 same as #1, but each element of dll, dl, du, and duu has 50% chance to be zero
7 1.06e+00 pentadiag(U(−1, 1), U(−1, 1), 64*ones(N), U(−1, 1), U(−1, 1))
8 9.98e+14 gallery(’randsvd’, N, 1e15, 2, 2, 2)

9 9.43e+14 gallery(’randsvd’, N, 1e15, 3, 2, 2)

10 1.18e+15 gallery(’randsvd’, N, 1e15, 1, 2, 2)

11 9.65e+14 gallery(’randsvd’, N, 1e15, 4, 2, 2)

12 3.55e+07 same as #1, but dll = dll*1e-50

13 6.76e+34 same as #12, but dl = dl*1e-50

14 1.02e+01 gallery(’toeppen’, N, 1, -10, 0, 10, 1)

15 1.45e+03 pentadiag(U(−1, 1), U(−1, 1), 1e-8*ones(N), U(−1, 1), U(−1, 1))
16 1.45e+03 pentadiag(U(−1, 1), U(−1, 1), zeros(N), U(−1, 1), U(−1, 1))
17 3.57e+04 pentadiag(ones(N-2), ones(N-1), 1e-8*ones(N), ones(N-1), ones(N-2))

18 1.00e+00 pentadiag(ones(N-2), ones(N-1), 1e8*ones(N), ones(N-1), ones(N-2))

19 2.56e+00 pentadiag(-ones(N-2), -ones(N-1), 8*ones(N), -ones(N-1), -ones(N-2))

20 2.56e+00 pentadiag(-ones(N-2), ones(N-1), 8*ones(N), ones(N-1), -ones(N-2))

21 1.51e+00 pentadiag(-ones(N-2), ones(N-1), 8*ones(N), ones(N-1), ones(N-2))

22 1.54e+00 pentadiag(-ones(N-2), -ones(N-1), 8*ones(N), ones(N-1), U(−1, 1))
23 1.85e+00 pentadiag(-ones(N-2), -ones(N-1), 8*ones(N), U(−1, 1), U(−1, 1))

Table 6.: Pentadiagonal matrix collection for numerical-stability analysis. MATLAB
functions are used. Function pentadiag(dll, dl, d, du, duu) returns a pen-
tadiagonal matrix with main diagonal d, lower diagonals dll, dl, and upper
diagonals du, duu. U(−1, 1) is the uniform distribution between one and minus
one. All matrices are of the same size N = 512. The condition number was
calculated with the JacobiSVD function of the Eigen3 library.

In addition, the performance of the pure data movement without any calculation in the
kernels of RPTS is shown for comparison. Processing the finest system heavily dominates
the overall runtime. All coarse stages combined increase the overall runtime by only 8.5%
for N = 225.

By comparing the kernels with and without calculation we see that for sufficiently
large tridiagonal systems the computation is completely hidden behind data movement.
Only for smaller problem sizes, the kernels of RPTS are slower than the data movement
alone. The detailed throughput of RPTS was measured manually with CUDA events by
using the mean kernel time of 700 kernel executions. All performance measurements use
single-precision as the GTX/RTX graphics cards have only few double-precision units.

Figure 12 shows the equation throughput with a partition size of M = 31, ϵ = 0, and
a CUDA block dimension of 256. For large N , RPTS is approximately 5 times faster
than the numerically stable tridiagonal solver of cuSPARSE on the RTX 2080 Ti. For
further comparison, the non-pivoting version of cuSPARSE is also shown, which is a hybrid
solver of CR and PCR. The absolute performance difference to cuSPARSE diminishes
with decreasing N , which is partially caused by the decreasing memory throughput for
small problem sizes. Although, this is a natural property of GPU memory, which can be
seen by the copy kernel performance in Figure 12, the throughput measurements without
any calculation denote the upper performance bound, and indicate that algorithms with
higher computational parallelism can further improve the equation throughput, for small
problem sizes.
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ID LAPACK Eigen3 cuSPARSE RPTS RPTS κpartial κnopivot

partial pivot no pivot (coarse system)

1 2.92e-15 2.11e-15 1.00e-14 6.49e-15 2.98e-14 3.15e+02 2.46e+02
2 1.27e-16 1.27e-16 2.57e-16 1.31e-16 1.31e-16 1.00e+00 1.00e+00
3 2.81e-15 2.05e-15 6.97e-15 5.97e-15 2.86e-14 3.15e+02 2.46e+02
4 2.92e-15 2.07e-15 8.03e-15 5.92e-15 2.91e-14 3.15e+02 2.46e+02
5 5.13e-15 1.28e-14 1.60e-14 5.39e-14 1.85e-13 6.02e+02 6.02e+02
6 9.19e-15 9.19e-15 4.97e-14 8.85e-14 5.74e-13 7.70e+02 6.45e+03
7 1.43e-16 1.42e-16 3.85e-16 1.55e-16 1.55e-16 1.05e+00 1.05e+00
8 6.97e-04 6.97e-04 4.01e-03 2.99e-04 1.32e-01 2.18e+12 2.76e+15
9 8.43e-05 1.65e-04 3.19e-03 3.77e-04 1.69e-04 4.57e+14 1.85e+14
10 4.58e-04 4.06e-04 3.09e-03 2.60e-04 2.57e-04 4.24e+01 1.84e+01
11 7.31e-04 1.53e-03 1.18e-03 3.16e-04 2.12e-01 2.06e+14 2.08e+14
12 8.90e-12 8.90e-12 5.57e-11 5.75e-10 1.21e-10 1.84e+07 1.84e+07
13 2.44e+71 2.90e+71 6.86e+70 6.18e+72 8.24e+70 3.51e+28 5.12e+40
14 3.75e-16 3.65e-16 7.98e-16 3.62e-16 3.62e-16 2.94e+00 2.94e+00
15 9.23e-15 3.31e-15 9.59e-15 1.56e-14 2.39e-13 6.14e+02 2.89e+03
16 4.40e-15 4.54e-15 2.45e-14 7.39e-15 1.62e-13 6.14e+02 2.89e+03
17 5.97e-14 9.20e-14 3.35e-13 7.93e-04 4.96e+00 6.56e+08 4.49e+10
18 1.64e-16 1.63e-16 5.02e-16 1.40e-16 1.40e-16 1.00e+00 1.00e+00
19 2.00e-16 1.99e-16 7.33e-16 1.51e-16 1.51e-16 1.86e+00 1.86e+00
20 1.64e-16 1.65e-16 4.71e-16 1.63e-16 1.63e-16 1.86e+00 1.86e+00
21 1.63e-16 1.65e-16 4.47e-16 1.59e-16 1.59e-16 1.32e+00 1.32e+00
22 1.55e-16 1.55e-16 4.09e-16 1.51e-16 1.51e-16 1.31e+00 1.31e+00
23 1.49e-16 1.49e-16 3.53e-16 1.40e-16 1.40e-16 1.51e+00 1.51e+00

Table 7.: Left part: Forward relative error of double-precision results for numerical stability
analysis of pentadiagonal solvers. Right part: coarse system condition for RPTS
with partial pivoting and without pivoting. The matrix ID refers to the matrices
in Table 6.

Optimizations for Small Tridiagonal Systems

Figure 13 displays the performance improvement of the fused final stage kernel (FFSK) and
the dynamic choice of M in comparison to a final stage solver with a single CUDA thread
and a static choice of M . As possible parameters for M we choose M̃i = 17, 21, 31, 41.
As expected, the speedup converges against 1, for large problem sizes because then the
reduction and substitution step of RPTS of the initial tridiagonal system dominate the
runtime. Moreover, the cost of the cyclic final stage is shown, which reduces the tridiagonal
system through additional stages down to a 2x2 matrix.

Multiple Right-Hand Sides

Figure 14 shows the performance of tridigpuSgtsv for a CUDA block dimension of 128,
nr = 32 right-hand sides, M = 31, and n̂r = 4 in dependence on the system size N and in
comparison to the tridiagonal solvers of cuSPARSE (gtsv2 and gtsv2 nopivot), which
also support multiple right-hand sides. The equation throughput in [MRows/s] is calculated

by nrN ·10−6

runtime . The optimal choice of n̂r and M depends on the CUDA architecture and is
mainly affected by the amount of available shared memory.

Figure 15 shows that solving multiple right-hand sides within the same kernel is highly
beneficial: tridigpuSgtsv for one right-hand side (nr = 1) achieves ≈ 12500 MRows/s,
but for nr = 32 it runs at ≈ 31500 MRows/s for large N . The performance increase
from nr = 1, to nr = 2, and to nr = 4 is much larger than from nr = 4 to nr > 4 due
to the caching of n̂r = min(nr, 4) right-hand sides in on-chip memory. The dotted lines
show the further increase in the performance for sparse right-hand sides with 10 non-zero

41



ID LAPACK Eigen3 RPTS RPTS κpartial κnopivot

partial pivot no pivot (coarse system)

1 7.41e-15 5.80e-15 1.35e-14 1.26e-14 7.20e+02 4.68e+03
2 1.57e-16 1.57e-16 1.64e-16 1.64e-16 1.00e+00 1.00e+00
3 1.96e-16 1.90e-16 1.95e-16 1.95e-16 2.63e+02 2.63e+02
4 7.81e-15 6.80e-15 1.37e-14 1.35e-14 7.20e+02 8.75e+03
5 1.84e-15 2.54e-15 2.54e-15 9.33e-15 1.46e+02 2.33e+02
6 1.63e-16 1.54e-16 1.71e-16 1.71e-16 1.03e+00 1.03e+00
7 2.66e-16 2.74e-16 2.65e-16 2.65e-16 3.00e+00 3.00e+00
8 1.69e-04 1.99e-04 1.47e-04 3.04e-04 7.41e+12 2.51e+11
9 1.87e-05 5.08e-05 1.84e-02 6.10e-02 1.77e+15 5.36e+19
10 9.37e-05 1.22e-04 9.97e-05 6.24e-05 1.00e+00 6.14e+01
11 2.66e-03 3.14e-03 2.37e-03 1.77e-03 1.66e+14 1.32e+14
12 1.51e+06 9.51e+05 7.08e+05 5.11e+05 9.69e+22 2.48e+23
13 4.67e+00 1.88e+00 3.11e+00 2.83e+00 6.16e+17 5.74e+17
14 5.89e-03 6.91e-03 3.36e-03 7.11e+00 4.96e+14 3.23e+18
15 1.56e+02 3.34e+02 3.71e+02 NA 1.50e+20 NA
16 1.77e-15 2.79e-15 2.57e-15 4.53e-09 4.13e+01 4.13e+01
17 1.68e-16 1.58e-16 1.74e-16 1.74e-16 1.00e+00 1.00e+00
18 1.78e-16 1.77e-16 1.89e-16 1.89e-16 1.73e+00 1.73e+00
19 1.85e-16 1.88e-16 1.81e-16 1.81e-16 1.03e+00 1.03e+00
20 1.77e-16 1.77e-16 1.68e-16 1.68e-16 1.64e+00 1.64e+00

Table 8.: Left part: Forward relative error of double-precision results for numerical stability
analysis of 2x2 block tridiagonal solvers for matrices of size N = 1024. Right part:
coarse system condition for RPTS with partial pivoting and without pivoting.
Each matrix was created by transforming the scalar tridiagonal test matrices in
Table 4 to 2x2 block tridiagonal form.

entries, and dense solution vectors, is shown (tridigpuSgtsv csc2dense). As expected,
the reduction in data movement speeds up the runtime of the kernels. If a CUDA block
detects that all right-hand side values are zero within its part of the tridiagonal system,
the calculation is skipped and zeros are written to the solution vector immediately.

Block Tridiagonal Systems and their Factorizations

Analogously to the scalar tridiagonal solver performance analysis for multiple right-hand
sides in Section 2.7.2, Figure 16 shows the performance of tridigpu block tridiagonal
solvers. As expected, solving the system with the already factorized tridiagonal system
achieves higher equation throughputs for increasing block sizes because the computationally
expensive block inversions and determinent calculations have already been performed in
the factorization. In this benchmark, solving the system with the previously calculated
factorization is efficient for {n = 2, nr ≥ 4}, {n = 3, nr ≥ 4}, and {n = 4, nr ≥ 1}. The
performance of the factorization (gtf) in comparison to the solving step (gtfs) with
nr = 1 is shown in Figure 17. As expected, the runtime difference increases for increasing
block sizes n.

Banded Systems

For optimal performance results on the RTX 2080 Ti, we choose a CUDA block dimension
of 128, {n = 2, M = 13, L = 32}, {n = 3, M = 7, L = 32}, and {n = 4, M = 7, L = 16},
where L denotes the number of partitions per CUDA block. For banded or block tridiagonal
systems, M is rather small, due to the shared memory consumption of each block growing
quadratically with the block size n. For n = 4, only half a warp is calculating the
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matrix problem DOFs nnz bands LAPACK Eigen3 RPTS RPTS
partial pivot no pivot

nos2 structural 957 4 137 9 1.90e+00 9.85e-01 2.10e+00 1.03e+01
olm1000 fluid dynamics 1 000 3 996 7 8.90e-15 8.12e-15 1.01e-13 9.92e-14
olm2000 fluid dynamics 2 000 7 996 7 1.73e-09 1.73e-09 6.92e-09 2.55e-09
olm500 fluid dynamics 500 1 996 7 6.27e-13 1.20e-12 4.86e-14 3.29e-14
olm5000 fluid dynamics 5 000 19 996 7 2.43e-12 2.82e-12 7.13e-13 7.73e-13
tub1000 fluid dynamics 1 000 3 996 5 1.45e-13 1.35e-13 3.89e-14 1.13e-14
linverse statistical 11 999 95 977 9 1.32e-11 1.46e-11 2.27e-12 2.29e-12
spmsrtls statistical 29 995 229 947 9 1.50e-14 2.67e-14 9.62e-11 9.62e-11
lf10000 model reduction 19 998 99 982 7 5.29e-12 3.33e-12 3.18e-13 8.52e-13

Table 9.: Left: properties of matrices from the Sparse Matric Collection [27]. Right:
forward relative error of double-precision results for numerical stability analysis
of banded solvers.

diagonalization in the substitution kernel, whereas still two half warps are active in the
reduction kernel, due to the parallel upwards and downwards oriented elimination. We
compare the performance against LAPACK’s gbsv running on the CPU, and against the
interleaved batched pentadiagonal solver (SgpsvInterleavedBatch) as well as the ILU(0)
solver from cuSPARSE. The ILU(0) solver for fully populated banded systems, is identical
to the LU factorization because no additional fill-in occurs. The performance shown for
the ILU(0) does not include the time which is required for the calculation of the L und
U factors. SgpsvInterleavedBatch is optimized for many small pentadiagonal systems,
which fit into on-chip memory, the banded solve of tridigpu, can also solve many small
systems when batched together into one, but can also solve very large pentadiagonal
systems. Hence, this comparison is in favor of SgpsvInterleavedBatch, but this is the
only other GPU library with explicit support for at least certain pentadiagonal systems.
Figure 18 shows the achieved equation throughput for different solvers, number of bands
in the matrix and tile sizes. The tile size only affects the performance of the cuSPARSE
solvers, and not surprisingly, the performance drops below 3 MRows/s if systems of size
N are solved. Thus, for a tile size of N , one pentadiagonal system is solved, and for a
tile size of 64, N/64 pentadiagonal systems are solved with one function call. The ILU(0)
factorization, which can be used to solve pentadiagonal systems exactly, performs poorly,
if all bands are full with non-zero entries, and thus, the solving step is calculated with less
parallelism.

For pentadiagonal systems, we obtain the amount of bytes read by SgpsvInterleavedBatch
for N = 220 from NVIDIA Nsight Compute to

tile size 512 64 8

bytes read [MB] 46.149 45.528 32.327

although the size of the 5 bands and right-hand side is equal to 25.166 MB. The reduction
and substitution kernel of tridigpu read 51 MB on the first stage, which is more than
twice of the pentadiagonal system, due to reading the coarse solution in the substitution
kernel. Nevertheless, the tridigpu banded solve achieves the same performance as the
interleaved batched solve from cuSPARSE with a tile size of 64 for large N . As expected
the equation throughput decreases if the number of bands are increased for tridigpu

due to the increased amount of computational effort, which e.g. is required for the block
multiplications.
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Figure 12.: Single-precision performance of scalar tridiagonal solvers for matrix 1 from
Table 4 with size N . Left: RPTS global memory throughput of the finest stage.
Right: performance comparison to the tridiagonal solver from cuSPARSE.
Missing data points indicate that the required memory exceeds the available
GPU memory.

2.7.3. Calculation of A−1D with Sparse Right-Hand Sides and Solutions

We solve a scalar tridiagonal system AX = D with many right-hand sides D with function
gtsv csc2csc. The results for gtsv csc2dense with a sparse right-hand side and a dense
solution are shown in Section 2.7.2. For D, we take the transposed matrices of the Sparse
Matrix Collection, which are listed in Table 17, and set the CSC column pointers of the
result X to the same of D. Note, that the matrices from the Sparse Matrix Collection
are only used as right-hand sides, and are not inverted. With different sizes and number
of non-zero elements they provide a test set for analyzing the function’s performance
depending on different sparsity patterns of the right-hand sides. The coefficients of the
tridiagonal matrix A are generated with a uniform distribution between minus one and
one and the number of right-hand sides, which are processed in one batch, is set to
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Figure 13.: Single precison scalar tridiagonal solver performance for different RPTS final
stage solvers. Left: the corresponding speedup of FFSK relative to a final
stage solver with a single CUDA thread.
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Figure 14.: Single precison scalar tridiagonal solver performance with nr = 32 right-hand
sides and N unknowns.
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Figure 15.: Single precison scalar tridiagonal solver performance of tridigpuSgtsv and
tridigpuSgtsv csc2dense with varying number of right-hand sides and N
unknowns.

Name Problem DOFs nnz max element(nnzi)

ecology2 2D/3D 999 999 4 995 991 5
thermal2 thermal 1 228 045 8 580 313 11
geo 1438 structural 1 437 960 63 156 690 57
atmosmodl fluid dynamics 1 489 752 10 319 760 7
hook 1498 structural 1 498 023 60 917 445 93
ml geer structural 1 504 002 110 879 972 74
af shell10 structural 1 508 065 52 672 325 35
g3 circuit circuit simulation 1 585 478 7 660 826 6
transport structural 1 602 111 23 500 731 15

Table 10.: Matrices from the Sparse Matrix Collection [27] which are used as sparse right-
hand sides D. max element(nnzi) is the maximum number of non-zeros per
row.
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Figure 16.: Single precison block tridiagonal solver performance of tridigpu with varying
number of right-hand sides and N unknowns. bgtsv repeatedly calculates the
diagonalization, whereas bgtfs uses a given factorization of the tridiagonal
system for the solution.
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n′
r = 128. The corresponding runtimes can be seen in Figure 19. More than half of the

runtime is consumed by the selection of the largest absolute values of the dense tridiagonal
solver result. For 106 single precision elements, the histogram256 calculating kernel of
the k-selection algorithm runs with 320 GB/s on the RTX 2080 Ti, and is limited by the
inter-warp aggregated irregular atomic additions in shared memory. In comparison to
CUB’s device histogram [84], that is a speedup of 1.57. The overall runtime is in order of
hundreds of seconds for the chosen matrices, which is caused by the runtime complexity
of O(N2) for square matrices D, as the hierarchical solve of one tridiagonal system is
in O(N). A faster alternative would be to drop coefficients early in D during the solve,
similar to how ILU drops coefficients early in A during a factorization.
However, this introduces more imprecisions and here we focus on the accuracy of the

result. If A contains many independent small tridiagonal systems other algorithms, which
dynamically solve only the tridiagonal systems with non-zero right-hand sides, are more
efficient.

2.8. Summary and Outlook

In this section we discuss the limitations and future work for the presented function classes.

The scalar tridiagonal solve for multiple right-hand sides ([c]gtsv) is only limited by
GPU memory bandwidth if the GPU has a sufficient amount of computational units
for the corresponding precision. These functions run at hardware limit and cannot
be further optimized.

The block tridiagonal solve and factorization are limited by thread execution latencies.
In comparison to the scalar solves, the block tridiagonal solves have an increased
computational effort, which cannot be hidden behind global memory accesses any
more if only one warp is solving the inner partitions. For the future, this motivates
us to increase the amount of parallelism in the matrix-matrix or matrix-vector
operations during the solving of the inner partitions. However, this is not just
a change in the parameterization, a significantly different parallelization strategy
would be required. This new parallelization should overcome the limitation of n ≤ 4
to some extent, maybe up to n ≤ 16. But if we wanted to process even larger n
efficiently, then yet another parallel strategy would have to be invented.

The sparse tridiagonal solves are efficient for sparse right-hand side input vectors, which
fit into GPU memory cache because each CUDA block reads all right-hand side
elements. Approximately 60% of the runtime of gtsv csc2csc is limited by the
performance of the k-selection algorithm. Therefore, increasing the performance of
the device histogram by stronger data privatization or merging the k-selection into
the substitution kernel of the scalar tridiagonal solver will be investigated.

To ensure performance portability across different GPU architectures, an auto-tuning
mechanism to determine the optimal kernel parameters like the block dimension or partition
size M would be useful in the future.

2.9. Conclusion

Our tridigpu CUDA library for block cyclic, tridiagonal, and banded systems covers
multiple problem classes which often appear in practice. We have discussed the C API,
the underlying algorithms, the numerical stability, and the performance of these problem
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classes in detail. In comparison, we showed that our solvers outperform state-of-the-art
tridiagonal solvers as they are implemented in cuSPARSE, and that our banded solver keeps
up with batched pentadiagonal solvers, although it is able to solve very large pentadiagonal
systems and not only batched systems.
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3. Sparse Matrix-Vector Multiplication with
Segmented Reduction

Abstract CSR matrix-vector products (SpMV) on GPUs often use specialized
implementations for e.g. very long or short matrix rows and depend also on built-
in atomic functions. In this work, we present a CUDA SpMV implementation
by using segmented reduction algorithms as a building block but without any
specialization with respect to the sparsity pattern of the matrix. We provide
three schemes which differ in their work balancing technique between the
CUDA blocks. Two of which are free of atomic operations and thus support
general types and operators for computing a generalized SpMV product in
e.g. graph applications. Despite the generality, our implementation competes
with the performance of standard SpMV with cuSPARSE, which we show for
an RTX 2080 Ti and large single precision matrices from the Sparse Matrix
Collection.

3.1. Introduction

The sparse matrix-vector product (SpMV) represents an important building block for
many scientific applications and problems like sparse iterative solvers [104], the power
iteration for largest eigenvalue calculation [28], Google’s page rank algorithm [117], or
graph algorithms expressed in terms of sparse linear algebra [82].

The strong irregularities of sparse matrices with respect to the location of the non-zero
elements represents a major difficulty when implementing an efficient SpMV product on
a GPU, which requires fine grained parallelism and work balancing among the threads.
If for example one GPU thread processes one single sparse matrix row to calculate one
result yi of the product y = Ax, some threads might process much longer matrix rows,
which will result in thread divergence, uncoalesced global memory loads, and threads
stalling as they are waiting for other threads in the CUDA block. The latter approach was
evaluated for the CSR format by Bell and Garland [11, 12] and denoted with CSR-scalar.
Additionally, they proposed a CSR-vector kernel, which assigns a group of threads with a
globally fixed size to one matrix row. However, the problem of work imbalances between
GPU threads remains if e.g. many matrix rows are shorter than the group size. Many
approaches to fix these work imbalances by changing the sparse matrix format can be
found in literature1 but integrating these additional formats into an existing application
always requires the potentially expensive format conversions. Therefore, we focus on the
widely used Compressed Sparse Row (CSR) format in this chapter and do not require any
modifications to the input matrix A.

For a matrix A with N columns, our CUDA SpMV implementation (SRCSR) includes
the solution of the generalized SpMV problem

yi = β ⊗ yi + α⊗ (Ai,0 ⊗ x0 ⊕Ai,1 ⊗ x1 ⊕ · · · ⊕Ai,N−1 ⊗ xN−1), (19)

1For a summary, see [46].
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with abstract multiplication ⊗ and addition ⊕ operators. SRCSR uses a segmented
reduction in on-chip memory, with each matrix row representing one segment, to compute
the sum of the products Ai,j⊗xj . With a preprocessing consuming between 10% and 20% of
the actual SpMV runtime, we assign the non-zero coefficients of A evenly (SRCSR-balanced)
or as evenly as possible (SRCSR-adaptive) to the CUDA blocks. For SRCSR-adaptive,
each matrix row is assigned to one CUDA block but one CUDA block might be assigned
to multiple matrix rows, whereas SRCSR-balanced might assign multiple CUDA blocks
to the same matrix row. For both schemes, work imbalances occur between the CUDA
blocks in case of many matrix rows without any non-zero coefficient because the SRCSR
SpMV kernels also write the result (which is equal to zero) for these rows. Additionally
for SRCSR-adaptive, work imbalances between CUDA blocks might decrease efficiency
due to tail-effects as a block working on a very long matrix row is still running while all
other blocks already finished.

By using the segmented reduction as a building block for SpMV, we leverage highly
optimized segmented reduction codes and simultaneously provide a high level of generality
in the implementation with the support for arbitrary types and operators. Often SpMV
implementations for GPUs do not support arbitrary types because partial results for the
same matrix row are accumulated by built-in atomic instructions [47, 80], which further
requires a previous zero initialization of the output vector. SRCSR-adaptive does not
use any atomic instructions, whereas we provide two different ways for SRCSR-balanced
for the accumulation of the partial results: first, by using built-in atomic instructions
(SRCSR-balanced-atomic), and second, by launching a post processing kernel (SRCSR-
balanced-postprocessing), which accumulates the partial results with another segmented
reduction. SRCSR-balanced-atomic avoids an additional kernel launch by atomics at the
cost of losing support for general types, and SRCSR-balanced-postprocessing supports
general types at the cost of an additional kernel launch.

The rest of the chapter continues with discussing related work in Section 3.2, present-
ing an overview of the SRCSR algorithm in Section 3.4, giving further details on the
implementation in Section 3.5, and showing the performance results in Section 3.6.

3.2. Related Work

Related to our contributions are other SpMV implementations which do not require any
modification of the input CSR matrix and improve work balancing among threads in
comparison to the static approaches CSR-scalar and CSR-vector by Bell and Garland [11,
12].

Liu and Schmidt [80] proposed LightSpMV which is based on CSR-vector but with a
dynamic matrix row assignment to the groups of threads. After each processed matrix row,
a group of threads atomically retrieves the next row index for processing. In comparison to
CSR-vector, this prevents low utilization if e.g. only one group of threads in each CUDA
block processes one long matrix row because the other groups of threads dynamically
retrieve another row for processing and are not idling. However, the tail-effect (see
Section 3.1) for LightSpMV is even worse than for SRCSR-adaptive because only one
group of threads is operating on one potentially long matrix row, whereas for SRCSR-
adaptive that is one CUDA block. Moreover, LightSpMV uses atomic operations to
accumulate the partial sums for one matrix row and is thus limited in its type flexibility.

Ashari et al. [9] propose ACSR which bins matrix rows depending on their length and
launches different kernels for different bins with dynamic parallism. The preprocessing
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cost is relatively high and consumes more than two SpMV operations2. Moreover, the
input matrix is not modified, which results in strided global memory accesses if short and
long rows occur in an alternating fashion.

Greathouse and Daga [56] propose CSR-Stream and CSR-Adaptive. The OpenCL
implementation of CSR-Stream is similar to our SRCSR-balanced scheme uses a prepro-
cessing step to assign matrix rows dynamically wavefronts and loads the non-zero matrix
coefficients into on-chip memory. But contrary to our SRCSR schemes, CSR-Stream uses
one GPU thread to calculate the reduction along a matrix row in on-chip memory, which
limits the CSR-Stream implementation to a certain row length. For arbitrary row lengths,
they provide CSR-Adaptive, which dynamically uses either CSR-Stream or a classical
CSR-Vector implementation to process the matrix row.

Flegar und Quintana-Ort́ı [47] propose a work balanced SpMV implementation (CSR-I)
which assigns the non-zero elements evenly among the threads. The threads read the
matrix coefficients coalesced from global memory, multiply the the vector coefficient, and
update their local accumulator. In case a thread encounters a coefficient from a new matrix
row, the result is written atomically warp-aggregated into global memory. This requires
the zero initialization of the output vector and limits possible types to the atomically
supported ones.

A SpMV implementation with the support for general types is available in CUB [85],
which also considers empty matrix rows when distributing the workload among the
threads. However, our SRCSR SpMV implementations provide a more fine-grained
type configuration (configurable types for matrix coeffcients, intermediate accumulator
type, result type, and output type) and support for user defined abstract addition and
multiplication operators.

3.3. Contributions

We provide the CUDA implementation of a generalized sparse CSR matrix-vector product
with the support for fine-grained user types and abstract multiplication ⊗ and addition ⊕
operators by two major schemes, which use segmented reduction algorithms as internal
building block:

SRCSR-adaptive :

• nearly work balanced with respect to non-zero coefficients of A

• CUDA block exclusive matrix row assignment (potential performance decreasing
tail-effect)

• atomic-free

• support for abstract user types and operators

• worst for matrices with only a few very long rows (low occupancy)

SRCSR-balanced :

• work balanced with respect to non-zero coefficients of A

• multiple CUDA blocks operate on the same matrix row

-atomic :

• atomics for partial sum accumulation between different CUDA blocks

2implicitly derived from author statement in Section I: ’less than 3 SpMV operations’
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• type and operator support limited by atomic built-in functions

• worse for matrices with only a few very long rows (atomic collisions between
CUDA blocks)

-postprocess :

• atomic-free

• support for abstract user types and operators

• additional post processing kernel to accumulate partial sums

Besides the classical SpMV operation y = βy + αAx, many other applications can use
our SpMV implementation because of its generality, e.g. GraphBLAS applications [82] or
linear forest computations (see Chapter 4).

3.4. Algorithms

Algorithm 4: Computing the start rows for SRCSR-balanced. N is the number
of matrix rows and w is the amount of non-zero matrix coefficients, which is
processed by one CUDA block.

Data: CSR row ptrs, w
Result: row block start

1 ∀ b ∈ [0, num blocks] : row block start[b] = −1
2 row block start[0] = 0
3 for i = 0, . . . , N − 1 do in parallel
4 j = row ptrs[i+ 1]− 1
5 k = row ptrs[i]− 1
6 l = j/w
7 m = k/w
8 if l ̸= m then
9 row block start[m+ 1] = i

10 end

11 end
12 row block start[num blocks] = N
13 inclusive max scan(row block start)

3.4.1. Preprocessing

For SRCSR-balanced, an equal amount of non-zero matrix coefficients is assigned to each
CUDA block, which gives the first non-zero element of a CUDA block as the number of
non-zero elements per CUDA block multiplied with the block ID. The locations of the
results in vector y for a general SpMV operation (Eq. 19) are computed by a preprocessing
kernel, which returns the start and end matrix row for each CUDA block (Algorithm 4).
The input of Algorithm 4 is the row ptrs vector which saves the index in CSR not-null
space for each matrix row. The output is vector row block start, which contains for each
CUDA block b the matrix row range [row block start[b], row block start[b+1]). In a
parallel implementation, Algorithm 4 is a scatter operation with the complexity increasing
linearly with the number of matrix rows (O(N)) and thus its runtime is only a fraction
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Algorithm 5: Computing the start rows for SRCSR-adaptive. N is the number
of matrix rows and w is the target amount of non-zero matrix coefficients, which
is processed by one CUDA block.

Data: CSR row ptrs, w
Result: row block start

1 ∀ b ∈ [0, max num blocks] : row block start[b] = −1
2 row block start[0] = 0
3 for i = 0, . . . , N − 1 do in parallel
4 j = row ptrs[i+ 1]
5 k = row ptrs[i]
6 l = j/w
7 m = k/w
8 if l ̸= m ∧ l ̸= 0 ∧ l ̸= max num blocks ∧ j ̸= k then
9 row block start[l] = i+ 1

10 end

11 end
12 row block start[max num blocks] = N
13 num blocks = select if unequal minus one(row block start, row block start) - 1

matrix row delimiter w

CSR
values

column indices

(a) SRCSR-balanced (Algorithm 4)

CSR
values

column indices

(b) SRCSR-adaptive (Algorithm 5)

Figure 20.: Small example for matrix row assignment to CUDA blocks in CSR not-null
space with w = 23. The colors represent different CUDA blocks.

of the actual SpMV computation. The inclusive max scan in Line 13 fills the unwritten
values in row block start in case multiple CUDA blocks operate on the same matrix row.

Analogously, Algorithm 5 shows the preprocessing for SRCSR-adaptive. A priori the
number of CUDA blocks for the SRCSR-adaptive kernel is unknown but has an upper
limit of nnz/w + 1, where w represents the target amount of non-zero matrix coefficients
per CUDA block. In fact, some CUDA blocks might process less or more than w non-zero
coefficients. Therefore, the actual number of CUDA blocks is computed in Line 13 where
all written elements in row block start are selected and counted, which is returned by
the function select if unequal minus one().

Figure 20 visualizes the matrix row assignment to CUDA blocks of Algorithm 4 & 5 for
a small example CSR matrix.

Alternatively to a separate preprocessing kernel, the matrix rows could be obtained
with a binary search in the beginning of the SpMV kernel.
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start

end
for tile id in

range(num tiles this block)

load matrix & vector coeffs

from global memory, multiply,

store result to shared memory

(a)

scatter row end indices

to shared memory
(b)

segmented reduction(SR)

with on-chip data
(c)

SR result in thread

local registers

for batch id in

range(num batches this tile)

scatter SR result to shared memory (d)

store result in global memory (e)

yes

yes

no

no

Figure 21.: SRCSR flow chart for each CUDA block (SR = segmented reduction).
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3.4.2. SRCSR

In our segmented reduction based CSR matrix-vector product, each CUDA block is
assigned to a certain number of non-zero matrix coefficients and matrix rows. In general,
all SRCSR schemes load the matrix coefficients and column indices coalesced and the
vector coefficients irregularly depending on the column indices to on-chip memory (shared
memory). Afterward, the (partial) result is computed and stored back to global memory
in coalesced fashion.

A simplified control flow is given by Figure 21. Steps (a)-(e) are executed in a for-loop
over tiles because the amount of data, which is assigned to a CUDA block (parameter
w), might exceed the limit of available on-chip memory and the segmented reduction
(Step (c)) operates only with on-chip data. For matrix rows exceeding the tile borders,
the partial result of the previous tile is added to the first element of the next tile. In
Step (b), the threads scatter the row indices of the tile into their position in the partial
CSR not-null space located in shared memory. The row end indices serve as flags for the
segmented reduction in Step (c) and also contain the information of the result location
in vector y, which is used in Steps (d) & (e). After the segmented reduction, the results
are either loaded from shared memory to thread local registers, or are already placed in
registers depending on the type of segmented reduction algorithm. Consequently, the
shared memory is reused in a for-loop over batches to store the results coalesced in vector
y. The necessity of this second for-loop stems from the arbitrary amount of empty matrix
rows, which are part of the current tile.

3.5. Implementation

The implementation is hosted on the GitLab-Server3 of the Application Specific Computing
group at the Heidelberg University and published under a 3-Clause BSD license.

3.5.1. Segmented Reduction Algorithms

The implementation of SRCSR supports two major algorithms to compute the segmented
reduction in Step (c), Figure 21: the block primitive BlockScan of CUB [84] or our own
warp transposed segmented reduction algorithm (Section 3.5.2). CUB’s block primitive
provides three different algorithms: raking, raking-memoize, warp-scans.

3.5.2. Warp Transposed Segmented Reduction

In Section 2.6.3, we showed the data transposition in shared memory for coalesced loading
of the tridiagonal system from global memory and subsequently the solving of 32 partitions
with one CUDA warp where one thread operates sequentially on its own partition. We
used the same idea to implement a segmented reduction with one CUDA warp. Each
thread is assigned to partition of the input data for the segmented reduction, which is
shown in Figure 22 by one row for one thread. Keep in mind that this is just a visual
2D representation of the CSR data. In fact, the CSR data is located continuously in
shared memory. In the first Step (1), each thread computes its segmented reduction on its
own partition of the data. Subsequently in Step (2), a segmented scan with warp shuffle
functions is used to exchange the potentially required correction (Step (3)) for the first
segment of each thread. Note, that in the example, thread 2 has not any segment delimiter
and is thus not correcting any output value. This algorithm is naturally free of shared

3https://mp-force.ziti.uni-heidelberg.de/cklein/srcsrmv
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Figure 22.: Warp transposed segmented reduction in three steps on small example CSR
matrix from Figure 20 (warp size = 4).

memory bank conflicts if the partition size is odd. For even partition sizes, a padding of
the partitions in shared memory ensures zero bank conflicts.

3.5.3. Use of Atomic Operations

As shown by the contributions in Section 3.3 only the SRCSR-balanced-atomic scheme
makes use of atomic operations to accumulate the partial sums of the matrix rows. This
requires the zero initialization of the output vector y but instead of completely initializing
y, we only initialize the few values in y, which are written atomically. A CUDA block only
uses the atomic operations for matrix rows, which are shared with other blocks, e.g. the
blue block in Figure 20a, contributes to four matrix rows but only executes two atomic
additions.

3.5.4. Type Configuration

To maximize efficiency of a generalized SpMV with more complex user defined types and
operators, a fine grained type configuration is required for the SpMV kernels.

Figure 23 shows the type conversion flow during a generalized SpMV computation. The
matrix coefficients and vector elements are loaded from global memory via general iterator
types, combined with abstract multiplication operator ⊗, and saved in shared memory.
The access to shared memory can be controlled with a separate iterator type. This can
be used for performance improvements if the output type of ⊗ is a large struct with
multiple member variables. In that case, the abstract iterator provides a struct of arrays
(SoA) access while giving an array of structs (AoS) view to the programmer.

If SRCSR is used with CUB’s segmented reduction (SR) algorithm, the output type of
⊗, is subsequently converted to the in- and output type of the SR while it is loaded to
thread local registers. Note, that the requirement of commutativity for the input type by
highly parallel (segmented) reduction/scan algorithms forces the same type for in- and
output. This is different for sequential reduction/scan algorithms where the accumulator
type can be different to the input type. For SRCSR, the type conversion from the output
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A iterator x iterator global memory

abstract operator ⊗

accessed by abstract iterator output type of ⊗ shared memory

in- and output type of

segmented reduction

(operator ⊕)
registers

intermediate result type shared memory

y iterator global memory

Figure 23.: SRCSR type configuration for generalized sparse matrix-vector products in case
of CUB’s segmented reduction algorithm. The right column denotes typical
data locations in GPU memory and the arrows indicate the direction of type
conversion. Each box represents a user configurable type.

type of ⊗ to the SR input type can be used to significantly reduce the size of required
shared memory size per CUDA block. An example is a segmented reduction to find the
two maximum values in each segment. The value type for the reduction would be a pair of
two values because value and accumulator type must be the same. Therefore, each input
value would be converted to a pair consisting of the value itself and a placeholder. The
pair has twice the size of the input value type and would not be saved in shared memory.

After the SR with a potentially large type, the SR result is converted to an intermediate
result type, which might be smaller. In the end, the intermediate result type is assigned
to an iterator on output vector y.

If the warp transposed segmented reduction from Section 3.5.2 is used, the output type
of ⊗ must be the same as the input type for the SR.

3.5.5. Abstract Operators

The SRCSR kernels are parametrized by three lambda functions, which implement the
abstract operators ⊗ & ⊕ and control how the output is written to vector y. In the first
lambda, the matrix coefficients from A and the vector elements from x are loaded and
multiplied (⊗). The second lambda represents the binary operator (⊕) for the segmented
reduction, and the third lambda controls how the result is written to global memory, e.g.
the computation of y = Ax, y = βy +Ax, y = z + y +Ax, or even y = z + y + TAx with
a diagonal matrix T .

For the lambda which implements operator ⊗ two type signatures are supported:

• operator otimes(int nz id), and
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• operator otimes(int nz id, int row id),

where nz id=0,...,nnz-1 represents the non-zero index in CSR not null space, which is
used to index the CSR values and col indices ranges. The first signature represents
the default and for a standard SpMV we would define:

auto operator_otimes = [&] __device__ (int nz_id) {

return A_values[nz_id] * x[A_col_indices[nz_id]];

};

The second signature is special, as it allows the usage of the row index for each non-zero
matrix coefficient. A synthetic example is the SpMV computation where some rows only
contribute partially to the SpMV result:

auto operator_otimes = [&] __device__ (int nz_id, int row_id) {

const bool b0 = predicate[row_id];

const bool b1 = nz_id % 2 == 0;

const auto t = A_values[nz_id] * x[A_col_indices[nz_id]];

return b0 || b1 ? t : 0;

};

From a user perspective it seems as if the matrix has a COO format but the row indices
are computed with minimal overhead in on-chip memory without any additional memory
requirements. With type traits, it is determined at compile time if the row indices must
be computed or not. Generating the row indices on-chip saves time consuming CSR to
COO conversions and avoids the usage of additional memory to save the row indices. This
feature is used in Chapter 4 for a linear forest computation.

3.5.6. Auto-Tuning

The SRCSR kernels have four tuning parameters which affect their runtime on a GPU
architecture:

• the CUDA block dimension,

• the amount of non-zero coefficients, which is processed in one tile (see Figure 21),

• the target number of non-zero coefficients per CUDA block w (see Figure 20), and

• the segmented reduction algorithm (see Section 3.5.1).

With only four options for each parameter, this multiplies to 256 different kernel configu-
rations. In addition, the optimal parameter set might differ between GPUs of different
architectures and different non-zero matrix patterns. Also, the optimal parameter set is
different for standard and generalized SpMV due to fundamental (float, double) and
abstract types, respectively. Therefore, the source code includes an auto-tuning mecha-
nism to determine the optimal parameter set by benchmarking the cartesian product of
reasonable parameter choices.

3.5.7. Partial Sparse Matrix-Vector Products

The SRCSR kernels support partial SpMV computations di =
∑

j Aijxj , with user defined
limits i = i0, . . . , i1. This can be used for parallel operations on colored graphs. For a
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matrix N nnz

af shell8 504 855 17 588 875
aniso1 6 250 000 56 220 004
aniso2 6 250 000 56 220 004
aniso3 6 250 000 56 220 004
atmosmodd 1 270 432 8 814 880
atmosmodj 1 270 432 8 814 880
atmosmodl 1 489 752 10 319 760
atmosmodm 1 489 752 10 319 760
bump 2911 2 911 419 127 729 899
cube coup dt0 2 164 760 127 206 144
curlcurl 3 1 219 574 13 544 618
curlcurl 4 2 380 515 26 515 867
ecology1 1 000 000 4 996 000
ecology2 999 999 4 995 991
g3 circuit 1 585 478 7 660 826
geo 1438 1 437 960 63 156 690
hook 1498 1 498 023 60 917 445
long coup dt0 1 470 152 87 088 992
ml geer 1 504 002 110 879 972
stocf-1465 1 465 137 21 005 389
thermal2 1 228 045 8 580 313
transport 1 602 111 23 500 731

Table 11.: Test matrices which are either from the Sparse Matrix Collection [27] or taken
from [72] (aniso{1,2,3}).

colored graph, neighboring vertices have a different color, thus a result for a vertex which
depends on the neighbors can safely be computed and written to memory for one color in
parallel. If matrix A is permuted such that the vertices of the same color have subsequent
vertex indices, we can apply our generalized SpMV to vertices of the same color by setting
the bounds i0 and i1 appropriately.

3.6. Results

For the results presented in this chapter, we use a machine with CentOS 7, CUDA Toolkit
11.4.48, CUDA driver 510.60.02, GCC 10.2.0, a GeForce RTX 2080 Ti. All performance
measurements are done in single precision because the RTX 2080 Ti only has a few double
precision units. For double precision performance, professional accelerator graphics cards
can be used (A100, V100, etc.). The test matrices are listen in Table 11, which are mostly
from the Sparse Matrix Collection [27].

3.6.1. Overall Performance

In this section, we compare our SRCSR kernels against the highly optimized SpMV kernels
from cuSPARSE [90] and evaluate the time consumption of the preprocessing.

For that purpose, Figure 24 shows the relative time of the standard SpMV operation
y = βy+αAx, with the slowest SpMV kernel always having a relative runtime of 1.0. The
presented time is the average of 300 SpMV operations measured with two CUDA events.
The SRCSR-balanced-postprocess scheme is most often the slowest scheme because it
requires some kernel launches in the post-processing. Without preprocessing (Figure 24,
top), SRCSR-adaptive and SRCSR-balanced-atomic compete with cuSPARSE and are
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scheme

cuSPARSE Alg1

cuSPARSE Alg2

SRCSR−adaptive

SRCSR−balanced−atomic

SRCSR−balanced−postprocess
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Figure 24.: SpMV performance comparison for operation y = βy+αAx on single precision
matrices from Table 11. Top: times without the SRCSR preprocessing. Bottom:
with SRCSR preprocessing. The cuSPARSE times are equal in both plots.
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Figure 25.: Relative time for preprocessing of SRCSR SpMV for operation y = βy + αAx
on single precision matrices from Table 11. The time is relative to the SpMV
+ preprocessing time.
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sometimes even faster. This benchmark is relevant for applications which execute SpMV
often on the same sparsity pattern, such that the preprocessing is executed only once,
and thus consumes a negligible time fraction of the overall runtime. The upper plot of
Figure 24 shows the relative runtime with the SRCSR preprocessing, which unsurprisingly
shows cuSPARSE most often as the fastest scheme. SRCSR has a much more general
implementation than the assembly level optimized SpMV kernels of cuSPARSE, but still
achieves a similar performance. Sometimes SRCSR-balanced-atomic performs worse than
SRCSR-adaptive because of an additional kernel launch, which is required to compute the
multiplication of y with β. SRCSR-adaptive does not require an additional kernel launch
because the update on y is not made atomically.

In Figure 24, we showed the best performance results from our auto tuning framework
(Section 3.5.6), but we want to point out that, that the SRCSR SpMV operation with our
warp transposed segmented reduction from Section 3.5.2 performs as well as with CUB’s
segmented scan block primitive (Section 3.5.1).

The relative runtime of the preprocessing in comparison to the total runtime (SpMV +
preprocessing) is shown in Figure 25. As expected, the preprocessing time is relatively
longer (up to 30%) for matrices, which only have a few non-zero coefficients per row. For
matrices with many non-zero coefficients per row (bump 2911, ml geer, geo 1438, etc.),
the preprocessing only takes up to 5% of the runtime.

3.6.2. General Applications of SRCSR

In Section 3.5.4, we pointed out the type generality of the SRCSR kernels, which we show
for four applications in this section. An advanced application (linear forest extraction) is
shown in Chapter 4. The four applications use the exact same SRCSR-adaptive kernel
but with different type and operator instantiations, and are listed in increasing order of
resource (registers, type sizes, operator complexity) consumption:

• max1: compute the maximum value of maxj(Ai,j) for each i.

• max1-with-col: compute the maximum value of maxj(j ·Ai,j) for each i.

• arg-max1: compute the index for the maximization of argmaxj(Ai,j) for each i.

• arg-max2: compute the indices j0, j1 with maximal argmaxj0 ̸=j1(Ai,j0) and argmaxj1 ̸=j0(Ai,j1)
for each i.

We compare these applications with standard SpMV in Figure 26, which shows the time
relative to the longest running scheme for a matrix. arg-max2 is the most resource
consuming scheme, and consequently also has the longest runtimes. This is caused by
the size of the input type for the segmented reduction. To find the columns of the two
maximum values in each matrix row the input type must save the two single precision
values (8 Byte) and the two column indices (8 Byte), which is in total 16 Byte. This is four
times larger than the reduction input type for standard SpMV. Implementing arg-max2
with SRCSR is approximately one order of magnitude faster than an implementation with
the segmented reduction algorithm from CUB [84], which is caused by the fine-grained
type configuration of SRCSR (see Section 3.5.4).

3.7. Conclusion

In this chapter, we have shown a CUDA implementation for a generalized sparse matrix-
vector multiplication, which uses segmented reduction algorithms as a building block.
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scheme SpMV max1 max1−with−col arg−max1 arg−max2

Figure 26.: SRCSR-adaptive with different type and operator instantiations for four other
use cases in comparison to standard SpMV y = βy+αAx. The single precision
matrices are listed in Table 11.

Our implementation does not contain any special branching for particularly long or short
matrix rows and stands out because of it support for general types and operators while
the performance of standard sparse matrix-vector operations competes with cuSPARSE.
The generality enables a high flexibility in the usage of the kernels, which we used to
find the maximum pairs or values and their column indices in each matrix row. Essential
for the performance is the type configuration for data in different memory locations like
global memory, shared memory, or thread local registers. Moreover, we showed another
application for data transposition in shared memory to formulate a warp transposed
segmented reduction algorithm, which runs as fast as implementations with CUB [84]
within our sparse matrix-vector product benchmark.

3.8. Other Contributors

Falk Mayer refactored the source code and generalized the work adaptive scheme for
arbitrary long matrix rows. Julius Ernesti and Holger Wünsche implemented the balanced-
postprocess scheme. Bálint Soproni and Joachim Meyer implemented the warp transposed
segmented reduction of Section 3.5.2.
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4. Highly Parallel Linear Forest Extraction
from a Weighted Graph on GPUs

Reference: This chapter was already published in [73].

Abstract For graph matching, each vertex is allowed to match with exactly one
other vertex, such that the spanning subgraph of the matching has a maximum
degree of one, i.e., the subgraph is a [0,1]-factor. In this work, we provide a
highly parallel algorithm to extract a spanning subgraph with a maximum
degree of n (the subgraph is a [0, n]-factor) and demonstrate the efficiency of
our GPU implementation for n = 1, 2, 3, 4 by expressing the algorithm in terms
of generalized sparse matrix-vector products. Moreover, from the [0,2]-factor,
we compute a maximum linear forest (union of disjoint paths) by breaking up
cycles and permuting the subgraph with respect to the vertex order within the
paths. Both tasks execute efficiently on the GPU because of our novel parallel
scan implementation, which does not require a random access iterator. As an
application of linear forests, we demonstrate the algebraic creation of enhanced
tridiagonal preconditioners for various large matrices from the Sparse Matrix
Collection and report runtimes in the order of milliseconds for graphs with
millions of edges and vertices on an RTX 2080 Ti.

4.1. Introduction

We recall some graph terminology [106]. An undirected graph of order N is a pair G :=
(V,E) with a set of vertices V ⊂ N0 (N := |V |) and a set of edges E := {{v, w} | v, w ∈ V }.
A weighted graph has in addition a function ω : V 2 → R, which returns a weight
ω(e) ̸= 0 for each edge e ∈ E and zero otherwise. A path in G is a non-empty subgraph
P := (VP , EP ) ⊆ G with distinct vertices vi in VP = {v0, v1, . . . , vk−1} and edges EP =
{{v0, v1}, {v1, v2}, . . . , {vk−2, vk−1}}. Vertices v0 and vk−1 are called the ends of P . If
the ends are connected with the additional edge {vk−1, v0} then this is a cycle in G. A
spanning subgraph of G is a graph with the same vertices as G but only a subset of its
edges E.
In this chapter we are interested in the fast extraction of spanning subgraphs with

certain properties. A [0, n]-factor [98] is a spanning subgraph of G in which each vertex
has a degree of at most n. A [0, 1]-factor does not contain cycles, but all [0, n]-factors with
n ≥ 2 can. Removing cycles in general is hard. For the [0, 2]-factor we will present the fast
removal of cycles to obtain an acyclic [0, 2]-factor. It is a collection of disjoint paths, also
called a linear forest. Quickly reordering the vertices in the linear forest with respect to
their order in the paths is a challenge, and we will discuss fast parallel algorithms for that.
Why are graph factors of interest? Classical graph matchings [24] compute [0, 1]-

factors, which are used for optimizing the power consumption of wireless networks [120],
preconditioning sparse linear systems [59], solving the data path allocation problem [21],
and for the reordering and scaling of sparse matrices [64]. Computing maximum linear
forests is the edge analog of the maximal path set problem [22], which is solved to
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approximate the shortest superstring problem occuring during DNA sequencing [95].
Linear forests, which contain many strong edges, are also used for directional coarsening
in algebraic multigrid [83], for adaptive algebraic smoothers [97], and for the setup of
tridiagonal preconditioners, which we will discuss here as an application.

Tridiagonal systems can be inverted at the bandwidth limit of the GPU [72], so they
lend themselves as fast preconditioners for a linear system of equations Ax = d. However,
simply extracting the tridiagonal part of the system matrix A does not consider the
strength of the included coefficients in the tridiagonal preconditioner and therefore gives
suboptimal convergence rates. Instead, we want a tridiagonal preconditioner that contains
many strong coefficients from A. We obtain it by extracting a linear forest from A and a
permutation under which the adjacency matrix of the linear forest has a tridiagonal form.

This chapter consists of two major parts: first, formulation of the [0, n]-factor extraction
(Section 4.3.2) in terms of generalized sparse matrix-vector products (Section 4.4.1), and
second, the computation of a linear forest from a [0, 2]-factor by breaking up cycles and
determining the path ID and position (Section 4.3.3). The two tasks in the second part
run efficiently in parallel because of our novel parallel scan implementation, which does
not require a random access iterator (Section 4.4.2). Section 5.3 presents benchmarks and
Section 4.6 the application of enhanced tridiagonal preconditioners.

4.2. Related Work

[0, 1]-Factor Computations

Hagemann et al. [59] use weighted matchings to precondition symmetric indefinite linear
systems, also similarly performed by Naim et al. [88] on GPUs. Cohen [24] and Naumov et
al. [89] describe how graph matching and coloring is implemented efficiently on GPUs. The
latter was also claimed in patents by Cohen et al. [15, 16] and Castonguay et al. [17]. Auer
and Bisseling [44] developed a greedy graph matching on GPUs with an MD5 coloring
technique to coarsen a graph in the context of graph partitioning. The graph matching
problem is most related to our algorithms and was well studied on GPUs [24, 88, 89, 44],
but only extracts matched vertex pairs instead of long paths from a graph.

Linear Forest Computations

Uehara and Chen [110] formulate three parallel algorithms for the calculation of maximal
linear forests. The work of Shoudai and Miyano [105] shows that finding a maximal
vertex-induced subgraph with a maximum degree of n is an NC2 problem. These papers
are theoretical, they do not provide actual parallel implementations.

GraphBLAS

the GraphBLAS standard [82] expresses graph problems in terms of linear algebra opera-
tions, e.g., a shortest-path calculation expressed as sparse matrix-vector multiplication
on the semiring {min,+,R ∪ {+},+}. However, a memory efficient [0, n]-factor compu-
tation requires different types for the input and output vector, the sparse matrix, and
the accumulator; this flexibility is supported by our generalized sparse matrix-vector
multiplication.

65



Other Relations

Our graph algorithms are also related to linear sum assignment, and matrix transversal
problems. The linear sum assignment problem [14, 13]1 is solved by a column permutation,
which minimizes the sum of the diagonal entries of the column-permuted matrix, which gen-
erally represents a weighted bipartite graph, and was implemented on a GPU by Date and
Nagi [25]. Maximum matrix transversals aim to provide a permutation, which maximizes
the sum, product, or amount of non-zero entries of the diagonal elements of the permuted
matrix, and was intensively studied by Duff et al. [37, 36, 38, 40, 39]2. Both related
problems can also be used to design algorithms, which extract one-dimensional subgraphs,
but although they could provide long paths, they rely on parallel BFS algorithms [25] or
consider dense matrices only [25, 58, 103].

4.3. Algorithms

We divide the algorithmic contributions of this chapter into two major parts: first, the
computation of the [0, n]-factor π, and second, the extraction of a linear forest from a
[0, 2]-factor.

4.3.1. Factor Notation

We generalize the notation from [44] and choose the following functional representation of
the [0, n]-factor π:

π : V → Φ := {ϕ ∈ P(V ) | |ϕ| ≤ n}, π(v) ⊆ Vv, (20)

with Vv := {w ∈ V | ∃ e ∈ E : {v, w} = e } \ {v}, (21)

and P(V ) representing the power set of V . Thus, π(v) returns either the empty set, one
vertex, . . . , or n vertices from the neighborhood Vv of v. Function π is subject to the
following conditions:

1. For all v ∈ V there exist at most n different vertices wi ∈ V \{v} such that v ∈ π(wi)
with i = 0, . . . , n− 1, i.e., we allow a vertex to have at most n neighboring vertices
in the [0, n]-factor.

2. For all v, w ∈ V , v ̸= w, if v ∈ π(w), then w ∈ π(v), w ∈ Vv, and v ∈ Vw, i.e., we
only include existing edges {v, w} ∈ E in the [0, n]-factor.

If it is not possible to increase the size of π(V ) further without breaking the conditions,
the [0, n]-factor is maximal.

The weight of a [0, n]-factor ωπ is defined as

ωπ :=
∑
e∈Eπ

|ω(e)|, Eπ := {{v, w} ∈ E | v ∈ π(w)}, (22)

and the relative weight coverage cπ as

cπ :=
ωπ

ωG
, ωG :=

∑
{v,w}∈E,v ̸=w

|ω({v, w})|. (23)

1An implementation is available in SciPy https://docs.scipy.org/doc/scipy/reference/generated/

scipy.optimize.linear_sum_assignment.html or https://bougleux.users.greyc.fr/lsape/,
which is described in [13].

2An implementation is available on http://www.hsl.rl.ac.uk/catalogue/hsl_mc64.html
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Algorithm 6: Sequential greedy [0, n]-factor computation on a weighted graph
G = (V,E).

1 for v ∈ V do
2 π(v)← ∅
3 end
4 for (v, w) ∈ E in order of decreasing |ω({v, w})| do
5 if |π(v)| < n, |π(w)| < n, and v ̸= w then
6 π(v)← π(v) ∪ {w}
7 π(w)← π(w) ∪ {v}
8 end

9 end

For comparisons with the original vertex ordering we also define

cid :=

(
N−1∑
i=0

|ω({i, i− 1})|+ |ω({i, i+ 1})|

)
/ωG (24)

4.3.2. [0, n]-Factor Algorithms on Weighted Graphs

To evaluate the quality of our parallel [0, n]-factor algorithm, we use the sequential greedy
[0, n]-factor Algorithm 6, which sorts the edges with respect to their weight in decreasing
order and adds them to π if possible. Note that for n = 1, this algorithm computes a
matching with at least half of the maximum weight considering all possible matchings [44].

Our parallel [0, n]-factor Algorithm 8 is structured similarly to the graph matching
techniques of Auer and Bisseling [44], but contrary to classical graph matching, a vertex
is allowed to have n other neighboring vertices in the [0, n]-factor. For each vertex at
most n outgoing edges with the largest absolute weights are proposed in parallel in
Algorithm 8 Line 19 and non-mutually proposed edges are removed in Line 27. The
remaining edges are the confirmed edges and part of the [0, n]-factor. The neighboring
set for potential propositions Θ in Line 19 excludes neighbors which already have n
confirmed edges (Line 15), the same charge if k mod m ̸= km (Line 17), and neighbors
with existing confirmed edges (Line 19). If a vertex is charged prior to the edge proposition,
it is positive(+) or negative(-) with a probability of p and (1 − p), respectively, and is
only allowed to propose to vertices with a different charge. The randomness of charge
assignments enables larger [0, n]-factors for graphs with unfavorable structural edge weight
properties, e.g., strict monotonically increasing edge weights in a specific direction. The
charge of a vertex depends on its ID and the iteration index k.

The propositions and confirmations of edges are done iteratively with loop index k, to
include more edges in the [0, n]-factor. The parameters m and km control when vertex
charging is enabled, M represents an upper limit for the number of propositions, and the
algorithm returns the number of actual propositions Mmax for a maximal [0, n]-factor in
Line 24.

Figure 27 shows the edge proposition and confirmation for charged vertices for n = 2.
For each iteration step k, the charging of the vertices is disabled if k mod m = km, such
that each vertex is allowed to propose to every neighbor which did not reach the maximum
number of confirmed edges yet. This has two advantages: first, for some graphs, the
unrestricted edge proposition creates large [0, n]-factors after the first proposition step. If
vertex charging had been used for these graphs, more iterations would have been required
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(a) Parallel proposition of edges to vertices of
different charge (+,-). Each vertex pro-
poses at most two edges to its neighbors
(two strongest edges).
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(b) Confirmation of mutually proposed edges.
For the linear forest extraction, the
match between vertex 4 and 7 is removed
to break up the cycle.

Figure 27.: Edge proposition and confirmation for a [0, 2]-factor (Algorithm 8, with n = 2,
k = 0, km = 0) executed on a small graph.
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0 1 2 4 9 8 3 5 7 6
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0 1 2 4 9 8 3 5 7 6

Figure 28.: Three steps (bottom to top) of a parallel bidirectional scan for the graph of
Figure 27 with N = 10 vertices and 4 paths. Vertices of the same path are
connected with green horizontal lines. Each step represents one kernel launch.

to obtain the same [0, n]-factor size. Second, if nothing is proposed without vertex charging
enabled, the [0, n]-factor is maximal and we may stop the iterations (Alg. 8 Line 23).

4.3.3. From a [0, 2]-Factor to a Linear Forest

The [0, 2]-factor represented by π contains only connectivity information. Only the two or
fewer neighbors are known for each vertex, whereas it is unknown in which path or cycle a
vertex is located (there is no path ID), nor at which position within the path or cycle a
vertex resides. We first break up the cycles. For that purpose, the weakest edge of each
cycle is removed to keep the weight ωπ (Eq. 22) of the linear forest large. Afterward, we
compute the path ID and position within the path for each vertex. A permutation of the
adjacency matrix of the linear forest, which makes it tridiagonal, is obtained by sorting
the vertex IDs with respect to their key composed of path ID and position.

We arrange the linear forest extraction algorithm from a [0, 2]-factor π into four steps:

1. Identify cycles: identify cycles and break them up by removing their weakest edge.

2. Identify paths: obtain the path ID and position within the path for all vertices.

3. Compute permutation: sort vertex IDs with respect to their path ID and position
to get the permutation in which the adjacency matrix of the linear forest is tridiagonal.

4. Extract weight coefficients: with the permuattion, extract coefficients from the
adjacency matrix of G.
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Algorithm 7: Parallel bidirectional scan to compute path IDs and positions for
a linear forest.
Data: acyclic [0, 2]-factor π
Result: path IDs l, and positions p

1 for v ∈ V do in parallel // kernel launch

2 r(v)← (1, 1)
3 q(v)←make tuple(π(v))

4 end
5 while ∃ wi ∈ q(v) for any v ∈ V such that not is path end(wi) do
6 q′ ← q// copy

7 r′ ← r// copy

8 for v ∈ V do in parallel // kernel launch

9 (w0, w1)← q′(v)
10 (r0, r1)← r′(v)
11 for i = 0, 1 do
12 if not is path end(wi) then
13 (v0, v1)← q′(wi)
14 (t0, t1)← r′(wi)
15 for j = 0, 1 do
16 if vj ̸= v then
17 ri ← ri + tj
18 wi ← vj
19 end

20 end

21 end

22 end
// write updated values

23 q(v)← (w0, w1)
24 r(v)← (r0, r1)

25 end

26 end
// chose one path end as path ID

27 for v ∈ V do in parallel // kernel launch

28 (w0, w1)← q(v)
29 (r0, r1)← r(v)
30 i← arg minj∈{0,1}(wj)
31 l(v)← wi

32 p(v)← ri
33 end
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Algorithm 8: Parallel [0, n]-factor algorithm. Function charge returns
positve(+) or negative(-).

1 Function max target(v, Θ)
2 return arg maxw∈Θ (|ω({v, w})|)
3 end
Data: Weighted graph G = (V,E), ω, and integers m, km
Result: Number of iterations Mmax and [0, n]-factor π

4 for v ∈ V do in parallel
5 π(v)← ∅
6 end
7 for k = 0, . . . ,M − 1 do
8 if k mod m ̸= km then
9 for v ∈ V do in parallel // kernel launch

10 q(v)←charge(v,k)
11 end

12 end
13 π′ ← π // copy current π
14 for v ∈ V do in parallel // kernel launch

15 W ← Vv \ {w ∈ V | |π′(w)| = n}
16 if k mod m ̸= km then
17 W ←W \ {w ∈ V | q(w) = q(v)}
18 end

// Propose edges to neighbors

19 while |π(v)| < n and |Θ←W \ π(v)| > 0 do
20 π(v)← π(v) ∪ {max target(v, Θ)}
21 end

22 end
// [0, n]-factor is maximal?

23 if |π(V )| = |π′(V )| and k mod m = km then
24 return k + 1 // return Mmax

25 end
// Remove non-mutual propositions

26 for v ∈ V do in parallel // kernel launch

27 π(v)← {w ∈ π(v) | v ∈ π(w)}
28 end

29 end

30 return M
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For steps (1) and (2), we use a bidirectional scan to design parallel algorithms. A
bidirectional scan executes two scans in two opposite directions simultaneously. In this way,
we can compute the result of two different opposed scans or find and broadcast a specific
value in parallel. The access pattern of our bidirectional scan on multiple paths is shown in
Figure 28. Considering a single path, this pattern appears in the Parallel Cyclic Reduction
Algorithm [31]. Such an access pattern allows, for example, to broadcast a value to all
threads participating in the scan, although a single thread does not visit every neighbor
explicitly. The scan must be bidirectional because π is structured like a double-linked list
but with unknown orientation about which neighbor is forward and which backward, e.g.,
within the [0, 2]-factor, the forward neighbor of vertex 8 in the right part of Figure 27
might be vertex 9, but vertex 4 might be the backward neighbor of vertex 9.

In the bidirectional scan for step (2), the path-ends and the path-positions for all vertices
are determined, which is shown in Algorithm 7. For the latter, each vertex initializes its
forward and backward oriented position with a ’1’ in Line 2 and the bidirectional scan
with an addition operator, which is applied in Line 17, computes the path position in
both directions. The initialization of the stride-q neighbors in Line 3, sets q(v) to the
[0, 2]-factor neighbors π(v), and fills up the tuple with the vertex ID v, but marked as a
path end. First, q saves the vertices, which are visited in the next scan iteration step but
also contains both path ends after execution, which is assigned to the result in Line 31.
We define the path ID as the minimum ID of the vertices at the path ends, and this defines
also the orientation: the vertex at the path end with the smaller ID is at position 1, its
neighbor at position 2, etc.

Scan algorithms are often parameterized on the operation (e.g., thrust::inclusive scan [62])
so that prefix sums and other properties like minima can be computed by changing the
operator to min. In the same fashion, we use a bidirectional scan for step (1) to determine
the weakest edge within a cycle. The weakest edge is uniquely identified by the weight
and the IDs of the incident vertices. The algorithm for step (1) is constructed analogously
to step (2) but only identifies cycles and their weakest edge.

Theoretically, steps (1) and (2) can be merged by searching for the weakest edge and the
distance to it, but in practice this incurs more data movement and longer running times.

4.4. Implementation

All implementations use CUDA for a parallel execution on NVIDIA GPUs. In the following,
we assumed that the graph is saved as an adjacency matrix A. Thus, each matrix entry aij
corresponds to the weight of the edge between vertex i and vertex j. To avoid additional
branching in the kernels the diagonal of A is deducted and the coefficients are set to
their absolute values with A′ := |A| − diag(|A|) before the [0, n]-factor computation. The
implementation of Algorithm 8 also supports directed input graphs for the calculation of
π, which works well for the test cases presented in this chapter. However, constructing
π from an underlying undirected graph and extracting the coefficients from the original
graph is a better alternative for general graphs.

4.4.1. Parallel [0, n]-factor computation for n ≤ 4

The edge proposition (Alg. 8, Line 14) was implemented by leveraging a generalized sparse
matrix-vector on the GPU, where the multiplication is replaced by a different binary
operation (⊗) and the summation is replaced by a different reduction operation (⊕). For
the first edge proposition (k = 0), a reduction-by-key algorithm is sufficient to find the n
maximum edge weights in each row i of matrix A′, which is shown in Table 13 for vertex
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read written
label length type label length type

for k = 0

CSR values nnz value proposed edges nN index
CSR col indices nnz index proposed edge weights nN value
CSR row ptrs N + 1 index
vertex charges N bool

additional data for k > 0 confirmed edges nN index

Table 12.: Read and written buffers in global GPU memory for the implementation of
the edge proposition, which is expressed as generalized sparse matrix-vector
product.

4, n = 2 and A′ in CSR format. The corresponding accumulator type saves n sorted pairs
of a value and its corresponding column index j. In the beginning of the example the first
value-column pair (0.2, 3) is the initial value of the accumulator, and pairs with larger
coefficients are inserted into the accumulator in subsequent steps to the right. With vertex
charging enabled, the coefficients of the same charge as the current matrix row are ignored,
which results in a proposition of vertex 4 to vertices 9 and 7 because these edges are of
maximum weight and different charge. Without charging, vertex 4 proposes to vertices 6
and 9.

In subsequent edge propositions (k > 0), a vertex is allowed to propose edges to vertices,
which do not have n confirmed edges yet. That indirect lookup is expressed in sparse
matrix-vector products A′x by vector x, which saves the n · N confirmed edges. If a
vertex j has already n confirmed edges, the result of the abstract multiplication operator
(A′)i,j ⊗ xj is equal to zero, and the edge is ignored during edge proposition. When vertex
charging is enabled, another additional indirect lookup in the abstract multiplication
operator ensures that zero is returned if the vertices have the same charge. The charges
are calculated before each edge proposition in Line 10 with a part of the MD5 algorithm,
which was also used by Auer and Bisseling [44]. We summarize the memory requirements
for the edge proposition in Table 12. Note that the edge weights of A′ are also written if
n = 2, such that the minimum edge weight of cycles can be identified in the subsequent
Algorithm 7.

After the edge proposition, the parallel loop in Algorithm 8 Line 26 is executed by
another kernel to remove non-mutually proposed edges.

4.4.2. From a [0, 2]-Factor to a Linear Forest

We implemented a step-efficient bidirectional scan to obtain the path IDs and position
of the vertices with log 2(N) kernel launches and a butterfly access pattern, which is
visualized in Figure 28 for a linear forest. Instead of explicitly checking the condition in
Algorithm 7 Line 5, the kernel is launched log 2(N) times, so even if all vertices reside in
one path we obtain the correct result.

If we reach the path’s end, during the stride-q neighbor computation, we mark this
by setting the stride-q neighbor to the negative 1-based index of the path’s end ID. Let
qmax be the last and largest stride of the algorithm. A positive stride-qmax neighbor after
log 2(N) scan steps indicates that the vertex is part of a cycle because had it reached a
path’s end, it would be negative.

The first bidirectional scan of step (1) in Section 4.3.3 requires read/write buffers for the
stride-q neighbors, the weakest edge weights, and the vertex IDs incident to the weakest
edge. The second bidirectional scan for step (2) in Section 4.3.3 requires only read/write
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((A′)4,j , j) (0.2, 3) (0.3, 5) (0.9, 6) (0.4, 7) (0.5, 9)

accumulator
without charging

(0.2, 3)
(0.0, )

(0.3, 5)
(0.2, 3)

(0.9, 6)
(0.3, 5)

(0.9, 6)
(0.4, 7)

(0.9, 6)
(0.5, 9)

charge + - - + +

accumulator
with charging

(0.2, 3)
(0.0, )

(0.2, 3)
(0.0, )

(0.2, 3)
(0.0, )

(0.4, 7)
(0.2, 3)

(0.5, 9)
(0.4, 7)

Table 13.: Edge proposition for vertex 4 (-) of Figure 27 expressed as reduction along
matrix row (A′)4,j from left to right. The accumulator consists of two (n = 2)
sorted pairs ((A′)i,j , j).

buffers for the stride-q neighbors and the path positions, thus requiring less memory.

Each buffer mentioned above is allocated twice as an input and output buffer and used
in a ping-pong fashion. Otherwise, other threads might read a value of a neighboring
vertex during the scan execution while the updated result for that vertex has already been
written to memory.

The above algorithms could not have been implemented with other scan operators of
GPU libraries like Thrust [62] or CUB [86] as these are restricted to random access iterators.
Even on CPUs, all parallel implementations of reduction or scan always assume random
access iterators, cf. parallel STL in C++17. Our novel parallel scan implementation does
not have this restriction; bidirectional connectivity suffices. This is even weaker than the
concept of a bidirectional iterator, which includes global orientation information of what
is forward and backward. We only have bidirectional connectivity, not knowing which
neighbor is forward and which is backward along the path and still compute the scan in
parallel.

4.4.3. Permute and Extract a Linear Forest

To obtain a permutation Q of A such that the edge weights, which are part of a linear
forest of A are located in the tridiagonal part of QTAQ, the vertex IDs are sorted with
a radix sort from CUB [84] with respect to their key composed of path ID and position.
The coefficients of the tridiagonal system are taken from the original input matrix A by
converting A into a COO format and assigning one GPU thread to one coefficient of A.
With the vector of the confirmed edges, each thread checks if the edge is part of the linear
forest and scatters its value with the permutation into the tridiagonal system, which is
saved in three buffers of length N .

4.5. Results

For the results presented in this chapter, we use a machine with CentOS 7, CUDA Toolkit
11.4.48, CUDA driver 470.74, GCC 10.2.0, a GeForce 2080 Ti and an Intel(R) Xeon(R)
Platinum 8168 CPU @ 2.70GHz. If not mentioned explicitly, the experiments were done in
single precision as the RTX 2080 Ti only has a few double precision units. Additionally to
the test matrices from the Sparse Matrix Collection [27], which are listed in Table 14 we
use three 2D anisotropic problems (aniso1,2,3) from [72], which represent an equidistant
grid with the stencils:
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matrix symmetric N nnz ∆(G)
af shell8 y 504 855 17 588 875 34.84
aniso1 y 6 250 000 56 220 004 9.00
aniso2 y 6 250 000 56 220 004 9.00
aniso3 y 6 250 000 56 220 004 9.00
atmosmodd n 1 270 432 8 814 880 6.94
atmosmodj n 1 270 432 8 814 880 6.94
atmosmodl n 1 489 752 10 319 760 6.93
atmosmodm n 1 489 752 10 319 760 6.93
bump 2911 y 2 911 419 127 729 899 43.87
cube coup dt0 y 2 164 760 127 206 144 58.76
curlcurl 3 y 1 219 574 13 544 618 11.11
curlcurl 4 y 2 380 515 26 515 867 11.14
ecology1 y 1 000 000 4 996 000 5.00
ecology2 y 999 999 4 995 991 5.00
g3 circuit y 1 585 478 7 660 826 4.83
geo 1438 y 1 437 960 63 156 690 43.92
hook 1498 y 1 498 023 60 917 445 40.67
long coup dt0 y 1 470 152 87 088 992 59.24
ml geer n 1 504 002 110 879 972 73.72
stocf-1465 y 1 465 137 21 005 389 14.34
thermal2 y 1 228 045 8 580 313 6.99
transport n 1 602 111 23 500 731 14.67

Table 14.: Pattern symmetric test matrices which are either from the Sparse Matrix
Collection [27] or taken from [72] (aniso{1,2,3}). ∆(G) denotes the mean
degree of the graph G.

aniso1 aniso2−0.2 −0.1 −0.2
−1.0 3.0 −1.0
−0.2 −0.1 −0.2

 ,

−0.1 −0.2 −1.0
−0.2 3.0 −0.2
−1.0 −0.2 −0.1

 ,

and matrix aniso3 is obtained by permuting aniso2, such that the coefficients with value
−1.0 are located on the sub- and superdiagonal of A.

4.5.1. Weight Coverage Results

Table 15 shows the weight coverage results for the parallel [0, 2]-factor computation with
Algorithm 8 in comparison to the greedy sequential Algorithm 6. When A′ is not symmetric,
the [0, n]-factor computations use A′ +A′T , but the weight coverage results are calculated
with respect to the original matrix A. For the parallel [0, 2]-factor computation, we use
three different configurations:

1. m = 1, km = 0: no vertex charging enabled ∀k.

2. m = 5, km = 0: no charging on iterations k = 0, 5, 10, . . . .

3. m = 5, km = 1: no charging on iterations k = 1, 6, 11, . . . .

All configurations use p = 0.5, which is the rounded optimal value for graph matching
determined by Auer and Bisseling [44]. For configuration (1), the weight coverage of
the maximal [0, 2]-factor exceeds the results of the sequential algorithm for matrices
ecology1,2, atmosmodd, and atmosmodj (Table 15). However, the number of iterations
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to reach a maximal [0, 2]-factor is often high and the weight coverage increase per iteration
is very little for the same matrices, which is indicated by low values of the weight coverage
after five iterations cπ(5). Configurations (2) and (3) perform much better on these
matrices. The comparison between them points out the possible limitations of cπ if vertex
charging is applied in the first iteration, e.g., for matrices stocf-1465, g3 circuit,
long coup dt0 and the other matrices with red highlighted results. The same limiting
effect is also observable for n = 1, 3, 4. Therefore, for all following results, we utilize
configuration (2) with M = 5 as the default configuration because it results in the same
weight coverage as the sequential [0, 2]-factor algorithm in most cases.

parallel alg. 8 sequential
no charging ∀k no charging on k = 0, 5, . . . no charging on k = 1, 6, . . . alg. 6

matrix cπ(5) cπ(Mmax) Mmax cπ(5) cπ(Mmax) Mmax cπ(5) cπ(Mmax) Mmax cπ
af shell8 0.20 0.24 195 0.23 0.23 16 0.22 0.22 17 0.23
aniso1 0.67 0.67 1252 0.67 0.67 11 0.54 0.54 17 0.67
aniso2 0.67 0.67 1251 0.67 0.67 11 0.57 0.57 12 0.67
aniso3 0.67 0.67 55 0.67 0.67 11 0.56 0.56 17 0.67
atmosmodd 0.02 0.47 164 0.41 0.42 16 0.42 0.42 17 0.44
atmosmodj 0.02 0.47 164 0.41 0.42 16 0.42 0.42 17 0.44
atmosmodl 0.48 0.49 297 0.49 0.49 16 0.43 0.43 12 0.49
atmosmodm 0.95 0.95 297 0.95 0.95 16 0.74 0.74 12 0.95
bump 2911 0.81 0.82 31 0.81 0.82 26 0.64 0.64 27 0.82
cube coup dt0 0.26 0.26 102 0.26 0.26 21 0.22 0.22 22 0.26
curlcurl 3 0.34 0.34 47 0.34 0.34 16 0.36 0.36 12 0.34
curlcurl 4 0.33 0.34 47 0.33 0.33 16 0.35 0.35 12 0.34
ecology1 0.00 0.50 1037 0.46 0.47 16 0.46 0.47 17 0.47
ecology2 0.00 0.50 1038 0.46 0.47 16 0.46 0.47 17 0.47
g3 circuit 0.56 0.71 159 0.70 0.70 16 0.59 0.59 17 0.70
geo 1438 0.28 0.28 18 0.28 0.28 16 0.25 0.25 17 0.28
hook 1498 0.22 0.22 11 0.22 0.22 16 0.20 0.20 17 0.22
long coup dt0 0.70 0.70 110 0.69 0.69 31 0.55 0.55 27 0.70
ml geer 0.20 0.20 383 0.20 0.20 11 0.17 0.17 17 0.20
stocf-1465 1.00 1.00 11 1.00 1.00 16 0.78 0.78 17 1.00
thermal2 0.47 0.47 7 0.47 0.47 16 0.44 0.44 12 0.47
transport 0.24 0.49 290 0.45 0.45 16 0.44 0.44 17 0.47

Table 15.: [0, 2]-factor computation on the undirected graph of the given matrix and their
relative weight coverage (Eq. 23) after five iterations M = 5, cπ(5), and the
maximal [0, 2]-factor cπ(Mmax), which is reached after Mmax iterations.

In Table 16 the weight coverages for n = 1, 2, 3, 4 are shown with the previously chosen
default parameters in comparison to the sequential results. With the maximum difference
between the parallel and sequential result of 0.04 for n = 1 and matrix atmosmodm, the
parallel algorithm reaches almost the same weight coverage as the sequential algorithm.
Additionally, the table contains the weight coverage of the sub- and superdiagonal cid
given by Equation 24. Comparing cid with cπ(5) for n = 2 allows an estimation of the
weight of an algebraically extracted tridiagonal system with the tridiagonal part of A in
the original vertex order, e.g., the tridiagonal part of atmosmodd already contains strong
coefficients, whereas the algebraically extracted [0, 2]-factor of atmosmodm holds a much
larger weight than just the tridiagonal part of the matrix in the original order.

4.5.2. Performance Results

Edge Proposition of Parallel [0, n]-Factor Computation

We use our generalized sparse matrix-vector implementation for the parallel edge proposi-
tion of Algorithm 8, Line 14 and compare the performance with the normal cuSPARSE
SpMV and our segmented reduction (SRCSR) SpMV implementation, which both calculate
d = Ax+d for a CSR matrix. The implementation of the parallel edge proposition and the
SRCSR SpMV schemes only differ by data types and functors, and use the same generic
sparse matrix-vector API. The time of the SpMV setup kernels for cuSPARSE and our
generalized sparse matrix-vector implementation is not included in the time measurement.
Although the setup of cuSPARSE’s SpMV is not explicitly exposed, a binary search kernel
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cid cπ(5) 2x2 block
n = 1 n = 2 n = 3 n = 4 tridiagonal

matrix par seq par seq par seq par seq m = 1 m = 5
af shell8 0.01 0.14 0.14 0.23 0.23 0.34 0.34 0.40 0.40 0.38 0.43
aniso1 0.68 0.27 0.29 0.67 0.67 0.72 0.73 0.79 0.79 0.68 0.64
aniso2 0.13 0.27 0.29 0.67 0.67 0.72 0.73 0.79 0.79 0.68 0.64
aniso3 0.68 0.27 0.29 0.67 0.67 0.72 0.73 0.79 0.79 0.68 0.64
atmosmodd 0.46 0.19 0.21 0.41 0.44 0.65 0.67 0.93 0.93 0.02 0.50
atmosmodj 0.46 0.19 0.21 0.41 0.44 0.65 0.67 0.93 0.93 0.02 0.50
atmosmodl 0.25 0.21 0.22 0.49 0.49 0.60 0.61 0.73 0.73 0.41 0.45
atmosmodm 0.03 0.38 0.42 0.95 0.95 0.96 0.96 0.97 0.97 0.94 0.86
bump 2911 0.01 0.46 0.49 0.81 0.82 0.84 0.84 0.86 0.86 0.84 0.83
cube coup dt0 0.06 0.11 0.13 0.26 0.26 0.33 0.34 0.38 0.38 0.29 0.29
curlcurl 3 0.15 0.17 0.17 0.34 0.34 0.54 0.55 0.76 0.76 0.44 0.54
curlcurl 4 0.15 0.17 0.17 0.33 0.34 0.53 0.54 0.74 0.74 0.40 0.53
ecology1 0.50 0.21 0.23 0.46 0.47 0.71 0.71 1.00 1.00 0.00 0.55
ecology2 0.50 0.21 0.23 0.46 0.47 0.71 0.71 1.00 1.00 0.00 0.55
g3 circuit 0.29 0.50 0.51 0.70 0.70 0.83 0.84 1.00 1.00 0.61 0.73
geo 1438 0.04 0.13 0.14 0.28 0.28 0.36 0.37 0.44 0.44 0.33 0.33
hook 1498 0.04 0.11 0.11 0.22 0.22 0.28 0.28 0.33 0.33 0.25 0.25
long coup dt0 0.10 0.49 0.50 0.69 0.70 0.79 0.79 0.87 0.87 0.84 0.83
ml geer 0.05 0.09 0.09 0.20 0.20 0.25 0.26 0.32 0.32 0.23 0.26
stocf-1465 0.23 0.92 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
thermal2 0.10 0.23 0.24 0.47 0.47 0.68 0.68 0.84 0.84 0.58 0.58
transport 0.49 0.20 0.22 0.45 0.47 0.68 0.70 0.98 0.98 0.25 0.53

Table 16.: [0, n]-factors of underlying undirected graphs and their relative weight coverages
(Eq. 23) after five iterations M = 5, cπ(5), km = 0, m = 5 of the parallel (par)
Algorithm 8, in comparison to the results of the sequential (seq) Algorithm 6.
The coverage of the sub- and superdiagonal in the original ordering is shown
by cid (Eq. 24). The weight coverage of the algebraically constructed 2x2
block tridiagonal preconditioner is shown in the right part of the table (see
Section 4.6).
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scheme cuSPARSE SpMV SRCSR SpMV proposition−n=1 proposition−n=2 proposition−n=3 proposition−n=4
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Figure 29.: Performance results for one kernel execution of edge proposition according
to Algorithm 8, Lines 14-22 with k > 0, m = 1, km = 0 and different n in
comparison to SpMV algorithms. Except cuSPARSE SpMV, all schemes use
our generalized sparse matrix-vector implementation.

is executed prior to the actual sparse-matrix vector calculating kernel, which is visible
with the profiler.

The average runtimes and throughputs were measured with NVIDIA Nsight Compute
and are shown in Figure 29. Due to significant different matrix sizes, the upper plot shows
the times relative to the longest kernel. For the edge proposition, amount of data which
is read and written increases linearly with n (see Table 12) but the main limiting factor
of the kernel is the reduction along the matrix rows. For a normal sparse matrix-vector
product our general SRCSR code has similar performance to the specialized cuSPARSE
assembly optimized code. Therefore, SRCSR has an efficient implementation, despite its
generality which cuSPARSE does not have. The kernel (Algorithm 8, Line 14) is executed
by SRCSR SpMV (Chapter 3) with appropriate lambda and type parameterization, but
the lambdas contain a lot of complex code (70 lines). So the resulting SRCSR code after
lambda inlining by the compiler

• does more work than a normal SpMV,

• has more instruction flow divergence (if-statements) than a normal SpMV,

• uses more registers than a normal SpMV,

• uses more shared memory than a normal SpMV,

• and uses more input and output vectors (more DRAM traffic) than a normal SpMV
(see Table 12).

Therefore, we cannot expect Algorithm 8 to run at the speed of a normal SpMV. The
performance of the normal SpMV serves as roofline in the comparison because it solves a
simpler problem but on the same matrix structure. Achieving 30-50% of this roofline with

77



preconditioner

jacobi

tridiagonal

algebraic tridiagonal

algebraic 2x2 block tridiagonal m=5

algebraic 2x2 block tridiagonal m=1

af_shell8
aniso1

aniso2
aniso3

atm
osm

odj
atm

osm
odl

atm
osm

odm
therm

al2

0 25 50 75 100

1e−04

1e−03

1e−02

1e−01

1e+00

0.001

0.010

0.100

1.000

0.001

0.010

0.100

1.000

0.001

0.010

0.100

1.000

1e−05

1e−03

1e−01

1e−07

1e−04

1e−01

1e−30

1e−21

1e−12

1e−03

1e−04

1e−03

1e−02

1e−01

1e+00

iterations

re
la

tiv
e 

re
si

du
al

 n
or

m

af
_s

he
ll8

an
is

o1
an

is
o2

an
is

o3
at

m
os

m
od

j
at

m
os

m
od

l
at

m
os

m
od

m
th

er
m

al
2

0 25 50 75 100

0.3

0.5

1.0

0.1

0.3

1.0

0.03

0.10

0.30

1.00

0.03

0.10

0.30

1.00

1e−04

1e−03

1e−02

1e−01

1e+00

1e−06

1e−04

1e−02

1e+00

1e−12

1e−08

1e−04

1e+00

0.3

0.5

1.0

iterations

forw
ard relative error

Figure 30.: Double-precision BiCGStab convergence results with our algebraically con-
structed scalar and 2x2 block tridiagonal preconditioner in comparison to a
Jacobi and tridiagonal preconditioner based on the original vertex ordering.
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Figure 31.: Memory throughput statistics (top) for both bidirectional scan kernels and
total runtimes (bottom) including steps (1), (2), (3) from Section 4.3.3. The
speedup of the parallel version is written above the bars.

a more demanding and irregular algorithm (Algorithm 8), proves high efficiency of the
implementation.

We evaluated alternative implementations for [0, n]-factor computation in which the
SRCSR kernel contains less work and has a similar runtime to normal SpMV. But this
requires more substeps and other additional kernels. Although the additional kernels run
at full bandwidth the approach presented in the paper has the shortest overall runtime.
Other approaches to find the columns of the n maximal values within each matrix row
with CUB’s [84] segmented reduction or segmented sort are approximately one order of
magnitude slower for 2 ≤ n ≤ 4.

Bidirectional Scan to Extract the Linear Forest

The linear forest extraction consists of the identification of the cycles, the path identification,
and the extraction of the coefficients (see Section 4.3.3). The first two steps are implemented
with our bidirectional scan that is executed log 2(N) times for each step. Figure 31 shows
the throughput statistics of the bidirectional scans as a boxplot, which reveals worse
throughput for some kernel executions due to the expected irregular global memory
accesses when visiting the stride-q vertex neighbors. However, in most cases, the median of
the throughputs is close to the performance of a simple copy kernel. The comparison of the
averaged total running times of the sequential CPU version with the parallel GPU version
in the lower part of the plot reports speedups from factor 4x to 24x. Contrary to the
parallel solution, the sequential version performs far less work: it creates the permutation
while the vertices are visited without an explicit sorting.
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Figure 32.: Time breakdown for [0, 2]-factor computation (Algorithm 8 with M = 5,m =
5, km = 0, n = 2), and the extraction of the linear forest (Section 4.3.3) to
algebraically construct a tridiagonal preconditioner. The total absolute running
time in milliseconds is written above the bars.

4.6. Application

As an exemplary application, we show the setup of an algebraic scalar (AlgTriScalPre-
cond) and 2x2 block tridiagonal preconditioner (AlgTriBlockPrecond). The [0, 2]-factor
computation and the extraction of a linear forest are used to setup AlgTriScalPrecond,
which is shown in Figure 32 by the time breakdown of the complete setup. Algorithm 8 for
the [0, 2]-factor computation and the bidirectional scans (including Algorithm 7) consumes
most of the time, whereas the actual coefficient extraction only requires at most 10% of
the setup time.

AlgTriBlockPrecond is constructed by a [0, 1]-factor and a subsequent [0, 2]-factor
computation. With the [0, 1]-factor, the graph is coarsened, such that the matched pairs
represent a single vertex in the coarser graph. On that coarse graph, the [0, 2]-factor is
computed, resulting in a 2x2 block tridiagonal system on the fine graph. For vertices
without a match in the [0, 1]-factor, we add an uncoupled ghost equation by setting the
diagonal and right-hand side value in the corresponding additional row to one. Otherwise
an irregular 2x2/1x1 block tridiagonal system would have to be processed. The weight
coverage of AlgTriBlockPrecond is shown in the right part of Table 16 for m = 1, 5, which is
used for both factor computations. For matrices aniso1,2,3 and atmosmodm, m = 1 (no
vertex charging ∀k) results into a higher weight coverage, whereas for matrices af shell8
and ecology1,2, m = 5 (no vertex charging on k = 0, 5, 10, . . . ) is better. Hence we
conclude that the parameters for a [0, n]-factor computation and for recursive [0, n]-factor
computations on the coarser graphs, must be chosen differently to maximize the weight
coverage but automatic parameter control in nested factor computations is beyond the
scope of this thesis.

To evaluate the convergence of our new preconditioners, we compare it with a Jacobi and
a tridiagonal preconditioner (TriScalPrecond) which are constructed based on the original
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vertex ordering and use a BiCGStab as the outer Krylov solver [104]. The implementation
of the outer solver and the Jacobi preconditioner is taken from the MAGMA [8] library,
and for the solution of the (block) tridiagonal systems, we use the tridiagonal library,
which is presented in this thesis in Chapter 2. The right-hand side is constructed from
a generated solution with xt[i] := sin (16πi/N). With the true solution being known, we
calculate the forward relative error as FRE := |x − xt|2/|xt|2, where x is the computed
solution. The double-precision convergence results with the relative residual norm and
the forward relative error are shown in Figure 30. The improvement of the algebraic
tridiagonal preconditioners for matrix aniso2 is expected, as they include the strong
coefficients from the diagonal of the stencil, which were permuted manually to the sub-
and superdiagonal in aniso3. For matrices atmosmodj, atmosmodl, and atmosmodm,
the [0, 2]-factor contains increasingly more weight relative to the original vertex ordering
cid, which is visible in Table 16. The convergence improvement for matrix atmosmodm is
strongest, as the algebraic preconditioners have a weight coverage of up to 95%, whereas
TriScalPrecond has a weight coverage of only 3%. This example also shows the coupling
between convergence rate and weight coverage of AlgTriBlockPrecond, which has either
a weight coverage of 94% for m = 1 and performs as well as the AlgTriScalPrecond
(cπ(5) = 0.95), or a weight coverage of 86% for m = 5 and performs worse. For matrix
af shell8, the TriScalPrecond with a weight coverage of 1% includes approximately the
same coefficients as the Jacobi preconditioner. The AlgTriScalPrecond with cπ(5) = 0.23
includes not enough off-diagonal coefficients to obtain a stable convergence behaviour,
which is achieved by AlgTriBlockPrecond with a weight coverage of 38% or 43%. In
summary, in most cases, we see significant benefits of algebraically creating the tridiagonal
system (AlgTriScalPrecond) rather than relying on the tridiagonal part of the matrix in
the original ordering. The block version (AlgTriBlockPrecond) performs consistently even
better.

4.7. Conclusion

We have shown how to compute [0,n]-factors efficiently in parallel with our generalized
sparse matrix-vector product and how our new bidirectional scan, which does not require
a random access iterator, identifies cycles, paths and positions in a [0, 2]-factor to create
a linear forest. Benchmarks on large graphs demonstrate our parallel algorithms’ high
weight coverage at high speed. In the application to linear equation systems the high
coverage results in superior convergence of the algebraically constructed scalar and 2x2
block tridiagonal preconditioners.
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5. Operator Split Preconditioners

Reference: Most parts of this chapter were already published in [74]. Figure 33 is new.

Abstract We present an algebraic framework for operator splitting precon-
ditioners for general sparse matrices. The framework leads to four different
approaches: two with alternating splittings and two with a multiplicative
ansatz. The ansatz generalizes ADI and ILU methods to multiple factors and
more general factor form. The factors may be computed directly from the
matrix coefficients or adaptively by incomplete sparse inversions.

The special case of tridiagonal splittings is examined in more detail. We extract
line segments from the adjacency graph of the sparse matrix and split the
matrix according to these segmentations. We obtain specialized variants of
the four general approaches. Parallel implementations for almost all steps are
provided on a GPU. We demonstrate the effectiveness and efficiency of these
preconditioners combined with GMRES on various matrices.

5.1. Operator Splittings

This section examines algebraic splittings of the matrix operator, no further information
is required. However, application specific knowledge about the matrix may be useful in
the choice of the splitting parameters.

5.1.1. Introduction

Given a sparse linear equation system with an N ×N matrix

Ax = b (25)

basic iterative methods are typically derived from an additive matrix splitting A =
M + (A − M) with an invertible M , leading to the iterative defect correction with
x0 := 0, k = 0, . . . , klast − 1

xk+1 := M−1(b− (A−M)xk) = xk +M−1(b−Axk) (26)

= Gxk +M−1b, G := I −M−1A . (27)

The iterations may alternate between different splittings M0, . . . ,Mm−1 resulting in the
repetition (k = 0, . . . , klast − 1) of the alternating corrections

xmk+1 := xmk+0 +M
−1
0 (b−Axmk+0)

... (28)

xmk+m := xmk+m−1 +M
−1
m−1(b−Axmk+m−1)

with alternating splittings M0, . . . ,Mm−1 , (29)
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With the appropriate preconditioner MALT-i the alternating corrections can be expressed
as a single correction

MALT-i := A(I −GALT-i)
−1, GALT-i :=

0∏
l=m−1

(I −M
−1
l A) (30)

xk+1 := xk +M
−1
ALT-i(b−Axk) , (31)

but Eq. 28 is clearly preferable for execution. However, even then the application of
MALT-i has the disadvantage of requiring m− 1 additional multiplications with A and in
practice bounding the spectral radius of GALT-i requires bounding the spectral radii of all

factors (I −M
−1
l A), although this is not a necessary condition. Therefore, in addition to

the alternating splittings M l, we also research multiplicative operator splittings (MOS)
with the ansatz

MMOS := T

0∏
l=m−1

Ml , (32)

with an invertible diagonal matrix T and some invertible matrices Ml. Both M l(A) and
Ml(A) depend on A in their construction, however, the application of each M l(A), l > 0
requires an additional multiplication with A (Eq. 28), whereas the application of all Ml(A)
does not require an additional multiplication with A, leading to faster iterations

xk+1 := xk +M−1
MOS(b−Axk) . (33)

5.1.2. Outer Solver

Instead of the simple iterative defect correction with MALT-i (Eq. 31) or MMOS (Eq. 33)
faster convergence is achieved by using the operator splitting preconditioners inside a more
powerful outer solver. We will employ all preconditioners with GMRES [104]

xk+1 := GMRESstepk(A,M) , (34)

whereby the intermediate x-outputs are optional, because GMRES maintains an inner
state from which it can compute just the last xklast at the very end. We have the same
choice as in Eq. 28, we can repeatedly (k = 0, . . . , klast − 1) apply the different splittings
M l in alternating iterations of FGMRES [104] (the flexible GMRES variant which supports
varying preconditioners)

xkm+1 := FGMRESstepkm+0(A,M0)

... (35)

xkm+m := FGMRESstepkm+m−1(A,Mm−1) .

The intermediate x-outputs are only shown for analogy with Eq. 28. Combining the
different GMRES iterations (Eqs. 34 and 35) with the alternating and multiplicative
preconditioners results in four different approaches. Section 5.3.1 shows them in an
overview together with other schemes which we evaluate in the results section.
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5.1.3. Outline and Contributions

We have already seen our algebraic approach to operator splittings in Sections 5.1.1
and 5.1.2. Discussing related work we explain how our MOS ansatz generalizes ADI and
ILU methods to multiple factors and more general factor form (Sections 5.1.4 and 5.1.5).
The following subsections examine choices for diagonal preconditioners (Section 5.1.6),
discuss invariance under diagonal scaling (Section 5.1.7) and define tools for sparsity
patterns (Section 5.1.8). Based on this preparatory work we present the direct and
adaptive construction of multiplicative operator splittings (MOS) for general sparse matrices
(Sections 5.1.9 and 5.1.10). The main contribution of Section 5.1 is the formal unification
and generalization of ADI and ILU methods. In contrast to ILU, the matrix factors in our
MOS preconditioners are not restricted to triangular form and we may have more than
two factors. In contrast to ADI, the matrix factors in our MOS preconditioners are not
restricted to tridiagonal form and they do not require an underlying tensor product grid.
We have a clear superset of preconditioners with many new possibilities.

Section 5.2 examines the special case of tridiagonal splittings and discusses the parallel
GPU algorithms that implement the functionality. For a general graph, the parallel
construction of a linear forest and of the corresponding permutation is shown in Chapter 4.
Repeating this construction on a modified auxiliary graph we obtain a decomposition
of the original graph (matrix) into multiple linear forests (Section 5.2.1). From this
decomposition we create the direct and adaptive tridiagonal multiplicative preconditioners
(Sections 5.2.2 and 5.2.3), and describe the efficient transitions between permutations
(Section 5.2.4) associated with different linear forests. The contribution in Section 5.2 is the
demonstration of one practical realization of the new possibilities opened up by Section 5.1,
namely construction of tridiagonal operator splitting preconditioners for general sparse
matrices. This is probably the simplest non-trivial possibility that goes beyond ILU and
ADI. The main challenge here is the algebraic decomposition of a general graph into
multiple (almost) disjoint linear forests by an efficient iterative process.

Section 5.3 compares convergence and performance results of the four approaches with
tridiagonal operator splitting preconditioners, different diagonal and other preconditioners.
When using our new preconditioners we already see clear benefits, in particular for the
more difficult problems, even though we evaluate the simplest of the new possibilities
opened up by Section 5.1.

5.1.4. Related Work

The Alternating Direction Implicit (ADI) method by Peaceman and Rachford [91] considers
elliptic and parabolic PDEs on a 2D tensor product grid, where the elliptic operator splits
into two directions, e.g. continuous Laplace ∆ = ∂2/∂y2 + ∂2/∂x2 and discrete Laplace
A = L1 +L0 with tridiagonal L1, L0, which allow fast inversion. Then Ax = b is solved by
iterating x0 := 0, k = 0, . . . , klast − 1

(L1 + ρkI)x
k+ 1

2 := −(L0 − ρkI)x
k + b

(L0 + ρkI)x
k+1 := −(L1 − ρkI)x

k+ 1
2 + b ,
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with alternating acceleration factors ρk > 0. This is the same as Eqs. 26 and 27 with

G := (L0 + ρkI)
−1(L1 − ρkI)(L1 + ρkI)

−1(L0 − ρkI)

= (L0 + ρkI)
−1(L1 + ρkI)

−1(L1 − ρkI)(L0 − ρkI)

M := A(I −G)−1 =
1

2ρk
(L1 + ρkI)(L0 + ρkI)

= (T + (L1 − T/m))T−1 (T + (L0 − T/m))

which is a special case (m = 2, T = 2ρkI) of our MOS ansatz in Eq. 37. For two factors
(m = 2) Douglas and Pearcy [92, 93] give convergence results including the more general
case where ρkI is replaced by a diagonal matrix ρkF . However, with a general F we do
not obtain this simple M anymore, because F and L1 do not commute. Although the
improvements from ρkF have been known for a long time [34], this is seldom used in ADI
practice.

ADI methods are primarily used on 2D and 3D tensor product grids, so there is little
consideration of higher order splittings. The Gauss-Seidel generalization to multiple spatial
variables [33] is a special case of Eq. 28. For two factors (m = 2), performance aspects
with respect to memory and operations are treated in detail for ADI and related methods
(LOD1/2, SS1/2) [108] as are combinations of ADI with multigrid [76]. Douglas and
Dupont [35] and Wachspress [114] give a more thorough treatise of ADI methods.

While ADI methods typically refer to splittings along spatial dimensions, approximate
matrix factorization (AMF) [111, 121, 55] and operator splitting [65, 52] refer to general
splitting schemes to split dimensions, linear from non-linear, fast from slow, different
physics, different objective functions, etc. AMF and operator splitting methods focus
on time-dependent PDEs or ODEs (e.g. resulting from spatial semi-discretization of a
time-dependent PDE) when matrix A has the form A = I + τL = I + τ(L0 + ...+ Lm−1),
with τ being a controllable time-step or integration parameter, which greatly facilitates the
splitting. In our setting we do not have this freedom. Moreover, almost all work considers
only m ≤ 3.

The main motivation behind splitting methods is the simpler and faster implicit
treatment of the individual components, the typical example being tridiagonal solves on a
tensor product grid. However, operator splitting methods do not require tensor product
grids and other spatial discretizations may be used, what simpler means is then application
specific, e.g. less fill-in in direct sparse solvers [123].

Section 5.1 discusses operator splittings with general alternating splittingsM l and general
matrix factors Ml. In Section 5.2 we examine the special case of tridiagonal splittings and
take advantage of fast tridiagonal solvers on the GPU [67, 90, 26, 69, 53, 2, 19, 18, 72].
For this purpose we partition the adjacency graph of the sparse matrix into disjoint paths
(i.e. a linear forest). This problem has been previously addressed by Mavriplis [83] and by
Philip and Chartier [97], but not with a fast parallel construction in mind. We use our
own parallel GPU implementation for this purpose [73]. However, we need more than one
linear forest. We want to decompose the entire graph (at least all of its strong edges) into
multiple (almost) disjoint linear forests. Finding out how many linear forests are needed to
cover a graph is known as the linear arboricity problem in graph theory [3, 61]. However,
these works are theoretical and do not consider the problem in the approximative sense
stated above. So we do not know of prior work computing the decompositions examined
in this thesis.
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5.1.5. Generalization of ILU Factorizations

The invertible diagonal matrix T appears only on the left in our MOS ansatz (Eq. 32), but
without loss of generality we can express the matrix factors Ml in a form which highlights
the symmetry of the ansatz with respect to T

Ml := (I + T−1M ′
l ) = T−1(T +M ′

l ) (36)

MMOS := T

0∏
l=m−1

Ml = (T +M ′
m−1)T

−1(T +M ′
m−2)T

−1 · · ·T−1(T +M ′
0) , (37)

where the only restriction on the matrices M ′
l is that the resulting Ml are invertible. Now

setting m = 2, M ′
1 strictly lower triangular and M ′

0 strictly upper triangular recovers the
general ILU ansatz as a special case of Eq. 37

MMOS = (T +M ′
1)T

−1(T +M ′
0) = (I +M ′

1T
−1)(T +M ′

0) . (38)

Therefore, the MOS preconditioners discussed further in Section 5.1 generalize ILU
preconditioners to multiple factors (m > 2) and more general form of factors (Eq. 36).
The classical ILU construction which computes the coefficients of T,M ′

l iteratively in
dependence on the previously computed coefficients does not easily generalize to m > 2
with arbitrary M ′

l . However, we can generalize the fixed-point ILU construction [23] to
m > 2 to compute the coefficients of T,M ′

l in our MOS ansatz (Eq. 37). So far, we did
not see much improvement over the analytic choices from Section 5.1.9 despite the much
longer construction, but this might be worth exploring further in the future.

5.1.6. Diagonal Preconditioners

We compare standard and new diagonal preconditioners

(diagp0(A))i,i := (diag(A))i,i = Ai,i (39)

(diagp1(A))i,i := unit(Ai,i) max

|Ai,i|,
∑
j:j ̸=i

|Ai,j |

 (40)

(diagp2(A))i,i := unit(Ai,i)
∑
j

|Ai,j | (41)

(diagl1(A))i,i := Ai,i +
∑
j:j ̸=i

|Ai,j | (42)

unit(x) :=

{
1 if x = 0

x/|x| else
. (43)

The definitions allow for complex coefficients. The known Jacobi diag(A) and l1-
Jacobi diagl1(A) [10] may run into the problem of being singular even though A is
not, whereas the new diagp1(A) and diagp2(A) never have this problem. Moreover, even
if diag(A), diagl1(A) are invertible, the absolute value of one entry could be very small in
comparison to the other, so their maximum per row is a much more stable choice in case
of general sparse matrices.
The original definition of diagl1(A) [10] has also the problem that diagl1(+A) and

diagl1(−A) are completely different, so that sign changes can have dramatic effects.
Therefore, we show the homogeneous diagp2(A) instead of diagl1(A) in the results section.
In comparison, diagp2(A) is a slightly scaled version of diagp1(A):

I ≤ diagp2(A)
(
diagp1(A)

)−1 ≤ 2I . (44)
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5.1.7. Invariance under Diagonal Scaling

A desirable property of a preconditioner M(A) as a function of A is to be homogeneous
under diagonal scaling with any invertible diagonal matrix F from left, because then the
preconditioned linear equation system is invariant under diagonal scaling(

FAx
)
=
(
Fb
)
, M(FA) = F M(A) (45)

M(FA)−1
(
FAx

)
= M(A)−1Ax = M(A)−1b = M(FA)−1

(
Fb
)
. (46)

For such a preconditioner M(A) we may chose some invertible diagonal F and construct
M(FA) without loss of generality.

We assume that the alternating splittings M l(A) from Eq. 29 are chosen such that they
are homogeneous under diagonal scaling, then the same follows for MALT-i(A) (Eq. 30).
The other preconditioners diagp1(A),MMOS-d(A),MMOS-a(A) are homogeneous under
diagonal scaling by construction. In more detail, in the general ansatz (Eq. 37) the Ml(A)
are invariant (Eqs. 60 and 69) and T (A) is homogeneous (Eqs. 67 and 69) under diagonal
scaling.

5.1.8. Sparsity Patterns

In the construction of preconditioners for sparse matrices the sparsity pattern, i.e. the
index set of the non-zero coefficients in the matrix, plays an important role. In this
subsection we define some tools to select sparsity patterns and measure which coefficients
they contain. First let us define some general sparsity patterns

Sdiag := {(i, j) | i = j} , Stri := {(i, j) | |i− j| ≤ 1} (47)

Slow := {(i, j) | i ≥ j} , Slow-s := {(i, j) | i > j} (48)

and follow up with some exemplary patterns based on the identification of largest coefficients
in rows. Let S̄max-n

i (A, qi) be the index set {j1, . . . , jqi} of column indices in row i of matrix
A, such that the |Ai,jk | are the qi largest off-diagonal absolute values in this row. Then

Smax-n(A, q) := {(i, j) | j ∈ S̄max-n
i (A, qi)} (49)

Smax-t(A, τ) := {(i, j) | |Ai,j | ≥ τi maxk|Ai,k|} , (50)

parameterized by vectors q and τ give us different options for the row-specific selection of
largest coefficients: q largest (Smax-n(A, q)), above threshold (Smax-t(A, τ)). The diagonal
is often included even if it has smaller coefficients, e.g. S := Sdiag ∪ Smax-n(A, q).

Given a matrix A and a sparsity pattern S we want to be able to select and scale
coefficients in A based on the sparsity pattern

(prune(A,S))i,j :=

{
Ai,j if (i, j) ∈ S

0 else
(51)

(scale(A,S, ω))i,j :=

{
ωAi,j if (i, j) ∈ S

Ai,j else
. (52)

After pruning we want to quantitatively measure the coefficient weights within the
sparsity pattern in relation to the matrix weight of all coefficient ∥A∥1,1 :=

∑
i,j |Ai,j |. For
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this purpose we define the S-coverage coverage(A,S) with respect to a sparsity pattern
S and the diagonal coverage cdiag(A) as a special case

coverage(A,S) := ∥prune(A,S)∥1,1/∥A∥1,1 ∈ [0, 1] (53)

cdiag(A) := coverage(A,Sdiag) = ∥diag(A)∥1,1/∥A∥1,1 . (54)

In the original ordering of indices the sparsity pattern S of a matrix B := prune(A,S)
might appear irregular, but in a new ordering P (P is an index permutation) B̂ := PBP T

could reveal a particular pattern Ŝ, e.g. Ŝ ⊆ Stri thus B̂ being tridiagonal. We use the
same notation for permutations acting on matrices and on sparsity patterns, i.e. if B has
sparsity pattern S then B̂ has sparsity pattern Ŝ

B̂ := PBP T , Ŝ := PSP T ; B = P T B̂P , S = P T ŜP (55)

B = prune(A,S) = P T prune(PAP T , PSP T )P . (56)

The construction of S aims at a particular sparsity pattern Ŝ = PSP T in the new ordering
P , e.g. Ŝ ⊆ Stri so that B̂ is tridiagonal, but in general we cannot assume equality
Ŝ ̸= Stri, because the construction of S might have excluded certain coefficients of A.

5.1.9. Direct Construction

Starting with the MOS ansatz in Eq. 37 we define the factors Ml in dependence on some
off-diagonal matrices A′′

0, . . . , A
′′
m−1 and an invertible diagonal matrix T with unit(T ) =

unit(diag(A)) and |T | ≥ |diag(A)|

E :=
1

m
T−1(diag(A)− T ) ≤ 0, T (I +mE) = diag(A) (57)

J := I + E,
m− 1

m
I ≤ J ≤ I (58)

M ′
l := (TE +A′

l) , A′
l := J−(m−1−l)A′′

l J
−l (59)

Ml := (I + T−1M ′
l ) = (J + T−1A′

l) , (60)

where the comparison, absolute value and unit() (Eq. 43) operators act on the coefficients
of the matrices. Eq. 58 and Bernoulli’s inequality [79] bound the powers of J for all m ≥ 2

I ≤ J−m ≤ 4I, 0 ≤ Jm − (I +mE) ≤
(
m

2

)
E2 ≤ 1

2
(mE)2 . (61)

We obtain the MOS-d preconditioner as a perturbation of A

MMOS-d := T
0∏

l=m−1

(I + T−1M ′
l ) = T

0∏
l=m−1

(J + T−1A′
l) (62)

= TJm +
m−1∑
l=0

Jm−1−lA′
lJ

l +R2

= A+R, R := R0 +R1 +R2 (63)

R2 :=

m−1∑
l1,l2=0; l1>l2

A′′
l1J

−mT−1A′′
l2 +Rtail(∥T−1∥2)

R1 :=

(
diag(A) +

m−1∑
l=0

A′′
l

)
−A

R0 := T (Jm − (I +mE)) , ∥R0∥ ≤
1

2
∥T∥∥mE∥2 .
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From matrix perturbation theory [119] we know a sufficient condition for invertibility

∥A−1∥∥R∥ < 1 ⇐⇒ ∥R∥
∥A∥

<
1

κ(A)
(64)

and quantitative bounds in an induced matrix norm ∥.∥

∥A−1 −M−1
MOS-d∥

∥A−1∥
≤ ∥I −M−1

MOS-dA∥ ≤
∥A−1∥∥R∥

1− ∥A−1∥∥R∥
. (65)

For a given A we can check if ∥R∥/∥A∥ is sufficiently small, but estimating κ(A) and
computing R = MMOS-d−A is expensive as it involves m−1 sparse matrix-matrix products.
It will require further investigation to determine more economic criteria.

We can force R1 = 0 by distributing all off-diagonal coefficients of A onto the A′′
l in

any way we like. However, if A has many off-diagonal coefficients this would require
either many A′′

l with few coefficients (many simple Ml inversions) or few A′′
l with many

coefficients (few difficult Ml inversions), so for matrices with many off-diagonal elements
forcing R1 = 0 requires too much effort. Instead, we distribute only selected off-diagonal
coefficients of A onto the A′′

l , i.e. we enforce

prune(A,S0) =

(
diag(A) +

m−1∑
l=0

A′′
l

)
, ∥R1∥ = ∥prune(A,S0)−A∥ (66)

for some application specific sparsity pattern S0, e.g. S0 := Sdiag ∪ Smax-t(A, τ) (Eq. 50).
In this general setting of Section 5.1 this intentionally leaves many options for choosing m
and A′′

l , and thus for adapting to the properties of A.

∥R0∥ is bounded by 1
2∥T∥∥T

−1(diag(A)− T )∥2 so by choosing T sufficiently close to
diag(A) we can make the error arbitrary small. ∥R2∥ is bounded by c(A)∥T−1∥ so by
choosing |T | sufficiently large we can make the error arbitrary small. Hence, the separate
consideration of ∥R0∥ and ∥R2∥ leads to contradicting requirements on T . In fact, we
should simultaneously minimize ∥R0 +R2∥ for better error control, but this is not so easy.
The first order term in R2 does not contribute to the diagonal if the symmetrized sparsity
patterns of all A′′

l are disjoint. So in these cases only the higher order terms in R2 interact
with the diagonal R0.

There are more refined choices for T , but in favor of a faster construction of MMOS-d,
here we choose a simple compromise between the contradicting requirements

T := diagp1(A) . (67)

If the resulting R = MMOS-d − A (Eq. 63) satisfies the sufficient condition ∥R∥/∥A∥ <
1/κ(A) then Eq. 65 holds, else properties of MMOS-d must be checked explicitly.

5.1.10. Adaptive Construction

We begin with the MOS ansatz (Eq. 37)

MMOS-a := T
0∏

l=m−1

Ml , (68)
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but now the Ml are constructed recursively with intermediate pruning (Eq. 51)

B0 := prune(A,SB
0 ) M0 := prune(B0, S

M
0 )

B1 := prune(B0M
−1
0 , SB

1 ) M1 := prune(B1, S
M
1 )

... (69)

Bm−1 := prune(Bm−2M
−1
m−2, S

B
m−1) Mm−1 := prune(Bm−1, S

M
m−1)

Bm := prune(Bm−1M
−1
m−1, S

B
m) T := diagp1(Bm)

SB
l ⊇ SM

l .

If Bl or Ml become singular, they can always be fixed a-posteriori by changing SB
l and

SM
l , but repeatedly checking for invertibility is expensive. So far we do not have any SB

l

and SM
l with a-priori guarantees of invertibility in case of a general A.

If we did not prune any Bl then we would have Bl = Bl−1M
−1
l−1 = AM−1

0 . . .M−1
l−1,

i.e. the so far constructed preconditioner applied to A and thus a very good measure
of where the preconditioner is still lacking. However, the resulting Bl would be dense
and too big to store, so they are pruned with SB

l already during the computation, i.e.
Bl = prune(Bl−1M

−1
l−1, S

B
l ) is an incomplete sparse inversion of Ml−1 applied to Bl−1.

Consequently, the Bl are only approximations of the so far constructed preconditioner
applied to A. The accuracy of the Bl can be observed by computing ∥A−Bl

∏0
k=l−1Mk∥

but this involves sparse matrix-matrix products.

In choosing SB
l the user enters a tradeoff between the accuracy of the Bl and their

construction time, e.g. if SB
l := Sdiag ∪ Smax-n(Bl−1M

−1
l−1, q) (Eq. 49) then q controls the

number of output non-zeros per row in each Bl and thus also the number of input non-zeros
for l + 1; with a known input and output size the execution time can be estimated.

In choosing SM
l the user enters a tradeoff between many Ml with few coefficients (many

simple Ml inversions) or few Ml with many coefficients (few difficult Ml inversions) during
the preconditioning with MMOS-a (Eq. 68). Which one is faster depends on properties
of A, of the parallel algorithms and of the available hardware. In this general setting of
Section 5.1 the above construction (Eq. 69) intentionally leaves many options for choosing
m, SB

l and SM
l and thus for adapting to the properties of the matrix A.

5.2. Tridiagonal Splittings

This section examines the special case of tridiagonal splittings. As we operate in a purely
algebraic setting with only the matrix A, this is much more involved than ADI methods
on a structured grid. The alternating splittings M l used by the MALT-o and MALT-i

preconditioners and the matrix factors Ml of the MOS ansatz in Eq. 32 used by the
MMOS-d and MMOS-a preconditioners will now be tridiagonal in some associated ordering
Pl (cf. Section 5.1.8).

In Chapter 4 we presented the extraction of a maximum linear forest from a weighted
graph and the computation of the corresponding permutation. Then the first challenge
is to decompose the adjacency graph of A into multiple (almost) disjoint linear forests
by an efficient iterative process and thus obtain all the Pl (Section 5.2.1). The second
challenge is to compute the values in the Ml (Sections 5.2.2 and 5.2.3), setting the M l

values is easy (Section 5.2.1). The third challenge is to handle the permutations during
execution (Section 5.2.4).
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ID no reoccurring edges, ω = 0 reoccurring edges, 0 < ω < 1

0

1

2

3

Figure 33.: Subsequent segmentations (top to bottom) of a 2D isotropic grid (5pt stencil)
without reoccuring edges (ω = 0) in the left and reoccuring edges (0 < ω < 1)
in the right column.
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5.2.1. Iterative Decomposition into Linear Forests

The segmentation does not use the original matrix A but rather a normalized and sym-
metrized version of it

C0 := |diagp1(A)−1A|+ |diagp1(A)−1A|T . (70)

Firstly, this ensures invariance under diagonal scaling (Section 5.1.7). Secondly, this helps
our symmetric second phase with the edge confirmation: if an edge has a large weight
in one direction and thus should be included in the segmentation, the edge in the other
direction will be likely proposed too.

Executing the segmentation and permutation (Chapter 4) on C0 delivers the first sparsity
pattern S0 and the first permutation P0. For the following Sl, Pl the same procedure is
repeated but in every iteration l we use a different auxiliary graph Cl, because we want
to extract a different linear forest. Therefore, before each new iteration l we perform a
weight adjustment

Cl := scale(Cl−1, Sl−1 \ Sdiag, ω) (71)

with the scaling function from Eq. 52. This has the effect, that previously selected edges are
either not chosen again (ω = 0, default for MMOS-d) or chosen less likely (0 < ω < 1, default
for MALT-o and MALT-i). The effect of ω is shown in Figure 33 for a small exemplaric
graph of a 5pt stencil. For MMOS-a the Cl have a different adaptive construction (Eq. 75)
and we refer to Section 5.2.3.
From Sl, Pl we can immediately compute the tridiagonal alternating splittings (cf. the

example Eq. 56)

M l := prune(A,Sl) = P T
l prune(PlAP

T
l , PlSlP

T
l )Pl (72)

where PlSlP
T
l ⊆ Stri. In other words, the tridiagonal alternating splittings M l simply

extract coefficients from A. In contrast, the coefficients of the matrix factors Ml in Eq. 32
contain different coefficients as explained in the following subsections.

5.2.2. Direct Tridiagonal Construction

We follow the general construction in Section 5.1.9 to obtain the preconditioner MMOS-d

(Eq. 62) with matrix factors Ml (Eq. 60), which are tridiagonal in the ordering of Pl.
All segmentations Sl and permutations Pl are computed from the helper matrices Cl

(Eqs. 70 and 71) according to the algorithms in Chapter 4. We set T := diagp1(A)
(Eq. 67) and

A′′
l := prune(A,Sl) = P T

l prune(PlAP
T
l , PlSlP

T
l )Pl (73)

where PlSlP
T
l ⊆ Stri. The A′′

l have symmetric sparsity patterns which are disjoint,
because Sl is symmetric and by default a zero weight adjustment factor is used (Eq. 71).
We have observed that MMOS-d performs better with this setting.

The Ml are calculated in multiple steps (Eqs. 57-60) from T and A′′
l , they are tridiagonal

in the ordering of Pl. Therefore, the inversion of MMOS-d (Eq. 62) is a series of successive
permutations and tridiagonal solves, see Section 5.2.4 for more details.
A heuristic for m is to stop growing l at coverage(A,∪lk=0Sk) ≥ µ or at onset of

stagnation in the increase, i.e. when the A′′
l cover a certain fraction of the matrix weight

∥A∥1,1 or the coverage stagnates.
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5.2.3. Adaptive Tridiagonal Construction

We follow the general construction in Section 5.1.10 to obtain the preconditioner MMOS-a

(Eq. 68) with matrix factors Ml (Eq. 69), which are tridiagonal in the ordering of Pl.
We list the dependencies and the order of computation for the entities from Eq. 69 and

the helper matrices Cl used for the segmentations SM
l and the permutations Pl, starting

with l = 0, B−1 := A, M−1 := I

SB
l (Bl−1,Ml−1) , Bl(Bl−1,Ml−1, S

B
l ) , (74)

Cl(Bl) , SM
l (Cl) , Pl(S

M
l ) , Ml(Bl, S

M
l , Pl) .

In particular, in contrast to Section 5.2.2, where all Cl depend only on A (Eq. 71) and
can all be computed before the Ml computations, here the Cl implicitly depend on
previous Ml and therefore the Ml computations are intermingled with the segmentation
and permutation.

For a specific l, we now specify the construction of those entities in the above dependency
order. Let qi be the number of off-diagonal non-zeros in row i of A, then staring with
SB
0 := A

SB
l := Sdiag ∪ Smax-n(Bl−1M

−1
l−1, q) , Bl := prune(Bl−1M

−1
l−1, S

B
l ) ,

with Smax-n from Eq. 49. In other words, in the first step we do not prune at all B0 = A
and in the following steps we keep the largest non-zeros in each row, such that Bl and A
have the same number of non-zeros in each row, but in varying column positions depending
on where the largest coefficients in Bl−1M

−1
l−1 lie.

The SM
l and Pl are computed from the helper matrix

Cl := |diagp1(Bl)
−1Bl|+ |diagp1(Bl)

−1Bl|T (75)

according to the algorithms in Chapter 4. Finally, we obtain the adaptive matrix factors
Ml which are tridiagonal in the ordering of Pl because PlS

M
l P T

l ⊆ Stri

Ml := prune(Bl, S
M
l ) = P T

l prune(PlBlP
T
l , PlS

M
l P T

l )Pl . (76)

The adaptive construction works well, if the Bl are good approximations of the so far
constructed preconditioner applied to A, and become increasingly diagonally dominant
with growing l, which shows in the increase of the diagonal coverage cdiag(Bl) (Eq. 54).
We have observed this favorable behavior for many matrices, however, for some isotropic
matrices with a high mean degree cdiag(Bl) does not increase. A heuristic for m is then to
stop growing l at cdiag(Bl) ≥ µ or at onset of stagnation in the increase.

5.2.4. Preconditioning with Fused Permutations

While many permutations Pl appear in previous formulas, they do not imply data movement.
This subsection describes the few places where data is actually permuted in memory. The
employed tridiagonal solver works with a banded matrix format, so each matrix factor Ml

is stored as a tridiagonal system Al in three bands together with a permutation Pl

Al := PlMlP
T
l , Ml = P T

l AlPl . (77)

The iterations themselves (Eqs. 34 and 35) operate on the original ordering, therefore, the
application of M−1

l to a vector r requires a permutation before and after

M−1
l r = P T

l A−1
l (Plr) . (78)
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As the multiplicative ansatz for MMOS (Eq. 32) employs the inversions M−1
l successively

we have

M−1
MOSr = P T

0 A−1
0 P0 P

T
1 · · ·Pm−2 P

T
m−1A

−1
m−1Pm−1T

−1 r . (79)

Each permutation pair PlP
T
l+1 is fused and implemented as a single permutation. Thus for

m tridiagonal systems, only m+ 1 vector permutations are executed.
The handling of the banded storage format (Eq. 77) and an individual inversion (Eq. 78)

applies equally to the alternating splittings M l as to the matrix factors Ml. But the
product inversion (Eq. 79) does not apply to M l, because they are always used individually
on vectors (Eqs. 28 and 35).

5.3. Results

All measurements presented in this thesis were done on a machine with CentOS 7, CUDA
Toolkit 11.2.142, CUDA driver 450.57, host compiler GCC 10.2.0, and a GeForce RTX
2080 Ti.

5.3.1. Overview of Solvers

Overall, we evaluate our four approaches with alternating and multiplicative tridiagonal op-
erator splittings and the diagonal preconditioners for general sparse matrices. Enumerated
in the order of decreasing execution complexity for one k-iteration these are:

1. FGMRES(MALT-o): Eq. 35 with outer alternation of alternating splittings M l from
Eq. 29,

2. GMRES(MALT-i): Eq. 34 with inner alternation (applying MALT-i from Eq. 30 recur-
sively with Eq. 28) of alternating splittings M l from Eq. 29,

3. GMRES(MMOS-d): Eq. 34 with direct MOS (Eq. 62) comprised of matrix factors Ml

from Eq. 60 and T from Eq. 67,

4. GMRES(MMOS-a): Eq. 34 with adaptive MOS (Eq. 68) comprised of matrix factors
Ml and T from Eq. 69,

5. GMRES(diagpm(A)): Eq. 34 with diagonal preconditioners from Eq. 39, 40 and 41.

All solvers run in parallel on the GPU and are evaluated on numerous challenging problems
listed in Table 17.

5.3.2. General Settings

The self-generated matrices aniso1 and aniso2 are based on anisotropic 9pt stencils in
2D:

aniso1 =

−0.2 −0.1 −0.2
−1.0 3.0 −1.0
−0.2 −0.1 −0.2

 , aniso2 =

−0.1 −0.2 −1.0
−0.2 3.0 −0.2
−1.0 −0.2 −0.1

 .

The solution of the equation system is always initialized with x̂i := sin (2πfi/N), where
N denotes the degrees of freedom (DOFs) of the corresponding problem and f := 8.
Subsequently, the right-hand side is calculated from this solution vector. Therefore, we
are able to compute the forward relative error of the solver

FRE := ∥xklast − x̂∥2/∥x̂∥2, (80)
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Name Problem Origin DOFs nnz n̄r cdiag n̂r

model2 27pt isotropic Laplacian hypre 1 000 000 26 463 592 26.46 0.51 27
atmosmodl fluid dynamics SMC 1 489 752 10 319 760 6.93 0.50 7
model8 5pt isotropic hypre 1 000 000 4 996 000 5.00 0.50 5
aniso1 9pt 2D stencil A 1 440 000 12 945 604 8.99 0.50 9
aniso2 9pt 2D stencil A 1 440 000 12 945 604 8.99 0.50 9
g3 circuit circuit simulation SMC 1 585 478 7 660 826 4.83 0.76 6
geo 1438 structural SMC 1 437 960 63 156 690 43.92 0.33 57
model4 rotated 2D anisotropic hypre 1 000 000 6 992 002 6.99 0.39 7
model3 rotated 2D anisotropic MFEM 1 002 001 9 006 001 8.99 0.44 9
model5 regions with anisotropies MFEM 1 002 001 9 006 001 8.99 0.45 9
model7 grid aligned anisotropic MFEM 1 002 001 9 006 001 8.99 0.33 9
ecology2 2D/3D SMC 999 999 4 995 991 5.00 0.50 5
ml geer structural SMC 1 504 002 110 879 972 73.72 0.22 74
transport structural SMC 1 602 111 23 500 731 14.67 0.50 15
thermal2 thermal SMC 1 228 045 8 580 313 6.99 0.50 11
hook 1498 structural SMC 1 498 023 60 917 445 40.67 0.31 93
af shell10 structural SMC 1 508 065 52 672 325 34.93 0.39 35

Table 17.: Matrices from the Sparse Matrix Collection [27] (SMC), generated with MFEM
[6], hypre [45], and self-created (A); horizontal grouping corresponds to Fig-
ures 36, 37, 38; cdiag is the diagonal weight coverage of the matrix (Eq. 54), n̄r

the mean and n̂r the maximum number of non-zeros per row.

from the solution x̂ and last iterate xklast . Please note that, contrary to the residual
norm, the FRE does not neccessarily decrease monotonically for GMRES. Moreover,
for problems with a high condition number, FRE can be large even when the solver has
successfully converged to a small relative residual norm.

For the benchmarks, our preconditioners run in combination with the MAGMA library [8],
which also provides the implementations for GMRES, ILU(0) and ILU(0)-ISAI(m) precon-
ditioner by Anzt et al. [7]. The ILU(0)-ISAI(m) solves the triangular factors in ILU(0) with
a stationary iteration in m relaxation steps, e.g., instead of the exact inversion y = L−1z
with the lower triangular factor L we compute for s = 0, . . . ,m− 1, ML ≈ L−1

y0 := z, ys+1 := ML(z − Lys),

such that ym ≈ y = L−1z. For some matrices we do not have ILU-ISAI results because
the ILU-ISAI implementation in MAGMA is restricted by the amount of non-zero elements
per row of the sparse matrix. The restart parameter of the GMRES is set to 20. The
twenty GMRES steps with preconditioning execute in single precision on the GPU, an
outer mixed precision iterative refinement [54] ensures more precise computation of the
residual in double precision.
The preconditioners MALT-o and MALT-i use a weight adjusting factor of ω = 0.01

(Eq. 71) in segmentations, the preconditioner MMOS-d uses ω = 0 by default, the other
preconditioners do not use this parameter.

Our preconditioners solve the tridiagonal systems with our tridiagonal solver [72] which
fully utilizes the GPU memory bandwidth for large systems. Therefore, exposing more
parallelism in the preconditioner application, for example using additive operator splitting
schemes, would only achieve a higher level of hardware utilization for small problem sizes.

5.3.3. Discussion

The convergence results are presented in three groups based on the number of iterations
required to decrease the relative residual norm below 10−6. For each group we show the
numerical convergence and the execution time without setup.
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ml geer, the GPU memory was oversubscribed during the setup of MOS-d,
which resulted in page evictions and migrations of CUDA managed memory,
and thus significant higher setup times than for the other matrices.
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Figure 35.: Relative time of the preconditioner for one GMRES iteration (single precision).

The top halfs of Figures 36, 37, 38 present the numerical convergence results for xk

with respect to k, the number of GMRES iterations in Eq. 34, except for scheme MALT-o

(Eq. 35) which performs m iterations for each k. The bottom halfs of the figures show
numerical convergence with respect to time per non-zero. We divide the time by the
number of non-zeros of the corresponding matrix, so that execution effort for different
matrices is easier to compare.

Five columns correspond to our five schemes from Section 5.3.1, the fourth column
uses GMRES in combination with ILU-ISAI. Within the same plot the differently colored
curves show how the convergence changes with m. For the preconditioners, which depend
on m, the corresponding preconditioner runtime increases linearly with m. Therefore, the
numerical convergence improvement in terms of fewer iterations must compensate for the
additional runtime of the preconditioner.
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Figure 36.: GMRES relative forward error on logarithmic y-scale against number of it-
erations (top) and against time per non-zero (bottom). Setup times are not
included. Where the curves end with a dot, the corresponding relative resid-
ual norm has fallen below 10−6. Exceptionally, the scheme MALT-o (Eq. 35)
performs m iterations for each k. The first 4 preconditioners are identical for
m = 1, this common curve helps to compare them among each other.
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Figure 37.: GMRES relative forward error on logarithmic y-scale against number of it-
erations (top) and against time per non-zero (bottom). Setup times are not
included. Where the curves end with a dot, the corresponding relative resid-
ual norm has fallen below 10−6. Exceptionally, the scheme MALT-o (Eq. 35)
performs m iterations for each k. The first 4 preconditioners are identical for
m = 1, this common curve helps to compare them among each other.
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Figure 38.: GMRES relative forward error on logarithmic y-scale against number of it-
erations (top) and against time per non-zero (bottom). Setup times are not
included. Where the curves end with a dot, the corresponding relative resid-
ual norm has fallen below 10−6. Exceptionally, the scheme MALT-o (Eq. 35)
performs m iterations for each k. The first 4 preconditioners are identical for
m = 1, this common curve helps to compare them among each other.
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Diagonally Dominant Problems

The first group (Figure 36) has the easiest problems to solve. Overall MALT-i has the best
convergence, but ILU runs fastest with the exception of g3 circuit, for which MALT-i is
faster.

Matrix g3 circuit is interesting because despite strong diagonal dominance the condi-
tion number is high, so FRE remains high even though the relative residual norm quickly
falls below 10−6. All operator splitting preconditioners show a monotonic improvement in
convergence per iteration with an increase in m. However, most matrices here have few
non-zeros per row, so once all off-diagonal coefficients are part of some splitting bigger m
have little to gain, most visible for model8 and m > 2. So this group is quite unsuitable
for our preconditioners, yet their performance keeps up with ILU reasonably well.

Non-Diagonally Dominant Problems

The second group (Figure 37) contains more challenging matrices with low diagonal
coverage cdiag, e.g. model3,5,7 the three anisotropic finite element problems. MMOS-a

represents the best choice for this group, MALT-o and MALT-i follow closely. MMOS-d

struggles more and ILU has problems.

Apart from model4 ILU does not perform well and does not show any improvement
with increasing sweeps m. On model4 ILU is actually fastest probably exploiting the
few non-zeros per row, although there is an oscillating behaviour of the FRE during the
first iterations. For matrix model4, the schemes MALT-o and MALT-i show a significant
improvement between m = 3 and m = 4, as m = 4 includes a second tridiagonal matrix
with the strong coefficients. In MMOS-d edges occur at most once so convergence hardly
improves for m > 2 whereas MMOS-a benefits from the additional factors in the adaptive
construction.

Matrix model7 represents an edge case for MMOS-a because the Bl converge towards
the identity matrix during construction, but the spectral radius increases for m > 1 and
then decreases again relative to MMOS-a(2).

For matrix geo 1438, the diagonal preconditioner diagp2 has mostly a forward relative
error greater one in the first 1000 iterations.

Difficult Problems

The third group (Figure 38) presents the hardest problems to solve, they require most
iterations to reduces the relative residual norm. In this group MALT-i is the clear winner,
MMOS-a and ILU keep up on some problems but trail on others.

On ecology2 MALT-i performs far superior because the problem is difficult but the
residual computation is rather quick due to few non-zeros per row. Matrix hook 1498 is
surprising, the simple MMOS-d does better with more factors than the adaptive MMOS-a.
Another interesting case is ml geer. With such low diagonal coverage cdiag we would not
expect diagp1 to perform almost as good as the more sophisticated preconditioners.

Relative Preconditioner Time

Figure 35 shows the runtime of different preconditioners relative to one diagonally pre-
conditioned GMRES iteration. This relation is important because the speedup from a
faster preconditioner does not proportionally translate into an overall speedup including
the outer solver. The preconditioner labelled ’Tridiagonal’ is the tridiagonal part of A in
the original ordering. Therefore, no segmentation has been computed and no permutations
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Figure 39.: GMRES relative forward error on logarithmic y-scale against number of itera-
tions for operator split preconditioners with m = 2 in comparison to geometric
ADI preconditioner M

geom
ALT-i on 2D problems. Exceptionally, the scheme MALT-o

(Eq. 35) performs m iterations for each k.

during its application are required. We see that the MOS-a(m) schemes execute faster
than ILU-ISAI(1) for small m. Only MOS-a(4) requires more time per iteration than
ILU-ISAI(1). The simple Tridiagonal preconditioner executes a little faster than MMOS-a(1)
because no permutations during its execution are required.

Setup Time

Figure 34 shows setup times of different preconditioners, where MALT-o and MALT-i use
approximately the same time as MMOS-d. All setups run on the GPU. Setup of MMOS-a

is costly because of the N2 complexity. This could run much faster if we were dropping
elements early as ILU does, but here we were focused on the strength of the preconditioner.
The setup time for the operator split preconditioners increases linearly with m.

5.3.4. Comparison with Classical ADI Methods

Classical ADI preconditioners on tensor product grids are executed like our MALT-i

preconditioner (Eq. 28), with the difference that the alternating M l (Eq. 29) correspond
to the different grid dimensions and can therefore be immediately extracted from A. We
denote the resulting preconditioner M

geom
ALT-i.

We compare our operator split preconditioners withM
geom
ALT-i on two dimensional problems,

thus, the M0,M1 splittings of M
geom
ALT-i refer to the tridiagonal systems along the x-lines

and y-lines in the grid, respectively. The convergence results are shown in Figure 39. For
aniso1 from Section 5.3.2, the first splitting of the geometric and algebraic preconditioners
include the strong coefficients along the x-dimension, and thus, MALT-i and M

geom
ALT-i perform

equally well. For aniso2, the MALT-i includes the strong coefficients of the stencil diagonal,
but M

geom
ALT-i does not and it shows the worst convergence of all schemes. Matrix model8 is

a homogeneous 5pt stencil. An example of the segmentation on a small graph induced by a
5pt stencil is shown in Figure 33. The geometric M

geom
ALT-i has the x-coefficients in M0 and

the y-coefficients in M1. The algebraic MALT-i (ω = 0.01) mixes the x- and y-coefficients
in both of its splittings M0,M1 (see Figure 33, right column, both first rows). We see
that the mixing works better than the separation in M

geom
ALT-i.

In summary, the algebraic MALT-i is clearly superior to the geometric M
geom
ALT-i.
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Figure 40.: Full double-precision GMRES with forward relative error on logarithmic y-
scale against number of iterations for operator split preconditioners (with a
weight coverage of at least 99%) in comparison to an exactly solved ILU(0).
Exceptionally, the scheme MALT-o (Eq. 35) performs m iterations for each k.

5.3.5. Comparison with exactly solved ILU(0)

For the performance analysis in Section 5.3.3, we have compared the operator split
preconditioners with the ILU(0)-ISAI(m) preconditioner within a mixed precision iterative
refinement. In this section, we disregard some performance considerations for a clean
comparison of the convergence behavior.

We now invert the ILU(0) exactly and execute everything in full double-precision,
running GMRES with a restart of 20 as an outer solver. Moreover, for the operator split
preconditioners, we choose m such that 99% of the matrix weight is included (Eq. 53).
In this way, the operator split preconditioners use approximately the same number of
coefficients as ILU(0). For MMOS-d this means that the error term R1 is close to zero in
Eq. 66.

Figure 40 shows the convergence results for the test matrices of Table 17 with the m
value in each header. For 8 out of 17 matrices, the MMOS-a and MALT-i preconditioners
show superior convergence to ILU(0). Moreover, the above procedure to determine m is
actually too simplistic: MALT-i convergence better on matrices geo 1438, ml geer and
hook 1498 with a smaller m (see Figures 37 and 38).
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5.4. Conclusions

We have introduced four approaches for operator splitting preconditioners and a new
diagonal preconditioner for general sparse matrices and evaluated the special case with
tridiagonal splittings in detail with GMRES as the outer solver. This special case already
shows superior convergence against ILU. On the difficult problems the better convergence
also translates to faster execution. However, we must develop better understanding of
theory and practice for these new schemes. With specifically designed prolongation and
restriction operators, they might also be useful as smoothers in algebraic multigrid solvers.
Beyond tridiagonal splittings, the general algebraic framework opens up many opportunities
and this will be explored in the future.

5.5. Other Contributors

Dr. Wayne Mitchell created the problem statements from Hypre and MFEM in Table 17.
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6. Conclusion

In this thesis, a multi-functional (block) tridiagonal CUDA GPU library, a generalized
sparse matrix-vector product (SpMV) implementation, a weighted linear forest extrac-
tion & [0, n]-factor computation, and multiplicative operator split preconditioners have
been presented. Each contribution improves state-of-the-art solutions: The tridiagonal
library outperforms cuSPARSE’s scalar tridiagonal solver by factor five, and also supports
block tridiagonal systems. The SpMV implementation achieves the same performance as
cuSPARSE while providing a much larger generality, such that it can be used for more
complex problem statements like [0, n]-factor computations. An essential contribution
of the linear forest extraction is the parallel bidirectional scan, which only requires a
forward iterator type (support for operator++ and operator--), and thus can operate on
double-linked lists. The algebraic operator splitting is a generalization and improvement
of ILU methods for some sparse matrices in case of tridiagonal splittings.

This thesis evaluated stronger GPU thread data privatization methods, which do not
expose parallelism as fine-grained as possible but rather use the work per GPU thread as a
tuning parameter. This data privatization was implemented in the tridiagonal and SpMV
library such that the data is loaded coalesced with all threads of the CUDA block into
shared memory, and processed subsequently only by one warp per CUDA block. With an
appropriate choice of the work per GPU thread, the benchmarks showed that stronger data
privatization achieves the same performance as fine-grained parallelization techniques, and
thus should be considered as viable method for GPU algorithm design as it also enables
the partial usage of sequential algorithms in GPU kernels, e.g., the (scaled) partial pivoting
in the tridiagonal library.

In sparse linear algebra, most problems are memory limited, which makes efficiently
used shared memory and data locality essential for the development of highest performance
kernels. Therefore, the kernels of the tridiagonal library and the SpMV implementation
were carefully tuned with respect to these aspects, e.g., the tridiagonal kernels diagonalize
the system with on-chip data only and the SpMV implementation supports several user
types for each memory location (global memory, shared memory, registers) to avoid
unecessary data movement.

Moreover, it has been shown that the efficient and general solution of building-blocks like
the SpMV implementation and the tridiagonal solver, open up more advanced use-cases
like linear forest extraction and algebraic tridiagonal preconditioners, respectively.

There are many directions in which the work of this thesis might be continued. In
general, multi-GPU support and a larger set of valid input parameters would be useful,
e.g., support for banded systems with more than nine bands in the tridiagonal library,
or [0, n]-factor computations with n > 4. However, this is not only a little change in the
implementation but requires a new algorithmic formulation. Regarding the presented
algebraic operator split preconditioners, more approximative construction & factorization
schemes, and a better understanding of the preconditioner limitations and strengths should
be investigated in the future.
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A. Appendix

A.1. Tridiagonal Library

tridigpu [71] is published under the the 3-Clause BSD License and is intended to be
backward compatible at the source level, and follows the semantic versioning guidelines
introduced by Tom Preston-Werner [118].

A.1.1. Naming Conventions

We follow the general BLAS naming conventions and provide a C-API

tridigpu<t><format><operation>,

where <t> can be S, D, C, Z, which represent the types float, double, cuComplex, and
cuDoubleComplex, respectively. As a placeholder for the corresponding types we use <T>.
We use [c] to indicate an optional letter c in the function name, which refers to the
version of the function for cyclic systems.

A.1.2. Data Format and Layouts

Dense matrices

All dense matrices are saved in column-major order. Therefore, the multiple right-hand
sides X are saved consecutively in memory. E.g. the right-hand sides of Equation 3 are
saved as

D = [1, 2, 3, 4, 5, 6, 7, 8, ..., 17, 18].

Tridiagonal matrices

The tridiagonal system is saved in a banded format, which are three separate buffers (ai,
bi, ci) each of length N̂n2. Thus, matrix A of Equation 2 is saved as

a = [ 1, 2, 3, 4, 5, 6]

b = [ 7, 8, 9, 10, 11, 12]

c = [13, 14, 15, 16, 17, 18],

whereas a[0] = 0 and c[5] = 0 for the tridiagonal system of Equation 3.

Block tridiagonal matrices

For block tridiagonal systems, each block is saved as a dense matrix in column-major
order, and the tridiagonal bands of Equation 4 are saved as

a = [ 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

b = [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]

c = [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 0, 0, 0, 0].

115



Banded matrices

We save banded matrices from the the lowest to the highest band. . Thus, the banded
matrix from Equation 5 is saved as

kl = ku = 2

AB = [ *, *, 1, 4, 5, 8, 9, 12,

*, 14, 3, 18, 7, 22, 11, 26,

13, 16, 17, 20, 21, 24, 25, 28,

15, 30, 19, 34, 23, 38, 27, *,

29, 32, 33, 36, 37, 40, *, *].

Analogously to the scalar case in Section A.1.2, the placeholders * contain coefficients in
case of a cyclic system and are unused otherwise. The buffer has a length of N(kl+ku+1),
where kl, ku is the number of bands below and above the diagonal band, respectively. The
diagonal is always included in this format, and the distances of the bands to the diagonal
are fixed, e.g., for the lower bands: −kl,−(kl − 1), . . . ,−1.

Sparse matrices

Sparse matrices are saved in a compressed sparse column format (CSC) with zero-based
indexing (see CSC format in cuSPARSE [90]). The CSC matrix D of Equation 6 is saved
as

values = [1, 5, 10, 11, 2, 12, 3, 8, 13, 6, 9, 4, 7]

row_indices = [0, 1, 5, 6, 0, 6, 0, 3, 6, 1, 3, 0, 1]

col_ptrs = [0, 4, 6, 9, 11, 12, 13].

A.1.3. Resource Consumption

RPTS is a hierarchical algorithm, which must save intermediate results during the pro-
cessing of higher stages. The amount of required temporary memory depends on various
parameters like the data type, the partition size, the number of stages in the hierarchy, the
size of the blocks, and the number of right-hand sides. When the original tridiagonal equa-
tion system size is calculated with N(nr + 3), a scalar tridiagonal solve in single-precision
with tridigpuSgtsv requires approximately between 5% and 11% as temporary memory,
whereas cusparseSgtsv2 [90] requires between 100% and 110% of the tridiagonal system
byte size. Moreover, tridigpu does not require any global initialization or finalization
functions.

A.1.4. C API

In this section the function declarations of the C-API of tridigpu are presented. Most
functions take a parameter to control the pivoting scheme, which is an enum of type
tridigpu pivoting t with the instances TRIDIGPU NO PIVOTING, TRIDIGPU PARTIAL PIVOTING,
TRIDIGPU SCALED PARTIAL PIVOTING, and TRIDIGPU DEFAULT PIVOTING. Many functions
require a (temporary) buffer of GPU memory for execution, the size of which is returned
by the corresponding tridigpu<t><format><operation> bufferSizeExt function.
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Solve (cyclic) scalar tridiagonal systems with multiple right-hand sides

This function solves Problem Class Cyclic and Problem Class Scalar, which are (cyclic)
general tridiagonal systems.

tridigpu_status_t

tridigpu<t>[c]gtsv_bufferSizeExt(tridigpu_pivoting_t p, int N, int n_r, size_t*

buffer_size_in_bytes)

tridigpu_status_t

tridigpu<t>[c]gtsv(cudaStream_t stream, tridigpu_pivoting_t p,

int N, int n_r,

const <T>* a, const <T>* b, const <T>* c,

<T>* X, const <T>* D,

void* p_buffer)

The function does not allocate any extra storage, enqueues the calculation into the CUDA
stream, and is non-blocking, i.e., it may return control back to the host before the result
is ready. For the solution of cyclic systems, cgtsv is provided.
Input Description

p recommended value: TRIDIGPU DEFAULT PIVOTING (see above)
N size of the tridiagonal system
n r number of right-hand sides
a lower band of tridiagonal matrix (length N)
b diagonal of tridiagonal matrix (length N)
c upper diagonal of tridiagonal matrix (length N)
D dense right-hand side matrix and buffer of length N * n r

p buffer temporarily required memory buffer on the GPU

Output Description

X dense solution matrix and buffer of length N * n r.
Buffer D may be passed also as X, then the solution replaces the right-hand side
data after kernel execution.

Example:

size_t buffer_size_in_bytes = 0;

if (tridigpuSgtsv_bufferSizeExt(p, N, n_r, &buffer_size_in_bytes)) {

printf("determining temporary buffer size failed\n");

}

void* p_buffer;

if (cudaMalloc(&p_buffer, buffer_size_in_bytes)) {

printf("allocating temporary buffer failed\n");

}

if (tridigpuSgtsv(stream, p, N, n_r, a, b, c, X, D, p_buffer)) {

printf("solving tridiagonal system failed\n");

}
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Solve block tridiagonal systems with multiple right-hand sides

The functions in this Section solve Problem Class Block.

tridigpu_status_t

tridigpu<t>[c]bgtsv_bufferSizeExt(tridigpu_pivoting_t p, int N, int n_r, int n,

size_t* buffer_size_in_bytes)

tridigpu_status_t

tridigpu<t>[c]bgtsv(cudaStream_t stream, tridigpu_pivoting_t p,

int N, int n_r, int n,

const <T>* a, const <T>* b, const <T>* c,

<T>* X, const <T>* D,

void* p_buffer)

The function does not allocate any extra storage, enqueues the calculation into the CUDA
stream, and is non-blocking, i.e., it may return control back to the host before the result
is ready. The function is available for block (bgtsv) and cyclic block general tridiagonal
systems (cbgtsv).
Input Description

p recommended value: TRIDIGPU DEFAULT PIVOTING (see above)
N size of the block tridiagonal system
n r number of right-hand sides
n size of one block; allowed values are 1, 2, 3, 4
a lower band of tridiagonal matrix (length N * n * n)
b diagonal of tridiagonal matrix (length N * n * n)
c upper diagonal of tridiagonal matrix (length N * n * n)
D dense right-hand side matrix and buffer of length N * n r * n

p buffer temporarily required memory buffer on the GPU

Output Description

X dense solution matrix and buffer of length N * n r * n.
Buffer D may be passed also as X, then the solution replaces the right-hand side
data after kernel execution.

Example:

size_t buffer_size_in_bytes = 0;

if (tridigpuSbgtsv_bufferSizeExt(p, N, n_r, n, &buffer_size_in_bytes)) {

printf("determining temporary buffer size failed\n");

}

void* p_buffer;

if (cudaMalloc(&p_buffer, buffer_size_in_bytes)) {

printf("allocating temporary buffer failed\n");

}

if (tridigpuSbgtsv(stream, p, N, n_r, n, a, b, c, X, D, p_buffer)) {

printf("solving block tridiagonal system failed\n");

}
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Function bgtsv factorizes the matrix with every function call, whereas bgtf calculates
the factorization explicitly once, and bgtfs1 uses it to compute the solution from a given
right-hand side. The explicit factorization is more efficient if the kernels of tridigpu are
not memory bound any more.

tridigpu_status_t

tridigpu<t>bgtf_factorizationBufferSizeExt(tridigpu_pivoting_t p, int N, int n,

size_t* factorization_buffer_size_in_bytes)

tridigpu_status_t

tridigpu<t>bgtf(cudaStream_t stream, tridigpu_pivoting_t p,

int N, int n,

<T>* a, <T>* b, <T>* c,

void* p_factorization_buffer)

The function does not allocate any extra storage, enqueues the calculation into the CUDA
stream, and is non-blocking, i.e., it may return control back to the host before the result
is ready.

Input Description

p recommended value: TRIDIGPU DEFAULT PIVOTING (see above)
N size of the block tridiagonal system
n size of one block; allowed values are 1, 2, 3, 4
a lower band of tridiagonal matrix (length N * n * n)
b diagonal of tridiagonal matrix (length N * n * n)
c upper diagonal of tridiagonal matrix (length N * n * n)

Output Description

a lower band of factorized tridiagonal matrix (length N * n * n)
b diagonal of factorized tridiagonal matrix (length N * n * n)
c upper diagonal of factorized tridiagonal matrix (length N * n * n)
p factorization buffer buffer to save additional data required to factorize the matrix

The tridiagonal system is solved for a given factorization and a corresponding right-hand
side with bgtfs.

tridigpu_status_t

tridigpu<t>bgtfs_bufferSizeExt(tridigpu_pivoting_t p, int N, int n_r, int n, size_t*

buffer_size_in_bytes)

tridigpu_status_t

tridigpu<t>bgtfs(cudaStream_t stream, tridigpu_pivoting_t p,

int N, int n_r, int n,

const <T>* a, const <T>* b, const <T>* c,

<T>* X, const <T>* D,

const void* p_factorization_buffer, void* p_buffer)

The function does not allocate any extra storage, enqueues the calculation into the CUDA
stream, and is non-blocking, i.e., it may return control back to the host before the result
is ready.

1Analogously, LAPACK provides gttrf and gttrs.
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Input Description
p recommended value: TRIDIGPU DEFAULT PIVOTING (see above)
N size of the block tridiagonal system
n r number of right-hand sides
n size of one block; allowed values are 1, 2, 3, 4
a lower band of factorized tridiagonal matrix (length N * n * n)
b diagonal of factorized tridiagonal matrix (length N * n * n)
c upper diagonal of factorized tridiagonal matrix (length N * n * n)
D dense right-hand side matrix and buffer of length N * n r * n

p factorization buffer buffer with additional data of the factorized matrix
p buffer temporarily required memory buffer on the GPU

Output Description
X dense solution matrix and buffer of length N * n r * n.

Buffer D may be passed also as X, then the solution replaces the
right-hand side data after kernel execution.

Example:

size_t factorization_buffer_size_in_bytes = 0;

if (tridigpuSbgtf_factorizationBufferSizeExt(p, N, n_r, n,

&factorization_buffer_size_in_bytes)) {

printf("determining factorization buffer size failed\n");

}

void* p_factorization_buffer;

if (cudaMalloc(&p_factorization_buffer, factorization_buffer_size_in_bytes)) {

printf("allocating factorization buffer failed\n");

}

if (tridigpuSbgtf(stream, p, N, n_r, n, a, b, c, p_factorization_buffer)) {

printf("factorizing block tridiagonal system failed\n");

}

size_t buffer_size_in_bytes = 0;

if (tridigpuSbgtfs_bufferSizeExt(p, N, n_r, n, &buffer_size_in_bytes)) {

printf("determining temporary buffer size failed\n");

}

void* p_buffer;

if (cudaMalloc(&p_buffer, buffer_size_in_bytes)) {

printf("allocating temporary buffer failed\n");

}

while(...) {

// - set right-hand sides ‘D‘

// - ‘p_buffer‘ does not need to be initialized before the call to ‘tridigpuSbgtfs‘

// - ‘p_factorization_buffer‘,‘a‘,‘b‘,‘c‘ is written by ‘tridigpuSbgtf‘ and read

by ‘tridigpuSbgtfs‘

if (tridigpuSbgtfs(stream, p, N, n_r, n, a, b, c, X, D, p_factorization_buffer,

p_buffer)) {

printf("solving block tridiagonal system with factorization failed\n");

}

}
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Solve banded systems with multiple right-hand sides

This function solves Problem Class DIA.

tridigpu_status_t

tridigpu<t>gbsv_bufferSizeExt(tridigpu_pivoting_t p, int N, int n_r, int kl, int ku,

size_t* buffer_size_in_bytes)

tridigpu_status_t

tridigpu<t>gbsv(cudaStream_t stream, tridigpu_pivoting_t p,

int N, int n_r, int kl, int ku,

const <T>* AB,

<T>* X, const <T>* D,

void* p_buffer)

The function does not allocate any extra storage, enqueues the calculation into the CUDA stream,
and is non-blocking, i.e., it may return control back to the host before the result is ready. The
numeric behaviour of this function is equal to tridigpu<t>bgtsv and the banded system is
converted on-chip into a block tridiagonal system.
Input Description
p recommended value: TRIDIGPU DEFAULT PIVOTING (see above)
N size of the banded system
n r number of right-hand sides
kl number of lower bands in AB; kl=1,2,3,4
ku number of upper bands in AB; ku=1,2,3,4
AB banded storage format of matrix and buffer of length N * (kl + ku + 1)

D dense right-hand side matrix and buffer of length N * n r

p buffer temporarily required memory buffer on the GPU

Output Description
X dense solution matrix and buffer of length N * n r.

Buffer D may be passed also as X, then the solution replaces the right-hand side
data after kernel execution.

Example:

size_t buffer_size_in_bytes = 0;

if (tridigpuSgbsv_bufferSizeExt(p, N, n_r, ku, ku, &buffer_size_in_bytes)) {

printf("determining temporary buffer size failed\n");

}

void* p_buffer;

if (cudaMalloc(&p_buffer, buffer_size_in_bytes)) {

printf("allocating temporary buffer failed\n");

}

if (tridigpuSgbsv(stream, p, N, n_r, kl, ku, AB, X, D, p_buffer)) {

printf("solving banded system failed\n");

}
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Solve scalar tridiagonal systems with multiple sparse right-hand sides and dense
solutions

This function solves Problem Class ScalarCSC2Dense for D saved in a CSC format.

tridigpu_status_t

tridigpu<t>gtsv_csc2dense_bufferSizeExt(tridigpu_pivoting_t p, int N, int n_r,

size_t* buffer_size_in_bytes)

tridigpu_status_t

tridigpu<t>gtsv_csc2dense(cudaStream_t stream, tridigpu_pivoting_t p,

int N, int n_r,

const <T>* a, const <T>* b, const <T>* c,

<T>* X,

const <T>* rhs_values,

const int* rhs_row_indices,

const int* rhs_col_ptrs,

int rhs_nnz,

void* p_buffer)

The function does not allocate any extra storage, enqueues the calculation into the CUDA stream,
and is non-blocking, i.e., it may return control back to the host before the result is ready.
Input Description
p recommended value: TRIDIGPU DEFAULT PIVOTING (see above)
N size of the tridiagonal system
n r number of right-hand sides
a lower band of tridiagonal matrix (length N)
b diagonal of tridiagonal matrix (length N)
c upper diagonal of tridiagonal matrix (length N)
rhs values value array of sparse right-hand sides in CSC format (length rhs nnz)
rhs row indices row index array of sparse right-hand sides in CSC format (length rhs nnz)
rhs col ptrs column pointer array of sparse right-hand sides in CSC format (length n r + 1)
rhs nnz number of non-zero entries of sparse right-hand side matrix D
p buffer temporarily required memory buffer on the GPU

Output Description
X dense solution matrix and buffer of length N * n r
Example:

size_t buffer_size_in_bytes = 0;

if (tridigpuSgtsv_csc2dense_bufferSizeExt(p, N, n_r, &buffer_size_in_bytes)) {

printf("determining temporary buffer size failed\n");

}

void* p_buffer;

if (cudaMalloc(&p_buffer, buffer_size_in_bytes)) {

printf("allocating temporary buffer failed\n");

}

if (tridigpuSgtsv_csc2dense(stream, p, N, n_r, a, b, c, X, rhs_values,

rhs_row_indices, rhs_col_ptrs, rhs_nnz, , p_buffer)) {

printf("solving tridiagonal system with sparse rhs failed\n");

}
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General tridiagonal solve for many sparse right-hand sides and sparse solutions

This function solves Problem Class ScalarCSC2CSC, i.e., it calculates A−1D for a general
tridiagonal matrix A and a sparse matrix D. For large sparse matrices D the dense solution matrix
would exceed the available memory, therefore, this functions outputs only a sparse result matrix X .
In fact, X = prune(A−1D, Sp), thus the result is equal to the dense result pruned to a sparsity
pattern Sp. Sp is determined such that the maximum absolute values in the dense result are
included in the sparse result. If nnzj is the number of non-zero entries in column j of matrix X ,
and for each j let σj : [0, N − 1] → [0, N − 1] be an index permutation such that the j-column
Xσj(i),j of X := A−1D is sorted in descending order with respect to the absolute values, then Sp is
obtained by

(Sp)i,j =

{
1 if σj(i) < nnzj

0 otherwise.
(81)

In words: the sparsity pattern of X is controlled by the user given column pointers (nnzj), and
each column of the sparse result is filled with the maximum values of the dense result with respect
to their absolute value.

tridigpu_status_t

tridigpu<t>gtsv_csc2csc(tridigpu_pivoting_t p,

int N,

const <T>* a, const <T>* b, const <T>* c,

const <T>* rhs_values, const int* rhs_row_indices, const int*

rhs_col_ptrs,

int n_r, int rhs_nnz,

<T>* result_values, int* result_row_indices,

const int* result_col_ptrs, int result_nnz)

The function allocates extra GPU storage, enqueues the calculation into the default CUDA stream,
and is blocking the host, i.e., it returns control back to the host when the result is ready.

Input Description
p recommended value: TRIDIGPU DEFAULT PIVOTING (see above)
N size of the tridiagonal system
a lower band of tridiagonal matrix (length N)
b diagonal of tridiagonal matrix (length N)
c upper diagonal of tridiagonal matrix (length N)
rhs values CSC values of right-hand sides D (length nnz)
rhs row indices CSC column indices of right-hand sides D (length nnz)
rhs col ptrs CSC column pointers of right-hand sides D (length N + 1)
n r number of right-hand sides
rhs nnz number of non-zero entries of right-hand sides D
result col ptrs CSC column pointers of the result matrix (length N + 1)
result nnz number of non-zero entries of the result matrix.

Output Description
result values CSC values of sparse solution matrix X (length result nnz)
result row indices CSC row indices of sparse solution matrix X (length result nnz)
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