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Summary (English)

The goal of this thesis is to investigate the application of interior point methods
to solve dynamical optimization problems, using a graphical processing unit
(GPU) with a focus on problems arising in Model Predictice Control (MPC).
Multi-core processors have been available for over ten years now, and many-
core processors, such as GPUs, have also become a standard component in any
consumer computer. The GPU offers faster floating point operations and higher
memory bandwidth than the CPU, but requires algorithms to be redesigned and
implemented, to match the underlying architecture.

A large number of different optimization algorithms are available for solving
optimization problems. Some of the most common method are the simplex
method and interior point methods. We focus on interior point methods in
this thesis, due to its polynomial complexity, and since the use of the simplex
method with GPUs have been investigated by several other authors already.

The main computational task in interior point methods is the solution of a linear
system to compute the Newton direction in each iteration. Direct interior point
methods use a direct method such as Cholesky factorization to factorize the
normal equations of the Hessian matrix. The use of a GPU has been shown
to be very efficient in the factorization of dense matrices, and several numeric
libraries, which utilize the GPU, have become available during the course of
this thesis. We have developed a direct interior point method, which utilizes
the GPU, and demonstrate that our implementation can reduce the solution
time substantially.

There are multiple software packages available for solving optimization problems
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with interior point methods, such as GLPK, IPOPT, MOSEK and many more.
However, none of these support the GPU yet. With this thesis, we include a
new software package called GPUOPT, available under the non-restrictive MIT
license. GPUOPT includes includes a primal-dual interior-point method, which
supports both the CPU and the GPU. It is implemented as multiple components,
where the matrix operations and solver for the Newton directions is separated
from the core interior point method. This makes it possible to replace the
matrix operations and solver with alternative, and potentially problem-specific,
implementations.

In this thesis, we include different implementations of the matrix operations,
including general dense, general sparse and problem-specific implementation of
a test problem from model predictive control. Multiple solvers are implemented
as well, including a direct solver based on CHOLMOD, and an iterative solver
which uses preconditioned conjugate gradient. The iterative solver is based on
the matrix-free iterative interior point method



Summary (Danish)

Målet for denne afhandling er at undersøge anvendelsen af indrepunktsmetoder
til at løse dynamiske optimeringsproblemer ved brug af graphical processing
unit (GPU), med fokus på problemer som opstår i model prædiktiv kontrol
(MPC). Multi-core processorer har været til rådighed i over ti år nu, og many-
core processorer, såsom GPU’er, er også blevet et standard komponent i com-
putere. GPU’en byder på hurtigere beregninger og båndbredde end CPU’en,
men kræver at algoritmer bliver omformuleret og implementeret, så de udnytter
den underliggende arkitektur.

Mange forskellige optimeringsalgoritmer kan benyttes til at løse optimeringsprob-
lemer. De mest gængse metoder er simpleks- og indrepunktsmetoderne. I denne
afhandling fokuserer vi på indrepunktsmetoder, da den har polynomisk komplek-
sitet, mens simpleksmetoder har exponentiel kompleksitet. Desuden er brugen
af en GPU til simpleksmetoder allerede blevet undersøgt af flere forfattere.

Den tungeste beregningsmæssige opgave i indrepunktsmetoder er løsningen af
et lineært ligningssystem for at beregne Newton retningen i hver indrepunkt-
siteration. Direkte indrepunktsmetoder benytter sig af en direkte metode, så-
som Cholesky faktorisering, til at løse ligningssystemet. Brugen af en GPU til
Cholesky faktorisering af dense matricer er meget effektivt, og numeriske bib-
liotekter, som benytter sig af en GPU til Cholesky faktorisering, er blevet udgivet
i løbet af de sidste tre år. Vi har udviklet en direkte indrepunktsmetode, som
benytter sig af GPU’en, og vist at vores implementering kan reducere beregn-
ingstiden væsenligt for dense systemer.

Der er mange forskellige software pakker til rådighed for at løse optimeringsprob-
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lemer med indrepunktsmetoder, såsom GLPK, IPOPT, MOSEK, og mange flere.
Ingen af disse pakker benytter sig på nuværende tidpunkt af GPU’en. Med denne
afhandling udgiver vi en software pakke kaldet GPUOPT under en open-source
licens. GPUOPT indeholder en implementering af en primal-dual indrepunk-
tsmetode, som kan udnytte både en CPU og en GPU. Den er implementeret
som komponenter, hvor matrixberegningerne og den linære løser er adskilt fra
selve indrepunktsmetoden. Dette gør det muligt at erstatte implementeringen af
matrixberegningerne og den linære løser med alternative, og eventuelt problem-
specifikke, implementeringer.

I denne afhandling inkluderer vi forskellige implementeringer af matrixbereg-
ningerne for generelle dense og generelle sparse formatter, samt en problem-
specifikke implementering for et test problem fra model prædiktiv kontrol. Flere
forskellige lineære løsere er også implementeret, inklusiv en direkte løser baseret
på CHOLMOD, og en iterativ løser som benytter sig af preconditioned conjugate
gradient. Den iterative løser er baseret på en matrix-fri iterativ indrepunktsme-
tode.
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Notation

The notations used throughout this thesis are listed below.

Symbol Description
m is the number of constraints in our optimization problem,

which is equivalent to the number of rows in the constraint
matrix A.

n is the number of decision variables in our optimization prob-
lem, which is equivalent to the number of columns in the con-
straint matrix A.

Nt is the number of time steps in the prediction horizon for our
test case problem.

Np is the number of power plants for our test case problem.
Nu is the number of control variables in our test case problem,

which is equivalent to Nt ×Np.
vi is the ith element of vector v.
||v||2 or ||v|| is the euclidean norm of vector v.
AT is the transpose of the matrix A.
xT is the transpose of the vector x.
diag(d) is the diagonal matrix with the vector d as its diagonal ele-

ments.
diag(A) is the vector with the elements of the diagonal of the matrix A
x× y is the multiplication of x times y.
e is a vector of ones.
(x, y) ≥ 0 means that all elements in the vector x and the vector y are

greater than or equal to zero.
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Glossary

The abbreviations used throughout this thesis are listed below.

Abbreviation Description
BLAS Basic Linear Algebra Subroutines.
CG Conjugate Gradient.
CPU Central Processing Unit.
CUDA Compute Unified Device Architecture.
FIR Finite Impulse Response.
GPU Graphics Processing Unit.
IPM Interior Point Method.
KKT Karush-Kuhn-Tucker.
LAPACK Linear Algebra PACKage.
MCC Multiple Centrality Correctors.
MISO Multiple-Input Single-Output.
MPC Model Predictive Control.
PCG Preconditioned Conjugate Gradient.
SIMT Single-Instruction Multiple-Thread.
WCD Weighted Corrector Directions.
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Chapter 1

Introduction

1.1 Motivation

The application of Model Predictive Control (MPC) and dynamical optimization
in general is computationally challenging due to the large number of variables,
as well as the constraints imposed by the real-time requirement.

The Graphical Processing Unit (GPU) is the processing chip on modern graphic
cards. Due of the ever-increasing demand for advanced graphics, the GPU has
developed into a massively parallel chip with very fast floating point computa-
tion and high memory bandwidth. These properties makes the GPU attractive
for not only graphics rendering, but also many different scientific computa-
tions. GPU computing has shown itself to be extremely efficient at certain
numerical computations. GPUs provide a significant increase in computing
performance and memory bandwidth compared to traditional CPUs (Central
Processing Units). The cost of these benefits is a more complicated program-
ming model and certain restrictions on the type of workload which can fully
utilize the performance. Not all numerical computations are equally suited for
the architecture, due to the massive parallelism and restrictions on how memory
can be accessed to achieve optimal performance.



2 Introduction

1.2 Objective and main contribution

The main objective of this work is to implement and evaluate the use of many-
core GPUs for solving constrained optimization problems arising in dynamical
optimization, such as Model Predictive Control. These problems are usually
solved using either a simplex method or an interior point method. In this
project, we have limited ourselves to the primal-dual interior point method.
The use of the simplex method with GPUs has been looked at by many authors
[SE09, BPM10, LBEB11, MAC11], while interior point methods which utilize
GPUs are still rare. One example of such is in [HJO07], which utilizes the GPU
for Cholesky factorization. Another work with interior point methods on the
GPU is [SGH12], where the GPU is used for sparse matrix-vector multiplication
in an interior point method with an iterative solver.

Our first goal in this thesis is to determine the benefit of using a GPU to accel-
erate the interior point method presented in [ESJ09]. The method presented in
[ESJ09] exploits the structure of a constrained optimization problem from model
predictive control (MPC) and shows a speed-up of an order-of-magnitude com-
pared to a generic solver. To determine whether a GPU can help accelerate this
method, we implement their method in MATLAB, extend the implementation
with the built-in GPU support in MATLAB, and then implement the algorithm
entirely in C with CUDA.

Our second goal in this thesis is to evaluate the matrix-free interior point method
from [Gon12b] with our model predictive control problem. This is done by imple-
menting the method described in [Gon12b] and extending the partial Cholesky
factorization as well as the conjugate gradient implementation to use a GPU.

Our third goal is to combine the implemented methods into a toolbox with an
user-friendly interface and release it as open source software.
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1.3 Outline

Chapter 2 introduces the theory relevant to this thesis. It introduces the pro-
gramming model, which is used to program many-core GPUs from NVIDIA, as
well as model predictive control and primal-dual interior point methods with
focus on linear optimization problems.

Chapter 3 describes our test case, which is a power plant portfolio system from
model predictive control. The transfer function of the power plants is described
and converted into discrete state space form and the test case is defined as an
linear optimization problem in the inequality form and the standard form.

Chapter 4 presents a primal-dual interior point method for linear optimization
problems in inequality form based on [ESJ09] and describes the implementation
from MATLAB to full GPU implementation. The interior point method is
further specialized for the test-case from Chapter 3, where the structure of the
model predictive control problem is exploited to reduce the solution time.

Chapter 5 presents a newly developed modular optimization toolbox called
GPUOPT. It contains a primal-dual interior point method for linear optimiza-
tion problems in the standard form and the inequality form based on Mehrotra
predictor-corrector algorithm [Meh92]. The algorithm is implemented on both
the CPU and the GPU and features primal-dual regularization [AG99], multi-
ple centrality correctors [Gon96] and weighted corrector directions [CG08]. The
toolbox is implemented to be modular, such that matrix operations and linear
solving is separated from the core interior point method implementation. This
allows for multiple different implementations of the matrix operations and the
linear solver.

Chapter 6 presents an implementation of the matrix-free preconditioned con-
jugate gradient solver [Gon12b] for GPUOPT. The implementation is done for
both CPU and GPU and demonstrates that the use of GPUs can substantially
accelerate the solution time of an interior point method when using iterative
methods to solve the linear system of equations to compute the Newton search
directions.

Chapter 7 summarizes the results and main contributions of this thesis.

Appendix A lists papers published during this thesis.



4 Introduction

1.4 Hardware and software used for testing

All the tests in this thesis have been executed on a machine at GPUlab at DTU
Compute. Table 1.1 lists the specifications of the machine.

Table 1.1: Technical specifications for test machine

Name GPUlab06
CPU Intel(R) Core(TM) i7-3820 3.6 GHz

CPU memory 32 GB DDR3-1333
CPU bandwidth 42 GB/s

GPU 2× NVIDIA Tesla K-20C 5 GB
GPU memory 5 GB

GPU bandwidth 208 GB/s

Software

Ubuntu 10.04 LTS
ATLAS 3.10.1,
MAGMA 1.4.1,
CUDA 5.5,

MATLAB R2013b,
SuiteSparse 4.2.1



Chapter 2

Theory

In this chapter, we introduce the different theoretical concepts used in the thesis.
This includes a basic introduction to model predictive control, GPU computing,
and interior-point methods.

2.1 GPU computing

The Graphical Processing Unit (GPU) is the main processor on a graphics
card. Driven by increasing demands of the gaming and graphics industry, the
GPU has developed into a massively parallel processor with very high floating-
point performance and memory bandwidth. Figure 2.1 illustrates the theoretical
performance of the many-core GPUs from NVIDIA compared to the multi-core
CPUs from Intel.

Multi-core CPUs have a few large cores with large caches, which are designed for
fast sequential performance to achieve minimum latency. Instead of minimizing
latency, the GPU relies on massive parallelism to achieve maximum throughput
and thus hide the latency of memory accesses. This is why there is such a large
gap between the performance of the CPU and the GPU.
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(a) Floating point operations per second (b) Memory bandwidth

Figure 2.1: Theoretical peak performance for NVIDIA GPUs and Intel CPUs.
Taken from [NVI13b].

While the GPU has a clear advantage over the CPU when it comes to theoreti-
cal performance, the practical performance is highly problem dependent. Some
operations, such as dense matrix-matrix multiplication, which is inherently par-
allel and structured, benefits greatly from massive parallelism and high memory
bandwidth of the GPU. The performance benefit for other operations, such as
inherently sequential operations like sparse Cholesky factorization, is less obvi-
ous as only sub-operations can be parallelized [VCC+10].

This has resulted in extensive research in a broad range of scientific areas to
determine whether the GPU is applicable to accelerate computations in various
fields. Algorithms which are optimal for the CPU are not necessarily optimal
for the GPU. A key part of scientific GPU computing research is to determine
the algorithms, which suit the architecture of the GPU, and implement them in
an efficient manner.

2.1.1 Programming GPUs

Modern GPUs are designed to be programmable and frameworks have been
designed to simplify the programming of the GPU. The two most widespread
programming models for GPUs are CUDA and OpenCL.

CUDA is the leading proprietary programming model for GPUs. It is devel-
oped by NVIDIA and only supports NVIDIA GPUs. It is the most mature
programming model available with many open-source and proprietary libraries
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available.

OpenCL was originally developed by Apple, but is now managed by the Khronos
Group. Unlike CUDA, OpenCL is a cross-platform framework, such that it can
be used on both NVIDIA GPUs and AMD GPUs, as well as many other parallel
architectures including CPUs, FPGAS and the Intel MIC architecture. The
only limitation is that each vendor must implement OpenCL support for their
particular architecture. However, while OpenCL supports multiple different
architecture and the same code should theoretically work across platforms, it
must be optimized for each of the targeted architectures to achieve optimal
performance.

In this work, we restrict ourselves to the CUDA programming model due to its
large availability of mature libraries and tools. However we would like to see
OpenCL implementations of our code in the future as it an open standard and
its performance is similar to CUDA [FVS11].

In the following sections, we introduce the CUDA architecture and programming
model. This serves as an quick introduction to GPU computing with CUDA
and its challenges, as an basic understanding of these topics is necessary to
understand the implementation challenges in the following chapters. For a more
thorough introduction and additional details, we refer to the excellent book
[KmWH10] and the NVIDIA documentation [NVI13b, NVI13a].

2.1.2 CUDA physical architecture

A CUDA-capable GPU is normally located on a discrete graphics card connected
to the host through the PCI-express bus, as illustrated in Figure 2.2 on the
following page. The GPU is connected to an off-chip memory on the graphics
card, called the device memory, which is typically between 1 GB to 6 GB, with
the current state-of-the-art being the NVIDIA Tesla K40 with 12 GB of device
memory.

The GPU can read and write to the device memory over the local device bus with
a theoretical bandwidth ranging between 150 GB/s to 300 GB/s, depending on
the graphics card, as shown in Figure 2.1b. It is often not possible to reach the
theoretical bandwidth in practice. The achievable bandwidth is usually around
75% of the theoretical bandwidth.

The host can copy data between the host memory and device memory over the
PCI-express bus. The theoretical bandwidth of the PCI-express bus is up to 8
GB/s for PCI-express 2.0 and 16 GB/s for PCI-express 3.0.
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CPU

Host memory 
(DDR3)

8 – 64 GB

Device memory 
(GDDR5)
1 – 12 GB

Host bus 
(30 – 60 GB/s)

PCI-express 2.0/3.0
(8 – 16 GB/s)

GPU

Device bus 
(150 – 300 GB/s)

Figure 2.2: Diagram showing the interconnect between the CPU (host) and
the GPU (device). The specified memory bandwidth and memory
sizes are based on what is generally available in desktop machines
at the time of writing.

Due to the much smaller bandwidth of the PCI-express bus compared to the
device bus, it should be avoided to transfer data between the host and the device
as much as possible.

2.1.2.1 Basic architecture

Figure 2.3 shows a basic overview of the architecture of a CUDA-capable GPU.
At the time of writing, NVIDIA has released multiple different CUDA architec-
tures, such as the Fermi [NVI09] and Kepler architecture [NVI12], but the basic
architecture is the same.

The GPU consists of a number of streaming multiprocessors (SMs) and usually
also a small L2 cache for the device memory. Each SM contains of a number
of CUDA cores, registers, and a small memory, called shared memory. For the
Fermi architecture and newer architectures, an L1 cache was added to the SM.
The shared memory is located in the same memory as the L1 cache. GPUs
based on the Kepler architecture also give the programmer direct access to an
additional 48 KB read-only cache, called the texture cache, which was originally
only available to the programmer by mapping textures.

The number of SMs in an GPU depends on the model and the number of cores
per SM depends on the GPU architecture. For instance, the NVIDIA Tesla K20
installed in our test machine, described in Section 1.4 on page 4, is a Kepler
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Figure 2.3: Simplified diagram of the architecture of a CUDA-capable GPU.

GPU and contains 13 SMs with 192 cores per SM for a total of 2496 cores.

2.1.2.2 Compute capability

All CUDA-capable GPUs have a compute capability version, currently ranging
from 1.0 to 3.5. The compute capability defines various properties for the GPU,
such as the number of registers in an SM and the size of shared memory. For
more details, see [NVI13b].

2.1.2.3 Single-Instruction Multiple-Thread

The threads running on the CUDA cores are executed in a Single-Instruction
Multiple-Thread (SIMT) manner. Each CUDA core executes a single thread,
but does not have its own scheduler. Instead, the threads are divided into warps
and the SM contains a number of warp schedulers. All the threads in the same
warp execute the same instruction, but with their own data.

The SIMT architecture facilitates branching within a warp by splitting threads
into active threads and inactive threads. When there is a branch in the code,
which splits the execution path of threads within a warp, the warp scheduler
executes each of the branches sequentially. This is done by setting the threads
evaluating the first branch to active and the other threads in the warp to inac-
tive, and then executing the first branch for only the active threads. Once the
first branch has been executed, the second branch is executed for the remaining
threads in the same manner. This results in an execution time which is the sum
of executing each branch and should be avoided when possible.
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Figure 2.4: Thread grid and thread blocks in CUDA programming model.

The number of threads in a warp is defined by the compute capability of the
GPU. At the time of writing, a warp is defined as 32 threads for all the compute
capability versions up to 3.5.

2.1.3 CUDA programming Model

CUDA provides an abstract scalable programming model. It is designed to be
an extension to C and CUDA also supports a subset of C++, such as tem-
plates. The GPU is programmed by implementing device functions, called ker-
nels. A kernel is implemented like a standard function, however it is prefixed
the __global__ declaration to indicate it is a device function. This informs the
CUDA compiler to generate device code instead of host code, when compiling
the source file.

2.1.3.1 Kernel execution and threads

When a kernel is called, a thread grid is created to execute the kernel on the
GPU. A thread grid is a three dimensional grid of thread blocks and each thread
block is a three dimensional grid of CUDA threads. The dimensions of the thread
blocks and the thread grid are specified by the programmer, which results in
the number of threads created. For instance, if the programmer runs the kernel
with a thread grid of dimensions (10, 5, 1) and with thread blocks of dimensions
(16, 16, 1), then 50 thread blocks are created with each 256 threads. This results
in 12800 threads, which execute the kernel. Figure 2.4 illustrates an 2D example
of a thread grid of dimensions (4, 2, 1) with thread blocks of dimension (3, 2, 1).

The compiler determines the required number of registers per thread and shared
memory per thread block when compiling a kernel. When the kernel is executed,
the thread blocks in a thread grid are distributed to the SMs on the GPU. An
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SM can contain multiple thread blocks, depending on the amount of resources
a thread block uses and the compute capability of the GPU.

Threads within the same thread block are able to synchronize execution and
share data by using the shared memory in an SM, but there is no synchronization
available between different thread blocks. This allows for scalability, as the
CUDA scheduler can run the thread blocks in any order and in parallel.

All the threads in a thread grid execute the exact same kernel. Each thread
can use its indices in the thread block and the indices of the thread block in
the thread grid to control its behavior. A simple example would be an array
copy kernel, which copies the elements of an input array to an output array. A
thread would use its indices to compute a unique thread index corresponding to
an index in the array. It would then load the corresponding element from the
input array and store the element in the same location in the output array.

2.1.3.2 Global memory

The device memory is the large off-chip memory, which is split into mostly
global memory and a small amount of local memory. The global memory is
visible to all the threads on the GPU. While the bandwidth of global memory is
much higher than the memory bandwidth of a CPU, the access latency is much
larger. CPUs use large caches to hide the memory latencies, however the GPU
uses parallelism, although some small caches are now available in the GPU to
assist as well. When threads in a warp access global memory, the GPU switches
execution to other warps resident on the SM while waiting for memory operation
to complete.

Another aspect of global memory is memory alignment and coalescence. Reads
and writes to global memory are done as 32-, 64-, or 128-bytes memory transac-
tions, aligned to memory locations, which are a multiple of the transaction size.
The GPU coalesces memory accesses by a warp into as few memory transactions
as possible to minimize the memory bandwidth used. For optimal memory per-
formance, it is necessary to implement the kernel such that threads within the
same warp read memory locations within the same memory segment.

2.1.3.3 Shared memory

As mentioned above, a SM contains a small memory called shared memory. The
thread blocks can allocate memory from shared memory and use it to share data
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between the threads in the thread block. Since shared memory is located inside
the SM, the access latency of shared memory is around the same latency as the
registers and thus much less than global memory.

Utilizing shared memory is key to improving performance of memory-bound
kernels, which are kernels where the performance is limited by the memory
bandwidth. For instance, shared memory can be used to achieve memory coa-
lescence or to handle cooperation between threads in a thread block. An obvious
example would be a reduction operation, such as sum reduction. Each thread
in a thread block can load different values in global memory, store the values in
shared memory, reduce the value to a single value in shared memory and then
write the result to global memory. We will describe an example of a reduction
kernel in Section 4.2.3.3.

2.1.4 CUDA libraries

There are many different CUDA libraries available. Utilizing libraries reduces
the workload required to implement efficient code on the GPU and also bene-
fits from performance improvements whenever the library is updated. In this
section, we briefly introduce the CUDA libraries used in the thesis. We have
restricted the libraries to only freely available libraries.

CUBLAS [NVIa] is the BLAS equivalent library for CUDA provided by
NVIDIA. It contains all the standard BLAS functions for dense vector and
matrix operations.

CUSPARSE [NVIb] is the sparse matrix library, also provided by NVIDIA.
It contains various functions for sparse vector and sparse matrix operations in
multiple different sparse formats.

MAGMA [ICL] is a dense linear algebra library, similar to LAPACK, for
heterogeneous architectures, including GPU support. It contains a very fast
implementation of Cholesky factorization on NVIDIA GPUs [LTND10]. It is
developed by the Innovative Computing Laboratory at the University of Ten-
nessee.
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Thrust [NVId] is a data manipulation library for CUDA written in C++,
which supports operations such as vector sorting. It is provided by NVIDIA
and also includes an CPU implementation of all the operations.

These are just the libraries used in this thesis. A more complete list of libraries
for CUDA can be found in [NVIc].

2.2 Model predictive control

In this section, we introduce the basics of model predictive control (MPC), as
used in this thesis. For more details, we refer to [Mac02, CB04, RM09].

Model Predictive Control (MPC) is a method of process control, which computes
the optimal control input for a dynamical system, by using a model of the system
to predict the future states and outputs.

Linear dynamical system models can be formulated in many different ways, such
as an impulse response model, a step response model, or a transfer function
model. All of these models can be converted to a discrete time state space
model [HJPM14], which has the following form,

xk+1 = Axk +Buk (2.1)
yk = Cxk +Duk (2.2)

where xk is the state, uk is the input, yk is the output of the system. Based on
the state and the input at the discrete time step k, the matrices A and B define
the linear model to compute the next state of the system, and the matrices C
and D define the model to compute the output of the system.

The control objective for an MPC problem is usually defined as an `2-penalty
function, an `1-penalty function, or an economic penalty function [Edl10]. The
objective may penalize deviation from a set-point trajectory or aim to maximize
profits. Using an `1-penalty function, or an economic penalty function as control
objective, results in a linear optimization problem, while an `2-penalty function
results in a quadratic optimization problem. In this thesis, we focus on the
economic penalty function, which has the form

φeco =

N−1∑
k=0

cTu,kuk (2.3)

where cu,k is the linear cost for uk.
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The system model and control objectives are formulated as a constrained opti-
mization problem, where the control objective is defined as the penalty function
and the model is defined as equality constraints:

min φ (2.4a)
s.t. xk+1 = Axk +Buk k = 0, 1, . . . , Nt − 1 (2.4b)

yk = Cxk +Duk k = 1, 2, . . . , Nt (2.4c)

where Nt is the number of discrete time steps in the prediction horizon. The
prediction horizon defines how many future time steps the controller considers.
Model predictive control problems generally also have some kind of constraints
on the input, such as bounds on the minimum and maximum value of the input,
and constraints on the output, such as a set-point trajectory. One of the advan-
tages of MPC is that it easily handles additional constraints by simply adding
them to the optimization problem. We demonstrate this for our test problem
in Chapter 3.

In each time step, the controller solves the optimization problem and computes
a control trajectory for the next Nt time steps, based on the current state of
the system, the model, and a reference trajectory. Only the control inputs
for the current time step are actuated on the system. In the next time step,
the controller uses past measurements to estimate the new state and solves the
optimization problem again, to compute a new control trajectory. This strategy
is called receding horizon control, and is shown on Figure 2.5. By continuously
estimating the state and recomputing a new control trajectory in each time step,
MPC can handle unknown disturbances and model uncertainties.

The requirement of solving the optimization problem in each time step results in
a real-time constraint, as the solution must be computed in the interval between
the current time step and the next time step. Computing the solution to the
optimization problem in real-time can be computationally intensive, depending
on the size and the time scale of the problem. This is one of the motivations for
utilizing GPUs to reduce the solution time.
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2.3 Interior point method

Interior point methods are a class of algorithms which can be used to solve
mathematical optimization problems. There are many different kinds of interior
point methods for different type of problems. In this work, we focus on the
primal-dual long-step path-following interior point method for linear optimiza-
tion problems. In the following sections, we introduce this method along with
practical information such as computing an initial point which is required for
an efficient practical implementation of the method.

Our presentation is based on [NW06] and [CG08], which includes excellent intro-
ductions to practical interior point methods. For more information on interior
point methods, including theoretical proofs and practical application, we refer
to [NW06, CG08, Gon12a, AGMX96, Meh92] and the references therein.

2.3.1 Basics

A linear optimization problem in standard form is written as

Primal Dual

min
x

φp = cTx

s.t. Ax = b

x ≥ 0

max
y,s

φd = bT y

s.t. AT y + s = c

s ≥ 0

(2.5)

where c is the linear objective, A is the constraints matrix, x is the primal
solution, y is the dual solution and s is the dual slack.

The first order optimality conditions, also known as the Karush-Kuhn-Tucker
(KKT) conditions, for the optimization problem can be written as

c−AT y − s = 0 (2.6a)
b−Ax = 0 (2.6b)
XSe = 0 (2.6c)
(x, s) ≥ 0 (2.6d)

whereX and S are diagonal matrices with x and s as their diagonal, respectively,
and e is a vector of ones. The optimal solution to (2.5) can be determined by
computing the solution to the KKT conditions in (2.6).
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The equality constraints (2.6a) to (2.6c) can be written in matrix form as0 AT I

A 0 0

S 0 X


xy
s

 =

cb
0

 (2.7)

Primal-dual interior point methods use Newton’s method to solve the equality
constraints by linearizing around the current iterate, (x, y, s), to obtain the
search direction, (∆x,∆y,∆s) by solving the linear system0 AT I

A 0 0

S 0 X


∆x

∆y

∆s

 =

c−AT y − s
b−Ax
−XSe

 =

rdrp
rc

 (2.8)

The search direction for this system is called the pure Newton direction, also
known as the affine scaling direction. As the Newton method cannot handle the
inequality constraint (2.6d), it is necessary to perform a line search to determine
a step length, α, such that the next iterate

(x, y, s) = (x, y, s) + α(∆x,∆y,∆s) (2.9)

does not violate the inequality constraint. Unfortunately, the affine search di-
rection usually does not make much progress towards the solution, as the step
length is usually very small before violating the inequality constraint [NW06].

2.3.2 Primal-dual path-following interior point method

The primal-dual feasible region can be defined as

F = {(x, y, s) : Ax = b, AT y + s = c, (x, s) ≥ 0} (2.10)

and the primal-dual strictly feasible region is defined as

F0 = {(x, y, s) : Ax = b, AT y + s = c, (x, s) > 0} (2.11)

The set F0 is also known as the interior of the feasible region.

To improve the step length of the search direction, primal-dual path-following
interior point methods do not compute the search direction by directly solving
the affine scaling direction. Instead, they define a path inside the interior of the
feasible region, leading to the optimal point and compute the Newton directions
by solving a linear system aiming at a point on this path instead of directly at
the optimal point.
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We restrict ourselves to the path defined by the logarithmic barrier function.
The logarithmic barrier problem of the primal in the linear optimization problem
in (2.5) is written as

min
x

φp = cTx− µ
n∑

i=1

ln(xi)

s.t. Ax = b

x > 0

(2.12)

In this problem, the added logarithmic term in the objective function penalises
iterates too close to the boundary. This forces the iterates to stay in the interior
of the feasible region. The penalty can be controlled with the parameter µ,
which is known as the barrier parameter or barrier term.

The Lagrangian for the barrier problem is written as

L(x, y) = cTx− µ
n∑

i=1

ln(xi)− yT (Ax− b) (2.13)

which gives us the perturbed KKT conditions,

∇xL(x, y) = c− µX−1e−AT y = 0

∇yL(x, y) = b−Ax = 0

x > 0

(2.14)

By introducing s = µX−1e, we express the perturbed KKT conditions as

AT y + s = c

Ax = b

XSe = µe

(x, s) > 0

(2.15)

The solutions to (2.15) for µ > 0 defines a continuous smooth curve in the
interior of the feasible region leading to the optimal solution as µ goes towards
zero. This curve is called the primal-dual central path. Instead of computing the
affine Newton direction, the primal-dual path-following interior point method
computes the Newton direction for the perturbed KKT conditions which are0 AT I

A 0 0

S 0 X


∆x

∆y

∆s

 =

 rd

rp

rc + σµe

 (2.16)

where σ ∈ (0, 1) is called the centering parameter. For σ = 1, the Newton
direction is called a centering direction which aims towards the point on the
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central path for the value of µ. For σ = 0, the Newton direction is called the
affine direction as it is equivalent to the Newton direction in (2.8).

The barrier parameter, µ, is set to

µ =
xT s

n
(2.17)

where n is the number of elements in x and s. This value is known as the
duality measure and for a given iterate, it provides an estimate of optimality,
which indicate how close we are to the optimal solution.

Given this value of µ in (2.17), the centering step aims only to increase the
centrality of the current iterate. That is, it attempts to bring the iterate closer
to the central path, but does not aim to bring the iterate closer to optimality.
As this step is biased towards the interior of the feasible region, it is usually
possible to take longer steps than with the affine Newton direction. In contrast,
the affine step aims at reducing the optimality in one step, but ignores the
central path, often resulting in a small step length, due to hitting the boundary
of the interior feasible region.

The primal-dual path-following algorithm computes the Newton direction by
solving (2.16) with a σ in the open interval (0, 1), which attempts to both
reduce µ while maintaining centrality to avoid small step length.

The algorithm restricts the iterates within a neighborhood of the central path.
Two common neighborhoods around the central path are the tight neighborhood

N2(θ) = {(x, y, s) ∈ F0 : ‖XSe− µe‖2 ≤ θµ} (2.18)

and the wide neighborhood

N−∞(γ) = {(x, y, s) ∈ F0 : xisi ≥ γµ, i = 1, 2, . . . , n} (2.19)

TheN2(θ) neighborhood is a tight region around the central path and algorithms
based on this neighborhood are called short-step path-following algorithms. The
N−∞(γ) is a much larger region around the central path and a typical value of γ
is 10−3, which results in a neighborhood that contains most of the feasible region
[NW06]. This neighborhood is illustrated on Figure 2.6. Algorithms based on
this neighborhood are called long-step path-following algorithms.

Short-step path-following algorithms are of theoretical importance, as they main-
tain the best theoretical convergence result. In practical implementations, the
long-step algorithm is preferred as the number of iterations to converge in the
short-step algorithm often approaches the worst-case. In this thesis, we restrict
ourselves to the long-step algorithm as we focus on practical implementation.
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Figure 2.6: Example of the wide neighborhood, N−∞(γ), around the central
path with γ = 0.05, indicated by the white region, for a problem
with two variables.

Listing 2.1 summarizes the primal-dual long-step path-following interior point
method. The maximum step length is computed for the Newton direction,
which allows the complementarity pair (x, s) to remain positive. When the step
is taken, the scaling parameter η ∈ (0, 1) is used to ensure that the pair remains
strictly positive. Typically η has a value of 0.9995 or 0.99 [NW06].

Interior point theory focuses on a good choice of σ to balance the trade-off
between increasing centrality and making good progress towards the optimal
solution. In the following section, we will describe a popular method for choosing
σ and the search direction, which forms the basis for our implementations.

2.3.3 Mehrotra’s predictor-corrector algorithm

Mehrotra’s predictor-corrector algorithm [Meh92] splits the computation of the
search direction in (2.16) into two parts by first computing a predictor direction,
which aims at improving optimality, and then computing a corrector direction,
which aims at maintaining centrality. The predictor-corrector algorithm at-
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Listing 2.1: Primal-dual long-step path-following interior point method
Given (x0 , y0 , s0 ) and η
for k = 0, 1, 2, . . . and not converged

Choose σk ∈ (0, 1)
Compute (∆xk,∆yk,∆sk) by s o l v i n g (2.16)
Compute step l ength αk such that
xk + αk∆xk > 0 and sk + αk∆sk > 0 .

Take step
(xk+1, yk+1, sk+1) = (xk, yk, sk) + ηαk(∆xk,∆yk,∆sk)

end

tempts to compensate for the linearization error in the affine-scaling direction
[NW06].

The predictor direction is computed by solving the affine-scaling direction in
(2.8). The computed search direction, (∆xaff ,∆yaff ,∆saff) is then used to esti-
mate the linearization error and a second order corrector is computed by solving0 AT I

A 0 0

S 0 X


∆xcor

∆ycor

∆scor

 =

 0

0

−∆Xaff∆Saffe+ σµe

 (2.20)

The predictor and corrector directions are then added together to form the
predictor-corrector direction

(∆x,∆y,∆s) = (∆xaff ,∆yaff ,∆saff) + (∆xcor,∆ycor,∆scor) (2.21)

The centering parameter, σ, is chosen by using a heuristic [Meh92], which seems
to work well in practice. It is defined as

σ =

(
µaff

µ

)3

(2.22)

where

µaff =
(x+ αaff

p ∆xaff)T (s+ αaff
d ∆saff)T

n
(2.23)

and αaff
p and αaff

d are the primal and dual step length computed for the affine-
scaling direction, respectively.

The full algorithm is summarized in Listing 2.2 on the following page.
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Listing 2.2: Mehrotra’s predictor-corrector algorithm for linear optimization
problems in the standard form

Given (x0 , y0 , s0 ) and η
for k = 0, 1, 2, . . . and not converged

Compute a f f i n e d i r e c t i o n (∆xaff
k ,∆yaff

k ,∆saff
k ) by s o l v i n g (2.16)

Compute step l ength αaff
p and αaff

d such that
xaff
k + αaff

p ∆xaff
k > 0 and saff

k + αaff
d ∆saff

k > 0 .
Compute c en t e r i ng parameter σ accord ing to (2.22)
Compute c o r r e c t o r d i r e c t i o n (∆xcor

k ,∆ycor
k ,∆scor

k ) by s o l v i n g (2.20)
Compute pred i c to r−c o r r e c t o r (∆xk,∆yk,∆sk) accord ing to 2.21
Compute step l ength αk such that
xk + αk∆xk > 0 and sk + αk∆sk > 0 .

Take step
(xk+1, yk+1, sk+1) = (xk, yk, sk) + ηαk(∆xk,∆yk,∆sk)

end

2.3.4 Practical considerations

Below we will describe some of the practical considerations when implementing
the primal-dual interior point method.

2.3.4.1 Step length

As mentioned, the computed Newton directions does not account for the in-
equality constraint (x, s) > 0. In the long-step algorithm, it is rarely possible to
take a full step without violating this inequality constraint [NW06]. Instead, a
step length is computed to ensure x and s remain strictly positive and a damped
Newton step is taken as shown in (2.9), (2.25) and (2.26).

The primal and dual step length is computed such that

x+ αp∆x > 0 and s+ αd∆s > 0 (2.24)

where αp is the primal step length and αd is the dual step length.

The interior point method can then take the step

(xk+1) = (xk) + ηαp(∆xk)(yk+1, sk+1) = (yk, sk) + ηαd(∆yk,∆sk) (2.25)

to compute the next iterate, where η is the scaling parameter ensuring the iterate
stays within the wide neighborhood around the central path.
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Listing 2.3: Initial point computation
x̄ = AT (AAT )−1b , ȳ = (AAT )−1(Ag) , s̄ = g −AT ȳ
δx = max(− 3

2
min(x̄), 0) , δs = max(− 3

2
min(s̄), 0)

x̂ = x̄+ δxe , ŝ = s̄+ δse

δx̂ = 1
2

x̂T ŝ
eT ŝ

, δŝ = 1
2

x̂T ŝ
eT x̂

x0 = x̂+ δx̂e , y0 = ȳ , s0 = ŝ+ δŝe

An alternative strategy is to take a step with the same step length in the primal
and dual direction such as

(xk+1, yk+1, sk+1) = (xk, yk, sk) + ηαk(∆xk,∆yk,∆sk) (2.26)

where αk = min(αp, αd). This is known as applying the fraction to the boundary
rule, which leads to a guaranteed reduction in primal and dual infeasibility
[CN07].

2.3.4.2 Initial point

While it is possible to choose any initial point (x0, y0, s0), where (x0, s0) > 0,
for the infeasible method, this is generally a bad idea. A good initial point
is critical for the practical performance of the interior point method. However,
choosing a good initial point in the primal-dual interior point method is difficult.
A commonly used method is the Mehrotra’s initial point heuristic [Meh92]. It
solves the two least squares problems

min
x
xTx s.t. Ax = b

min
y,s

sT s s.t. AT y + s = c
(2.27)

which attempts to satisfy the primal and dual equality constraints. The comple-
mentarity pair of the computed solution is then shifted away from the boundary.
Listing 2.3 summarizes the algorithm.

2.3.4.3 Termination criteria

The termination criteria for the interior point method is defined as

‖rp‖
1 + ‖b‖

≤ tolp and
‖rd‖

1 + ‖c‖
≤ told and

xT s/n

1 + |cTx|
≤ tolo (2.28)
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which is also used in [Gon12b].

The first term measures the relative primal infeasibility, the second term mea-
sures dual infeasibility, and the last term measures optimality.

2.3.4.4 Computing the Newton direction

The main computational task in interior point methods are solving the linear
system of equations in (2.16) for some right-hand side to compute a search
direction. The linear system of equations in (2.16) with a general right-hand
side is written as 0 AT I

A 0 0

S 0 X


∆x

∆y

∆s

 =

fg
h

 (2.29)

This system can be reduced by eliminating the third equation by computing
∆s = X−1(h− S∆x), resulting in the augmented system form[

−Θ−1 AT

A 0

][
∆x

∆y

]
=

[
f ′

g′

]
=

[
f −X−1h

g

]
(2.30)

where Θ = XS−1. The augmented system is a symmetric indefinite system,
which can be solved with factorizations such as Bunch-Parlett factorization
[AGMX96] or iterative methods such as MINRES or LSQR [CNW09].

As Θ is a diagonal matrix, its inverse is also diagonal and the augmented systems
form can be further reduced by eliminating the first equation by computing
∆x = D(AT ∆y − f ′), resulting in the normal equations form

AD−1AT ∆y = g′ +AD−1(X−1h− f ′) (2.31)

where D = Θ−1. The matrix AD−1AT is a positive-definite symmetric matrix,
which we will refer to as the normal equations matrix for the standard form.
It can be factorized using the Cholesky factorization to solve the linear system.
Alternatively, iterative methods for positive-definite symmetric systems can be
used such as conjugate gradient [She94].



Chapter 3

Economic Power Plant
Portfolio Test Case

In this chapter, we introduce the linear optimization problem from model pre-
dictive control (MPC), which we use as our test case throughout the thesis to
evaluate the performance of our solvers. The test case is a simplified problem
of the power portfolio control problem in [ESJ09]. It is a linear economic MPC
problem, where a number of power plants must be controlled to minimize the
cost of producing enough power to satisfy the power demand.

We describe the control objective, the system model and the constraints, and
demonstrate how a model predictive control problem can be formulated as an
optimization problem in inequality and standard form. Finally, we show a so-
lution example and define the model parameters used for the system.

3.1 Description

Our test case describes the power production from Np power plants. The power
production of each of the individual power plants is given by

Yi(s) = Gi(s)Ui(s) (3.1)
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where i = 1, . . . , Np, Ui(s) is the input, and Yi(s) is the output for the power
plant i. The transfer function of a power plant is

Gi(s) =
1

(τis+ 1)3
(3.2)

where τi is the time constant for power plant i. The transfer function model
used for the power plants is described in further detail in [HEBJ10]. The total
power production for all the power plants can then be written as a multiple-input
single-output (MISO) system as

Y (s) =

Np∑
i=1

Yi(s) (3.3)

The linear time-invariant discrete state model of the MISO problem is written
as

xk+1 = Axk +Buk (3.4a)
yk = Cxk (3.4b)

where the vectors xk, yk, and uk are the state, power production and input
of all the power plants at the discrete time step k, respectively. Given a power
demand, r, over a finite horizon of Nt time steps, the power plants must produce
enough power to satisfy the demand at any time step k, such that

yk ≥ rk (3.5)

for k = 0, . . . , Nt. Each of the power plants also has a minimum and maximum
bound on its input, which defines the operating range of the power plant, and
a rate-of-movement constraint, which limits the change in the input signal per
time step. The input bound constraint is written as

umin,k ≤ uk ≤ umax,k (3.6)

where umin,k and umax,k are the lower and upper bound on each of the power
plants inputs at time step k, respectively. The rate-of-movement constraint on
the input is written as

∆umin,k ≤ ∆uk ≤ ∆umax,k (3.7)

where ∆uk = uk − uk−1, and ∆umin,k and ∆umax,k are the maximum negative
and positive change in the control input at time step k, respectively.

The full optimization problem with a prediction horizon of Nt discrete time
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steps is then written as

min
u

φ =

Nt−1∑
k=0

cTu,kuk (3.8a)

s.t. xk+1 = Axk +Buk k = 0, . . . , Nt − 1 (3.8b)
yk = Cxk k = 1, . . . , Nt (3.8c)
umin,k ≤ uk ≤ umax,k k = 0, . . . , Nt − 1 (3.8d)
∆umin,k ≤ ∆uk ≤ ∆umax,k k = 0, . . . , Nt − 1 (3.8e)
yk ≥ rk k = 1, . . . , Nt (3.8f)

where cu,k is the cost of power for each power plant at time step k.

Depending on the power demand, rk, it may not always be possible to satisfy it.
In order to ensure the problem is always feasible, we introduce the slack variables
sk which represent buying power from an external provider when the power
plants cannot supply enough power to meet the demand. The optimization
problem is then written as

min
u,s

φ =

Nt−1∑
k=0

cTu,kuk +

Nt∑
k=0

cTs,ksk (3.9a)

s.t. xk+1 = Axk +Buk k = 0, . . . , Nt − 1 (3.9b)
yk = Cxk k = 1, . . . , Nt (3.9c)
umin,k ≤ uk ≤ umax,k k = 0, . . . , Nt − 1 (3.9d)
∆umin,k ≤ ∆uk ≤ ∆umax,k k = 0, . . . , Nt − 1 (3.9e)
yk + sk ≥ rk k = 1, . . . , Nt (3.9f)
sk ≥ 0 k = 1, . . . , Nt (3.9g)

where cs,k is the cost of buying power at time step k. The cost, cs,k, is set
to a large value, such that cs,k � max(cu,k), to avoid buying external power
whenever possible. This is the optimization problem which we will use to test
our solvers.
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3.2 Formulating in the inequality form

The test problem (3.9) can be written in inequality form as

min
x

cTx

s.t. Ax ≥ b
(3.10)

where

c =

[
cu

cs

]
x =

[
u

s

]
A =



I 0

−I 0

0 I

Ψ 0

−Ψ 0

Γ I


b =



umin

−umax

0

bl

−bu
r − Φx0


(3.11)

and

u =


u0

...
uNt−1

 umin =


umin,0

...
umin,Nt−1

 umax =


umax,0

...
umax,Nt−1



∆u =


∆u0

...
∆uNt−1

 ∆umin =


∆umin,0

...
∆umin,Nt−1

 ∆umax =


∆umax,0

...
∆umax,Nt−1



s =


s0

...
sNt

 y =


y0

...
yNt

 r =


r0

...
rNt

 cu =


cu,0
...

cu,Nt−1

 cs =


cu,0
...

cu,Nt


(3.12)

In the following sections, we describe the structure of the sub-matrices and how
the constraints are converted to matrix form.

3.2.1 Bound constraints

The bound constraints on the input and the slack variables in (3.9) are

umin ≤ uk ≤ umax k = 0, . . . , Nt − 1 (3.13)
sk ≥ 0 k = 1, . . . , Nt (3.14)
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In inequality form, each of these can simply be written with an identity matrix
as  I 0

−I 0

0 I


x︷︸︸︷[
u

s

]
≥

 umin

−umax

0

 (3.15)

3.2.2 Rate of movement constraints

The rate-of-movement constraints on the input in (3.9) are

∆umin ≤ uk − uk−1 ≤ ∆umax k = 0, . . . , Nt − 1 (3.16)

To write these as a matrix, we introduce the matrix Ψ which is written as

Ψ =



I 0 0 0 0

−I I 0 0 0

0
. . . . . . 0 0

0 0
. . . . . . 0

0 0 0 −I I


(3.17)

where I is the identity matrix with the dimensions Np × Np. The rate-of-
movement constraint are then written as

bl︷ ︸︸ ︷

∆umin,0 + u−1

∆umin,1

...
∆umin,Nt−1

∆umin,Nt

 ≤
[
Ψ 0

] x︷︸︸︷[
u

s

]
≥

bu︷ ︸︸ ︷

∆umax + u−1

∆umax,1

...
∆umax,Nt−1

∆umax,Nt


which also can be written as [

Ψ 0

−Ψ 0

]
x ≥

[
bl

−bu

]

3.2.3 Power demand constraint

The dynamics of the power plant model can be written as a finite impulse
response (FIR) model, which is commonly used in MPC, as it can represent any
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kind of stable dynamic process [Edl10].

Given the discrete state space

xk+1 = Axk +Buk k = 0, . . . , Nt − 1 (3.18)
yk = Cxk k = 1, . . . , Nt (3.19)

the FIR model is written as

yk = CAkx0 +

k−1∑
i=0

Hiui k = 1, . . . , Nt (3.20)

where Hi = CAi−1B. This follows from straight-forward substitution of (3.18)
in (3.19). The FIR model can now be written in matrix form as

y = Φx0 + Γu (3.21)

where

Φ =


CA
...

CANt

 Γ =


H1 0 0 0

H2 H1 0 0
...

. . . . . . 0

HNt
. . . H2 H1

 (3.22)

This eliminates all the internal states, except the initial one x0, when computing
the output yk. The FIR model (3.21) is then substituted into our power demand
constraint

yk + sk ≥ rk k = 1, . . . , Nt (3.23)

such that it is written as

[
Γ I

] x︷︸︸︷[
u

s

]
≥
[
r − Φx0

]

3.2.4 Solution example

Figure 3.1 shows an example of the power plant portfolio problem with a pre-
diction horizon of 500 time steps and 2 power plants. The top graph shows the
power demand, r, also known as the reference, and the total power production.
The other two graphs shows the control signal in red and the power production



3.2 Formulating in the inequality form 31

0 50 100 150 200 250 300 350 400 450 500
0

10

20
Total power

 

 

Reference
Output

0 50 100 150 200 250 300 350 400 450 500
0
5

10
15

Power plant #1

 

 

Input
Output

0 50 100 150 200 250 300 350 400 450 500
0
5

10
15

Power plant #2

 

 

Input
Output

Figure 3.1: Solution example of the power plant portfolio problem with two
power plants. Power plant 1 is slow, but cheap, while power plant
2 is fast, but expensive.

P.G. #1 P.G. #2
τ 20 10

umin 0 0

umax 10 10

∆umin −1 −3

∆umax 1 3

cu 1 2

Table 3.1: Parameters used for solution example with a cheap and slow power
plant and an expensive and fast power plant. The cost of the slack
variables, cs, is set to 105. While the test case allow for time-variant
bounds and cost, we use the same value for all time steps.
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output in blue for each of the two power plants. Table 3.1 shows the parameters
used to model the two power plants.

The first power plant is set to have a smaller cost than the second power plant,
while its time constant is higher. This results in a cheap, but slow power plant
and an expensive, but fast power plant. These parameters were also used in
[HEBJ10].

The solution of the problem shows that the controller tries to use the cheap,
but slow, power plant as much as possible to satisfy the power demand. The
fast, but expensive, power plant is used in the beginning to satisfy the power
demand quickly as well as during changes in the reference to quickly change the
power production to avoid buying power from an external provider, which is
much more expensive.

3.3 Formulating in the standard form

The standard form of a linear optimization problem is written as

min
x

φp = cTx

s.t. Ax = b

x ≥ 0

(3.24)

The inequality form of the test case problem shown in (3.10) can also be written
in the standard form by introducing slack variables, s, such that the inequality
constraints

Ax ≥ b (3.25)

are written as
Ax− s = b

s ≥ 0
(3.26)

where x ≥ 0 and s ≥ 0. We can write this in matrix form as

Âx̂ = b (3.27)

where x̂ ≥ 0, Â =
[
A −I

]
and x̂ =

[
x

s

]
.
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The standard form of our test problem is then written as

min
x̂

φ̂p = ĉT x̂

s.t. Âx̂ = b

x̂ ≥ 0

(3.28)

where ĉ =

[
c

0

]
.

3.4 Summary

We introduced a test case based on an economic power plant portfolio system
from model predictive control (MPC). The test case is used throughout the
thesis to evaluate the performance of our solvers and serves as a good general
MPC problem as it has input bound constraints, rate-of-movement constraints,
and output bound constraints by using a discrete state space model formulated
as a finite impulse response model.

The test case problem was formulated as an optimization problem in both in-
equality form and standard form, which are common general representations of
optimization problems. We will base our solvers on these two common forms.
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Chapter 4

Interior Point Method for
Linear Optimization

Problems in Inequality
Form on GPU

In this chapter, we describe the design and implementation of a primal-dual
interior point method for linear optimization problems in the inequality form.
The algorithm is implemented with a direct solver to compute Newton directions
by forming the normal equations and factorizing the symmetric positive-definite
normal equations matrix with Cholesky factorization.

We have implemented both a generic version of the solver, and a problem-
specific version of the solver which exploits the unique problem structure for
our dynamical optimization test case from Chapter 3.

Both versions of the solver have been implemented in MATLAB, MATLAB with
built-in GPU support, and in C with CUDA. Their performance is measured
and compared to determine whether utilizing GPUs can reduce the solution
time of the interior point method.
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4.1 Method

The method described in this chapter is based on the interior point method
for model predictive control described in [ESJ09]. It is a standard primal-dual
interior point method with Mehrotra predictor-corrector for solving a linear
optimization problem in the inequality form

min
x

f(x) = cTx

s.t. Ax ≥ b
(4.1)

Designing the interior point method to specifically solve an optimization problem
in the inequality form results in slightly different KKT conditions than solving
an optimization problem in the standard form.

The Lagrangian of the optimization problem in the inequality form is given by

L(x, y) = cTx− yT (Ax− b) (4.2)

which results in the following first order necessary conditions

∇xL(x, y) = c−AT y = 0 (4.3)
∇yL(x, y) = Ax− b ≥ 0 ⊥ y ≥ 0 (4.4)

where ⊥ is used to denote complementarity. By introducing the slack variable
s = Ax− b, we can write the conditions as

c−AT y = 0 (4.5)
Ax− s = b (4.6)

s ≥ 0 ⊥ y ≥ 0 (4.7)

which can then be written in matrix form as0 AT 0

A 0 −I
0 S Y


xy
s

 =

cb
0

 (4.8)

where S = diag(s) and Y = diag(y). Note that (4.8) is slightly different than
the KKT conditions for the standard form shown in (2.7). The slack variable
s is applied to the primal in the inequality formulation, resulting in s and y
being the complementarity pair, while in the standard form the slack variable s
is applied to the dual with x and s being the complementarity pair.
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4.1.1 Computing the Newton direction

The Newton direction with a general right-hand side in the interior point method
for linear optimization problems in the inequality form is written as0 AT 0

A 0 −I
0 S Y


∆x

∆y

∆s

 =

fg
h

 (4.9)

As in the standard formulation, described in Section 2.3.4.4, we can eliminate the
third equation by computing ∆s = Y −1(h−S∆y) to reduce it to the augmented
systems form [

0 AT

A Θ

][
∆x

∆y

]
=

[
f ′

g′

]
=

[
f + Y −1h

g

]
(4.10)

where Θ = S−1Y . This can be further reduced by eliminating the second
equation by computing ∆y = D(g′ − A∆x), resulting in the normal equations
form

ATDA∆x = ATDg′ − f ′ (4.11)

where D = Θ−1. In this chapter, we will refer to ATDA as the normal equations
matrix.

In the implementations in this chapter, we compute the Newton directions by
solving the normal equations form with a direct method, particularly Cholesky
factorization. There are multiple benefits to solving the normal equations system
with a direct method. Solving 4.11 with direct methods is stable and the effect
of the ill-conditioning caused by the spread in the complementarity matrix Θ is
minimal [Gon12b].

Additionally, the factorization may be used to compute both the affine step and
the corrector step in Mehrotra’s predictor-corrector algorithm [Meh92], which
we will describe in Section 4.1.4 for the inequality form. This means the cost
of computing both Newton directions is almost the same as computing one of
them. For further details of the advantages and disadvantages of solving the
normal equations form, we refer to [AGMX96].

4.1.2 Initial point

Mehrotra’s initial point heuristic [Meh92], which we presented in Section 2.3.4.2
for the interior point method for linear optimization problems in the standard
form, is also used in our implementation of the interior point method for linear
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Listing 4.1: Initial point computation
ȳ = A(ATA)−1c , x̄ = (ATA)−1(AT b) , s̄ = b−Ax̄
δy = max(− 3

2
min(ȳ), 0) , δs = max(− 3

2
min(s̄), 0)

ŷ = ȳ + δye , ŝ = s̄+ δse

δŷ = 1
2

ŷT ŝ
eT ŝ

, δŝ = 1
2

ŷT ŝ
eT ŷ

x0 = x̄ , y0 = ŷ + δŷe , s0 = ŝ+ δŝe

optimization problems in the inequality form. However, we have modified it
corresponding to the change in the KKT conditions. The computation of the
initial point is shown in Listing 4.1.

4.1.3 Termination criteria

The termination criteria in (2.28) is adjusted to correspond to the slightly dif-
ferent KKT system, where s and y are the complementarity pair instead. This
results in the following termination criteria

‖rp‖
1 + ‖b‖

≤ tolp and
‖rd‖

1 + ‖c‖
≤ told and

sT y/m

1 + |cTx|
≤ tolo (4.12)

4.1.4 Algorithm

The algorithm used in [ESJ09], which we implement in this chapter, is based on
Mehrotra’s predictor-corrector algorithm [Meh92]. We presented this algorithm
for the interior point method for linear optimization problems in standard form
in Section 2.3.3.

The affine Newton direction for the interior point method for linear optimization
problems in the inequality form is computed by solving0 AT 0

A 0 −I
0 S Y


∆x

∆y

∆s

 =

rdrp
rc

 =

 c−AT y

b−Ax+ s

−SY e

 (4.13)

The full algorithm used for our implementations in this chapter is shown in
Listing 4.2. The Newton directions in the algorithm are solved for a general
right-hand side according to (4.9) by solving the normal equations form (4.11)
using Cholesky factorization to factorize the normal equations matrix, ATDA =
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Name Implemented in GPU usage
LPippdIneq MATLAB No

LPippdIneqGPUv1 MATLAB Cholesky
LPippdIneqGPUv2 MATLAB Matrix multiplication + Cholesky
LPippdIneqGPUv3 MATLAB Matrix multiplication + Cholesky
LPippdIneqGPUEx C/CUDA All

Table 4.1: Generic solver implementations

LLT . We use η = 0.99995 for our tests and m is the number of elements in the
complementarity pair.

4.2 Generic implementation

The generic implementation of the primal-dual interior point method does not
assume any structure for the A matrix, and it is applicable for any optimization
problem stated as 4.1. We have implemented the algorithm in plain MATLAB,
in MATLAB with GPU-acceleration and in C with GPU acceleration. In this
section, we describe the various implementations and the obtained results. An
overview of the implementations is shown on Table 4.1.

4.2.1 Plain MATLAB implementation

The implementation of the algorithm in plain MATLAB works as a reference
for the other versions in this thesis, and it is a straight-forward translation of
the algorithm in Listing 4.2 to MATLAB. There are two things to note about
this implementation, which are also important for the remaining MATLAB im-
plementations. The interface for the function is shown in Listing 4.3.

Listing 4.3: MATLAB solver interface
function [ x , s tatus , y , info , h i s t o r y ] = LPippdIneq (g ,A, b , opt ions )

Firstly, the A matrix can be either a matrix or a structure. If A is a structure,
then the algorithm expects the fields A.funAx and A.funAtx to exist and be
function pointers to matrix-vector multiplication and matrix-transpose-vector
multiplication with A, respectively. This allows the user to implement efficient
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Listing 4.2: Mehrotra’s predictor-corrector algorithm for linear optimization
problems in the inequality form with direct solver

Input: η , kmax

Initial point: I n i t i a l i z e (x, y, s) accord ing to L i s t i n g 4.1
Residuals: rd = c−AT y , rp = b−Ax+ z , rc = −SY e
Duality measure: µ = sT y

m

Iteration counter: k = 0

while (k < kmax and
‖rp‖

1 + ‖b‖ ≤ tolp and
‖rd‖

1 + ‖c‖ ≤ told and
sT y/m

1 + |cTx| ≤ tolo )

D = S−1Y
Cholesky factorization: ATDA = LLT

Affine step:
faff = rd , gaff = rp , haff = rc
raff = ATDgaff − (faff + Y −1haff)

∆xaff = LT \(L\(raff)) ,
∆yaff = D(faff −A∆x)

∆saff = Y −1(haff − S∆y)

Compute a f f i n e s tep l ength αaff
p and αaff

d such that
s+ αaff

p ∆saff ≥ 0 and s+ αaff
d ∆s ≥ 0 .

Affine duality measure: µaff =
(s+ αaff

p ∆saff)T (y + αaff
d ∆yaff)T

m
Corrector step:

σ =

(
µaff

µ

)3

fcor = 0 , gcor = 0 , hcor = −∆Saff∆Y affe+ σµe
rcor = ATDgcor − (fcor + Y −1hcor)
∆xcor = LT \(L\(rcor)) ,
∆ycor = D(fcor −A∆x)
∆scor = Y −1(hcor − S∆y)

Predictor-corrector step:
(∆x,∆y,∆s) = (∆xaff ,∆yaff ,∆saff) + (∆xcor,∆ycor,∆scor)
Compute step l ength α such that
s+ α∆sk > 0 and y + α∆y > 0 .

Take step: (x, y, s) = (x, y, s) + ηα(∆x,∆y,∆s)
Residuals: rd = c−AT y , rp = b−Ax+ z , rc = −SY e
Duality measure: µ = sT y

m

Iteration counter: k = k + 1
end
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Listing 4.4: Default Cholesky-based normal equations solver
function [ x , data ] = SolveNE (k , A, D, b , data )

i f ( i s f i e l d ( data , ’ k ’ ) && k == data . k && i s f i e l d ( data , ’L ’ ) )
L = data .L ;

else
H = A. funH(A,D) ;
L = chol (H, ’ lower ’ ) ;
data . k = k ; data .L = L ;

end
x = L ’ \ (L\(b) ) ;

end

problem-specific functions for the two operations. If A is passed as a matrix,
then the algorithm will automatically convert it to a structure by storing the A
matrix in it and defining the necessary functions.

Secondly, the options may contain a field called solverNE. This field is per
default set to ’chol’, which means the algorithm will use its built-in Cholesky-
based normal equations solver which is shown in Listing 4.4. The default normal
equations solver computes the normal equations matrix, factorizes the matrix
and then solves for Hx = b. It uses the data parameter for data persistence
and reuses the factorization of the normal equations matrix if it has already
been computed within the same iteration. Additionally, if the default normal
equations solver is used and A is passed as a structure to the algorithm, then the
field A.funH must be a function pointer to a function which returns the normal
equations matrix.

This parameter allows the user to overwrite the default normal equations solver
by setting the solverNE field in options to a function handle with the same
interface as SolveNE above. We will use this later to implement the GPU-
accelerated and problem-specific solvers in MATLAB without modifying the
original implementation.

4.2.2 MATLAB with GPU

Since MATLAB version R2010a, MATLAB has added support for some GPU
operations on NVIDIA graphic cards through CUBLAS. Unfortunately, not all
MATLAB operations are supported and, while it is easy to use, it can be difficult
to specify operations in MATLAB, which optimally utilize the GPU. Further-
more, the built-in GPU support in MATLAB only supports dense matrices as
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of R2013b, which means sparse matrices must be converted to a dense matrix
to operate with them on the GPU.

Much more advanced GPU support existed for MATLAB in the form of the
proprietary 3rd-party add-on Jacket from AccelerEyes, including sparse matrix
operations. However, due to license disagreements it is no longer available for
sale since December 2012 [Acc12]. MathWorks and AccelerEyes have stated that
it will eventually be incorporated directly into the Parallel Computing Toolbox,
but at present it is still unavailable.

For this reason, we have only utilized the built-in GPU support in MATLAB
in the implementation of our GPU-accelerated MATLAB solver. The solver is
implemented in three different versions to determine the best way to extend the
MATLAB implementation with GPU acceleration.

4.2.2.1 Benchmark of MATLAB GPU functions

We have tested the MATLAB implementation of Cholesky factorization and tri-
angular solve on the GPU to determine if we can accelerate our normal equations
solver with MATLAB’s built-in GPU support. We ran Cholesky factorization
on a positive-definite symmetric dense matrix with the dimensions 2000× 2000
and incremented the dimensions by 500 until we ran out of memory on the GPU.
The computed factor was then used to solve LT \(L\b). The test was done on
the test system mentioned in Section 1.4 on page 4. The results are shown on
Figure 4.1a and Figure 4.1b for the two operations.

The Cholesky factorization of a dense matrix can be accelerated substantially
by using a GPU, even when including the cost of transferring the dense positive-
definite matrix to the GPU, factorizing and transferring it back to the CPU.

The triangular solve with the resulting Cholesky factorization is much slower
than solving on the CPU. The cost of transferring the vector b to the GPU and
transferring the result back does not significantly impact performance, as the
vectors are small.

In the following implementations, we will not use triangular solve on the GPU,
but instead transfer the result of the Cholesky factorization back to the CPU
and do triangular solve on the CPU.
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Figure 4.1: Performance of MATLAB Cholesky factorization and triangular
solve on the GPU.

4.2.2.2 Version 1

In this version, only the Cholesky factorization is computed on the GPU, since
it is the most time-consuming operation. First, we compute the normal equa-
tions matrix, H, on the CPU, using sparse matrix-matrix multiplication. Then,
we transfer the resulting normal equations matrix to the GPU, call Cholesky
factorization on the GPU-resident matrix resulting in GPU-based factorization,
and then transfer the lower triangular matrix back to the CPU, to be used for
triangular solve on the host.

The implementation of this modified normal equations solver is shown in Listing
4.5. The MATLAB function gpuArray() transfers the matrix from the CPU to
the GPU and chol() is used to factorize the GPU-resident matrix. The result
from Cholesky factorization is then transferred back to the CPU by using the
MATLAB function gather().

4.2.2.3 Version 2

In this version, we transfer the entire constraints matrix A to the GPU prior
to solving and use the GPU for all matrix multiplications with A, including the
computation of the normal equations matrix and the Cholesky factorization.
Since the A matrix is stored densely on the GPU, as well as the normal equa-
tions matrix and the Cholesky factorization, this version is much more memory
intensive than version 1. It requires a total of (m×n+ 2n×n) matrix elements



44 IPM for LP Problems in Inequality Form on GPU

to be stored on the GPU, while version 1 only requires (2n × n) elements. As
our test problem has m� n, the addition of m× n is very expensive.

The only difference in this implementation, compared to version 1, is that it
uses gpuArray() to transfer and store the A.matrix on the GPU before calling
the solver function. This causes all operations with the matrix to be done on the
GPU automatically, including matrix-vector and matrix-matrix operations. The
code for the equation solver is also almost identical to version 1, so we will not
show the implementation here. The difference is that it is no longer necessary
to call gpuArray(H) as H is computed and stored on the GPU already and that
a call to gather() has been added to the result of matrix-vector multiplications
to copy it back to the CPU.

4.2.2.4 Version 3

In version 2, the computation of the normal equations matrix is done exactly
as in version 1. However, since MATLAB does not support sparse matrices
on the GPU, the diagonal matrix D is transferred and stored on the GPU as
a dense matrix. This requires additional memory to store D and computing
a full matrix-matrix multiplication with a diagonal matrix seems inefficient.
Multiplying a diagonal matrix D with a general matrix A is equivalent to scaling
the row i in A with the corresponding diagonal element i in D. In this version,
we replace the computation of H with the code in Listing 4.6, which uses a
for-loop to scale the rows in A.

Listing 4.5: MATLAB GPU-based normal equations solver version 1
function [ x , data ] = SolveNEgpuv1 (k , A, D, b , data )

i f ( i s f i e l d ( data , ’ k ’ ) && k == data . k && i s f i e l d ( data , ’L ’ ) )
L = data .L ;

else
H = A. matrix ’ ∗ spdiags (D, [ 0 ] , length (D) , length (D) ) ∗

↪→ A. matrix ;
L = gather ( chol ( gpuArray ( f u l l (H) ) , ’ lower ’ ) ) ;
data . k = k ; data .L = L ;

end
x = L ’ \ (L\(b) ) ;

end
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Listing 4.6: Computation of H in version 3
H = A. matrix ;
for i =1: s ize (A. matrix , 1 )

H( i , : ) = D( i ) ∗H( i , : ) ;
end
H = A. matrix ’ ∗ H;

4.2.3 C/CUDA implementation

The final generic implementation of the interior point method is done in C with
CUDA. We have implemented it using available libraries such as CUBLAS and
MAGMA. CUBLAS is a dense BLAS implementation by NVIDIA, which imple-
ments all the standard BLAS operations on the GPU. MAGMA is a dense linear
algebra library, similar to LAPACK, for heterogeneous architectures, including
GPU support. It contains a very fast implementation of Cholesky factorization
on NVIDIA GPUs [LTND10].

The implementation is done such that all data is kept on the GPU and all
computation is done on the GPU as well. This is to avoid data transfers between
the CPU and the GPU, which can be costly. However, this requires the Amatrix
to be stored on the GPU. Since we use dense matrices on the GPU, this requires
a lot of memory, similar to version 2 of the MATLAB implementation. We will
describe this further in Section 4.2.3.7.

While most of the operations in the solver can be implemented with calls to
CUBLAS and MAGMA, there are a few operations, such as the step length
computation, which cannot be computed directly using BLAS and LAPACK op-
erations. For these operations, we have implemented CUDA kernels to compute
the result. In the following sections, we will describe some of the implementation
details.
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Listing 4.7: MATLAB
rP = s − A∗x + b ;

rD = c − A’∗ y ;

rC = −s .∗ y ;

Listing 4.8: C/CUDA
cublasDgemv ( ’N ’ , M, N, −1.0 , A, M, x , 1 ,

↪→ 0 . 0 , rP , 1) ;
cublasDaxpy (M, 1 . 0 , b , 1 , rP , 1) ;
cublasDaxpy (M, 1 . 0 , s , 1 , rP , 1) ;
cublasDgemv ( ’T ’ , M, N, −1.0 , A, M, y , 1 ,

↪→ 0 . 0 , rD , 1) ;
cublasDaxpy (N, 1 . 0 , c , 1 , rD , 1) ;
e lementMult ip lyVector ( s , y , rC , M) ;

4.2.3.1 Computing residual vectors

As mentioned above, the use of standard BLAS and LAPACK libraries for GPU
makes it easy to implement most of the solver. As an example of this, we show
the implementation of the residual vector computation in MATLAB in Listing
4.7 alongside the CUDA implementation in Listing 4.8.

The residual vector rP is computed by first using dgemv() to compute −Ax,
then daxpy() is used to compute −Ax + b, and finally daxpy() is used again
to compute s − Ax + b. The residual rD is computed similarly with a call to
dgemv() to compute −AT y and then daxpy() to compute g − AT y. Finally,
the residual rC requires element-wise vector multiplication, since the diagonal
matrices S and Y are stored as vectors. Element-wise vector multiplication is
not available in BLAS, so the function elementMultiplyVector() is our own
implementation of this operation.

4.2.3.2 Element-wise vector operations

As mentioned in the previous section, we require functions to do element-wise
vector operations to work with diagonal matrices stored as vectors. While
element-wise vector operations are not available in BLAS, they are rather simple
operations, which are easy to implement.

The implementation for element-wise vector multiplication is shown in Listing
4.9.

The function elementMultiplyVector_kernel() is the CUDA kernel, which
computes the element-wise multiplication. Each thread computes the element
corresponding to its global thread index by loading the associated elements from
each of the two input vectors, multiplying them, and storing the result in the
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Listing 4.9: CUDA code to compute element-wise vector multiplication
1 __global__ void e lementMult ip lyVector_kerne l (double∗ x ,

↪→ double∗ y , double∗ z , unsigned int N) {
2 unsigned int idx ;
3 for ( idx = blockIdx . x ∗ blockDim . x + threadIdx . x ; idx < N;

↪→ idx += gridDim . x ∗ blockDim . x )
4 z [ idx ] = x [ idx ] ∗ y [ idx ] ;
5 }
6 void e lementMult ip lyVector (double∗ x , double∗ y , double∗ z ,

↪→ unsigned int N) {
7 dim3 blockDim (128) ;
8 dim3 gridDim (\min ( (N−1) / blockDim . x + 1 ,32∗1024) ) ;
9 e lementMult ip lyVector_kernel<<<gridDim , blockDim>>>(x , y ,

↪→ z , N) ;
10 }

output vector. In case there are less threads than the number of elements, N ,
a loop is added, which increments the index with the total number of threads.
This allows threads to work on more than one element, if there are not enough
threads.

The function elementMultiplyVector() is the interface function, with which
we call the CUDA kernel. We define the number of threads per block to 128
and compute the required number of thread blocks based on the length of the
vector.

We have implemented similar functions to do element-wise vector division, as
well as functions to add a constant to a vector and set all the elements in a
vector to the same value. The implementation of these is essentially the same
as the element-wise multiplication. The only difference is changing line 4 in
Listing 4.9 with a different expression, therefore we will not show them here.

4.2.3.3 Computing the smallest element of a vector

For the computation of the initial point, as described in Listing 4.1, it is nec-
essary to find the smallest element in ȳ and s̄. While BLAS has a minimum
magnitude function, idamin(), which finds the index of the element that sat-
isfies min(abs(x)), there is no function to find the minimum of a vector, which
has negative elements as well.
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Listing 4.10: CUDA code to compute minimum of vector
1 __global__ void computeMinimum_kernel ( const unsigned int N,

↪→ double∗ x , double∗ r e s u l t )
2 {
3 extern __shared__ double sdata [ ] ;
4 unsigned int t i d = threadIdx . x ;
5 unsigned int i = blockIdx . x∗blockDim . x + threadIdx . x ;
6
7 // Load in t o shared memory
8 double va l = DBL_MAX;
9 i f ( i < N) {

10 va l = x [ i ] ;
11 }
12 sdata [ t i d ] = va l ;
13 __syncthreads ( ) ;
14
15 // Find min
16 for (unsigned int s = blockDim . x /2 ; s > 0 ; s>>=1) {
17 i f ( t i d < s ) {
18 sdata [ t i d ] = f \min ( sdata [ t i d ] , sdata [ t i d+s ] ) ;
19 }
20 __syncthreads ( ) ;
21 }
22
23 // Write l o c a l minimum
24 i f ( t i d == 0)
25 r e s u l t [ b lockIdx . x ] = sdata [ 0 ] ;
26 }

Our CUDA kernel to find the smallest element of a vector is based on a standard
sum reduction kernel, which is discussed extensively in [Har07]. The operation
to compute the sum of a vector is very similar to finding the minimum, as we
simply replace the addition operation with a minimum operation. With this
minor modification, it becomes an efficient kernel for finding the minimum. The
code is shown in Listing 4.10.

The kernel thread uses its global thread index to determine which element to
load. It sets val to the maximum possible value and then overwrites with the
threads element in the x vector. If the thread index exceeds the number of
elements, then val is left as the maximum value. This prevents excess threads
from affecting the result. The value is stored in shared memory and the thread
block is synchronized to ensure all threads in the block have loaded their value
into shared memory.
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Once all the elements have been loaded, the thread starts a loop, which compares
two elements in shared memory and stores the resulting minimum in shared
memory, reducing the number of elements to half. The next iteration of the
loop compares the elements from the previous iteration, reducing the number
of elements to half again. This continues until the minimum element in shared
memory is found and the result is written to an output vector corresponding to
the thread block index.

As there is no synchronization across the thread blocks in CUDA, the result is
that each thread block computes its own minimum for the elements it loaded into
shared memory. The resulting array of minima can then either be transferred to
the CPU and find the minimum there, or passed to the kernel again to further
reduce number of minima, until only one value remains.

4.2.3.4 Computing the step length

The computation of the step length is similar to the computation of the min-
imum. Instead of finding the minimum element in the entire vector, we must
instead find the minimum value of the computation − xi

∆xi
and only for elements

i, where ∆xi < 0. This means that we have a restriction on which elements
to include as well as a computation. This can be done by simply replacing the
lines 8 to 11 in Listing 4.10 with the code in Listing 4.11.

In this code, we set val to one, as this is the step length for elements where
∆xi ≥ 0. Then, we load the corresponding element in ∆x and if it is negative,
we compute the step length for the element and store it in val.

Listing 4.11: CUDA code to compute step length
double va l = 1 . 0 ;
i f ( i < N) {
double val_dx = dx [ i ] ;
i f ( val_dx < 0 . 0 )

va l = −(x [ i ] / val_dx ) ;
}
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4.2.3.5 Computing the normal equations matrix

There are two steps involved in computing the normal equations matrix, H =
ATDA. The diagonal matrix D must first be multiplied with the constraints
matrix A, and then the result is multiplied with the transpose matrix AT .
Multiplying a diagonal matrix D with a general matrix A is equivalent to scaling
the row i in A with the corresponding diagonal element i in D. This could be
done with a call to dscal() for every row, however it would result in a kernel
call for every row and the memory access would not be coalesced, since the
matrix is stored column-wise. Instead, we have implemented a CUDA kernel to
compute DA efficiently. The CUDA implementation is shown in Listing 4.12.

The interface function diagMatrixMultMatrix() creates a 2D thread grid with
2D thread blocks of size 32× 32, resulting in thread blocks of 512 threads. The
number of thread blocks in each dimension of the thread grid is computed by
dividing the dimensions of the result matrix with the corresponding thread block
dimension, such that there is a thread for each element in the result matrix, if
possible. We limit the maximum number of thread blocks in any dimension to
32768 and handle elements beyond that by reusing threads with a loop in the
kernel.

For 2D thread blocks, threads are grouped in a warp along the x-dimension. In
the kernel, we use the x-dimension to select the row to load, as data is stored
column-wise. This causes each thread in a warp to load adjacent values, which
results in coalesced reads and writes for optimal performance.

Once DA has been computed with the kernel, the result is multiplied with
AT with a call to dgemm(). It is interesting to note that a new function,
cublasDdgmm(), has been introduced in CUBLAS 5.5, which computes the re-
sult of a diagonal matrix multiplied with a general matrix. We have not used
this function, as it was not available at the time of our implementation and we
would still need to implement the other element-wise operations.

4.2.3.6 Factorization and triangular solve

The Cholesky factorization of a dense matrix and the triangular solve with
the resulting factor are both very easy to compute on the GPU by using the
MAGMA library. Among its many functions, it contains the LAPACK routines
dpotrf() and dpotrs(), which can be used to factorize and solve respectively.
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Listing 4.12: Kernel for multiplying a diagonal matrix with a dense matrix in
CUDA

__global__ void diagMatrixMultMatrix_kernel ( const double∗ x ,
↪→ const double∗ A, unsigned int lda , double∗ B, unsigned
↪→ int ldb , unsigned int M, unsigned int N) {

unsigned int i , j ;
for ( i = blockIdx . x ∗ blockDim . x + threadIdx . x ; i < M; i +=

↪→ gridDim . x ∗ blockDim . x ) {
double xval = x [ i ] ;
for ( j = blockIdx . y ∗ blockDim . y + threadIdx . y ; j < N; j

↪→ += gridDim . y ∗ blockDim . y ) {
B[ j ∗ ldb + i ] = A[ j ∗ lda + i ] ∗ xval ;

}
}

}
void diagMatrixMultMatrix ( const double∗ x , const double∗ A,

↪→ unsigned int lda , double∗ B, unsigned int ldb ,
↪→ unsigned int M, unsigned int N) {

dim3 blockDim (32 , 32) ;
dim3 gridDim (\min ( (M−1) / blockDim . x + 1 ,32∗1024) ,

↪→ \min ( (N−1) / blockDim . y + 1 ,32∗1024) ) ;
diagMatrixMultMatrix_kernel<<<gridDim , blockDim>>>(x , A,

↪→ lda , B, ldb , M, N) ;
}
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Figure 4.2: Memory usage of the generic GPU-based solver

The function magma_dpotrf_gpu() is the GPU-resident version, where it ex-
pects that the input is already on the GPU. It factorizes the passed positive-
definite symmetric matrix in-place and replaces the input matrix with the
Cholesky factorization. By doing so, it avoids requiring additional storage to
hold both the normal equations matrix and the resulting Cholesky factorization.

The function magma_dpotrs_gpu() is the triangular solve method, which can
be used to solve the system x = LT \L\x using the computed factor.

The function calls are shown in Listing 4.13. Note that in order for MAGMA
to get the full benefit of coalesced memory access, it requires that the leading
dimension of the H matrix is divisible by 16. This is done by computing Nb =
((N − 1)/16 + 1) × 16 and storing the normal equations matrix, with some
padding at the end of each column, if N is not divisible by 16.

Listing 4.13: Cholesky factorization and triangular solve with MAGMA
// Fac to r i z e H
magma_dpotrf_gpu( ’L ’ , N, H, Nb, &r e t ) ;
// Triangu lar s o l v e x = L ’\L\x
magma_dpotrs_gpu( ’L ’ , N, 1 , H, Nb, x , N, &r e t ) ;

4.2.3.7 Memory usage

Since CUBLAS and MAGMA are both libraries for dense computations, we
must store our matrices as dense full matrices, as we did with the MATLAB
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GPU implementations. Since our implementation keeps all the data on the GPU
permanently to avoid memory transfers, it requires that the GPU has enough
memory to store both the A matrix, which has m×n elements, and the normal
equations, which has n × n elements. Additionally, we must also store the
temporary result of DA, when computing the normal equations matrix ATDA.
This results in (2m× n+ n× n) elements required to be stored for the generic
implementation.

For our test case, we have m = 4Nt × Np + 2 × Nt and n = Np × Nt + Nt,
where Nt is the prediction horizon and Np is the number of power plants. The
memory usage is plotted on Figure 4.2 along with the memory limits of our test
system. The maximum amount of memory currently available for a single GPU
is 12 GB, which is also shown on the figure to show the maximum problem size
capable of being solved on current state-of-the-art GPUs.

4.2.4 Results

We have run the implementation with the test case described in Chapter 3,
where we keep either the prediction horizon or the number of power plants fixed
to 50, and then increase the other parameter to 160, which is approximately the
largest system we can solve in the C implementation, as shown on Figure 4.2.

In the following sections, we present the convergence and performance results
of the generic implementations.

4.2.4.1 Convergence

The implementations were run for each problem size until they met the ter-
mination criteria in (4.12) with the tolerances tolp = 10−9, told = 10−6 and
tolo = 10−9. The number of iterations required to converge is shown on Fig-
ure 4.3 on the following page. All the implementations converge in the same
number of iterations and the resulting residuals are identical, implying that our
implementations are numerically stable and identical.

4.2.4.2 Performance

We have run the described tests on the test machine mentioned in Section 1.4.
For the MATLAB implementations, we have used sparse matrices on the CPU,
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Figure 4.3: Convergence of the generic implementations

as the constraints matrix is very sparse, and we allowed MATLAB to make full
use of the four cores in the test machine.

4.2.4.3 Increasing the prediction horizon

The solution time of the different implementations is shown on Figure 4.4a and
a speed-up plot with the MATLAB implementation without GPU acceleration
as reference is shown on Figure 4.4b.

Version 1 of the GPU-accelerated MATLAB implementation has a speed-up of
approximately 1.5× to 2×. Since it only does Cholesky factorization on the
GPU, there is some overhead in transfering the computed normal equations
matrix to the GPU and transfering the resulting factor back, which limits the
performance.

Version 2 is slower than the purely CPU-based implementation. While this
version eliminates the cost of transfering the normal equations matrix to the
GPU, it must still transfer the computed factor back to the CPU. Additionally,
MATLAB does not have efficient support for multiplying a diagonal matrix with
a general matrix on the GPU, which results in a full dense multiplication when
computing the normal equations matrix. This is both highly inefficient and
memory-intensive. Finally, the implementation suffers from the dense matrix-
vector multiplications, as there is no sparse GPU support. The result is a
slower implementation which uses a larger amount of memory than all the other
implementations. This causes it to run out of memory at 100 power plants and
above.
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Figure 4.4: Performance of the generic implementations with variable predic-
tion horizon.

Version 3 is much slower for smaller systems, as the cost of iterating over the
rows of the diagonal matrix and scaling A row-by-row is very expensive, since
it requires a separate call for each row. However, for larger systems it benefits
from avoiding the dense diagonal matrix multiplication and performs slightly
better than version 2 and the CPU version. It also manages to solve slightly
larger systems than version 2, since it does not store D on the GPU, but still
runs out of memory at 140 power plants.

The C/CUDA implementation shows the best speed-up, starting with approx-
imately 3× to 3.5× speed-up for the smaller to medium systems, and settling
slightly above 2.5× speed-up for the larger systems before running out of mem-
ory. The best speed-up is achieved for the medium systems, as the normal
equations matrix reaches a sufficient size to get the best performance out of the
fast Cholesky factorization on the GPU. For larger systems, the gain is slightly
offset by the increased cost of multiplying with a dense constraints matrix, com-
pared to the sparse implementation on the CPU.

4.2.4.4 Increasing the number of power plants

Increasing the number of power plants results in slightly different performance
than increasing the prediction horizon. While an increase in either the prediction
horizon or the number of power plants result in roughly the same increase of
the size of the constraints matrix and normal equations matrix, it does make
a difference in the sparsity of the constraints matrix. The solution time is
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Figure 4.5: Performance of the generic implementations with variable number
of power plants.

shown on Figure 4.5a and a speed-up plot with the MATLAB implementation
as reference is shown on Figure 4.5b.

Version 2 and version 3 of the GPU-accelerated MATLAB implementation is
again slower than the CPU implementation for the same reasons as mentioned
in the previous section.

For smaller to medium sized problems, version 1 of the GPU-accelerated MAT-
LAB implementation and the C/CUDA implementation also show similar speed-
up, compared to when we increased the prediction horizon. However, for larger
systems we observe a clear difference. The C/CUDA implementation drops be-
low 2× speed-up, while the MATLAB implementation increases to above 2×
speed-up and becomes the fastest implementation. This is due to the Γ part in
the constraints matrix, which has dimensions Nt × (Nt ×Np), and is the most
dense part of the matrix. When the prediction horizon is increased, the number
of rows of Γ increases, resulting in more dense rows. When the number of power
plants is increased, the number of rows in Γ does not change, while the number
of rows in the sparse constraints, such as the bounds constraints, increases. This
results in more sparsity in the constraints matrix, which is beneficial for version
1 of the MATLAB GPU implementation as it, uses sparse matrix multiplication
on the CPU.
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Name Implemented in GPU usage
LPippdIneqPP MATLAB No

LPippdIneqPPGPUv1 MATLAB Cholesky
LPippdIneqPPGPUv2 MATLAB Matrix mult. + Cholesky
LPippdIneqPPGPUEx C/CUDA All

Table 4.2: Problem-specific solver implementations

4.3 Problem-specific implementation

In [ESJ09], the authors demonstrate that exploiting the structure in the con-
straints matrix, arising in a constrained optimal control problem, can substan-
tially reduce the solution time. In this section, we specialize our implementations
to our Power Plant Portfolio test case, described in Chapter 3, and extend the
implementations with GPU acceleration similarly to what we did in the previous
section. An overview of the problem-specific implementations described in this
section is shown in Table 4.2.

4.3.1 Exploiting structure

The constraints matrix, Ā, in our test problem from Chapter 3 is shown in
(4.14).

Ā =



I 0

−I 0

0 I

Ψ 0

−Ψ 0

Γ I


(4.14)

The unique structure of this constraints matrix can be utilized to efficiently
compute matrix-vector multiplication, as well as the normal equations matrix,
which must be factorized to compute the Newton direction in the interior point
method.
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4.3.1.1 Matrix-vector multiplication

The matrix-vector multiplication operations with the problem-specific constraints
matrix, Ā, can be reduced to computations involving the structured sub-blocks
in the constraints matrix. Let Ā have the structure in (4.14), then the matrix-
vector and matrix-transpose-vector multiplication can be computed as shown in
(4.15) and (4.16), respectively.

Ā

[
x1

x2

]
=



b1

b2

b3

b4

b5

b6


=



x1

−x1

x2

Ψx1

−Ψx1

Γx1 + x2


(4.15)

ĀT



x1

x2

x3

x4

x5

x6


=

[
b1

b2

]
=

[
x1 − x2 + ΨT (x4 − x5) + ΓTx6

x3 + x6

]
(4.16)

4.3.1.2 Constructing the normal equations matrix

The computation of the problem-specific normal equations matrix, H̄ = ĀTDĀ,
can be reduced to

[
H̄11 H̄12

H̄21 D̄

]
(4.17)

where

H̄11 = D1 +D2 + ΨT (D4 +D5)Ψ + ΓT
uD6Γu

H̄12 = H̄T
21 = ΓT

uD6

D̄ = D3 +D6

(4.18)
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and Di = diag(di), D = [d1, d2, d3, d4, d5, d6]. This follows from straight-forward
matrix-matrix multiplication.

4.3.1.3 Solving Newton direction

The structure of the problem-specific normal equations matrix, H̄, makes it
possible to solve the system

H̄∆x = b (4.19)

by stating it as

[
H̄11 H̄12

H̄T
12 D̄

][
∆x1

∆x2

]
=

[
b1

b2

]
(4.20)

Since D̄ is diagonal, it is trivial to invert, and we can eliminate the second row

H̄T
12∆x1 + D̄∆x2 = b2

D̄∆x2 = b2 − H̄T
12∆x1

∆x2 = D̄−1(b2 − H̄T
12∆x1)

(4.21)

and solve only for x1

H̄11∆x1 + H̄12∆x2 = b1

H̄11∆x1 + H̄12(D̄−1(b2 − H̄T
12∆x1)) = b1

H̄11∆x1 + H̄12D̄
−1b2 − H̄12D̄

−1H̄T
12∆x1 = b1

(H̄11 − H̄12D̄
−1H̄T

12)∆x1 = b1 − H̄12D̄
−1b2

Ĥ∆x1 = b̂

(4.22)

where

Ĥ = H̄11 − H̄12D̄
−1H̄T

12

b̂ = b1 − H̄12D̄
−1b2

(4.23)
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This results in a smaller system to factorize as the dimension of Ĥ is (Nt×Np)2,
whereas the dimension of H̄ is (Nt ×Np +Nt)

2.

4.3.2 Plain MATLAB implementation

The MATLAB implementation of the problem-specific solver is implemented
by using the generic implementation and simply replacing the normal equation
solver with a problem-specific one. Instead of storing the entire A matrix and
passing it to the solver, we instead pass a structure A, which contains the
dimensions of A, the Ψ matrix as sparse, and the Γ matrix as dense. The
Γ matrix is stored dense as this has shown to achieve the best performance.
The structure also contains the function pointers funAx and funAtx, which are
implemented to compute the matrix-vector multiplication, as shown in (4.15)
and (4.16) respectively.

The implementation of the normal equation solver is shown in Listing 4.14.
The function reuses an existing factorization from the same iteration. If the
normal equations matrix has not been factorized in the iteration yet, then the
sub-matrices H̄11, H̄12 and D̄ are computed according to (4.18) and the reduced
matrix Ĥ in (4.23) is factorized. Finally, x1 is computed by solving Ĥx = b̂ and
x2 is computed from x1.

4.3.2.1 Results

We have run the same test as the one presented in Section 4.2.4.2 for the
problem-specific MATLAB implementation to investigate the speed-up achieved
from exploiting the structure of the constraints matrix. The speed-up when
varying either the prediction horizon, or the number of power plants, is shown
on Figure 4.6a and Figure 4.6b respectively.

The problem-specific solver achieves a reliable 4× to 5× speed-up compared to
the generic implementation, although the performance drops slightly for systems
with many power plants. As shown in (4.22), we can reduce the size of the
normal equations matrix H̄ to the reduced matrix Ĥ and only factorize this
smaller matrix. The dimensions of Ĥ is n̂ × n̂, where n̂ = Nt × Np, while the
dimensions of the full normal equation matrix H̄ is n×n, where n = Nt×Np+Nt.
This means that the rows and columns we are eliminating, when exploiting the
structure, are directly related to the prediction horizon. This explains the better
performance when increasing the prediction horizon instead of the number of
power plants.
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Listing 4.14: Cholesky factorization and triangular solve with MAGMA
function [ x , data ] = funSolveNE (k , A, D, b , data )

i f ( i s f i e l d ( data , ’ k ’ ) && k == data . k && i s f i e l d ( data , ’L ’ ) )
L = data .L ; h11 = data . h11 ; h12 = data . h12 ; Dbar =

↪→ data . Dbar ;
else

Nt = A.MPC. Nt ; Np = A.MPC.Np; Psi = A.MPC. Psi ;
↪→ A.MPC.Gamma;

[D1 ,D2 ,D3 ,D4 ,D5 ,D6 ] = . . .
s p l i tD i a gona l (D, Nt∗Np, Nt∗Np, Nt , Nt∗Np, Nt∗Np, Nt) ;

h12 = Gamma’ ∗ D6 ;
h11 = D1 + D2 + Psi ’ ∗ (D4 + D5) ∗ Psi + h12 ∗ Gamma;
Dbar = D3 + D6 ;
H = h11 − h12∗ inv (Dbar ) ∗h12 ’ ;
L = chol (H, ’ lower ’ ) ;
data . k = k ; data .L = L ;
data . h11 = h11 ; data . h12 = h12 ; data . Dbar = Dbar ;

end
b1 = b ( 1 : s ize ( h11 , 1 ) ) ; b2 = b( s ize ( h11 , 1 ) +1:end) ;
rhs = b1 − h12 ∗ inv (Dbar ) ∗ b2 ;
x1 = L ’ \ (L\( rhs ) ) ; x2 = inv ( h22 ) ∗ ( b2 − h12 ’∗ x1 ) ;
x = [ x1 ; x2 ] ;

end
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Figure 4.6: Speed-up of the problem-specific MATLAB implementation com-
pared to the generic MATLAB implementation
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4.3.3 MATLAB with GPU

The problem-specific implementation in MATLAB with GPU is implemented
in two versions, where version 1 uses the GPU for Cholesky factorization and
version 2 uses the GPU for both matrix-multiplication and Cholesky factoriza-
tion. In both versions, we have chosen to store the Γ matrix as dense, because
it results in the best performance. As in the generic implementations, it still
transfers the factorization back to the CPU and does the triangular solve on the
CPU for reasons mentioned in Section 4.2.2.1.

The implementation of this version follows the same minor modifications, which
were done to the generic version when adding GPU support, where calls to
gpuArray() and gather() were added, so we will not show the code here.

4.3.4 C/CUDA implementation

The problem-specific CUDA implementation shares most of its code with the
generic implementation. Like the MATLAB implementation, the key difference
here is the replacement of the normal equations solver as well as the matrix-
vector multiplication.

4.3.4.1 Memory usage

In the generic implementation, the constraints matrix A was stored as a dense
matrix, which resulted in out-of-memory problems. In this implementation, we
avoid the storage of Ā and only store Γ as dense instead. It is not necessary
to store the Ψ matrix, as operations with the Ψ matrix can be implemented
with multiple BLAS function calls. This reduces the memory usage of this
implementation to (2Nt × (Nt × Np) + (n × n)) elements, as we only need to
store Γ, DΓ and the normal equations matrix, making it possible to solve larger
systems, as shown on Figure 4.7. Thus, this will enable us to increase either Nt

or Np up to 460 in our current setup, when the other parameter is 50.

4.3.4.2 Matrix-vector multiplication

The MATLAB code for doing matrix-vector multiplication with Ā is shown in
Listing 4.15 alongside the equivalent CUDA code in Listing 4.16.
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Figure 4.7: Memory usage of the problem-specific GPU-based solver

Listing 4.15: MATLAB
b1 = x1 ;

b2 = −x1 ;

b3 = x2 ;

b4 = Psi ∗x1

b5 = −b4 ;

b6 = x2 ;
b6 = b6+Gamma∗x1 ;

Listing 4.16: CUDA
cublasDaxpy (Nu, 1 . 0 , x , 1 , b , 1 ) ;
b += Nu; // b2
cublasDaxpy (Nu,−1.0 , x , 1 , b , 1 ) ;
b += Nu; // b3
cublasDaxpy (Nt , 1 . 0 , x + Nu, 1 , b , 1 ) ;
b += Nt ; // b4
cublasDaxpy (Nu, 1 . 0 , x , 1 , b , 1 ) ;
cublasDaxpy (Nu−Np,−1.0 , x , 1 , b + Np, 1 ) ;
cublasDaxpy (Nu,−1.0 ,b , 1 , b+Nu, 1 ) ;
b += Nu∗2 ; // b6
cublasDaxpy (Nt , 1 . 0 , x + Nu, 1 , b , 1 ) ;
cublasDgemv ( ’N ’ ,Nt ,Nu, 1 . 0 ,Gamma,

↪→ Nt , x , 1 , 1 . 0 , b , 1 ) ;

Since Γ is stored as a dense matrix, we can simply call dgemv() to multiply it
with a vector. Multiplying the identity matrix with a vector, which is equivalent
to simply copying the vector, is done with a call to daxpy() to add it to the
resulting output vector. We do not use dcopy(), as we also want to multiply
with −1.0 for the negative identity matrix. Note that this requires that the
output vector is initialized to zero. The Ψ matrix multiplied by a vector is done
with two calls to daxpy(), one for the main diagonal and one for the negative
subdiagonal, which subtracts the previous elements.

The matrix-transpose-vector multiplication can be implemented in the same
way as the matrix-vector multiplication by calling CUBLAS appropriately.
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Listing 4.17: Efficient construction of problem-specific normal equations ma-
trix in CUDA

// H21
mpcDGamma(Nt , Np, Gamma, d6 , H + Nu, Nb) ;
// H11
cublasDcopy (Nu, d1plusd2 , 1 , H, Nb) ;
mpcPsiTDPsi (Nt , Np, d4plusd5 , H, Nb) ;
cublasDgemm( ’T ’ , ’N ’ , Nu, Nu, Nt , 1 . 0 , Gamma, Nt , H + Nu, Nb,

↪→ 1 . 0 , H, N) ;
// H22
cublasDcopy (Nt , d3plusd6 , 1 , H+Nu∗Nb+Nu, Nb) ;

4.3.4.3 Solving the normal equations system

In this implementation, we have not exploited the fact that the normal equa-
tions can be factorized as a slightly smaller system. Instead, the full normal
equations matrix, H̄, is constructed efficiently as described in Section 4.3.1.2,
and factorized. Since MAGMA’s Cholesky factorization implementation works
in-place, we avoid allocating additional memory to store the factorization and
simply overwrite the normal equations matrix instead. Furthermore, only the
lower triangle is computed as MAGMA’s Cholesky factorization implementation
ignores the upper-half of the matrix when computing the lower factor.

The CUDA code for the construction of H̄ is shown in Listing 4.17. The variables
d1plusd2, d3plusd4 and d3plusd6 are vectors, which are the diagonal of the
diagonal matrices diag(d1 + d2), diag(d3 + d4), and diag(d3 + d6), respectively.

The computation of H̄21 = D6Γ can be done with the diagonal matrix times
general matrix kernel, which we described in Section 4.2.3.5. Once H̄21 is com-
puted, we reuse the result of the computation to compute ΓTD6Γ = ΓT H̄21.
The computation of ΨT (D4 +D5)Ψ is done with four calls to daxpy().

4.3.5 Results

We have run the problem-specific implementations with the test case described
in Chapter 3. In the tests, we keep either the prediction horizon or the number
of power plants fixed to 50 and then increase the other parameter. Since the
problem-specific implementation uses much less memory, we can solve systems
where the second parameter goes up to 460.
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Figure 4.8: Convergence of the problem-specific implementations

In the following sections, we present the convergence and performance results
of the problem-specific implementations.

4.3.5.1 Convergence

The implementations were run for each problem size until they met the ter-
mination criteria in (4.12) with the tolerances tolp = 10−9, told = 10−6 and
tolo = 10−9, or until they reach 50 iterations, which we have defined as the
maximum allowed iterations. The number of iterations required to converge is
shown on Figure 4.8. All the problem-specific implementations converge in the
same number of iterations and the residuals are identical.

4.3.5.2 Performance

The performance tests for the problem-specific implementations were also done
on the test machine mentioned in Section 1.4. In the MATLAB tests, we allow
MATLAB to make full use of the four cores in the test machine.



66 IPM for LP Problems in Inequality Form on GPU

20406080100 140 180 220 260 300 340 380 420 460
0

140
280
420
560
700
840
980

1120
1260
1400
1540
1680
1820
1960
2100
2240
2380
2520
2660

Performance (Power plant portfolio impl.)

Prediction horizon

T
im

e 
[s

]

 

 

LPippdIneqPP
LPippdIneqPPGPUv1
LPippdIneqPPGPUv2
LPippdIneqPPGPUEx

(a) Time

20406080100 140 180 220 260 300 340 380 420 460
0

1
2

3
4

5
6

7
8
9

10
11

12
13

Speed−up (Power plant portfolio impl.)

Prediction horizon
S

pe
ed

−
up

 

 

LPippdIneqPP (ref.)

LPippdIneqPPGPUv1

LPippdIneqPPGPUv2

LPippdIneqPPGPUEx

(b) Speed-up

Figure 4.9: Performance of the problem-specific implementations with variable
prediction horizon.

4.3.5.3 Increasing the prediction horizon

The solution time of the problem-specific implementations is shown on Figure
4.9a and a speed-up plot with the problem-specific MATLAB implementation
without GPU acceleration as reference is shown on Figure 4.9b.

Version 1 of the GPU-accelerated MATLAB implementation shows almost the
same speed-up as it did in the generic implementation. Both implementations
benefit from the same problem-specific CPU implementation of the normal equa-
tions matrix so their performance is increased similarly. As the problem size
increases, the speed-up increases slightly until it runs out of memory. Interest-
ingly, the implementation fails to solve with a prediction horizon of 300 time
steps with an out-of-memory error, yet manages to solve the larger system with
320 time steps. This appears to be an artifact of how MATLAB manages its
device memory. The only memory, which is used on the device, is the normal
equations matrix and the resulting Cholesky factor, as MATLAB does not per-
form in-place Cholesky factorization on the GPU, which should result in 2N×N
elements on the GPU. There is no clear explanation as to why a problem with a
larger N manages to fit within device memory, while a problem with a slightly
smaller N fails to do so.

Version 2 of the GPU-accelerated MATLAB implementation is much better in
the problem-specific implementation with a 2× speed-up for smaller systems and
almost 4× speed-up for larger systems. Since only the Γ matrix is stored densely
on the GPU, the memory-use is less and we avoid dense multiplications with
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Figure 4.10: Performance of the problem-specific implementations with vari-
able number of power plants.

the constraints matrix, which caused the reduced performance in the generic
version. However, it still runs out of memory before version 1 due to storing
and computing with Γ on the GPU. This version also experiences an out-of-
memory error for a smaller system of 220 time steps, while it succeeds at 240
time steps.

The C/CUDA implementation shows an impressive speed-up, starting with 2×
for smaller systems but rapidly increasing to 10× for medium systems and up to
11× for larger systems. Since this implementation is entirely on the GPU, there
are no data transfers involved in the solving. Furthermore, it no longer suf-
fers from the dense constraints matrix multiplication, which limited the generic
implementation. Since the normal equations matrix is almost entirely dense,
the performance benefit from using a GPU is high. This results in the best
performing implementation.

4.3.5.4 Increasing the number of power plants

The solution time of the problem-specific implementations is shown on Figure
4.10a and a speed-up plot with the MATLAB implementation without GPU
acceleration as reference is shown on Figure 4.10b.

The speed-up results are very similar to the previous test where we increased
the prediction horizon instead. Since we have eliminated the dense constraints
matrix multiplication, there is not much difference between the systems.
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4.4 Conclusion

We implemented a primal-dual interior point algorithm with Mehrotra predictor-
corrector for linear optimization problems in the inequality form as both a
generic solver, which does not exploit the structure in the constraints matrix,
as well as a problem-specific solver, which exploits the structure in our test
case from Chapter 3. Both implementations were extended to include GPU
acceleration for various parts of the solver in MATLAB, as well as a full GPU
implementation in C. The MATLAB CPU implementations uses sparse matri-
ces, while the GPU implementations uses dense matrices on the GPU.

The generic MATLAB implementation manages to achieve minor speed-up of
1.5× to 2×, compared to the multi-threaded MATLAB CPU implementation,
by using a GPU to do the dense Cholesky factorization, as long as it still uses the
sparse matrix-multiplication on the CPU. When the sparse constraints matrix
is transferred to the GPU and used as a dense matrix in MATLAB, it results
in worse performance than the CPU version. The best speed-up of between
1.7× to 4× is achieved by implementing the entire algorithm in C/CUDA and
doing all operations on the GPU. This avoids expensive data transfers between
the CPU and GPU and, even though the matrix operations with the sparse
constraints matrix are done as dense, it still manages to outperform the sparse
CPU implementation due to the high memory bandwidth and performance of the
GPU. However, doing so incurs a large memory cost and with limited memory
available on the GPU, it severely limits the maximum size of the problems
possible to solve. Furthermore, extending the MATLAB version with GPUs is
simple and can be done without prior knowledge of GPUs. The full C/CUDA
implementation, however, requires specific implementations of CUDA kernels
for operations not supported by the standard BLAS operations.

The problem-specific implementation exploited the structure of the model pre-
dictive control problem from Chapter 3 to efficiently construct the normal equa-
tions matrix and even reduced the size of the factorization. This produced
roughly a 3.5× to 5.3× speed-up compared to the generic CPU implementation,
performing even better than the best GPU-accelerated generic implementation.
Applying GPU acceleration to the problem-specific MATLAB solver showed an
additional 1.5× to 4× speed-up compared to the problem-specific MATLAB
solver on the CPU. Finally, the full C implementation achieved an impressive
10× to 11× speed-up over the CPU implementation for systems with over 9000
decision variables.

Our results show that the GPU can provide a speed-up in the solution time of
constrained optimization problems, when the normal equations matrix becomes
dense. The GPU is exceptional at dense matrix-matrix multiplication, which is
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beneficial for both the computation of the normal equations matrix and Cholesky
factorization. Through the use of freely available libraries, it is possible to easily
implement most of the algorithm, however some operations still require kernel
implementations.

The inequality form of our test case problem resulted in a near-dense normal
equations matrix, which is also why we achieved such a great speed-up using
GPUs. The near-dense normal equations matrix was due to a few almost dense
rows in the constraints matrix caused by the Γ sub-matrix, which causes a large
dense window in the normal equations matrix ATDA. A remedy to this could
be to solve the optimization problem in standard form by introducing slack
variables. While this increases the number of variables in the system, it results
in the normal equations matrix ADAT instead, where the sparsity is unaffected
by dense rows and instead affected by dense columns. In [BFV92], Birge et al.
propose choosing either the inequality form or the standard form depending on
the fill-in in the normal equations matrix. We will look at solving the problem
with an interior point method for linear optimization problems in standard form
in Chapter 5.
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Chapter 5

GPUOPT - Interior Point
Method Toolbox on CPU

and GPU

In Chapter 4, we solved the test case from Chapter 3 by solving the linear
optimization problem in the inequality form. This form can be beneficial for
model predictive control problems, as they consist mostly of inequality con-
straints and can easily incorporate a quadratric term in the normal equations
form for quadratic optimization problems. However, in the inequality form,
the normal equations matrix for our test problem resulted in an almost dense
matrix. Consequently, the Cholesky factor is also dense. This was due to a
few near-dense rows in the constraints matrix, caused by the Γ term, and this
resulted in a high memory requirement, which limited the size of the systems
we could solve. To handle larger problems, it is necessary to either reduce the
storage requirements of the Cholesky factorization by maintaining sparsity, or
to avoid the factorization all together by using an iterative solver.

An alternative formulation of the optimization problem is the standard form,
which results in slightly different KKT conditions. The normal equations matrix
in this form is affected by dense columns instead of dense rows. This makes it
possible to maintain sparsity for our test case, and other similarly structured
model predictive control problems.
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In this chapter, we describe the development of an optimization toolbox with
a primal-dual interior point method on CPU and GPU, which supports both
formulations. The toolbox is called GPUOPT, which is short for GPUlab Op-
timization Toolbox. We design the interior point method to be modular, which
separates the matrix operations and linear solver from the core interior point
method. This makes it possible to easily replace the components with alterna-
tive implementations, as well as problem-specific implementations, like the one
from Chapter 4.

In addition to the Mehrotra predictor-corrector algorithm used in Chapter 4,
we extend the implementation of the interior point method with additional
techniques to improve convergence, such as primal-dual regularization [AG99],
multiple centrality correctors [Gon96], and weighted corrector directions [CG08].

5.1 Method

The primal-dual interior point method for the standard form, described in Sec-
tion 2.3.3 on page 20, as well as the primal-dual interior point method for the
inequality form, described in Section 4.1 on page 36, for linear optimization
problems are implemented in GPUOPT. Instead of implementing the interior
point method for a single form, and converting an input problem to that par-
ticular form, we use the method corresponding to the form passed by the user,
as the method used can have a large influence on the performance.

While the primal-dual interior point method is implemented for both forms, we
focus our description in this chapter on Mehrotra’s predictor-corrector method
for the standard form. The standard form of a linear optimization problem is
repeated here for reference

Primal Dual

min
x

φp = cTx

s.t. Ax = b

x ≥ 0

max
y,s

φd = bT y

s.t. AT y + s = c

s ≥ 0

(5.1)

In addition to the Mehrotra predictor-corrector algorithm, we extend the primal-
dual interior point method with additional techniques to improve convergence,
which we describe in the following sections. The techniques are described for
the standard form method, but are also implemented for the inequality form.
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5.1.1 Initial point

The initial point in our implementation uses Mehrotra’s initial point heuristic
[Meh92, NW06]. We described this heuristic for the standard form in Section
2.3.4.2 and for the inequality form in Section 4.1.2.

While our implementation does not feature any warm-start strategies, the user
may optionally disable the heuristic and specify an alternative initial point in
the toolbox. This can be useful when using our solver to test warm-starting
strategies.

5.1.2 Step length

The step length is computed as described in Section 2.3.4.1. Per default, the
implemented interior point method uses the equal step length strategy in (2.26)
when taking a step, however the user can switch to the unequal primal and dual
step length in (2.25). Our tests use the default equal step length strategy.

5.1.3 Termination criteria

The termination criteria implemented for the interior point method are defined
as

‖rp‖
1 + ‖b‖

≤ tolp and
‖rd‖

1 + ‖c‖
≤ told and

xT s/n

1 + |cTx|
≤ tolo (5.2)

for the standard form, as described in Section 2.3.4.3, and

‖rp‖
1 + ‖b‖

≤ tolp and
‖rd‖

1 + ‖c‖
≤ told and

sT y/m

1 + |cTx|
≤ tolo (5.3)

for the inequality form, as described in Section 4.1.3.

A user callback function can also be defined, which is called at the end of every
interior point iteration. In this callback function, the user can inspect the state
of the interior point method, such as residuals and latest primal and dual step
length, and terminate the method early. This allows for an implementation of
an user-defined termination criterion.
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5.1.4 Regularization

As the interior point method approaches the optimal solution, both the aug-
mented system and the normal equations form becomes very ill-conditioned.
This is due to the complementarity matrix, Θ = S−1X. As the iterates for the
complementarity pair, (x, s), in the interior point method approaches the opti-
mal solution, (x∗, s∗), they display a partition into the sets B and N [Gon12b,
Wri97] such that

xj → x∗j > 0 and sj → s∗j = 0, for j ∈ B
xj → x∗j = 0 and sj → s∗j > 0, for j ∈ N

(5.4)

As a consequence of this partitioning, the complementary matrix, Θ = S−1X,
has elements which either go towards infinity or towards zero as we approach the
optimal solution. Direct methods, such as Cholesky factorization, are generally
not affected by this [Gon12b]. In contrast, iterative methods such as conjugate
gradient are highly susceptible to ill-conditioning.

To use conjugate gradient to solve the optimization problem, Gondzio pro-
poses a two-step method where the original problem is regularized and a partial
Cholesky preconditioner is created for conjugate gradient [Gon12b]. In this sec-
tion, we briefly describe the regularization, which was originally introduced in
[AG99]. The preconditioner is described in Chapter 6, where we present the
preconditioned conjugate gradient solver.

The regularization is done by adding a diagonal quadratic term to both the
primal and dual objective function of (5.1)

Primal min
x

φp = cTx+
1

2
(x− x0)TRp(x− x0)

s.t. Ax = b

x ≥ 0

(5.5)

Dual max
y

φd = bT y − 1

2
(y − y0)TRd(y − y0)

s.t. AT y + z = c

z ≥ 0

(5.6)

The matrices Rp and Rd are diagonal regularization matrices and x0 and y0 are
proximal terms set to the solution of the previous iteration. This results in the
regularized system −Rp AT I

A Rd 0

S 0 X


∆x

∆y

∆s

 =

rdrp
rc

 (5.7)
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which can be reduced to the following regularized augmented system form[
−(Θ−1 +Rp) AT

A Rd

][
∆x

∆y

]
=

[
r̄d −X−1rc

r̄p

]
(5.8)

where Θ = S−1X. Note that by setting the proximal terms equal to the previous
iteration, the right-hand side is unaffected by the regularization. The normal
equation form of the regularized augmented system is

(AD̄AT +Rd)∆y = rp +AD̄(X−1rc − rd) (5.9)

where D̄−1 = (Q + Θ−1 + Rp). If the regularization terms Rp and Rd are set
to the zero matrix, then it is equivalent to solving the non-regularized problem.
The use of regularization results in a perturbed system, and it is therefore
important to keep the elements in Rp and Rd small. Gondzio suggests choosing
Rp and Rd adaptively, where only the elements dangerously close to zero are
regularized, to minimize the perturbation of the original problem. Due to time
constraints, this is currently not used in our implementation and the terms are
instead kept small, such as 10−8.

5.1.5 Multiple centrality correctors

Multiple centrality correctors (MCC) are introduced in [Gon96], and described
in [Col07] as well. It is an iterative technique to improve the centrality and
achieve a larger step length. Given a search direction, (∆x,∆y,∆s), and asso-
ciated primal and dual step lengths, αp and αd respectively, multiple centrality
correctors aim to increase the primal and dual step length for some aspiration
level, δ ∈ (0, 1). We start by computing the following trial point

x̄ = x+ (αp + δ)∆x (5.10)
s̄ = s+ (αd + δ)∆s (5.11)

and the corresponding complementarity products

v̄ = X̄S̄e (5.12)

where X̄ = diag(x̄) and S̄ = diag(s̄). Then we define a target for the Newton
direction, where we attempt to bring the complementarity elements within a
symmetric neighbourhood of the central path, Ns(γ), for some γ ∈ (0, 1), such
that

γµ ≤ v̄i ≤ γ−1µ (5.13)



76 GPUOPT - Interior Point Method Toolbox on CPU and GPU

The target, t, is then defined as

ti =


γµ− v̄i if v̄i ≤ γµ
γ−1µ− v̄i if v̄i ≥ γ−1µ

0 otherwise

(5.14)

and the corrector is computed by solving−Rp AT I

A Rd 0

S 0 X


∆xm

∆ym

∆sm

 =

0

0

t

 (5.15)

for the regularized system. Once the direction is computed from solving (5.15),
it is added to the original direction to compute the new direction

(∆yp,∆yp,∆sp) = (∆x,∆y,∆s) + (∆xm,∆ym,∆ym) (5.16)

Subsequently, the primal and dual step lengths, ᾱp and ᾱd respectively, are
computed for the new direction. In our implementation, we evaluate the primal
and dual separately when selecting directions, and only accept the new corrector
if it actually increases the step length, such that

(αp,∆x) =

{
(ᾱp,∆xp) if ᾱp > αp

(αp,∆x) otherwise
(5.17)

(αd,∆y,∆s) =

{
(ᾱd,∆yp,∆sp) if ᾱd > αd

(αd,∆y,∆s) otherwise
(5.18)

Multiple centrality correctors can be used iteratively by computing a new cor-
rector from the computed direction of a previous multiple centrality corrector
iteration. The optimal number of centrality correctors to apply is problem-
dependent, and also heavily depends on the linear solver used to compute the
Newton direction.

Computing the multiple centrality corrector requires computing a new Newton
direction. If a direct method is used, the factorization can be reused and the
corrector is cheap to compute compared to the cost of the factorization. In
contrast, if an iterative method is used, it is expensive to compute the corrector
and the cost of computing the corrector may be greater than the benefit of
using a multiple centrality corrector. For iterative methods, it is therefore best
to keep the number of centrality correctors to a minimum or even avoid multiple
centrality correctors entirely depending on the problem.

In our implementation, we let the user define the maximum number of centrality
correctors to apply per interior point iteration, and also terminate early if a cen-
trality corrector does not improve the iteration step length, αk = min(αp, αd),
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Listing 5.1: Multiple centrality correctors
Given i t e r a t e (x, y, s) , s earch d i r e c t i o n (∆x,∆y,∆s) , pr imal and

↪→ dual s tep l ength (αp, αd ) , and maximum number o f
↪→ c o r r e c t o r s (k )

do
Compute i t e r a t i o n step l ength αk = min(αp, αd)
Compute (∆xm,∆ym,∆sm ) by s o l v i n g (5.15)
Compute (∆xp,∆yp,∆sp ) accord ing to (5.16)
Compute step l ength ᾱp and ᾱd such that
x+ ᾱp∆xp > 0 and s+ ᾱd∆sp > 0 .

Set (αp,∆x) and (αd,∆yp,∆sp ) accord ing to (5.17) and (5.18) .
while ( number o f i t e r a t i o n s < k and min(αp, αd) ≥ 0.1αk )

by a fraction of its aspiration level, δ. The full algorithm is summarized in
Listing 5.1.

5.1.6 Weighted corrector directions

Recognizing the fact that the correctors in interior point methods do not always
increase the step length, Colombo et al. introduce weighted corrector directions
[CG08]. As the name implies, weighted corrector directions apply a weight to
the corrector direction, independent of the step length, instead of applying the
full corrector to the Newton direction. Given a search direction, (∆x,∆y,∆s),
and a corrector, (∆xc,∆yc,∆sc), the new search direction is determined by
computing

∆x = ∆xa + ωp∆xc (5.19)
(∆y,∆s) = (∆ya,∆sa) + ωd(∆yc,∆sc) (5.20)

where ωp ∈ (0, 1] and ωd ∈ (0, 1]. This allows different weights in the primal
and dual direction as also proposed in [CG08].

The weights, ωp and ωd, are found by using a simple line search algorithm. The
search interval is defined as [αpαd, 1] and a line search of k steps is done to
find the optimal weight. Weighted corrector directions can be applied to the
corrector term in Mehrotra’s predictor-corrector algorithm, as well as the cor-
rector terms in the multiple centrality correctors algorithm. This is done in our
implementation and the user may specify the maximum number of steps to use
in the line search. If the number of steps is set to 1, then it is equivalent to dis-
abling weighted corrector directions and taking a full corrector step. Evaluating
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Figure 5.1: Component overview of toolbox

a weight for weighted corrector directions is inexpensive, as it does not require
solving the KKT system to compute a new Newton direction.

5.2 Implementation overview

The implementation of our interior point method is split into multiple compo-
nents, which are connected through function pointers. This makes it possible
to easily replace a particular component with an alternative implementation of
it. We briefly introduce the components here, and then go in further detail in
the following sections. Figure 5.1 shows an overview of the components, along
with the implemented versions of each.

The IPM component is the main interior point method component, which
implements the primal-dual interior point method described in Section 5.1.

The Matrix component is the matrix-vector multiplication component used
by the IPM component to do all the matrix-vector multiplications, e.g. when
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residual vectors are computed. We have implemented the matrix-vector opera-
tions with dense BLAS operations, as in Chapter 4, as well as a general sparse
matrix-vector. The sparse implementation is done with CUSPARSE for the
GPU and with both CHOLMOD [Dav] and standard C on the CPU.

The Solver component consists of a number of different linear system solvers,
which are used by the IPM component to compute the Newton direction in
(2.29). It includes a dense factorization solver based on LAPACK, a precon-
ditioned conjugate gradient solver for the normal equations form and a sparse
Cholesky factorization solver using CHOLMOD. CHOLMOD is a supernodal
sparse Cholesky factorization implementation for the CPU by Tim Davis [Dav].

The CG component is an implementation of the preconditioned conjugate
gradient algorithm, which is used by the PCG-based linear solver. This compo-
nent is implemented entirely independent of the interior point method and can
be used as a generic preconditioned conjugate gradient solver on either CPU or
GPU. It is described in detail in Chapter 6.

The Dispatcher component is used by all the other components to avoid
implementing the algorithms twice, both for CPU and GPU. It uses a function
table to dispatch the numerical operations and memory allocation to either the
CPU or GPU.

The Test case component is an implementation of the matrix component
interface for our test case from Chapter 3. It includes both matrix-vector mul-
tiplications, satisfying the interface for the Matrix component, as well as ad-
ditional functions required by the preconditioned conjugate gradient method.
The problem-specific functions have been implemented for both the inequality
form and the standard form of the problem. It serves as an example of how the
toolbox may be used with a problem-specific implementation. This component
is described in Chapter 6.

5.3 Dispatcher

The dispatcher is used to delegate numerical operations to either the CPU or
the GPU. This allows us to unify most of the code for our algorithms. Instead
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Listing 5.2: Partial vtable
typedef struct d i spatch {

dispatchVariant_t var i ant ;
. . .
void (∗daxpy ) ( const int N, const double alpha , const double

↪→ ∗X, const int incX , double ∗Y, const int incY ) ;
double (∗dnrm2) ( const int N, const double ∗X, const int

↪→ incX ) ;
. . .

} dispatch_t ;

of having separate implementations for both the CPU and GPU, the dispatcher
is implemented as a struct, containing function pointers to each of BLAS and
LAPACK functions needed for the implementation of the interior point method,
as well as additional functions. The additional functions are functions such
as the minimum function described in Section 4.2.3.3, and memory handling
functions, such as malloc(). The struct is similar to a virtual method table
(vtable) used in C++ for virtual functions in classes. Listing 5.2 shows a partial
view of the vtable, where daxpy and dnrm2 are function pointers.

The vtable is initialized with a function call, which specifies the desired variant
or target. The interface is shown in Listing 5.3. This function call initializes
function pointers in vtable according to the passed variant. In our current im-
plementation, we have implemented the general variants DISPATCH_VARIANT_HOST
and DISPATCH_VARIANT_DEVICE.

Listing 5.3: Initialization of dispatch table
d i s p a t c h I n i t i a l i z e ( dispatch_t ∗ vtable , d ispatchVariant_t

↪→ var i ant )

The variant DISPATCH_VARIANT_HOST is our general CPU implementation. It
uses CBLAS for BLAS operations, some manually implemented functions for
extended operations, such as element-wise vector operations, and memory is
allocated on the CPU. When using this variant, it is possible to link with any
CBLAS compliant library and the interior point method uses this for its com-
putations.

The variant DISPATCH_VARIANT_DEVICE is our general GPU implementation for
CUDA. It uses CUBLAS for BLAS operations and memory is allocated on the
GPU. The non-BLAS operations, such as element-wise vector operations, are
implemented as separate CUDA kernels as we did in Chapter 4.
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Listing 5.4: Example of using dispatcher. A vector with m elements is allo-
cated on the GPU, every element is set to 42 and the Euclidean
norm is computed.

d i s p a t c h I n i t i a l i z e (&vtable , DISPATCH_VARIANT_DEVICE) ;
double∗ D = vtab l e . c a l l o c (m, s izeof (double ) ) ;
v tab l e . dsetx (m, 42 . 0 , D, 1) ;
double norm = vtab l e . dnrm2(m, D, 1) ;
v tab l e . f r e e (D) ;

The use of the dispatcher in our implementation unifies most of the code re-
gardless of whether it is on the CPU or the GPU. It also simplifies extending
the implementation to different targets, such as such a potential future imple-
mentation in OpenCL, by implementing an additional variant. An example of
the use of the dispatcher is shown in Listing 5.4.

Not all operations needed for the implementation of the components are placed
in the dispatcher, as some are very specific for the individual component. For
those operations, the components may inspect the variant variable in the vtable
to determine the variant and handle the operation accordingly. We show an
example of this in the implementation of multiple centrality correctors in Section
5.4.1.

5.4 Interior point method

The interior point method component is the core component, which implements
the primal-dual interior point algorithm described in Section 5.1. The compo-
nent is designed around a struct called ipmContext_t. The context structure
holds all necessary data needed by the solver to solve an linear optimization
problem. The context is initialized by calling ipmCreateContext(), which has
the prototype shown in Listing 5.5.

Listing 5.5: IPM interface to create context
void ipmCreateContext ( ipmContext_t∗ context , dispatch_t ∗

↪→ vtable , ipmForm_t form , int m, int n , void
↪→ (∗multiplyQx ) ( . . . ) , const void∗ quadraticUserData ,
↪→ double∗ c , void (∗multiplyAx ) ( . . . ) , void
↪→ (∗multiplyAtx ) ( . . . ) , const void∗ constra intUserData )
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The function takes a pointer to a dispatcher, which is then used throughout the
interior point method. The form parameter is either IPM_FORM_STANDARD or
IPM_FORM_INEQUALITY, to indicate whether the optimization problem is stated
in the standard form or in the inequality form, respectively.

Other parameters of interest are multiplyAx, multiplyAtx and userData. The
first two are function pointers, which must point to user-defined functions, that
compute the matrix-vector and matrix-transpose-vector product with the con-
straints matrix A, respectively. This allows matrix-free use of the interior point
method, similar to the MATLAB implementation in Chapter 4 and to [Gon12b].
The parameter constraintUserData is saved in the context and passed to the
user-defined functions when they are called by the interior point method, which
can contain any necessary data that the user-defined functions need to compute
the matrix-vector multiplications.

The parameters multiplyQx and quadraticUserData are used in a similar way
to handle the quadratic term of the objective function for quadratic problems.
We do not deal with quadratic problems in this work, though.

The use of the matrix-free interior point method limits the storage requirements
of the algorithm. This makes it possible to solve very large problems, as well
as simplifies the implementation of efficient problem-specific solvers, similar to
the solvers in Chapter 4. We demonstrate this in detail in Section 6.3, where
we discuss the implementation of the problem-specific functions for our test
case from Chapter 3. Alternatively, we have implemented a couple of general
matrix-vector functions, which we cover in Section 5.5. These can be used if
problem-specific functions are not available.

In addition to computing the matrix-vector product, the interior point method
also requires a function to compute the Newton direction. The matrix-vector
functions make it possible for the interior point method to compute the residuals
and other values, which require the constraints matrix. However, it must also be
able to solve (5.7) to compute the Newton directions for multiple different right-
hand sides. To maintain a matrix-free implementation, and decouple the linear
solver from the interior point algorithm, this is also done through a function
pointer. The linear solver is set by calling ipmSetSolver(), which has the
prototype shown in Listing 5.6.

Listing 5.6: IPM interface to set linear solver
void ipmSetSolver ( ipmContext_t∗ context ,

void (∗ solveNormalEquations ) ( . . . ) ,
void (∗ solveAugmentedSystem ) ( . . . ) , const void∗ userData ) ;
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The parameters solveNormalEquations() and solveAugmentedSystem() are
function pointers, which must compute the Newton direction by solving the
normal equations form or the augmented system form, respectively. In this
work, we focus on solvers for the normal equations form, however, the ability
to assign a solver for the augmented system is important for some problems.
For instance, the normal equations form for quadratic problems in the standard
form requires inverting the quadratic term, which can be expensive depending
on its structure. In such a case, it can be more efficient to solve the augmented
system instead [Gon12b, AGMX96].

Similar to the MATLAB implementation in Chapter 4, we use this feature to
define a linear solver, independently of the interior point method, to implement
different linear solvers, which we describe in detail in Section 5.6.

Figure 5.2 shows an example of the interaction between the IPM component,
the matrix component, and the solver component when solving a linear op-

IPM Matrix Solver

multiplyAx()

A x

multiplyAtx()

A' x

solveNormalEquations()

loop

               (not converged)

Affine Newton direction

solveNormalEquations()

Mehrotra corrector Newton direction

Take step

multiplyAx()

A x

multiplyAtx()

A' x

Solution

solve()

Figure 5.2: Sequence diagram showing component interaction for ipmSolve()
when solving a linear optimization problem without multiple cen-
trality correctors.
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timization problem with the normal equations solver, without using multiple
centrality correctors. The algorithm uses the matrix-vector component to com-
pute the residuals. The linear solver component is then used to compute the
affine Newton direction, by passing it the computed residual vectors as the right-
hand side. The solver component is then called again to compute the corrector
direction, a step is taken and the matrix component is used to compute the new
residual vectors. This loops until the interior point method converges or the
maximum number of iterations are reached. Note that the diagram only shows
component interactions and not the internal steps in the interior point method,
such as computing the centering parameter and step lengths.

In the following sections, we describe some of the implementation details of the
interior point method.

5.4.1 Multiple centrality correctors

Multiple centrality correctors (MCC) are implemented as described in Section
5.1.5. The implementation of MCC requires one atypical operation, which can-
not be implemented with BLAS-like operations. This is the computation of the
target, which defines its elements according to the conditions in (5.14).

For the CPU implementation, this is a straight-forward for-loop, which iterates
over the elements in t, and sets the value with a simple if-statement. For the
GPU, it is necessary to implement a kernel to compute the target vector. We do
not show the entire kernel here, as it adopts the same structure as all the other
vector operation kernels, where a single element is computed independently of
the other elements, such as the element-wise vector multiplication kernel shown
in Listing 4.9 on page 47. However the computation of the element value is
interesting to show as it differs from the CPU.

Due to the SIMT architecture of the GPU, using an if-condition to assign the
target value is inefficient, as the branching results in the GPU executing the
two different branches sequentially. Instead, we can use a trick in C where the
result of a conditional statement is evaluated to one if it is true, and zero if it
is false. Using this, we can assign the target element values as shown in Listing
5.7, which shows the inner part of the kernel loop.
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Listing 5.7: Computing target element values in multiple centrality correctors
on the GPU

double va l = (x [ idx ] + alphaPT ∗ dx [ idx ] ) ∗ ( s [ idx ] +
↪→ alphaDT ∗ ds [ idx ] ) ;

t [ idx ] = ( va l <= l imitLower ) ∗ ( l imitLower − va l ) + ( va l >=
↪→ l imitUpper ) ∗ ( l imitUpper − va l ) ;

The values limitLower and limitUpper are passed to the kernel and are the
lower and upper bounds of the symmetric neighbourhood, which are γµ and
γ−1µ as shown in (5.13), respectively. The val variable is computed to be the
corresponding element in the trial points complementarity products, v̄. The
assignment of the target element computes the conditional statement and value
for both the lower bound and the upper bound, and simply multiplies the value
with the corresponding conditional statement.

If a condition is true, then it is evaluated to one and the target element gets
the associated value. If both conditions are false, then both values are multi-
plied with zero and the target value is set to zero. While this trick uses more
floating point operations than a if-branch, this is efficient on the GPU, where
the if-branch is expensive due to sequential execution when branching, while the
floating point operations throughput is very high.

On an additional implementation note, we define the defaults γ = 0.1 and
δ = 0.3 as used in [CG08], and use these values for our tests. They can be
manually set by the user through the IPM context.

5.4.2 Weighted corrector directions

The weighted corrector directions are straight-forward to implement using the
dispatcher. The code for it is shown in Listing 5.8. It consists of a for-loop, which
iterates through the line search. Each iteration computes the search direction
for a weight, and computes the associated primal and dual step lengths. On the
GPU, we use the same kernel we described in Section 4.2.3.4 to do this, while
on the CPU we use a simple for-loop. If a better primal or dual step length is
found, then it is stored along with the optimal weight.
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5.5 Matrix component

The matrix component consists of functions used to handle the constraints ma-
trix, A. Each implementation must provide these two functions with the inter-
face shown in Listing 5.9

Listing 5.9: Matrix-vector component interface
void multiplyAx ( const int m, const int n , const double ∗x ,

↪→ double ∗Ax, const void∗ userData ) ;
void multiplyAtx ( const int m, const int n , const double∗ x ,

↪→ double∗ Atx , const void∗ userData ) , const void∗
↪→ userData ) ;

In this section, we describe the general matrix-vector multiplication functions
implemented in the toolbox. These functions are useful if a problem-specific
implementation is not available, as they only require the matrix is loaded in
memory in the appropriate format. In Section 6.3, we show a problem-specific
implementation for our test case in Chapter 3.

Listing 5.8: Weighted corrector directions implementation
for ( int i = 0 ; i < s t ep s ; i++) {
double omega = lower+step ∗ i ;
// Take s t ep
vtable−>dcopy (n , dxp , 1 , dx , 1 ) ;
vtable−>dcopy (n , dsp , 1 , ds , 1 ) ;
vtable−>daxpy (n , omega , dxc , 1 , dx , 1 ) ;
vtable−>daxpy (n , omega , dsc , 1 , ds , 1 ) ;
// Compute s t ep l e n g t h
ipmComputeSteplength ( context , x , s , dx , ds ,&alphaPhat ,&alphaDhat ) ;
// Accept b e t t e r omegas
i f ( alphaPhat >= ∗alphaP ) {
∗alphaP = alphaPhat ;
∗omegaP = lower + step ∗ i ;

}
i f ( alphaDhat >= ∗alphaD ) {
∗alphaD = alphaDhat ;
∗omegaD = lower + step ∗ i ;

}
}
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5.5.1 BLAS

The most basic matrix-vector functions we have implemented are
ipmMultiplyAxCBLAS() and ipmMultiplyAtxCBLAS(), which simply use
CBLAS to multiple a dense column-wise matrix with a vector, as well as
ipmMultiplyAxCUBLAS() and ipmMultiplyAtxCUBLAS(), which do the same
but with CUBLAS [NVIa]. They expect the userData parameter to be a pointer
to the constraints matrix stored as a column-wise dense matrix on CPU for the
CBLAS variant and on the GPU for the CUBLAS variant. As these functions
require the dense storage of the constraints matrix, they are very memory-
inefficient as we saw in Chapter 4.

5.5.2 CHOLMOD

CHOLMOD is part of SuiteSparse by Tim Davis [Dav]. It is a supernodal
sparse Cholesky factorization library. It is very efficiently implemented and
includes various orderings such approximate minimum degree (AMD) ordering
and column approximate minimum degree (COLAMD) ordering, which helps
perserve sparsity and reduces the storage and computational requirement of the
factorization. CHOLMOD is a CPU implementation, although since version 2.0
it has included some GPU support, where the dense sub-blocks in the sparse
factorization are multiplied using CUBLAS. Unfortunately, we were not able to
make this work for our tests.

As we use this library for one of our linear solvers, which we describe in Section
5.6.2, we have also implemented the two matrix-vector functions
ipmSolverCHOLMODMultiplyAx and ipmSolverCHOLMODMultiplyAtx(). These
functions use CHOLMOD to compute the matrix-vector and matrix-transpose-
vector product between a CHOLMOD loaded matrix and a dense vector. The
user data must be set to the same user data used by the solver component.

5.5.3 General sparse formats

In the following, we briefly introduce the implementations of matrix-vector mul-
tiplication in general sparse formats available in GPUOPT. The formats used
are based on the available formats in the CUSPARSE library [NVIb], as the
GPU implementations uses this library to do the matrix-vector multiplications.
For further details on the formats and their GPU implementation, we refer to
[BG08, BG09].
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5.5.3.1 CSR

Compressed Sparse Row (CSR) format, also known as Compressed Row Sparse
(CRS), is a general sparse matrix format. Given a matrix of size m×n with nnz
non-zeros, the matrix is stored using three vectors, vals, rows and cols. The
vector vals is a dense vector of length nnz containing all the non-zero elements
in the matrix in row-wise order. The cols vector is an index vector of length
nnz which contains the column index of the corresponding value in vals. The
rows vector of length n+1 is an index vector which contains the index of where
a corresponding row starts in vals and cols. The last index in cols is set to nnz.

The format is very compact and allows for straight-forward access to the rows
in the matrix, however accessing the columns requires accessing all the non-zero
elements in the matrix.

We have implemented the matrix-vector multiplication functions for this for-
mat on both the CPU and GPU. The CPU implementation is implemented in C,
while the GPU implementation uses the CUSPARSE function cusparseDcsrmv().

5.5.3.2 CSC

Compressed Sparse Column (CSC) format is similar to CSR, except the matrix
is stored column-wise instead of row-wise and the index pointers are switched. A
matrix stored in CSC is equivalent to storing the transpose of a matrix in CSR.
This allows for straight-forward access to the columns in the matrix instead of
the rows.

5.5.3.3 HYB

The Hybrid (HYB) format is only implemented for the GPU by using the CUS-
PARSE library. It combines two different sparse formats, ELLPACK (ELL)
format and Coordinate (COO) format, to store the matrix for efficient matrix-
vector multiplication. it is described in further detail in [BG08, BG09].

The matrix-vector multiplication is done with cusparseDhybmv(), however this
currently only supports non-transpose matrix-vector multiplication. To com-
pute the matrix-transpose-vector multiplication as well, we store the matrix
both as non-transpose and as transpose.
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Figure 5.3: Performance of the matrix-vector multiplication functions.

5.5.4 Performance

We have tested the performance of the generic matrix-vector multiplication im-
plementations with our test case from Chapter 3 in the standard form. The
BLAS matrix-vector implementation is not included, as it cannot handle large
problems due to memory requirements. Like the tests in Chapter 4, the test was
run on the test machine from Section 1.4. The performance of the matrix-vector
product and the matrix-transpose-vector product are shown on Figure 5.3a and
5.3b respectively. The CPU versions were run sequentially.

The performance for the all sparse formats on the CPU are very similar. As all
of them are running sequentially, there are no issues with parallelization which
may give one format an advantage over another.

The GPU implementations show a large difference in performance depending on
format. Storing the matrix as CSR gives very bad performance, while storing the
matrix in CSC gives equivalent performance to the sequential CPU for matrix-
vector and about 4× to 5× speed-up for matrix-transpose-vector compared to
the sequential CPU versions. As both the CSR and CSC implementations use
the same matrix-vector functions, cusparseDcsrmv(), then this simply seems
to be a result of the combination of the structure of our constraints matrix and
the parallel implementation of the CSR matrix-vector kernel implemented in
CUSPARSE.

The best performing implementation is with the HYB format on the GPU.
For both the matrix-vector and the matrix-transpose vector multiplication, it
achieves 4× to 5× speed-up compared to the sequential CPU versions.
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Figure 5.4: Performance of the matrix-vector functions with multi-threaded
CPU implementations.

5.5.4.1 Parallel

While the HYB format on the GPU is many times better than CSR and CSC on
a GPU for our test problem, the comparison to a sequential CPU is rather unfair
as all new CPUs have multiple cores. We have implemented some basic multi-
threading for the CSR and CSC CPU implementations by using OpenMP and
run the test with all four cores in our test machine to give a better comparison
between the GPU and the CPU. The results are shown on Figure 5.4a and
Figure 5.4b. The performance is much closer now between the CPU and GPU.
The HYB format on the GPU still performs the best, but the difference is much
smaller as it is only about 2× times faster now than CSR for matrix-vector and
CSC for matrix-transpose-vector.

5.5.4.2 Memory bandwidth

Sparse matrix-vector multiplication is a memory-bound operation [BG08, BG09],
which means that the performance is limited by the memory bandwidth instead
of the performance of the floating point operations. Figure 5.5 shows the effec-
tive memory bandwidth of the different implementations, as defined in [BG08].
The effective bandwidth is the achieved bandwidth of the computation in the
absense of a cache, such that each element must be loaded when it is used for
computation. This is computed by calculating the number of non-zeros elements
in the constraints matrix. The calculated memory bandwidth only includes the
actual values loaded and store, and does not include the overhead required for
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Figure 5.5: Memory bandwidth of the matrix-vector multiplication functions,
when including only the memory access to the values. Solid lines
are for the CPU, dotted lines are for multi-threaded CPU (4 cores),
and dashed lines are for the GPU.

each format, such as index vectors.

The memory bandwidth of the test machine is approximately 42 GB/s for
the CPU and 208 GB/s for the GPU, theoretically. The multi-threaded CPU
implementation of CSR for matrix-vector multiplication and CSC for matrix-
transpose-multiplication achives a bandwidth utilization of 30 GB/s, which fully
utilizes the CPU bandwidth as the remaining bandwidth is spent on the indexing
vectors. Even if the CPU had more cores, the performance would not improve
due to the limitation of the memory bandwidth. The GPUs high memory band-
width allows the HYB kernel to achieve a bandwidth utilization of over 60 GB/s,
resulting in twice the performance of the multi-core CPU. This is still rather
low compared to the GPUs theoretical memory bandwidth. In Section 6.3 we
present a problem-specific implementation, which improves the performance by
eliminating the overhead spent on indexing vectors.

5.6 Linear solvers

The linear solver component is our collection of functions which implement
either the normal equations form solver interface or the augmented systems
solver interface. The interfaces are shown in Listing 5.10. In this work, we have
only implemented solvers for the normal equations form. The implementation
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of this function must solve the system

(ADAT + E)x = b (5.21)

for the standard form and

(ATDA+ E)x = b (5.22)

for the inequality form. The system it should solve is indicated by the form
parameter.

The solver can be used by the interior point method to solve all the different
Newton directions in the algorithm by passing different right-hand sides to the
function. For instance, to solve the Newton direction for a regularized linear
optimization problem in the standard form, the interior point method calls the
function with E = Rd, D = (Θ−1 + Rp)−1 and an appropriately computed b
corresponding to the right-hand side of the system it is solving. For the affine
direction, this would be b = rp +AD̄(X−1rc − rd) as shown in (5.9).

There are two steps involved when implementing a linear solver component for
our interior point method implementation. The first step is to implement either
of the solver interfaces, shown in Listing 5.10. The second step is the creation
of some solver data, specific to the solver implementation, which is passed to
the solver function through the data parameter. The solver data must contain
all the data the solver needs to solve the linear system passed to it.

In the following sections, we describe the factorization-based implementations
in GPUOPT. In Chapter 6, we extend GPUOPT with an iterative matrix-free
linear solver based on conjugate gradient.

Listing 5.10: IPM linear solver interface
void (∗ solveNormalEquations ) ( const int k , ipmForm_t form ,

↪→ const double∗ D, const double E, const double∗ b ,
↪→ double∗ x , const void∗ data ) ;

void (∗ solveAugmentedSystem ) ( const int k , ipmForm_t form ,
↪→ const double∗ D, const double Rp, const double Rd,
↪→ const double∗ f , const double∗ g , double∗ dx , double∗
↪→ dy , const void∗ data ) ;
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Listing 5.11: Solver data for LAPACK-based solver
typedef struct {

int m, n ; ///< Dimension o f A.
double∗ A; ///< Dense column−wise A matrix .
double∗ tmp ; ///< Temporary memory
dispatch_t ∗ vtab l e ; ///< Dispatcher
int i t e r a t i o n ; ///< IPM i t e r a t i o n L was computed in .
double∗ L ; ///< Fac t o r i z a t i on

} ipmSolverLapackData_t ;

5.6.1 LAPACK

The simplest solver implementation is a dense factorization of the normal equa-
tions matrix using LAPACK, as we did in Chapter 4. This requires storing
the constraints matrix as well as the factorization as dense, which is extremely
memory heavy. However, it is the simplest solver to implement, and serves as a
good introduction to the required steps when implementing a new solver.

5.6.1.1 Solver data

The solver data for this solver must contain the constraints matrix, in order to
form the normal equations matrix, as well as the allocated memory for storing
the factorization and temporary data. Finally, it must also contain a pointer to
the dispatcher used in the interior point method, as this allows it to work with
both CPU and GPU. The full solver data structure is shown in Listing 5.11.

To make it easy for a user to use the solver with the interior point method,
two functions have been implemented to create and destroy the solver data
structure. The function ipmNESolverLAPACKCreate() allocates the necessary
memory in the passed data structure and assigns the fields in the data structure
appropriately, while the destroy function handles clean-up of the solver data.
The function prototypes for these two functions are shown in Listing 5.12.

Listing 5.12: Solver data functions for LAPACK-based solver
void ipmSolverLAPACKCreate ( ipmSolverLAPACK_t∗ so lverData ,

↪→ dispatch_t ∗ vtable , int m, int n , double∗ A) ;
void ipmSolverLAPACKDestroy ( ipmSolverLAPACK_t∗ so lverData ) ;



94 GPUOPT - Interior Point Method Toolbox on CPU and GPU

5.6.1.2 Solver function

The solver function is the implementation of the solveNormalEquations(). For
this solver, it is very similar to the MATLAB implementation shown in Listing
4.4. The full implementation of the solver function for the standard form is
shown on Listing 5.13.

When called, the function checks if the factorization has been computed for the
current interior point iteration, k. If the factorization has not been computed
for the current iteration, it computes the normal equation matrix and uses the
LAPACK factorization function, dpotrf(), to compute the factorization and
stores it in the solver data structure. The dispatch function, ddimm(), is a
custom function in the dispatcher, which computes the matrix-matrix multipli-
cation of a diagonal matrix, stored as a vector, with a general dense matrix.
This function is essentially the diagonal-matrix times dense matrix described in
Section 4.2.3.5, but it has been generalized to compute either AD or DA, where
D is a diagonal matrix and A is a general dense matrix..

Once the factorization has been computed, or if already computed in the current
iteration, it uses the LAPACK triangular solve function, dpotrs(), to solve the
linear system. Since the factorization is saved in the solver data, subsequent calls
in the same iteration (same k) does not need to recompute the factorization.

All the operations are done through the dispatcher, which allows the solver to
be used for both the CPU and GPU.

5.6.2 CHOLMOD

The CHOLMOD-based linear solver implementation uses CHOLMOD [Dav],
which we introduced in Section 5.5.2, to compute the Newton direction by solv-
ing the normal equations system.

As mentioned in, this solver is only for the CPU, but the latest version can use
NVIDIA GPUs for dense sub-blocks in the sparse matrix. However, we have not
used this feature in our tests as we got segmentation fault errors when linking
with the GPU-enabled CHOLMOD library.
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Listing 5.13: Solver function for LAPACK-based solver
void ipmSolverLapackSolveNormalEquationsStdform ( const int k ,

↪→ const ipmForm_t form , const double∗ D, const double E,
↪→ const double∗ b , double∗ x , const void∗ data ) {

ipmSolverLAPACK_t∗ so lverData = ( ipmSolverLAPACK_t∗) data ;
dispatch_t ∗ vtab l e = solverData−>vtab l e ;
int m = solverData−>m;
int n = solverData−>n ;

i f ( so lverData−>i t e r a t i o n != k ) {
vtable−>dcopy (m∗n , solverData−>A, 1 , so lverData−>AD, 1) ;
vtable−>ddimm( ’R ’ , m, n , 1 . 0 , D, solverData−>AD, m) ;
vtable−>dgemm( ’N ’ , ’T ’ , m, m, n , 1 . 0 , so lverData−>AD, m,

↪→ so lverData−>A, m, 0 . 0 , so lverData−>L, m) ;
i f (E != 0 . 0 )

vtable−>daddx (m, E, solverData−>L, m+1) ;
vtable−>dpotr f ( ’L ’ , m, solverData−>L, m) ;
so lverData−>i t e r a t i o n = k ;

}
vtable−>dcopy (m, b , 1 , x , 1) ;
vtable−>dpotrs ( ’L ’ , m, 1 , so lverData−>L, m, x , m) ;

}
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5.6.2.1 Solver data

The solver data for the CHOLMOD-based solver contains the cholmod_common
data structure, which is the workspace for CHOLMOD initialized by calling
cholmod_start(), as well as a pointer to the CHOLMOD loaded constraints
matrix, a pointer to the computed factorization, and a counter marking the
iteration the factorization was computed in.

The data structure can be initialized with one of the two create functions shown
in Listing 5.14. The only difference between the two create functions is how
the constraints matrix is loaded. The Matrix Market create function accepts an
open FILE pointer to a file containing the constraints matrix in Matrix Market
format [NIS]. The triplet function takes the constraints matrix as a sparse
matrix stored in COO format, where the val parameter is an array of all the
non-zero elements in the constraints matrix, and rowInd and colInd are the
corresponding row and column indices of each element, respectively.

The create function initializes the CHOLMOD common structure, and loads
the constraints matrix into a CHOLMOD sparse matrix. Once the constraints
matrix is loaded, it computes the one-time analysis of the matrix required prior
to factorization of the normal equations matrix using cholmod_analyze(). For
an inequality-constrained optimization problem, the constraints matrix is stored
transposed, as this makes it possible to use the same solver function as the
standard form. Like all the other solvers, the allocated memory in solver data
can be released with the corresponding destroy function.

Listing 5.14: Solver data functions for CHOLMOD-based solver
void ipmSolverCholmodCreateFromMatrixMarketFile (

↪→ ipmSolverCholmodData_t∗ data , const ipmForm_t form ,
↪→ FILE∗ f i l e ) ;

void ipmSolverCholmodCreateFromTriplet (
↪→ ipmSolverCholmodData_t∗ data , const ipmForm_t form ,
↪→ const int m, const int n , const int nnz , const int∗
↪→ rowInd , const int∗ co l Ind , const double∗ va l ) ;

void ipmSolverCHOLMODDestroy ( ipmSolverCHOLMODData_t∗ data ) ;
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5.6.2.2 Solver function

The ipmSolverCHOLMODSolveNormalEquations() function implements the so-
lution of the normal equations system. Like the LAPACK-based solver, it checks
if the factorization has been computed in the current interior point iteration. If
it has not been computed, then it computes G = AD1/2 by taking the square
root of the elements in D and scaling the columns in A with cholmod_scale().
Once G has been computed, the factorization of the regularized normal equa-
tions matrix

GGT + E = AD1/2D1/2AT + E = ADAT + E (5.23)

is computed directly by using cholmod_factorize_p(). This function can be
used to compute the factorization of βI + AAT , where we set β = E and I is
the identity matrix. The factorization function will automatically use the fill-
reducing ordering it determined was best during the analysis when the solver
data was created.

Once the factorization has been computed, the normal equations system is solved
using cholmod_solve(). The factorization is saved in the solver data and reused
for subsequent solves in the same interior point iteration.

For more detailed information about the functions in CHOLMOD and its oper-
ation, we refer to [Dav13].

5.7 Usage example

An example of the code required to solve an optimization problem in the stan-
dard form, stored on disk, using GPUOPT with the CHOLMOD-based solver is
shown in Listing 5.15. The code has been truncated for brevity, such that vari-
able declarations, memory allocation and deallocation, and error checking are
not shown. Full examples are available with the GPUOPT source code released
along with this thesis.

First a dispatcher is initialized and the problem is loaded from disk. The loaded
problem is used to create the solver data for the CHOLMOD-based solver. The
interior point context is then created, and the CHOLMOD-based solver is nor-
mal equations form solver is assigned to it. Then the problem is solved using
the ipmSolve() functions and the resulting primal and dual solution is written
to disk.
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Listing 5.15: Example of using GPUOPT with CHOLMOD-based solver
// Create d i s pa t c h e r
dispatch_t vtab l e ;
d i s p a t c h I n i t i a l i z e (&vtable , DISPATCH_VARIANT_HOST) ;
// Read problem from d i s k and c r ea t e CHOLMOD −based s o l v e r
ipmSolverCholmodData_t cholmodData ;
ioReadMatrixDense ( fi lenameC , &c , NULL, NULL) ;
ioReadMatrixDense ( fi lenameD , &b , NULL, NULL) ;
ioReadMatrixSparse ( fi lenameA , &rowIndices , &co l I nd i c e s ,

↪→ &values , &m, &n , &nnz ) ;
ipmSolverCholmodCreateFromTriplet(&cholmodData ,

↪→ IPM_FORM_STANDARD, m, n , nnz , rowIndices , c o l I nd i c e s ,
↪→ va lue s ) ;

// Create IPM
ipmContext_t ipmContext ;
ipmCreateContext(&ipmContext , &vtable , IPM_FORM_STANDARD, m,

↪→ n , NULL, NULL, c , ipmMatrixCholmodMultiplyAx ,
↪→ ipmMatrixCholmodMultiplyAtx , (void ∗) &cholmodData ) ;

ipmSetSolver (&ipmContext ,
↪→ ipmSolverCholmodSolveNormalEquations , NULL, (void ∗)
↪→ &cholmodData ) ;

// So lve wi th IPM
ipmSolve(&context , b , x , y ) ;
// Write s o l u t i i o n to d i s k
ioWriteMatrixDense ( fi lenameX , x , n , 1) ;
ioWriteMatrixDense ( fi lenameY , y , m, 1) ;
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Figure 5.6: Performance of interior point method for the test problem with
the CHOLMOD-based solver with and without multiple centrality
correctors and weighted corrector directions. The notation mcc =
4 indicates maximum 4 MCC iterations, wcd = 9 indicates 9 steps
on the line search for weighted corrector directions and 0 means it
is disabled.

5.8 Computational results

In this section, we demonstrate the performance of GPUOPT using the
CHOLMOD-based solver for our test problem from Chapter 3 in the standard
form. As the CHOLMOD-based solver is only for the CPU, the results are
only for the version of the solver. The results on the GPU are demonstrated in
Chapter 6 with the conjugate gradient solver.

As termination tolerances, we have used tolp = 10−8, told = 10−8 and tolo =
10−8. The number of iterations and time required to converge to the termination
tolerances for the interior point method are shown on Figure 5.6a and Figure
5.6b, respectively.

Multiple centrality correctors reduces the number of iterations required to con-
verge, which translates directly into reduced solution time when using a direct
solver. The MCC iterations are very cheap when the factorization is already
available, as they can simply reuse the factorization for additional backsolves.

Weighted corrector directions has mixed success with our test problem, some-
times increasing and sometimes reducing the number of iterations required to
converge.
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5.9 Conclusion

We implemented a modular toolbox for primal-dual interior point algorithm for
linear optimization problems with both CPU and GPU support. The imple-
mentation was split into three components, the core interior point algorithm,
the matrix operations and the linear solving. This modularity made it possible
to implement different versions of the matrix operations and linear solving.

The matrix operations were implemented as both dense operations by using
BLAS, as in Chapter 4, as sparse operations using CHOLMOD, and as sparse
operations in multiple different formats using C. The performance of the dif-
ferent formats were compared on both the CPU and GPU and showed that
substantial speed-up can be achieved by utilizing the GPU for sparse matrix-
vector operations for our test problem, but that choosing the correct sparse
format for a problem is critical for performance.

A linear solver component for the interior point method was implemented using
CHOLMOD, which allowed us to compute the Newton directions with a su-
pernodal sparse Cholesky factorization. In the standard form, this substantially
increased sparsity of the test problem, and the solution time of the problem was
reduced substantially, even compared to the best problem-specific dense GPU
solver in Chapter 4. The sparsity allowed us to solve much larger problems, too.

The Mehrotra-predictor corrector interior point method was extended with mul-
tiple centrality correctors and weighted corrector directions, and we demon-
strated that they can substantially reduce the number of iterations in the inte-
rior point method for our test problem. Since multiple centrality correctors can
reuse the factorization already computed in the same iteration, this resulted in
direct savings in the solution time of the problem for the factorization based
solver.

5.10 Future perspectives

The current implementation of GPUOPT only supports linear optimization
problems. One of the future improvements we would like to add is support for
quadratic optimization problems, which are often seen in model predictive con-
trol problems. While the core interior point method has already been updated
to support quadratic optimization problems, the solver interface and solvers
does not suppport these problems, yet.
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GPUOPT currently only contains a sparse Cholesky factorization solver for the
CPU by using CHOLMOD. A future improvement would be the inclusion of a
GPU-accelerated Cholesky factorization solver. Sparse Cholesky factorization
on the GPU has been looked at by multiple authors [GSG+11, ZD12, ZDG+13]
and can be accelerated to some extent, however no public libraries are cur-
rently available. CHOLMOD also includes support for accelerating parts of
the Cholesky factorization with an NVIDIA GPU, but linking with the GPU-
enabled version of CHOLMOD resulted in segmentation faults. A new beta
version of CHOLMOD has just recently been released, which may address this
issue.
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Chapter 6

Matrix-Free Preconditioned
Conjugate Gradient for

GPUOPT

In this chapter, we introduce our implementation of the matrix-free precondi-
tioned conjugate gradient (PCG) solver [Gon12b] as an extension for GPUOPT
introduced in Chapter 5.

The PCG solver is an iterative solver which replaces the direct solvers based on
Cholesky factorization to compute the Newton directions in the interior point
method. The solver is matrix-free, as it it only uses function pointers to operate
with the constraints matrix and normal equations matrix, instead of storing the
matrices explicitly. This makes it possible to reduce memory usage and solve
large sparse and dense systems. The PCG algorithm is also particularly suitable
for GPUs, as the main workload is matrix-vector multiplication.

The implementation is validated with our test problem from Chapter 3 and
compared to the CHOLMOD-based solver from Chapter 5. We demonstrate that
iterative solvers can be competitive with direct solvers in the context of interior
point methods, and that the GPU can be used to accelerate the iterative method.
We also demonstrate that the regularization and preconditioner introduced by
Gondzio in [Gon12b] is key to achieving acceptable performance and convergence



104 Matrix-Free Preconditioned CG for GPUOPT

with the iterative solver.

The implementation in this chapter is an extention to our newly developed
optimization toolbox, GPUOPT, which we introduced in Chapter 5. One of the
key features of this toolbox is that it supports running all the operations on the
GPU. However, we only demonstrated the toolbox running on the CPU with
the CHOLMOD-based solver as we have not yet presented a linear solver for the
GPU, other than the simple LAPACK solver, which cannot solve large problems
due to memory requirements. The PCG solver in this chapter makes it possible
to run all operations of the interior point method entirely on the GPU, and its
performance depends mostly on the matrix-vector multiplication, which can be
implemented to exploit any structure present in the constraints matrix.

6.1 Conjugate gradient component

The conjugate gradient (CG) component in our toolbox is an implementation
of the preconditioned conjugate gradient algorithm. This component is used by
the preconditioned conjugate gradient solver for the linear system of equations,
which we describe in Section 6.2.

Conjugate gradient is an iterative method for solving large systems of linear
equations in the form

Ax = b (6.1)

where A is a symmetric, positive-definite matrix. This means we can use con-
jugate gradient to solve the normal equations form in (5.9). It only requires a
method to compute the matrix-vector product with the matrix A and therefore
does not require the matrix A to be stored explicitly.

6.1.1 Algorithm

The conjugate gradient algorithm is easy to implement, and is widely described
in the literature, so we will only briefly introduce the algorithm in the following
section and focus on our particular implementation of it. We refer the reader
to [She94] for an introduction to conjugate gradient. Listing 6.1 shows the
algorithm for preconditioned conjugate gradient. Conjugate gradient without
a preconditioner is equivalent to setting the preconditioner, M , equal to the
identity matrix resulting in z = r.
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Listing 6.1: Preconditioned conjugate gradient algorithm
r0 = b−Ax, z0 = M−1r0, p0 = z0, k = 0
loop

α =
rTk zk
pTkApk

xk+1 = xk + αpk
rk+1 = rk − αApk

i f
(
rTk+1rk+1

rT0 r0
< tolcg

)
, exit loop

zk+1 = M−1rk+1

βk =
rTk+1zk+1

rTk zk
pk+1 = zk+1 + βkpk
k = k + 1

end

6.1.2 Implementation

The implementation of the CG component follows the design of the interior point
method. A structure called cgContext_t is used to hold all the relevant data
for a particular linear system and is initialized by calling cgCreateContext().
Listing 6.2 shows the the prototype of this function.

Listing 6.2: Creation of conjugate gradient context
void cgCreateContext ( cgContext_t∗ context , dispatch_t ∗

↪→ vtable , int m, void (∗multiplyAx ) ( const int m, const
↪→ double∗ x , double∗ r e su l t , const void∗ userData ) ,
↪→ const void∗ multiplyAxUserData ) ;

Like the interior point implementation, it takes a pointer to a dispatch vtable
that is used to control whether the implementation runs on the CPU or the GPU.
It is also matrix-free, such that it expects a function pointer to a user-defined
function, which computes the matrix-vector product, Ap, in the algorithm, and
is called once per conjugate gradient iteration. When a context is created,
it is initialized with a default tolerance and a maximum number of iterations.
They can be specified by the user by setting the associated values in the context.
Listing 6.3 on the following page shows the prototype of the function cgSolve(),
which can be called to solve the linear system of equations.
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Listing 6.3: Solving with conjugate gradient component
cgStatus_t cgSo lve ( cgContext_t∗ context , const double∗ b ,

↪→ double∗ x ) ;

A right-hand side is passed to the function along with the context defining the
problem. The implementation will use the defined dispatcher and matrix-vector
function to solve the linear system Ax = b, and return the solution in the passed
vector x. Various information about the solving is stored in the context, such as
achieved accuracy, the number of iterations used, and profiling information. The
profiling information shows how much time is spent on the various operations,
such as applying preconditioner and computing the matrix-vector multiplication.
The accuracy is measured as

acccg =
rTk+1rk+1

rT0 r0
(6.2)

where rk is the residual vector for iteration k. The accuracy is used as termi-
nation criteria as shown in the algorithm in Listing 6.1.

Calling the solve function after creating the context will result in
non-preconditioned conjugate gradient, as no precondtioner has been defined. A
precondtioner can be defined by calling the function cgSetPreconditioner()
before calling solve. Listing 6.4 shows the prototype of this function.

Listing 6.4: Assigning a preconditioner to the conjugate gradient context
void cgSe tPrecond i t i one r ( cgContext_t∗ context , void

↪→ (∗ app lyPrecond i t i oner ) ( const int m, const double∗ z ,
↪→ double∗ r e su l t , const void∗ userData ) , const void∗
↪→ applyPrecondit ionerUserData ) ;

Like the matrix-vector multiplication, the preconditioning is also done with
the use of a function pointer to a user-defined function. This function must
compute the operation z = M−1r. Once assigned, the solver implementation
will call this function to apply the preconditioner to a vector. This leaves the
memory handling and implementation of the preconditioner to the user.

The full algorithm is quite easy to implement for both CPU and GPU by us-
ing the dispatcher, as it can be implemented with BLAS operations. Listing
6.5 shows the implementation of algorithm in cgSolve(), though without the
error checking and termination check for the sake of brevity. The functions
cgMultiplyAx() and cgApplyPreconditioner() call the user-defined functions
defined in the context. If no preconditioner is defined, we simply set z = r which
results in the non-preconditioned conjugate gradient.
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Listing 6.5: Implementation of conjugate gradient (shortened)
i f ( context−>app lyPrecond i t i one r == NULL) z = r ;
cgMultiplyAx ( context , x , r ) ;
vtable−>dsca l (m, −1.0 , r , 1) ;
vtable−>daxpy (m, 1 . 0 , b , 1 , r , 1) ;
double r e s0 = vtable−>ddot (m, r , 1 , r , 1) ;
i f ( context−>app lyPrecond i t i one r != NULL)

cgApplyPrecondit ioner ( context , r , z ) ;
vtable−>dcopy (m, z , 1 , p , 1) ;
rz = vtable−>ddot (m, r , 1 , z , 1) ;
while (1 ) {

cgMultiplyAx ( context , p , Ap) ;
alpha = rz / vtable−>ddot (m, p , 1 , Ap, 1) ;
vtable−>daxpy (m, alpha , p , 1 , x , 1) ;
vtable−>daxpy (m, −alpha , Ap, 1 , r , 1) ;
context−>cur r en tRe l a t i v eRe s idua l =

vtable−>ddot (m, r , 1 , r , 1) / r e s0 ;
// Termination checks removed f o r b r e v i t y
i f ( context−>app lyPrecond i t i one r != NULL)

cgApplyPrecondit ioner ( context , r , z ) ;
rzprev = rz ;
rz = vtable−>ddot (m, r , 1 , z , 1) ;
vtable−>dsca l (m, rz / rzprev , p , 1) ;
vtable−>daxpy (m, 1 . 0 , z , 1 , p , 1) ;

}

After solving, the context is filled with information about the solution. The user
may call the function cgResetContext(), which resets the context back to the
initialized state, but maintain defined settings such as the preconditioner and
tolerances, as well as profiling information. After the context is reset, the solve
function can be called with the context again to solve the linear system with a
different right-hand side. This is very useful when the solver is needed to solve
the same system with different right-hand sides, such as in the interior point
algorithm.
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6.2 Preconditioned conjugate gradient solver

This linear solver is an implementation of the solver for the matrix-free interior
point method presented by Gondzio in [Gon12b], implemented for GPUOPT.
In the following sections, we summarize the method and describe the implemen-
tation.

6.2.1 Method

As mentioned in Section 5.1.4 on page 74, the ill-conditioning caused by the
complementarity matrix in the augmented systems form and normal equations
form, due to the partitioning of the complementarity pair when approaching
the optimal solution, adversely affects the convergence of iterative methods. In
[Gon12b], Gondzio proposes a two-step method for using conjugate gradient to
compute the Newton directions.

The first step is to apply primal and dual regularization [AG99] to the opti-
mization problem to bound the condition number of the KKT system. The
regularization sets a lower and upper bound of the eigenvalues, such that the
values approaching zero are bound to the lower value, and the remaining values
are spread between the lower bound and the upper bound.

The second step is to apply a preconditioner to conjugate gradient. The pre-
conditioner is a partial Cholesky factorization, which uses complete pivoting
to attempt to eliminate the largest eigenvalues in the matrix [Gon12b]. The
Cholesky factorization is truncated after k columns, and only the diagonal of
the Schur complement is computed.

A partial Cholesky factorization can be written in the following form

GR =

[
L11 0

L21 I

][
DL 0

0 S

][
LT

11 LT
21

0 I

]
(6.3)

where L =

[
L11

L22

]
is the Cholesky factorization of the first k columns of the

normal equations matrix, and S is the Schur complement. The preconditioner
is computed by using partial Cholesky factorization to eliminate the k largest
pivots in the normal equations matrix, where k << n. To accomplish this,
complete pivoting is used to reorder the normal equations matrix such that

d1 ≥ d2 ≥ ... ≥ dk ≥ dk+1 ≥ dk+2 ≥ ... ≥ dn (6.4)
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where DL = [d1, ..., dk] and diag(S) = [dk+1, ..., dn].

The preconditioner is defined as

P =

[
L11 0

L21 I

][
DL 0

0 DS

][
LT

11 LT
21

0 I

]
(6.5)

where DS = diag(S) is the diagonal of the Schur complement. A key feature
of this preconditioner is that it only requires storing and computing k columns
and the diagonal.

Notice that if k = 0, the preconditioner is equivalent to a diagonal preconditioner
with complete pivoting, and if k = m, it is equivalent to an exact Cholesky
factorization with complete pivoting.

6.2.2 Solver data

Like the other solver implementations in Section 5.6 on page 91, the PCG solver
needs to construct a user data structure to hold all the data it requires to solve
the linear system. This includes a context for the conjugate gradient component,
storage for the preconditioner, as well as additional information required to
construct the preconditioner and apply it to a vector. Two helper functions
are implemented to initialize and deallocate the user data with the prototypes
shown in Listing 6.6.

Listing 6.6: Solver data functions for PCG-based solver
void ipmSolverCGCreate ( ipmSolverCGUserData_t∗ data ,

↪→ ipmContext_t∗ context ) ;
void ipmSolverCGDestroy ( ipmSolverCGUserData_t∗ data ) ;

The create function takes a pointer to an interior point context and initializes
the passed user data accordingly. The initialized user data is therefore only
valid for the particular interior point context, which was passed to the create
function. Using the interior point context, the create function is able to create
the conjugate gradient context, by using problem information in the IPM con-
text, such as problem dimensions and matrix-vector multiplication functions.
The dispatcher used by the IPM context is also used for the conjugate gradient
context.

The matrix-vector multiplication functions, multiplyAx() and multiplyAtx(),
in the IPM context are used to construct a matrix-vector multiplication function
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for the conjugate gradient context called ipmSolverCGMultiplyADAtx(). This
function essentially computes the normal equations matrix multiplication with
a vector, which is (ADATx+ E)x for problems in the standard form.

This is done by first using multiplyAtx() to compute ATx, then daxmy() to
compute DATx, and multiplyAx() to compute ADATx. The E term is then
handled by multiplying it independently with x and adding it to ADATx, re-
sulting in (ADATx+E)x. If the IPM context is set to solve a linear optimization
problem in the inequality form, a similar function called
ipmSolverCGMultiplyAtDAx() is constructed to compute (ATDAx + E)x in-
stead of (ADATx+ E)x.

The create function only initializes the solver data, such that conjugate gradient
can be used to solve the linear system without preconditioner. In order to enable
the preconditioner, the function ipmSolverCGEnablePreconditioner() must
be called. Listing 6.7 shows the prototype for this function.

Listing 6.7: Solver data preconditioner function for PCG-based solver
void ipmSolverCGEnablePrecondit ioner ( ipmSolverCGUserData_t∗

↪→ data , int rank , ipmSolverCGPrecondPermute_t permute ,
↪→ void (∗getColumnH) ( . . . ) , void (∗ getDiagonalH ) ( . . . ) ,
↪→ const void∗ userData ) ;

This function allocates the required memory to store the preconditioner in the
solver data. We store the preconditioner of rank k as a k×m matrix containing
L11 and L21, and the diagonal containing DL and DS is stored as a vector. This
limits the storage of the preconditioner to (m+1)×k double precision numbers.
By storing the factorized columns as dense, it is still possible to use standard
high-performance BLAS and LAPACK functions to compute the factorization,
as well as the triangular solve operations.

Additionally, it also uses the cgSetPreconditioner() to define the function
ipmSolverCGApplyPreconditionerCallback() as the preconditioner function
for the conjugate gradient context. This function applies the preconditioner to
a vector, which is used to compute z = M−1r in conjugate gradient. Section
6.2.5 describes this in detail.

The getDiagonalH and getColumnH parameters must be function pointers to
user-defined functions, which return the diagonal or a specified column in the
normal equations matrix respectively. These functions will be described in fur-
ther detail in Section 6.2.4, where we describe how the preconditioner is con-
structed.
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6.2.3 Solver function

The solver function, ipmSolverCGSolveNormalEquations(), implements the
normal equations form solver interface described in Section 5.6. It is similar to
the solver functions for the factorization-based solvers, but instead of computing
a full factorization, it only computes a preconditioner.

The function checks if the preconditioner has been computed for the current
interior point iteration. If the preconditioner has not been computed yet, it
computes the preconditioner and stores it in the solver data. Then it calls
cgSolve() to use the conjugate gradient context in the solver data to compute
the Newton direction.

6.2.4 Computing preconditioner

To compute the preconditioner, the solver needs additional information about
the normal equations matrix. To determine the permutation of the matrix, it
needs access to the diagonal of the normal equations matrix. Furthermore, to
construct the preconditioner, it needs access to specific columns in the normal
equations matrix. To accomplish this, the solver takes two additional user-
defined function pointers with the prototypes shown in Listing 6.8.

Listing 6.8: Interface to PCG-based solver required to construct precondi-
tioner

void getDiagonalH ( const int m, const int n , const ipmForm_t
↪→ form , const double∗ D, double∗ diagonal , const void∗
↪→ data ) ;

void getColumnH( const int m, const int n , const ipmForm_t
↪→ form , const int index , const double∗ D, double∗
↪→ column , const void∗ data ) ;

The getDiagonalH() function must compute the diagonal of either ADAT or
ATDA, depending on the form parameter, and store it in the passed diagonal
parameter as a vector. Similarly, the getColumnH() function must compute a
column in ADAT or ATDA specified by the column index in the index param-
eter.
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Figure 6.1: Computation of preconditioner for PCG-based solver.

Figure 6.1 shows the steps required to compute the preconditioner in a schematic
way and the steps are described below.

1. The first step shows the storage of the first k columns in the preconditioner
as a dense m× k matrix and the diagonal is stored as a vector, which are
denoted by Cols and Diag, respectively.

2. The second step is to compute the diagonal of the normal equations matrix
by using the user-defined function getDiagonalH() and permuting it ac-
cording to Equation (6.4). A permutation vector is computed at the same
time, which is used to determine the permutation of the normal equations
matrix.

3. The third step is to compute the first k columns of the permuted normal
equations matrix by using getColumnH(). Since the columns are com-
puted in the permuted order, the rows have already been permuted in the
preconditioner. The computed columns are then permuted accordingly,
such that the columns in the preconditioner are permuted both column-
wise and row-wise.
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4. Once the required parts of the permuted normal equations matrix are
loaded, the fourth step is to factorize the upper k×k matrix in the columns
using the dense Cholesky factorization function dpotrf() to compute L11

cf. Equation (6.5).

5. The fifth step is to use dtrsm() to update the remaining rows to compute
L21, as it is done in a normal blocked Cholesky factorization.

6. The sixth and last step is to update the diagonal by computing the di-
agonal of Schur’s complement, DS , using L21. The computation of the
diagonal of Schur’s complement cannot be done efficiently using standard
BLAS operations as it requires m − k vector dot products, where m is
the number of rows in the normal equations matrix. It would be highly
inefficient to call BLAS individually for every diagonal element. The CPU
implementation is done with a for-loop, while we have implemented a
CUDA kernel for the GPU implementation. Listing 6.9 shows the kernel.

Listing 6.9: CUDA kernel to compute diagonal of Schur’s complement
__global__ void computeSchurApproximationSmallK_kernel ( const

↪→ int M, const int K, const double∗ co l s , double∗ diag ) {
unsigned int idx ;
for ( idx = K + blockIdx . x ∗ blockDim . x + threadIdx . x ; idx <

↪→ M; idx += gridDim . x ∗ blockDim . x ) {
double va l = 0 . 0 ;
for (unsigned int i = 0 ; i < K; i++) {

va l += co l s [ idx + i ∗M] ∗ c o l s [ idx + i ∗M] ;
}
diag [ idx ] = sq r t ( diag [ idx ] − va l ) ;

}
}

Since the rank of the preconditioner, k, is very small, we create a thread for
every element in DS . Every thread computes the dot product for the corre-
sponding row in L21. This can be done without reduction, as only one thread
is responsible for a single diagonal element. As the threads iterate over the
elements in the rows of L21, they load adjacent values in the columns, resulting
in coalesced memory access, as the columns are stored column-wise. Once the
dot product has been computed, the diagonal element of the Schur complement
is computed by subtracting it from the corresponding diagonal element in the
normal equations matrix and computing the square root of the result.
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Listing 6.10: Applying preconditioner
// Non−t ranspose so l ve , L\x
vtable−>dtrsv ( ’L ’ , ’N ’ , ’N ’ , k , data−>Mcols , m, x , 1) ;
i f (m != k) {

vtable−>dgemv( ’N ’ , m − k , k , −1.0 , data−>Mcols + k , m, x ,
↪→ 1 , 1 . 0 , x + k , 1) ;

vtable−>daxdypbz (m − k , 1 . 0 , x + k , 1 , data−>Mdiag + k , 1 ,
↪→ 0 . 0 , x + k , 1) ;

}
// Transpose s o l v e L ’\(L\x )
i f (m != k) {

vtable−>daxdypbz (m − k , 1 . 0 , x + k , 1 , data−>Mdiag + k , 1 ,
↪→ 0 . 0 , x + k , 1) ;

vtable−>dgemv( ’T ’ , m − k , k , −1.0 , data−>Mcols + k , m, x +
↪→ k , 1 , 1 . 0 , x , 1) ;

}
vtable−>dtrsv ( ’L ’ , ’T ’ , ’N ’ , k , data−>Mcols , m, x , 1) ;

6.2.5 Applying preconditioner

Since the preconditioner is a factorization, it would normally be applied by call-
ing a solve function such as dpotrs(). However, because the preconditioner is
stored in a custom format, it is necessary to call the operations manually. Listing
6.10 shows the code which implements the solve operation for the preconditioner
in our format.

The code first does the non-transposed solve by calling triangular solve for
the L11 part of the preconditioner, and then solves for L21 and DS by calling
matrix-vector multiplication and element-wise vector division respectively. The
transposed solve, which is equivalent to the solve with the upper Cholesky factor,
is done in the opposite order with the transpose matrix parameter to dgemv()
and dtrsv().

When applying the preconditioner to a vector, it is necessary to first permute
the vector according to the permutation of the preconditioner, then apply the
preconditioner, and then reverse the permutation of the resulting vector. This
is required, because the conjugate gradient solver is operating with the non-
permuted system. This cannot be avoided, as we do not have a matrix-vector
multiplication function for the constraints matrix, which can operate with the
permuted system.

An alternative approach would be to implement code, that applies the precon-
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ditioner, to take a permutation vector and index elements accordingly, without
directly permuting the vector. This would not be possible with BLAS operations
and would require manual implementation of the triangular solve, matrix-vector
multiplication, and element-wise vector division operations for both the CPU
and GPU.

As the preconditioner is applied in every iteration of the conjugate gradient
method, it is important for performance to have very efficient vector permutation
operations.

6.2.6 Handling permutation

The permutation operations in our implementation are done with the library
Thrust [NVId]. Thrust is a very efficient library for data manipulation on
NVIDIA GPUs, however it also includes support for the same operations on
the CPU. It is a high-level C++ interface, which makes it easy to use.

The permutation is computed by using Thrust’s key-value sort as shown in
Listing 6.11.

Listing 6.11: Using Thrust to compute permutation vector
th rus t : : sort_by_key (x , x + data−>m, perm ,

↪→ th rus t : : g reate r<double>() ) ;

The x parameter is set to the diagonal, while perm parameter is an integer array
initialized to hold the indices 1, 2, . . . ,m. When Thrust sorts the diagonal, the
elements in perm are permuted in the same order as the elements in x, resulting
in an index vector that can be used as a permutation vector.

Once the permutation is computed, it can be applied to a vector by using the
gather() function as shown in Listing 6.12.

Listing 6.12: Using Thrust to apply permutation vector
th rus t : : gather (perm , perm + data−>m, x , y ) ;

The inverse permutation can be computed and applied in the same way. The
inverse permutation is used to reverse the permutation applied to a vector.
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Table 6.1: Matrix-free functions

getColumnH() Must return a specified columns in ADAT or ATDA.
getDiagonalH() Must return the diagonal of ADAT or ATDA and as a

vector.
multiplyAx() Must return the result of the matrix-vector multiplication

of the constraints matrix A and a vector x.
multiplyAtx() Must return the result of the matrix-vector multiplication

of the transposed constraints matrix AT and a vector x.

6.3 Problem-specific implementation of test case

In this section, we describe the implementation of the test case from Chapter 3
as a problem-specific implementation of the two matrix-vector multiplication
functions, required by the interior point method, as well as the two normal
equations matrix functions, required by the preconditioned conjugate gradient
solver. Table 6.1 summarizes the four functions.

6.3.1 Matrix-vector multiplication functions

The inequality form of the test case is described in Section 3.2 on page 28 and
the problem-specific matrix-vector multiplication and matrix-transpose-vector
multiplication are already described in Section 4.3.1.1 on page 58.

The standard form of the test case (described in Section 3.3 on page 32) is
obtained by introducing slack variables to the inequality constraint to express
the constraints as equality constraints. This only changes the matrix-vector
multiplication slightly, as the added slack variables are simply added to result,
such that the matrix-vector multiplication is computed as

Â



x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

x̂7

x̂8


=



b1

b2

b3

b4

b5

b6


=



x̂1 − x̂3

−x̂1 − x̂4

x̂2 − x̂5

Ψx̂1 − x̂6

−Ψx̂1 − x̂7

Γx̂1 + x̂2 − x̂8


(6.6)
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The matrix-transpose-vector multiplication is computed as

ÂT



x̂1

x̂2

x̂3

x̂4

x̂5

x̂6


=



b1

b2

b3

b4

b5

b6

b7

b8


=



x̂1 − x̂2 + ΨT (x̂4 − x̂5) + ΓT x̂6

x̂3 + x̂6

−x̂1

−x̂2

−x̂3

−x̂4

−x̂5

−x̂6


(6.7)

The GPU implementation of the matrix-vector computation is similar to the
code shown in Listing 4.16 on page 63, except it has an additional daxpy()
call to add the new slack variables. The matrix-transpose-vector is similarly
implemented for the problem in standard form. We use the userData parameter
passed to the interior point context during initialization, to pass the Γ matrix
to the matrix-vector multiplication functions. We pass Γ as a full dense matrix
despite its structure, as this allows us to use a single BLAS call to compute the
matrix-vector multiplication. Due to the block Toeplitz structure of Γ, it would
also be possible to simply store only the first Np columns and implement the
matrix-vector multiplication functions for the unique structure of Γ. This is not
currently done, but should be considered as a future improvement as it reduces
both memory usage and required memory bandwidth.

The matrix-vector functions have been implemented on both the CPU and the
GPU using CBLAS and CUBLAS respectively, so we can compare the perfor-
mance of the two implementations.

6.3.1.1 Performance results

We have tested the performance of the problem-specific matrix-vector multi-
plication for our test case, and compared it on the CPU and GPU with the
CHOLMOD-based matrix-vector multiplication functions, used for the tests in
Chapter 5. Like the tests in Chapter 4, the test was run on the test machine
as described in Section 1.4 on page 4. The performance of the matrix-vector
product and the matrix-transpose-vector product is shown in Figure 6.2a and
6.2b, respectively. The CPU code is executed sequentially.
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Figure 6.2: Performance of the problem-specific matrix-vector multiplications.

The problem-specific implementations are clearly faster than doing general sparse
matrix-vector multiplication with CHOLMOD. This is expected, as the problem-
specific implementation exploits the problem structure. While CHOLMOD and
the problem-specific CPU version have similar performance for the matrix-vector
and matrix-transpose-vector product, the GPU version shows significantly worse
performance for the matrix-vector product compared to its matrix-transpose-
vector product. This is due to the fact that the major computational task in the
matrix-vector product is the multiplication with the dense Γ submatrix. The
dimensions of Γ, as we have previous mentioned, is (Nt) × (Nt × Np), which
makes it a very wide matrix for the case with a large number of power plants.

In [Sø12], Sørensen demonstrates that the performance of the matrix-vector
product in CUBLAS is optimized for matrices which are mostly square, and
that the performance for wide matrices is very low. Additionally, he imple-
ments an auto-tuning framework and demonstrates, that by implementing dif-
ferent matrix-vector kernels for matrices of different shapes, it is possible to
achieve much better performance for the wide and tall matrices. The auto-
tuning framework also determines the optimal number of elements per thread,
and number of threads to create. The improved kernels are implemented and
are available in GLAS.

The available download of GLAS [Sø] provides an auto-tuned version for a
NVIDIA Tesla C2050 card, and only for matrices with up to one million rows
or columns. Instead of using the auto-tuned library for a different card with
a limitation of the dimensions of the matrices and vectors, we have extracted
two well-performing kernels for wide and tall matrices and employed them in
our matrix-vector functions. We have only extracted the non-transpose matrix-
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Figure 6.3: Performance of matrix-vector multiplication with Γ on the GPU
with CUBLAS and GLAS.

vector multiplication functions. Thus, to use the GLAS kernels for doing matrix-
vector multiplication, it is required to store Γ as a transposed matrix. This
doubles the memory requirement, though. Figure 6.3a and Figure 6.3b show
the performance of CUBLAS with both the non-transposed stored Γ and the
transposed stored Γ. They also show the performance of GLAS. GLAS uses the
non-transposed Γ for Âx̂ and the transposed Γ for ÂT x̂.

For the matrix-vector product, Âx̂, GLAS displays much better performance
than CUBLAS, regardless of whether the matrix is stored normally or trans-
posed. The performance of GLAS matrix-vector multiplication is actually very
similar to the performance of the matrix-transpose-product, ÂT x̂, just like the
CPU versions had similar performance for both matrix-vector multiplication and
matrix-transpose vector multiplication. For the matrix-transpose-vector prod-
uct, CUBLAS has similar performance to GLAS. This means we can achieve
optimal performance and still avoid storing Γ as transposed. We store only
Γ and use GLAS for Âx̂ and CUBLAS for ÂT x̂. Figure 6.4 on the following
page shows the performance of the problem-specific matrix-vector multiplication
when GLAS is used. Compared to the results in Figure 6.2, the matrix-vector
multiplication for the problem-specific implementation on the GPU is now as
fast as the matrix-transpose-vector multiplication.
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Figure 6.4: Performance of the problem-specific matrix-vector multiplications
with GLAS instead of CUBLAS for the matrix-vector multiplica-
tion on the GPU.

The effective memory bandwidth (as defined in Section 5.5.4.2 on page 90) of
the problem-specific matrix-vector multiplication functions are shown in Figure
6.5.

The memory bandwidth of the test machine is approximately 42 GB/s for the
CPU and 208 GB/s for the GPU, theoretically. Unlike the general sparse formats
in Section 5.5.3 on page 87, there is no memory bandwidth wasted on index
vectors for the problem specific implementation. It fully maximizes the memory
bandwidth of the CPU and GPU for the two operations. The matrix-transpose-
vector multiplication on the GPU actually exceeds the GPUs bandwidth slightly,
which is due to cache effects.
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Figure 6.5: Memory bandwidth of the problem-specific matrix-vector multi-
plications with GLAS instead of CUBLAS for the matrix-vector
multiplication on the GPU.

6.3.2 Normal equations matrix functions

The normal equations matrix for the test problem in inequality form is described
in Section 4.3.1.2 on page 58.

For the standard form of the problem, the columns of the normal-equations ma-
trixH = ÂDÂT can be computed in two different ways. The simplest method of
computing a column in H is to use the matrix-vector functions, multiplyAx()
and multiplyAtx(). Column k in H can be computed by multiplying H with
a vector where the element xk = 1 and the remaining values are zero. This
is inefficient, however, as it requires two full matrix-vector multiplications per
column.

A more efficient method is to implement the function such that a column is
computed according to its index. For our test case in the standard form, the
normal equations matrix can be computed in the following way

Ĥ = ÂDÂT =



Ĥ11 ĤT
21 ĤT

31 ĤT
41 ĤT

51 ĤT
61

Ĥ21 Ĥ22 ĤT
32 ĤT

42 ĤT
52 ĤT

62

Ĥ31 Ĥ32 Ĥ33 ĤT
43 ĤT

53 ĤT
63

Ĥ41 Ĥ42 Ĥ43 Ĥ44 ĤT
54 ĤT

64

Ĥ51 Ĥ52 Ĥ53 Ĥ54 Ĥ55 ĤT
65

Ĥ61 Ĥ62 Ĥ63 Ĥ64 Ĥ65 Ĥ66


(6.8)
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where

Ĥ =



D1 +D3 ĤT
21 ĤT

31

−D1 D1 +D4 ĤT
32

0 0 D2 +D5

ΨD1 −ΨD1 0

−ΨD1 ΨD1 0

ΓD1 −ΓD1 D2

. . .

. . .

ĤT
41 ĤT

51 ĤT
61

ĤT
42 ĤT

52 ĤT
62

ĤT
43 ĤT

53 ĤT
63

ΨD1ΨT +D6 ĤT
54 ĤT

64

−ΨD1ΨT ΨD1ΨT +D7 ĤT
65

ΓD1ΨT −ΓD1ΨT ΓD1ΓT +D2 +D8



(6.9)

The diagonal of the normal equations matrix is the diagonal of the matrices Hii

for i = 1, . . . , 6. It can be computed as

diag(ÂDÂT ) =



d1 + d3

d1 + d4

d2 + d5

d1 +
[
0 d1(Np : end)

]
+ d6

d1 +
[
0 d1(Np : end)

]
+ d7

diag(ΓD1ΓT ) + d2 + d8


(6.10)

where Np is the number of power-plants in the system, Di = diag(di) and
diag(D) = [d1, d2, d3, d4, d5, d6, d7, d8] corresponding to the columns in Â.
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6.4 Computational results

We have run GPUOPT with the test case described in Chapter 3 using the test
machine described in Section 1.4.

6.4.1 Standard form

In this section, we describe the results when solving our test case problem in
standard form.

6.4.1.1 Convergence

To demonstrate the convergence of the solver, we show the residuals for a specific
problem size with a prediction horizon of 100 time steps and 1000 power plants.
Figure 6.6 shows the three residuals in each interior point iteration for both the
PCG solver and the CHOLMOD-based solver.

The CHOLMOD-based solver manages to bring all the residuals below 10−8,
which was the termination criteria in Section 5.8. Unfortunately, the primal
infeasibility stalls a bit below 10−2 for the PCG solver. This is due to the
inaccuracy of the PCG solver.

For a problem in standard form, the PCG solver solves the normal equations
form to compute the dual direction, ∆y, as shown in (5.9). The PCG solver
only solves this to an accuracy of 10−5, and then computes the primal and
optimality direction from this result. While the dual infeasibility is reduced
as the interior point method progresses, the inaccuracy in the search direction
seems to stall the primal infeasibility around

√
10−5. Due to this, we set the

termination tolerances to tolp = 10−2, told = 10−2 and tolo = 10−8 when using
the PCG solver. We accept that we can not solve the system as accurately as
the factorization-based solver.

6.4.1.2 Regularization and preconditioning

The regularization and preconditioning are critical for the performance of the
PCG solver. Figure 6.7 illustrates this by showing the convergence of the in-
terior point method for our test problem with 100 time steps and 1000 power
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Figure 6.6: Convergence of the PCG solver compared to CHOLMOD solver
for the test case problem in the standard form. Multiple centrality
correctors and weighted corrector directions are not used.

plants, when using the PCG solver with and without regularization and precon-
ditioning. The x-axis shows the total number of conjugate gradient iterations,
as the computational cost is dependent on the number of CG iterations, unlike
a factorization-based solver, where the performance is dependent on the number
of factorizations, and thus the number of IPM iterations.

Figure 6.7a: Convergence without regularization and preconditioning.
The method never converged to the tolerances defined in the previous section.
It used 62394 CG iterations before the optimality reached the tolerance 10−8,
and the interior point method terminated after 68663 CG iterations, without
reducing the primal and dual infeasibilities below the defined tolerances.

Figure 6.7b: Convergence with regularization and without precondi-
tioning. It performed only slightly better by using 60283 CG iterations before
optimality reached its tolerance, but the interior point method terminated after
61869 CG iterations, without reducing the primal and dual infeasibilities below
the defined tolerances.

Figure 6.7c: Convergence with regularization and diagonal precon-
ditioning. The interior point method converged in only 8481 CG iterations.
This clearly shows that even a simple diagonal preconditioner works well to
precondition conjugate gradient, when used in an interior point method.
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Figure 6.7: Convergence of the PCG solver with/without regularization/pre-
conditioning for the test problem with a prediction horizon of 100
time steps and 1000 power plants.

Figure 6.7d: Convergence with regularization and preconditioning of
rank 50. This reduces the number of CG iterations required for the interior
point method to converge to only 5467. By increasing the rank of the precon-
ditioner, the number of CG iterations can be further reduced at the cost of
computing, storing and applying a preconditioner in every CG iteration.
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6.4.1.3 Multiple centrality correctors and weighted corrector direc-
tions

One of the main reasons to apply multiple centrality correctors [Gon96] is the
reuse of the expensive factorization in every interior point iteration when using a
direct solver. This makes it possible to reduce the number of total factorizations
required, and thus reduces the cost of solving the optimization problem.

When using an iterative solver, there is no factorization to reuse, and computing
a centrality corrector can be just as expensive as any other search direction. Fig-
ure 6.8 shows the number of IPM iterations required to converge, and how many
CG iterations were used to reach each IPM iteration, for the same problem with
and without multiple centrality correctors and weighted corrector directions.

Enabling multiple centrality correctors and weighted corrector directions with
the PCG solver produces the same results as enabling them with the CHOLMOD-
based solver, as described in Section 5.8. Using both multiple centrality cor-
rectors and weighted corrector directions results in the smallest number of IPM
iterations. It also uses the most CG iterations to compute, however, and the
solution time when solving with the PCG solver is dependent on the number

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000
Nt = 100, Np = 1000

IPM iteration

T
ot

al
 C

G
 it

er
at

io
ns

 

 

mcc = 0, wcd = 0

mcc = 0, wcd = 9

mcc = 4, wcd = 0

mcc = 4, wcd = 9

Figure 6.8: Performance of the PCG-based solver with and without multiple
centrality correctors and weighted corrector directions, for a test
problem with prediction horizon of 100 time steps and 1000 power
plants. The plot shows the total number of CG iterations com-
pared to the interior point method. The legend denotes how many
MCC iterations and how many steps in the weighted corrector di-
rections are allowed. All four tests were run until they converged.
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of CG iterations, not the number of IPM iterations. The lowest solution time
is achieved, when both multiple centrality correctors and weighted corrector
directions are disabled, despite the additional IPM iterations.

In all our subsequent tests with the PCG solver, we do not use multiple centrality
correctors and weighted corrector directions. Gondzio allowed the interior point
method to use one or two centrality correctors to stabilize the interior point
method [Gon12b], but this is not necessary for our test problem.

6.4.1.4 Performance

We solve the test problem with a prediction horizon of 100 time steps and
with a varying number of power plants from 100 to 5000 power plants. The
termination tolerances used are tolp = 10−2, told = 10−2 and tolo = 10−8.
Both primal and dual regulalization is set to 10−8 and a preconditioner of rank
k = 10 is used. The PCG solver is set to a maximum of 200 iterations with a
termination tolerance tolcg = 10−5.

Figure 6.9 shows the performance of the interior point method with the PCG
solver. The PCG solver using the CPU is run sequentially, as GPUOPT has not
yet been properly optimized for multi-core CPUs.
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Figure 6.9: Performance of the PCG-based solver compared to CHOLMOD-
based solver with our test case problem in the standard form. The
PCG solver using a CPU is used as a reference for the speed-up
plot.
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The CHOLMOD-based solver is approximately two times faster than the sequen-
tial CPU implementation of the PCG solver. The factorization-based solver can
utilize efficient sparsity preserving orderings, due to the high sparsity of the nor-
mal equations matrix. For our test problem, it uses minimum degree (AMD)
ordering. This results in a fast factorization, which the PCG solver cannot com-
pete against. Gondzio also remarks, that he does not expect the PCG solver to
be competitive for sparse problems [Gon12b].

While the sequential CPU version of the PCG solver is slower than the
CHOLMOD-based solver, the benefit of the PCG solver is that it is much easier
to parallelize using a GPU. The GPU implementation of the PCG solver shows a
7.5× speed-up compared to the sequential CPU version and about 3.5× speed-up
compared to the CHOLMOD-based solver, despite the sparsity of the problem.

6.4.2 Inequality form

The test problem in standard form has five times as many decision variables as
the problem in the inequality form, due to the introduced slack variables. In
Chapter 5, we switched to the standard form because of the need to maintain
sparsity in our normal equations matrix and Cholesky factor, when solving large
problems with a direct method. However, since the conjugate gradient solver
does not explicitly form the normal equations matrix, it can solve the problem in
inequality form instead. In this section, we compare the performance of solving
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Figure 6.10: Convergence of the PCG solver compared to CHOLMOD solver
for the test case problem in the standard form. Multiple central-
ity correctors and weighted corrector directions not used.
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the problem in inequality form with the performance of solving the problem in
the standard form.

6.4.2.1 Convergence

Like the convergence for the problem in standard form, described in Section
6.4.1.1, the infeasibility in the PCG solver also stalls when solving the problem in
inequality form. This is shown in Figure 6.10b. Instead of the primal infeasibility
stalling, it is the dual infeasibility which stalls, as the solver for the inequality
form solves the normal equations system for the primal search direction. This
is shown on Figure 6.10a

6.4.2.2 Performance

We have run the same test as in Section 6.4.1.4, but with the test problem in
inequality form. The performance is shown on Figure 6.11. We compare the
solution time of the PCG solver for the inequality form with the CHOLMOD-
based solver for the the standard form, as it is not possible to solve the problem
in the inequality form with the CHOLMOD-based solver. With a prediction
horizon of 100 time steps and 5000 power plants, the normal equations matrix
has a dense window with the dimensions 500000× 500000, which would require
around 1863 GB to store in memory.
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Figure 6.11: Performance of the PCG-based solver when solving the problem
in the inequality form (3.10). The CHOLMOD-based solver it is
compared with solves the standard form problem (3.28).
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Due to the smaller problem size in the inequality form, the sequential CPU ver-
sion of the PCG solver finds the solution about 2× faster than the CHOLMOD-
based solver for larger problems. The GPU implementation shows a speed-up
between 5× to 7.5×, depending on the problem size.

6.5 Conclusion

In this chapter, we described the implementation of a conjugate gradient com-
ponent for GPUOPT, and used the component to implement a preconditioned
conjugate gradient solver to compute the Newton directions in the interior point
method.

The preconditioned conjugate gradient solver is based on [Gon12b], and utilized
a generic preconditioner for solving the normal equations system in an interior
point method. The solver was implemented to only use function pointers to
handle the constraints matrix and normal equations matrix. This allows the
solver to be applied to very large problems, even when the normal equations
matrix is dense, as it never explicitly forms the matrix.

We demonstrated the performance of the iterative solver using both the CPU
and GPU, and compared it to the CHOLMOD-based direct solver described
in Section 5.6.2. For the test case problem in standard form, which is sparse,
the sequential CPU implementation of the PCG solver fails to solve faster than
the CHOLMOD-based solver. However, the GPU implementation shows a good
speed-up of up to 8×, compared to the sequential CPU version, and on average
a 3.5× speed-up compared to the CHOLMOD-based solver.

For the test case problem in the inequality form, the CHOLMOD-based solver
can not solve it at all, due to the memory required to store the dense normal
equations matrix. This is not a problem for the PCG solver, and the sequen-
tial CPU implementation solved the optimization problem 2× faster than the
CHOLMOD-based solver can solve the equivalent problem in standard form.
The GPU implementation showed a speed-up of 4× to 7.5× compared to the se-
quential CPU implementation, and an impressive 9× to 18× speed-up compared
CHOLMOD-based solver.

Our results showed that the PCG solver can be accelerated efficiently with
a GPU. While we only compared with a sequential CPU version, the problem-
specific CPU implementation of both the matrix-vector multiplication and matrix-
transpose-vector multiplication already fully utilizes the memory bandwidth of
the CPU. Since the operations are memory-bound, using multiple cores should
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not give a large difference in performance. Like in Chapter 4, the best speed-
up on the GPU is achieved when the problem is dense. By using an iterative
method, it is possible to solve these dense problems with very limited memory.

6.6 Future perspective

The preconditioning of the solver is currently implemented as a dense factoriza-
tion and columns are stored as dense. This does not present a problem, as the
rank of the preconditioner is generally very small and easily fits in memory. As
a future improvement, the preconditioner could be implemented as sparse which
could be beneficial if the normal equations matrix is very sparse. This would
reduce memory usage, and could also speed-up the preconditioner operations.

Another important future improvement is the completion of the multi-core im-
plementation of the solver. While this thesis focuses on using the GPU, for
some optimization problems the CPU may be better suited, and a combination
of using both the CPU and GPU should be explored for maximum performance.
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Chapter 7

Conclusion

Over the recent years, development in hardware, and especially software, has
made it feasible to use graphics cards (GPUs) as a computing resource for certain
types of calculations. This resource comes (almost) for free on computers, that
are equipped with a graphics card as a standard component, such as desktop
or laptop computers, but there are also special high-end GPUs for compute
servers available on the market. Their sole purpose is to be used as a computing
unit - since they often don’t allow to (directly) connect a monitor or any other
visual device to it. The massively parallel GPU architecture provides several
times higher theoretical memory bandwidth and floating point performance than
CPUs, but are not equally suited for all types of workload. Research has been
done on utilizing the GPUs for different types of scientific computations with
many successful results [BG08] [ZDG+13] [Gli13], but there are many challenges
to utilizing the GPU efficiently [EBW11] [VCC+10].

In this work, our focus was to investigate the application of GPUs for solving
dynamical optimization problems, such as optimization problems resulting from
model predictive control. The solution of these problems can be subject to hard
real-time constraints, which demand fast solution. To solve these problems,
often either a simplex or interior-point method is used.

We have focused on utilizing a GPU for accelerating interior point methods, and
we have implemented a primal-dual interior point method. The main computa-
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tional task in interior point methods is the computation of the Newton direction
in each iteration. We have investigated and presented multiple approaches to
computing the Newton direction using a GPU, including direct solvers using
Cholesky factorization and iterative solvers using preconditioned conjugate gra-
dient.

Based on an existing high-performance library, which includes dense Cholesky
factorization on the GPU [ICL], we have presented an implementation of a
primal-dual interior point method. The implementation uses a GPU to effi-
ciently solve a model predictive control problem, by using the GPU to con-
struct and factorize the normal equations matrix of the KKT conditions. This
implementation was shown to be substantially faster than an equivalent CPU
implementation for our test problem, which had a near-dense normal equations
matrix. The use of dense factorization limits the problem size to problems
where the dense factorization can reside in memory, however, for inherently
dense problems the GPU can provide substantial reduction in the solution time.
By exploiting the structure of the test problem as described in [ESJ09], we re-
duced both the solution time and the memory usage. Thus, it was possible
to solve larger systems, but the problem size is still very limited by the dense
factorization.

For sparse problems, the use of dense factorization is not an optimal choice.
Sparse Cholesky factorization, which utilizes sparsity preserving orderings, can
significantly reduce the memory usage and computational load. The dense nor-
mal equations matrix in our test problem was caused by near-dense rows in
the constraints matrix. By formulating the test problem in the standard form
instead of the inequality form, we obtained a larger, but sparse, optimization
problem. Using an existing sparse Cholesky factorization package, CHOLMOD
[Dav], we implemented a solver to compute the Newton direction in our interior
point method. This made it possible to solve much larger systems than the
dense implementation, and the solution time was also lower, despite the larger
number of decision variables in the optimization problem. CHOLMOD is origi-
nally a CPU-based implementation, however recent versions have included GPU
acceleration for NVIDIA GPUs. Unfortunately, we were not able to make this
work for our tests, as the GPU-enabled library resulted in segmentation faults
within the CHOLMOD library. A new beta version of CHOLMOD was recently
released, which may resolve this issue, but we have not been able to run new
tests to include in this thesis. Sparse Cholesky factorization with GPU accel-
eration has been investigated by multiple authors [GSG+11] [ZD12] [ZDG+13]
with results showing a potential two to four times speed-up by utilizing a GPU.
We believe this should be investigated further in the future.

An alternative to direct solvers is iterative methods. As the interior point
method approaches the solution, the normal equations matrix becomes
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ill-conditioned due to the partition displayed by the complementarity pairs
[Wri97]. While direct solvers are generally unaffected by this [Gon12b], iter-
ative methods are highly susceptible to ill-conditioning and fails to converge.
In [Gon12b], Gondzio presents an interior point method which uses conjugate
gradient with regularization and a preconditioner. We have implemented the
proposed method for a GPU, and evaluated its performance. The main compu-
tational work in conjugate gradient is matrix-vector multiplication, which the
GPU is well-suited for [Sø12] [BG08] [BG09], and which makes this an attractive
method for GPU implementation. While the conjugate gradient solver fails to
converge to the same accuracy as the direct method due to the ill-conditioning,
the regularization and preconditioner makes it feasible to use conjugate gradi-
ent to compute an approxiate solution. Since there is no factorization stored,
it is possible to solve even large systems of the dense formulation. This gave
substantial speed-up, compared to the direct method for our test problem.

The different methods we have implemented have been combined into a single
modular toolbox called GPUOPT. GPUOPT contains our implementation of
a primal-dual interior point algorithm for linear optimization problems based
on Mehrotra’s predictor-corrector method [Meh92], and also features multiple
centrality correctors [Gon96], and weighted corrector directions [CG08]. It is
implemented, such that all operations can execute entirely on the GPU. The
interior-point method in the toolbox is split into modules, such that the matrix
operations and Newton solver is separated from the core interior point method.
This allows for problem-specific implementation of the operations, which was
shown to reduce the solution time substantially in Chapter 4. The different
approaches to the solution of the Newton direction have been implemented as
modules for GPUOPT, making them easy to use. GPUOPT is released as open-
source as part of this thesis.

Overall, the use of a GPU for interior point methods has shown promising
results. For dense problems, which fit within memory, the dense factorization on
the GPU performs substantially better then the CPU, due to the high memory
bandwidth of the GPU. For larger problems which do not fit within memory,
the iterative solver based on conjugate gradient can compute an approximate
solution. The performance of conjugate gradient is dependent on the matrix-
vector multiplication, which is a memory-bound operation. By utilizing the high
memory bandwidth of the GPU, this can be accelerated substantially. To fully
utilize the GPU, it is necessary for the optimization problem to contain some
dense substructures, such as our test problem, which contains a dense block-
Toeplitz matrix. For very sparse problems, the CPU remains competitive with
sparse Cholesky factorization. Although not done in this thesis, research has
shown that the GPU is also capable of accelerating this operation [GSG+11,
ZD12, ZDG+13].
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7.1 Future perspective

With this work, we have tried to cover different approaches to using a GPU to
accelerate interior point methods and develop a toolbox, which provides a basis
for GPU-accelerated interior point methods. There are still many improvements
which can be applied to the work carried out in this thesis. Below we summarize
some of the future improvements we would like to see, which can help direct
future research in the area.

Quadratic optimization problems are currently not supported by
GPUOPT, as we restricted ourselves during the thesis to linear optimization
problems. However, with minor modifications, the toolbox can be extended
to handle quadratic optimization problems. We believe that the GPU can be
competitive for dense QP problems.

GPU-accelerated sparse Cholesky factorization has shown to provide
speed-up in [GSG+11, ZD12, ZDG+13]. Whether this speed-up also applies to
problems from model predictive control remains to be seen, but warrants further
investigation.

OpenCL has matured substantially over the last 2-3 years. While CUDA re-
mains the leader in ease-of-use with mature libraries available, multiple OpenCL
libraries have been released, and are rapidly catching up. It would be interest-
ing to see GPUOPT implemented with OpenCL instead of CUDA, which would
allow it to run on more than just NVIDIA GPUs, such as Intel MIC processors
and AMD graphics cards.
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3. Nicolai Fog Gade-Nielsen, John Bagterp Jørgensen, and Bernd Dammann.
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