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Abstract
A parallel, blocked, one-sided Hari–Zimmermann algorithm for the generalized singular value decomposition (GSVD)
of a real or a complex matrix pair (F,G) is here proposed, where F and G have the same number of columns, and
are both of the full column rank. The algorithm targets either a single graphics processing unit (GPU), or a cluster
of those, performs all non-trivial computation exclusively on the GPUs, requires the minimal amount of memory to
be reasonably expected, scales acceptably with the increase of the number of GPUs available, and guarantees the
reproducible, bitwise identical output of the runs repeated over the same input and with the same number of GPUs.
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1 Introduction
The two-sided Hari–Zimmermann algorithm Hari (1984,
2018, 2019); Zimmermann (1969) is a Jacobi-type method
for computing the generalized eigenvalue decomposition
(GEVD) of a matrix pair (A,B), where both matrices are
Hermitian of the same order and B is positive definite.

If A and B are instead given implicitly by their
factors F and G (not necessarily square nor with the
same number of rows), respectively, such that (A,B) =
(F ∗F,G∗G), then the GEVD of (A,B) can be computed
implicitly, i.e., without assemblingA andB in entirety from
the factors, by a modification of the Hari–Zimmermann
algorithm Novaković et al. (2015). However, pivot
submatrices of A and B of a certain, usually small order
are formed explicitly throughout the computation.

The modified algorithm is a method that jointly
orthogonalizes the pairs of columns of F and G by a
sequence of transformations that are applied from the
right side of the factors only. Such a one-sided algorithm
computes U , ΣF , V , ΣG, and Z, where FZ = UΣF ,
GZ = V ΣG, and U∗U = V ∗V = I . The matrix Z is
square and nonsingular, while ΣF and ΣG are non-
negative, diagonal, and scaled such that Σ2

F + Σ2
G = I . The

method thus implicitly computes the GEVD of (A,B),
but explicitly the generalized singular value decomposition
(GSVD; see, e.g., Paige and Saunders (1981); Van Loan
(1976)) of (F,G), with the generalized singular values
forming the diagonal of Σ := Σ−1G ΣF (all of them finite,
since ΣG has a positive diagonal). Furthermore, the

generalized singular values can be considered to be
sorted descendingly by a symmetric permutation, i.e., Σ =
PT0 Σ′P0, and thus U = U ′P0, V = V ′P0, and Z = Z ′P0,
where FZ ′ = U ′Σ′F , GZ ′ = V ′Σ′G, and Σ′ = Σ′−1G Σ′F
constitute a decomposition of (F,G) possessing all other
aforementioned properties.

The GEVD of (A,B), if required, can be recovered
by letting Λ := Σ2 and noting that AZ = BZΛ, i.e., the
columns of Z are the generalized eigenvectors, and the
diagonal of Λ contains the generalized eigenvalues of
(A,B). However, the converse is not numerically sound,
i.e., the GEVD should not, in general, be used for comput-
ing the GSVD. For a further clarification, see Appendix G.

The right generalized singular vectors X := Z−1, if
needed, can either be computed from Z, or can be obtained
simultaneously with Z by accumulating the inverses of the
transformations that have been multiplied to form Z Singer
et al. (2020). With Θ̃ from subsection 2.4, if

Z = Z0Z̃Θ̃ = Z0 · Z̃0 · Z̃1 · · · Z̃N · Θ̃,
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when N + 1 transformations have been applied, then

X = Θ̃−1 · Z̃−1N · Z̃
−1
N−1 · · · Z̃

−1
0 · Z−10 .

The recent work Novaković et al. (2015) has shown
that such method can be blocked and parallelized for the
shared memory nodes and for the clusters of those, albeit
only the real matrix pairs were considered therein. Even
the sequential but blocked version outperformed the GSVD
algorithm in LAPACK Anderson et al. (1999), and the
parallel ones exhibited a decent scalability.

On the other hand, an efficient, parallel and blocked
one-sided Jacobi-type algorithm for the “ordinary” and
the hyperbolic SVD Novaković (2015, 2017) of a single
real matrix has been developed for the GPUs, that utilizes
the GPUs almost fully, with the CPU serving only the
controlling purpose in the single-GPU case.

This work aims to merge the experience of those two
approaches, and present a parallel and blocked one-sided
(also called “implicit”) Hari–Zimmermann algorithm for
the GSVD on the GPU(s) as an extension of the latter, but
for the complex matrix pairs as well as for the real ones.

Even though the research in parallelization of the GSVD
has a long history Bai (1994); Luk (1985), three novel
and major differences from the earlier, Kogbetliantz-based
procedures aim to ensure both the high performance and the
high relative accuracy of this one: using the implicit Hari–
Zimmermann algorithm as the basic method, that is blocked
to exploit the GPU memory hierarchy, and the massive
parallelism of the GPUs that suits the algorithm (and vice
versa) perfectly.

In the last twenty years, many applications of GSVD
have been found in science and technology. To mention
just a few applications, the GSVD is used for dimension
reduction for clustered text data Howland et al. (2003)
and for face recognition algorithms Howland et al. (2006),
where in both cases the matrix pair is naturally given
implicitly, i.e., in a factored form.

In Alter et al. (2003) the GSVD serves for comparison of
two different organisms to find their biological similarities
based on a genome-scale expression data sets. Also,
the GSVD can be used in beamforming Senaratne
and Tellambura (2013) and separation of partially
overlapping data packets Zhou and van der Veen (2017)
in communication systems, machine condition monitoring
when looking for symptoms of wear Cempel (2009), and
filtering of brain activities while preforming two different
tasks Zhao et al. (2010). In the last case, matrices could be
very large.

This paper continues with section 2, where the complex
and the real one-sided Hari–Zimmermann algorithms
are introduced, together with the general, architecturally
agnostic principles of their blocking and parallelization. In
section 3 the single-GPU implementation are described in

detail, while in section 4 the most straightforward multi-
GPU implementation approach is suggested. The numerical
testing results are summarized in section 5, and the paper
concludes with some directions for future research in
section 6. In Appendix A a non-essential method for
enhancing the accuracy of the real and the complex dot-
products on the GPUs is proposed.

2 The complex and the real one-sided
Hari–Zimmermann algorithms

In this section the complex and the real one-sided Hari–
Zimmermann algorithms are briefly described. Please
see Hari (1984, 2018, 2019) for a more thorough overview
of the two-sided algorithms, and Novaković et al. (2015)
for a detailed explanation of the real implicit Hari–
Zimmermann algorithm. In this paper the terminology and
the implementation decisions of Singer et al. (2020), where
the complex generalized hyperbolic SVD based on the
implicit Hari–Zimmermann approach has been introduced,
are closely followed, but without the hyperbolic scalar
products (i.e., the signature matrix J is taken to be identity
here) and without forming the right generalized singular
vectors X from Z.

Let the matrices F and G be of size mF × n and
mG × n, respectively, with min{mF ,mG} ≥ n. Then, Z
is square of order n, and assume that n ≥ 2. Otherwise, for
n = 1, the GSVD of (F,G) is obtained by taking

U := ‖F‖−1F F,

V := ‖G‖−1F G,

Z :=
1√

‖F‖2F + ‖G‖2F
,

ΣF :=
‖F‖F√

‖F‖2F + ‖G‖2F
,

ΣG :=
‖G‖F√

‖F‖2F + ‖G‖2F
.

Even though the algorithm works on the rectangular
matrices, it might be beneficial performance-wise to avoid
transforming very tall and skinny (block)columns by
working on the square matrices instead. To shorten F
and G, the problem is transformed by computing the
QR factorization of F with the column pivoting, FP1 =
QFRF , and then G, with its columns prepermuted by
P1, is shortened by the column-pivoted QR factorization,
(GP1)P2 = QGRG. The square matrices F ′′ := RFP2 and
G′′ := RG, both of order n, take the place of F and
G in the algorithm, respectively. With Σ = Σ′′ in the
decompositions of (F,G) and of (F ′′, G′′), the matrix
Z from the former, sought-for decomposition can be
recovered by using P ′′ := P1P2 and the computed Z ′′ from
the latter as Z := P ′′Z ′′.

It is assumed that diag(B) = I , i.e., the column norms
of G are unity. Should it not be the case, F and G are
then prescaled by a nonsingular, diagonal matrix Z0, where
(Z0)jj := 1/

√
‖gj‖F , gj is the jth column of G and 1 ≤
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j ≤ n; otherwise, Z0 := I . The iterative transformation
phase starts with the matrix pair (F0, G0), where F0 :=
FZ0, and G0 := GZ0. Implicitly, A and B have been
transformed by a congruence with Z0 as A0 := F ∗0 F0 and
B0 := G∗0G0.

2.1 Simultaneous diagonalization of a pair of
pivot matrices

An iteration (or “step”) k ≥ 0 of the sequential non-blocked
Hari–Zimmermann algorithm consists of selecting a pair of
indices (ik, jk), 1 ≤ ik < jk ≤ n, and thus two 2× 2 pivot
submatrices, one of Ak := F ∗kFk,

Âk :=

[
aikik;k

aikjk;k
āikjk;k

ajkjk;k

]
=

[
f∗ik;k

fik;k
f∗ik;k

fjk;k
f∗jk;k

fik;k
f∗jk;k

fjk;k

]
,

and one of Bk := G∗kGk,

B̂k :=

[
1 bikjk;k

b̄ikjk;k
1

]
=

[
1 g∗ik;k

gjk;k
g∗jk;k

gik;k
1

]
,

which are then jointly diagonalized by a congruence
transformation with a nonsingular matrix Ẑk, to be defined
in subsections 2.1.1 and 2.1.2, as

Âk+1 := Ẑ∗kÂkẐk =

[
aikik;k+1 0

0 ajkjk;k+1

]
,

B̂k+1 := Ẑ∗kB̂kẐk = I2.

If Ẑk is embedded into an n× n matrix Z̃k such
that Z̃ikik;k := Ẑ11;k, Z̃ikjk;k := Ẑ12;k, Z̃jkik;k := Ẑ21;k,

Z̃jkjk;k
:= Ẑ22;k, while letting Z̃k be the identity matrix

elsewhere, then looking two-sidedly the congruence with
Z̃k transforms the pair (Ak, Bk) into a pair (Ak+1, Bk+1),
where Ak+1 := Z̃∗kAkZ̃k and Bk+1 := Z̃∗kBkZ̃k. One-
sidedly, the transformation by Z̃k orthogonalizes the ikth
and the jkth pivot columns of Fk andGk to obtain Fk+1 :=

FkZ̃k and Gk+1 := GkZ̃k. Also, Z̃k is accumulated into
the product Zk+1 := ZkZ̃k. In a one-sided sequential step
only the ikth and the jkth columns of Fk, Gk, and Zk
are effectively transformed, in-place (i.e., overwritten),
postmultiplying them by the 2× 2 matrix Ẑk, while the
other columns of these matrices remain intact:[

fik;k+1 fjk;k+1

]
=
[
fik;k

fjk;k

]
· Ẑk,[

gik;k+1 gjk;k+1

]
=
[
gik;k

gjk;k

]
· Ẑk,[

zik;k+1 zjk;k+1

]
=
[
zik;k

zjk;k

]
· Ẑk.

As diag(B̂k+1) = diag(B̂k) = I2, it follows that
diag(Bk+1) = diag(Bk) = In. However, due to the

floating-point rounding errors, these equations might
not hold. To prevent diag(B̂k) to drift too far away
from diag(I2) as the algorithm progresses, the squared
Frobenius norms of gik;k and gjk;k

could be recomputed
for each k as bikik;k = g∗ik;k

gik;k
and bjkjk;k = g∗jk;k

gjk;k
.

Then, a rescaling of Âk and B̂k as Â′k := D̂∗kÂkD̂k and
B̂′k := D̂∗kB̂kD̂k, by a diagonal matrix D̂k such that
D̂11;k = 1/

√
bikik;k

and D̂22;k = 1/
√
bjkjk;k

, should bring

back diag(B̂k) close to diag(I2). From Â′k and B̂′k it is
then possible to compute Ẑ ′k, with the final Ẑk := D̂kẐ

′
k.

In this version of the algorithm it is not necessary to rescale
the columns of F and G by Z̃0 at the start, since such
rescaling happens at each step, so Z̃0 := I . If D̂k = I2,
this version is equivalent to the standard (previously
described) one, for which it can be formally set Â′k := Âk
and B̂′k := B̂k.

Suppose that Ẑ ′′k has been computed (by either version)
such that it diagonalizes Âk and B̂k, but aikik;k+1 <

ajkjk;k+1. To keep diag(Âk) sorted descendingly, swap

the columns of Ẑ ′′k by a permutation P̂k := [ 0 1
1 0 ] to obtain

Ẑk := Ẑ ′′k P̂k. Such Ẑk will swap the ikth and the jkth
columns of Fk and Gk as it orthogonalizes them. Sorting in
each step is a heuristic that speeds up the algorithm notably
in practice (see section 5), but it makes reasoning about the
convergence harder and is not strictly necessary.

Computing Ẑk from Âk and B̂k is more involved in the
complex case than in the real one. However, in both cases,
first it is established whether the ikth and the jkth columns
of Fk and Gk are numerically relatively orthogonal,

|a′ikjk;k| <
√
a′ikik;k

·
√
a′jkjk;k

· ε ·
√
n,

|b′ikjk;k| < ε ·
√
n,

where ε is the precision of the chosen floating-point
datatype. The relation relies on the expected (as opposed to
the worst case) rounding error for the dot-products Drmač
(1997) that form the elements of Â′k and B̂′k, and while
sensible in the real case, it is probably too tight in the
complex case, where a more careful analysis of the complex
dot-products might be employed in the future work and a
handful of transformations subsequently might be skipped.
If the aforesaid columns are relatively orthogonal, no non-
trivial transformation is to take place, and Ẑk := P̂k, since
still the column swap may be warranted. Rescaling by D̂k is
thus not performed even for D̂k 6= I2, since it might perturb
the columns sufficiently enough for them to cease to be
numerically orthogonal.
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2.1.1 The complex case The transformation matrix Ẑ ′k
is sought in a form Hari (1984); Singer et al. (2020)

Ẑ ′k :=
1

tk

[
cosϕk eiαk sinϕk

−e−iβk sinψk cosψk

]
.

To that end, let xk := |b′ikjk;k|, ζk := arg(b′ikjk;k), or ζk :=

0 if b′ikjk;k = 0, zk := e−iζka′ikjk;k, and define sign(a, b)

to be |a| with the sign of b for a and b real. Then, let
tk :=

√
1− x2k, set

uk := Re(zk),

vk := Im(zk),

hk := a′jkjk;k − a
′
ikik;k

,

τk := sign(1, hk),

and, noting that tk > 0 since B̂′k is positive definite, with
these quantities compute

tan(2ϑk) := τk
2uk − (a′ikik;k

+ a′jkjk;k
)xk

tk
√
h2k + 4v2k

,

tan γk := 2
vk
hk
,

where −π/4 < ϑk ≤ π/4 and −π/2 < γk ≤ π/2. In these
ranges of the angles, for θ ∈ {2ϑk, γk} the trigonometric
identities cos θ = 1/(1 + tan2 θ) and sin θ = tan θ cos θ
hold when θ < π/2. Otherwise, tan θ =∞, cos θ = 0,
and sin θ = 1. Then, compute c2ϑ := cos(2ϑk), s2ϑ :=
sin(2ϑk), cγ := cos γk, and sγ := sin γk, and with them
finally obtain

cosϕk :=
1√
2

√
1 + xks2ϑ + tkcγc2ϑ,

cosψk :=
1√
2

√
1− xks2ϑ + tkcγc2ϑ,

eiαk sinϕk := eiζk
(s2ϑ − xk) + itksγc2ϑ

2 cosψk
,

e−iβk sinψk := e−iζk
(s2ϑ + xk)− itksγc2ϑ

2 cosϕk
,

where 0 ≤ ϕk < π/2 and 0 ≤ ψk < π/2.

An exception If vk = hk = 0, i.e., if arg(b′ikjk;k
) =

arg(a′ikjk;k
) and a′ikik;k

= a′jkjk;k
, then tan γk is unde-

fined, and tan(2ϑk) might also be. In that case, it can be
shown that Â′k and B̂′k are diagonalized by

Ẑ ′k :=
1√
2

 1√
1+x

−eiζk√
1−x

e−iζk√
1+x

1√
1−x

 .
2.1.2 The real case The transformation matrix Ẑ ′k is
sought in a form Hari (1984); Novaković et al. (2015)

Ẑ ′k :=
1

tk

[
cosϕk sinϕk
− sinψk cosψk

]
.

To that end, let xk := b′ikjk;k and tk :=
√

1− x2k > 0.
Then, set

ξk :=
xk√

1 + xk +
√

1− xk
,

ηk :=
xk(

1 +
√

1 + xk
) (

1 +
√

1− xk
) ,

and compute

cot(2ϑk) :=
tk(a′jkjk;k

− a′ikik;k)

2a′ikjk;k
− (a′ikik;k

+ a′jkjk;k
)xk

,

where −π/4 < ϑk ≤ π/4.
Note that cot(2ϑk) and cotϑk (and the corresponding

tangents) have the same sign in the range of ϑk. Assuming
that the floating-point arithmetic unit does not trap on±1/0
and 1/∞, obtain tanϑk as

tanϑk :=
sign(1, cot(2ϑk))

| cot(2ϑk)|+
√

1 + cot2(2ϑk)
,

and from it cosϑk and sinϑk using the same trigonometric
identities as in the complex case. Finally, compute

cosϕk := cosϑk + ξk(sinϑk − ηk cosϑk),

cosψk := cosϑk − ξk(sinϑk + ηk cosϑk),

sinϕk := sinϑk − ξk(cosϑk + ηk sinϑk),

sinψk := sinϑk + ξk(cosϑk − ηk sinϑk),

where 0 ≤ ϕk < π/2 and 0 ≤ ψk < π/2.

An exception Since the real case is in fact a
simplification of the complex case, when cot(2ϑk) is
undefined, being 0/0, i.e., when a′ikik;k

= a′jkjk;k
and

a′ikjk;k
= a′ikik;k

b′ikjk;k
(or, in other words, when Â′k and

B̂′k are proportional), define

Ẑ ′k :=
1√
2

 1√
1+|x|

−1√
1−|x|

1√
1+|x|

1√
1−|x|

 .
Figure 1 shows a schematic derivation of the two-sided

Hari–Zimmermann transformations. Starting with a pair
(A,B) of 2× 2 symmetric matrices, where B is positive
definite, they are jointly transformed in four steps, i.e.,
twice by a diagonal scaling followed by a Jacobi rotation,
after which both matrices become diagonal. The above for-
mulas for Ẑ ′k follow by combining the last three steps into a
convenient computation without the intermediate matrices.

2.2 Parallelization of the one-sided algorithm
The sequential one-sided algorithm in each step chooses
a single pivot index pair, according to some criterion that
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A = FTF B = GTG

aii aij

aij ajj

bii bij

bij abj

aii

aii

aii

aii

aij

aij

aij

aij

aij

aij

aij

aij

ajj

ajj

ajj

ajj

bii

1

bii

1

bij

bij

bij

bij

bjj

1

bjj

1

→

→

→

→

→

→

→

→

1
√

bii

1
√

bii

1
√

bii

1
√

bii

1
√

bjj

1
√

bjj

1
√

bjj

1
√

bjj

1
√

bii

1
√

bii

1
√

bii

1
√

bii

1
√

bjj

1
√

bjj

1
√

bjj

1
√

bjj

aii

aii

aii

aii

aij

aij

aij

aij

aij

aij

ajj

ajj

ajj

ajj

1 bij

bij 1

bii

bjj

1

1

1

1

cosϕ1 cosϕ1− sinϕ1 − sinϕ1

sinϕ1 sinϕ1
cosϕ1 cosϕ1

cosϕ1 cosϕ1sinϕ1 sinϕ1

− sinϕ1 − sinϕ1
cosϕ1 cosϕ1

cosϕ2 cosϕ2− sinϕ2 − sinϕ2

sinϕ2 sinϕ2
cosϕ2 cosϕ2

cosϕ2 cosϕ2sinϕ2 sinϕ2

− sinϕ2 − sinϕ2
cosϕ2 cosϕ2

preprocessing step – scale matrices

1st step – diagonalize B, ϕ1 = −π/4

2nd step – scale matrices

3rd step – diagonalize A

Figure 1. A decomposition of the two-sided Hari–Zimmermann joint diagonalization of a pair (A,B) of 2× 2 symmetric matrices
into four simple transformations. The second and the last are the orthogonal Jacobi rotations, but the first and the third (the diag-
onal scalings) are not orthogonal in general and also demonstrate why the positive definiteness of B is essential for the method.

is called a sequential Jacobi strategy. However, at most
bn/2c pivot column pairs of each matrix can be transformed
concurrently if the indices in all index pairs are distinct.

In a parallel step k ≥ 0 a sequence (i
(`)
k , j

(`)
k ) of pivot

index pairs, where 1 ≤ ` ≤ bn/2c, such that each index
in the range from 1 to n appears at most (and for even
n, exactly) once in the sequence, addresses bn/2c pivot
column pairs of Ak and Bk to be transformed—each pair
by a separate, concurrent task. All permutations of a given
(i

(`)
k , j

(`)
k ) are equivalent from the numerical point of view,

since the resulting Ak+1 and Bk+1 are the same for every
reordering of the sequence, and therefore any reordering
represents the entire equivalence class.

For simplicity, a barrier is assumed between the
successive parallel steps, i.e., all tasks of a step have to be
completed before those of the following step are started.

A criterion to choose a pivot index pair sequence for
each parallel step is called a parallel Jacobi strategy. Among
the strategies that are simplest to compute are the ones
that prescribe a pivot sequence for each step, until all
n(n− 1)/2 index pairs (i, j) are selected at least once. The
choice of the steps is then periodically repeated. Let s be
the shortest such period. The first s steps constitute the first
sweep, the following s steps the second sweep, and so on.

If in any sweep exactly n(n− 1)/2 different index pairs
are chosen, such a strategy is called cyclic; otherwise, some
index pairs are repeated in a sweep, and the strategy is
called quasi-cyclic. For even n, s ≥ n− 1, and the equality
holds if and only if the strategy is cyclic.

A strategy is defined for a fixed n; however, by a slight
abuse of the usual terminology, a single principle by which
the particular strategies are generated for some given matrix
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orders will simply be called a strategy kind, or even a
strategy for short.

Based on the previous experience with the one-sided
Jacobi-like algorithms, two parallel Jacobi strategy kinds
have been selected for testing: the modified modulus
(MM; see, e.g., Novaković and Singer (2011); Novaković
et al. (2015)), quasi-cyclic with s = n, and the generalized
Mantharam–Eberlein (ME; see Mantharam and Eberlein
(1993); Novaković (2015)) cyclic one. Please see Figures 1
and 2 in the supplementary material, where a sweep of ME
and of MM, respectively, is shown two-sidedly on a matrix
of order 32.

2.3 Blocking of the one-sided algorithm
Parallelization alone is not sufficient for achieving a decent
performance of the algorithm on the modern architectures
with multiple levels of the memory hierarchy.

The pointwise algorithm just described is therefore
modified to work on the block columns of the matrices,
instead of the columns proper. Each block column
comprises an arbitrary but fixed number w, 1 < w < bn/2c,
of consecutive matrix columns. Instead of 2× 2 pivot
submatrices of Ak and Bk, in the blocked algorithm 2w×
2w pivot submatrices Â

(`)
k and B̂

(`)
k are formed in the kth

(parallel or sequential) step by matrix multiplications,

Â
(`)
k :=

[
A
i
(`)
k i

(`)
k ;k

A
i
(`)
k j

(`)
k ;k

A∗
i
(`)
k j

(`)
k ;k

A
j
(`)
k j

(`)
k ;k

]

=

[
F ∗
i
(`)
k ;k

F
i
(`)
k ;k

F ∗
i
(`)
k ;k

F
j
(`)
k ;k

F ∗
j
(`)
k ;k

F
i
(`)
k ;k

F ∗
j
(`)
k ;k

F
j
(`)
k ;k

]
,

B̂
(`)
k :=

[
B
i
(`)
k i

(`)
k ;k

B
i
(`)
k j

(`)
k ;k

B∗
i
(`)
k j

(`)
k ;k

B
j
(`)
k j

(`)
k ;k

]

=

[
G∗
i
(`)
k ;k

G
i
(`)
k ;k

G∗
i
(`)
k ;k

G
j
(`)
k ;k

G∗
j
(`)
k ;k

G
i
(`)
k ;k

G∗
j
(`)
k ;k

G
j
(`)
k ;k

]
,

where F
i
(`)
k ;k

, F
j
(`)
k ;k

, G
i
(`)
k ;k

, G
j
(`)
k ;k

, Z
i
(`)
k ;k

, and Z
j
(`)
k ;k

are the i(`)k th and j(`)k th block columns of Fk, Gk, and Zk
of width w.

Now, Â
(`)
k and B̂

(`)
k can either be jointly diagonalized

by a matrix Ẑ
(`)
k , which leads to the full block (FB)

algorithm Hari et al. (2014), as called in the context of
the Jacobi methods, or their off-diagonal norms can be
reduced by a sequence of congruences accumulated into
Ẑ
(`)
k , which is called the block-oriented (BO) algorithm Hari

et al. (2010). The idea behind blocking is that Â
(`)
k , B̂

(`)
k ,

and Ẑ
(`)
k fit, by choosing w, into the small but fast cache

memory (e.g., the shared memory of a GPU), to speed up
the computation with them, as well as employing BLAS 3

(matrix multiplies) operations for the block column updates
by Ẑ

(`)
k afterwards:[
F
i
(`)
k ;k+1

F
j
(`)
k ;k+1

]
=
[
F
i
(`)
k ;k

F
j
(`)
k ;k

]
· Ẑ(`)

k ,[
G
i
(`)
k ;k+1

G
j
(`)
k ;k+1

]
=
[
G
i
(`)
k ;k

G
j
(`)
k ;k

]
· Ẑ(`)

k ,[
Z
i
(`)
k ;k+1

Z
j
(`)
k ;k+1

]
=
[
Z
i
(`)
k ;k

Z
j
(`)
k ;k

]
· Ẑ(`)

k .

The computation of Ẑ
(`)
k in either FB or BO can be done

by any convergent method; a two-sided method can be
applied straightforwardly, but for the one-sided approach
Â
(`)
k and B̂

(`)
k have to be factorized first by, e.g., the

Cholesky factorization

Â
(`)
k = F̂

(`)∗
k F̂

(`)
k , B̂

(`)
k = Ĝ

(`)∗
k Ĝ

(`)
k ,

and then the same implicit Hari–Zimmermann method,
pointwise or blocked, and in both cases, either parallel or
sequential, can be recursively applied to F̂

(`)
k and Ĝ

(`)
k .

In the single-GPU algorithm, there is only one level of
such a recursion, i.e., one level of blocking. The block,
outer level of the algorithm and the pointwise, inner level
do not need to employ the same strategy kind. Both levels,
however, are parallel. The sweeps of the outer level are
called the block (or outer) sweeps, and those of the inner
level are called the pointwise (or inner) sweeps, which
for FB are limited to 30 (Â(`)

k and B̂
(`)
k are usually fully

diagonalized in less than that number of sweeps), and for
BO are limited to only one inner sweep. Apart from that,
there is no other substantial difference between FB and BO.

The Cholesky factorization is not the only way to form
F̂
(`)
k and Ĝ

(`)
k . One numerical stability improvement would

be to use a diagonally pivoted version of the factorization
instead Singer et al. (2012),

Â
(`)
k = P

(`)
F ;kF̃

(`)∗
k F̃

(`)
k P

(`)T
F ;k , B̂

(`)
k = P

(`)
G;kG̃

(`)∗
k G̃

(`)
k P

(`)T
G;k .

Another one would be to skip forming Â
(`)
k and B̂

(`)
k explic-

itly by shortening the pivot block columns by the column-
pivoted QR factorization directly Singer et al. (2020),

F̃
(`)
k :=

[
F̃
i
(`)
k ;k

F̃
j
(`)
k ;k

]
= Q

(`)∗
F ;k ·

[
F
i
(`)
k ;k

F
j
(`)
k ;k

]
· P (`)

F ;k,

G̃
(`)
k :=

[
G̃
i
(`)
k ;k+1

G̃
j
(`)
k ;k

]
= Q

(`)∗
G;k ·

[
G
i
(`)
k ;k

G
j
(`)
k ;k

]
· P (`)

G;k.

In both cases, let

F̂
(`)
k := F̃

(`)
k P

(`)T
F ;k , Ĝ

(`)
k := G̃

(`)
k P

(`)T
G;k ,
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where P (`)
F ;k and P (`)

G;k are permutation matrices, whileQ(`)
F ;k

and Q
(`)
G;k are unitary and are not required to be stored,

implicitly or explicitly, for any further computation.
However, the QR factorization (even without the

column pivoting) of a pair of the tall and skinny block
columns comes with a significant performance penalty on
a GPU compared to the Cholesky factorization of a small,
square pivot submatrix Novaković (2015), and the pivoted
Cholesky factorization does not avoid a possibility of get-
ting a severely ill-conditioned Â

(`)
k or B̂

(`)
k by multiplying

an ill-conditioned pair of block columns by itself. Both
of these enhancements are therefore only mentioned here,
with a performance comparison of the in-kernel QR fac-
torizations versus the formation of the Grammian matrices
and their Cholesky factorizations available in Appendix E.
If the batched tall-and-skinny QR factorizations prove
indispensable for a particularly ill-conditioned problem,
cublasXgetrfBatched routine (with X ∈ {D,Z}) and
Boukaram et al. (2018) could also be considered.

In the following, the blocked algorithm is assumed to
form the pivot submatrices as

Â
(`)
k :=

[
F
i
(`)
k ;k

F
j
(`)
k ;k

]∗
·
[
F
i
(`)
k ;k

F
j
(`)
k ;k

]
,

B̂
(`)
k :=

[
G
i
(`)
k ;k

G
j
(`)
k ;k

]∗
·
[
G
i
(`)
k ;k

G
j
(`)
k ;k

]
,

i.e., each one by a ZHERK (DSYRK in the real case) like
operation in the BLAS terminology, and the non-pivoted
Cholesky factorization is then used to obtain F̂

(`)
k and Ĝ

(`)
k ,

as demonstrated in Figure 2, where eight block columns of
F are depicted. The same illustration holds if F is replaced
by G. The block columns of the same hue are paired
together, according to the first step of the ME strategy,
giving four square blocks to be formed and factorized.

Figure 3 shows how each pair of the factors F̂k and Ĝk
is processed by the pointwise Hari–Zimmermann GSVD,
leaving two matrices of the scaled left generalized singular
vectors that are not used further, and a single matrix
(rescaled, as noted in the following subsection 2.4) Z̃k of the
accumulated transformations. The block column pairs of F ,
G, and Z, with the physically disjoint but logically contigu-
ous block columns, are then postmultiplied, each from the
right by the corresponding Z̃k, and replaced by the result.

2.4 Rescalings

Observe that Ẑ
(`)
k is a product of several non-unitary

matrices, elements of which can be larger than 1 by
magnitude, so the norm of Ẑ

(`)
k can build up significantly

by such accumulation of the transformations. Also, if Ẑ
(`)
k

diagonalizes Â
(`)
k and B̂

(`)
k , or reduces their off-diagonal

norms, so does any matrix Ẑ
(`)
k Θ̂

(`)
k , where Θ̂

(`)
k is a real,

diagonal matrix with its diagonal elements positive and
smaller than 1.

Let Θ̃
(`)
k be such a matrix that reduces the norm of Ẑ

(`)
k ,

(
Θ̃

(`)
k

)
jj

:=

(∥∥∥∥(F̂
(`)
k

)′
j

∥∥∥∥2
F

+

∥∥∥∥(Ĝ
(`)
k

)′
j

∥∥∥∥2
F

)−1/2
,

where
(

F̂
(`)
k

)′
j

and
(

Ĝ
(`)
k

)′
j

stand for the jth column of the

final, transformed F̂
(`)
k and Ĝ

(`)
k , respectively, of which the

latter has unit norm, and thus maxj

(
Θ̃

(`)
k

)
jj
< 1.

This is exactly the same scaling as it would be performed
in the last, post-iterative phase of the algorithm,

(Σ̃F )jj := ‖(FN )j‖F , (Σ̃G)jj := ‖(GN )j‖F ,

Θ̃jj := ((Σ̃F )2jj + (Σ̃G)2jj)
−1/2,

ΣF := Σ̃F Θ̃,

U := FN Σ̃−1F ,

ΣG := Σ̃GΘ̃,

V := GN Σ̃−1G ,

Σ := Σ−1G ΣF ,

Z := ZN Θ̃,

except that F̂
(`)′
k and Ĝ

(`)′
k do not have to be rescaled and the

norms of their columns do not have to be kept as they are
all discarded immediately after Θ̃

(`)
k has been computed.

Then, Z̃
(`)
k := Ẑ

(`)
k Θ̃

(`)
k , is applied to the pivot block

column pair of Fk, Gk, and Zk instead of Ẑ
(`)
k , and is

considered embedded into Z̃k in a similar way as Ẑ(`)
k

would be in the pointwise case, i.e., starting from Z̃k being
In, for each ` let

Z̃k((i
(`)
k − 1) · w + 1 : i

(`)
k · w, (i

(`)
k − 1) · w + 1 : i

(`)
k · w)

:= Z̃
(`)
k (1 : w, 1 : w)

Z̃k((i
(`)
k − 1) · w + 1 : i

(`)
k · w, (j

(`)
k − 1) · w + 1 : j

(`)
k · w)

:= Z̃
(`)
k (1 : w, w + 1 : 2 · w)

Z̃k((j
(`)
k − 1) · w + 1 : j

(`)
k · w, (i

(`)
k − 1) · w + 1 : i

(`)
k · w)

:= Z̃
(`)
k (w + 1 : 2 · w, 1 : w)

Z̃k((j
(`)
k − 1) · w + 1 : j

(`)
k · w, (j

(`)
k − 1) · w + 1 : j

(`)
k · w)

:= Z̃
(`)
k (w + 1 : 2 · w, w + 1 : 2 · w),

where the subscripting is to be interpreted as in Fortran.
To reduce the norm of the entire Zk, a similar rescaling

can be applied on Zk, using the column norms of Fk and
Gk, after each but the last block sweep. After the last block
sweep, a rescaling of all three matrices (FN , GN , and ZN )
is performed to obtain U , V , and Z, with the extraction of
ΣF , ΣG, and Σ.
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Figure 2. Formation of the Grammian matrices from the pairs of block columns of F and their subsequent Cholesky factorizations.
Each pair is indicated by a different hue, and varies with a block step. The same process is repeated forG, to obtain the factors Ĝk.

2.5 Convergence

The inner level of the algorithm stops when there were
no transformations, apart from the sorting permutations,
applied in a sweep, or when the prescribed maximal number
of sweeps has been reached. Then, the pivot block column
pairs of Fk, Gk, and Zk are updated concurrently for all `
by Z̃

(`)
k , which can be skipped for those ` where Z̃

(`)
k = I2w.

The same criterion could be used for the outer level,
where the count of transformations applied in an outer
sweep is a sum of all transformations applied in the inner
level in all steps of the outer sweep. However, this criterion
has to be relaxed Novaković (2015); Novaković et al.
(2015), since the rounding errors in forming and factorizing
the block pivot submatrices could spoil the attained
numerical orthogonality of the original columns, and
introduce a small number of unwarranted transformations
that prevent the algorithm from detecting convergence even
if it has in fact been reached.

Therefore, the transformations are divided in two classes:
“big” and “small”. The latter are all Ẑ(`)

k where either:

C1. (cosϕk)/tk = (cosψk)/tk = 1, or
C2. cosϕk = cosψk = 1,

i.e., where Ẑ
(`)
k is close to (a multiple of) identity, and

the former are all other transformations. Note that neither
definition of the small transformations implies that sinϕk
or sinψk are numerically equal to zero (and are usually
not). Also, since xk tends to zero and therefore tk to one
in the last sweeps of the algorithm, the first and the second
definition should not differ significantly.

There are separate counters of the big transformations,
and of all transformations applied in the inner level of the
algorithm. The inner level still halts when there were no
transformations of any class in a sweep, but the outer level
stops when there were no big transformations applied in
an outer sweeps (i.e., small transformations are allowed to
occur but do not spoil the overall convergence). Such a
heuristic criterion prevents in practice a long sequence of
outer sweeps at the end of the algorithm, with only a few
transformations close to identity in each.

2.6 Variants of the algorithm
To summarize the variants of the algorithm, see Table 1.
The first column, ID, sets a shorthand for the corresponding
variant. The second column specifies a convergence
criterion used. The third column distinguished between
assuming the column norms of the second matrix to
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Figure 3. The pointwise Hari–Zimmermann GSVD of four (F̂k, Ĝk) pairs results in two unused scaled left generalized singular
vector matrices per pair, and a single accumulated and rescaled transformation matrix Z̃k. Each of the four original block column
pairs of F , G, and Z is then updated by multiplying it from the right by the corresponding Z̃k (indicated by a pair of arrows).

Table 1. Variants of the implicit Hari–Zimmermann algorithm.

ID convergence transformations dot-products

0 criterion C1 Ẑk (Fk, Gk prescaled) ordinary
1 criterion C1 Ẑk (Fk, Gk prescaled) enhanced
2 criterion C1 Ẑ ′k (Fk, Gk not scaled) ordinary
3 criterion C1 Ẑ ′k (Fk, Gk not scaled) enhanced
4 criterion C2 Ẑk (Fk, Gk prescaled) ordinary
5 criterion C2 Ẑk (Fk, Gk prescaled) enhanced
6 criterion C2 Ẑ ′k (Fk, Gk not scaled) ordinary
7 criterion C2 Ẑ ′k (Fk, Gk not scaled) enhanced

be unity, and rescaling of both matrices with each
transformation. The fourth column relates to computing
the dot-products the usual way, or by an enhanced,
possibly more accurate procedure from Appendix A. Unless
specified otherwise, the column sorting is employed in
all cases. Thus, e.g., DHZ3-(MM-FB-ME) refers to the
double-precision real implicit blocked Hari–Zimmermann
algorithm with ID equal to 3, using MM at the outer and ME

at the inner level of blocking of type FB. Similarly, ZHZ0-
(ME-BO-ME) stands for the double-precision complex
implicit blocked Hari–Zimmerman algorithm with ID equal
to 0 (the “standard” variant), using ME at both levels of
blocking of type BO.

From now on, when a numeric variant ID is mentioned in
the text, it is assumed that it should be looked up in Table 1.

3 The single-GPU implementation
In this section the single-GPU implementation of the
complex and the real one-sided Hari–Zimmermann
algorithms are described. The focus is on the complex
algorithm, and the real one is commented on when
substantially different. The target framework is CUDA
C++ NVIDIA Corp. (2019) for the NVIDIA GPUs (Kepler
series and newer), but also another general-purpose GPU
programming environment with the analogous concepts and
constructs could probably be used.

3.1 Data layout and transfer
Due to blocking employed by the algorithm, each matrix
is viewed as column-striped, with the block columns
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containing w = 16 consecutive columns each. To simplify
the implementation, assume that n is a multiple of 32, and
let n := n/w (so n is even). If the assumption does not
hold for the input, the matrices should then be bordered
by appending 32− (n mod 32) columns to the right, and
as many rows to the bottom. The elements (mY + 1, n+
1), (mY + 2, n+ 2), . . . , in the columns newly added to
the matrix Y ∈ {F,G} should be set to unity, to avoid
introducing zero columns, since it is essential for Y to be of
full column rank. Other bordering elements should be set
to zero, to prevent any transformation not implied by the
original matrices from happening (see a bordering example
in Novaković and Singer (2011)).

Another assumption, to simplify the loop unrolling in
various parts of the code, is to have mF and mG as a
multiple of 64. If it is not the case with the input, then, after
a possible bordering as described above, 64− (mY mod
64) rows of zeros should be appended to the bottom of the
matrix Y ∈ {F,G}.

3.1.1 The CPU and the GPU RAM layout and transfer
Data is laid out in the GPU RAM (also called “global
memory” in the GPU context) in the following sequence:

Re(F ), Im(F ); Re(G), Im(G); Re(Z), Im(Z),

after which follow the output-only vectors Σ, ΣF , ΣG
(with double-precision elements, each of length n), and
C (holding unsigned 8-byte integers, of length n). The
rest of data is used both for input and output, i.e., the six
double-precision matrices are constantly being read and
overwritten within the GPU as the algorithm progresses.
The matrices are loaded to the GPU at the beginning of the
algorithm’s execution, if they are not already in place as a
result of another computation, and optionally copied to the
CPU at its end, as well as Σ, ΣF , and ΣG.

In the pre- and post-processing stages on the CPU, input
(F , G) and output data (U in place of F ; V in place of G;
and Z), respectively, is repacked from (or to) the standard
representation of complex matrices, in which the successive
elements are complex numbers z = (Re(z), Im(z)). Each
double-precision matrix can therefore be loaded to, or
copied from, the GPU with a single CUDA call.

This decision to keep all data in real-typed variables
by splitting the real and the imaginary matrix parts and
to perform the complex arithmetic manually is a design
choice, not a necessity, since an implementation of the
algorithm with the real and the imaginary parts interleaved
in the customary way is also possible. There is no direct
support for the standard C (with Complex types) or
C++ (with std::complex types) complex arithmetic in
CUDA, so some non-standard approach has to be used
anyway; e.g., the datatypes and the routines from the
cuComplex.h header file, or those from the thrust
library, or a custom implementation—possibly with a

different memory layout—of complex numbers and the
operations with them. The chosen, custom approach with
the split data layout makes reading or writing only one
(real or imaginary) component of the successive matrix
elements straightforward, and such memory accesses can
be contiguous.

In the auxiliary vector C there are two counters, C(0)
`

and C
(1)
` , where ` is the index of a thread block in a

grid of the main computational kernel. In C(0)
` the count

of the “big” transformations, and in C
(1)
` the count of

all transformations applied in all kernel launches within a
single block sweep are accumulated. At the beginning of
each block sweepC is zeroed out on the GPU, and is copied
to a CPU vector C̃ at the end of the sweep.

3.1.2 The shared memory layout For each thread block,
the non-constant, non-register data (comprising three
complex matrices: F, G, and Z) for the main computational
kernel is laid out in the shared memory as:

Re(F),Re(G),Re(Z); Im(F), Im(G), Im(Z).

Each double-precision matrix is square, of order 32,
with the elements stored in Fortran array order, for a
total shared memory requirement of (3× 2)× (32× 32)×
8 B = 48 kiB for a thread block. The shared memory
is configured with 8-byte-wide banks. No other kernel
requires any shared memory.

Let Re(F64×32) stand for the contiguous memory space
occupied by Re(F) and Re(G); Im(F64×32) for Im(F) and
Im(G); Re(G64×32) for Re(G) and Re(Z); and Im(G64×32)
for Im(G) and Im(Z), as the real and the imaginary parts
of F64×32 and G64×32 matrices that share the same storage
with F, G, and Z. Such overlapping of data is necessary for
the formation of F and G from the block columns of F and
G, respectively, as described below. Also, let Re(F96×32)
stand for Re(F), Re(G), Re(Z); and Im(F96×32) for Im(F),
Im(G), Im(Z).

The real case In the real Hari–Zimmermann algorithm
Im(·) matrices do not exist, so repacking of the input and
the output data does not happen. The other properties of two
data layouts still hold. The shared memory requirements are
half of those for the complex algorithm, i.e., 24 kiB.

3.1.3 The constant memory layout The constant mem-
ory on the GPU holds the pointers to the matrices and the
vectors described above, with their dimensions, to avoid
sending them as parameters in each kernel call. The Jacobi
strategy table for the first, pointwise level of the algorithm is
also stored in the constant memory, since it does not depend
on the actual input data.

The strategy table contains 31 (or 32) rows, same as the
number of steps of a chosen (quasi-)cyclic parallel strategy.
Each row is an array of 16 index pairs (p, q), with p < q,
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where no two indices in a row are the same. A pair of such
indices addresses a pair of columns of the matrices F and G
to be transformed concurrently with all other column pairs
in the step.

3.1.4 Constants in the global memory The Jacobi
strategy table for the second, block level of the algorithm
might not fit in the constant memory for the large n, so it
has to be stored in the global memory in such a case. It is
similarly formatted as the table for the pointwise level, but
with n− 1 (or n) rows, each with n/2 index pairs. Here, a
pair (p, q), with p < q, addresses a pair of block columns of
the matrices F andG. No two indices in a row are the same,
i.e., every integer between 0 and n− 1 appears exactly once
in a row. Each row encodes a step of the chosen block level
(quasi-)cyclic parallel strategy, which does not have to be
of the same kind as the one chosen for the pointwise level.

Both tables are precomputed on and preloaded from the
CPU Novaković (2017); Singer et al. (2020) before any
computation starts on the GPU.

3.2 Arithmetic operations
Since the data is held in the real-valued arrays only, the
complex arithmetic is performed manually, computing the
real and the imaginary parts of the result separately, rather
than assembling the complex operands in the CUDA format
each time an operation has to be performed, and disassem-
bling the result when it has to be stored back in memory.

3.2.1 Complex arithmetic The arithmetic operations on
complex numbers needed by the algorithm are addition,
subtraction, negation, complex conjugation, multiplication
by a complex or a real number (or an inverse of the latter),
and taking the absolute value. Only |z|, a · b, and an FMA-
like operation a · b+ c (a complex multiplication and an
addition fused) require special attention, while the rest are
trivial to express by the real arithmetic directly in the code.

The absolute value is obtained as |z| :=
hypot(Re(z), Im(z)), without undue overflow. Still, it is
possible that |z| overflows when at least one component of
z is close enough by magnitude to the largest representable
finite double-precision number, but such a problem can be
mitigated by a joint downscaling of two matrices under
transformation. For example, a scaling by 1/2 would
suffice, and would also keep the significand intact for all
normalized (i.e., finite non-subnormal) numbers. Such
rescaling has not been implemented, though it would not
be overwhelmingly hard to apply the rescaling and restart
the computation if any thread detects that its |z| operation
has overflowed, and makes that known to other threads in
a block by a subsequent syncthreads count CUDA
primitive invoked with a Boolean value indicating the
presence of an overflow.

For multiplication, an inlineable routine (zmul) com-
putes z := a · b and returns the result via two output-only
arguments, referring to Re(z) and Im(z). With the CUDA
FMA intrinsic fma rn it holds

Re(z) = fma rn(Re(a),Re(b),−Im(a) · Im(b)),

computed in a way that requires three floating-point
operations but two roundings only. Note that the operations
are ordered arbitrarily, thus zmul could also be realized
by multiplying the real parts of the factors first. Im(z) is
obtained by

Im(z) = fma rn(Re(a), Im(b), Im(a) · Re(b)),

where only two instead of three floating-point operations
are required, with two roundings, and the choice of the real
product arguments is arbitrary. In total, five operations (of
which the negation is trivial) instead of six are needed.

The FMA-like operation is modeled after the CUDA one
in the cuComplex.h header. Let z := a · b+ c. Then,
zfma routine requires 3 operations with 2 roundings for

d := fma rn(−Im(a), Im(b),Re(c)),

Re(z) = fma rn(Re(a),Re(b), d),

and 2 operations with 2 roundings for

d := fma rn(Im(a),Re(b), Im(c)),

Im(z) = fma rn(Re(a), Im(b), d).

It holds zfma(a, b, 0) = zmul(a, b) for all a and b.

3.2.2 Real arithmetic The real arithmetic uses operations
with the accuracy guarantees mandated by the IEEE 754
standard for floating-point arithmetic in rounding to nearest
(ties to even) mode, except in the optional enhanced
dot-product computation, where rounding to −∞ is also
employed, as described in Appendix A.

A correctly rounded (i.e., with the relative error of no
more than half ulp) double-precision rsqrt(x) := 1/

√
x

device function, provided by Norbert Juffa in private
communication, that improves the accuracy of the CUDA
math library routine of the same name (let it be referred to
by rsqrt rn when a need arises to disambiguate between
the two, and by rsqrt when either is acceptable), is called
wherever such an expression has to be computed.

3.2.3 Reproducibility In both the real and the complex
code rsqrt rn function is expected, but not extensively
verified, to be correctly rounded and thus reproducible.
Reproducibility of the results is guaranteed for the complex
code as long as it is for the hypot function in all CUDA
versions and on all GPUs under consideration. All other
floating-point arithmetic operations with rounding (i.e., not
including the comparisons and the negations) are expressed
in the terms of the seven double precision CUDA intrinsics.
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3.2.4 Integer arithmetic To keep the memory require-
ments low, the pointwise level indices in the strategy table
are stored as unsigned 1-byte integers, while the block
level indices occupy 2 bytes each (i.e., n ≤ 65536, what is
enough to exceed the RAM sizes of the present-day GPUs).

For dimensioning and indexing purposes the unsigned 4-
byte integers (after a possible promotion) are used, since
their range allows for addressing up to 32 GiB of double-
precision floating-point data, which is twice the quantity
of GPU RAM available on the testing hardware. However,
8-byte integers should be used instead if the future GPUs
provide more memory than this limit.

Although Fortran array order is assumed throughout
the paper and the code, the indices on a GPU are zero-
based. The CUDA thread (block) indices blockIdx.x,
threadIdx.x, and threadIdx.y are shortened as bx,
tx, and ty, respectively.

3.3 Initialization of Z with optional rescaling
of F and G

Here, initFGZ, the first of three computational kernels, is
described. Its purpose is to initialize the matrix Z, having
been zeroed out after allocation, to Z0, a diagonal matrix
such that (Z0)jj := 1/‖gj‖F , and to rescale F and G to F0

and G0, by multiplying the elements of each column j of
the matrices by (Z0)jj in the variants 0, 1, 4, and 5. Else, in
other variants, Z0 = In.

The kernel is launched once, before the iterative phase of
the algorithm, with a one-dimensional grid of n/2 thread
blocks, each of which is also one-dimensional, with 64
threads (two warps of 32 consecutive-numbered threads).

A warp is in charge of one column of F ,G, andZ, i.e., its
threads access only the elements i of that column j, where

j := bx · 2 + btx/32c, i mod 32 = tx mod 32.

A warp reads 32 consecutive elements of Re(G)j and
Im(G)j at a time. Each of its threads updates its register-
stored partial sums

ĉ′r[tx] := ĉr[tx] + Re(G)2ij , ĉ′i[tx] := ĉi[tx] + Im(G)2ij ,

using one FMA operation for each update, and this is
repeated by going to rows i := i+ 32 until i ≥ mG.
Initially, i = tx mod 32 and ĉr[tx] = ĉi[tx] = 0. After
passing through the entire column, those partial sums are
added to obtain ŝ[tx] := ĉr[tx] + ĉi[tx]. Then, ŝ[tx] are
summed and the result is distributed across the warp by
a warp-shuffling NVIDIA Corp. (2019) sum-reduction,
described in Appendix C, yielding the sum of squares of
the magnitudes of the elements in the column, i.e., ‖gj‖2F .

Such a computation occurs in the variants 0 and 4,
while in the variants 1 and 5 the enhanced dot-product
computation as in Appendix A updates the per-thread,

register-stored partial sums cr[tx], ci[tx], dr[tx], di[tx].
After a pass over the column completes, s[tx] are formed
according to the rules of Appendix A and summed as above.

Either way, zj [tx] := 1/
√
‖gj‖2F is then computed, and

the jth columns of F and G are scaled by zj [tx] in a loop
similar to the one described above, i.e., for i in steps of 32
while i < mF ,

Re(F )′ij := Re(F )ij · zj [tx],
Im(F )′ij := Im(F )ij · zj [tx],

and then the same scaling is performed onG, with i < mG.
Finally, zj [tx] is written to Re(Z)lj by the lowest-

numbered thread in a warp, i.e., tx ≡ 0 (mod 32), where l
is an index making a physical column j treated as a logical
column l. In the single-GPU case, l = j. In the variants 2, 3,
6, and 7, Re(Z)lj is set to 1 and no other processing occurs.

This and any other computation of the Frobenius norm
of a vector via the sum of squares of its elements could
overflow even if the result itself would not. See (Novaković
2015, Appendix A) for one of several possible remedies.

3.4 Rescaling of Z and extraction of U , ΣF ,
V , ΣG, and Σ

After each block sweep, another kernel, rescale, is
called, with a Boolean flag f indicating whether it is the
last sweep.

If f is false, only Z is rescaled according to the rules
of subsection 2.4, and otherwise the full results of the
GSVD computation (U , ΣF , V , ΣG, and Σ) are produced.

The kernel’s grid is identical, and the operation very
similar to initFGZ. First, ‖fj‖2F is computed, and if non-

unity and f, fj is scaled by 1/
√
‖fj‖2F . If f, Σ′j [tx] :=√

‖fj‖2F . Then, ‖gj‖2F is computed, and if non-unity and

f, gj is scaled by 1/
√
‖gj‖2F , as well as Σ′j [tx] to obtain

Σj [tx]; else, if f, Σj [tx] := Σ′j [tx].

Then Σ′F ;j [tx] :=
√
‖fj‖2F , Σ′G;j [tx] :=

√
‖gj‖2F , and

θ[tx] := 1/
√
‖fj‖2F + ‖gj‖2F . If θ[tx] 6= 1, zj is scaled by

θ[tx], as well as Σ′F ;j [tx] and Σ′G;j [tx] to obtain ΣF ;j [tx]
and ΣG;j [tx]; else, ΣF ;j [tx] := Σ′F ;j [tx] and ΣG;j [tx] :=
Σ′G;j [tx].

Finally, if f, Σj , ΣF ;j , and ΣG;j are written to the GPU
RAM by a thread tx ≡ 0 (mod 32). All variables indexed
by tx above are per-thread and register-stored, unless a
register spill occurs.

3.5 The main computational kernel
The main kernel comes in bstep1s and bstep1n
versions, where the former is the default one, with the
column sorting, while the latter is a non-sorting version.
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The kernel is called once per a block step. Each such
call constitutes the entire block step, and it cannot run
concurrently with any other GPU part of the algorithm since
it can update almost the whole allocated GPU memory.

The kernel’s grid is one-dimensional, with n/2 two-
dimensional thread blocks, each of them having 32× w =
512 threads. A thread block ` := bx in the block step k :=
k mod n′ is in charge of one pivot block column pair,
(p

(`)
k , q

(`)
k ), of F , G, and Z, where n′ is n− 1 for the ME

or n for the MM strategy kind.
The computational subphases of bstep1(s/n)(k),

1. formation of Â
(`)
k and B̂

(`)
k in the shared memory,

2. the Cholesky factorizations of Â
(`)
k and B̂

(`)
k as

F̂
(`)∗
k F̂

(`)
k and Ĝ

(`)∗
k Ĝ

(`)
k , respectively,

3. the pointwise implicit Hari–Zimmermann algorithm
on the matrix pair (F̂

(`)
k , Ĝ

(`)
k ), yielding Z̃

(`)
k ,

4. postmultiplication of the pair ` of pivot block
columns of F , G, and Z by Z̃

(`)
k ,

are all fused into a single kernel to effortlessly preserve the
contents of the shared memory between them.

All the required matrix algebra routines have been
written as device functions with the semantics similar to,
but different from the standard BLAS, due to the data
distribution and the memory constraints. For example, a
single call of the BLAS-compatible ZHERK (or DSYRK in
the real case) operation for the subphase 1 is not possible,
since the two pivot block columns do not have to be
adjacent in the global memory. The subphase 3 cannot use
a single standard ZGEMM (or DGEMM) call for the same
reason, but also because the block columns have to be
overwritten in-place to avoid introducing any work arrays.

Since no two pivot block index pairs share an index,
all thread blocks can be executed concurrently without any
interdependencies or data races. Due to the shared memory
requirement and a high thread count, it is not possible that
more than two (or, in the real case, four) thread blocks could
share a single GPU multiprocessor (an SM for short, which
cannot have more than 2048 threads resident at present). On
a Maxwell GPU, the profiler reports occupancy of 25% for
the real and the complex bstep1s, i.e., at most one thread
block is active on an SM at any time. That can be attributed
to a huge register pressure, since 128 registers per thread are
used for the main kernel (in the variant 0), with a significant
amount of spillage, thus completely exhausting the SM’s
register file. Should more than 216 registers be available per
SM, it might be possible to achieve a higher occupancy.

Therefore, for the matrices large enough, only a fraction
of all thread blocks in the grid can execute at the same
time on a GPU. It is a presumption (but not a requirement)
that the CUDA runtime shall schedule a thread block
for execution at an early opportunity after a running one

terminates, thereby keeping the GPU busy despite of the
possible execution time variations (i.e., the number of the
inner sweeps and the transformations required) among the
thread blocks, especially in the FB case.

Note that ty addresses a warp, 0 ≤ ty < w, and tx,
0 ≤ tx < 32, denotes a lane (a thread) within the warp.
Throughout a thread block, each warp is in charge of two
“ordinary” (i.e., not block) columns, in the global or in the
shared memory, but of which two varies between and within
the subphases.

3.5.1 Subphase 1 (two ZHERK or DSYRK like oper-
ations) The task of this subphase is to form Â

(`)
k and

then B̂
(`)
k in the shared memory, occupying Re(F) (and

Im(F)), and Re(G) (and Im(G)), respectively, by a single
pass through the pivot block columns of Fk and Gk. The
resulting matrices are Hermitian in theory, but unlike in
BLAS, both the strictly lower and the strictly upper triangle
of each matrix are explicitly computed, even though only
the lower triangle is read in the subphase 2, thus avoiding
a possible issue with one triangle not being the exact
transpose-conjugate of the other numerically.

A warp indexed by ty is assigned two column indices,

p
(`)
y;k and q(`)y;k , in the range of the first and the second pivot

block column, respectively, as

p
(`)
y;k := p

(`)
k · w + ty, q

(`)
y;k := q

(`)
k · w + ty.

Each thread holds four register-stored variables,

r[tx, ty], r[tx, t
′
y], i[tx, ty], i[tx, t

′
y],

initially set to zero, that hold the real (first two) and the
imaginary (last two) parts of two (partial) dot-products of
the columns of Fk and, in the second instance, ofGk, where
t′y := ty + w.

In a loop over i, starting from i := tx and terminating
when i ≥ mF , with i := i + 64, in each step two
consecutive chunks of 32 rows (i.e., 64 rows) of the
columns p(`)y;k and q(`)y;k are read from Re(Fk) and Im(Fk)
into Re(F64×32) and Im(F64×32). Each lane reads an
element from the global memory and writes it into the
shared memory, both in the coalesced manner, four times
per chunk. The elements of the column p(`)y;k are stored into

the tyth column, and those of the column q(`)y;k are stored into
the t′yth column of the shared memory buffer. The elements
of the first chunk are stored into the txth row, and of the
second chunk into the (tx + 32)th row of the buffer. The
thread block is then synchronized, to complete filling the
buffer by all warps.

An unrolled inner loop over j, 0 ≤ j < 64, followed by a
synchronization call, updates the local partial dot-products.

For each j, let t′x := (tx + j) mod 64, and

zy := (r[tx, ty], i[tx, ty]), z′y := (r[tx, t
′
y], i[tx, t

′
y]),
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z∗x := (Re(F64×32)[t′x, tx],− Im(F64×32)[t′x, tx]),

zy := (Re(F64×32)[t′x, ty], Im(F64×32)[t′x, ty]),

z′y := (Re(F64×32)[t′x, t
′
y], Im(F64×32)[t′x, t

′
y]).

Two fused multiply-add operations perform the updates

zy := zfma(z∗x , zy, zy), z′y := zfma(z∗x , z
′
y, z
′
y).

The first updates constitute a computation of the dot-
product of txth and tyth column of F64×32 and updating
the partial sum zy with it, while the second ones form the
dot-product of the txth and t′yth column and update z′y
with it. Note that all the rows of the buffer are read exactly
once, albeit in the modular (circular) fashion throughout the
loop, with the different starting offsets in each column to
minimize the shared memory bank conflicts.

When the outer loop over i terminates, zy and z′y
are stored into F64×32 at the corresponding indices, and
a synchronization barrier is reached, thus finalizing the
formation of Â

(`)
k . The same procedure is repeated with Gk

instead of Fk to obtain B̂
(`)
k , substitutingG and G for F and

F, respectively, in the procedure described above. Note that
F96×32 could (however, unclear if it should) be used instead
of F64×32, i.e., three chunks instead of two would be read
into the buffer and the dot-products of the columns of length
96 instead of 64 would be computed. That would not be
possible, though, for G, since Â

(`)
k , once formed, must not

be overwritten until the next subphase.
In Figure 4 the arguments A0D, A0J, A1D, A1J, AD,

and AJ stand for the real and the imaginary planes of the
p
(`)
y;kth and the q(`)y;kth columns of Fk, and for Re(F64×32)

and Im(F64×32), respectively, in the first call of the device
function. The same holds for Gk and G64×32 in the second
call. The indices x, y0, and y1 correspond to tx, ty, and
t′y, respectively, while m is the number of rows of F or G.

3.5.2 Subphase 2 (two ZPOTRF or DPOTRF like
operations) The Cholesky factorization of A := Â

(`)
k or

B := B̂
(`)
k consists of two similar, unrolled loops over

j. The matrix (in Fortran array order) is accessed and
transformed columnwise to avoid the shared memory
bank conflicts, but then a transpose-conjugate operation
must follow on the computed lower triangular factor to
obtain the corresponding upper triangular one. Along with
the transposition-conjugation, the strictly lower triangle
is zeroed-out, since the following subphase makes no
assumptions about the triangularity of the initial matrices.

The first loop iterates over 0 ≤ j < w. First, the jth
diagonal element of Re(A), ajj , is read (the imaginary
part is assumed to be zero) if ty = j and tx ≥ j (i.e., in
the threads of the jth warp which correspond to the lower
triangle, called the “active” threads), and the thread block is
then synchronized.

// F??(A, i, j) = A[?? * j + i] (??=32|64)
// cuD: real, cuJ: imaginary part (double)
__device__ __forceinline__ void zAhA
(const cuD *const __restrict__ A0D,
const cuJ *const __restrict__ A0J,
const cuD *const __restrict__ A1D,
const cuJ *const __restrict__ A1J,
volatile cuD *const __restrict__ AD,
volatile cuJ *const __restrict__ AJ,
const unsigned m, const unsigned x,
const unsigned y0, const unsigned y1)

{
cuD y0xD = 0.0, y1xD = 0.0;
cuJ y0xJ = 0.0, y1xJ = 0.0;
const unsigned x32 = x + 32u;

for (unsigned i = x; i < m; i += 32u) {
// read the 1st 32 x 32 chunk from RAM
F64(AD, x, y0) = A0D[i];
F64(AJ, x, y0) = A0J[i];
F64(AD, x, y1) = A1D[i];
F64(AJ, x, y1) = A1J[i];

i += 32u;
// read the 2nd 32 x 32 chunk from RAM
F64(AD, x32, y0) = A0D[i];
F64(AJ, x32, y0) = A0J[i];
F64(AD, x32, y1) = A1D[i];
F64(AJ, x32, y1) = A1J[i];
__syncthreads();

#pragma unroll
for (unsigned j = 0u; j < 64u; ++j) {

const unsigned x_64 =
(x + j) & 0x3Fu; // (x + j) % 64u

const cuD _x_hD = F64(AD, x_64, x);
const cuJ _x_hJ = -F64(AJ, x_64, x);
const cuD _y0_D = F64(AD, x_64, y0);
const cuJ _y0_J = F64(AJ, x_64, y0);
const cuD _y1_D = F64(AD, x_64, y1);
const cuJ _y1_J = F64(AJ, x_64, y1);
// [complex] y0x = _x_h * _y0_ + y0x
Zfma(y0xD, y0xJ, _x_hD, _x_hJ,

_y0_D, _y0_J, y0xD, y0xJ);
// [complex] y1x = _x_h * _y1_ + y1x
Zfma(y1xD, y1xJ, _x_hD, _x_hJ,

_y1_D, _y1_J, y1xD, y1xJ);
}
__syncthreads();

}

// AˆH * A stored into the shared memory
F32(AD, x, y0) = y0xD;
F32(AJ, x, y0) = y0xJ;
F32(AD, x, y1) = y1xD;
F32(AJ, x, y1) = y1xJ;
__syncthreads();

}

Figure 4. A CUDA implementation of the subphase 1 (C).
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The active threads then scale the jth column below the
diagonal, each thread the real and the imaginary part of its
element in the txth row, by 1/

√
ajj , while the diagonal is

set to (
√
ajj , 0), and the thread block is then synchronized.

Next, the columns to the right of the jth have to
be updated, with all warps (but not all their threads)
participating in the update. Let j′ := (j + 1) + ty. Then,
if tx ≥ j′,

A[tx, j
′] := zfma(−A[tx, j],A[j′, j],A[tx, j

′]),

and the thread block is synchronized. However, this only
updates the columns from j + 1 to j + w. The same update
has to be performed with j′′ := j′ + w instead of j′, i.e., if
tx ≥ j′ (which also ensures that j′′ < 32),

A[tx, j
′′] := zfma(−A[tx, j],A[j′′, j],A[tx, j

′′]),

and another thread synchronization occurs.
The second loop over w ≤ j < 32 is identical to the first

one, except that t′y is used instead of ty and the second
updates (of the j′′th columns) are not needed since j′′ ≥ 32.

The ensuing transpose-conjugate with zeroing-out of the
strictly lower triangle is performed by reading A[tx, ty] and
A[tx, t

′
y] into the register of the [tx, ty]th thread if tx ≥ ty

and tx ≥ t′y, respectively (i.e., the indices belong to the
lower triangle of A). Otherwise, those registers are set to
0. After negating the imaginary parts in the former case, the
values are written to A[ty, tx] and A[t′y, tx], respectively,
unfortunately requiring the shared memory bank conflicts,
and the thread block is synchronized, yielding F := F̂

(`)
k .

The same procedure is then repeated with B instead of A,
yielding G := Ĝ

(`)
k .

3.5.3 Subphase 3 (the pointwise one-sided algorithm)
The pointwise implicit Hari–Zimmermann algorithm,
described in section 2, subsections 2.1, 2.2, and the relevant
parts of subsections 2.4 and 2.5, is implemented as follows.

The tyth warp transforms the pairs of columns of F, G,
and Z in each inner step l′ ≥ 0. Let l := l′ mod 31, since
the ME strategy is used exclusively at the inner level in the
tests. Each of the three pivot pairs comprise the columns
indexed by py;l and qy;l, where the indices are read from the
lth row of the inner strategy table at the position ty. Within
a warp, the txth thread is responsible for the elements in the
txth row of those columns.

First, Z is initialized similarly to the procedure described
in subsection 3.3, but on the shared memory level. In the
variants 2, 3, 6, and 7, the diagonal of Re(Z) is set to
unity, and the rest to zero, by the threads in charge of
those elements. In the variants 0 and 4, the sum of squares
of the magnitudes of the elements of the columns gj , i.e.,
‖gj‖2F , where j ∈ {py;l, qy;l} and l = 0, is computed by a
sum-reduction as in Appendix C. The thread block is then
synchronized. For each of the two indices j, Im(Z)[tx, j]

is set to zero, as well as Re(Z)[tx, j], except when tx =

j, where Re(Z)[j, j] := 1/
√
‖gj‖2F if ‖gj‖2F 6= 1, and one

otherwise. The columns fj and gj are scaled by Re(Z)[j, j]
if it is not unity, and the thread block is synchronized.
The similar procedure is applied in the variants 1 and 5,
except that the partial sums of squares are computed as in
Appendix A (see subsection 3.3), and summed by a routine
from Appendix C.

Having thus obtained F0, G0, and Z0, the iterative part of
the algorithm starts, with at most 30 (FB) or 1 (BO) inner
sweeps. At the start of each sweep two per-sweep counters,
of the “big” (b) and of all (s) transformations applied, are
reset to zero. The counters are kept in each thread, but their
values are synchronized across all threads in a thread block.

In the step l and the warp ty, let i := py;l and j := qy;l.
The elements of the three pivot column pairs are loaded into
the registers by each thread reading its row from the shared
memory, after which the thread block is synchronized. For
each original element, there are two variables for its real and
imaginary parts, and two more variables to hold the value
of the new element after transformation, since the old value
is used twice in computing the new one and thus cannot be
overwritten. For example, Im(F)[tx, i] has Im(F′)[tx, i] as
its counterpart.

The 2× 2 pivot submatrices Â′l and B̂′l are then formed.
The diagonal elements are obtained by computing the
squares of the column norms as above, and the off-diagonal
ones are given by the dot-products, either ordinary (i.e.,
by sum-reducing the real and the imaginary parts of the
products of an element of the ith column conjugated and
the corresponding element of the jth column) or enhanced
(as in Appendix A) ones.

However, Âl and B̂l thus obtained have to be multiplied
by D̂l from the left and right in the variants 2, 3, 6, and 7
to get Â′l and B̂′l . If B̂11;l 6= 1, then Â′11;l := Â11;l/B̂11;l,

D̂11;l := 1/
√
B̂11;l, and Â12;l, B̂12;l are scaled by D̂11;l;

otherwise, D̂11;l = 1, as it is in the variants 0, 1, 4, and 5. If

B̂22;l 6= 1, then Â′22;l := Â22;l/B̂22;l, D̂22;l := 1/
√
B̂22;l,

and Â12;l, B̂12;l are scaled by D̂22;l; otherwise, D̂22;l = 1.

All threads in a warp now have the elements of the pivot
submatrices held in their register-stored variables, and the
elements’ values are identical across the warp. Therefore,
the subsequent computation of Ẑl on a per-thread basis also
has to produce the same transformation across the warp.

First it has to be established whether a transformation is
warranted. If the relative orthogonality criterion is satisfied,
ŝ is set to zero, else to one. All threads in a thread block
agree if there is some computational work (apart from
merely the optional column sorting) to be done in the
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current step by uniformly incrementing s,

s := s + syncthreads count(ŝ)/32,

by the number of the thread block’s warps with the non-
trivial transformations to be applied.

If ŝ = 0 and Â′11;l < Â′22;l, then V(Y′)[tx, i] :=

V(Y)[tx, j] and V(Y′)[tx, j] := V(Y)[tx, i], where
V ∈ {Re, Im} and Y ∈ {F,G,Z} in bstep1s. Then,
the values of the new variables are stored in the shared
memory. When ŝ = 0 in bstep1n, or in bstep1s and
Â′11;l ≥ Â′22;l, the new variables take the value of the
corresponding old ones, i.e., no column swapping occurs.

Otherwise, for ŝ = 1, Ẑ ′l is computed according to a
procedure described either in subsection 2.1.1 for the
complex, or in subsection 2.1.2 for the real case. Then, it
is established whether the criterion C1 (for the variants 0,
1, 2, and 3) or the criterion C2 (for the variants 4, 5, 6, and
7) indicates that the transformation is “small”. If so, b̂ := 0;
else, b̂ := 1.

If D̂11;l 6= 1, the first row of Ẑ ′l is scaled by D̂11;l. If
D̂22;l 6= 1, the second row of Ẑ ′l is scaled by D̂22;l. Now
the completed transformation Ẑl has to be applied to the
pivot columns:

Y′[tx, i] := zfma(Y[tx, j], Ẑ21;l,Y[tx, i] · Re(Ẑ11;l)),

Y′[tx, j] := zfma(Y[tx, i], Ẑ12;l,Y[tx, j] · Re(Ẑ22;l)),

where Y ∈ {F,G,Z}. If one or both scaled cosines lying
on the diagonal of Ẑl are equal to one, the transformation
can be (and is) simplified by removing the corresponding
multiplications without numerically affecting the result.

In bstep1s, to determine if the column swap is
required, the squares of the norms of the transformed
columns of F are computed as the sum-reduced sums
of squares of the magnitudes of the new (F′) elements,
depending on the variant. Those two values are however
not stored for the next step, because that would require
an additional shared memory workspace that might not be
available on all supported architectures.

In the real case it is easy to compute instead the
transformed diagonal elements of the first pivot submatrix
directly Novaković et al. (2015):

a′′11 := Ẑ 2
11;lÂ

′
11;l + 2Ẑ11;lẐ21;lÂ

′
12;l + Ẑ 2

21;lÂ
′
22;l,

a′′22 := Ẑ 2
12;lÂ

′
11;l + 2Ẑ22;lẐ12;lÂ

′
12;l + Ẑ 2

22;lÂ
′
22;l,

and to swap the ith and the jth column when a′′11 < a′′22.
If the norm of the ith column is smaller than the norm of

the jth column, then the values of Y′[tx, i] and Y′[tx, j]
are swapped via an intermediary variable. Else, or in
bstep1n, no swaps occur. The values of the new variables
are then stored in the shared memory, and b is uniformly

incremented across the thread block,

b := b + syncthreads count(b̂)/32.

The lth step is now complete.
At the end of a sweep, if ŝ = 0, the loop is terminated.

Else, the counters S and B, set at the start of this subphase
to zero, are incremented by s and b, respectively.

The same rescaling as in subsection 3.4 with f=false,
but performed on the shared memory, yields Z̃

(`)
k . Using

the last values of F′[tx, i] and G′[tx, i], the squares of the
norms of the ith column of F′ and G′, respectively, are
computed. Then, Z′[tx, i] is read (or its last value is used),
scaled by 1/

√
‖f ′i‖2F + ‖g′i‖2F , stored, and the thread block

is synchronized. The same procedure is repeated with j

instead of i, giving Z̃
(`)
k := Z′.

A thread with tx = ty = 0 stores S and B into C as

C[2 · bx] := S, C[2 · bx + 1] := B,

and finally the thread block is synchronized.

3.5.4 Subphase 4 (three postmultiplications) In this
subphase the pivot block columns of Fk, Gk, and Zk are
multiplied by Z̃

(`)
k and overwritten by the respective results.

Each multiplication of a pair of pivot block columns
(residing in the global memory) by Z̃

(`)
k (residing in

the shared memory in Z) and the following update are
performed by a single pass over (i.e., a single read from
and a single write to) the block columns, using the Cannon-
like algorithm Cannon (1969) for parallel multiplication of
two square matrices.

Reading the chunks of a block column pair from the
global memory is identical to the one from the subphase 1
in subsection 3.5.1, except that in each iteration of the outer
loop (over i) only one chunk is read to Y, instead of two
(which would also be a possibility). The number of loop
iterations (in parenthesis) depends on the number of rows
of Fk (mF /32), Gk (mG/32), and Zk (n/32). Here, Y is F
when updating Fk and Zk, and G when updating Gk. The
thread block is then synchronized.

The per-thread variables to hold the product of the
current chunk with Z are set to zero. Each thread is in charge
of forming the elements with indices [tx, ty] and [tx, t

′
y] of

the product Π.
The initial skews are defined as ı := (ty + tx) mod 32

and ı′ := (t′y + tx) mod 32. Then, in each iteration of the
unrolled inner loop over 0 ≤ j < 32 the local elements of
Π are updated,

Π[tx, ty] := zfma(Y[tx, ı],Z[ı, ty],Π[tx, ty]),

Π[tx, t
′
y] := zfma(Y[tx, ı

′],Z[ı′, t′y],Π[tx, t
′
y]),

and ı and ı′ are cyclically shifted as ı := (ı+ 1) mod 32
and ı′ := (ı′ + 1) mod 32. When the inner loop terminates,
the thread block is synchronized.
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The local values of Π now have to be written back to
the global memory, where Π[tx, ty] overwrites Yk[i, p

(`)
y;k],

while Π[tx, t
′
y] overwrites Yk[i, q

(`)
y;k], for Y being one of

{F,G,Z}. The thread block is then synchronized and the
next outer iteration, if any are left, follows.

This procedure is called thrice to update Fk, Gk and Zk,
after which the kernel execution (i.e., the kth outer step)
terminates and the control returns to the CPU.

Figure 5 shows the postmultiplication device function,
where the arguments A0D, A0J, A1D, and A1J have the
same meaning as in Figure 4, but the columns of Zk are also
expected. A shared memory buffer, in which the 32× 32
chunks of a block column pair are loaded and packed, is
pointed to by AD and AJ, while BD and BJ point to the
accumulated transformation matrix from the subphase 3, by
which the postmultiplication has to take place. The product
of matrices A and B overwrites the respective chunk of the
original block columns before another chunk is loaded.

3.5.5 Dataflow and the shared memory perspective
In Figure 6 the subphases in the simpler, real case are
summarized from a perspective of the data in the shared
memory and the transformations that it undergoes. The
subfigures (a–b) show the chunks of data coming from
the global memory to form A and B. Two Cholesky
factorizations are shown in the subfigures (c–d), after which
the subfigures (e–h) correspond to the subphase 3. The
subfigure [f] shows the optional (depending on the variant)
prescaling of F and G. The final three subfigures, (i–k),
show the three postmultiplications taking place, with a
chunk of data read from and written to the global memory.
Two different hues of the first and the middle parts of the
shared memory depiction indicate that the chunks with 64
instead of 32 rows might be used there.

3.6 The CPU part of the algorithm
Algorithm 1 summarizes the CPU-side actions with a single
GPU. The same routine is called within the multi-GPU
algorithm, except for allowing S to be a parameter (not
the constant 30 as it is assumed here), a variation of the
final rescaling of Z, and some differences regarding the
initFGZ call, described in subsections 3.3 and 4.2. The
copy-ins and copy-outs of the majority of data, as well as
the initialization of the constant memory, are left out from
Algorithm 1 but are included in the single-GPU timing in
subsection 5.

Apart from the copy-ins, copy-outs, and zeroings of data,
there is no scope for using more than one CUDA stream.
All GPU operations can be performed in any predefined
stream S (e.g., in the default one if no other has been
explicitly chosen). Also, as no GPU computation, except
the fast rescale, can be overlapped with any CPU task,
the execution time of the algorithm depends almost solely

__device__ __forceinline__ void zPostMult
(cuD *const __restrict__ A0D,
cuJ *const __restrict__ A0J,
cuD *const __restrict__ A1D,
cuJ *const __restrict__ A1J,
volatile cuD *const __restrict__ AD,
volatile cuJ *const __restrict__ AJ,
volatile const cuD *const __restrict__ BD,
volatile const cuJ *const __restrict__ BJ,
const unsigned x, const unsigned y0,
const unsigned y1, const unsigned m)

{
// Cannon-like C = A * B
for (unsigned i = x; i < m; i += 32u) {
F32(AD, x, y0) = A0D[i];
F32(AJ, x, y0) = A0J[i];
F32(AD, x, y1) = A1D[i];
F32(AJ, x, y1) = A1J[i];
__syncthreads();

cuD Cxy0D = 0.0, Cxy1D = 0.0;
cuJ Cxy0J = 0.0, Cxy1J = 0.0;
unsigned // skew (mod 32)

p0 = ((y0 + x) & 0x1Fu),
p1 = ((y1 + x) & 0x1Fu);

// multiply and cyclic shift (mod 32)
#pragma unroll
for (unsigned k = 0u; k < 32u; ++k) {

Zfma(Cxy0D, Cxy0J,
F32(AD, x, p0), F32(AJ, x, p0),
F32(BD, p0, y0), F32(BJ, p0, y0),
Cxy0D, Cxy0J);

Zfma(Cxy1D, Cxy1J,
F32(AD, x, p1), F32(AJ, x, p1),
F32(BD, p1, y1), F32(BJ, p1, y1),
Cxy1D, Cxy1J);

p0 = (p0 + 1u) & 0x1Fu;
p1 = (p1 + 1u) & 0x1Fu;

}
__syncthreads();

A0D[i] = Cxy0D; A0J[i] = Cxy0J;
A1D[i] = Cxy1D; A1J[i] = Cxy1J;
__syncthreads();

}
}

Figure 5. A CUDA C implementation of the subphase 4 (C).

on the GPU performance and the time required to set up a
kernel call.

Each kernel invocation and each sequence of memory
copy/set operations is followed in the testing code by a
(generally redundant, except where noted in Algorithm 1)
cudaStreamSynchronize call on the chosen stream S,
to keep the CPU-side timing consistent (but maybe higher
than it is necessary).
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Algorithm 1: The CPU part of the single-GPU implicit Hari–Zimmermann algorithm with data in place.

initFGZ(); // execute once on a single GPU in the stream S to get F0, G0, Z0

S̃ := 0; B̃ := 0; // initialize the global convergence statistics
for 0 ≤ c < S do // outer sweep c

cudaMemsetAsync(C, 0, n · sizeof*C, S); // zero-out C
for 0 ≤ k < n′ do // a loop over the outer steps

bstep1(s/n)(k); // each main kernel call in S transforms n/2 block pivots
end for
cudaMemcpyAsync(C̃, C, n · sizeof*C,cudaMemcpyDeviceToHost, S); // retrieve C
cudaStreamSynchronize(S); // synchronize S

s̃ := 0; b̃ := 0; // initialize the sweep convergence statistics
for 0 ≤ i < n/2 do // gather the sweep convergence statistics

s̃ := s̃ + C̃[2 · i]; b̃ := b̃ + C̃[2 · i+ 1];
end for
S̃ := S̃ + s̃; B̃ := B̃ + b̃; // update the global convergence statistics

if b̃ = 0 then break; // no big transformations performed in the sweep
rescale(false); // a fast rescaling of Z in S

end for
rescale(f); // queued in S with f=true on one GPU and f=false on multiple GPUs

Except the reductions of s̃ and b̃ for very large matrices,
no other part of the algorithm might benefit from being
executed multi-threadedly on the CPU. From the CPU
perspective, the algorithm is therefore purely sequential.

Note that the algorithm stops when b̃ = 0, i.e., when
no big transformations occurred in an outer sweep. The
“global” counts S̃ and B̃ of all and of big transformations
applied during the execution of Algorithm 1 are only
informative here, but they are consulted in the multi-GPU
algorithm’s stopping criterion.

4 The multi-GPU implementation
When the input data is larger than the available RAM on
a single GPU, it is necessary to either split the workload
among the several GPUs, or resort to some out-of-core
technique for swapping the parts of data in and out of the
GPU as the computation progresses. Here, only the former
approach is followed, since it is simpler, more efficient and
widely applicable now when the multi-GPU installations
are becoming ubiquitous. In the case when not enough
GPUs are available for the input data to be distributed
across them, see an outline of a possible out-of-core single-
GPU algorithm in Appendix B.

There is no single, best and straightforward way of
generalizing a single-GPU algorithm to multiple GPUs.
For the (ordinary and hyperbolic) SVD, the approach
in Novaković (2015) was to distribute the matrix over
the GPUs, shorten the assigned part of the matrix (the
Grammian formation being done by cuBLAS, and the
ensuing Cholesky factorization by MAGMA Tomov et al.

(2010)), run the single-GPU algorithm on the shortened
part, update the original (non-shortened) columns, and
redistribute the parts. Despite its decent performance,
such a three-level algorithm suffered from the increased
memory usage and some numerical difficulties, both with
the stopping criteria and with the relative accuracy obtained.

A different approach is taken here, to achieve the optimal
GPU and CPU memory usage (without any work arrays)
and a better accuracy, but with a possible performance
penalty induced by transforming the tall and skinny parts
of the matrices directly, without any shortening. As no
floating-point computation is performed on the CPU, while
the GPU computation still does not rely on any numerical
libraries, it is guaranteed that the results stay bitwise
identical in the repeated runs over the same input data with
the same parameters and the same number of GPUs.

4.1 Algorithm setup
In this subsection the multi-GPU computational environ-
ment, the input and the output data distribution across
the CPUs and the GPUs, the communication-aware Jacobi
strategies, and the algorithm’s initialization are explained.

4.1.1 MPI environment Unlike in Novaković (2015),
where the multiple GPUs were assumed to belong to the
same node, and thus a separate CPU thread of a single
process could be dedicated for driving the computation on
each GPU, here a more flexible solution has been chosen,
by assigning to a GPU a single-threaded MPI Message
Passing Interface Forum (2015) process. The GPUs can
thus be selected from any number of nodes, with a different
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number of them on each node. Also, the GPUs are not
required to be architecturally identical or even similar
across the processes in an MPI job, as long as they all have
enough RAM available.

The count of GPUs, and thus the governing MPI
processes (s), for the multi-GPU algorithm is not
constrained in principle, save for being at least two
(otherwise, the single-GPU algorithm is sufficient), and
small enough so that at least two (but for the reasons of
performance, a multiple of 32) columns of each matrix are
available to each process, when the matrices are divided
among them columnwise, as described below. The upper
bound on the number of GPUs is a tunable parameter in the
code, while the MPI implementation might have its own
limit on the number of processes in a job.

The MPI processes need not be arranged in any special
topology. Only the predefined MPI COMM WORLD commu-
nicator is used. A GPU and its governing process are jointly
referred to by the process’ rank (r) in that communicator.

It is assumed that the MPI distribution is CUDA-
aware in a sense that sending data from the GPU RAM
of one process and receiving it in the CPU RAM of
another (including the same) process is possible with the
standard MPI point-to-point communication routines (i.e.,
no manual CPU buffering of the GPU data is necessary).

Also, the number of elements of each local submatrix has
to be at most INT MAX, which at present is the upper limit
on the count of elements that can be transferred in a single
MPI operation Hammond et al. (2014). That limit is easily
circumvented by transferring the data in several smaller
chunks, but such chunking has not been implemented since
it was not needed for the amount of RAM (16 GiB) of the
GPUs used for testing. That issue will have to be addressed
for the future GPUs.

4.1.2 Data distribution The matrices F , G, and Z, and
the vectors ΣF , ΣG, and Σ, are assumed to always stay
distributed among the MPI processes, i.e., at no moment
they are required to be present in entirety in any subset
of the processes. The amount of the CPU and the GPU
memory required is identical (i.e., not depending on r),
constant throughout the computation, and derivable in
advance from mF , mG, mZ := n, and s for all processes.

If n mod s 6= 0 or (n/s) mod 32 6= 0, the matrices F ,
G, and Z are bordered as described in subsection 3.1, but
requiring that the enlarged n satisfy n mod (32 · s) = 0.
Similarly, the bordering is required if mF mod 64 6= 0 or
mG mod 64 6= 0.

The columns of the bordered matrices can be distributed
evenly among the processes, such that each process is
assigned n := n/s columns. Let w := n/2 consecutive
columns of an entire matrix be called a stripe, to avoid
reusing the term “block column”. Then, a process holds
two, not necessarily consecutive, stripes of each matrix,

logically separate but with their real parts physically joined
in the same memory allocation, as well as their imaginary
parts. The dimensions of two joined stripes, one following
the other in the Fortran array order, of Re(F )/ Im(F )
(mF × n), Re(G)/ Im(G) (mG × n), and Re(Z)/ Im(Z)
(n× n), fit the requirements for the input data of the single-
GPU algorithm.

The CPU RAM of the rth process thus holds two
joined stripes in Re(F (r)), Im(F (r)), Re(G(r)), Im(G(r)),
Re(Z(r)), and Im(Z(r)) allocations. The same memory
arrangement is present in the GPU RAM, which holds
the same stripes undergoing the transformations and joined
in the allocations Re(F [r]), Im(F [r]), Re(G[r]), Im(G[r]),
Re(Z [r]), and Im(Z [r]). The first stripe within an allocation
is denoted by the index 0, and the second one by the index
1; e.g., Im(G

[r]
1 ) is the second stripe in Im(G[r]).

A similar distribution is in place for ΣF , ΣG, and Σ,
where each process holds Σ

(r)
F , Σ

(r)
G , and Σ(r) in the CPU

RAM, and Σ
[r]
F , Σ

[r]
G , and Σ[r] in the GPU RAM, where each

allocation is of length n and is unused in the algorithm until
after the last step. Each process also has its convergence
vectors C(r) and C [r], of length n/w, in the CPU and in the
GPU RAM, respectively.

4.1.3 Communication-aware Jacobi strategies The par-
allel Jacobi strategies, as defined in subsection 2.2, do not
contain any explicit information on how to progress from
one step to another by exchanging the pivot (block) columns
among the tasks in a distributed memory environment.
However, such a communication pattern can be easily
retrieved by looking at each two successive steps, k and
k′ := (k + 1) mod s, and for each task ` in the kth step
finding the tasks `′ and `′′ in the k′th step that are to hold
either i(`)k th or j(`)k th (block) column.

Therefore, given either ME or MM strategy table
for the order n := n/w (with the stripes seen as the
block columns), each process independently computes and
encodes the strategy’s communication pattern before the
start of the algorithm. Such a computation requires O(n3)
comparisons, but since n is a small number an unacceptable
overhead is not incurred. The computation can be (but
it has not been) parallelized on a CPU, e.g., by turning
the outer loop over k into a parallel one. The multi-GPU
algorithm then references the following encoded mapping
when progressing from one step to the next.

After each outermost (multi-GPU) step k of the
algorithm, the first of each two joined stripes on the rth
GPU has to be transferred to either the first or the second
stripe on the t{0}th CPU, for some t{0}. Similarly, the
second stripe on the rth GPU has to be transferred to either
the first or the second stripe on the t{1}th CPU, for some
t{1}, establishing a mapping

(k, r) 7→ (pk,r,qk,r, t
{0}
k,r , t

{1}
k,r ),

Prepared using sagej.cls
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where t
{0}
k,r := ±(t

{0}
k,r + 1), t

{1}
k,r := ±(t

{1}
k,r + 1), while

pk,r and qk,r are indices of the first and the second stripe

in the entire matrix, 0 ≤ pk,r < qk,r < n, and t
{0}
k,r 6= t

{1}
k,r

are the MPI ranks. If the pk,rth stripe globally (i.e., the first

locally) has to be transferred to the first stripe in the t
{0}
k,r th

process, that is encoded as −(t
{0}
k,r + 1), else the second

stripe of the target is encoded as (t
{0}
k,r + 1). Similarly, if

the qk,rth stripe globally (i.e., the second locally) has to be

transferred to the first stripe in the t
{1}
k,r th process, that is

encoded as −(t
{1}
k,r + 1), else the second stripe of the target

is encoded as (t
{1}
k,r + 1). Adding 1 to the rank ensures that

the rank 0 can be encoded as either 1 or −1.
The number of steps in a sweep, denoted by n′, is

n− 1 for ME, and n for MM. The strategy mapping, once
computed, can be reused for multiple runs of the algorithm,
as long as the strategy kind, n (after bordering), and s do
not change between the runs.

4.1.4 Algorithm initialization First, the CPU memory is
allocated in each process, and the data is loaded (e.g., from
a file), assuming k = 0, i.e., the rth process contains the
p0,rth and q0,rth stripes of F , G, and Z.

Then, the device memory is allocated, if it is not already
available, and an MPI barrier is reached. Timing of the
algorithm includes everything that occurs from this barrier
on, except the optional deallocation of the device memory.

The constant memory on each GPU is set up, and
the stripes are copied to the device (global) memory, all
of which could be done asynchronously. The involved
stream(s) are then synchronized, depending on the way the
copies have been performed.

It remains to be decided how many sweeps S in
Algorithm 1 to allow. As with the pointwise level, there are
two obvious choices: either some reasonably large number,
e.g., 30 (as in FB), or 1 (as in BO). Now a variant of the
multi-GPU algorithm is specified by the selected variant of
the single-GPU algorithm, with the outermost strategy and
the choice of S added; e.g., ZHZ0-(ME-BO, ME-FB-ME) for
ME and S = 1, respectively, using ZHZ0-(ME-FB-ME) at
the single-GPU level.

As shown in subsection 5.3.2, the imbalance of the
computational time each GPU requires with FB (i.e., one
GPU may need more sweeps in Algorithm 1 than another to
reach convergence within an outermost step) is significantly
detrimental to the overall performance—contrary to the
single-GPU case (see subsection 3.5). Unlike there, where
such imbalance between the thread blocks’ sweep counts is
offset by a large number of thread blocks to be scheduled
on a small number of multiprocessors, here in the multi-
GPU case there is a one-to-one correspondence between the
number of tasks to perform and the number of execution
units (GPUs) to perform them, so the time required for an

outermost step depends on the slowest run of Algorithm 1
within it. Thus, BO is recommended here instead.

4.2 The main part of the algorithm
In the pre-iterative part of the algorithm, initFGZ kernel
is called (see subsection 3.3), once in each process, in
the chosen stream Sr. It is not called again in the context
of Algorithm 1. Here, the row offset l in initFGZ is
calculated according to the logical (not physical) index of a
column, i.e., l := j + p0,r ·w if j < w, and l := j −w +
q0,r ·w otherwise, with p0,r and q0,r sent to the kernel as
parameters. The stripes of F0,G0, and Z0 are then ready on
each GPU (copying them to the CPU is not needed) for the
iterative part of the algorithm.

4.2.1 Point-to-point communication and reductions
Except for a single collective MPI Allreduce operation
required per an outermost sweep, all other communication
in the algorithm is of the non-blocking, point-to-point kind,
occurring in every outermost step. The communication
parts of the algorithm, from a given process’ perspective,
are formalized in Algorithms 2, 3, 4, and 5, and put together
in Algorithm 6.

The first guiding principle for such a design of the
communication is to keep it as general as possible. Any
process topology (including no topology in particular),
suggested by the communication pattern of the chosen
Jacobi strategy can be accommodated with equal ease.

The second principle is to facilitate hiding the
communication overhead behind the GPU computation.
Before a call of Algorithm 1 occurs within an outermost
step of a given process, the non-blocking receives to the
CPU stripes are started in anticipation of an early finish
of the GPU work of the step in the processes that are to
send their transformed stripes to the process in question.
That way, while the given GPU still computes, its CPU
can in theory start or even complete receiving one or both
transformed stripes required in the following step. There
remains an issue with several slowly progressing processes
that might keep the rest of them idle, but at least the point-
to-point data transfers can happen soon after the data is
ready, not waiting for a massive data exchange with all
processes communicating at the same time.

The third principle is to minimize the memory
requirements of both the CPUs and the GPUs by sending
the transformed data from the GPU RAM of one process
to the CPU RAM of another two. That way, no separate,
“shadow” GPU buffers are required to receive the data.
The CPU stripes have to be present anyhow, to load the
inputs and to collect the outputs, so they are reused as the
communication buffers, with a penalty of the additional
CPU-to-GPU data transfers after the main data exchange.

Matching a stripe to be sent from one process to a stripe
that has to be received in another process is accomplished
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Algorithm 2: The non-blocking receives in the kth step of the rth process.

tag := 1; i := 0; // tag tells which stripe from a sender has to be received
foreach o ∈ {0,1} do // o indexes the first or the second destination’s stripe

foreach Y ∈ {F (r)
o , G

(r)
o , Z

(r)
o } do // Y denotes the destination’s host matrix

foreach V ∈ {Re, Im} do // V refers to the real or the imaginary part
MPI Irecv(V (Y ),mY ·w,MPI DOUBLE,MPI ANY SOURCE,tag,MPI COMM WORLD, r[i]);
tag := tag + 1; i := i + 1; // increment tag and i, which indexes requests

end foreach
end foreach

end foreach

Algorithm 3: The non-blocking sends in the kth step of the rth process.

// variable i is assumed to hold the last value assigned to it in Algorithm 2 in the kth step
foreach o ∈ {0,1} do // o indexes the first or the second source’s stripe

j := 1; // j is a base tag

foreach Y ∈ {F [r]
o , G

[r]
o , Z

[r]
o } do // Y denotes the source’s device matrix

foreach V ∈ {Re, Im} do // V refers to the real or the imaginary part
// tag: base + offset 0 or 6 (first or second stripe at destination)

tag := j + (sign(t
{o}
k,r ) + 1) · 3;

// send to destination t
{o}
k,r

MPI Isend(V (Y ),mY ·w,MPI DOUBLE, t{o}k,r ,tag,MPI COMM WORLD, r[i]);
j := j + 1; i := i + 1; // increment j and i

end foreach
end foreach

end foreach

Algorithm 4: Completion of the communication and the host-to-device transfers in the kth step of the rth process.

// variable i is assumed to hold the last value assigned to it in Algorithm 3 in the kth step
MPI Waitall(i, r,statuses); // wait for all pending MPI requests to complete

foreach (W,Y ) ∈ {(F (r), F [r]), (G(r), G[r]), (Z(r), Z [r])} do // (W,Y ) are (host,device) matrices
foreach V ∈ {Re, Im} do // V refers to the real or the imaginary part

copy V (W ) to V (Y ) using cudaMemcpy2DAsync; // in the appropriate stream(s)
end foreach

end foreach
synchronize the stream(s) used for copying and call MPI Barrier(MPI COMM WORLD);

Algorithm 5: Convergence criterion checking in the cth sweep of the rth process.

MPI Allreduce({Ŝc, B̂c}, {
∑

s Ŝc,
∑

s B̂c}, 2,MPI UNSIGNED LONG,MPI SUM,MPI COMM WORLD);
// Is the sum of all per-process, per-sweep big transformation counters 0?

if
∑

s B̂c = 0 then break;

by MPI tags annotating the messages. In the complex case
there are twelve stripes in total (six in the real case, without
the imaginary stripes) to be received by a process in a single
outermost step (see Algorithm 2 for their tag numbers).

When a message comes to a process, from any sender,
it is only accepted if it bears a valid tag (between 1
and 12, inclusive) and the message data is stored in the
corresponding stripe, as in Algorithm 2. Likewise, when
a stripe has to be sent, the strategy mapping is consulted

Prepared using sagej.cls
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to get the destination process’ rank, and decide if the
stripe should become the first or the second one at the
destination. According to that information, the message’s
tag is calculated as in Algorithm 3.

4.2.2 The CPU part of the algorithm The pre-iterative,
iterative, and post-iterative parts of the algorithm are shown
in Algorithm 6. The final full rescaling with the extraction
of the generalized singular values happens only once (i.e.,
not in the context of Algorithm 1). As the convergence
criterion relies on sum-reducing the per-sweep counters of
the big transformations applied in all processes, an implicit
synchronization point at the end of a sweep is introduced.

5 Numerical testing
The purpose of the numerical testing of the single-GPU
and the multi-GPU algorithms is twofold. First, it has been
meant to compare the variants of the algorithms in terms
of performance and accuracy and discover which (if any)
variant stands out as the best one in either aspect. Second,
it should inform the potential users about the algorithms’
behavior on two sets of realistic, small and medium-to-large
sized problems.

By performance it is meant the wall execution time.
Counting FLOPS (floating-point operations per second)
rate makes less sense here than in the algorithms (such as
the matrix multiplication) that solely depend on a subset of
the arithmetic operations of a similar execution complexity,
such as additions, subtractions, multiplications, and FMAs.
Instead, the algorithms presented here necessarily involve
a substantial amount of divisions and (reciprocal) square
roots. Moreover, the majority of performance gains
compared to a simple, pointwise algorithm come from a
careful usage of the fast shared memory and the GPU
registers, as it is also shown in Novaković (2015), and
not from tweaking the arithmetic intensity. The wall time
should therefore be more informative than FLOPS about
the expected behavior of the algorithm on present-day
hardware, and about the differences in the algorithm’s
variants, since the future performance is very hard to predict
without a complex model that takes into account all levels
of the memory hierarchy, not only the arithmetic operations
and the amount of parallelism available.

Accuracy of the algorithm can be assessed in several
ways. In both the real and the complex case the relative
normwise errors of the decompositions of F and G,

‖F − UΣFX‖F /‖F‖F , ‖G− V ΣGX‖F /‖G‖F ,

were computed the same way as in Singer et al. (2020).
Namely, X had to be explicitly obtained as Z−1 by solving
the linear system ZX = I . First, the LU factorization of
Z with complete pivoting was performed by the LAPACK

routine DGETC2 (or ZGETC2), followed by the system
solving using the routine DGESC2 (or ZGESC2).

The ensuing matrix multiplications and the Frobenius
norm computations were using Intel 80-bit hardware-
supported extended precision (REAL(KIND=10) in GNU
Fortran), to reduce the effects of the rounding errors on
the final result while avoiding the expensive, emulated
quadruple (128-bit) precision.

The numerical orthogonality of the left generalized
singular vectors U and V was computed in the extended
precision as ‖U∗U − I‖F and ‖V ∗V − I‖F , respectively.

When the (almost) exact generalized singular values Σ
are known in advance, as is the case with the small real
dataset (see subsection 5.1.2), the maximal relative error in
the computed Σ̂ can be obtained as

max
1≤i≤n

|(σi − σ̂i)/σi|.

5.1 Testing environment and data
The testing environment was the same for all tests, as
described in subsection 5.1.1. Apart from the GPU compute
architecture 7.0, some tests have been repeated on a
Maxwell GPU (GeForce GTX TITAN X, architecture 5.2)
and a Kepler GPU (GeForce GT 730, architecture 3.5),
to verify the portability of the code and the numerical
reproducibility of the results. Also, a few sample runs of
the multi-GPU algorithm on a small matrix have been tried
on a combination of those two GPUs, with the code built
for both architectures, to ensure that the algorithm functions
correctly in such a heterogeneous environment.

The testing data is synthetic (not from any application
domain) and is described in subsection 5.1.2. Please see the
supplementary material for its availability.

5.1.1 Testing environment The testing environment
comprises two Intel Xeon Silver 4114 CPUs, 384 GiB of
RAM, and four NVIDIA Tesla V100-SXM2-16GB (Volta)
GPUs per node, with a 64-bit Linux (CentOS 7.5.1804), the
GCC 4.8.5 C++ compiler, CUDA 10.0, and a build of Open
MPI 3.0.0 distribution with the CUDA support.

5.1.2 Testing data Two datasets have been generated: a
“small” and a “large” one, with their names referring to the
orders of the square matrices forming the pairs contained
in them. The small dataset contains both the real and the
complex matrix pairs, with each matrix stored in (and
then read from) its unformatted binary file, while the large
dataset contains only the complex matrix pairs.

The small dataset has 19 matrix pairs for each datatype,
with the orders of the matrices ranging from 512 to 9728
in steps of 512. The large dataset has 3 matrix pairs, with
the orders of the matrices being 18 · 1024 = 18432, 24 ·
1024 = 24576, and 36 · 1024 = 36864, so that the GPU
RAM requirements do not exceed the memory provided by
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Algorithm 6: The CPU part of the multi-GPU implicit Hari–Zimmermann algorithm (for the rth process).

initFGZ(p0,r,q0,r); // compute F
[r]
0 , G

[r]
0 , Z

[r]
0 in the stream Sr

for 0 ≤ c < 30 do // outermost sweep c

{Ŝc, B̂c} := {0, 0}; // reset the per-process, per-sweep transformation counters
for 0 ≤ k < n′ do // outermost step k

start receiving into F (r), G(r), Z(r) as in Algorithm 2;
call the single-GPU Algorithm 1 with S = Sr on F [r], G[r], Z [r] with the chosen S;
// increment the transformation counters by those from Algorithm 1

Ŝc := Ŝc + S̃; B̂c := B̂c + B̃;
start sending the transformed F [r], G[r], Z [r] as in Algorithm 3;
complete the communication and copy the received F (r), G(r), Z(r) to F [r], G[r], Z [r], as in Algorithm 4;

end for
reduce the transformation counters across the communicator;
break if the convergence has been reached, as in Algorithm 5;

end for
rescale(true); cudaStreamSynchronize(Sr); // full rescaling of Z [r] in Sr

optionally, copy F [r], G[r], Z [r],Σ
[r]
F ,Σ

[r]
G ,Σ

[r] to F (r), G(r), Z(r),Σ
(r)
F ,Σ

(r)
G ,Σ(r) and synchronize the stream(s);

MPI Barrier(MPI COMM WORLD); // completion of the algorithm and its timing

one, two, and four GPUs, respectively. No matrices in either
dataset require bordering.

The real matrix pairs in the small dataset were generated
in quadruple datatype (REAL(KIND=16) in Intel Fortran)
and rounded to double precision datatype. The same test
generation method was employed as in Novaković et al.
(2015). The required BLAS and LAPACK routines had
been adapted as required. The core of the generation are two
quadruple-adapted LAPACK testing routines: xLAGSY,
that generates a pseudorandom symmetric matrix, here of
the full bandwidth, from a given diagonal prescribing the
eigenvalues of the matrix; and xLAROR, that here multiplies
a given matrix from the left by a pseudorandom orthogonal
matrix. The diagonals of ΣF , ΣG, and ΛX were generated
by DLARND, a standard LAPACK’s pseudorandom number
generator, here with the uniform probability distribution
on (0, 1), such that only those values returned by it
that had been greater than 10−10 were accepted. Then,
UΣF was generated from ΣF , and V ΣG from ΣG, both
using xLAROR, while X was obtained from ΛX using
xLAGSY. After that, F := UΣF ·X and G := V ΣG ·X
(in quadruple). The generator finishes with a call to the
preprocessing part, DGGSVP3, of the LAPACK’s GSVD
method (see Anderson et al. (1999) and the routine’s
comments), to make the data usable for comparison with
DTGSJA Kogbetliantz-type GSVD routine from LAPACK.
On the small dataset the relative errors in the generalized
singular values computed on the CPU by LAPACK and on
a single GPU by the proposed algorithm were compared.

The complex matrix pairs in both datasets were generated
by a much simpler procedure, described in Singer et al.

(2020). Namely, each matrix in a pair was generated by
a call to ZLATMS LAPACK testing routine as Hermitian
and positive definite, with its pseudorandom eigenvalues
uniformly distributed in (0, 1).

5.2 Results with the single-GPU algorithm
When presenting the performance of several variants, a
decision has been made to show the execution time plots
and tables for the fastest variant on the largest matrix
pair in the small dataset, separately in the real and in the
complex case. To compare those results with the ones from
other variants, a useful measure is the relative slowdown
on a given matrix order. Fixing the reference variant r, as
suggested by the results in the plots, for another variant v
and a matrix order n let T (r)

n and T
(v)
n be the execution

times of r and v on a matrix pairs with the matrices of order
n, respectively. The relative slowdown S(v:r)

n of v compared
to r on n, given in percentages of the execution time of r, is

S(v:r)
n :=

T
(v)
n − T (r)

n

T
(r)
n

· 100.

The average relative slowdown across the entire dataset
(with 19 matrix pairs) is given as S(v:r)

avg :=
∑
n S

(v:r)
n /19.

5.2.1 Performance in the real case In the left subfigure
of Figure 7 the wall execution time of four subvariants
of DHZ0 (the fastest of eight variants from Table 1 on
the largest matrix pair) and the number of outer sweeps
for two fastest subvariants on the small real dataset are
shown. Table 21 in Appendix E contains the wall time for
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Figure 7. The wall execution time of four subvariants of DHZ0 (left) and ZHZ4 (right) and the number of outer sweeps for two
fastest subvariants on the small real (left) and complex (right) datasets.

DHZ0-(ME-FB-ME), which is generally the fastest of the
four subvariants.

In Table 2 the intervals of relative slowdown of other real
single-GPU (ME-FB-ME) variants compared to DHZ0-(ME-
FB-ME) (the reference variant) are given.

Table 2. The intervals of relative slowdown of other real
single-GPU variants compared to DHZ0, all of (ME-FB-ME)
subvariant. A negative slowdown is a speedup.

ID maximal relative minimal relative average relative
slowdown [%] slowdown [%] slowdown [%]

1 11.107853 0.984035 3.093490
2 17.137007 1.722547 4.870879
3 32.907217 3.144621 9.204879
4 0.328320 -0.678588 0.139650
5 11.353652 1.395604 3.373963
6 17.962363 2.065662 5.199807
7 32.290521 3.511386 9.413653

5.2.2 Performance in the complex case In the right
subfigure of Figure 7 the wall execution time of four
subvariants of ZHZ4 (the fastest of eight variants from
Table 1 on the largest matrix pair) and the number of outer
sweeps for two fastest subvariants on the small complex
dataset are shown.

In Table 3 the intervals of relative slowdown of other
complex single-GPU (ME-FB-ME) variants compared to
ZHZ4-(ME-FB-ME) (the reference variant) are given. Since
ZHZ0-(ME-FB-ME) is the fastest variant on average,
differing from ZHZ4 only subtly (in the convergence
criterion), ZHZ0 is used instead of ZHZ4 in the multi-GPU
algorithm and in subsection 5.2.6. Table 22 in Appendix F
shows the wall time for ZHZ0-(ME-FB-ME).

Table 3. The intervals of relative slowdown of other complex
single-GPU variants compared to ZHZ4, all of (ME-FB-ME)
subvariant. A negative slowdown is a speedup; e.g., ZHZ0 is
faster than ZHZ4 on average, even if it is slower sometimes.

ID maximal relative minimal relative average relative
slowdown [%] slowdown [%] slowdown [%]

0 0.488301 -6.403801 -0.493666
1 2.309416 -0.241201 0.841493
2 7.135216 -1.206508 1.756809
3 12.632933 0.866139 3.167284
5 1.366689 -0.442658 0.312471
6 8.423992 0.720393 2.287251
7 11.257148 1.092003 3.240513

5.2.3 Detailed timings of the main kernel’s subphases
Tables 4 and 5 show the percentages of time each
subphase of the main kernel takes on a Volta GPU for
the selected subvariants of the real and the complex
single-GPU algorithm, respectively. As the problem size
increases, the first and the fourth subphases (i.e., the matrix
multiplications) start to dominate over the others. With a
suitable modification for the recent GPU architectures like
Ampere, the Hari–Zimmermann algorithm could therefore
benefit from their dedicated hardware and instructions for
speeding up the GEMM-like operations.

5.2.4 Intensities of the floating-point arithmetic oper-
ations Tables 6 and 7 contain the relative intensity of
floating-point operations with rounding across all invoca-
tions of all kernels (not only the main one, though other
kernels’ contributions are negligible) on a Maxwell GPU.
The columns names correspond to the double precision
CUDA arithmetic intrinsics, while � represents the calls
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Table 4. Percentage of time (rounded to the nearest per mil)
spent in the subphases 1 to 4 in all invocations of the main
kernel for the subvariants CR0 , i.e., DHZ0-(ME-FB-ME) and DR0 ,
i.e., DHZ0-(ME-BO-ME), on the small real dataset.

n
subphases of CR0 [%] subphases of DR0 [%]
1 2 3 4 1 2 3 4

512 12.3 10.0 53.8 23.9 20.9 17.0 21.3 40.7
1024 17.5 7.1 41.1 34.4 25.7 10.4 13.1 50.8
1536 20.6 5.3 34.1 40.0 28.2 7.3 9.3 55.2
2048 22.8 4.4 28.2 44.6 29.4 5.7 7.3 57.6
2560 24.9 3.7 23.3 48.0 30.6 4.6 5.9 59.0
3072 26.1 3.3 20.5 50.1 31.1 3.9 5.0 59.9
3584 26.5 2.9 18.7 51.8 31.2 3.4 4.4 61.0
4096 27.3 2.6 17.1 53.0 31.6 3.0 3.9 61.4
4608 27.8 2.4 15.4 54.4 31.7 2.7 3.5 62.1
5120 28.2 2.2 14.5 55.2 32.0 2.5 3.2 62.4
5632 28.8 2.0 13.2 56.0 32.2 2.2 2.9 62.7
6144 29.2 1.9 12.0 56.9 32.2 2.1 2.7 63.0
6656 29.4 1.8 11.7 57.2 32.4 1.9 2.5 63.2
7168 29.7 1.7 10.8 57.9 32.5 1.8 2.3 63.4
7680 30.0 1.7 10.1 58.3 32.5 1.8 2.1 63.6
8192 29.5 1.6 9.9 59.0 32.0 1.6 2.1 64.3
8704 30.3 1.5 8.9 59.2 32.6 1.7 1.9 63.8
9216 30.4 1.4 8.7 59.5 32.7 1.5 1.9 64.0
9728 30.6 1.4 8.2 59.9 32.7 1.5 1.7 64.1

to hypot and rsqrt rn functions (their constituent oper-
ations were not counted separately). The results strongly
correlate with those from Tables 4 and 5; namely, the
intensity of fma increases as the matrix multiplications take
the larger portions of the overall time. For the smaller inputs
the combined amount of divisions/reciprocals, square roots,
and the � function calls is in single percents, but according
to (Arafa et al. 2019, Table IV) even such an amount
has a considerable influence on the execution time; e.g., a
division has on average close to 20 times the latency of a
simple instruction (like fma) on the Volta GPUs.

5.2.5 Accuracy in the real case In the left subfigure of
Figure 8 the normwise relative errors of four subvariants of
DHZ0 are shown in a logarithmic scale, while in Table 8
the spectral condition numbers κ2(F ) in the small real
dataset are given, offering a justification for the non-
monotonicity of the error graphs. In Table 9 the spectral
condition numbers κ2(G) in the small real dataset are
given, without a corresponding error figure, which is almost
indistinguishable from the left subfigure of Figure 8.

Figure 9 shows the numerical orthogonality of the left
generalized singular vectors U (left subfigure) and V (right
subfigure) across the small real dataset achieved by DHZ0.

Tables 10 and 11 show the maximal relative errors in
the generalized singular values computed by DHZ0-(ME-
FB-ME) and DTGSJA from the Intel Math Kernel Library

Table 5. Percentage of time (rounded to the nearest per mil)
spent in the subphases 1 to 4 in all invocations of the main
kernel for the subvariants CC0 , i.e., ZHZ0-(ME-FB-ME) and DC0 ,
i.e., ZHZ0-(ME-BO-ME), on the small complex dataset.

n
subphases of CC0 [%] subphases of DC0 [%]
1 2 3 4 1 2 3 4

512 13.9 6.5 51.6 28.1 23.2 10.9 18.7 47.2
1024 19.6 4.7 35.8 39.9 27.2 6.5 10.8 55.5
1536 21.9 3.5 29.3 45.4 28.5 4.6 7.7 59.3
2048 24.7 2.8 23.3 49.2 30.2 3.5 6.0 60.3
2560 27.3 2.4 19.2 51.1 32.1 2.8 4.6 60.5
3072 28.4 2.1 16.3 53.2 32.5 2.4 3.9 61.2
3584 29.1 1.9 14.3 54.7 32.8 2.1 3.4 61.8
4096 29.5 1.7 12.9 55.9 32.9 1.8 3.0 62.3
4608 29.9 1.5 12.0 56.5 33.0 1.7 2.7 62.6
5120 30.1 1.4 11.2 57.3 33.1 1.5 2.4 63.0
5632 30.6 1.3 10.5 57.5 33.5 1.4 2.2 62.9
6144 30.8 1.2 9.7 58.3 33.4 1.3 2.1 63.2
6656 31.1 1.1 9.2 58.6 33.6 1.2 1.9 63.3
7168 31.3 1.1 8.5 59.2 33.6 1.1 1.8 63.5
7680 31.3 1.0 8.0 59.6 33.5 1.0 1.6 63.8
8192 32.2 1.0 7.4 59.4 34.2 1.0 1.6 63.3
8704 31.7 0.9 7.3 60.1 33.7 1.0 1.5 63.9
9216 31.7 0.9 7.1 60.3 33.7 0.9 1.4 64.0
9728 32.0 0.8 6.7 60.5 33.8 0.9 1.3 64.0

Table 6. Percentage of the total number of the floating-point
operations with rounding performed in the invocations of all
kernels (rounded to the nearest per myriad) for the subvariant
DHZ0-(ME-FB-ME) on the small real dataset.

n � add sub mul fma div rcp sqrt

512 0.83 22.68 1.32 16.33 54.20 1.71 0.57 2.35
1024 0.55 15.86 0.91 11.18 68.29 1.17 0.39 1.64
1536 0.43 12.34 0.71 8.70 75.33 0.91 0.30 1.27
2048 0.34 9.99 0.57 7.01 80.06 0.74 0.25 1.03
2560 0.27 8.00 0.45 5.53 84.16 0.58 0.19 0.82
3072 0.23 6.86 0.38 4.72 86.44 0.49 0.16 0.71
3584 0.20 6.16 0.35 4.25 87.80 0.45 0.15 0.63
4096 0.17 5.43 0.31 3.71 89.31 0.39 0.13 0.56
4608 0.16 4.89 0.28 3.34 90.36 0.35 0.12 0.50
5120 0.14 4.51 0.26 3.09 91.10 0.33 0.11 0.46
5632 0.12 3.94 0.22 2.67 92.27 0.28 0.09 0.40
6144 0.11 3.62 0.20 2.45 92.89 0.26 0.09 0.37
6656 0.11 3.52 0.20 2.41 93.06 0.26 0.09 0.36
7168 0.10 3.13 0.18 2.13 93.85 0.22 0.07 0.32
7680 0.09 2.91 0.16 1.96 94.30 0.21 0.07 0.30
8192 0.09 2.85 0.16 1.94 94.39 0.21 0.07 0.29
8704 0.08 2.59 0.15 1.75 94.92 0.18 0.06 0.27
9216 0.08 2.48 0.14 1.68 95.13 0.18 0.06 0.25
9728 0.07 2.34 0.13 1.58 95.41 0.17 0.06 0.24
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Figure 8. The relative normwise errors, ‖F − UΣFX‖F /‖F‖F , of four subvariants of DHZ0 (left) and ZHZ0 (right) on the small
real (left) and complex (right) datasets.
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Figure 9. The numerical orthogonality ‖UTU − I‖F (left) and ‖V TV − I‖F (right) of the left generalized singular vectors U
and V , respectively, achieved by four subvariants of DHZ0 on the small real dataset.

(version 2020.1.217 on an Intel Xeon Phi 7210 CPU),
respectively, on the small real dataset.

The average relative errors in the computed generalized
singular values in both the GPU and the CPU case are two
to three orders of magnitude smaller than the maximal ones,
as can be seen for the former in the supplementary material.
By comparing Tables 10 and 11 it can be concluded that,
in this sense and instance, the proposed GPU algorithm
exhibits accuracy similar to the LAPACK’s DTGSJA.

5.2.6 Accuracy in the complex case In the right
subfigure of Figure 8 the normwise relative errors of four
subvariants of ZHZ0 are shown in a logarithmic scale, while
in Table 12 the spectral condition numbers κ2(F ) in the
small complex dataset are presented, offering a justification
for a smooth shape of the error graphs. In Table 13 the
spectral condition numbers κ2(G) in the small complex

dataset are given. A corresponding error figure would be
almost identical to the right subfigure of Figure 8.

Figure 10 shows the numerical orthogonality of the left
generalized singular vectors U (left subfigure) and V (right
subfigure) on the small complex dataset achieved by ZHZ0.

5.2.7 Conclusions From Figure 7 it is obvious that MM
gives a significantly slower execution than ME at the outer
level, and that FB is slightly faster than BO. From Tables 2
and 3 it is clear that the execution times across the variants
do not widely differ, and that the enhanced dot-products
from Appendix A add from a few percent to something
more than 15% to the wall time.

In both the real and the complex case the variant 0 with
(ME-FB-ME) is a reasonable choice performance-wise.

Regarding the normwise relative errors on the matrices
of moderate spectral conditions, as it is in the real case,
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Figure 10. The numerical orthogonality ‖U∗U − I‖F (left) and ‖V ∗V − I‖F (right) of the left generalized singular vectors U
and V , respectively, achieved by four subvariants of ZHZ0 on the small complex dataset.

Table 7. Percentage of the total number of the floating-point
operations with rounding performed in the invocations of all
kernels (rounded to the nearest per myriad) for the subvariant
ZHZ0-(ME-FB-ME) on the small complex dataset.

n � add sub mul fma div rcp sqrt

512 0.92 12.81 0.42 11.63 71.86 0.42 0.83 1.12
1024 0.53 7.46 0.24 6.63 83.78 0.24 0.47 0.65
1536 0.39 5.42 0.17 4.83 88.21 0.17 0.34 0.47
2048 0.30 4.16 0.13 3.68 90.98 0.13 0.26 0.36
2560 0.23 3.27 0.10 2.84 92.97 0.10 0.20 0.28
3072 0.19 2.70 0.08 2.33 94.21 0.08 0.16 0.23
3584 0.17 2.34 0.07 2.02 94.98 0.07 0.14 0.20
4096 0.15 2.03 0.06 1.74 95.66 0.06 0.12 0.17
4608 0.13 1.88 0.06 1.61 95.99 0.06 0.11 0.16
5120 0.12 1.71 0.05 1.46 96.35 0.05 0.10 0.15
5632 0.11 1.55 0.05 1.32 96.70 0.05 0.09 0.13
6144 0.10 1.40 0.04 1.19 97.02 0.04 0.08 0.12
6656 0.09 1.32 0.04 1.12 97.20 0.04 0.08 0.11
7168 0.09 1.20 0.04 1.03 97.44 0.04 0.07 0.10
7680 0.08 1.13 0.03 0.96 97.60 0.03 0.07 0.10
8192 0.07 1.03 0.03 0.88 97.81 0.03 0.06 0.09
8704 0.07 1.01 0.03 0.86 97.86 0.03 0.06 0.09
9216 0.07 0.96 0.03 0.81 97.96 0.03 0.06 0.08
9728 0.07 0.91 0.03 0.78 98.06 0.03 0.05 0.08

the MM subvariants are almost indistinguishable, as are the
ME subvariants, with the latter being slightly more accurate
than the former, as shown in the left subfigure of Figure 8.
With the matrices of small spectral condition, as it is in the
complex case, all subvariants are almost indistinguishable,
as shown in the right subfigure of Figure 8. The spectral
condition numbers were computed by Matlab R2019a.

In Table 14 the maximal relative normwise errors with
respect to F and G in the real and the complex case on the

Table 8. The spectral condition numbers κ2(F ) in the small
real dataset.

n κ2(F ) n κ2(F )

512 7.19081 · 104 5632 2.33003 · 106

1024 1.29837 · 106 6144 3.69195 · 106

1536 2.35302 · 105 6656 1.90070 · 106

2048 1.48022 · 105 7168 7.72806 · 105

2560 1.69855 · 105 7680 5.33036 · 105

3072 7.28415 · 104 8192 3.59719 · 105

3584 2.78307 · 105 8704 3.54038 · 105

4096 1.43141 · 106 9216 1.68270 · 106

4608 1.35132 · 106 9728 3.90607 · 105

5120 2.33209 · 106 – –

Table 9. The spectral condition numbers κ2(G) in the small
real dataset.

n κ2(G) n κ2(G)

512 7.79269 · 103 5632 1.94774 · 106

1024 5.17836 · 104 6144 1.14571 · 107

1536 2.41272 · 104 6656 3.21194 · 107

2048 1.91692 · 104 7168 6.84297 · 106

2560 3.30063 · 104 7680 2.24983 · 107

3072 1.90896 · 104 8192 2.89085 · 106

3584 6.56610 · 104 8704 1.20004 · 106

4096 2.08194 · 105 9216 3.35081 · 106

4608 8.83907 · 105 9728 3.58109 · 106

5120 1.53531 · 106 – –

small dataset for all variants of the single-GPU algorithm
with (ME-FB-ME) are given. Looking at the minimal value
in each data column, it is evident that, except for G in the
real case, the enhanced dot-products offer a small advantage
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Table 10. The relative errors in Σ̂, the generalized singular val-
ues computed by DHZ0-(ME-FB-ME) on the small real dataset.

n maxi |(σi − σ̂i)/σi| n maxi |(σi − σ̂i)/σi|
512 4.20077 · 10−13 5632 6.66337 · 10−11

1024 2.00541 · 10−11 6144 6.85154 · 10−11

1536 7.29365 · 10−12 6656 3.39017 · 10−10

2048 8.80861 · 10−13 7168 5.65600 · 10−11

2560 1.08576 · 10−12 7680 8.18645 · 10−11

3072 1.12990 · 10−12 8192 1.51962 · 10−11

3584 6.02566 · 10−12 8704 8.99801 · 10−12

4096 1.64618 · 10−11 9216 1.81947 · 10−11

4608 2.01553 · 10−11 9728 4.48431 · 10−11

5120 4.85422 · 10−11 – –

Table 11. The relative errors in Σ̃, the generalized singular val-
ues computed by LAPACK’s DTGSJA on the small real dataset.

n maxi |(σi − σ̃i)/σi| n maxi |(σi − σ̃i)/σi|
512 4.24173 · 10−13 5632 6.65480 · 10−11

1024 2.00948 · 10−11 6144 6.85305 · 10−11

1536 7.28953 · 10−12 6656 3.38985 · 10−10

2048 9.06332 · 10−13 7168 5.65602 · 10−11

2560 1.04699 · 10−12 7680 8.18993 · 10−11

3072 1.10638 · 10−12 8192 1.51537 · 10−11

3584 6.00819 · 10−12 8704 9.00031 · 10−12

4096 1.64629 · 10−11 9216 1.81785 · 10−11

4608 2.03583 · 10−11 9728 4.48437 · 10−11

5120 4.84123 · 10−11 – –

Table 12. The spectral condition numbers κ2(F ) in the small
complex dataset.

n κ2(F ) n κ2(F )

512 2.30011 · 103 5632 8.81464 · 103

1024 2.30011 · 103 6144 8.81464 · 103

1536 2.30083 · 103 6656 8.81464 · 103

2048 2.30083 · 103 7168 8.81464 · 103

2560 4.92822 · 103 7680 8.81464 · 103

3072 4.92822 · 103 8192 8.81464 · 103

3584 4.92822 · 103 8704 8.81464 · 103

4096 4.92822 · 103 9216 8.81464 · 103

4608 7.69922 · 103 9728 8.81464 · 103

5120 8.81464 · 103 – –

in accuracy, but not so significant that it would not be offset
by a drop in performance when the focus is on the latter.

Despite the low occupancy, Table 15 shows that all warps
that can occupy a multiprocessor execute with almost full
efficiency. It is therefore expected that, should the present
bottleneck on multiprocessors be removed in the future by
increasing the register file (see subsection 3.5) as it has
recently been done with the shared memory, the occupancy

Table 13. The spectral condition numbers κ2(G) in the small
complex dataset.

n κ2(G) n κ2(G)

512 5.62075 · 102 5632 7.79104 · 103

1024 1.54312 · 103 6144 4.69173 · 103

1536 8.58280 · 102 6656 1.79255 · 104

2048 1.69892 · 103 7168 7.57668 · 103

2560 2.66973 · 105 7680 1.12171 · 105

3072 4.12692 · 104 8192 1.38621 · 104

3584 9.24332 · 103 8704 9.11971 · 103

4096 1.67599 · 104 9216 8.54830 · 103

4608 6.50253 · 103 9728 5.97562 · 103

5120 8.40210 · 103 – –

might increase as well, and with it the overall performance,
while the efficiency would stay at the same high level.

5.3 Results with the multi-GPU algorithm
Due to a limited availability of GPUs in the testing environ-
ment, only the complex case in the variant 0 was tested on
the large dataset and compared with a single-GPU baseline.

Here, the full accuracy testing was skipped, due to the
huge computational demands of the matrix inversions and
of the error calculation in extended precision. For n =
18432, the relative errors in the corresponding outputs with
one and with two GPUs (in both cases in all variants that
were timed) were compared and all of them, for both F
and G, were found to be less than 1.7 · 10−12. Also, for
a given matrix, the relative errors in all cases differed less
than 10−13, indicating that the multi-GPU algorithm did not
introduce any instability in the computation.

5.3.1 A single-GPU baseline In Table 16 the wall time
in seconds and the number of the outermost sweeps are
shown for the ME-FB-ME and the ME-BO-ME subvariants,
with and without the column sorting, of the ZHZ0 single-
GPU algorithm, as a baseline for the comparison with the
multi-GPU algorithm. As the similar benefits of the column
sorting were obvious in other trial tests runs, the non-sorting
version was not considered for the full testing.

5.3.2 The multi-GPU performance In Tables 17, 18, 19,
and 20 the wall time in seconds and the outermost sweep
count are shown for the multi-GPU variants

A := ZHZ0-(ME-FB, ME-FB-ME),
B := ZHZ0-(ME-BO, ME-FB-ME),
C := ZHZ0-(ME-FB, ME-BO-ME),
D := ZHZ0-(ME-BO, ME-BO-ME),

respectively, run on two, four, and eight GPUs. The tests
on two and four GPUs required a single node, and those
on eight GPUs required two InfiniBand-connected nodes.
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Table 14. The maximal relative normwise errors with respect to F and G in the real and the complex case on the small dataset
for all variants of the single-GPU algorithm with (ME-FB-ME). The minimal value in each column is shown in bold.

real case complex case

ID max. relative max. relative max. relative max. relative
error w.r.t. F error w.r.t. G error w.r.t. F error w.r.t. G

0 3.68432 · 10−12 3.70732 · 10−12 6.89432 · 10−13 6.89366 · 10−13

1 3.68346 · 10−12 3.70057 · 10−12 6.89297 · 10−13 6.89204 · 10−13

2 3.68803 · 10−12 3.69833 · 10−12 6.89300 · 10−13 6.89375 · 10−13

3 3.68659 · 10−12 3.70446 · 10−12 6.86220 · 10−13 6.90340 · 10−13

4 3.68606 · 10−12 3.72483 · 10−12 6.89432 · 10−13 6.89366 · 10−13

5 3.67729 · 10−12 3.71555 · 10−12 6.89297 · 10−13 6.89204 · 10−13
6 3.68803 · 10−12 3.69833 · 10−12 6.89300 · 10−13 6.89375 · 10−13

7 3.68659 · 10−12 3.70446 · 10−12 6.86220 · 10−13 6.90340 · 10−13

Table 15. Aggregate minimal and maximal values of several
profiler metrics for bstep1s kernel invocations. Min/max was
again taken over the results in four contexts: DHZ0 and ZHZ0,
both in (ME-FB-ME) and (ME-BO-ME) subvariants; n = 9728.

nvprof metric minimal maximal
sm 52 architecture value [%] value [%]

achieved occupancy 25.00 25.00
branch efficiency 99.75 99.94

sm efficiency 96.54 97.64
warp execution efficiency 99.92 99.96

warp nonpred execution efficiency 98.57 99.90

Table 16. Wall time in seconds and the sweep count for the
ME-FB-ME and the ME-BO-ME subvariants of the ZHZ0
single-GPU algorithm, with and without the column sorting, on
a pair of matrices of order n = 18432.

ME-FB-ME ME-BO-ME column sort

2063.19 s; 10 2248.48 s; 11 yes
3509.21 s; 17 3482.66 s; 17 no

When a particular test was not possible to be run due to an
insufficient amount of the GPU RAM, “n/a” is shown in the
test’s table cell.

Table 17. Wall time in seconds and the outermost sweep
count for the variant A.

n 2 GPUs 4 GPUs 8 GPUs

18432 3796.78 s; 5 2594.38 s; 6 1638.43 s; 7
24576 8869.04 s; 5 6718.15 s; 6 5134.84 s; 7
36864 n/a 21271.83 s; 6 12560.23 s; 7

5.3.3 Conclusions It is clear from Tables 17, 18, 19,
and 20, that the multi-GPU variant B is to be recommended
when performance matters.

Table 18. Wall time in seconds and the outermost sweep
count for the variant B.

n 2 GPUs 4 GPUs 8 GPUs

18432 1606.17 s; 9 1085.34 s; 9 774.97 s; 9
24576 3536.52 s; 9 2568.67 s; 9 2004.23 s; 9
36864 n/a 7643.07 s; 9 4870.56 s; 9

Table 19. Wall time in seconds and the outermost sweep
count for the variant C.

n 2 GPUs 4 GPUs 8 GPUs

18432 4295.87 s; 5 2903.28 s; 6 1806.63 s; 7
24576 10098.11 s; 5 7693.07 s; 6 5825.82 s; 7
36864 n/a 23611.93 s; 6 14225.79 s; 7

Table 20. Wall time in seconds and the outermost sweep
count for the variant D.

n 2 GPUs 4 GPUs 8 GPUs

18432 1759.48 s; 10 1201.17 s; 10 849.58 s; 10
24576 3926.69 s; 10 2863.27 s; 10 2224.73 s; 10
36864 n/a 9248.23 s; 11 5877.18 s; 11

Dividing the shortest single-GPU baseline wall time from
Table 16 for n = 18432 with the wall times from Table 18
for the same n but with a different number of GPUs, it can
be derived that the speedup with two GPUs is 1.28×, with
four GPUs is 1.90×, and with eight GPUs is 2.66×. These
speedups could be even lower on a slower network or if
there were fewer than four GPUs present per node.

It would be interesting to see for what number of GPUs,
depending on the input sizes, the speedup peaks and starts
falling, but that is beyond reach of the testing environment.
In the absence of such information, a safe rule of thumb
would be to use a modest number of GPUs on a fast
interconnect for a given problem, such that they are fully
utilized in the terms of multiprocessors and memory.
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6 Conclusions and future work
The proposed algorithms compute the generalized SVD
efficiently, accurately, and almost entirely on the GPU(s).
The single-GPU algorithm requires a CPU only for the
controlling purposes. The multi-GPU algorithm involves
a substantial amount of unavoidable communication, but
scales acceptably as long as each GPU if kept fully utilized.

Several generalizations of the algorithms’ design are
possible for the other implicit Jacobi-type methods that are
to be ported to the GPUs. One such method is a computation
of the generalized hyperbolic SVD (GHSVD) Bojanczyk
(2003) by a modification of the implicit Hari–Zimmermann
algorithm, as described in Singer et al. (2020).
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LAPW method with eigendecomposition based on the Hari–
Zimmermann generalized hyperbolic SVD. SIAM J. Sci.
Comput. 42(5): C265–C293. DOI:10.1137/19M1277813.

Singer S, Singer S, Novaković V, Ušćumlić A and Dunjko
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A Enhanced dot-product computation
In CUDA, the rounding mode can be specified explicitly for
each arithmetic operation using the intrinsic functions. That
makes an ideal setting for employing a trick from Graillat
et al. (2015) to cheaply compute possibly more accurate real
and complex dot-products.

For two real vectors a and b of the same length, their
enhanced dot-product would require one FMA and one
negation per a pair of vector elements, in addition to one
multiplication. Also, adding the partial sums together needs
two sum-reductions instead of one, as follows.

Let a and b be the elements of a and b at the same,
arbitrary index, and let dmul rd stand for a CUDA
intrinsic performing a multiplication with rounding towards
−∞. Take

c := dmul rd(a, b), d := fma rn(a, b,−c).

Then, by looking separately at the both possible signs
of c, it can be shown that for the rounding error of the
multiplication extracted by the FMA holds d ≥ 0. By sum-
reducing d, no cancellation can occur. That value may be
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added to the sum-reduction result on c, to form the final
dot-product.

For two complex vectors a and b of the same length,
defining an enhanced dot-product is not so unambiguous. A
special case of computing ‖a‖22 = a∗a can be handled as
follows. For an element a of a, take

cr := dmul rd(Re(a),Re(a)),

dr := fma rn(Re(a),Re(a),−cr),

considering the real part of a, and

ci := dmul rd(Im(a), Im(a)),

di := fma rn(Im(a), Im(a),−ci),

considering the imaginary part of a. Let Σ cr, Σ ci, Σ dr,
and Σ di be the sum-reductions of all cr, ci, dr, and di,
respectively. Then, return ((σ1 + σ2) + σ3) + σ4, where
the σj quantities are the four Σ-sums above, ordered
increasingly.

However, such an approach requires four reductions. To
simplify it by trading off accuracy for speed, let e = dr + di
be the sum of the rounding errors. Then, if cr ≤ ci, take
s = (e+ cr) + ci, else let s = (e+ ci) + cr, and return the
sum-reduction of s as an approximation of Σ(ā · a).

The real dot-product and the simpler of the two
procedures for computing of the square of the Euclidean
norm of a complex vector have been incorporated in the
special variants of the algorithm and tested, both without
a huge slowdown but also without a significant effect on
accuracy of the result, as explained in section 5.

B A single-GPU out-of-core algorithm
Algorithm 7 gives an overview of a single-GPU “out-of-
core” algorithm, when the whole data does not fit into the
GPU RAM, but at least one block pair of F ,G, and Z does.

This algorithm has not been implemented, but essentially
the bstep1(s/n) kernel would be converted to a kernel
OoCstep1(s/n) that operates on a suitably sized subset
of all block pivots of an outer step. The subset is loaded
into the GPU RAM beforehand, and is brought back, trans-
formed, to the CPU. That process is repeated until all block
pivots in the outer step have been transformed, exactly as
they would be by a single call to bstep1(s/n). Apart
from being inefficient, such an approach cannot handle the
case when not even a single block pair can fit into a GPU.
For the GPU RAM being 16 GiB and the matrices complex
and square, n would then have to be larger than 11 million,
in which case the multi-GPU algorithm is a must anyway.

C Warp-shuffle +-reduction of 32 doubles
In Figure 11 a warp-shuffle sum-reduction of 32 double-
precision values is shown, where each thread in a warp

Algorithm 7: A split of the implicit `-loop of a
single outer step of Algorithm 1 for the case when
the whole data does not fit into the GPU RAM.

for 0 ≤ k < n′ do // for all outer steps
/* Let o be the number of block

column pairs of F, G, and Z
that fit into the GPU RAM. */

for 0 ≤ o < (n/2)/o do // o mod (n/2) = 0
for o · o ≤ ` < (o+ 1) · o do // async

copy the `th block pivot pairs of F , G,
and Z from the CPU to the GPU;

end for
OoCstep1(s/n)(o, k); // transform
for o · o ≤ ` < (o+ 1) · o do // async

copy the `th block pivot pairs of F , G, Z,
transformed, from the GPU to the CPU;

end for
end for

end for

holds one value at the start, and all threads get the sum at
the end. The loop over i is manually unrolled in the code.

__device__ __forceinline__
double dSum32(const double x) {

int lo0, hi0, lo1, hi1;
double x0 = x, x1;
for (int i = 16; i; i >>= 1) {

lo0 = __double2loint(x0);
hi0 = __double2hiint(x0);
lo1 = __shfl_xor_sync(˜0u, lo0, i);
hi1 = __shfl_xor_sync(˜0u, hi0, i);
x1 = __hiloint2double(hi1, lo1);
x0 = __dadd_rn(x0, x1);

}
lo0 = __double2loint(x0);
hi0 = __double2hiint(x0);
lo1 = __shfl_sync(˜0u, lo0, 0);
hi1 = __shfl_sync(˜0u, hi0, 0);
return __hiloint2double(hi1, lo1);

}

Figure 11. Sum-reduction of 32 doubles across a warp.

D An implementation of the main kernel’s
subphases 1 and 4 with the batched
matrix multiplication from cuBLAS

The subphases 1 and 4 of the main kernel (see subsec-
tion 3.5) could have also been decoupled and implemented
separately, by the batched matrix multiplication routines
from the cuBLAS library. For that, more than twice the
GPU RAM is required, to maintain two copies of the data.
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The first copy, called “actual”, holds the current state of the
computation at the start of each block step. The second one,
called “shadow”, is used as a temporary buffer, in which the
new state is assembled at the end of the step. These copies
then change the roles by a simple swap of the pointers to
them. Schematically, this layout can be represented as

actual→ F ! G! Z ! , shadow→ F ? G? Z? .

Let F ∈ {R,C} be the field in which the computations
take place. For the complex algorithm, a data layout with
the real and the imaginary components kept separately is
no longer viable because cuBLAS does not support it.

Furthermore, let b = n/2 be the number of block column
pairs processed at each block step, i.e., the number of thread
blocks launched. An additional workspace of b square
matrices Zl of order 32 is required, where 1 ≤ l ≤ b, as

work→ Z0 · · · Zb−1 .

In this GPU RAM workspace the transformation matrices
Zl accumulated in the subphase 3 will be stored from the
shared memory of each thread block.

For each l there is an associated pair of block indices
(pl, ql) drawn from the chosen block strategy for the current
block step, with the subscripts l omitted when they are
implied by the context. Then, the block columns of the
actual copy can be logically grouped and denoted as

F !
l =

[
F !
p F !

q

]
, G!

l =
[
G!

p G!
q

]
, Z !

l =
[
Z !
p Z !

q

]
,

and a similar notation is used for the shadow copy as well.
Replacing the subphase 1 involves forming the lower

block-triangle of the Grammian matrices Âl and B̂l as

Âl :=

[
F !∗
p ·F !

p ???

F !∗
q ·F !

p F !∗
q ·F !

q

]
, B̂l :=

[
G!∗

p ·G!
p ???

G!∗
q ·G!

p G!∗
q ·G!

q

]
,

by two batched GEMM calls: one for Âl, and another for B̂l.
Each batched GEMM call forms all (p, p), (q, p), and

(q, q) blocks, since the inputs are all of the same
dimensions, as well as the outputs. Forming the remaining,
upper-right blocks is not necessary, since the subphase 2
reads only the lower triangle as the Grammian matrices are
Hermitian. The diagonal blocks should be formed by the
batched SYRK or HERK operations instead, but at present
they are not implemented in cuBLAS. Each Âl is stored
in the first 32 rows of the shadow copy F ?, starting from
its (32 · l)th column, and similarly for B̂l and G?, from
where they are loaded by the modified subphase 2 into
the shared memory and their Cholesky factorizations are
then computed as before. Note that this approach involves
storing Âl and B̂l in the GPU RAM, only to be read

afterwards into the shared memory, what is a redundant
memory traffic avoided by the original implementation.

The modified main kernel, after completing the
subphase 2, computes the transformation matrices Zl in
the subphase 3, and stores them from the shared memory
to the workspace (another redundant memory traffic). For
the postmultiplications, i.e., the block column updates,
consider each Zl to be logically partitioned as

Zl =

[
Z11 Z12

Z21 Z22

]
, Zij ∈ F16×16, 1 ≤ i, j ≤ 2.

Now, compute a partial update of F ! by a single batched
GEMM call (and similarly for G! and Z !), where for each l,

F ?
p := F !

p · Z11, F ?
q := F !

p · Z12,

and complete the update by another batched GEMM call as

F ?
p := F !

q · Z21 + F ?
p , F ?

q := F !
q · Z22 + F ?

q .

A swap of the pointers to the copies, actual � shadow,
completes the block step. See the var subdirectory of the
code repository for a double precision implementation.

A benefit of this alternative is that it significantly reduces
the register pressure in the main kernel, e.g., close to
halving the required number of registers on a Volta GPU.
However, that is offset by allocating more than twice
the GPU RAM, which is still a scarce resource, and
consequently by reducing the maximal input sizes per GPU.
Also, setting up a huge number of pointers for each batched
GEMM call, as well as the redundant stores to and loads from
the GPU RAM of the contents of the shared memory makes
the prototype implementation about 20 times slower on
average than the original one. Therefore, this version of the
algorithm is not recommendable on the present hardware.

E The QR factorizations as an alternative
to the main kernel’s subphases 1 and 2
for the ill-conditioned input matrices

As mentioned in subsection 2.3, for a highly ill-conditioned
input matrix the formation of the Grammians of its block-
column pairs by the main kernel’s subphase 1 might result
in several numerically singular or indefinite blocks, on
which the Cholesky factorizations in the subphase 2 are
bound to fail. In such cases the affected (or, for simplicity,
all) block-column pairs have to be shortened by the QR
factorizations instead. Ideally, the factorizations would
employ column pivoting (see, e.g., Quintana-Ortı́ et al.
(1998) and the LAPACK’s XGEQP3 routines, X ∈ {D,Z}),
but it can be inefficient on GPUs Mary et al. (2015).

The batched non-pivoted QR factorization routine from
cuBLAS could be used with the memory layout proposed
for Appendix D, where the τ vectors would be stored in
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the work buffer. Replacing the subphases 1 and 2 that way
would require to pack the actual block columns, e.g., F !

p

and F !
q, consecutively in the shadow copy F ? for each l

(similarly for G!). The packed block-column pairs in the
shadow copy would then be subject to the QR factoriza-
tions, and the upper triangular 32× 32 factors would be
extracted from it by the modified subphase 3. The post-
multiplication subphase would remain as in Appendix D.
However, this approach would also suffer from the redun-
dant traffic between the shared and the global memory.

Another approach is to keep the original memory layout
and have two “streaming” QR factorizations (one for the
assigned block-column pair of F , and another for the same-
indexed block-column pair of G) embedded into the main
kernel. Each factorization reads from the global memory
only once, in chunks, never writes to it (since the matrix
Q does not have to be applied again or restored), and
leaves the upper triangular factor in the shared memory
where the subphase 3 expects it to be. The full details of
this in-kernel QR factorization can be found in (Novaković
2015, subsection 4.2) for double precision, while a complex
version would be implemented similarly.

Table 21 demonstrates that close to eightfold slowdown
can be expected on a Volta GPU with the in-kernel QR
factorizations on larger matrices, even when using the
simplest, unsafe Frobenius norm computations inside them.

Table 21. The wall times and their ratios of DHZ0-(ME-FB-ME)
with the Cholesky factorizations of the Grammian matrices (�)
and with the QR factorizations of the block-column pairs (�),
both in-kernel, on the small real dataset.

n � [s] � [s] �/� n � [s] � [s] �/�

512 0.83 0.20 4.1 5632 437.48 57.81 7.6
1024 3.57 0.69 5.1 6144 522.05 68.10 7.7
1536 7.30 1.24 5.9 6656 544.53 71.13 7.7
2048 12.87 2.02 6.4 7168 674.35 87.38 7.7
2560 21.86 3.31 6.6 7680 775.09 100.64 7.7
3072 61.46 8.69 7.1 8192 1015.82 128.65 7.9
3584 90.87 12.66 7.2 8704 1233.91 157.62 7.8
4096 128.73 17.52 7.3 9216 1389.86 176.37 7.9
4608 186.27 25.22 7.4 9728 1551.47 198.03 7.8
5120 230.32 31.26 7.4 – – – –

F Performance-wise comparison of a CPU
and a single-GPU implementation of the
complex Hari–Zimmermann GSVD

Table 22 shows the speedup of the complex single-
GPU algorithm on the small dataset versus the CPU
GHSVD algorithm from Singer et al. (2020), with the
signature matrix for the latter being J = I . The GHSVD’s

implementation was not tuned for the simpler GSVD
computation. If it were, it could have been at least twice
as fast on a more modern CPU, but nevertheless noticeably
slower than the GPU algorithm on the Volta architecture.

Table 22. The wall times and their ratios of ZHZ0-(ME-FB-ME)
(•) and a close CPU analogue of ZHZ6-(ME-BO-ME) with the
variable block sizes and 64 threads (one per core) of an Intel
Xeon Phi 7210 (◦), on the small complex dataset.

n ◦ [s] • [s] ◦/• n ◦ [s] • [s] ◦/•
512 1.22 0.26 4.7 5632 422.37 65.27 6.5

1024 9.52 0.81 11.8 6144 671.15 77.85 8.6
1536 21.52 1.68 12.8 6656 659.89 92.55 7.1
2048 45.40 2.98 15.3 7168 756.02 109.74 6.9
2560 70.81 5.46 13.0 7680 971.17 131.07 7.4
3072 114.68 13.30 8.6 8192 1931.45 182.53 10.6
3584 164.41 17.96 9.2 8704 1258.28 208.32 6.0
4096 397.57 23.63 16.8 9216 1520.19 236.45 6.4
4608 270.74 30.77 8.8 9728 1646.25 269.04 6.1
5120 360.70 40.11 9.0 – – – –

G Computational pitfalls of the GEVD of
(F ∗F,G∗G) versus the GSVD of (F,G)

This small example shows what happens with the GEVD of
(F ∗F,G∗G) versus the GSVD of (F,G) when one of the
matrices (here,G) is even mildly ill-conditioned. All results
were obtained by Matlab R2020a Update 3.

Let F and G, with 0 < g11 � 1, be given as

F =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 , G =


g11 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 .
Clearly, F andG are non-singular, soA := FTF andB :=
GTG are symmetric positive definite. If, e.g., g11 = 10−10

(rounded to double precision) is taken, the generalized
eigenvalues of (A,B), also rounded to double precision, are

Λ(A, B) =


5.000000000500000 · 10−1

1.000000000000000 · 100

1.000000000000000 · 100

1.999999999800000 · 1020

 ,
where A and B are the Grammians of the rational (symbolic)
representations of F and G, respectively, while Λ(A, B) is a
sorted representation of the symbolic output of eig(A, B).

When computing Λ(A,B) in double precision, two
routes can be taken. The first one finds the generalized
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singular values of F and G, i.e., Σ(F,G) := gsvd(F,G),

Σ(F,G) =


7.071067812219032 · 10−1

9.999999999999997 · 10−1

9.999999999999997 · 10−1

1.414213562302384 · 1010

 ,
and squares them to get the generalized eigenvalues Λ̂,

Λ̂(A,B) =


5.000000000500004 · 10−1

9.999999999999993 · 10−1

9.999999999999993 · 10−1

1.999999999800000 · 1020

 ,
which are close to Λ(A,B), i.e., the exact ones.

The second route computes Λ̃(A,B) := eig(A,B) from
A and B by a “proper” GEVD routine, getting

Λ̃(A,B) =


0.000000000000000 · 100

0.000000000000000 · 100

0.000000000000000 · 100

1.999999999800000 · 1020

 ,
with the lower three generalized eigenvalues vanishing.

The spectral condition numbers of the matrices are:

κ2(F ) ≈ 5.411474127809772 · 100

κ2(G) ≈ 3.972825427374361 · 1010

κ2(A) ≈ 2.928405223595454 · 101 = κ22(F )

κ2(B) ≈ 1.578344820257155 · 1021 = κ22(G)

,

i.e., the condition numbers of A and B are the squares of
those of F and G, respectively, which is easily shown by
taking the SVD of F or G and expressing A or B in terms
of it. Therefore, a mildly ill-conditioned matrixG causes its
Grammian B to be severely ill-conditioned and the GEVD
fails, so the matrix multiplications have to be avoided in
such a case by computing the GSVD of (F,G) instead.

Motivated by the previous example, 16 pairs (F,Gj)
of square real matrices of order 512 were generated in
quadruple precision by the adapted symmetric indefinite
factorization with complete pivoting Slapničar (1998), and
then rounded to double precision, such that A = FTF ,
with κ2(A) = 10, was fixed, while Bj = GTj Gj varied,
with the prescribed values for κBj = κ2(Bj) = 10j , for
1 ≤ j ≤ 16. The matrices A and Bj were generated from
the given positive eigenvalues by the LAPACK’s testing
routine DLAROR adapted to quadruple precision, ensuring
that their condition numbers are as close to the prescribed
ones as possible, and that their ensuing factorizations
were identical in effect to the Cholesky factorizations with
diagonal pivoting. Then, the generalized singular values
Σ̂j of (F,Gj), i.e., the singular values of FG−1j , were

computed in high precision with 32 significant digits as

Σ̂j = double(svd(vpa(F )/ vpa(Gj))),

by Matlab R2020b, to be compared against in two ways.
The generalized singular values Σj of (F,Gj) were

recomputed by the DHZ0-(ME-FB-ME) variant, and the
generalized eigenvalues Λj of (A,Bj) were obtained by
the cusolverDnDsygvd routine from the cuSOLVER
library, to assess how well they approximate squares of the
generalized singular values. The maximal relative errors in
the generalized singular values computed by the last two
approaches were then found, with 1 ≤ i ≤ 512, as

mre(Σj) = max
i

| ext(σj,i)− ext(σ̂j,i)|
ext(σ̂j,i)

,

mre(Λj) = max
i

|
√
ext(λj,i)− ext(σ̂j,i)|

ext(σ̂j,i)
,

where Σ̂j , Σj , and Λj were sorted descendingly. Here, ext
denotes a conversion to the Intel’s extended 80-bit datatype.

As it can be seen in Table 23, the generalized singular
values computed by taking square roots of the generalized
eigenvalues rapidly lose accuracy when the condition of
Bj increases beyond about 1/

√
ε, where ε is the machine

precision. Entirely invalid results are possible, indicated
by mre(Λ16) = NaN, since the smallest six generalized
eigenvalues of (A,B16) were computed as negative and the
square roots could not have been taken. The generalized
singular values computed by a “proper” GSVD (the HZ
algorithm) remained relatively accurate in all cases, though.

Table 23. Relative accuracy of the generalized singular values
of (F,Gj) computed by the GSVD and the GEVD algorithms.

κB mre(Σ) mre(Λ) κB mre(Σ) mre(Λ)

101 8.9 · 10−16 8.1 · 10−16 109 1.4 · 10−15 2.9 · 10−9

102 9.3 · 10−16 5.8 · 10−15 1010 1.2 · 10−15 1.2 · 10−7

103 1.2 · 10−15 9.1 · 10−15 1011 1.1 · 10−15 1.3 · 10−6

104 2.2 · 10−15 7.1 · 10−14 1012 2.2 · 10−15 3.4 · 10−4

105 1.2 · 10−15 7.6 · 10−13 1013 1.1 · 10−15 3.7 · 10−3

106 2.2 · 10−15 1.1 · 10−11 1014 1.4 · 10−15 2.3 · 10−2

107 2.3 · 10−15 8.4 · 10−11 1015 1.1 · 10−15 3.5 · 10−2

108 1.3 · 10−15 1.5 · 10−9 1016 1.6 · 10−15 NaN

However, if it is known in advance that a particular
GSVD problem on (F,G) is extremely well conditioned,
solving it as the GEVD of (A,B) might be significantly
faster. From AZ = BZΛ, FZ = UΣF , and GZ = V ΣG,
it follows that finding Z (the generalized eigenvalues) and
Λ (the generalized eigenvectors) suffices to compute UΣF ,
V ΣG, and Σ = Λ1/2. Normalizing the columns of UΣF
both U and ΣF (with the extracted norms on its diagonal)
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are obtained, and similarly for V and ΣG, but U and V
might not be as orthogonal as those that come from a
“proper” GSVD. For the left generalized singular vectors
to be computed, the original matrices F and G have to
be preserved, which, along with a non-trivial amount of
workspace needed for the GEVD routine call, more than
doubles the memory requirements compared to those of the
single-GPU Hari–Zimmermann GSVD algorithm.

The matrices A and B are formed on a GPU, each
by a single call of the cuBLAS’ routine cublasDsyrk
(or cublasZherk in the complex case) from F and
G, respectively. Then, the cuSOLVER’s (legacy) routine
cusolverDnDsygvd (or cusolverDnZhegvd in the
complex case) solves the GEVD problem on (A,B). For
FZ and GZ multiplications the cuBLAS’ cublasDgemm
(or cublasZgemm in the complex case) routine can be
used. Finally, the normalizing, as described above, can be
performed by a custom kernel similar to rescale.

The computation as described above, but skipping the
normalization, was compared performance-wise to the
DHZ0-(ME-FB-ME) and the ZHZ0-(ME-FB-ME) variants.
Let D stand for the ratio of the wall times of the “proper”
GSVD and the GSVD-using-GEVD approaches in the real,
and Z in the complex case, on the respective small datasets.
Then, D and Z, as shown in Table 24, are relaxed upper
bounds on the expected speedup by the GEVD approach
(the actual speedup should be somewhat smaller) on the
GPUs. For comparison, about 15–35× speedup is expected
on the modern CPUs in the complex case Singer et al.
(2020) on a set of small-to-medium sized matrices. But it
should never be understated that there are hard limits to the
applicability of the GEVD approach to the GSVD when the
condition of the problem is high or unknown in advance.

Table 24. The wall time ratios of the “proper” (HZ) GSVD and
the partial GSVD-using-GEVD on a single Volta GPU in the
real (D) and the complex (Z) cases, on the small datasets.

n D [×] Z [×] n D [×] Z [×]

512 6.57 8.28 5632 49.92 26.63
1024 9.39 10.49 6144 49.25 25.30
1536 10.76 11.75 6656 41.63 24.02
2048 11.92 12.53 7168 42.38 23.60
2560 13.88 15.05 7680 41.82 23.45
3072 26.32 24.72 8192 45.45 26.95
3584 27.76 22.83 8704 46.42 25.92
4096 30.06 21.93 9216 44.71 25.07
4608 34.12 21.35 9728 43.41 24.50
5120 34.15 21.53 – – –
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