1,608 research outputs found

    Non-cooperative identification of civil aircraft using a generalised mutual subspace method

    Get PDF
    The subspace-based methods are effectively applied to classify sets of feature vectors by modelling them as subspaces. However, their application to the field of non-cooperative target identification of flying aircraft is barely seen in the literature. In these methods, setting the subspace dimensionality is always an issue. Here, it is demonstrated that a modified mutual subspace method, which uses softweights to set the importance of each subspace basis, is a promising classifier for identifying sets of range profiles coming from real in-flight targets with no need to set the subspace dimensionality in advance. The assembly of a recognition database is also a challenging task. In this study, this database comprises predicted range profiles coming from electromagnetic simulations. Even though the predicted and actual profiles differ, the high recognition rates achieved reveal that the algorithm might be a good candidate for its application in an operational target recognition system

    Non-cooperative target identification based on singular value decomposition

    Get PDF
    Non-Cooperative Target Identification based on High Resolution Range Profiles is a key research domain in the Defense industry. In this paper a method based on the application of Singular Value Decomposition to a matrix of range profiles is defined. The decomposition is applied to reduce dimensionality and to accomplish recognition in the transformed domain. So as to confirm the feasibility of the methodology, identification experiments of profiles coming from electromagnetic simulations are conducted, revealing promising results

    Ship target recognition

    Get PDF
    Includes bibliographical references.In this report the classification of ship targets using a low resolution radar system is investigated. The thesis can be divided into two major parts. The first part summarizes research into the applications of neural networks to the low resolution non-cooperative ship target recognition problem. Three very different neural architectures are investigated and compared, namely; the Feedforward Network with Back-propagation, Kohonen's Supervised Learning Vector Quantization Network, and Simpson's Fuzzy Min-Max neural network. In all cases, pre-processing in the form of the Fourier-Modified Discrete Mellin Transform is used as a means of extracting feature vectors which are insensitive to the aspect angle of the radar. Classification tests are based on both simulated and real data. Classification accuracies of up to 93 are reported. The second part is of a purely investigative nature, and summarizes a body of research aimed at exploring new ground. The crux of this work is centered on the proposal to use synthetic range profiling in order to achieve a much higher range resolution (and hence better classification accuracies). Included in this work is a comprehensive investigation into the use of super-resolution and noise reducing eigendecomposition techniques. Algorithms investigated include the Principal Eigenvector Method, the Total Least Squares Method, and the MUSIC method. A final proposal for future research and development concerns the use of time domain averaging to improve the classification performance of the radar system. The use of an iterative correlation algorithm is investigated

    Subspace-based methodologies for the non-cooperative identification of aircraft by means of a synthetic database of radar signatures

    Get PDF
    Una de las principales preocupaciones dentro del mundo de la aviación es la identificación rápida, eficaz y fiable de cualquier objeto observado que se encuentre a cualquier distancia y bajo cualquier condición atmosférica. Gracias a los avances en tecnología radar, esto se ha conseguido. De hecho, los radares son los sensores más adecuados para el reconocimiento de blancos en vuelo ya que pueden operar en cualquier condición. El reconocimiento de blancos mediante radar es hoy un hecho, existiendo sistemas IFF (Identification Friend or Foe) capaces de comunicarse con una aeronave haciendo posible que ella misma se identifique por sí sola. Sin embargo, esta necesidad de comunicación directa puede ser un inconveniente en ciertos momentos. Así, aparecen las técnicas no cooperativas o NCTI (Non-Cooperative Target Identification), que no establecen ninguna comunicación con el blanco y normalmente hacen uso de radares de alta resolución. Éstos ven los blancos como compuestos por diversos puntos que dispersan la energía emitida por el radar, generando así una imagen de la reflectividad de un blanco, lo que se ha llamado su firma radar. Comparando dicha firma radar con una base de datos de firmas radar de blancos conocidos es posible establecer, mediante una serie de algoritmos de identificación, el tipo de blanco iluminado por el radar. Uno de los temas más cuestionados es cómo poblar y actualizar esta base de datos de firmas radar. De manera ideal, la base de datos debería de contener medidas de blancos reales en vuelo; desafortunadamente, la principal desventaja de esta estrategia radica en la dificultad de obtener firmas radar de aviones neutrales o enemigos. Por esta razón, esta tesis propone utilizar firmas radar de blancos ideales, generadas mediante simulaciones electromagnéticas, como base de datos. Con el avance de las herramientas de predicción electromagnética es posible obtener de manera rápida y a bajo coste firmas radar de cualquier blanco deseado y en cualquier orientación. De este modo, el principal objetivo de esta tesis yace en el desarrollo de algoritmos eficientes de identificación de aeronaves en vuelo de manera no cooperativa, con altas tasas de acierto y empleando una base de datos de blancos obtenida mediante simulación electromagnética. El escenario propuesto consiste en la comparación de firmas radar reales obtenidas en una campaña de medidas con una base de datos compuesta por firmas radar simuladas, con ello se pretende por un lado, simular un escenario más realista, en el que las firmas de los blancos recogidas por el radar no tienen porqué tener la misma calidad que aquellas de la base de datos y por otro, comprobar que la identificación de un avión real mediante simulaciones es posible

    Study of processing techniques for radar non-cooperative target recognition.

    Get PDF
    Radar is a powerful tool for detecting and tracking airborne targets such as aircraft and missiles by day and night. Nowadays, it is seen as a genuine solution to the problem of target recognition. Recent events showed that cooperative means of identification such as the IFF transponders carried by most aircraft are not entirely reliable and can be switched off by terrorists. For this reason, it is important that target identification be obtained through measurements and reconnaissance based on non-cooperative techniques. In practice, recognition is achieved by comparing the electromagnetic sig nature of a target to a set of others previously collected and stored in a library. Such signatures generally represent the targets reflectivity as a function of space. A common representation is known as one-dimensional high-resolution range-profile (HRRP) and can be described as the projection of the reflectivity along the direction of propagation of the wave. When the measured signature matches a template, the target is identified. The main drawback of this technique is that signatures greatly vary with aspect-angle so that measurements must be made for many angles and in three dimensions. This implies a potentially large cost as large datasets must be created, stored and processed. Besides, any modification of the target structure may yield incorrect classification results. Instead, other processing techniques exist that rely on recent mathematical algorithms. These techniques can be used to extract target features directly from the radar data. Because of the direct relation with target geometry, these feature-based methods seem to be suitable candidates for reducing the need of large databases. However, their performances and their domains of validity are not known. This is especially true when it comes to real targets for at least three reasons. First, the performance of the methods varies with the signal-to-noise ratio. Second, man-made targets arc often more complex than just a set of independent theoretical point-like scatterers. Third, these targets are made up of a large number of scattering elements so that mathematical assumptions are not met. In conclusion, the physical correctness of the computational models are questionable. This thesis investigates the processing techniques that can be used for non-cooperative target recognition. It demonstrates that the scattering-centre extraction is not suitable for the model-based approach. In contrast, it shows that the technique can be used with the feature-based approach. In particular, it investigates the recognition when achieved directly in the z-domain and proposes a novel algorithm that exploits the information al ready in the database for identifying the signal features that corresponds to physical scatterers on the target. Experiments involving real targets show that the technique can enhance the classification performance and therefore could be used for non-cooperative target recognition

    Review of radar classification and RCS characterisation techniques for small UAVs or drones

    Get PDF
    This review explores radar-based techniques currently utilised in the literature to monitor small unmanned aerial vehicle (UAV) or drones; several challenges have arisen due to their rapid emergence and commercialisation within the mass market. The potential security threats posed by these systems are collectively presented and the legal issues surrounding their successful integration are briefly outlined. Key difficulties involved in the identification and hence tracking of these `radar elusive' systems are discussed, along with how research efforts relating to drone detection, classification and radar cross section (RCS) characterisation are being directed in order to address this emerging challenge. Such methods are thoroughly analysed and critiqued; finally, an overall picture of the field in its current state is painted, alongside scope for future work over a broad spectrum

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    Non-Contact Human Motion Sensing Using Radar Techniques

    Get PDF
    Human motion analysis has recently gained a lot of interest in the research community due to its widespread applications. A full understanding of normal motion from human limb joint trajectory tracking could be essential to develop and establish a scientific basis for correcting any abnormalities. Technology to analyze human motion has significantly advanced in the last few years. However, there is a need to develop a non-invasive, cost effective gait analysis system that can be functional indoors or outdoors 24/7 without hindering the normal daily activities for the subjects being monitored or invading their privacy. Out of the various methods for human gait analysis, radar technique is a non-invasive method, and can be carried out remotely. For one subject monitoring, single tone radars can be utilized for motion capturing of a single target, while ultra-wideband radars can be used for multi-subject tracking. But there are still some challenges that need to be overcome for utilizing radars for motion analysis, such as sophisticated signal processing requirements, sensitivity to noise, and hardware imperfections. The goal of this research is to overcome these challenges and realize a non-contact gait analysis system capable of extracting different organ trajectories (like the torso, hands and legs) from a complex human motion such as walking. The implemented system can be hugely beneficial for applications such as treating patients with joint problems, athlete performance analysis, motion classification, and so on

    Radar target classification by micro-Doppler contributions

    Get PDF
    This thesis studies non-cooperative automatic radar target classification. Recent developments in silicon-germanium and monolithic microwave integrated circuit technologies allows to build cheap and powerful continuous wave radars. Availability of radars opens new applications in different areas. One of these applications is security. Radars could be used for surveillance of huge areas and detect unwanted moving objects. Determination of the type of the target is essential for such systems. Microwave radars use high frequencies that reflect from objects of millimetre size. The micro-Doppler signature of a target is a time-varying frequency modulated contribution that arose in radar backscattering and caused by the relative movement of separate parts of the target. The micro-Doppler phenomenon allows to classify non-rigid moving objects by analysing their signatures. This thesis is focused on designing of automatic target classification systems based on analysis of micro-Doppler signatures. Analysis of micro-Doppler radar signatures is usually performed by second-order statistics, i.e. common energy-based power spectra and spectrogram. However, the information about phase coupling content in backscattering is totally lost in these energy-based statistics. This useful phase coupling content can be extracted by higher-order spectral techniques. We show that this content is useful for radar target classification in terms of improved robustness to various corruption factors. A problem of unmanned aerial vehicle (UAV) classification using continuous wave radar is covered in the thesis. All steps of processing required to make a decision out of the raw radar data are considered. A novel feature extraction method is introduced. It is based on eigenpairs extracted from the correlation matrix of the signature. Different classes of UAVs are successfully separated in feature space by support vector machine. Within experiments or real radar data, achieved high classification accuracy proves the efficiency of the proposed solutions. Thesis also covers several applications of the automotive radar due to very high growth in technologies for intelligent vehicle radar systems. Such radars are already build-in in the vehicle and ready for new applications. We consider two novel applications. First application is a multi-sensor fusion of video camera and radar for more efficient vehicle-to-vehicle video transmission. Second application is a frequency band invariant pedestrian classification by an automotive radar. This system allows us to use the same signal processing hardware/software for different countries where regulations vary and radars with different operating frequency are required. We consider different radar applications: ground moving target classification, aerial target classification, unmanned aerial vehicles classification, pedestrian classification. The highest priority is given to verification of proposed methods on real radar data collected with frequencies equal to 9.5, 10, 16.8, 24 and 33 GHz

    Optimization of Automatic Target Recognition with a Reject Option Using Fusion and Correlated Sensor Data

    Get PDF
    This dissertation examines the optimization of automatic target recognition (ATR) systems when a rejection option is included. First, a comprehensive review of the literature inclusive of ATR assessment, fusion, correlated sensor data, and classifier rejection is presented. An optimization framework for the fusion of multiple sensors is then developed. This framework identifies preferred fusion rules and sensors along with rejection and receiver operating characteristic (ROC) curve thresholds without the use of explicit misclassification costs as required by a Bayes\u27 loss function. This optimization framework is the first to integrate both vertical warfighter output label analysis and horizontal engineering confusion matrix analysis. In addition, optimization is performed for the true positive rate, which incorporates the time required by classification systems. The mathematical programming framework is used to assess different fusion methods and to characterize correlation effects both within and across sensors. A synthetic classifier fusion-testing environment is developed by controlling the correlation levels of generated multivariate Gaussian data. This synthetic environment is used to demonstrate the utility of the optimization framework and to assess the performance of fusion algorithms as correlation varies. The mathematical programming framework is then applied to collected radar data. This radar fusion experiment optimizes Boolean and neural network fusion rules across four levels of sensor correlation. Comparisons are presented for the maximum true positive rate and the percentage of feasible thresholds to assess system robustness. Empirical evidence suggests ATR performance may improve by reducing the correlation within and across polarimetric radar sensors. Sensitivity analysis shows ATR performance is affected by the number of forced looks, prior probabilities, the maximum allowable rejection level, and the acceptable error rates
    corecore