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ABSTRACT 
 

 

Human motion analysis has recently gained a lot of interest in the research community due 

to its widespread applications. A full understanding of normal motion from human limb 

joint trajectory tracking could be essential to develop and establish a scientific basis for 

correcting any abnormalities. Technology to analyze human motion has significantly 

advanced in the last few years. However, there is a need to develop a non-invasive, cost 

effective gait analysis system that can be functional indoors or outdoors 24/7 without 

hindering the normal daily activities for the subjects being monitored or invading their 

privacy. Out of the various methods for human gait analysis, radar technique is a non-

invasive method, and can be carried out remotely.  For one subject monitoring, single tone 

radars can be utilized for motion capturing of a single target, while ultra-wideband radars 

can be used for multi-subject tracking. But there are still some challenges that need to be 

overcome for utilizing radars for motion analysis, such as sophisticated signal processing 

requirements, sensitivity to noise, and hardware imperfections. The goal of this research 

is to overcome these challenges and realize a non-contact gait analysis system capable of 

extracting different organ trajectories (like the torso, hands and legs) from a complex 

human motion such as walking. The implemented system can be hugely beneficial for 

applications such as treating patients with joint problems, athlete performance analysis, 

motion classification, and so on.  
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CHAPTER ONE  

INTRODUCTION AND BACKGROUND 

 

1.1 Human Motion Sensing 

 

Human motion analysis has been recently receiving steadily increasing attention from 

researchers in different fields due to its wide range of applications [1.1]. These applications 

include, segmenting the parts of the human body for athletic performance analysis [1.2] 

and medical diagnostics [1.3-1.5], automatically monitoring human activities in security-

sensitive areas [1.6], elderly monitoring [1.7], creating man–machine user interfaces [1.8], 

smart video conferencing [1.9], and so on. Figure 1.1 shows some of the applications where 

human motion analysis is of significant importance. 

 

A full understanding of normal motion from human limb joint trajectory tracking is 

essential to develop and establish a scientific basis for correcting any abnormalities. 

Accurate reliable knowledge of gait characteristics at a given time, and even more 

importantly, monitoring and evaluating them over time, will enable early diagnosis of 

diseases and their complications and help to find the best treatment. Various techniques 

have been developed to perform such motion analysis. In [1.10], Wahab et al. developed 

an ultrasonic system in wearable instrumented shoes for gait analysis measurement in 

sports applications. Middleton et al. [1.11] presented a floor sensor consisting of 1536 

individual sensors arranged in a 3 m × 0.5 m rectangular strip as a prototype for a gait 

recognition system. A single camera based approach was proposed in [1.12] where the gait  
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Figure 1.1: Applications of human motion sensing (a) Athlete performance analysis, (b) 

Remote monitoring in security sensitive areas, (c) Smart video conferencing, (d) Medical 

diagnostics, (e) Elderly monitoring. 

 



 

3 

 

features from various viewing angles were normalized into a common viewing angle to 

achieve a stable, noise-robust video based gait recognition system. In [1.13], a low-cost, 

wearable, and wireless insole-based gait analysis system was studied that provided kinetic 

measurements of gait by using low-cost force sensitive resistors. Salarian et al. [1.14] 

offered an ambulatory gait analysis method using body-attached gyroscopes to estimate 

spatio-temporal parameters of gait for normal and pathologic motions. Figure 1.2 shows 

some of the techniques currently used in human motion analysis. Typically, use of video 

techniques has proven to be an attractive option for gait analysis due to its remote 

monitoring capability, high accuracy and ease of data analysis. But the cameras that are 

utilized are still expensive and require large storage of data. In addition, the subject has to 

be always in sight of the camera for the analysis. And since the video needs to be recorded, 

it hinders the privacy of the subject under test, especially in applications that need 

continuous monitoring. Ultrasonic systems, on the other hand, have the advantage of being 

low cost as well as immune to interferences. But they have limited range and are thus 

mounted on the subject to measure relative speed and distance. Meanwhile, the contact 

sensors like the pressure/inertia sensors typically provide very high accuracy and are 

insensitive to the surrounding environment. But each organ to track requires separate 

sensors and the combination of the multiple sensors and the mesh of wires for collecting 

data makes the method very inconvenient for the subject under test. Then there is floor mat 

sensors where the subject needs to move within a certain area with a mesh of embedded 

sensors. Typically these mats provide very accurate results and are insensitive to noise 

and/or interference. But these are only suitable for analyzing the lower components that 



 

4 

 

 

 

  

 

 

Figure 1.2: Human motion analysis techniques: (a) ultrasonic system in wearable 

instrumented shoes presented in [1.10], (b) motion sensing using multi-camera video 

analysis, (c) pressure/force sensors in shoes, (d) wearable gyroscope sensors, (e) floor mat 

sensor. 
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come in contact with the mats and the range is limited by the size of the mats. A summary 

of the advantages and disadvantages of the different traditional techniques mentioned 

above is presented in Table 1.1. 

 

Thus, there is a need to develop a non-invasive, cost effective system that can be installed 

indoors or outdoors and can be functional 24/7 without hindering the normal daily activities 

for the subjects being monitored or invading their privacy. In applications where long-term 

or continuous monitoring is essential, radar systems have appeared as an attractive solution 

to this complex problem. Gait analysis using radar systems offers a non-contact method 

that can cover a long range, can be implemented using low-cost single tone radars and can 

even perform simultaneous multi-subject tracking with the help of wideband systems. 

 

Table 1.1: Advantages and demerits of different motion analysis methods. 

 

Method Pros Cons 

Video  Non-contact method 

 High accuracy 

 Relatively easy to analyze data 

 Expensive to setup 

 Line of sight requirement 

 Privacy problem 

 Large data storage requirement 

Ultrasound  Inexpensive setup 

 Robust to interference 

 Limited range 

 Long processing time 

Pressure / 

Inertia 

sensors 

 High accuracy 

 Low cost sensors 

 Environment insensitive 

 Individual sensor for each organ 

 Inconvenience to wear sensors 

Floor 

sensor 
 High accuracy 

 Noise/interference insensitive 

 Contact method 

 Can only analyze lower leg 

 Range limited by sensor size 
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1.2 Gait Parameters to Study 

  

Gait analysis in general is the methodical examination of a person’s movement that serves 

to provide a unique, personal motion "map." That "map" actually reveals the different 

information within your body like level of mobility, habit, strength, stability, flexibility 

and so on. This analysis of movement can be for a walking person, or a running person, or 

even a person jogging on a treadmill. This research is primarily focused on the analysis of 

human walking. The series of events that occur during normal human walking can be 

described by as a gait cycle. According to Whittle [1.15], it is defined as the time interval 

between two successive occurrences of one of the repetitive events of walking. There are 

two main phases during the gait cycle: the ‘stance’ phase and the ‘swing’ phase. The stance 

phase occurs when the foot is in ground contact, whereas the swing phase occurs when 

there is no contact with the walking surface.  The stance phase occurs for about 60% of a 

whole gait cycle and the swing phase occurs for about 40%. Figure 1.3 depicts the gait 

cycle.  

 

So, in general, human gait research conducts the qualitative and quantitative evaluation of 

the various factors that characterize the gait. Depending on the application and the field of 

research, the factors of interest can vary [1.16]. For instance, for remote monitoring in 

security sensitive areas, interest may center on distinguishing and identifying persons based 

on a general characterization of their body posture and the movements between the 

subject's different body segments when walking [1.17]. However, in the field of sports, 

research may focus on the analysis of the joint trajectories, as well as, the different forces  
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Figure 1.3: Gait cycle showing the stance and swing phases and their relative duration. 

The gait cycle comprises of one step each from each leg beginning and ending in the same 

position. Here the phases are shown with respect to the right leg of the subject: stance 

phase when the right leg is planted on the ground, swing phase when it is in the air. Also, 

note that the two hands moves in opposite directions to each other.  
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exerted on muscles of interest through Electromyography (EMG) [1.18]. As an example, 

there are clinical studies on the elderly which link changes in various gait characteristics 

such as poor balance, slower pace, shorter steps, lower walking velocity and higher cadence 

to gait deficiency [1.19-1.20]. Table 1.2 highlights the general gait parameters of interest 

for different applications. 

 

It can be observed from Table 1.2 that extracting joint velocities is an important factor of 

analysis for any application of interest. Figure 1.4 shows example results of joint velocities 

obtained from a human walking model developed in [1.21] moving with a constant velocity 

of 1 ms-1. The plots show the instantaneous velocities of different body parts including the 

 

Table 1.2: Overview of gait parameters in relation to various applications [1.16]. 

 

GAIT PARAMETER CLINICAL SPORTS SECURITY 

STEP LENGTH √ √ √ 

STANCE/SWING PHASE √ √  

STEP TIME √   

CADENCE √ √  

AVERAGE SPEED √ √ √ 

JOINT ANGLES √ √  

FORCE ON MUSCLES √ √  

BODY POSTURE √ √ √ 

JOINT VELOCITIES √ √ √ 
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legs, the hands and the torso during a complete walking cycle. We can easily notice that, 

by performing some rudimentary analysis on the joint velocity plot, we can extract other 

useful gait parameters of interest such as step length, gait phase, step time, cadence and 

average speed. For example, the torso velocity observed in Figure 1.4 would represent the 

average walking velocity. The time interval between the maximum velocity points of the 

two legs multiplied by the average velocity would give the step length. We can also observe 

the time duration during which the foot velocity is higher than zero to obtain step time and 

similarly obtain the gait phases as well. Thus, this research focuses on the extraction of 

joint velocities during motion using non-contact method which can be useful in a number 

of different practical applications. 

 

 

 

Figure 1.4: Joint velocities extracted from a human walking model developed in [1.21]. 
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1.3 Radar Fundamentals 

 

Radar, an acronym for radio detection and ranging, is an electronic device used to transmit 

an electromagnetic signal to a target and to receive the reflected echo, on the basis of which 

the target’s speed and absolute distance can be extracted [1.22]. A simplified block diagram 

of a radar is shown in Figure 1.5. The transmit signal in time domain can be expressed as: 

 

𝑇(𝑡) = 𝑐𝑜𝑠(𝜔0𝑡)      (1.1) 

 

where ω0 is the fundamental angular frequency. 

 

The signal travels in the air and gets reflected from a subject in front of the radar. Thus, the 

signal at the receiving antenna can be expressed as: 

 

 

Figure 1.5: Simplified block diagram of the radar system for noncontact biomedical 

applications. 
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𝑅(𝑡) = 𝐴𝑐𝑜𝑠 (𝜔0𝑡 +
2𝜋

𝜆
(2𝑑0 + 2𝑑(𝑡)))                           (1.2) 

 

where d0 is the static distance of the subject to the transmitter (TX) and d(t) represents the 

displacement due to human motion, A is the amplitude of the received signal and λ is the 

wavelength. This received signal is mixed with a part of the transmitted signal to obtain 

the baseband signal, which after low-pass filtering has the form: 

 

𝑥𝐵𝐵(𝑡) = 𝐵 𝑐𝑜𝑠 (
2𝜋

𝜆
(2𝑑0 + 2𝑑(𝑡)))                                    (1.3) 

 

where B is and the magnitude of the received baseband signal. The variable part of the 

phase 𝜑(𝑡) =
2𝜋

𝜆
2𝑑(𝑡) is the part that used for feature extraction and gait analysis. Use of 

radar for motion analysis can provide advantages such as: 

 

• It is a non-contact method which does not cause any inconvenience for the subject 

under test. 

• It can cover a long range. 

• Motion analysis through wall/barrier is possible. 

• It can be implemented through very low cost hardware compared to the video 

techniques. 

• Simultaneous multi-person tracking is possible through the use of wideband radars. 
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1.4 Radar Architectures  

 

Radar systems can be basically of two types: single tone radar (CW) and wideband (UWB) 

radar. Continuous wave (CW) or Doppler radars are typically the simplest to implement 

with inexpensive components, which makes it an attractive choice for low-cost portable 

motion sensing systems. However, ultra-wideband (UWB) radars in general provide many 

advantages over the CW radars such as: ability to resolve closely spaced targets in range, 

reduction of multi-path, multi-target identification capabilities and so on. UWB radars 

signals can be implemented in several ways like impulse radio, stepped frequency 

continuous wave (SFCW) and frequency modulated continuous wave (FMCW). In the 

UWB impulse radio (UWB-IR) radar architecture, the signal has a large instantaneous 

bandwidth. Thus, the receiver (RX) requires high performance Analog to Digital 

Converters (ADCs) or other sophisticated methods to capture the signal, which makes it 

very expensive. In SFCW or FMCW radars, however, the wideband signal is emulated by 

sweeping the frequency in discrete or continuous steps over a wide bandwidth. The narrow 

instantaneous bandwidth combined with the large effective bandwidth (sequentially over 

many pulses) of these radars imply that the hardware requirements become less stringent. 

Lower-speed ADCs and lower level processors can be used. Moreover, the receiver 

bandwidth is smaller, resulting in lower noise bandwidth and higher signal-to-noise ratio 

thereby increasing the radar sensitivity. Compared to UWB-IR waveforms, stepped 

frequency or frequency modulated waveforms require lower AD conversion sampling 

rates, low peak power sources, and less resource requirement for processing smaller sets 

of data. Another disadvantage of the UWB-IR architecture is the difficulty in detecting the 
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target’s speed by exploiting the Doppler effect like in conventional CW radars. The speed 

information is obtained by dividing space displacement by the time interval which means 

that for a good accuracy in velocity, high accuracy in target position is required [1.23]. In 

case of the FMCW radars, one of its disadvantages is due to the frequency being swept in 

a continuous manner or in very fine steps, it is very difficult to compensate the amplitude 

and phase distortions for all different frequencies. For SFCW, this calibration becomes 

much simpler since only a discrete number of frequencies (with wide frequency steps) need 

to be calibrated. In addition, techniques such as compressive sensing method, where a 

fraction of the total number of frequencies can be randomly chosen within the band without 

degrading the performance, can be implemented for SFCW systems. This is not possible 

in the FMCW case, where the frequency needs to be swept continuously. Table 1.3 

compares the different radar techniques according to their characteristics.  

 

Table 1.3: Comparison between different radar technologies. 

 

 CW UWB FMCW SFCW 

Localization No Yes Yes Yes 

Multiple Subjects No Yes Yes Yes 

ADC Speed Low Fast Low Low 

Calibration* - - Difficult if 

nonlinearity exists 

Relatively 

Straightforward 

*Compensation of the amplitude and phase distortion for different frequencies 
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Thus, in order to determine the optimal architecture aiming at human sensing applications, 

we are proposing to investigate two radar architectures: CW radar, and SFCW radar. As 

opposed to CW radar that can only determine target’s speed, SFCW radar can determine 

simultaneously both the target’s speed and absolute distance [1.24]. The characteristics of 

these architectures, together with their advantages and disadvantages, are detailed below. 

 

1.4.1 Continuous Wave Radar 

 

Continuous Wave radar, or Doppler radar, is a type of radar system that transmits a single-

tone continuous-wave signal, which is reflected by a target and then demodulated in the 

receiver. It is used to determine the target’s speed. If D=do+d(t) is the distance from the 

radar to the target, the total number of wavelengths λ contained in the two-way path is 

2D/λ. Since one wavelength corresponds to an angular excursion of 2π radians, the total 

angular excursion φ traveled by the electromagnetic wave is 4πD/λ radians. If the target is 

moving, D and the phase φ are changing continuously. A change of φ with respect to time 

is equal to a frequency, such as the Doppler angular frequency ωd is: 

 

𝜔𝑑 = 2𝜋𝑓𝑑 = 
𝑑𝜑(𝑡)

𝑑𝑡
= 

4𝜋

𝜆

𝑑 (𝑑(𝑡))

𝑑𝑡
= 

4𝜋𝑣(𝑡)

𝜆
           (1.4) 

 

where fd is the doppler frequency shift and v(t) is the radial target speed. The Doppler 

frequency shift is therefore 

 

𝑓𝑑 = 
2𝑣𝑡

𝜆
= 

2𝑣𝑡𝑓𝑐

𝑐
      (1.5) 
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where fc is the radar center frequency. Thus, a velocity of 1 ms-1 detected by a radar with 

operating frequency of 2.45 GHz would correspond to a Doppler frequency shift of about 

16.33 Hz. We can also see that as we increase the operating frequency, larger Doppler 

frequency shifts are generated which increases the sensitivity.  

 

The main advantage of a CW radar is measuring the target’s speed without ambiguity as 

long as the Nyquist–Shannon sampling theorem is satisfied. Which means that the 

frequency at which data is sampled (equivalent to the pulse repetition frequency of the CW 

radar) has to be at least twice the maximum Doppler frequency generated by the movement 

of interest. Moreover, as opposed to ultra-wideband architectures, it presents a simpler 

architecture and it does not require large isolation between the antennas since the presence 

of a portion of the transmitted signal in the receiver is not harmful [1.25]. In fact, both the 

leakage due to poor isolation and stationary targets, such as furniture, produce a DC 

baseband signal that has no contribution in the Doppler frequency shift so it can be easily 

filtered. 

 

1.4.2 Stepped-Frequency Continuous Wave Radar 

 

A SFCW radar, also known as frequency-domain radar, transmits and receives a group of 

N coherent CW pulses whose frequencies are increased from pulse to pulse by a fixed 

frequency increment Δf, as shown in Figure 1.6. The frequency of the n-th pulse can be 

written as: 

 

𝑓𝑛 = 𝑓0 + (𝑛 − 1)𝛥𝑓     (1.6) 
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where f0 is the starting carrier frequency and Δf is the frequency step size, that is, the change 

in frequency from pulse to pulse. Each pulse is T seconds wide, the minimum value of 

which is dependent on the settling time of the frequency generator. A group of N pulses, 

also called burst or frame, is transmitted and received before any processing is initiated to 

realize a high-resolution measurement of the signal being measured. The burst interval is 

called the coherent processing interval (CPI). 

 

The total bandwidth of the signal is NΔf. However, since the frequency is constant within 

the individual pulse, its bandwidth is approximately equal to the inverse of the pulse width. 

These pulses have narrow bandwidths, thus making the instantaneous bandwidth of the 

radar narrow which improves the radar sensitivity. 

 

 

 

Figure 1.6: Stepped frequency waveform. Limited number of cycles are shown at each 

interval T for illustration purposes. 
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1.5 Conclusion 

 

This chapter highlighted the importance of human motion analysis in various applications 

such as athlete performance analysis, elderly monitoring, medical diagnostics, remote 

monitoring in security sensitive areas. The traditional techniques of motion analysis were 

discussed and it was observed that all of those had some shortcomings. There is a need for 

a low-cost motion analysis system that can perform non-contact, full-body analysis from a 

distance and radar systems provide all these capabilities. The basic working principle of 

such systems for gait analysis was introduced here along with discussing the different 

types. It was observed that the CW radar is the most convenient system to implement due 

to its simplicity and inexpensive component requirement but does not provide range 

resolution capabilities. In order to achieve that feature that would provide localization and 

multi-subject tracking capabilities, SFCW radars can be a convenient solution due to its 

low-cost data acquisition and simpler calibration requirements compared to UWB-IR and 

FMCW radar systems. That is why, we focused our research mainly on these two types of 

radars. The subsequent chapter will examine some of the previous research on radar 

systems for human motion analysis. 
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CHAPTER TWO  

LITERATURE REVIEW 

    

In general, human locomotion as a whole is complex, but it consists of a combination of 

different limb joints of the body. Hence, if the body is irradiated with a radar, then different 

limb joints will cause an ensemble of micro-Doppler shifts which can be distinctly detected 

by a sensitive radar. Various radar technologies and signal processing schemes have been 

previously utilized to perform human motion analysis.  

 

2.1 Radar Hardware 

 

One of the first attempts in gait analysis using radar techniques was presented by 

Geisheimer et al. in [2.1]. They proposed a fully coherent, continuous-wave (CW) radar 

operating near 10.5 GHz to detect the motion signatures corresponding to the walking 

human gait. Figure 2.1 (a) shows the implemented system. They conducted the experiments 

in a fifty-foot long room suitable for collecting gait data. After that, they processed the 

collected data to show the combined time-frequency spectrogram: the spectrum of 

frequencies of the signal as they vary with time without extracting individual limb motions. 

M. Otero [2.2] implemented a low-cost, low-power CW radar for remote sensor 

applications like: security, perimeter protection, and border monitoring. Spectral analysis 

using Fourier transform techniques was used on the Doppler signatures captured by the 

radar to identify some key features of the human walking like the walking speed and stride 

length. But the analysis was only intended to extract very basic information that could be 
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used to determine if a person was present or not. It was not intended to identify individuals 

or classes of people from their gait motion. Munoz-Ferreras et al. [2.3] implemented two 

integrated radar systems, one at C-band, the other at K-band to detect and compare the 

time-frequency spectrogram performance from Doppler-radar signatures. The C-band 

radar IC operated at 5.8 GHz and the K-band radar at 24 GHz with both having 8 dBm 

transmitted output power. Their experiments showed that the higher frequency radar 

demonstrated better performance in terms of spectrogram resolution. In [2.4], a single-

frequency continuous-wave Doppler radar sensor implemented with a redundant single-

input multiple-output (SIMO) front-end was presented for localization of moving objects. 

They operated the CW radar at 5.8 GHz and used a single transmitter and three receivers 

to localize a moving object in front of the radar. Lv et al. [2.5] proposed a high dynamic 

range Doppler radar sensor for reconstructing time-domain motion information. They used 

a 2.36 GHz tone with 25 dBm transmit power to track the walking velocity of human 

subject. In [2.6], V. C. Chen implemented an X-band CW radar and performed experiments 

in a typical environment in the presence of other objects. Since CW radars are not 

inherently capable of clutter suppression, the range profiles showed strong backscattering 

from the background objects and unwanted moving objects. He used a notch filter to 

suppress the stationary clutter from the moving subject. Time frequency analysis of the 

filtered signal showed spectrograms for different complex hand and leg movements, but 

again, the individual features could not be extracted as shown in Figure 2.1 (b). In addition 

to clutter suppression problem, CW radars can also suffer from DC offset issues and 

quadrature imbalance. DC offset can saturate or limit the dynamic range of the baseband 
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amplifiers [2.7] whereas quadrature imbalance can distort the shapes of the detected 

physiological signals, resulting in motion tracking errors [2.8]. 

 

Wang et al. [2.9] utilized both a CW (continuous wave) radar and UWB-IR (ultra-wideband 

impulse radio) radar for human sensing applications. They used the CW as a low-cost 

option for single human activity monitoring, vital sign detection, etc., where target range 

information is not required. They utilized a novel superhetrodyne receiver to suppress low-

frequency noise and included a digital downconverter module implemented in an FPGA. 

Meanwhile, the UWB-IR radar was more suitable for through-wall sensing, multiple-object 

detection, real-time target tracking, and so on, where a high-resolution range profile is 

 
       (a)       (b) 

 

Figure 2.1: (a) 10.5 GHz CW radar reported in [2.1] which was one of the first attempts in 

gait analysis using radar systems. (b) Time frequency spectrogram for a walking subject 

detected by a X-band CW radar in [2.6]. 
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acquired together with a micro-Doppler signature. They employed a carrier-based 

transceiver and a novel equivalent time sampling scheme based on FPGA for narrow pulse 

digitization. They were able to perform through-wall detection of two people walking using 

the UWB-IR radar prototype, but they just demonstrated the overall time-frequency 

spectrogram without extracting the individual limb joint features. Figure 2.2 depicts some 

of their reported results. Ren et al. also used an UWB-IR radar in [2.10] to track the torso 

and leg features of a walking subject. They used a 400-700 ps pulse transmitted at a 

repetition rate of 75 Hz and used an equivalent time sampling technique implemented using 

an FPGA to capture the wideband reflected signal. Their ability to track the other organs 

like the hands, ankles and toes was limited by the low pulse repetition rate and weaker 

return signals from those organs. Figure 2.3 presents some of their results. Tang et al. [2.11] 

 

 
            (a)            (b) 

 

Figure 2.2: (a) Spectrogram of a person walking/jogging on the treadmill using the CW 

Doppler radar prototype in [2.9], (b) Range profile of two persons walking in opposite 

directions using the UWB pulse Doppler radar reported in [2.9]. 
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utilized a combination of UWB radar and Doppler radar to perform short range indoor 

localization.  They used the commercial DWM1000 UWB transceiver chip [2.12] from 

decawave as the UWB radar and a K-band Doppler radar InnoSenT IPS-154 [2.13] 

operating at 24.125 GHz to detect the walking trajectory of a human subject. 

 

Maaref et al. studied possible solutions for the detection of human beings walking or even 

just moving behind a wall with the help of a UWB FMCW radar in [2.14]. They utilized a 

UWB fast frequency swept Yttrium Iron Garnet (YIG) source with a voltage to frequency 

characteristic that is very linear compared to a voltage controlled oscillator (VCO). Its 

maximum sweeping velocity was 200 μs/GHz which led to a minimum sweeping time of 

0.4 ms for a frequency bandwidth of 2 GHz. Using a sweeping frequency range between 

 
        (a)                (b) 

 

Figure 2.3: (a) Combined time-frequency spectrogram in for a walking person detected by 

an UWB-IR radar reported in [2.10], (b) Tracking of torso and the leg features. 
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2-4 GHz, they investigated the possibility to track a person walking behind a brick wall. 

But the pulse intensity fluctuated all along the tracking duration and they did not perform 

any gait analysis. In [2.15], Wang et al. proposed a novel radar system for precise 2-D 

positioning and life activities surveillance. Operating in the 5.8-GHz industrial–scientific–

medical (ISM) band with a 160-MHz bandwidth, the radar system incorporated both the 

FMCW mode and the interferometry mode based on a continuous waveform. The signal 

generation is performed using  a National Instruments PXIe 1075 chassis with three 

function blocks, which costs about $7600. They used the radar to extract the micro-Doppler 

information of a series of motions performed by a person facing the radar. They showed 

the Doppler frequency shifts due to different movements but did not extract the individual 

features from the different organs as shown in Figure 2.4. Greneker [2.16] proposed to use 

human gait characteristics detected by radar to determine if a human subject is carrying a 

 

 
           (a)               (b) 

 

Figure 2.4: (a) Photograph of the FMCW radar system and experimental setup for indoor 

positioning and life activity monitoring reported in [2.15], (b) Micro-Doppler signatures 

extracted by the radar for a walking person. 
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concealed object under their clothes. Using an X-Band homodyne/frequency modulated-

continuous wave radar (FM-CW) operating at a frequency of 10.525 GHz, they measured 

both the radar cross-section of an individual and the derived gait characteristics that are 

associated with individuals carrying a bomb on their body. But they only needed to track 

the thorax to make the classification, and did not track any other organs. Peng et al. [2.17] 

presented an FMCW radar operating at 5.8 GHz with 320 MHz chirp bandwidth and 3.5 

ms frequency ramp period for human gesture recognition. They were able to detect the 

hand gesture motion of a subject in the presence of multiple targets, but they did not 

perform any tracking of the limb joints.  

 

Lu et al. implemented a stepped-frequency CW (SFCW) radar in [2.18] to perform through 

wall imaging and motion detection. They used a local oscillator (LO) frequency synthesizer 

that generated the SFCW waveform, scanning repeatedly from 1.0 GHz to 2.0GHz at a 

frequency step 2MHz, where four parallel phase locked loops (PLLs) and an eight to one 

switch are used to increase the frequency sweeping speed which enabled a minimum 

sweeping time of 90 ms for the radar. Without performing gait analysis, they only 

generated images of a person standing and walking behind a wall and it was shown that the 

signal to clutter ratio (SCR) for the walking person was higher than the SCR for the 

standing person due to the larger position displacements during the coherent processing 

interval for the walking person. Thayaparan [2.19] utilized an SFCW radar operating 

between 8.9–9.4 GHz with 10 MHz step frequency and 20 Hz frame rate to analyze human 

motion in high noise environment. 
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Thus, we can see there has been plenty of research on radar systems for motion analysis. 

The summary of these hardware systems along with their limitations are listed in Table 2.1. 

 

2.2 Signal Processing Scheme 

 

Along with using different types of radar, there has been plenty of research on using and 

developing different signal processing techniques for analyzing the collected data from the 

radar. Most of these techniques involve performing a time-frequency analysis of the radar 

echoes. For example, short-time Fourier transform (STFT) has been extensively used in 

human gait analysis and motion pattern classification [2.1, 2.2, 2.6, 2.9, 2.20-2.28]. Other 

promising techniques include: inverse Radon transform [2.29], chirplet transform [2.1], 

Hilbert-Huang transform [2.30], MUSIC (Multiple Signal Classification) algorithm [2.31], 

wavelet transform [2.32], artificial neural network [2.33], Wigner-ville distribution (WVD) 

[2.34], complex probabilistic principal component analysis (CPPCA) [2.35], empirical 

mode decomposition (EMD) [2.36], Matrix Pencil method [2.37], ESPRIT (Estimation of 

Signal Parameter via Rotational Invariance Technique) [2.38] and so on. To understand the 

human complex motion such as human walking, multiple signal components 

corresponding to various target scattering parts need to be identified. While the 

aforementioned techniques can successfully extract some general information from this 

complex motion, they sometimes demonstrate insufficient capabilities in tracking the 

movement patterns of specific limbs. In order to overcome this issue, more sophisticated 

algorithms have been proposed in literature for separating components according to their 

scattering parts.  
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Ren et al. [2.10] utilized the short time state space method (ST-SSM) to extract micro-

Doppler (µ-D) features for gait analysis using an ultra-wideband impulse Doppler radar. 

They were successful in extracting the torso and the leg features, but the detection of other 

weaker signals from body joints such as knees, ankles, toes, etc. via ST-SSM was 

inconsistent due to the low Doppler resolution used. In [2.19], the authors applied the S-

method- (SM) based approach in conjunction with Viterbi algorithm to recognize the µ-D 

features from a rotating fan and human gait in indoor and outdoor environments. The SM 

was numerically very simple and requires just a few more operations than the standard 

Fourier transform based algorithm. This technique is simple but is suitable for mono-

component signals or multi-component signals that are non-overlapping in the time-

frequency plane. In the latter case, the separation of signals can be performed only when 

components significantly differ in magnitude. For a walking human subject, the authors 

performed the estimation of the dominant component: torso first. After they calculated the 

new time-frequency representation by removing the dominant component and repeating 

the process. Using the method, they were able to extract the torso and leg component, but 

the extraction of other signatures like the complete swing of the hands, knees for example 

was not possible as depicted in Figure 2.5.  Du et al. [2.39] proposed a novel short-time 

iterative adaptive approach (ST-IAA) to form an improved spectrogram using a 2.4 GHz 

CW radar. Owing to its adaptive (data-dependent) property, ST-IAA has much higher 

frequency resolution and lower sidelobes than STFT and thus ST-IAA provides much more 

accurate spectrograms. Using this method, they were able to clearly identify the legs hands 

and torso from simulated data of a walking subject. However, the clear identification was 
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not possible from the measured results as shown in Figure 2.6. 

 

Using an 8-12 GHz ultra-wideband radar data with nonlinear least squares (NLS) and an 

expectation-maximization algorithm, Fogle et al. [2.40] were able to track the torso, hands 

and legs of multi-subjects walking simultaneously. Leveraging the fine range and Doppler 

resolution from the UWB radar, they were able to decompose the human signatures into 

the responses of constituent body parts. But, the experiment data was collected in a 

controlled environment and the ultrafine resolution (1.5 inch) was required to fully exploit 

the human signature information. Ding et al. [2.41] proposed a novel theoretical method to 

extract target micro-Doppler trajectories from CW radar echo with a modified high-order 

 
          (a)              (b) 

 

Figure 2.5: (a) Time–frequency representations using S-method and IF estimation for 

human data presented in [2.19]: (a) Signal showing all the micro-Doppler components with 

the main body having the most significant relative magnitude, (b) micro-Doppler 

components after removing the main body component showing legs and positive swing of 

the hands only. 
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ambiguity function and an adaptive de-noising technology. Through this method, they 

claimed that it is possible to accurately extract multiple components corresponding to 

different target scattering parts and their micro-Doppler trajectories in a time-varying low 

signal-to-noise ratio environment. In order to alleviate the weak component extraction 

interference from stronger ones, they used the CLEAN algorithm [2.42] which extracts the 

multiple components in the echo sequentially, instead of simultaneously, according to their 

energy scale. The authors presented the tracking results of torso, hands and legs of a 

walking subject from simulated CW data only reported in Figure 2.7.  

  

 
         (a)              (b) 

 

Figure 2.6: (a) Spectrograms of simulated human gait data extracted using ST-IAA 

approach reported in [2.39] showing identification of head (1), torso (2), upper and lower 

legs (5-7, 10-12), upper and lower arms (3-4, 8-9). (b) Identification from experimental 

data using the same approach. 
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In [2.43], the authors proposed the use of the combination of a human walking model and 

a motion capture model using infrared cameras as training data for classifier to decompose 

µ-D signatures of limbs from a walking human signature on real-time basis. Using the 

classifier and wideband simulated radar data, they were able to identify the trajectories of 

the torso, legs and hands of a walking subject. Raj et al. [2.44] used the simple steepest 

descent equations that enable the estimation of the optimal parameters for a given time-

frequency distribution. The motion curves were estimated for each one-half cycle of 

walking and then concatenated to form the optimum motion curve estimates for slow and 

fast walking motions. Using this method, the authors were only able to identify the torso 

and the lower body parts of a walking human subject from simulated UWB radar data as 

depicted in Figure 2.8. In [2.45], Orovic et al. combined multi-window S-method and the 

 
      

Figure 2.7: Estimation of different body part velocities of a walking subject from 

simulated CW radar data using the MHAF-CLEAN algorithm reported in [2.41]. 

 

 

 

 

      

Figure 2.7: Estimation of different body part velocities of a walking subject from simulated CW 

radar data using the MHAF-CLEAN algorithm reported in [2.41]. 
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Hermite functions to obtain a highly concentrated time-frequency distribution to exhibit 

good motion extraction capabilities in the presence of noise while being computationally 

effective. However, analysis of Doppler radar data using the method for a walking human 

showed no distinction of hands and feet. Table 2.1 lists the above discussed software and 

hardware methods and summarizes their performance and limitations. 

 

 

 

 

 

Figure 2.8: Motion curve extraction of the toes, ankles, knees and the torso of a walking 

subject using the simple steepest descent equations proposed in [2.44]. 
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Table 2.1: Summary of existing research on radar systems for human motion sensing. 

 

Ref 
Radar 

Type 

Signal 

Processing 
Summary 

[2.1] 

2001 
CW 

STFT & 

chirplet 

transform 

• One of the first attempts in gait analysis using radar 

techniques 

• 10.5 GHz CW radar 

• Combined time-frequency spectrogram only 

• No extraction of features 

[2.2] 

2005 
CW STFT 

• Low-cost, low-power CW radar for remote sensor 

applications for security, perimeter protection, and border 

monitoring 

• Basic features like walking speed and stride length 

extraction only 

[2.16] 

2005 
FMCW - 

• Use of 10.525 GHz FMCW radar to derive gait 

characteristics associated with carrying a bomb attached 

to the body 

• Tracking of thorax only 

[2.32] 

2007 
SFCW Wavelet 

• 8.9-9.4 GHz SFCW signal with 10 MHz step size and 20 

Hz PRF 

• Overall spectrogram only, no individual organ tracking 

[2.6] 

2008 
CW 

STFT + 

Notch 

Filter 

• Use of notch filter to remove stationary clutter 

• No extraction of features 

[2.19] 

2008 
SFCW 

S-Method 

+ 

Viterbi 

Algorithm 

• 8.9–9.4 GHz SFCW signal with 10 MHz step frequency 

and 20 Hz frame rate  

• Analysis of human motion in high noise environment 

using computationally simple method 

• Extraction of torso and leg component of a walking 

subject, but extraction of the complete hand swing was not 

possible 

[2.14] 

2009 
FMCW IFFT 

• 2-4 GHz FMCW signal at 0.4 ms PRF generated from a 

fast frequency swept Yttrium Iron Garnet (YIG) source 

• Pulse intensity fluctuated along the tracking 

• Tracking only, no feature extraction 

[2.33] 

2009 
CW 

Artificial 

Neural 

Network 

• Use of eight 2.4 GHz radars for tracking 

• Walking trajectory and velocity determination only 
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Table 2.1 (continued from last page): Summary of existing research on radar systems for 

human motion sensing. 

 

Ref 
Radar 

Type 

Signal 

Processing 
Summary 

[2.39] 

2009 
CW 

Short Term 

Iterative 

Adaptive 

Approach 

• Identifying the legs, hands and torso trajectories from 

simulated data of a walking subject 

• Difficult to identify organs from measured data 

[2.44] 

2010 
CW 

Gaussian G-

Snake Model 

• Identification of torso and lower body components 

only from simulated radar data 

[2.18] 

2011 
SFCW IFFT 

• 1-2 GHz SFCW waveform with 2 MHz frequency step 

with four parallel PLLs and 11.1 Hz PRF 

• Motion sensing only, no tracking 

[2.31] 

2011 
CW 

STFT + 

MUSIC 

• 5 GHz radar with 30 dBm transmitted power 

• Detecting maximum frequency of torso and legs only 

[2.30] 

2012 
CW 

STFT + 

Hilbert Huang 

Transform 

• 10.48 GHz CW radar operating with calculated SNR 

of at least 32 dB 

• Tracking of torso and legs only with inconsistency in 

the tracked frequency  

[2.34] 

2012 
CW 

Wagner-Ville 

Decomposition 

• 10.525 GHz radar  

• Walking speed, arms, and legs swinging cycle 

detection only 

[2.40] 

2012 
UWB 

Nonlinear 

Least Squares 

& Expectation 

Maximization 

Algorithm 

• Tracking torso, hands and legs of multi-subjects 

walking simultaneously using a 8-12 GHz radar 

• Computationally expensive, experiments performed in 

controlled environment and high resolution radar 

required 

[2.9] 

2013 

CW +  

UWB-

IR 

STFT 

• 3 GHz CW and UWB-IR radar with 700 ps pulse with 

3 GHz carrier for through-wall sensing, multiple-

object detection, real-time target tracking 

• FPGA based equivalent time sampling data capture 

• Combined spectrogram, no extraction of features 

[2.36] 

2013 
CW 

Empirical 

Mode 

Decomposition 

• Classification of different simulated motions  

• No features extracted 
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Table 2.1 (continued from last page): Summary of existing research on radar systems for 

human motion sensing. 

 

 

Ref 
Radar 

Type 

Signal  

Processing 
Summary 

[2.5] 

2014 
CW 

Extended 

Differentiate and 

Cross-Multiply  

• 2.36 GHz radar with 25 dBm transmit power  

• Walking velocity extraction only 

[2.15] 

2014 

CW +  

FMCW 
STFT 

• 160 MHz FMCW signal with 5.8 GHz carrier 

frequency for positioning and motion detection 

• Very expensive (7600$) signal generation scheme 

• Showed Doppler frequency shifts due to different 

movements but no feature extraction 

[2.35] 

2014 
CW 

Complex 

Probabilistic 

Principal 

Component 

Analysis 

• Ka-Band (26.5-40 GHz) radar 

• Noise-robust classification of moving targets 

(human and vehicles) 

• No limb tracking 

[2.41] 

2014 
CW 

Modified High-

order Ambiguity 

Function 

+ CLEAN 

• Torso, hands and legs of a walking subject from 

simulated CW data only 

[2.11] 

2017 

CW +  

UWB-

IR 

- 

• DWM1000 chip from Decawave as UWB-IR radar 

and a K-band Doppler radar InnoSenT IPS-154 

operating at 24.125 GHz 

• Walking trajectory detection, no feature extraction 

[2.17] 

2017 
FMCW STFT 

• 5.8 GHz carrier with 320 MHz chirp BW and 3.5 

ms PRF 

• Detection of hand gesture motion in presence of 

multiple objects, no tracking of limb joints 

[2.43] 

2017 
UWB Machine Learning 

• Real time classification using training data from 

combined motion-capture and Boulic model 

• Results shown from simulated data only 

[2.4] 

2018 
CW 

Cooperative 

Tracking-

Localization 

Algorithm 

• 5.8  GHz CW radar 

• One TX, 3 RX system for localizing moving object 

• No extraction of features 
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2.3 Software Defined Radars 

 

In addition to the traditional implementation of radar systems, there has been significant 

research interest recently in software defined radars as compact and portable radar systems. 

The concept of a software-implemented radar first arose in the early 1970’s through 

defense-related research and development [2.46], and later emerged into the public domain 

where the term SDR was officially coined [2.47]. There has been extensive research on 

radar systems based on SDR technology. Ralston et al. explored the potential of SDR 

technology in providing flexible and low-cost subsurface radar prototypes for the GPR 

community in [2.48].  In [2.49], Colorado et al. presented an approach for explosive-

landmine detection by developing and integrating a GPR onboard an autonomous aerial 

drone. They used the USRP B210 hardware [2.50] and generated a 56 MHz wide raised 

cosine filter (RCF) pulse mixed with a 2 GHz carrier as their transmitted signal. An 

automotive radar system based on a custom designed SDR making use of a hybrid radar 

scheme of FMCW and pseudorandom (PN) code pulse techniques was presented in [2.51]. 

The FMCW measurement technique was deployed to obtain the range value of a target 

while the PN code pulse radar technique was used to determine the inter-vehicle radar 

information for communication purpose. The generation of the FMCW signal and the PN 

code was modulated by the DDS using the BPSK scheme. The FMCW signal had a 

bandwidth of 300 MHz starting at 24 GHz with 80 ms PRF and the PN modulated signal 

had a bandwidth up to 40 MHz.  Costanzo et al. [2.52] used the USRP NI 2920 [2.53] to 

design a high resolution L-Band SDR system for target detection. They used a 25 MHz 

wide FMCW chirp mixed with a 1.8 GHz carrier signal to perform their experiments. In 
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[2.54], a custom designed SDR was utilized in FMCW and dual CW mode to conduct 

precise range measurements. The FMCW signal was a 75 MHz wide chirp signal carried 

by a 4 GHz carrier with 15 ms PRF and the dual CW signals were at 4 GHz and 4.01 GHz, 

all generated from a DDS.  

 

In biomedical applications, Marimuthu et al. proposed an SDR system for medical imaging 

in [2.55]. They used the LMS6002D [2.56] SDR and programmed it to generate an SFCW 

signal from 1.2–2.14 GHz with a step frequency of 10 MHz and PRF of 608 ms. Park et 

al. used the OSU radar [2.57] for the study of human motion signature in [2.58]. They used 

a 500 MHz wide linear FM chirp mixed with 2.25 GHz and 8 GHz carriers and used them 

separately to generate Doppler spectrograms for a walking subject. Liu et al. [2.59] used 

the USRP N210 [2.60] SDR to operate as CW and FMCW radar to analyze micro-Doppler 

signatures. For CW, they used a single tone at 4.3 GHz and for the FMCW mode, they used 

a 10 MHz wide chirp at a center frequency of 4.3 GHz with 1.221 kHz PRF. A. R. Hunt 

[2.61] implemented a custom designed SDR to generate an SFCW waveform between 750 

MHz to 2 GHz with 512 linearly spaced points and PRF of about 30 Hz. He used the radar 

imaging and through wall motion detection. Thus, we can see that SDRs have the potential 

to be utilized as compact, portable systems for non-contact gait analysis, but the wideband 

SDRs reported in literature typically has low PRF and narrow bandwidth. 
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2.4 Conclusion 

 
From the above discussion, we can observe that there are some limitations in terms of both 

hardware and software in utilizing radar systems for motion analysis applications. From a 

hardware perspective, there are limitations like low pulse repetition frequency for UWB 

radars and SDRs, expensive signal generation scheme for SFCW and FMCW radars, high-

performance ADC requirement for UWB-IR radars, DC offset problem, quadrature 

imbalance and so on. In terms of software, problems like inability to clearly extract 

individual features of the limbs, requirement of high range resolution radar data, and 

inability of extraction from measured data in a typical non-controlled environment and so 

on. Thus, there is a need for a system combining both hardware and software that can 

perform human motion analysis using simple, low-cost, portable radars and is capable of 

identifying different limb joints (like hands, legs and torso) from complex human motions 

in a typical non-controlled environment. The next chapter looks at the challenges for 

implementing such a system in more details. 

 
 
 
 
 
 
 
 

  



 

37 

 

CHAPTER THREE  

IMPLEMENTATION CHALLENGES 

 

In previous chapters, we introduced the concept of performing gait analysis using radar 

techniques. We discussed the different advantages of using the radars for non-contact 

method. But a thorough investigation of previous research in this field points out some 

challenges. We have observed that there are obstacles to address and overcome, i.e. both 

hardware and software problems/issues to make the radar technique a viable gait analysis 

tool. In this chapter, some of these challenges are discussed in detail. 

 

3.1 Radar Pulse Repetition Frequency 

 

Referring back to Figure 1.4, we observe that for a typical walking motion, the torso 

velocity represents the average walking velocity. The highest velocity components arise 

from the movement of the toes, which as an example for a walking velocity of 1 ms-1, the 

maximum velocity for the toes are about 4.7 ms-1. If the walking velocity changes, the 

velocity components of the toes will scale accordingly. Now, converting these velocity 

components into Doppler frequencies detected by a 2.45 GHz CW radar using Eq. 1.5, we 

see that the maximum Doppler frequency components are about 76 Hz as shown in Figure 

3.1. But for a radar operating at 3.5 GHz, the same velocity would generate Doppler shift 

of about 110 Hz. Thus, for proper detection of the toe components, the radar Pulse 

Repetition Frequency (PRF) has to be at least twice the maximum Doppler frequency 

generated according to the motion and the operating frequency. Note that, having a PRF 



 

38 

 

higher than that does not necessarily mean that the radar will have better detection 

capability, rather it defines the minimum requirement for the Doppler frequency detection. 

 

In order to demonstrate the minimum PRF requirement based on the Doppler frequency, 

we consider a scenario where a subject stands in front of a radar and creates a motion with 

gradual increasing velocity. This is achieved by swinging one hand back and forth slowly 

at first and then gradually increase the speed. The radar collects data at a PRF of 200 Hz 

and afterwards, we use the short-term Fourier transform (STFT) method to generate the 

time frequency spectrogram. STFT on the collected data is implemented in MATLAB 

using the built-in function spectrogram [3.1]. The function has the following form: 

 
[s, f, t, ps] = spectrogram(x, window, noverlap, nfft, fs) 

 

 

Figure 3.1: Converting the velocity components of different organs of a walking subject 

into Doppler frequencies with respect to a 2.45 GHz radar operating frequency. 
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where each column of s contains an estimate of the short-term, time-localized frequency 

content of x. The parameter window divides the signal into segments and perform 

windowing and noverlap represents the number of sample overlaps between adjoining 

segments. nfft is the sampling point numbers to calculate the FFT and fs is the sampling 

rate. The function also returns a vector of normalized frequencies, f’ and a vector of time 

instants, t, at which the spectrogram is computed and ps contains an estimate of the power 

spectral density (PSD) or the power spectrum of each segment. 

 

Figure 3.2 shows the STFT results for the described scenario. We can immediately observe 

that the frequency range of the plot is ± 100, which is half of the PRF used. Initially when 

the motion is slow, we can see the full swing cycle of the hand. But as the velocity of the 

hand movement increases, the Doppler frequencies begin to go outside of the ± 100 Hz 

range and the spectrogram begins to collapse.  

 

 

 

Figure 3.2: Demonstration of the minimum PRF requirement for motion sensing. 
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For a CW radar where a single tone is continuously transmitted, the PRF is simply the 

frequency at which the received data is sampled. For the UWB-IR where the pulses are 

sent intermittently, the PRF depends on the transmission, reception and the capturing 

period of the wideband pulse. Previous work in our group on gait analysis using UWB-IR 

[2.10] utilized a pulse circuit that would generate Gaussian pulses at a rate of 10 MHz, but 

had to use an equivalent time sampling scheme to capture this wideband pulse due to the 

expensive ADC requirements. In the equivalent time sampling scheme, a train of pulses 

with a period of 100 ns (1/10 MHz) is utilized, where the sampling trigger clock is set to 

have a period of (100 ns + Δt). The equivalent time sampling rate is decided by Δt and a 

fine resolution of 10 ps was achieved by using commercial delay line chip SY100EP196 

from Micrel. Using the sub-sampling method, the system was configured to collect data 

from 8 elements of a phased array, each channel having a refresh rate of 75 Hz. Ren et al. 

[2.10] utilized data from only one of the channels with PRF of 75 Hz, which provided a 

Doppler resolution of only ±37.5. But, as Yazhou Wang suggested in his dissertation [3.2], 

the system can be adapted for higher PRF operation (up to 3 kHz). Still, there is no way 

around the complexities associated with the digitization of the data using the equivalent 

sampling method such as sophisticated FPGA implementation, clock jitter and drift, non-

linearity of the delay line and so on [3.3].  

 

Subsequently, in order to eliminate the sampling complexity of the UWB-IR while utilizing 

the benefits of the UWB radar, we can implement a SFCW radar system. The overview of 

the sampling scheme in SFCW radar is presented in Figure 3.3, where the frequency is 

stepped at an interval of T and at each frequency step, there would be some time required 
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for the signal to be locked before a stable sample could be captured. The ADC captures N 

number of samples (N = 5 in this case) at each step with a sampling interval of τ. Note that 

in this example, the first two samples of each frequency step are not reliable. Thus, the 

ADC sampling rate will be 1/ τ which is related to the dwell time (T) by the relation N/T. 

 

In this case, the PRF of the radar is mainly dependent on the dwell time of each frequency. 

Previously in our group, there has been research on implementing single or multi-channel 

SFCW radar systems operating in 2-4 GHz band for vital signs detection [3.4, 3.5]. A direct 

digital synthesizer (DDS) driven phase locked loop (PLL) architecture was used to generate 

the stepped-frequency signals. The DDS generated the reference signals for the 

HMC833LP6GE PLL from Analog Device which was then multiplied by a programmable 

factor to produce the RF signal. Each time the reference signal was stepped, the PLL had 

 

 

Figure 3.3: Sampling scheme overview of the SFCW system. Note that the frequency 

transition phase is exaggerated here. 
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to lock to a new frequency according to the multiplier that was set. The step frequency, the 

start and stop frequency, the step duration could all be programmed through an FPGA that 

controlled the DDS. However, the minimum step duration was basically limited by the 

locking time of the PLL. Figure 3.4 shows a frame of a SFCW radar reported in [3.5] 

operating between 2-3 GHz with 20 MHz steps (a frame here is defined as the complete 

set of stepped frequencies between the pre-determined start and stop frequency that is 

repeatedly transmitted by the radar while the rate at which the frames are transmitted is the 

PRF of the SFCW radar). As shown in Figure 3.4, the PRF of the SFCW radar was only 

20 Hz, which was adequate for vital signs detection, but certainly not suitable for gait 

analysis. The low PRF was the consequence of the slow locking speed of the PLLs that 

were utilized, thus an alternative PLL system is required now for use in motion analysis 

applications.  

 

 

 

Figure 3.4: A frame of the SFCW system reported in [3.5], where the frequency is stepped 

from 2-3 GHz in 20 MHz steps. Each step duration is 1 ms to provide adequate locking 

time for the PLL (> 400 µs), in addition to having enough time to capture stable samples, 

which makes the PRF only 20 Hz. 
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If we target the detection of maximum 100 Hz Doppler frequency, it would require a radar 

with a 200 Hz PRF. If we consider a bandwidth of 1 GHz and a step frequency of 20 MHz, 

the dwell time per step comes out to be 100 µs. Thus, a PLL with frequency retuning time 

of around 50 µs is desired for this application. Note that, if we still consider capturing 5 

samples per frequency step, the ADC sampling rate would be 50 kHz, which is still fairly 

low and easily achievable using low-cost ADCs. Table 3.1 lists some of the commercially 

available wideband PLLs suitable for frequency hopping that have frequency settling time 

less than 100 µs whereas Table 3.2 lists some ADC options for wideband radar operations.  

 

Table 3.1: Commercially available wideband PLLs capable of fast frequency hopping. 

 

Part 

Number 

Manufacturer 

Operating 

Range (MHz) 

Min. Settling 

Time (µs) 

Eval. + Interface 

Board Price 

STW81200 STMicroelectronics 47-6000 > 80 - 

LMX2572 Texas Instruments 12.5-6400 > 40 $ 310 

ADF4196 Analog Device 400-6000 > 20 $ 190 

ADF4152 Analog Device 500-5000 > 40 $ 150 
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Table 3.2: Commercially available ADCs for wideband radar applications. 

 

Part 

Number 
Manufacturer 

Radar  

Type 

Sampling 

Rate 

No. of 

Bits 

No. of 

Channels 

Eval. + Int. 

Module Price 

ADC32RF45 
Texas 

Instruments 
UWB-IR 3 GSPS 14 2 $ 3900 

ADC12J4000 
Texas 

Instruments 
UWB-IR 4 GSPS 12 1 $ 3700 

AD9208 Analog Device UWB-IR 3 GSPS 14 2 $ 4800 

USB-6003 
National 

Instruments 

SFCW or 

FMCW 
100 kSPS 16 8 $ 551 

USB-205 
Measurement 

Computing 

SFCW or 

FMCW 
500 kSPS 12 8 $ 200 

 

3.2 Phase Coherence 

 

UWB radars provide range resolution capabilities due to its bandwidth which allows 

localization and multiple subject tracking abilities. The range information is actually 

obtained by the phases of the radar return echoes. Let us consider a SFCW radar that is 

transmitting frequencies f1, f2, …. fN each with a step frequency of Δf. The transmitted 

signals for the first two frequencies can be written as: 

 

𝑇1(𝑡) = 𝐴𝑡1 cos(2𝜋𝑓1𝑡 + 𝜃1)  𝑎𝑛𝑑  𝑇2(𝑡) = 𝐴𝑡2 cos(2𝜋𝑓2𝑡 + 𝜃2)              (3.1) 

 

where At1 and At2 are the amplitudes and θ1 and θ2 are the initial phases of the transmitted 

signals for the two frequencies. The received signals from a target at a distance R from the 

radar for these two frequencies are: 
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𝑅1𝑅(𝑡) = 𝐴𝑟1 cos(2𝜋𝑓1𝑡 + 𝜃1 − 𝜑1) 𝑎𝑛𝑑 𝑅2𝑅(𝑡) = 𝐴𝑟2 cos(2𝜋𝑓2𝑡 + 𝜃2 − 𝜑2)     (3.2) 

 

where Ar1 and Ar2 are the amplitudes of the received signals and 𝜑𝑖 =
4𝜋𝑓𝑖𝑅

𝑐
 and c is the 

speed of light. If the values of θ1 and θ2  are defined phase angles compared to a reference, 

which is the case for coherent radars, the variation of the phases of the two received signals 

compared to the respective transmitted signals are φ1 and φ2 which are directly related to 

the distance travelled by the two waves. Thus the calculation of the phase difference 

between the two received signals allows the determination of the range R as: 

 

𝑅 =
𝑐𝛥𝜑

4𝜋(𝑓2 − 𝑓1)
=

𝑐𝛥𝜑

4𝜋𝛥𝑓
                                                 (3.3) 

 

Note that the maximum unambiguous range of the radar is determined when Δφ = 2π in 

Eq. 3.3. 

 

𝑅𝑚𝑎𝑥 =
𝑐

2𝛥𝑓
                                                             (3.4) 

 

Thus, for Δf = 20 MHz, the maximum unambiguous range comes out to be 7.5 m. 

 

In SFCW radars, multiple frequencies are transmitted repeatedly over multiple frames. In 

order to obtain a meaningful range information, it is imperative to have phase coherence 

across all frequencies in all frames where the only difference of phase between the 

transmitted and received signals is the outcome of the waves traveling through the medium. 

If this phase relationship is non-deterministic for a system, a calibration scheme has to be 

employed to achieve phase coherence. 
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3.3 Signal Processing Scheme 

 

Although gait analysis using radar techniques provide a lot of advantages over the 

traditional gait analysis methods, one of the main drawbacks of using radar is the 

requirement for sophisticated signal processing algorithms to extract the desired features 

from the received data. In Chapter two, we discussed various algorithms reported in the 

literature to track specific body parts during motion and saw that even though some of the 

techniques were very promising, they all had their drawbacks. Some of the techniques 

proposed in the literature could not extract individual features of the limbs, while some of 

them were successful, but required wideband radar data. We know that UWB radars 

provide range resolution capability according to its bandwidth that allows them the 

capacity to track multiple subjects at the same time while providing localization 

capabilities. But they do add some complexity and additional cost to the system due to the 

required signal generation or data capture scheme. For applications where multi-subject 

tracking is not required, use of the much simpler and low-cost CW radar can be the more 

prudent solution. Thus, it is highly beneficial to have a signal processing algorithm that can 

extract the desired features from a complex motion using either CW or UWB radar data 

operating in typical non-controlled environment. 

 

Previously, our group investigated the short-time state space method (ST-SSM) [2.10] with 

UWB data to perform gait analysis. We extracted the high resolution range profile from 

the collected data to show the real-time location of the subject or detect the walking path 

of a human target. We observed the range bins traversed by the subject and applied time-

frequency analysis to these range bins to extract the micro-Doppler signatures of the target. 
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But since only one tone is available in a CW radar system, the previously used ST-SSM 

method does not provide meaningful estimates due the lack of range-information. 

Furthermore, the sinusoidal model that ST-SSM relies on to carry out the estimation is 

absent due to the heavy non-linearity of the CW data and the single tone does not offer a 

diversity in range bins from compressed domain in which the centered bin could be 

exploited to extract joint motions from the human limbs for short time intervals. It is not a 

failing only of ST-SSM on CW data, rather is a limitation of the 1-D spectral estimation 

approach that relies on a sinusoidal model to extract signal components from a target that 

exhibits motion and can be extracted within a single motion period. Because human is a 

complex target that depicts highly non-linear walking motion; the failing appears to be 

observed in other single 1-D techniques such as MUSIC, Matrix Pencil, ESPRIT, etc. for 

similar reasons. 

 

3.4 Portable System 

 

While the performance of a system is of a paramount interest, consideration should be also 

given towards making it ideally suited for use in any environment. The system has to be 

portable such that it gives the user some flexibility. Previous works reported in our group 

[2.10, 3.4, 3.5] utilized commercially available off-the-shelf components to implement the 

UWB-IR and SFCW systems. Figures 3.5 and 3.6 shows the photos of the two systems. 
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Figure 3.5: UWB-IR system in [2.10] showing the RF front-end and biasing components. 

The FPGA (not shown here) has two functions: driving the pulser to generate Gaussian 

pulses in 10 MHz intervals and capturing the I and Q signals using the equivalent time 

sampling method discussed before. 
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Figure 3.6: Photograph of the single channel SFCW radar system reported in [3.5]. 

 

As can be observed, both systems are very bulky and lack portability. In literature, there 

has been a lot of research on implementing integrated radar systems. These systems can be 

of two types: complete system on a single chip and individual ICs placed together on a 

single board in a hybrid system. Table 3.3 lists some of the work on integrated sub-10 GHz 

wideband radar systems used in biomedical applications reported in literature. As can be 

observed from the table, there is definite room for improvement on the receiver noise figure 

while implementing an application specific custom integrated radar system. 
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Table 3.3: Integrated wideband biomedical radar systems operating below 10 GHz. 

 

Ref. 
Process or 

Technique 
Radar Type Application 

Freq. 

(GHz) 

Tx 

Power 

(dBm) 

Rx 

Power 

(dBm) 

Rx NF 

(dB) 

PDC 

(W) 

[3.6] 65nm CMOS SFCW Med. Imaging 2-16 -14 -29 5.4-8.4 0.2 

[3.7] 65nm CMOS Pulsed Vital Signs 3-5 - - 6-10* 0.02 

[3.8] 180nm CMOS Tunable CW Vital Signs 
Tunable 

4.6-5.7 

-6.1 to 

-12.5 
- - 0.04 

[3.9] 130nm CMOS 
Tunable CW 

Receiver 
Vital Signs 

Tunable 

5.3-6.3 
- -28 2.2* 0.02 

[3.10] 
130nm SiGe 

BiCMOS 
FMCW - 8-9 - -35 4.5*S 0.66 

[3.11] Hybrid 
FMCW + 

CW 

Localization 

& Vital Signs 

5.64-

5.96 
8 - - - 

[3.12] Hybrid 
SFCW 

+ CW 
Fall Detection 5.8-7 2 - - - 

 

The other approach towards the implementation of portable radar systems is the use of 

commercially available software defined radars (SDR or SDRadar). SDRs have recently 

gained a lot of research interest due to their affordability, frequency tunability, small size, 

enhanced baseband signal handling capabilities and the lack of need for any external local 

oscillator signal sources, which lead to a compact overall radar platform and easily portable 

system. Table 3.4 lists a summary of SDRs utilized in different applications reported in 

literature. We can observe that the wideband SDRs reported in literature typically have 

very low PRF not suitable for human motion sensing applications apart from [2.58] and 

[2.59]. Although the SDR reported in [2.59] had a high PRF of 1.221 kHz, the transmitted 

FMCW chirp had a bandwidth of only 10 MHz which would result in a range resolution of  
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Table 3.4: Summary of wideband SDR techniques reported in literature. 

 

[Ref.] 

Year 

Part 

Number 
Application Type 

Bandwidth 

(MHz) 

PRF 

(Hz) 

Price 

(USD) 

[2.49] 

2017 

USRP 

B210 
GPR Pulse 56 - 1216 

[2.51] 

2007 
Custom Automotive FMCW 300 12.5 - 

[2.52] 

2013 

USRP NI 

2920 

Target 

Detection 
FMCW 25 - 3182 

[2.54] 

2008 
Custom 

Range 

Measurement 

FMCW 

+ CW 
75 66.67 - 

[2.55] 

2016 
LMS6002D 

Biomedical 

Imaging 
SFCW 

940 (with 10 

MHz steps) 
1.65 480 

[2.58] 

2012 
Custom 

Human Motion 

Sensing 
Pulse 500 800 - 

[2.59] 

2014 

USRP 

N210 

Human Motion 

Sensing 

FMCW 

+ CW 
10 1221 1943 

[2.61] 

2009 
Custom 

Imaging and 

Motion 

Detection 

SFCW 
1250 (with 2.4 

MHz steps) 
30 - 
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15 m. The radar used in [2.58] was a custom designed SDR [2.57] capable of providing 

excellent performance in terms of both bandwidth and PRF. But as shown in Figure 3.7, it 

is a very complex system and not easily portable. Thus, there is an opportunity of research 

on SDR techniques operating in CW mode and over wideband with fast enough PRF for 

performing gait analysis. 

 

3.5 Original Contributions 

 
Having discussed the challenges for developing a non-contact gait analysis system using 

radar technique, my major contributions towards the solution of these problems include: 

 

1. In collaboration with my co-worker (Farnaz), we implemented a high PRF ultra-

wideband radar capable of performing gait analysis. Faster PLL techniques were 

 

 

 

Figure 3.7: The SDR reported in [2.57] that was utilized in [2.58]. The five layers contains 

the hardware are stacked in a custom metal box. 
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investigated to generate stepped frequency signal swept over at least 1 GHz bandwidth 

with at least 200 Hz PRF.  

 

2. Investigation of the feasibility of designing custom radar front-end integrated circuits. 

Design of wideband system components covering at least 1 GHz bandwidth such as gain 

block amplifier, LNA, mixer, power dividers for low RX noise, integrated and portable 

UWB radars. 

 

3. Investigation of ultra-wideband and single tone software-defined radars (SDRs) for use 

in gait analysis with a target to achieve portability while keeping the implementation cost 

low. Implementation of a SDR based CW radar capable of performing gait analysis and a 

phase coherent SFCW radar.  

 

4. Utilizing a signal processing technique called the 1-D block algorithm developed by our 

collaborators at MIT Lincoln Laboratory that is capable of individual organ tracking from 

complex human motion using either CW or UWB radar data. 

 

5. Conducting gait analysis experiments in typical laboratory environment and extract the 

desired features using the hardware and software methods explored above. Comparing the 

experimental results to reference data obtained from motion modeling performed by 

Catholic University of America.  
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6. Investigation of other relevant applications utilizing the developed systems, like vital 

signs monitoring. Exploring the effect of switching the radar operating frequency for 

through barrier and higher sensitivity detection. 

 

3.6 Conclusion 

 

In this chapter, we discussed the main challenges of developing a non-contact system for 

gait analysis. The hardware challenges come in the form of implementing a fast PRF radar 

while maintaining the system portability. The obstacles in terms of the signal processing 

scheme come from the availability of an algorithm that can successfully extract the desired 

features from any type of radar (single-tone or wideband) operating in normal environment. 

We also defined the original contribution of this work that would address the challenges 

presented by this work. The subsequent chapters delve into the details of how we actually 

overcame these challenges to implement the system. 

 



 

55 

 

CHAPTER FOUR  

HARDWARE IMPLEMENTATION: COMMERCIAL 

COMPONENTS  

 
We discussed the various challenges: both in terms of hardware and software in developing 

a radar system that can successfully perform human motion analysis in the previous 

chapter. The hardware implementation can be approached from two perspectives: using 

commercial components and using custom designed circuits. This chapter sheds some light 

on how we tackled some of the challenges related to the hardware implementation using 

commercially available components.   

 

4.1 Software Defined Radar 

 

Our motivation in using the software defined radar (SDR) was its potential to be utilized 

as a flexible platform that can provide any CW tone within its operating range while having 

the capability to be used as a SFCW radar without using any external frequency generators. 

The proposed SDR for non-contact vital signs detection and gait analysis is mainly 

comprised of a hardware and software sub-system, as shown in Figure 4.1. The SDR 

hardware is based on the software-controlled RF Agile Transceiver AD9364 from Analog 

Devices. Previous reported works using commercially available wideband SDRs [2.49, 

2.59] utilized systems based on the same series of ICs from Analog Device. But their 

overall system is very expensive, costing upwards of $1200. The SDR systems used in 

[2.52] and [2.55] both had a smaller operating frequency range, inferior receiver noise 

figure and narrower channel bandwidth compared to AD9364 as reported in Table 4.1.  
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Figure 4.1: Block diagram of the proposed software-defined radar platform. 

 

Table 4.1: Commercially available SDRs and associated parameters. 

 

Part Number 
Frequency 

Range (MHz) 

 Channel BW 

(MHz) 

Noise 

Figure (dB) 

Eval. & Int. Board  

Price (USD) 

USRP B210 70-6000 56 2-3.8 1216 

USRP NI 2920 50-2200 20 5-7 3182 

LMS6002D 300-3800 28 3.5 480 

USRP N210 DC-6000 50 5 1943 

AD9364 70-6000 56 2-3.8 579 
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The hardware subsystem includes the software-controlled transceiver (AD9364), carrier 

board (ZedBoard), and two horn antennas for bi-static operation, chip transceiver details 

could be found in [4.1]. The software subsystem consists of a controlling code written in 

MATLAB, and the embedded software running on the associated carrier board.  

 

The baseband signal generation, carrier frequency control, data storage and processing 

operations are performed in the software subsystem using a laptop/PC. The baseband signal 

and the control signals are sent to the SDRadar platform via Ethernet cable/USB, which 

are handled by a field-programmable gate array (FPGA) (Zynq-7000 All Programmable 

SoC on Zedboard) for interacting with the AD9364 transceiver hardware. The transceiver 

chip converts the baseband digital signal to analog and up-converts the frequency to the 

desired carrier frequency value for transmission using single sideband mixer. It also 

receives the reflected microwave signal, amplifies it via an LNA, down-converts it to 

baseband using direct conversion, and then digitizes it for storage. More details on the 

hardware and the software sub-systems are presented in the following sections: 

 

4.1.1 Hardware 

 

The software-controlled RF Agile Transceiver AD9364 from Analog Devices operates 

between frequencies 70 MHz to 6.0 GHz with channel bandwidths from less than 200 kHz 

to 56 MHz. The chip contains direct-conversion transceiver with larger than 17 dBm OIP3 

for the transmitter and less than 3.8 dB noise figure for the receiver. The chip offers 

functionalities such as automatic gain control (AGC), quadrature and dc offset corrections, 
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and digital filtering. Having these compensation capabilities inside the chip significantly 

simplifies the operations of the digital baseband. The AD9364 chip is mounted on the 

commercially available evaluation board AD-FMCOMMS4-EBZ. The FMCOMMS4 

board consists of four functional partitions – the transmit path, the receive path, clocking 

and power supply.  The interaction with the transceiver board is performed using the 

ZedBoard carrier platform. The ZedBoard actually houses the Ethernet and USB interfaces, 

the Xilinx FPGA chip and other interfacing chipsets. The SPI signals and the 

control/monitoring pins coming from the AD9364 chip go directly to an FPGA Mezzanine 

Card (FMC) connector on the ZedBoard. Figure 4.2 shows a photograph of the hardware 

sub-system and Table 4.2 lists the performance specifications. The transceiver board 

houses the AD9364 chip, the RF connectors, a port for external reference signal. It also 

provides access to the different control/monitoring pins of the AD9364 chip. 

 

 
 

 

Figure 4.2: The SDR hardware platform. 
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Table 4.2: Performance specifications of the AD9364 software defined transceiver. 

 

Parameter Value 

Frequency of Operation 70 MHz – 6 GHz 

Channel Bandwidth 200 kHz – 56 MHz 

Maximum TX Power 6.5 - 8 dBm 

TX OIP3 > 17 dBm 

RX Input Return Loss -10 dB 

TX Output Return Loss - 10 dB 

TX-RX Isolation > 50 dB 

RX Noise Figure 2 – 3.8 dB 

RX IIP3 > -18 dBm 

I-Q Gain Imbalance 0.2 % 

I-Q Phase Imbalance 0.2 Degrees 

Variable RX Gain 0-74 dB 

ADC Resolution 12 Bits 

ADC Sampling Rate 520.8 kHz – 61.44 MHz 

 

As can be seen from the block diagram of the components inside the AD9364 chip 

presented in Figure 4.1, the transmitter and received frequencies are controlled by two 

different PLLs. Although it provides the capability to individually control the transmit and 

receive frequencies, it does pose a challenge in achieving phase coherence required for 

range detection. Figure 4.3 shows more detailed blocks of the frequency generation and 

PLL schemes inside the AD9364. A 40 MHz crystal oscillator from Epson is populated on 

the evaluation board that connects between the M12 and M11 pads shown in Figure 4.3. 

The on-chip digitally controlled oscillator (DCXO) allows the calibration of the frequency 

jitters of the crystal oscillator if required. The output of the DCXO drives the input of three 
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dividers which work as the reference frequencies of the baseband, transmitter and receiver 

PLLs. There is also an option to use external clocks instead of the on-board crystal 

oscillator, but still the PLLs are always individually driven by the three dividers. Based on 

the frequencies and the phases of the output of the dividers, the PLLs were locked. 

 

For radar operation, we obviously want the transmit and receive frequencies to be identical, 

as well as having deterministic relationships between the phases. While the first condition 

is easily achievable, the second condition is not satisfied since there is no way to control 

the phases of the individual dividers. For CW operation, when we no range information is 

available, this non-deterministic phase relation is not really a problem. But for SFCW 

operation, where the reference divider settings are constantly changing due to the stepped 

frequencies, the phase difference between transmit and receive are randomly changing at 

every step. Thus, it is imperative to employ a calibration scheme to account for this non-

deterministic phase relationship. 

 

 

Figure 4.3: PLL reference block inside the AD9364 [4.2]. 
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4.1.2 Software 

 

The software sub-system establishes the connection between the transceiver and the FPGA 

hardware and the user. The software can be implemented either using MATLAB or through 

application program interface (API) libraries. The two methods are discussed in more 

details below: 

 

4.1.2.1 MATLAB 

 

The MATLAB interface is achieved through the use of Communications System Toolbox 

Support Package for Xilinx Zynq-Based Radio [4.3]. The support package contains the 

functions required to control the SDR hardware from the MATLAB/Simulink 

environment. The interaction between the hardware and software occurs through Ethernet 

cable connected between the host computer and the FPGA carrier board. It requires an SD 

memory card that is configured with the firmware of this support package. The firmware 

includes the embedded software and the FPGA programming files necessary for using the 

radio hardware as an I/O peripheral.  

 

The MATLAB controller code creates the baseband signal by setting the Direct Digital 

Synthesizer (DDS) in the FPGA to transfer the baseband sinusoid to the RF card. The code 

also sets the sampling rate, the carrier frequency and the radio frame rate. After that, the 

Zynq-based Radio Transmitter and Receiver system circuits are initiated to operate the 

transceiver for a certain amount of time, and the data coming from the board is stored. 

Figure 4.4 shows a conceptual overview of the transmitting and receiving radio signals 
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with this support package and Appendix 1 contains the No-OS code and the associated 

MATLAB script that operates the radar as a SFCW radar. The MATLAB platform is 

convenient to use and has well-established examples to follow. But it does not provide 

access to all the functionalities of the chip and the evaluation board. In addition, since each 

operation/instruction for the transceiver has to be routed from the computer to the FPGA 

through Ethernet, the operating speed becomes slower compared to the case where 

everything is programmed inside the FPGA. 

 

4.1.2.2 API: No-OS Platform 

 

Analog Devices provides the API libraries [4.4] for controlling the AD936x generation of 

transceivers as open source for the users and those can be used on systems without running 

an operating system (OS). It is called the No-OS software where the libraries and the 

hardware descriptions are written in C. The carrier board specific FPGA files can be found 

in [4.5]; whereas the No-OS setup instructions are listed in [4.6]. We utilized the Xilinx 

 

 

Figure 4.4: Conceptual overview of the SDR MATLAB interface [4.3]. 
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Software Development Kit (Xilinx SDK) version 2017.2 to customize the code and 

interface with the hardware. Once a code is written, it is directly written in the memory of 

the FPGA and code can be run to directly utilize the embedded ARM processing 

capabilities of the ZedBoard carrier, which makes the functionality faster. In addition, the 

use of the No-OS platform gives access to all the available functionalities of the AD9364 

chip and along with the control pins on the evaluation board. 

 

One of the important functionalities that No-OS allows is the use of fast lock options. 

Figure 4.5 shows the PLL synthesizer block diagram and the VCO divider configuration 

of the AD9364. Each time the PLL frequency of the AD9364 is retuned, the correct loop 

filter configuration, VCO calibration and the VCO divider values need to be determined 

and loaded in the respective registers. After the values are loaded, it takes some time for 

the frequency to lock to the desired frequency. The configuration value determination and 

VCO calibration typically takes up most of the time (typically about 600 µs) compared to 

the locking time (typically about 20 µs). The AD9364 offers a fast lock option, where the 

configuration values and VCO calibration settings (called profiles) for the desired 

frequencies are pre-determined and stored in registers inside the AD9364 chip. When the 

frequency has to be retuned, the correct register values are readily loaded and the retune 

time comes down to the locking time only. The fast lock allows up to 8 full TX and RX 

profiles of frequency configuration information to be stored in the chip memory for faster 

frequency changes. If more than 8 profiles need to be saved, the configuration bits can be 

saved in the base band processor or FPGA memory. The steps for using the fast lock option 

are listed below: 
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Figure 4.5: PLL Synthesizer with VCO divider block diagram [4.2]. The synthesizer 

consists of a phase frequency detector (PFD), a charge pump, programmable loop filter 

and a LC VCO that operates between 6-12 GHz. The VCO frequency is divided by a set 

of dividers to finally reach the operating frequency range of 47 MHz to 6 GHz. The TX 

and RX synthesizers are identical, but work independently. The FREF comes from the 

digitally controlled oscillator as shown in Figure 4.3. 
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1. Before starting the actual sweep and collecting data, the profiles needs to be saved. 

Therefore the first step is to set the starting frequency in both the TX and RX PLLs. 

 

2. The next step determines the appropriate register values and stores them in a profile. 

Available options for the profiles are 0-7. If only eight total frequencies are needed, 

then we would store the configurations sequentially in 8 different profiles. But if 

more frequencies are needed, it does not matter which profile is chosen, let us assume 

we chose profile 0 for TX and profile 2 for RX. 

 
3. If only eight or less frequencies are needed, this step is not required. But for higher 

number of frequencies, save the register values stored in profile 0 and 2 in the FPGA 

memory. After saving, the profile 0 and 2 can be overwritten for other frequencies. 

 

4. Go to all the other desired frequencies and repeat steps 1-3. After this step, the 

configurations for all the frequencies are already determined and saved. 

 
5. To start the radar operation where TX, RX and data capture operations are performed, 

first the previously saved register values of the first frequency need to be loaded from 

the FPGA memory into profiles. Let us assume the TX and RX values are loaded in 

profile 1 and 3 respectively. If 8 or less frequencies are needed, this step is not 

required. 

 

6. Recall the profiles 1 & 3 that would tune the TX and RX frequencies to the 

appropriate values. After this, the received data can be captured and stored for 

processing. 
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7. Load the register value of the next frequency and repeat steps 5 and 6 for all 

frequencies. 

 
8. Continue steps 5-7 for the desired number of frames. 

 

The actual codes for these steps that contain explanations of each step in comments are 

presented in the appendix section. 

 

4.1.3 Phase Incoherence Calibration 

 
As discussed in the previous chapter, for each frequency of the SFCW radar, the difference 

of phases of the TX and RX signals should only arise from the waves traveling in air. If 

the TX and RX local oscillator (LO) signals are generated from the same source, this is not 

really an issue. However, as discussed previously in this chapter, the TX and RX LOs 

inside the AD9364 are generated from two independent PLLs. Although the two 

frequencies can be locked, the phases cannot and they change randomly at every step. In 

order to mitigate this issue, we employ the following calibration technique presented in 

Figure 4.6: 
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Figure 4.6: Phase incoherence calibration for the AD9364 SDR operating in SFCW mode. 

 

For every frequency step, we obtain data from two paths: one a calibration path, the other 

the actual measurement path. The two paths are isolated by two high isolation SPDT 

switches SKY13286-359LF from Skyworks. The TX and RX ports from the SDR connect 

to the RF common ports of the two SPDTs as shown in Figure 4.6. RF1 ports of the two 

SPDTs are through connected using a coaxial cable and this path acts as the calibration 

path. An attenuator is also included in this path so that the signal going into the RX port 

through the calibration path is not higher than the 1 dB compression point of the receiver. 

The RF2 port of the SPDT connected to the TX port is connected to the TX antenna and 

the RF2 port of the other SPDT is connected to the RX antenna. This path, which includes 

the antennas, the medium of transmission and the target is the actual measurement path. 

After each frequency retune, the SPDTs are at first operated in the RFC-RF1 path. The 

control signal for the SPDTs are generated through one of the general purpose input output 
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(GPIO) pins available on the AD9364 evaluation board and the No-OS code running on 

the FPGA drives the GPIO signals. After saving data from the calibration path, the SPDTs 

are routed to the RFC-RF2 path and data is collected from the measurement path. This 

technique is repeated for each frequency step across all data frames, and finally the phase 

information from the calibration path is used to correct the phase incoherence in the 

measurement data. 

 

In order to understand how the calibration is achieved, we go back to the transmitted signal 

equations presented in Eq. 3.1: 

 

𝑇1(𝑡) = 𝐴𝑡1 cos(2𝜋𝑓1𝑡 + 𝜃𝑡1)                                                   (4.1) 

 

Since the receiver signals are generated from a different source, they have different initial 

phases (θr1 in this case): 

 

𝑅1𝑅(𝑡) = 𝐴𝑟1 cos(2𝜋𝑓1𝑡 + 𝜃𝑟1 − 𝜑1)                                          (4.2)  

 

For the calibration path, φ1 represents the fixed delay through the path depending on the 

frequency. The phase angle of the collected signal from this path for a certain frequency 

contains this fixed delay along with the difference of θt1 and θr1. For the measurement path 

data, the initial phases for the TX and RX signals are still the same (θt1 and θr1) since no 

frequency retune has occurred since collection of the calibration path data was done. This 

time though, φ1 is not fixed, rather dependent on the motion of the target. We can now 

account for the added phase component introduced due to the random initial phases of the 
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TX and RX LOs in the measurement data calculated from the calibration path data. The 

calibrated data from the mth frequency of the nth frame can be expressed as: 

 

𝑑𝑎𝑡𝑎𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑(𝑚, 𝑛) =  𝑑𝑎𝑡𝑎𝑚𝑒𝑎𝑠(𝑚, 𝑛) ×  exp(−𝑖 × ∡(𝑑𝑎𝑡𝑎𝑐𝑎𝑙(𝑚, 𝑛))      (4.3) 

 

where datameas(m,n) and datacal(m,n) are the data from the measurement and calibration 

path respectively of the corresponding frequency and frame, ∡ represents the angle 

operator. Figure 4.7 shows a photograph of the complete system including the calibration 

scheme. 

 

In order to verify the performance of the calibration scheme, we setup a simple experiment 

where the measurement path is through connected by a 3 m long coaxial cable. This closed 

 

 

 

Figure 4.7: SDR system with phase coherence calibration scheme. 
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loop test demonstrates the effectiveness of the scheme without adding other non-ideal 

effects like the frequency dispersion effect in the antennas, reflections from unintended 

targets and so on. We programmed the SDR to step the frequency from 3 GHz to 4 GHz in 

20 MHz steps and collect 100 frames. After collection of data, if we compress the pulse by 

performing an inverse Fourier transform (IFFT) operation across each frame, we should 

see a strong reflection coming from a particular range bin depending on the size of the 

cable. Looking at the phases of the measured signal for a particular frequency across all 

frames without doing the phase compensation, we see that the phase is varying randomly 

(Figure 4.8), which results in inconsistency in the range profile plot (Figure 4.9 (a)). But 

after calibration, the phase variation across frames for the same frequency becomes much 

more consistent which results in the expected range profile plot as shown in Figure 4.9 (b). 

 

 

 

Figure 4.8: Phase of the captured down-converted signal for TX and RX LO at 3 GHz 

across 100 frames with or without calibration. 
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                                      (a)                                                                  (b) 

 

Figure 4.9: Range profile of the captured data (a) without calibration, (b) with calibration. 

 

4.1.4 Limitation 

 

Previously we talked about the VCO calibration and PLL lock time of the SDR which 

typically results in a frequency retune time of higher than 600 µs. We discussed that using 

the fastlock profiles we can pre-determine the VCO calibration settings and achieve the 

retune time around 20 µs. But the problem is the AD9364 chip allows saving only 8 fastlock 

settings at a time. We can save the settings for more frequencies in the FPGA memory 

using the ‘fastlock save’ function. But we would need to utilize the ‘fastlock load’ function 

to bring those settings to the AD9364 chip which adds delay in the frequency retuning. 

And considering we have to perform the loading operation for the TX and RX PLLs 

separately, it adds a total delay of about 800 µs. Thus, considering the PLL lock time, 

switching time for calibration and ADC capture time, the total dwell time at each frequency 

comes out to be about 870 µs. Table 4.3 shows the division of time across the different 

operations that take place during each frequency dwell. 
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Table 4.3: Time division in the SDR across operations during each frequency dwell. 

 

Operation VCO Cal. PLL Lock Calibration Switching ADC Capture 

Time (µs) 760 40 40 30 

 

 

Although the achieved dwell time is smaller than the dwell time of our existing PLL based 

SFCW signal generator (1 ms), it is higher than our targeted frequency retune time of 100 

µs and is not adequate to perform gait analysis. We could have utilized only 8 frequency 

steps to circumvent the fastlock loading problem, which would allow us a frequency retune 

time of less than 100 µs. But using only 8 frequencies in 20 MHz steps would only allow 

140 MHz of bandwidth which would provide a range resolution greater than 1 m with 

theoretical maximum detectable range of 7.5 m. The use of the more expensive SDR 

systems like the USRP N210 could provide retune time of about 400 µs according to their 

technical support engineer, but that would still not be fast enough to detect the motions 

from a person walking at 1 ms-1. But, we can still use the CW mode of our SDR system to 

perform gait analysis while utilizing the SFCW mode for other applications like detecting 

vital signs. 

   

4.2 Fast Switching PLL 

 

Previous work in our group on SFCW system utilized the HMC833LP6GE PLL from 

Analog Device [4.7] for the stepped frequency generation. The PLL was a fractional 

multiplier PLL with integrated VCO covering an RF bandwidth of 25-6000 MHz. While it 
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provided excellent performance in terms of phase noise (less than -105 dBc/Hz at 100 kHz 

offset) and wide operating frequency, it was not suitable for fast stepping/sweeping 

operation. The minimum frequency retune time that we could achieve using the PLL was 

about 400 µs and although that was sufficient for vital signs detection, it is not acceptable 

for performing gait analysis.  

 

The ADF4152HV PLL from Analog Device [4.8] appeared as a very attractive solution to 

this problem. It is a 5 GHz fractional/integer multiplier PLL synthesizer with lock times 

below 50 µs. Although it does not come with an integrated VCO, the evaluation board 

carries the footprint to place an external VCO on the board. Unlike the evaluation board of 

the HMC833LP6GE, the ADF4152HV evaluation board contains the USB interface, so no 

additional UWB interface boards are required for configuring the board. In addition, the 

cost of the evaluation board is also cheaper compared to the previous PLL ($150 vs $369) 

and the other fast PLLs listed in Table 3.1. But we did have to make some modifications 

to the evaluation board to make it suitable for our application. The modifications are 

discussed below: 

 

4.2.1 Replacement of VCO 

 

The VCO that comes by default with the evaluation board is a 1-2 GHz chip DCYS100200-

12 from Synergy Microwave Corporation [4.9]. It provides excellent phase noise 

characteristics (-105 dBc/Hz at 10 kHz offset) and needs a supply voltage of 12 V and a 

tuning voltage range of 0.5-28 V. Since our intended range of operation is 2-4 GHz, we 

needed to choose a different VCO. We chose another Synergy chip DCYS200400-5 [4.10] 



 

74 

 

which covers the 2-4 GHz range and has the same PCB footprint and pin configuration. 

This chip has a phase noise of -90 dBc/Hz at 10 kHz offset due to its higher frequency of 

operation and larger operating range. The tuning voltage range of this chip is 0.5-16 V and 

the required supply voltage is 5 V. The tuning voltage is controlled by the on-chip charge 

pump inside the ADF4152HV PLL and the range is defined by the supply voltage for the 

charge pump. The supply voltage to the VCO and the charge pump are both generated from 

on-board adjustable voltage regulators. Thus, after swapping the VCO chips, the voltage 

regulators were adjusted to get the correct supply voltages. 

 

4.2.2 Reference Signal Routing 

 

As mentioned earlier, we use a DDS driven PLL structure where the stepped reference 

signal generated by the DDS is multiplied by the PLL to get the RF output. The evaluation 

board actually has a fixed reference signal provided by an on-board 25 MHz crystal 

oscillator (Y1 in Figure 4.10). The board does provide a port (REFIN) for using an external 

reference signal which in our case comes from one of the channels of the two-channel DDS 

board. Thus, we just had to make simple modifications to the evaluation board to route the 

reference signal from the REFIN port and take R100 off to cut the supply voltage to the 

crystal oscillator and R101 off to disconnect that routing path. 
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Figure 4.10: Reference signal routing in the PLL evaluation board. Green path shows the 

default path and red denotes the intended path. 
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4.2.3 PLL Loop Filter Configuration 

 

Our goal is to achieve a step frequency dwell time of 100 µs and PLL lock time of around 

50 µs. Although the ADF4152HV is capable of achieving similar times, it does not mean 

that it can do so for any configuration. The lock time and stability performance of the PLL 

is dependent on the loop filter configuration. Figure 4.11 depicts the basic PLL model 

showing its components inside the feedback loop. 

 

The feedback loop consists of a phase detector, a charge pump, a loop filter, a VCO and a 

frequency divider. The feedback system forces the error signal to approach zero to maintain 

phase and frequency lock. The error signal is detected by the phase detector which drives 

the charge pump that generates the tuning voltage of the VCO. The higher frequency 

contents of the error signal are filtered by the loop filter which is basically a low pass filter. 

 

 

 

Figure 4.11: Basic PLL block diagram where PD and CP represent the phase detector and 

charge pump respectively. 
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There is a tradeoff between the lock time and stability that depends on the loop bandwidth 

of the feedback path which is set by the cutoff frequency of the loop filter. A larger loop 

bandwidth helps in settling to the lock condition faster, but makes the stability of the system 

worse while a small loop bandwidth makes the lock time longer. For best lock time 

performance, we want to maximize the loop filter bandwidth while keeping the phase 

margin of the system close to 48 degrees [4.11, 4.12].  

 

In order to obtain an optimum loop filter configuration, we utilized the ADIsimPLL 

software from Analog Device [4.13]. The software helps in designing the loop filter by 

modifying parameters such as loop bandwidth, phase margin, VCO sensitivity, and 

component values and allows the user to easily optimize the design for specific 

requirements. Using the software, we can construct a PLL system by specifying the 

frequency requirements of the PLL, and then choosing from a library of PLL chips, library 

or custom VCO, and a loop filter from a range of topologies. When we run the analysis on 

the software for the PLL with the new VCO model and the evaluation board’s default loop 

filter settings, we see that the loop bandwidth is 18.3 kHz, phase margin is 45.4° and the 

lock time is close to 2 ms as shown in Figure 4.12. But after changing the loop filter 

configuration, we were able to get the loop bandwidth to 150 kHz with phase margin of 

48.3° which helped in achieving a lock time of about 50 µs as shown in Figure 4.13. We 

then implemented the new loop filter on the evaluation board to complete the PLL system 

with a fast switching capability.  
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Figure: 4.12: PLL loop schematic with original loop filter configuration showing frequency 

and phase lock time. 

 

 

 

Figure: 4.13: PLL loop schematic with new loop filter configuration showing frequency 

and phase lock time. 



 

79 

 

We then utilize the USB-205 multi-channel 12-bit ADC from Measurement Computing 

and collect 5 samples at each frequency step at 20 µs intervals (50 kHz sampling rate). 

Each 12-bit sample is saved to the computer through USB immediately before the next 

sampling is done, thus saving additional data transfer time required by the previously 

reported equivalent time sampling method [2.9, 2.10]. After the capture is complete, we 

use the proprietary decimation algorithm from our collaborator MaXentric Technologies 

to choose the correct frequency sample from each step when the PLL is settled at that 

frequency and perform subsequent signal processing. The comparison of a frame capture 

duration of this SFCW system and the previous UWB-IR system is presented in Table 4.4. 

The block diagram of the complete SFCW system is presented in Figure 4.14 whereas 

Table 4.5 compares the performance of our PLL based and SDR radar systems with 

different SFCW radar systems reported in literature. 

 

Table 4.4: Timing comparison of the SFCW system and previous UWB-IR system. 

 

 

Parameter This Work (SFCW) UWB-IR [2.9, 2.10] 

Pulse Rate 200 Hz 10 MHz 

Samples per 

Pulse 

5 (samples/freq.) × 50 (freq./pulse)  

= 250 

100e9 (sample/sec) × 100 nsec/pulse 

× 8 (channel) = 80000 

Pulse Sampling 

Time 

250 (sample/pulse) / 50,000 

(sample/sec) = 5 msec 

80000 (sample/pulse) / 150e6 

(sample/sec) = 0.53 msec 

Data Size per 

Pulse 

250 (sample/pulse) × 12 

(bits/sample) × 2 (I & Q)  

= 750 Byte 

80000 (sample/pulse) × 16 

(bits/sample) × 2 (I & Q)  

= 320000 Byte 

Data Transfer 

Time 
- 

320000 (Byte) / 25 (MB/sec: USB 

2.0 speed)= 12.8 msec 

PRF 1/(5 msec) = 200 Hz 1/(.53 + 12.8 msec) = 75 Hz* 

* This is for 8 channels, but for one channel PRF would be 75 × 8 = 600 Hz. 
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Figure 4.14: Block diagram of the implemented radar system with the power levels in the 

TX chain labeled. 

 

Table 4.5: Performance comparison of the proposed SFCW radar systems implemented 

utilizing SDR and PLL with existing works in literature. 

 

[Ref] 
Frequency 

Range (GHz) 

Step Freq. 

(MHz) 

No. of 

Channels 

PRF 

(Hz) 

RX Noise 

Fig. (dB) 

TX Power 

(dBm) 

[2.18] 1.0-2.0 2 4 11.1 - - 

[2.19] 8.9-9.4 10 1 20 - - 

[2.55] 1.2-2.14 10 1 1.65 3.5 -20 

[2.61] 0.75-2.0 2.4 1 30 - 17 

[4.14] 0.3-1.3 5 1 4 - - 

[3.12] 6.0-7.0 25 1 500 - 2 

[3.5] 2.0-3.0 20 1 20 2 8 

This work 

(SDR) 
2.0-3.0 20 1 23 2.5 12 

This work 

(PLL) 
2.0-3.0  20 1 200 1.8 8 
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4.3 Conclusion 

 

This chapter discussed the hardware implementation for the gait analysis radar system 

using commercially available components. We discussed the implementation of a software 

defined radar that can function in both CW and SFCW mode using a transceiver chip from 

Analog Device. After investigation, we found that the target PRF of 200 Hz was not 

achievable from the SDR-SFCW system. But we could still utilize the CW mode for gait 

analysis while using the SFCW mode for detecting vital signs. We then implemented the 

fast switching SFCW signal generator using a new PLL and making modifications to the 

evaluation board in the VCO, the loop filter and reference signal routing scheme. Using 

the modified signal generator, we were able to achieve our targeted PRF of 200 Hz which 

would be suitable for the detection of our targeted maximum Doppler frequency of ± 100 

Hz. But the PLL based SFCW system still remains bulky due to the use of discrete radar 

front-end components. In the next chapter, we will highlight the implementation of the 

radar front-end using custom designed integrated circuits.   
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CHAPTER FIVE  

HARDWARE IMPLEMENTATION: CUSTOM FRONT-END IC 

 
The discussions on the previous chapter shows the implementation of a fast switching PLL 

that will act as the signal generator of a SFCW radar system. For the radar front-end itself, 

we can use the commercial discrete components to implement the system as previously 

reported from our group [3.4, 3.5, 5.1]. These previous works demonstrated excellent 

performance for vital signs detection, target identification and ranging from the SFCW 

radar implemented using discrete components. But one of the main problems of those 

systems was their lack of portability due to their bulky sizes. Benefiting from the rapid 

developments of semiconductor technologies, significant advancements in hardware 

miniaturization have taken place in recent years. Advanced CMOS/SiGe/GaN/GaAs 

technologies, and systems have enabled the minimization of tracking and localization 

radars and significantly enhanced their portability while broadening their operation 

frequency range [5.2, 5.3]. In this research, efforts have been invested to the 

implementation of a compact radar system by designing the radar front-end components as 

integrated circuits (ICs), which should be considered as the first step in developing a full 

radar system on chip. 

 

5.1 Fabrication Process 

 

CMOS (Complementary Metal-Oxide-Semiconductor) process technologies have been 

ubiquitous in commercial and research applications due to their well-established 
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fabrication facilities, lower cost process and low-power operation capabilities. But they do 

suffer from drawbacks such as higher leakage, higher noise and limitations in high-power 

handling capabilities due to lower breakdown voltages. HBTs (Hetero-Junction Bipolar 

Transistors), on the other hand, offer low base resistance and low forward transit time due 

to much higher base doping and thus offer higher cut-off frequency. They also demonstrate 

very low collector to substrate capacitance due to the semi-insulating substrate. HEMTs 

(High Electron Mobility Transistor) also exhibit excellent performance in terms of minimal 

source resistance and high output resistance, high gain-bandwidth product due to the high 

electron velocity in large electric fields, high transconductance due to small gate to channel 

separation and very low noise figure. For all these advantages, HBTs and HEMTs are being 

regularly used in designing a multitude of components in commercial, military and 

consumer applications despite the expensiveness of these processes and that is what we 

have chosen as our fabrication process in this research. The radar front-end components 

consist of gain block amplifier, mixer, power divider and a low noise amplifier. All the 

components except for the LNA was designed using Qorvo’s internal proprietary HBT 

process whereas the LNA was designed using Qorvo’s in-house HEMT process.  

 

5.2 Design Details 

 
The block diagram of the implemented system is given in Figure 5.1. Each component was 

designed to cover at least the 3-4 GHz band which is the intended frequency of operation 

of the radar system. After fabrication, the bare dies are wirebonded on individual evaluation 

boards fabricated on a 31-mil thick RO4350B substrate for the purpose of testing. Other 
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parts, such as the RF choke inductors and DC coupling capacitors for the amplifiers and 

the lumped components for the IF filter for the mixers were also placed on the respective 

evaluation boards. In this section, the design details of each individual components are 

presented. 

 

5.2.1 Gain Block Amplifier 

 

The Gain Block Amplifier is a two-stage CE-CE amplifier designed using the HBT process 

to operate within the 2-4 GHz band. Inter-stage matching network along with input and 

output matching are utilized to achieve good matching and flat gain performance. The 

output stage is divided into four transistors to ensure the current through each transistor 

was within the allowed limit. Extensive EM analysis is performed using ADS Momentum 

RF to establish proper functionality. After fabrication, the amplifier demonstrated 17 dB 

 

 

Figure 5.1: Block diagram of the proposed hybrid SFCW radar system showing the on 

chip components. 
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gain with ±1 dB variation across the band when mounted on the evaluation board with the 

associated biasing components. The DC power consumption of the amplifier is about 0.4 

W with a minimum of +15.5 dBm output 1dB compression point. The schematic and the 

fabricated die photos are shown in Figure 5.2 whereas the simulated and measured S-

parameters of the amplifier are shown in Figure 5.3. 

 

5.2.2 Power Dividers 

 

The radar system requires two different power dividers: one in-phase divider, and another 

quadrature phase divider. The designed in-phase divider is a classical 3-stage Wilkinson 

power divider. The transmission lines are replaced by lumped components to maintain 

acceptable die size. The schematic and the chip micrograph are shown in Figure 5.4 

whereas Figure 5.5 shows the S-parameter results. The power divider shows better than  

-15 dB input and output return loss with maximum insertion loss of 3.8 dB for the two-way 

splitter and a minimum of 16.3 dB isolation within the 3-4GHz band.  

 

The quadrature phase power divider is required to extract the in phase and quadrature phase 

LO signals for the I-Q mixer. A two-stage quadrature divider with transmission lines is 

first designed to achieve the required wide bandwidth. Then the transmission lines are 

replaced by lumped pi-networks with series capacitance and shunt inductances. This 

particular choice allows the shunt inductances of the middle branch to be combined in 

parallel which helped reducing the chip area since the inductances typically occupy the 

largest area. Since we do not need to have access to the isolation port, it is terminated by a  
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(a) 

 

(b) 

 

Figure 5.2: (a) Schematic of the designed GBA where the red components are off-chip RF 

choke inductors, (b) Micrograph of the fabricated die with 750 µm × 1450 µm size. 
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Figure 5.3: EM Simulated and measured S-parameters of the GBA. 
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(a) 

 

(b) 

 

Figure 5.4: (a) Schematic of the designed Wilkinson power divider, (b) Micrograph of the 

fabricated die. 



 

89 

 

 

 

Figure 5.5: EM Simulated and measured S-parameters of the Wilkinson power divider. 

  



 

90 

 

50 ohm resistance inside the chip. The schematic and the chip micrograph of the fabricated 

Q-Hybrid is shown in Figure 5.6 and the S-parameters are shown in Figure 5.7. As it can 

be seen, the fabricated Q-Hybrid has better than -11 dB return loss with at least 16.5 dB 

isolation between the in-phase and quadrature phase ports. The maximum insertion loss is 

6.7 dB with maximum 1.1 dB amplitude imbalance between the ports. The maximum 

deviation of phase the phase difference between the ports was 5.5° from the desired 90°. 

 

5.2.3 Mixer 

 

The design goals for the down-conversion mixer was 3-4 GHz RF and LO frequency with 

0-20 MHz IF. For the design, a single balanced passive mixer based on two single-ended 

mixers represented by diodes combined with a quadrature hybrid junction. Even though 

passive mixers provide conversion loss during mixing operation, the particular topology 

was chosen due to its no DC power consumption requirement, good RF input match and 

RF-LO isolation capabilities. At the IF port, the low-pass filter was not integrated in the 

mixer MMIC because the component values were prohibitively large for the desired IF 

band. Therefore, an external 2nd order low-pass filter was utilized in the mixer evaluation 

board to provide the RF-IF and LO-IF isolation. The schematic of the mixer and the 

fabricated die photo are presented in Figure 5.8 (a) and (b) respectively. For an LO drive 

power of 5 dBm and RF input power of -5 dBm, the designed mixer provides a maximum 

9.8 dB conversion loss across the 3-4 GHz band with at least 15 dB LO-RF isolation and 

maximum simulated 2.1 VSWR at the LO and RF ports as shown in Figure 5.9. 
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(a) 

 

(b) 

 

Figure 5.6: (a) Schematic of the designed Quadrature hybrid, (b) Micrograph of the 

fabricated die with 750 µm × 1450 µm size. 
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Figure 5.7: EM Simulated (dashed) and measured (solid) S-parameters of the quadrature 

hybrid. 
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(a) 

 
(b) 

 

Figure 5.8: (a) Schematic of the single balanced passive mixer, (b) Micrograph of the 

fabricated die with 750 µm × 1450 µm size. 

 

 
  (a)        (b)         (c) 

 

Figure 5.9: For LO = 5 dBm and RF = -5 dBm (a) the down-conversion gain, (b) the LO-

RF isolation and (c) the simulated LO & RF VSWR of the designed mixer. 
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5.2.4 Low Noise Amplifier 

 

The HBT process was not suitable for designing a low-noise amplifier because the process 

is not optimized for low-noise transistors. Therefore, the LNA is designed in Qorvo’s 

internal pHEMT process. The LNA was a two-stage amplifier with inductive degeneration 

at the source. The first stage is implemented using a cascode structure with a large resistive 

feedback from the gate to the drain. This helps in broadening the input bandwidth by 

decreasing the quality factor (Q) of the input [5.4]. Also, the size of the first stage transistor  

was determined in a way to provide minimum average noise figure over the 3-4 GHz band 

for the DC bias current [5.5]. The LNA consumes 0.2 W of DC power from a power supply 

of 3.5 V. Figure 5.10 (a) shows the schematic of the LNA with the fabricated die photo 

shown in Figure 5.10 (b). The measured S-parameters and the noise figure of the LNA are 

shown in Figure 5.11. The LNA demonstrates an average small signal gain of 20 dB with 

about ±2 dB variation. The maximum measured noise figure of the LNA is 1.5 dB (at 4 

GHz) which includes the losses of the evaluation board. 

 

After the successful evaluation of the individual components, the complete radar system 

was implemented by connecting the individual evaluation boards through coaxial wires 

and connectors. A photograph of the system is shown in Figure 5.12 and the performance 

comparison with other radar systems is presented in Table 5.1. As we can see, although 

there is a room for improvement in the DC power consumption, the designed system 

provides the best performance in terms of the noise figure of the system. The motion 

analysis performance of the implemented system will be demonstrated in Chapter 7. 
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(a) 

 

(b) 

 

Figure 5.10: (a) Schematic of the LNA where the red components are off-chip RF choke 

inductors, (b) Micrograph of the fabricated die with 2500 µm × 1500 µm size. 
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Figure 5.11: (a) EM simulated and measured S-parameters of the LNA, (b) Measured noise 

figure including the board losses. 
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Figure 5.12: Implemented hybrid SFCW radar system using the designed front end ICs. 

 

5.3 Conclusion 

 

In this chapter, we discussed the design of integrated circuit components of the SFCW 

radar systems with a view to the implementation of a portable radar system. Compared to 

other reported works the designed system demonstrates excellent noise figure performance. 

It also provides better noise performance compared to the system that we implemented 

using the commercially available discrete components. Although the proposed system is 

still not integrated, it is certainly an important initial step towards the implementation of 

the whole system on a single printed circuit board and eventually a single IC. 
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Table 5.1: Performance comparison of the implemented hybrid radar with other wideband 

biomedical radar systems operating below 10 GHz. 

 

Ref. 

(Year) 
Process/Technique 

Radar 

Type 
Application 

Freq. 

(GHz) 

Tx Power 

(dBm) 

Rx NF 

(dB) 

PDC 

(W) 

[3.6] 

(2015) 
65nm CMOS SFCW Med. Imaging 2-16 -14 5.4-8.4 0.204 

[3.7] 

(2017) 
65nm CMOS Pulsed Vital Signs 3-5 - 6-10* 0.017 

[3.8] 

(2008) 
180nm CMOS 

Tunable 

CW 
Vital Signs 

Tunable 

4.6-5.7 

-6.1 to 

-12.5 
- 0.042 

[3.9] 

(2009) 
130nm CMOS 

Tunable 

CW 

Receiver 

Vital Signs 
Tunable 

5.3-6.3 
- 2.2* 0.022 

[3.10] 

(2014) 

130nm SiGe 

BiCMOS 
FMCW - 8-9 - 4.5*S 0.66 

[3.11] 

(2017) 
Hybrid 

FMCW + 

CW 

Localization & 

Vital Signs 
5.64-5.96 8 - - 

[3.12] 

(2013) 
Hybrid SFCW Fall Detection 5.8-7 2 - - 

This work 

(Discrete) 
Discrete SFCW 

Human 

Sensing 
2-3 8 1.8 1.04 

This work 
III-V HBT  

and HEMT 
SFCW 

Human 

Sensing 
3-4 12 1.1-1.5* 1.0 

S: Simulated, *: LNA Only 
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CHAPTER SIX  

SIGNAL PROCESSING ALGORITHM AND MOTION MODELING 

 
After developing the hardware platform for a non-contact gait analysis system, it is 

important to establish a signal processing algorithm to extract the features of individual 

limb joints using the data collected by the radar. Again, our goal is to utilize an algorithm 

that can distinctly track human limb joints such as the hands, legs and torso for complex 

motions using either a simple Doppler radar or a UWB radar operating in a typical 

laboratory environment. With that in mind, we utilize the 1-D block technique, which is a 

robust algorithm for extracting signal components from complex targets that depict non-

linear motions corrupted with noise. We also introduce our motion modeling efforts that 

provide repeatable and realistic reference data which when coupled with the signal 

processing technique can be useful for obtaining a full understanding of human limb joint 

motion analysis. 

 

6.1 1-D Block Processing Algorithm 

 

The algorithm was first proposed by Dr. K. Naishadham and Dr. J. E. Piou in [6.1], from 

MIT Lincoln Laboratory. This method was previously utilized for vital signs detection 

using UWB impulse radar [6.2], and for system identification [6.3]. We extended this 

method for gait analysis using either CW or UWB radar which can be vitally important in 

applications such as treating patients with joint problems, athlete performance analysis, 

motion classification, and so on. The algorithm development is independent of the type of 
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radar used apart from differences in the dimensions of some of the intermediate variables 

due to the difference of dimensions in the data from CW and UWB radar. The algorithm 

development and those differences are discussed below: 

 

6.1.1 UWB Data Usage 

 

This discussion follows the development of the algorithm for UWB radar that was 

presented previously in [6.1] and [6.2]. It is assumed that the 2-D data collected from a 

UWB radar data collected on a human subject and corrupted with white Gaussian noise 

w(m,n) can be defined by the samples y(m,n) according to: 

 

𝑦(𝑚, 𝑛) = ∑𝑎𝑖𝑠𝑖
𝑚𝑝𝑖

𝑛 + 𝑤(𝑚, 𝑛),   𝑚 = 1,… , 𝐿, … ,𝑀 𝑎𝑛𝑑 𝑛 = 1,… . , 𝐾,… . , 𝑁     (6.1)

𝑃

𝑖=1

 

   

where P denotes the number of signals that compose the data, which is termed as the order 

of the signal. M is the total number of frequencies and N is the number of time acquisitions. 

The spectral model of the ith body movement from a human subject is associated with the 

pole pair (si, pi) and the complex amplitude ai is defined by 

   
𝑎𝑖 = |𝑎𝑖|𝑒

𝑗𝜑𝑖                                                           (6.2) 

 

where φi denotes the phase. The poles si and pi yield the frequencies that describe the limb 

movements of a human subject in range and Doppler, respectively. These frequencies can 

be estimated according to     
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𝑟𝑖 =
𝜃𝑖

2𝜋
 𝑎𝑛𝑑 𝑓𝑖 =

𝛽𝑖

2𝜋
                                                     (6.3) 

  

where θi and βi refer to the phase angles associated with si and pi respectively.  

 

The 1-D block processing technique based on the state space method provides poles (or 

frequencies) in one direction of the human body movements (i.e., either ri or fi in Eq. 6.3) 

from the eigenvalues of the state transition matrix, Ar, to be defined shortly. These poles 

are representative of the entire data set, as no samples are discarded in constructing the 

block enhanced Hankel matrix leading to Ar. Further operations on the enhanced block 

Hankel matrix result in a robust state-space model for human motion. By processing 

overlapped blocks of pulses (which represent sliding time windows) sequentially, the torso, 

arm, elbow, knee, ankle, toe, etc. movements from a human subject can be detected and 

tracked over time.  

 

Based on the 2-D data formulation in Eq. 6.1, the matrix notation of M×N acquisition time 

measurements may be written as: 

 

𝑌 =

[
 
 
 
 

𝑦(1,1) 𝐿 𝑦(1, 𝑁)
𝑦(2,1) 𝐿 𝑦(2, 𝑁)

𝑀 𝐿 𝑀
𝑦(𝑀 − 1,1) 𝐿 𝑦(𝑀 − 1,𝑁)

𝑦(𝑀, 1) 𝐿 𝑦(𝑀,𝑁) ]
 
 
 
 

                                   (6.4) 

   

One can form Hankel (or forward-prediction) matrices with every row or column of the 

data matrix defined in Eq. 6.4. For example, the Hankel matrices of the mth row and nth 

column, respectively, are given by Eq. 6.5 and 6.6 below: 
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𝐻𝑚
𝑟𝑜𝑤  = [

𝑦(𝑚, 1) 𝐿 𝑦(𝑚, 𝐿)
𝑦(𝑚, 2) 𝐿 𝑦(𝑚, 𝐿 + 1)

𝑀 𝐿 𝑀
𝑦(𝑚,𝑁 − 𝐿 + 1) 𝐿 𝑦(𝑚,𝑁)

]                               (6.5) 

 

𝐻𝑛
𝑐𝑜𝑙  = [

𝑦(1, 𝑛) 𝐿 𝑦(𝐽, 𝑛)
𝑦(2, 𝑛) 𝐿 𝑦(𝐽 + 1, 𝑛)

𝑀 𝐿 𝑀
𝑦(𝑀 − 𝐽 + 1, 𝑛) 𝐿 𝑦(𝑀, 𝑛)

]                               (6.6) 

            

The parameters L and J that appear in Eq. 6.5 and 6.6 denote the lengths of the correlation 

windows in column and row directions, respectively. They are heuristically chosen to be L 

= [N/2] and J = [M/2], where the brackets denote the smallest integer less than or equal to 

the inserted quantity. The primary interest in this section is modeling 2-D vital sign data 

by using one set of complex matrices. This set is derived from state-space operations 

carried out on a row-enhanced data matrix, obtained by stacking the M Hankel matrices 

described by Eq. 6.5 into a column vector such that: 

 

𝐻𝑟𝑜𝑤 = [𝐻1
𝑟𝑜𝑤  𝐻2

𝑟𝑜𝑤  𝐿  𝐻𝑀
𝑟𝑜𝑤]𝑇                                       (6.7)  

 

An autoregressive moving average (ARMA) model is now derived from the enhanced data 

matrix defined in Eq. 6.7. The proposed 1-D block-processing state-space system relates 

the input, consisting of an impulse matrix 𝑊𝑘
𝑟 to the output 𝐻𝑘

𝑟𝑜𝑤 and is characterized by 

the following equations: 

 

𝑋𝑘+1
𝑟 = 𝐴𝑟𝑋𝑘

𝑟 + 𝐵𝑟𝑊𝑘
𝑟                                                (6.8) 

𝐻𝑘
𝑟𝑜𝑤 = 𝐶𝑟𝑋𝑘

𝑟                                                          (6.9) 
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where 𝑋𝑘
𝑟 𝜖 £𝑃×𝐿 is the state, and 𝑊𝑘

𝑟 𝜖 £𝐿×𝐿 denotes the input with Dirac functions on its 

main diagonal and zero elsewhere. 𝐴𝑟 𝜖 £
𝑃×𝑃, 𝐵𝑟  𝜖 £

𝑃×𝐿 and 𝐶𝑟  𝜖 £
(𝑁−𝐿+1)×𝑃 are 

coefficient matrices. It follows from Eq. 6.8 and 6.9 that: 

 

𝐻𝑘
𝑟𝑜𝑤 = 𝐶𝑟𝐴𝑟

𝑘−1𝐵𝑟 , 𝑘 = 1, 2, … . . , 𝑀                                  (6.10) 

 

Eq. 6.10 indicates that an enhanced Hankel matrix 𝐻𝑒
𝑟𝑜𝑤 formed from a sequence of 

impulse responses such that: 

 

𝐻𝑒
𝑟𝑜𝑤  =

[
 
 
 

𝐻1
𝑟𝑜𝑤 𝐻2

𝑟𝑜𝑤 . . 𝐻𝐽
𝑟𝑜𝑤

𝐻2
𝑟𝑜𝑤 𝐻3

𝑟𝑜𝑤 . . 𝐻𝐽+1
𝑟𝑜𝑤

: : . . :
𝐻𝑀−𝐽+1

𝑟𝑜𝑤 𝐻𝑀−𝐽+2
𝑟𝑜𝑤 . . 𝐻𝑀

𝑟𝑜𝑤
]
 
 
 

                               (6.11) 

 

can be factored. The decomposition of 𝐻𝑒
𝑟𝑜𝑤 into a product of two matrices is given by 

 

𝐻𝑒
𝑟𝑜𝑤 = 𝛺𝛤                                                           (6.12) 

 

where Ω and Γ denote the observability and controllability matrices, respectively, and are 

given by: 

 

𝛺 = [𝐶𝑟  𝐶𝑟𝐴𝑟  …  𝐶𝑟𝐴𝑟
𝑀−𝐽]

𝑇
                                       (6.13) 

𝛤 = [𝐵𝑟   𝐴𝑟𝐵𝑟  …  𝐴𝑟
𝐽−1𝐵𝑟]                                          (6.14) 

  

By computing the singular value decomposition of the enhanced Hankel matrix, 𝐻𝑒
𝑟𝑜𝑤 and 

performing a P rank reduction, one obtains 

 

𝐻𝑟𝑜𝑤 = 𝑈𝑠𝑛∑𝑠𝑛𝑉𝑠𝑛
∗                                                (6.15) 
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where Usn denotes the signal components of the left-unitary matrix, ∑sn is a diagonal matrix 

with dominant signal singular values of 𝐻𝑒
𝑟𝑜𝑤 arranged in decreasing order, Vsn is the signal 

component of the right-unitary matrix and * denotes the Hermitian operator. Therefore, the 

observability and controllability matrices, respectively, are given by: 

  

𝛺 = 𝑈𝑠𝑛∑𝑠𝑛
1/2

                                                              (6.16) 

           𝛤 = ∑𝑠𝑛
1/2

𝑉𝑠𝑛
∗                                                              (6.17) 

 

As reported in [6.4], the state-space matrices (Ar, Br, Cr) described by (6.8) and (6.9) may 

be derived from Ω and are given by 

 

𝐴𝑟 = (𝛺−𝑟𝑓
∗𝛺−𝑟𝑙)

−1
𝛺−𝑟𝑙

∗𝛺−𝑟𝑓                                           (6.18) 

𝐵𝑟 = (𝛺𝑀
∗𝛺𝑀)−1𝛺𝑀

∗𝐻𝑟𝑜𝑤                                             (6.19) 

       𝐶𝑟 = 𝛺(1:𝑁 − 𝐿 + 1, ∶)                                                  (6.20) 

 

where Hrow is defined by Eq. 6.7, and 

 

𝛺−𝑟𝑓 = 𝛺(𝑁 − 𝐿 + 2: (𝑀 − 𝐽 + 1)(𝑁 − 𝐿 + 1), : )              (6.21) 

𝛺−𝑟𝑙 = 𝛺(1: (𝑀 − 𝐽)(𝑁 − 𝐿 + 1), : )                            (6.22) 

 

and ΩM is given by Eq. 6.13 with J = 1. In Eq. 6.21 and 6.22, Ω(k:l,:) denotes the matrix 

obtained by retaining rows k to l of Ω. Once the state-space matrices are obtained, Eq. 

(6.18) can be used to compute the frequencies that are associated with the limb motions of 

the human subject. An eigenvalue-eigenvector decomposition carried out on Ar defined by 

Eq. (6.18) allows the following derivation:          
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                                                            𝐴𝑟 = 𝑀𝑟𝛬𝑟𝑀𝑟
−1                                                  (6.23) 

 

where Λr
 
is a diagonal matrix with the eigenvalues 𝜆𝑖{𝐴𝑟} = [𝜆1, 𝐿, 𝜆𝑃] (or the state-space 

poles) as the diagonal entries, Mr is the matrix of eigenvectors with column vectors 

[𝑣1, 𝐿, 𝑣𝑃] associated with their corresponding eigenvalues. Thus, the eigenvalues λi yield 

the damping factors αi and the frequencies fi 

 

𝛼𝑖 =
𝑙𝑜𝑔|𝜆𝑖|

𝛥𝑡
,   𝑓𝑖 =

𝑎𝑛𝑔𝑙𝑒(𝜆𝑖)

2𝜋𝛥𝑡
, 𝑖 = 1,… , 𝐾,…𝑃      (6.24) 

 

Based on Eq. 6.10, it is not difficult to model the data matrix or fit of the kth pulse from the 

ith eigenvalue λi: 

  

𝐹(𝑘, : , 𝑖) = [𝐷(1, : , 𝑖)   𝐷(2:𝑁 − 𝐿 + 1, 𝐵, 𝑖)𝑇]                    (6.25) 

 

where N-L+1 denotes the number of rows in the matrix Cr and B is the number of columns 

in the matrix Br. The matrix D is given by:  

 

𝐷(: , : , 𝑖) =  𝐺(: , 𝑖)𝜆𝑖
𝑘−1𝑄(𝑖, : )                                        (6.26)                           

 

where the matrices G and Q are defined by:   

 

             𝐺 = 𝐶𝑟𝑀𝑟 𝑎𝑛𝑑 𝑄 =  𝑀𝑟
−1𝐵𝑟                                         (6.27)  

 

where Cr, Br and Mr are previously reported.  
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For complex motions like human walking, the radar returns from some limb joints are much 

stronger than others.  For example, the lower leg and torso have typically much stronger 

returns compared to upper legs and hands. Thus, it becomes very difficult to simultaneously 

track these parts in the presence of the strong returns from the lower legs and torso. In such 

scenarios, we have adopted a residual superposition approach in which the stronger and 

weaker joints are tracked in multiple steps. In this method, the algorithm is first run to 

extract the trajectories of the limb joints with stronger reflections and the data fit according 

to Eq. 6.25 is generated from the associated poles and amplitudes. Next, the data fit is 

subtracted from the original data to obtain a residual signal that corresponds to the scattered 

signals from the weaker joints. Thus, the residual is passed through the 1-D block 

processing algorithm again and the steps are repeated until all the desired joint trajectories 

are extracted. 

 

6.1.2 Using CW Data 

 

The formulation of the CW data is obtained by collapsing the range dimension of the UWB 

data utilized before in [6.2]. Then the signal from a CW radar can be defined by: 

 

𝑦(𝑛) = ∑𝑎𝑖𝑝𝑖
𝑛 + 𝑤(𝑛),   𝑛 = 1,… . , 𝐾,… . , 𝑁                        (6.28)

𝑃

𝑖=1

 

 

 

where P again denotes the number of signals that compose the data, N is the number of 

time samples and the body movement is related to the pole pi. For the CW radar, we do not 

have range information, thus the poles related to range (si) and the associated frequencies 

(ri) are absent in this case.  
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Following the 1-D signal model defined by Eq. 6.28, the vector notation of N acquisition 

time measurements may be written as: 

 

𝑌 = [𝑦(1)  𝑦(2)  𝐾  𝑦(𝑁)]                                     (6.29) 

 

Thus, the Hankel (or forward-prediction) matrix from the data vector defined in Eq. 6.28 

may be considered as the first row of the data matrix in Eq. 6.5 and can be computed 

according to: 

 

𝐻1
𝑟𝑜𝑤 = [

𝑦(1) 𝐾 𝑦(𝐿)
𝑦(2) 𝐾 𝑦(𝐿 + 1)
𝐾 𝐾 𝐾

𝑦(𝑁 − 𝐿 + 1) 𝐾 𝑦(𝑁)

]                       (6.30) 

 

where L is still [N/2]. Note that, since the data Y is now a vector instead of a matrix like the 

UWB case, the analysis is equivalent to having M = 1 and J = 1 from the previous section. 

Thus, the row enhanced data matrix 𝐻1
𝑟𝑜𝑤 defined in Eq. 6.11 boils down to: 

  

𝐻𝑒
𝑟𝑜𝑤 = 𝐻1

𝑟𝑜𝑤 = 𝛺𝛤                                              (6.31) 

 

where observability and controllability matrices still have the same definitions as presented 

in Eq. 6.16 and 6.17. The state-transition matrix Ar can also be calculated using Eq. 6.18 

although the definition of Ω-r1 and Ω-rl are different due to the absence of the second 

dimension of the data: 

 

𝛺−𝑟1 = 𝛺(2:𝑁 − 𝐿 + 1, : ) 𝑎𝑛𝑑 𝛺−𝑟𝑙 = 𝛺(1:𝑁 − 𝐿, : )               (6.32) 
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The eigenvalues can be calculated in the same technique like the UWB case and the data 

vector or fit from the ith eigenvalue λi can be modeled according to: 

  

𝐹(𝑘, 𝑖) =  𝛼𝑖𝜆𝑖
𝑘−1, 𝑘 =  1, … , 𝐾, …𝑁                          (6.33) 

 

In general, the state transition matrix computed from the row/column enhanced Hankel 

matrix exhibits high smoothing due to its large number of row and column entries and 

provides more accurate frequency estimates than those computed from the state transition 

matrix of ST-SSM that is carried out from a simple Hankel matrix [2.10]. Because of the 

structure inherent of the 1-D block processing, in the case of a single tone, the state 

transition matrix carried out from the observability Gramian can better capture the 

dynamics and the nonlinearity of the weak scatterers than the state transition matrix 

computed from ST-SSM. This feature allows the 1-D block method to successfully extract 

the features using not only UWB radar data, but also CW data as well. 

 

6.1.3 Steps for Gait Analysis Using 1-D Block Method 

 
Below the steps to track limb joints using the 1-D block processing algorithm from radar 

data are summarized: 

 

1) Select a model order or number of poles that represents the number of signals or joints 

to track, P in the formula. There are many techniques to get an initial estimate of the model 

order. The technique that we employ is to look for a knee in the plot of the singular values 

computed from the singular value decomposition (SVD) of the Hankel matrix. The singular 

value matrix Σ carried out on the block Hankel matrix defined by Eq. 6.11 for UWB or Eq. 
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6.31 for CW can be used to estimate the model order, i.e., the number of signals associated 

with the key joins or limb components that give rise to the data. The large singular values 

in Σ are attributed to strong signal components, while the smaller values are associated 

generally with noise. For low noise levels, one can expect a sharp transition or knee 

between the large and small singular values, i.e., it provides a separation between the signal 

space and the noise space. Therefore, this transition point or knee can be used as an estimate 

of the number of signals embedded in the data as known as model order. Typically, this 

number is smaller than the number of desired joints to track. Examples of this technique 

being implemented are shown in the next chapter. 

 

2) Due to the non-linearity of the data, choose the block size or the sliding time window to 

lie over a fraction of one normal motion period of a human gait to achieve adequate timing 

and frequency resolution. For example, if a particular motion lasts for 0.6 s in one direction, 

start with a time window size of half that period and decrease the window size gradually if 

required. 

 

3) Form the Hankel matrix and compute the state transition matrix, Ar. 

 

4) Compute the eigenvalue decomposition of Ar to obtain the damping factors αi and 

frequencies fi. 

 

5) Use Eq. 6.25 for UWB or Eq. 6.33 for CW to model the data vector or fit from the λi 

computed from the radar data for all the eigenvalues. 
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6) For complex motions where tracking of many signals may be needed, the model order 

can be chosen to capture the stronger signals first. Next a data residual is extracted by 

subtracting the fit (derived from the poles or eigenvalues and amplitudes of the stronger 

signals) from the original data then repeat steps 3-5 with appropriate model order. 

 

7) Repeat step 6 until all the desired limb joints are identified. 

 

8) Since there will be more extracted features than the desired number of joints to track, 

identify the appropriate features by comparing the extracted results with the reference 

motion model described in the next section. 

 

A flowchart of the method is presented in Figure 6.1 and the extracted results using the 

method on both CW and UWB radar data are presented in Chapter 7. 

 

6.2 Motion Modeling 

 

A big hurdle in gait analysis is data variability, inaccuracy, and repeatability that make 

interpreting the data an exhaustive task. Electromagnetic modeling could provide the 

means to minimize gait analysis interpretation efforts and enhance its value by isolating 

the effects from individual components in the scene and enabling a completely repeatable 

system to fine tune signal processing algorithms. Thus, we utilized a Full wave 

electromagnetic (EM) model that our collaborators from Catholic University of America 

(CUA) created. The model is based on a mechanical Boulic model [6.5] where the motion  
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Figure: 6.1: Gait analysis flowchart using the 1-D block algorithm where the dimensions 

of the different variables are presented on the right side. 
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is emulated based on detailed video tracked motion scenarios. The body schematic model 

from Boulic is used to build a more realistic human body model that is used as an object 

for the radar EM model.  The emulated EM model can be useful for obtaining a clean set 

of repeatable reference data that can take different realistic settings into account that the 

mechanical Boulic model cannot, such as body shape and material, noise, ground 

reflection, and parts interference.  

 

We developed human motion models for simple scenarios like a human standing and 

swinging the right hand only, a human sitting and swinging his/her right foot only, and a 

human walking without hand motion for electromagnetic analysis. Using full wave EM 

analysis, the resulting scattered fields from the scene are calculated for each transmitted 

plane wave CW signal. Details of the developed human activity models are described in 

the following section: 

 

6.2.1 Human Motion Model 

 

First, based on the input of the height of the human subject, a human skeleton is created 

using 16 joints (e.g. shoulders, hips, knees, ankles, etc.) connecting the head and the rest 

of the human body parts. Ellipsoids with appropriate semi-axes lengths corresponding to 

reasonable dimensions [6.6] of the associated body parts are used to model the human body 

parts and the head is represented by a sphere. Next, the kinematics of various human 

motions such as a human standing with right hand swinging and a human sitting with right 

foot swinging are modeled to demonstrate the range of our EM modeling capabilities. 

These motions are deduced by adapting the conventional Boulic model to match the video 



 

113 

 

tracking data from a real motion scene. In the empirical Boulic model [6.5], a human 

subject is walking with a certain velocity and it needs two inputs to model the forward 

human walking: velocity and height of the human. Some temporal and spatial motion 

characteristics are defined based on the velocity of the human such as the duration and the 

length of a walking cycle. Using these motion characteristics, the position of every joint in 

a human body is defined at every frame based on analytical expressions to compute the 

rotation and translation of joints. More detailed and specific examples of CUA’s work can 

be found in [6.7-6.8].   

 

In CUA’s modified model for the one hand or one leg swinging case, all the body parts are 

stationary except for the right hand or the right foot. In the right hand swing case, the 

rotational angles of the right shoulder and right elbow from the Boulic model are modified 

to match the video tracker data extracted from a real scene. Similarly, the rotational angles 

of the right knee are also tweaked to emulate the real video recorded motions. CUA also 

modified the Boulic model to create the walking without moving hands motion. In this 

case, the rotational angles of both shoulders and elbows are fixed to a crossed arm position, 

but the rest of the limbs move in its usual motion. Figure 6.2 shows the three different 

motion characteristics considered for EM analysis. The left side samples the human 

motions at five instances within one cycle of the human motions. Figure 6.2 (a) depicts a 

human standing with the right hand swinging, Figure 6.2 (b) corresponds to a human sitting 

and swinging the right foot, while Figure 6.2 (c) shows the motion where the subject is 

walking without hand movement. The right-hand side of Figure 6.2 shows the velocities of 

the different body parts for each of these scenarios. 
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Figure 6.2: Human motion model and velocity comparisons, (a) human standing with 

swinging right hand only, (b) human sitting with swinging right foot only and (c) human 

walking without moving hands. 
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6.2.2 EM Scattering Model Implementation 

 

The Method of Moments (MoM) enhanced with Multilevel Fast Multipole Algorithm 

(MLFMA) is implemented not only to speed up the computation but also to conserve 

memory resources. CUA utilized the EM simulator FEKO tool [6.9] from Altair 

Engineering for the analysis where the human body is meshed with a fine mesh of about 

λ/10 to fully incorporate the mutual coupling between human body parts. MLFMA is based 

on a grouping concept that helps in speeding up the iterative solution of the ZI = V linear 

equation system of the conventional MoM [6.10], where Z represents the impedance 

matrix, I is the unknown currents, and V is dependent on the incident field. The first step 

for implementing this grouping concept of MLFMA is meshing of the surface of the given 

structure into M edges, which are then categorized into an N-level tree structure that 

connects groups of different sizes from the finest to the coarsest level for a spherical object. 

The next step involves splitting the impedance matrix Z into near (Znear) and far (Zfar) 

matrices. After this, with the Z matrix known, the unknown values of the current (I) can be 

solved iteratively according to [6.11-6.12].  

 

In order to limit the prohibitively long computation time of this large problem, CUA 

accelerate the computations on our GPU cluster by parallelizing the MLFMA. A uniform 

workload allocation is achieved by distributing the computations among the available 

computing nodes. The message passing interface (MPI) library along with CUDA 

programming model is utilized to distribute computations among various GPU nodes. 

Further details of CUA’s previous efforts on hardware accelerated EM modeling along 

with their MLFMA implementation on GPU clusters can be found in [6.13]. 



 

116 

 

6.3 Conclusion 

 

In this chapter, we focused on the 1-D block algorithm development for individual limb 

joint tracking, which was originally proposed by our collaborators at MIT Lincoln 

Laboratory. Due to its signal development, the algorithm provides the capability to track 

the desired features for data obtained from either CW or UWB radar. We also discussed 

the general steps of using the algorithm for gait analysis including the choice of initial 

parameters. The application of this algorithm will be shown in the next chapter. We also 

described the development of accurate EM models for different motions for initial 

investigation of the signal processing algorithm and hardware prototyping. During EM 

analysis, we can model the effects of noise, ground reflection, interference of other 

surrounding objects and the interference between different body joints in motion. A 

combination of all these capabilities allows the EM analysis to provide a realistic, 

repeatable reference data for any given scenario which can be utilized as the ground truth 

for the user. 
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CHAPTER SEVEN  

RESULTS  

 

In this chapter we will investigate the gait analysis results using the hardware and software 

methods discussed in the previous chapters. We have divided the results into two sections: 

the first section discusses the findings from the SDR based CW radar whereas the second 

section presents the results from the SFCW radar. We then present a discussion on the 

results by first showing side by side comparison of our results with other published results 

and then highlighting some limitations of our method. Finally, we report the suitability of 

our hardware system for vital signs (respiration and heart rate) detection as well. 

 

7.1 CW Radar 

 

We utilized the software-defined radar (SDRadar) running with the MATLAB platform for 

these experiments. A 2.45 GHz CW signal is generated using the SDRadar and the TX port 

in connected to a horn antenna, which has a gain of about 9.5 dB. The maximum range 

utilized in these experiments is 4.5 m and the reflected signal captured by the receiving 

horn antenna which is similar to the TX antenna from a subject at that maximum distance 

away from the antennas is -41 dBm, which was 20 dB higher than the minimum detectable 

signal by the receiver. Both the TX and RX horn antennas had a 3-dB beamwidth of ±20° 

in the vertical and horizontal directions. The data was captured at a rate of 1 MHz, which 

was later decimated to a rate of 200 Hz which was enough to capture a Doppler frequency 

of ±100 Hz. We began the investigation with performing the simple short-term Fourier 
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transform (STFT) previously used by many researchers [2.1, 2.2, 2.6, 2.9, 2.20-2.28] as 

reported in Chapter 2. STFT is an easy and convenient way to look at the combined time-

frequency spectrogram to validate our hardware system and the EM modeling. Then we 

moved onto using the more sophisticated 1-D block method to extract the features of 

individual limb joints. Below the results from the two methods are presented: 

 

7.1.1 STFT Results 

 

We utilize the previously described spectrogram function in MATLAB to perform the 

STFT analysis. For the first experiment, a subject stood stationary 1.5 m away from the 

radar and swung his right-hand back and forth. The idea is to create a simple periodic 

motion using the hands and track the elbow and the wrist trajectories. The same motion 

was initially modeled using the Boulic model and then an EM simulation was performed 

with identical radar parameters where the motion details were video recorded and utilized 

to develop the EM model. In the second experiment a similar scenario was repeated where 

the subject sat on a chair 1.5 m away from the radar and swung his right leg while keeping 

the knee joint position fixed. Figure 7.1 shows the results of these two motions using both 

EM simulated and experimental data. 

 

Note that the results from the simulation correspond very well with the measured results in 

terms of the shape of the spectrograms and the velocity values. Although the intensities of 

the signals are different since the simulated results do not encounter any interference from 

unwanted targets and uses a plane wave assumption which is not the case for measured 

results.  
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Figure 7.1: STFT results for a subject standing and swinging one hand only (a) from EM 

simulated data, (b) from measured data. STFT spectrograms for a subject sitting and 

swinging one leg only (c) from EM simulated data, and (d) measured data. In all cases, the 

STFT is run with fs = 200, window = 64, noverlap = 60. The Doppler frequencies are 

converted into velocities according to the 2.45 GHz radar operating frequency. 
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Next, the complexity of the motion was slightly increased by having the subject walk 

without any hand motion. The scenario was intended for tracking the lower body parts 

(toes, ankles, knees) and the torso. In the Boulic based EM model, the subject walks 

towards the radar at a velocity of 1 ms-1 with a regular leg motion but without swinging the 

hand. In the measurement scenario, the subject started 4.5 m away from the radar and 

walked with a similar motion and it was ensured that the transmitting and receiving 

antennas illuminated the whole body. With the antennas placed 0.9 m above the ground, a 

subject with a 1.8 m height will be within the 3 dB beamwidth of the antenna at any distance 

greater than 2.47 m. Figure 7.2 shows the experiment scenario whereas Figure 7.3 shows 

the STFT results with the simulated and measured results. Again, it can be observed that 

the general shapes of the two plots and the Doppler velocity values correspond well to each 

other from the simulated and experimental results. From both plots, we observe that the 

highest velocity components are generated during the steps when the leg is moving. Also, 

if we think about a walking human subject in front of a radar, it is reasonable to assume 

that the strongest radar returns will come from the torso of the subject. The torso of the 

walking subject moves at almost constant velocity during the walking cycle. And in Figure 

7.3, we do observe the highest intensity of signals around the 1 ms-1 velocity for both 

simulated and experimental data. Note that since there is no hand movement, the negative 

velocity components generated by the hands moving away from the radar are also absent. 
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Figure 7.2: Gait analysis experiment setup with SDRadar for walking subject ensuring full-

body coverage. 

 

 

 

Figure 7.3: STFT spectrogram for a walking subject without moving hands (a) for EM 

simulated data, (b) measured data. 
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The next step is to add the effect of hand swinging in the motion by having the subject first 

walk with only the right-hand swinging and then with both hands swinging. Again, the 

subject started walking towards the radar from a 4.5 m distance away from the radar with 

a velocity of about 1 ms-1. Figure 7.4 shows the STFT spectrograms from measured data 

for these two scenarios. Firstly, comparing the STFT spectrogram for walking with both 

arms swinging presented in Figure 7.4 (b) shows consistency with previously published 

research [2.1, 2.2, 2.20, 7.1], which is encouraging. We again observe that the strongest 

reflection component is around 1 ms-1 which represents the walking velocity. For one hand 

moving, we observe the negative velocity components during one step only, during the 

second step around 0.8 s to 1.1 s in Figure 7.4 (a). But for the walking with both hands 

moving case, we observe the negative Doppler frequencies generated by the two hands 

during both steps as we would expect. 

 

 

 

Figure 7.4: STFT spectrogram from measured data for a walking subject (a) with moving 

only one hand, (b) moving both hands. 
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7.1.2 1-D Block Results 

 

Although we obtained the expected results from the STFT which provides us with some 

basic information about the motion, we cannot identify/track individual limb joints using 

the method. We utilized the 1-D block method described in the previous chapter to extract 

the individual limb velocities during motion for the same scenarios described above. 

 

For the first scenario where the subject stood still and moved only one hand, we are 

interested in tracking the elbow and wrist trajectories from the simple periodic motion of 

the hand moving backward and forward. The degrees of freedom that we have are the 

sliding time window size and the order number. One of the limitations of the 1-D block 

method here is the difficulty in choosing these two parameters for optimum results. For 

initial estimation of the time window size, we can consider the half period of a particular 

motion in one direction. For example, if we look at the Boulic model results for moving 

hand scenario presented in Figure 7.5 (a), we observe that the elbow and wrist components 

have positive velocities for about 0.9 s and negative velocities for the remaining half of the 

total period. Thus, we initially start with a sliding time window of about 0.45 s and decrease 

them gradually as required. But at the same time, we need to estimate an initial value of 

the model order as well. In order to get that initial estimate, we can observe the plot of the 

singular values computed from the singular value decomposition (SVD) of the Hankel 

matrix for all time windows and identify a general knee of the composite plots. For low 

noise levels (as in the case of simulation), we can expect a sharp transition between the 

large and small singular values which provides a separation between the signal space and 

the noise space. Therefore, this transition point or knee can be used as a minimum estimate 
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of the number of signals embedded in the data known as the model order. For measured 

data, the noise levels can be high and the separation between weak signal and noise spaces 

may not be as well-defined as in a high SNR case making the model order estimation more 

difficult. Figure 7.5 (b) shows the singular value plots for the simulated data of the scenario. 

Considering the plots for all sliding windows, it can be observed that the knee is 

approximately located around index 2 which we use as the initial estimate.  

 

Thus, we started the analysis with the respective sliding time window = 0.45 s and order = 

2, decreased the time window gradually and incrementing the order by one at a time trying 

to attain good correspondence with the results from the Boulic model. Eventually the EM 

simulation and measurement data were both processed with model order = 4 and sliding 

time window of about 0.22 s in both cases. Each order (which represents a pole) 

 

 

Figure 7.5: (a) Initial sliding time window size estimation by looking at the period of the 

limb motion in one direction and using half of that period. (b) Model order estimation 

using the singular value plots where the sharp transition is observed in index = 2. 
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continuously and automatically tracks the same scatterer during the observed window, even 

when it intersects with other scatterers represented by other poles. For the hand swinging 

case, we are only interested in tracking the arm and the wrist, but the 1-D block was run 

with model order = 4. Thus, out of the 4 extracted features, the desired two trajectories 

need to be identified by observing the reference Boulic model motion of the limb joints 

being tracked. Figure 7.6 (a) and (b) show all the features extracted by the 1-D block 

method from simulated and measured data for the one hand swinging case. By observing 

the motion of the arm and wrist from the Boulic model given in Figure 7.5 (a), we can 

choose the extracted features that lie close to the Boulic model features, which in this case 

corresponds to order 1 and 2 only from the 1-D block results. Figure 7.7 shows the final 

results for the scenario with the results from Boulic model for side by side comparison. 

 

 

 

Figure 7.6: All four features extracted by the 1-D block method run with model order = 4 

for right hand swinging case from (a) simulated, (b) measured data where the only features 

that correspond to the desired features from the Boulic model are given by order 1 and 2. 
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Figure 7.7: Final results of the one hand swinging case showing arm and wrist trajectories 

from (a) Boulic model, (b) 1-D block applied to EM simulated data, (c) 1-D block applied 

to measured data. 

 

The next scenario was very similar where the subject sat on a chair and swung one leg 

while keeping the knee stationary with a view to track the ankle and calf. The initial 

estimation of the time window size and the order number was performed in a similar 

manner. The singular value plots for the EM simulated data for this scenario shows a knee 

at index = 3 as shown in Figure 7.8 (a). After starting with a time window of 0.45 s and 

order = 3, the optimized results were obtained for time window = 0.2 s and order = 4. Figure 

7.8 (b-d) show the final results for this scenario extracted from 1-D block along with the 

Boulic model results. As it can be seen from Figures 7.7 and 7.8, there is a very good 

agreement between the two scenarios in terms of the extracted trajectories and velocities 

of the limb joints tracked. 

 

The next scenario was a more complex case: walking without moving hands intended for 

tracking the lower body parts (toes, ankles, knees) and the torso. We initially looked at the 
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Figure 7.8: (a) Singular value plot from EM simulated data for swinging one leg showing 

knee at index = 3, (b) Boulic model for the scenario, (c) extracted results using 1-D block 

from simulated data, (d) 1-D block results for measured data. 
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Boulic model results as shown in Figure 7.9 (a) and chose a time window of 0.25 s 

according to the half period of one step in the motion. For the initial estimation of the model 

order, we again used the singular value plot using the simulated data and the knee was 

observed at index = 3 as seen in Figure 7.9 (b). But in this case, the total number of joints 

of interest was larger, so the model order was increased gradually to 6 to capture all the 

targeted joints and obtain a better match with the Boulic model trajectories. For the 

simulated data, only one superposition iteration was enough to extract all the desired 

trajectories with model order = 6 and time window of 0.18 s. However, for the experimental 

data, three superposition iterations were required, and the singular value plot method was 

not feasible to use here. The first iteration was for extracting the torso with model order = 

3, second one for the toes and the ankles with model order = 10 and the final one for the 

knees with model order = 6, all with a time window of 0.18 s.  

 

 

 

Figure 7.9: (a) Boulic model results for a walking subject with 1ms-1 velocity, (b) Singular 

value plot from EM simulated data for the same scenario showing a knee at index = 3. 
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Because the corresponding joints for both legs move with identical motion, the joints from 

one leg remain almost stationary, while the other leg moves and vice versa.  The 1-D block 

processing method identifies each particular joint from both legs with one pole during 

motion. Thus, after identifying the features by comparing the motion features to the 

reference Boulic model motion, the left and right leg components can be separated as well. 

Figure 7.10 shows an example of this separation for the simulated data where the toes and 

ankles from both legs are identified by the 1-D block processing method with model orders 

1 and 2, respectively. Since one leg is almost stationary while a dismount is in motion, the 

first half cycles of these motions are attributed to one leg movement whereas the second  

halves correspond to the other. Thus, we can separate the two leg components accordingly 

and identify them as left and right depending on the knowledge of the starting step. And 

since one leg moves while the other stays almost stationary, it is not necessary to track both 

legs at the same time. Figure 7.11 shows the simulated and measured results for the  

 

 

 

Figure 7.10: Left and right leg joints separation from the extracted features using simulated 

radar data. 
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scenario showing all the joints. Again, it can be observed that we can clearly track the 

desired limb joints both from the simulated and measured radar data. 

 

The next step is to add the effect of hand swinging and investigate the possibility of tracking 

the feet, knees, hand(s) and the torso. For feature extraction from the measured data in both 

cases, three superposition iterations were considered to extract all the features from the 

experimental results. The first iteration gave the torso trajectory (with model order = 3), 

the second one extracted the feet (with model order = 10) and the third one provided the 

hand(s) and knee trajectories (with model order = 10), all with a sliding time window of 

0.23 s. The left and right leg components can be separated using the approach described in 

the previous section, given that we do not need to track both legs at the same time due to 

one being almost stationary while the other moves. However, it is not the same case for the 

 

 

Figure 7.11: Tracking torso, toes, ankles and knees of a subject walking without hand 

motion (a) Boulic model, (b) extracted features using 1-D block with EM simulation data, 

and (c) extracted features using 1-D block with measured radar data. 
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hands. For a dismount walking with both hands swinging, the hands are always moving in 

opposite directions and have almost opposite motion of each other. As shown in the Boulic 

model results of this case presented in Figure 7.12 (c), when the right hand is at its 

maximum velocity point around 0.3 s, the left hand is almost at its minimum velocity point 

and vice versa. The 1-D block algorithm, thus, identifies the hands separately and extracts 

the individual motions of both hands throughout the whole walking cycle. Since the motion 

gets much more complex, it becomes more difficult to individually identify all the 

components (like the toes, ankles) in addition to the hands. This limitation is not really an 

outcome of using the superposition approach, but because the approach has been useful in 

identifying the toes, ankles, and knees separately when the motion does not involve the 

hands, as presented by Figure 7.11 (c). It can be observed from Figure 7.12 that there is a 

slight degradation of the tracking performance as the motion complexity increases, 

especially in tracking the hand motion; which is another limitation of this method. 

However, we still can clearly identify the trajectories of the limb joints of interest using the 

1-D block algorithm and obtain consistent results with other reported works [2.6, 2.19, 

2.39, 2.41] for the relative velocities of hands and legs while walking. A summary of the 

micro-Doppler maximum frequencies of the tracked parts of the proposed method and 

Boulic model is given in Table 7.1. 
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Figure 7.12: Tracking torso, legs and right hand for a subject walking with only right hand 

swinging (a) Boulic model, (b) extracted limb joint velocities from measured data using 1-

D block method. (c) Boulic model, and (d) tracked limb joints from measured data using 

1-D block for a subject walking at about 1.1 ms-1 with both hands swinging. 
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Table 7.1: Comparison of maximum velocities of the tracked parts from Boulic model and 

measured data. 

 

Motion 
Tracked 

Part 

Max. Velocity 

Boulic  

(ms-1) 

Max. Velocity 

Measured  

(ms-1) 

Hand Swing 
Arm 2.05/-2.05 1.90/-1.99 

Wrist 1.18/-1.18 1.04/-1.08 

Leg Swing 
Ankle 1.0/-1.0 1.1/-1.0 

Calf 0.6/-0.6 0.56/-0.61 

Walking without 

moving hands 

Toes 4.67 4.51 

Ankles 3.85 4.12 

Knees 2.04 2.28 

Torso 1.20 1.01 

Walking with one 

hand swinging 

Feet 4.43 4.47 

Knees 2.04 2.11 

Torso 1.20 0.93 

Hand 3.48 3.95 

Walking with both 

hands swinging 

Feet 4.67 4.84 

Knees 2.24 2.37 

Torso 1.31 1.50 

Hands 3.49 3.11 
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7.2 SFCW Radar 

 

7.2.1 Results from Discrete Component System 

 

Next, we evaluate the performance of extraction of the features using 1-D block from the 

data collected by the SFCW radar built using the commercially available components with 

the fast switching PLL as the signal generator. We utilized stepped frequency from 2-3 

GHz with 20 MHz steps that would make the range resolution 15 cm and a maximum 

unambiguous range of 7.5 m. The transmitted power of the system was 8 dBm. The 

experiments that we considered were swinging one hand only, walking without moving 

hands and walking with moving both hands with similar experiment scenarios and 

maintaining similar velocities. In this case, we did not consider performing the EM 

simulations anymore. Since the EM analysis has to be performed at every frequency within 

the range, the already large problem becomes even larger and the computation time 

becomes proportionally larger. Figures 7.13-15 show the results from the three scenarios 

along with reporting the 1-D block parameters. 

 

Next, we utilize the available bandwidth and the range resolution capabilities of the SFCW 

radar to perform a multi-person experiment. The experiment scenario is presented in Figure 

7.16 (a) where two subjects are standing in front of the radar, one at 1.2 m distance and the 

other at 2.0 m distance. The subjects are symmetrically off-centered with respect to the 

radar boresight direction and the distance between the subjects is 0.6 m. Both subjects stay 

stationary and swing their right arm and the radar captures the motion from both targets. 

After collecting data, we can distinguish between the two subjects from the range profile  
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Figure 7.13: Wrist and elbow trajectory tracking for a subject swinging only one hand (a) 

Boulic model results, (b) results extracted by 1-D block using SFCW data with window 

size 0.2 s, and model order = 6. 

 

 

 

 

Figure 7.14: Trajectory tracking for a subject walking at 1 ms-1 velocity without moving 

hands (a) Boulic model results, (b) results extracted by 1-D block using SFCW data with 

window size 0.09 s, and three superposition iterations with order 4, 12 and 16. 
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Figure 7.15: Limb joint trajectory tracking results for a subject walking at 1 ms-1 velocity 

while moving both hands (a) Boulic model, (b) extracted by 1-D block using SFCW data 

with window size 0.08 s, and three superposition iterations with order 4, 13 and 15. 

 

as shown in Figure 7.16 (b). We can identify the range bin spans within which the 

movements of each subject are limited to and perform the 1-D block analysis using the 

respective spans. Figure 7.17 shows the extracted movement of the hands for the two 

subjects. We do observe that the there is some degradation in tracking the hand movement 

of the two subjects. This can be attributed to the mutual coupling created by the two 

subjects in the scene, as we observed before for simultaneous vital signs detection of two 

subjects [3.5]. Also, since we are distinguishing two subjects by the non-overlapping range 

bins, this method will not work when the two subjects are in the same range bin. 
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Figure 7.16: (a) Experiment scenario for multi-person motion analysis using SFCW radar 

system, (b) Extracted range profile identifying the two subjects and their movement ranges. 

 

 

 

Figure 7.17: Extracted hand motion from 1-D block algorithm for the multi-subject motion 

analysis experiment. 
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7.2.2 Results from Hybrid System 

 

We also performed gait analysis experiments with the hybrid system discussed in Chapter 

6 using the same PLL system as the signal generator. But since the operating range of the 

radar front-end in this case was 3-4 GHz, we had to generate that range of frequencies from 

the PLL by changing the reference input signal to the PLL. Now, as discussed earlier in 

Chapter 1 and 2, the generated Doppler shift will depend on the radar operating frequency 

and the maximum velocity that can be detected by a 3-4 GH radar with PRF of 200 Hz is 

4.3 ms-1. Thus, for the walking experiment, we utilized a lower walking speed of around 

0.8 ms-1 so that the maximum velocities generated by the toes are within that limit. Figure 

7.18 and 7.19 present the feature extraction results of walking without moving hands and 

walking with moving both hands respectively. 

 

 
 

Figure 7.18: Trajectory tracking using the hybrid SFCW system for a subject walking at 

about 0.8 ms-1 velocity without moving hands (a) Boulic model results, (b) results extracted 

by 1-D block using SFCW data with window size 0.09 s, and three superposition iterations 

with order 4, 14 and 16. 
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Figure 7.19: Gait analysis using the hybrid SFCW system for a subject walking at about 

0.8 ms-1 velocity while moving both hands (a) Boulic model results, (b) results extracted 

by 1-D block using SFCW data with window size 0.09 s, and three superposition iterations 

with order 3, 13 and 13. 

 

7.3 Discussion on the Gait Analysis Results 

 

As seen from the results reported above, using the 1-D block method, we have been 

successful in detecting the desired limb joint motions from different simple and complex 

human motions using both CW and UWB radars. Although there was slight degradation 

when the walking motion involved the hands, but still we could identify the individual parts 

from both simulated and measured data from a normal laboratory environment. Figure 7.20 

shows the results obtained in this work side by side with other reported work on limb joint 

tracking for a walking subject. 
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Figure 7.20: (a) Trajectory tracking results in this work for a walking subject moving at 1 

ms-1 using CW and SFCW radars. (b) Gait analysis results for a walking subject reported 

in [2.19] using an 8.9–9.4 GHz SFCW radar where the extraction of the complete hand 

swing was not possible. (c) Motion analysis results reported in [2.39] where identification 

was done for the legs, hands and torso trajectories from simulated data of a walking subject, 

but results from measured data was difficult to interpret.  (d) Analysis performed in [2.44] 

using simulated UWB radar data for identifying only the torso and lower body parts of a 

walking subject. (e) Gait analysis using UWB-IR radar [2.10] for a walking subject with 

velocity of 0.33 ms-1 showing the extraction of toes and torso only. 
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In spite of the success of the 1-D block method in extracting the individual limb-joints from 

a walking subject, the method does have some limitations. The initial estimation of the 

model order and the time window size becomes very complicated as the motion becomes 

more complex. Using the SVD method that we discussed in Chapter 6, we can separate 

between the signal space and the noise space by looking at the sharp transition in the SVD 

plots. But this is only true when the noise is low which the case for simulations is. In real 

experiments, the noise is higher along with external interference, thus the SVD plot cannot 

successfully separate the noise and the signal in that case.  

 

Once we start with an initial model order, eventually the result is obtained for a model 

order that is typically larger than the number of limbs that we intend to track. Thus, we 

have to choose the appropriate features by comparing the extracted result with the reference 

model as described in previous sections. Although this reference motion can be estimated 

for typical human motion, in order to analyze a person with abnormal movement or with 

joint problems, the extracted results can be difficult to interpret. In addition, the algorithm 

is very sensitive to the model order and the time window and the change in behavior due 

to the change in these parameters is not always intuitive. This is especially true for the 

complex motion scenarios like walking. For example, if we go back to the experiment data 

for walking without moving hands scenario, we utilized three superposition iterations with 

order 3, 10 and 6 respectively with a time window of 0.18 s. The first iteration extracted 

the torso, the second provided the toes and ankles while the third extracted the knee 

trajectories. The results from the three iterations are presented in Figure 7.21 where the 

desired features from each iteration are highlighted. We have to identify the desired 
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motions from each iteration individually which would be difficult without referring to the 

reference motion.  

 

Now if we change the time window by about ± 10% but keeping the same model orders, 

the extraction results look very different and does not match well with the reference results 

as shown in Figure 7.22. Also, if we choose a slightly different model order, for example, 

9 or 11 instead of 10 for the second iteration, that also impacts the extraction results from 

the second and third iteration significantly as shown in Figure 7.23. And this applies to 

other walking scenarios using both the CW and the SFCW radar data. Thus, we could not 

find a systematic way to choose the model order and time window for each experiment 

scenario, rather chose them through trial and error. 

 

 

 

Figure 7.21: 1-D block extraction results from CW radar data for walking without moving 

hands showing the highlighted desired features along with all other features derived from 

the three iterations. 
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Figure 7.22: Impact of varying the time window size for the same scenario presented in 

Figure 7.21 with same model orders (3, 10 and 6) but with (a) about 10 % smaller time 

window (0.16 s) (b) about 10% larger time window (0.2 s). 
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Figure 7.23: Impact of varying the model order for the same scenario presented in Figure 

7.21 with same time window (0.18 s) and order = 3 and 6 for first and third iterations 

respectively but with (a) order = 9 for the second iteration and (b) order = 11 for the second 

iteration. 
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7.4 Vital Signs Detection 

 

An added advantage of using radar systems for motion analysis is that it can be used for 

other applications such as vital signs detection. In that case, we do not really need a high 

PRF radar since the maximum frequency that we are trying to detect is less than 1.6 Hz 

which is the maximum range of human heart rate. Typically, we set the data collection 

period to 10 s to capture at least two cycles of respiration, which is assumed to be around 

0.2 Hz. A shorter duration that captures slightly over one respiration cycle could also be 

adequate. We have successfully utilized the SDR as well as the PLL based system to detect 

human vital signs. 

 

For the PLL based system, since the DDS has two independently working channels, we 

can operate the system as a multiple mode radar (MMR) incorporating the functions of 

both CW and SFCW Doppler radars rather than using separate platforms for each radar 

type. Use of the SFCW mode allows short-range SAR operation, and multi-subject 

tracking.  Meanwhile, the CW mode based on Doppler operation enables long range remote 

triage. We implemented the system based on a very simple microcontroller-based approach 

where the DDS channels were independently configured using two pins on the 

microcontroller to provide either a CW signal or to step through a certain frequency range 

for SFCW operation. We even implemented a higher sensitivity mode where the signal to 

be transmitted is up-converted to higher frequency that would provide better resolution 

[7.2]. Two SPDT switches on both the transmitting and the receiving sides are used to 

choose between the up-conversion path or normal transmission path and the switches are 
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controlled by the microcontroller as well. The MMR system block diagram is shown in 

Figure 7.24.  

 

For close range detection, we can have channel 1 and channel 2 step through 2-3 GHz and 

3-4 GHz respectively with 20 MHz. This is equivalent to a 2 GHz bandwidth UWB SFCW 

radar and provides the highest available range resolution and precise localization of 

subjects with maximum unambiguous range of 7.5 m. We illuminate a subject sitting 0.75 

m away from the radar with the transmitted signal. For reference, a commercial belt sensor 

and a pulse sensor were used for respiration and heart rate measurement respectively. As 

it can be observed from Figure 7.25 (a), even though the conventional system can detect 

 

 

 

Figure 7.24: Block diagram of the Multi-Mode Radar showing the (1) signal generator, (2) 

RF front-end and (3) microcontroller. All the modes and the SPDT switches are controlled 

by the microcontroller. 
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the respiration rate clearly, there is no distinct peak for the heart rate which is in agreement 

with the results obtained in [7.3]. The percentage error calculated from the radar data 

compared to the reference belt sensor was 2.4%. We can operate the MMR in the higher 

sensitivity mode by controlling the microcontroller unit to switch the signal path and 

include a mixer for up-conversion to 8 GHz center frequency, as well as, a down-

conversion mixer in the receiver chain. Up-converting to an even higher center frequency 

would allow us to achieve even higher sensitivity, and could be done in multiple conversion 

steps. Due to the use of the up-converted signal, the higher sensitivity mode is capable of 

providing distinct peaks for both the respiration rate and heart rate even using the simple 

conventional FFT algorithm as shown in Figure 7.25 (b). The percentage errors in the 

respiration and heart rate obtained from the radar were 1.95% and 0.33% respectively. 

 

For long-range vital signs detection, we can switch the radar to operate in CW mode at 2.4 

GHz with a transmitted power level of 12 dBm. An experiment was conducted to monitor 

a sedentary subject 20 m away from radar transceiver. The experiment setup is shown in 

Figure 7.26 (a). The data collected from the radar was processed and compared with the 

reference pulse sensor and the results are shown in Figure 7.26 (b). The detected heart rate 

with CW has an error rate less than 3% when compared with the reference sensor reading. 

 

We have also successfully utilized the SDR system for vital signs experiments behind 

barriers as well. Since the developed SDR system allows the use of any frequency in its 

range of operation between 70 MHz to 6 GHz, we utilized it to investigate effect of 

changing  the  frequency  for  through  barrier  vital  signs  detection.  For  this  scenario, a 
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     (a)      (b) 

 

Figure 7.25: (a) Vital signs detection results using the conventional SFCW system 

operating between 2-4 GHz. (b) Vital signs detection from the same scenario using the up-

converted stepped frequency signal of 7.5-8.5 GHz for higher sensitivity. 

 

 
     

       (a)      (b) 

 

Figure 7.26: Long range vital signs detection using the CW mode (a) experiment setup, (b) 

vital signs spectrum. 
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subject’s vital signs were measured through a barrier to emulate disaster rescue situations 

when subjects may be buried under rubble. Although the actual rubble in a disaster situation 

is a complex structure [7.4], for a simple proof of concept experiment, the barrier under 

which the subject was lying down, was emulated here with a wooden slab. Two horn 

antennas were pointed downwards from 1 m above, and 1.2 m away from the subject. The 

analysis was done first with a CW carrier frequency at 2.45 GHz, and later repeated with a 

lower carrier frequency of 915 MHz. An additional external variable gain amplifier was 

also used in this experiment to maintain the output power at 12 dBm for the two carrier 

frequencies. The subject wore two commercial contact sensors: a belt sensor (from 

NeuLog) for respiration, and a pulse sensor (from pulsesensor.com) for heart rate 

measurements. Our collaborators at CUA also modeled the entire scene including a human 

torso model, the infinite ground plane (concrete dielectric constant) and the wood layer. 

Additionally, the mutual coupling among these objects are accounted for with our full wave 

technique as mentioned in Chapter 6. Typically, using higher frequencies will lead to 

higher sensitivity as indicated by [5.1, 7.5]. However, if the subjects are behind a barrier 

we observed less sensitivity at 2.45 GHz compared to 915 MHz which is related to a 

relatively higher path attenuation in the presence of the barrier at 2.45 GHz. Figure 7.27 

shows simulated and measured results for vital signs detection in the described scenario. 

As observed in Figure 7.27 (a) and (b), the heart rate peak is relatively stronger for both 

simulation and measurement in the 915 MHz case.  
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Figure 7.27: Vital signs spectrum for a subject lying under a wooden barrier at CW 

frequency (a) 2.45 GHz and (b) 915 MHz. The vertical solid and dashed black lines 

represent the contact sensor data for respiration and heart rate respectively. 
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7.5 Conclusion 

 

This chapter presented the gait analysis results from the developed CW SDR, SFCW with 

commercial discrete components and the fast switching PLL and the hybrid SFCW system. 

The use of 1-D block allowed the extraction of all the desired features for a walking person 

from each of those systems. Side by side comparison with other previously reported works 

better performance in terms of tracking all the limb joints from the experimental data. 

Although the 1-D block method did present some limitations mainly related to the choice 

of the parameters, it can still be useful in many gait analysis applications such as treating 

patients with joint problems, motion classification, and so on. In addition to all these, the 

developed systems provide vital signs detection capabilities with good accuracy as well. 
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CHAPTER EIGHT  

CONCLUSION AND FUTURE WORK  

 
In collaboration with MITLL, CUA, and Lab partners (Farnaz, Ren, Sabikun), we have 

investigated non-contact human motion using radar techniques in this dissertation, 

including 1) implementation of fast switching SFCW system capable of performing gait 

analysis experiments, 2) investigation of use of software defined radars as flexible radar 

hardware platform, 3) design of radar front-end components on chip with a view to the 

implementation of an eventual radar system on chip, and 4) use of signal processing 

algorithm that can track individual limb joints from a human motion. We were eventually 

successful in implementing a combination of hardware and software methods that was 

capable of remotely performing gait analysis for simple human motions like swinging one 

hand or leg as well as complex motions like walking. The accomplishments of this work 

are summarized below: 

 

8.1 Accomplishments 

 

Firstly a stepped-frequency continuous wave radar with 200 Hz pulse repetition frequency 

is implemented in collaboration with Farnaz that is capable of unambiguously detecting 

velocities of up to 6 ms-1 operating within the 2-3 GHz band. The system utilized a fast 

switching PLL scheme to achieve the high PRF while maintaining the implementation cost 

low. 
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Next, a thorough investigation is performed to implement a software defined radar system 

that provides features like frequency tunability, small size, enhanced baseband signal 

handling capabilities and the lack of need for any external local oscillator signal sources. 

Using the SDR system, we implemented a tunable CW radar as well as a SFCW radar 

capable of operating at any frequency range within 70 MHz to 6 GHz. Although we could 

not make the PRF of the SFCW mode high enough for gait analysis, we were successful in 

using the platform in the CW mode to perform motion analysis experiments. 

 

With a goal to making an overall compact UWB radar system, we designed the radar front-

end components like the amplifier, power divider, mixer on chip using GaAs HBT and 

HEMT fabrication processes sponsored by Qorvo. The evaluation boards of the individual 

components were connected using co-axial cables to implement a hybrid radar system 

capable of operating within 3-4 GHz band, which could be easily integrated into a single 

printed circuit board. 

 

Use of the full wave electromagnetic (EM) simulated motion model developed by CUA 

for the validation of initial hardware prototype and signal processing algorithm. The 

emulated EM model was useful for obtaining a clean set of repeatable reference data that 

could take different realistic settings into account such as body shape and material, noise, 

ground reflection, and parts interference. 

 

Utilization of 1-D block method, a signal processing algorithm developed by our 

collaborators at MITLL to extract the velocities of different limb-joints in motion. Using 

the algorithm, we were successful in tracking the desired organs using data collected from 
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both CW and UWB system operating in typical non-controlled environment. Capability of 

utilizing CW radar data could pave the way for the utilization of low cost Doppler radars 

for performing gait analysis, while use of UWB radars can enable simultaneous multi-

person tracking. 

 

In addition to performing gait analysis, we utilized the implemented hardware system to 

detect human vital signs. The flexible and tunable software-defined radar allowed the 

investigation of the effect of switching the operating frequency for through barrier vital 

signs detection. We also implemented a multi-mode radar that can provide high sensitivity 

and long distance vital signs detection capabilities by switching operating modes and 

frequencies. 
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Modeling of Vital Sign Detection and Human Motion Sensing Validated by Non-Contact 

Radar Measurements”, IEEE Journal of Electromagnetics, RF, and Microwaves in 

Medicine and Biology, Mar. 2018. 
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on Emerging and Selected Topics in Circuits and Systems, Jun. 2018. 

 

Conference Paper: 

 

• F. Quaiyum, L. Ren, S. Nahar, F. Foroughian, A. E. Fathy, “Development of a 

Reconfigurable Low Cost Multi-Mode Radar System for Contactless Vital Signs 

Detection”, 2017 International Microwave Symposium (IMS), Honolulu, HI, Jun. 2017. 

 

Others: 

J: R. Kazemi, J. Palmer, F. Quaiyum, A. E. Fathy, “A Steerable Miniaturized Printed 

Quadrifilar Helical Array Antenna Using Digital Phase Shifters for BGAN/GPS 

Applications”, IET Microwaves, Antennas & Propagation, Jan. 2018. 

C1: A. E. Fathy, O. Kilic, L. Ren, N. Tran, T. V. Dai, F. F. Foroughian, F. Quaiyum, 
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Synchronous Rectifier for WPT Receivers with Reduced THD”, IEEE PELS Workshop on 

Emerging Technologies: Wireless Power, Oak Ridge, TN, Oct. 2016. 
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To conclude the work, using the developed software and hardware platform, we were able 

to remotely analyze the motion of different body parts for different movements. We 

collected data from three different systems: the SDR operating in CW mode, SFCW 

implemented using discrete components and hybrid SFCW system using custom-designed 

circuits and were successful in tracking the desired body parts using each system through 

the 1-D block algorithm. Monitoring individual parts for simple motions was relatively 

straightforward, but as the motion got more complicated, i.e. walking while moving hands, 

it became progressively harder to track, and the parameter selection for the 1-D block 

method became less intuitive. It was difficult to simultaneously track all limbs, especially 

the hands in particular. Although the 1-D block method tracked individual scatterers 

automatically according to the selected order number, it did need to refer to the Boulic/EM 

model reference data to identify which scatterer represents which limb joint. That reference 

motion data can be obtained by running EM simulations of the motions or using other 

sophisticated method like using cameras or other imaging techniques for new “not-so-

normal-gait” analysis. The extracted features from the measured data showed some 

discrepancy in comparison with the results from simulation and Boulic model. But even if 

the exact joint movements are not available, the method could still be accurate enough so 

that important changes in repeated measurements can be obtained which can be medically 

useful.  In real scenarios, performing statistical analysis on repetitive measurements can 

help achieve more accurate results. Side by side comparison with previously published 

work demonstrated improved organ tracking performance for a walking human from both 
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our CW and UWB system. We also demonstrated the suitability of the developed hardware 

systems for another relevant application: vital signs detection. 

 

8.3 Direction of Future Work 

 
1. Although we were able to implement a SFCW system using the SDR platform, it could 

not provide high enough pulse repetition frequency to be suitable for use in gait 

analysis. Thus, there is scope of research for investigating other SDR techniques for 

fast frequency switching that can realize a flexible, portable and self-contained system 

that can operate in both CW and SFCW mode for gait analysis. 

 

2. We implemented a hybrid radar system using custom designed components but the 

system was not an integrated solution. The immediate next step can be populating all 

the individual ICs in a single printed circuit board whereas the final step will be the 

integration of all the components into a single chip. 

 

3.  We faced some issues in choosing the optimum parameters for the 1-D block algorithm 

while analyzing walking motion. Further optimization of the algorithm along with 

integrating capabilities such as machine learning techniques and pattern recognition 

can be very useful for analyzing these motion in a more automatic manner without 

requiring user inputs. 

 

4. For the multi-person experiments, we currently distinguish the subjects according to 

the respective range bins and perform the analysis individually. But we did not perform 
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any experiments where the subjects overlap in the range direction or their elapsed 

ranges cross over. Thus, there is scope of research in such experiments as well to make 

the system truly suitable for any multi-person scenario. 

 

5. Analysis of faster moving objects like a subject running or jogging on a treadmill is 

still an open question. Such analysis can extend the application of this research for 

athlete performance evaluation as well.  
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Appendix 1.A: No-OS main.c file for SDR 

 
/***************************** Include Files ******************************/ 
#define XILINX_PLATFORM 
#include "xil_io.h" 
#include <stdio.h> 
#include "config.h" 
#include "ad9361_api.h" 
#include "parameters.h" 
#include "platform.h" 
#ifdef XILINX_PLATFORM 
#include <xil_cache.h> 
#endif 
#if defined XILINX_PLATFORM || defined LINUX_PLATFORM 
#include "adc_core.h" 
#include "dac_core.h" 
#endif 
 
/****Variables Definitions *******************************/ 
 
AD9361_InitParam default_init_param = { 
 /* Device selection */ 
 ID_AD9361, // dev_sel 
 /* Identification number */ 
 0,  //id_no 
 /* Reference Clock */ 
 40000000UL, //reference_clk_rate 
 /* Base Configuration */ 
 0,  //two_rx_two_tx_mode_enable *** adi,2rx-2tx-mode-enable 
 1,  //one_rx_one_tx_mode_use_rx_num *** adi,1rx-1tx-mode-use-rx-num 
 1,  //one_rx_one_tx_mode_use_tx_num *** adi,1rx-1tx-mode-use-tx-num 
 1,  //frequency_division_duplex_mode_enable *** adi,frequency-division-duplex-mode-enable 
 0,  //frequency_division_duplex_independent_mode_enable *** adi,frequency-division-duplex-independent-mode-enable 
 0,  //tdd_use_dual_synth_mode_enable *** adi,tdd-use-dual-synth-mode-enable 
 0,  //tdd_skip_vco_cal_enable *** adi,tdd-skip-vco-cal-enable 
 0,  //tx_fastlock_delay_ns *** adi,tx-fastlock-delay-ns 
 0,  //rx_fastlock_delay_ns *** adi,rx-fastlock-delay-ns 
 0,  //rx_fastlock_pincontrol_enable *** adi,rx-fastlock-pincontrol-enable 
 0,  //tx_fastlock_pincontrol_enable *** adi,tx-fastlock-pincontrol-enable 
 0,  //external_rx_lo_enable *** adi,external-rx-lo-enable 
 0,  //external_tx_lo_enable *** adi,external-tx-lo-enable 
 5,  //dc_offset_tracking_update_event_mask *** adi,dc-offset-tracking-update-event-mask 
 6,  //dc_offset_attenuation_high_range *** adi,dc-offset-attenuation-high-range 
 5,  //dc_offset_attenuation_low_range *** adi,dc-offset-attenuation-low-range 
 0x28, //dc_offset_count_high_range *** adi,dc-offset-count-high-range 
 0x32, //dc_offset_count_low_range *** adi,dc-offset-count-low-range 
 0,  //split_gain_table_mode_enable *** adi,split-gain-table-mode-enable 
 MAX_SYNTH_FREF, //trx_synthesizer_target_fref_overwrite_hz *** adi,trx-synthesizer-target-fref-overwrite-hz 
 1,  // qec_tracking_slow_mode_enable *** adi,qec-tracking-slow-mode-enable 
 /* ENSM Control */ 
 0,  //ensm_enable_pin_pulse_mode_enable *** adi,ensm-enable-pin-pulse-mode-enable 
 0,  //ensm_enable_txnrx_control_enable *** adi,ensm-enable-txnrx-control-enable 
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 /* LO Control */ 
 2000000000UL, //rx_synthesizer_frequency_hz *** adi,rx-synthesizer-frequency-hz 
 2000000000UL, //tx_synthesizer_frequency_hz *** adi,tx-synthesizer-frequency-hz 
 /* Rate & BW Control */ 
 {983040000, 245760000, 122880000, 61440000, 30720000, 30720000}, 
//uint32_t rx_path_clock_frequencies[6] *** adi,rx-path-clock-frequencies 
 {983040000, 122880000, 122880000, 61440000, 30720000, 30720000}, 
//uint32_t tx_path_clock_frequencies[6] *** adi,tx-path-clock-frequencies 
 18000000, //rf_rx_bandwidth_hz *** adi,rf-rx-bandwidth-hz 
 18000000, //rf_tx_bandwidth_hz *** adi,rf-tx-bandwidth-hz 
 /* RF Port Control */ 
 0,  //rx_rf_port_input_select *** adi,rx-rf-port-input-select 
 0,  //tx_rf_port_input_select *** adi,tx-rf-port-input-select 
 /* TX Attenuation Control */ 
 10000, //tx_attenuation_mdB *** adi,tx-attenuation-mdB 
 0,  //update_tx_gain_in_alert_enable *** adi,update-tx-gain-in-alert-enable 
 /* Reference Clock Control */ 
 0,  //xo_disable_use_ext_refclk_enable *** adi,xo-disable-use-ext-refclk-enable 
 {8, 5920}, //dcxo_coarse_and_fine_tune[2] *** adi,dcxo-coarse-and-fine-tune 
 CLKOUT_DISABLE, //clk_output_mode_select *** adi,clk-output-mode-select 

 /* Gain Control */ 
 0,  //gc_rx1_mode *** adi,gc-rx1-mode 
 0,  //gc_rx2_mode *** adi,gc-rx2-mode 
 58,  //gc_adc_large_overload_thresh *** adi,gc-adc-large-overload-thresh 
 4,  //gc_adc_ovr_sample_size *** adi,gc-adc-ovr-sample-size 
 47,  //gc_adc_small_overload_thresh *** adi,gc-adc-small-overload-thresh 
 8192, //gc_dec_pow_measurement_duration *** adi,gc-dec-pow-measurement-duration 

 0,  //gc_dig_gain_enable *** adi,gc-dig-gain-enable 
 800, //gc_lmt_overload_high_thresh *** adi,gc-lmt-overload-high-thresh 
 704, //gc_lmt_overload_low_thresh *** adi,gc-lmt-overload-low-thresh 
 24,  //gc_low_power_thresh *** adi,gc-low-power-thresh 
 15,  //gc_max_dig_gain *** adi,gc-max-dig-gain 
 /* Gain MGC Control */ 
 1,  //mgc_dec_gain_step *** adi,mgc-dec-gain-step 
 1,  //mgc_inc_gain_step *** adi,mgc-inc-gain-step 
 0,  //mgc_rx1_ctrl_inp_enable *** adi,mgc-rx1-ctrl-inp-enable 
 0,  //mgc_rx2_ctrl_inp_enable *** adi,mgc-rx2-ctrl-inp-enable 
 0,  //mgc_split_table_ctrl_inp_gain_mode *** adi,mgc-split-table-ctrl-inp-gain-mode 
 /* Gain AGC Control */ 
 10,  //agc_adc_large_overload_exceed_counter *** adi,agc-adc-large-overload-exceed-counter 
 2,  //agc_adc_large_overload_inc_steps *** adi,agc-adc-large-overload-inc-steps 

 0,  //agc_adc_lmt_small_overload_prevent_gain_inc_enable *** adi,agc-adc-lmt-small-overload-prevent-gain-inc-enable 
 10,  //agc_adc_small_overload_exceed_counter *** adi,agc-adc-small-overload-exceed-counter 
 4,  //agc_dig_gain_step_size *** adi,agc-dig-gain-step-size 
 3,  //agc_dig_saturation_exceed_counter *** adi,agc-dig-saturation-exceed-counter 
 1000, // agc_gain_update_interval_us *** adi,agc-gain-update-interval-us 

 0,  //agc_immed_gain_change_if_large_adc_overload_enable *** adi,agc-immed-gain-change-if-large-adc-overload-enable 
 0,  //agc_immed_gain_change_if_large_lmt_overload_enable *** adi,agc-immed-gain-change-if-large-lmt-overload-enable 
 10,  //agc_inner_thresh_high *** adi,agc-inner-thresh-high 
 1,  //agc_inner_thresh_high_dec_steps *** adi,agc-inner-thresh-high-dec-steps 
 12,  //agc_inner_thresh_low *** adi,agc-inner-thresh-low 
 1,  //agc_inner_thresh_low_inc_steps *** adi,agc-inner-thresh-low-inc-steps 
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 10,  //agc_lmt_overload_large_exceed_counter *** adi,agc-lmt-overload-large-exceed-counter 
 2,  //agc_lmt_overload_large_inc_steps *** adi,agc-lmt-overload-large-inc-steps 
 10,  //agc_lmt_overload_small_exceed_counter *** adi,agc-lmt-overload-small-exceed-counter 
 5,  //agc_outer_thresh_high *** adi,agc-outer-thresh-high 
 2,  //agc_outer_thresh_high_dec_steps *** adi,agc-outer-thresh-high-dec-steps 
 18,  //agc_outer_thresh_low *** adi,agc-outer-thresh-low 
 2,  //agc_outer_thresh_low_inc_steps *** adi,agc-outer-thresh-low-inc-steps 

 1,  //agc_attack_delay_extra_margin_us; *** adi,agc-attack-delay-extra-margin-us 
 0,  //agc_sync_for_gain_counter_enable *** adi,agc-sync-for-gain-counter-enable 

 /* Fast AGC */ 
 64,  //fagc_dec_pow_measuremnt_duration ***  adi,fagc-dec-pow-measurement-duration 
 260, //fagc_state_wait_time_ns ***  adi,fagc-state-wait-time-ns 
 /* Fast AGC - Low Power */ 
 0,  //fagc_allow_agc_gain_increase ***  adi,fagc-allow-agc-gain-increase-enable 
 5,  //fagc_lp_thresh_increment_time ***  adi,fagc-lp-thresh-increment-time 

 1,  //fagc_lp_thresh_increment_steps ***  adi,fagc-lp-thresh-increment-steps 

 /* Fast AGC - Lock Level */ 
 10,  //fagc_lock_level ***  adi,fagc-lock-level 
 1,  //fagc_lock_level_lmt_gain_increase_en ***  adi,fagc-lock-level-lmt-gain-increase-enable 
 5,  //fagc_lock_level_gain_increase_upper_limit ***  adi,fagc-lock-level-gain-increase-upper-limit 
 /* Fast AGC - Peak Detectors and Final Settling */ 
 1,  //fagc_lpf_final_settling_steps ***  adi,fagc-lpf-final-settling-steps 
 1,  //fagc_lmt_final_settling_steps ***  adi,fagc-lmt-final-settling-steps 

 3,  //fagc_final_overrange_count ***  adi,fagc-final-overrange-count 

 /* Fast AGC - Final Power Test */ 
 0,  //fagc_gain_increase_after_gain_lock_en ***  adi,fagc-gain-increase-after-gain-lock-enable 
 /* Fast AGC - Unlocking the Gain */ 
 0,  //fagc_gain_index_type_after_exit_rx_mode ***  adi,fagc-gain-index-type-after-exit-rx-mode 
 1,  //fagc_use_last_lock_level_for_set_gain_en ***  adi,fagc-use-last-lock-level-for-set-gain-enable 
 1,  //fagc_rst_gla_stronger_sig_thresh_exceeded_en ***  adi,fagc-rst-gla-stronger-sig-thresh-exceeded-enable 
 5,  //fagc_optimized_gain_offset ***  adi,fagc-optimized-gain-offset 

 10,  //fagc_rst_gla_stronger_sig_thresh_above_ll ***  adi,fagc-rst-gla-stronger-sig-thresh-above-ll 
 1,  //fagc_rst_gla_engergy_lost_sig_thresh_exceeded_en ***  adi,fagc-rst-gla-engergy-lost-sig-thresh-exceeded-enable 
 1,  //fagc_rst_gla_engergy_lost_goto_optim_gain_en ***  adi,fagc-rst-gla-engergy-lost-goto-optim-gain-enable 
 10,  //fagc_rst_gla_engergy_lost_sig_thresh_below_ll ***  adi,fagc-rst-gla-engergy-lost-sig-thresh-below-ll 
 8,  //fagc_energy_lost_stronger_sig_gain_lock_exit_cnt ***  adi,fagc-energy-lost-stronger-sig-gain-lock-exit-cnt 
 1,  //fagc_rst_gla_large_adc_overload_en ***  adi,fagc-rst-gla-large-adc-overload-enable 
 1,  //fagc_rst_gla_large_lmt_overload_en ***  adi,fagc-rst-gla-large-lmt-overload-enable 
 0,  //fagc_rst_gla_en_agc_pulled_high_en ***  adi,fagc-rst-gla-en-agc-pulled-high-enable 
 0,  //fagc_rst_gla_if_en_agc_pulled_high_mode ***  adi,fagc-rst-gla-if-en-agc-pulled-high-mode 
 64,  //fagc_power_measurement_duration_in_state5 ***  adi,fagc-power-measurement-duration-in-state5 
 /* RSSI Control */ 
 1,  //rssi_delay *** adi,rssi-delay 
 1000, //rssi_duration *** adi,rssi-duration 
 3,  //rssi_restart_mode *** adi,rssi-restart-mode 
 0,  //rssi_unit_is_rx_samples_enable *** adi,rssi-unit-is-rx-samples-enable 

 1,  //rssi_wait *** adi,rssi-wait 
 /* Aux ADC Control */ 
 256, //aux_adc_decimation *** adi,aux-adc-decimation 
 40000000UL, //aux_adc_rate *** adi,aux-adc-rate 
 /* AuxDAC Control */ 
 1,  //aux_dac_manual_mode_enable ***  adi,aux-dac-manual-mode-enable 
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 0,  //aux_dac1_default_value_mV ***  adi,aux-dac1-default-value-mV 

 0,  //aux_dac1_active_in_rx_enable ***  adi,aux-dac1-active-in-rx-enable 
 0,  //aux_dac1_active_in_tx_enable ***  adi,aux-dac1-active-in-tx-enable 
 0,  //aux_dac1_active_in_alert_enable ***  adi,aux-dac1-active-in-alert-enable 
 0,  //aux_dac1_rx_delay_us ***  adi,aux-dac1-rx-delay-us 
 0,  //aux_dac1_tx_delay_us ***  adi,aux-dac1-tx-delay-us 
 0,  //aux_dac2_default_value_mV ***  adi,aux-dac2-default-value-mV 
 0,  //aux_dac2_active_in_rx_enable ***  adi,aux-dac2-active-in-rx-enable 

 0,  //aux_dac2_active_in_tx_enable ***  adi,aux-dac2-active-in-tx-enable 
 0,  //aux_dac2_active_in_alert_enable ***  adi,aux-dac2-active-in-alert-enable 
 0,  //aux_dac2_rx_delay_us ***  adi,aux-dac2-rx-delay-us 
 0,  //aux_dac2_tx_delay_us ***  adi,aux-dac2-tx-delay-us 
 /* Temperature Sensor Control */ 
 256, //temp_sense_decimation *** adi,temp-sense-decimation 
 1000, //temp_sense_measurement_interval_ms *** adi,temp-sense-measurement-interval-ms 
 0xCE, //temp_sense_offset_signed *** adi,temp-sense-offset-signed 
 1,  //temp_sense_periodic_measurement_enable *** adi,temp-sense-periodic-measurement-enable 
 /* Control Out Setup */ 
 0xE0, //ctrl_outs_enable_mask *** adi,ctrl-outs-enable-mask 
 0x01,  //ctrl_outs_index *** adi,ctrl-outs-index 
 /* External LNA Control */ 
 0,  //elna_settling_delay_ns *** adi,elna-settling-delay-ns 
 0,  //elna_gain_mdB *** adi,elna-gain-mdB 
 0,  //elna_bypass_loss_mdB *** adi,elna-bypass-loss-mdB 
 0,  //elna_rx1_gpo0_control_enable *** adi,elna-rx1-gpo0-control-enable 

 0,  //elna_rx2_gpo1_control_enable *** adi,elna-rx2-gpo1-control-enable 
 0,  //elna_gaintable_all_index_enable *** adi,elna-gaintable-all-index-enable 
 /* Digital Interface Control */ 
 0,  //digital_interface_tune_skip_mode *** adi,digital-interface-tune-skip-mode 
 0,  //digital_interface_tune_fir_disable *** adi,digital-interface-tune-fir-disable 
 1,  //pp_tx_swap_enable *** adi,pp-tx-swap-enable 
 1,  //pp_rx_swap_enable *** adi,pp-rx-swap-enable 
 0,  //tx_channel_swap_enable *** adi,tx-channel-swap-enable 
 0,  //rx_channel_swap_enable *** adi,rx-channel-swap-enable 
 1,  //rx_frame_pulse_mode_enable *** adi,rx-frame-pulse-mode-enable 

 0,  //two_t_two_r_timing_enable *** adi,2t2r-timing-enable 
 0,  //invert_data_bus_enable *** adi,invert-data-bus-enable 
 0,  //invert_data_clk_enable *** adi,invert-data-clk-enable 
 0,  //fdd_alt_word_order_enable *** adi,fdd-alt-word-order-enable 

 0,  //invert_rx_frame_enable *** adi,invert-rx-frame-enable 
 0,  //fdd_rx_rate_2tx_enable *** adi,fdd-rx-rate-2tx-enable 
 0,  //swap_ports_enable *** adi,swap-ports-enable 
 0,  //single_data_rate_enable *** adi,single-data-rate-enable 
 1,  //lvds_mode_enable *** adi,lvds-mode-enable 
 0,  //half_duplex_mode_enable *** adi,half-duplex-mode-enable 
 0,  //single_port_mode_enable *** adi,single-port-mode-enable 
 0,  //full_port_enable *** adi,full-port-enable 
 0,  //full_duplex_swap_bits_enable *** adi,full-duplex-swap-bits-enable 

 0,  //delay_rx_data *** adi,delay-rx-data 
 0,  //rx_data_clock_delay *** adi,rx-data-clock-delay 
 4,  //rx_data_delay *** adi,rx-data-delay 
 7,  //tx_fb_clock_delay *** adi,tx-fb-clock-delay 
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 0,  //tx_data_delay *** adi,tx-data-delay 
 150, //lvds_bias_mV *** adi,lvds-bias-mV 
 1,  //lvds_rx_onchip_termination_enable *** adi,lvds-rx-onchip-termination-enable 
 0,  //rx1rx2_phase_inversion_en *** adi,rx1-rx2-phase-inversion-enable 

 0xFF, //lvds_invert1_control *** adi,lvds-invert1-control 
 0x0F, //lvds_invert2_control *** adi,lvds-invert2-control 
 /* GPO Control */ 
 0,  //gpo0_inactive_state_high_enable *** adi,gpo0-inactive-state-high-enable 

 0,  //gpo1_inactive_state_high_enable *** adi,gpo1-inactive-state-high-enable 

 0,  //gpo2_inactive_state_high_enable *** adi,gpo2-inactive-state-high-enable 

 0,  //gpo3_inactive_state_high_enable *** adi,gpo3-inactive-state-high-enable 

 0,  //gpo0_slave_rx_enable *** adi,gpo0-slave-rx-enable 
 0,  //gpo0_slave_tx_enable *** adi,gpo0-slave-tx-enable 
 0,  //gpo1_slave_rx_enable *** adi,gpo1-slave-rx-enable 
 0,  //gpo1_slave_tx_enable *** adi,gpo1-slave-tx-enable 
 0,  //gpo2_slave_rx_enable *** adi,gpo2-slave-rx-enable 
 0,  //gpo2_slave_tx_enable *** adi,gpo2-slave-tx-enable 
 0,  //gpo3_slave_rx_enable *** adi,gpo3-slave-rx-enable 
 0,  //gpo3_slave_tx_enable *** adi,gpo3-slave-tx-enable 
 0,  //gpo0_rx_delay_us *** adi,gpo0-rx-delay-us 
 0,  //gpo0_tx_delay_us *** adi,gpo0-tx-delay-us 
 0,  //gpo1_rx_delay_us *** adi,gpo1-rx-delay-us 
 0,  //gpo1_tx_delay_us *** adi,gpo1-tx-delay-us 
 0,  //gpo2_rx_delay_us *** adi,gpo2-rx-delay-us 
 0,  //gpo2_tx_delay_us *** adi,gpo2-tx-delay-us 
 0,  //gpo3_rx_delay_us *** adi,gpo3-rx-delay-us 
 0,  //gpo3_tx_delay_us *** adi,gpo3-tx-delay-us 
 /* Tx Monitor Control */ 
 37000, //low_high_gain_threshold_mdB *** adi,txmon-low-high-thresh 
 0,  //low_gain_dB *** adi,txmon-low-gain 
 24,  //high_gain_dB *** adi,txmon-high-gain 
 0,  //tx_mon_track_en *** adi,txmon-dc-tracking-enable 
 0,  //one_shot_mode_en *** adi,txmon-one-shot-mode-enable 
 511, //tx_mon_delay *** adi,txmon-delay 
 8192, //tx_mon_duration *** adi,txmon-duration 
 2,  //tx1_mon_front_end_gain *** adi,txmon-1-front-end-gain 
 2,  //tx2_mon_front_end_gain *** adi,txmon-2-front-end-gain 
 48,  //tx1_mon_lo_cm *** adi,txmon-1-lo-cm 
 48,  //tx2_mon_lo_cm *** adi,txmon-2-lo-cm 
 /* GPIO definitions */ 
 -1,  //gpio_resetb *** reset-gpios 
 /* MCS Sync */ 
 -1,  //gpio_sync *** sync-gpios 
 -1,  //gpio_cal_sw1 *** cal-sw1-gpios 
 -1,  //gpio_cal_sw2 *** cal-sw2-gpios 
 /* External LO clocks */ 
 NULL, //(*ad9361_rfpll_ext_recalc_rate)() 
 NULL, //(*ad9361_rfpll_ext_round_rate)() 
 NULL //(*ad9361_rfpll_ext_set_rate)() 
}; 
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AD9361_RXFIRConfig rx_fir_config = { // BPF PASSBAND 3/20 fs to 1/4 fs 
 3, // rx 
 0, // rx_gain 
 1, // rx_dec 
 {-4, -6, -37, 35, 186, 86, -284, -315, 
  107, 219, -4, 271, 558, -307, -1182, -356, 
  658, 157, 207, 1648, 790, -2525, -2553, 748, 
  865, -476, 3737, 6560, -3583, -14731, -5278, 14819, 
  14819, -5278, -14731, -3583, 6560, 3737, -476, 865, 
  748, -2553, -2525, 790, 1648, 207, 157, 658, 
  -356, -1182, -307, 558, 271, -4, 219, 107, 
  -315, -284, 86, 186, 35, -37, -6, -4, 
  0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0}, // rx_coef[128] 
  64, // rx_coef_size 
  {0, 0, 0, 0, 0, 0}, //rx_path_clks[6] 
  0 // rx_bandwidth 
}; 
 
AD9361_TXFIRConfig tx_fir_config = { // BPF PASSBAND 3/20 fs to 1/4 fs 
 3, // tx 
 -6, // tx_gain 
 1, // tx_int 
 {-4, -6, -37, 35, 186, 86, -284, -315, 
  107, 219, -4, 271, 558, -307, -1182, -356, 
  658, 157, 207, 1648, 790, -2525, -2553, 748, 
  865, -476, 3737, 6560, -3583, -14731, -5278, 14819, 
  14819, -5278, -14731, -3583, 6560, 3737, -476, 865, 
  748, -2553, -2525, 790, 1648, 207, 157, 658, 
  -356, -1182, -307, 558, 271, -4, 219, 107, 
  -315, -284, 86, 186, 35, -37, -6, -4, 
  0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0}, // tx_coef[128] 
  64, // tx_coef_size 
  {0, 0, 0, 0, 0, 0}, // tx_path_clks[6] 
  0 // tx_bandwidth 
}; 
 
struct ad9361_rf_phy *ad9361_phy; 
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/************@brief main**********************************************/ 
int main(void) 
{ 
// Default Settings Begin 
#ifdef XILINX_PLATFORM 
 Xil_ICacheEnable(); 
 Xil_DCacheEnable(); 
#endif 
 
 
 // NOTE: The user has to choose the GPIO numbers according to desired 
 // carrier board. 
 default_init_param.gpio_resetb = GPIO_RESET_PIN; 
#ifdef FMCOMMS5 
 default_init_param.gpio_sync = GPIO_SYNC_PIN; 
 default_init_param.gpio_cal_sw1 = GPIO_CAL_SW1_PIN; 
 default_init_param.gpio_cal_sw2 = GPIO_CAL_SW2_PIN; 
 default_init_param.rx1rx2_phase_inversion_en = 1; 
#else 
 default_init_param.gpio_sync = -1; 
 default_init_param.gpio_cal_sw1 = -1; 
 default_init_param.gpio_cal_sw2 = -1; 
#endif 
 
#ifdef LINUX_PLATFORM 
 gpio_init(default_init_param.gpio_resetb); 
#else 
 gpio_init(GPIO_DEVICE_ID); 
#endif 
 gpio_direction(default_init_param.gpio_resetb, 1); 
 
 spi_init(SPI_DEVICE_ID, 1, 0); 
 
 if (AD9364_DEVICE) 
  default_init_param.dev_sel = ID_AD9364; 
 if (AD9363A_DEVICE) 
  default_init_param.dev_sel = ID_AD9363A; 
 
 ad9361_init(&ad9361_phy, &default_init_param); 
 
 ad9361_set_tx_fir_config(ad9361_phy, tx_fir_config); 
 ad9361_set_rx_fir_config(ad9361_phy, rx_fir_config); 
 
#ifndef AXI_ADC_NOT_PRESENT 
#if defined XILINX_PLATFORM || defined LINUX_PLATFORM 
#ifdef DAC_DMA 
#ifdef FMCOMMS5 
 dac_init(ad9361_phy_b, DATA_SEL_DMA, 0); 
#endif 
 dac_init(ad9361_phy, DATA_SEL_DMA, 1); 
#else 
#ifdef FMCOMMS5 
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 dac_init(ad9361_phy_b, DATA_SEL_DDS, 0); 
#endif 
 dac_init(ad9361_phy, DATA_SEL_DDS, 1); 
#endif 
#endif 
#endif 
 
 printf("Done.\n"); 
 
#ifdef XILINX_PLATFORM 
 Xil_DCacheDisable(); 
 Xil_ICacheDisable(); 
#endif 
// Default Settings End 
 
// SFCW Settings Begin 
// Gain control mode is Manual (gc_rx1_mode = 0), so need to specify RX RF Gain 

 ad9361_set_rx_rf_gain (ad9361_phy, 0, 20); 
 
 int32_t pulse_count; 
 int32_t freq_count; 
 uint64_t LO_FREQ; 
 
 uint8_t freq_reg_tx[FREQ_NUMBER][16], freq_reg_rx[FREQ_NUMBER][16]; 
 
 uint32_t data[2*PULSE_NUMBER][FREQ_NUMBER]; 
 
 printf("%u\n", PULSE_NUMBER); //PULSE or FRAME NUMBER saved in ad9361.h 
 printf("%u\n", FREQ_NUMBER); //FREQUENCY NUMBER saved in ad9361.h 
 
 printf("%u\n", SAMPLE_NUMBER); //SAMPLE NUMBER saved in ad9361.h 
 
 LO_FREQ= START_FREQ; //LO START FREQURNCY, value saved in ad9361.h 
 
 // This loop saves the fastlock register values for the different frequencies 
 for (freq_count= 0; freq_count< FREQ_NUMBER; freq_count++) 
 { 
  mdelay(40); 
  ad9361_set_tx_lo_freq (ad9361_phy, LO_FREQ); 
  mdelay(40); 
  ad9361_set_rx_lo_freq (ad9361_phy, LO_FREQ); 
  mdelay(40); 
 
  ad9361_tx_fastlock_store(ad9361_phy, 0); 
  ad9361_rx_fastlock_store(ad9361_phy, 2); 
 
  ad9361_tx_fastlock_save(ad9361_phy, 0, &freq_reg_tx[freq_count]); 
  ad9361_rx_fastlock_save(ad9361_phy, 2, &freq_reg_rx[freq_count]); 
 
  LO_FREQ+= STEP_FREQ; // Increment by STEP_FREQUENCY saved in ad9361.h 
 } 
 mdelay(40); 
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 gpio_direction(GPIO_ENABLE_PIN, 1); 
 gpio_set_value(GPIO_ENABLE_PIN, 0); 
  
  
 printf("Start\n"); 
 
 // This loop actually does the sweep and saves adc samples for each sweep in the data matrix 

 for(pulse_count= 0; pulse_count< PULSE_NUMBER; pulse_count++) 
 { 
  for (freq_count= 0; freq_count< FREQ_NUMBER; freq_count++) 
  { 
  ad9361_tx_fastlock_load(ad9361_phy, 1, freq_reg_tx[freq_count]); 
  //mdelay(1); 
  ad9361_rx_fastlock_load(ad9361_phy, 3, freq_reg_rx[freq_count]); 
  //mdelay(1); 
 
  ad9361_tx_fastlock_recall(ad9361_phy, 1); 
  //mdelay(1); 
  ad9361_rx_fastlock_recall(ad9361_phy, 3); 
 
  //mdelay(1); 
 
  adc_capture(10, ADC_DDR_BASEADDR); 
  Xil_DCacheInvalidateRange(ADC_DDR_BASEADDR,10); 
  data[pulse_count][freq_count] = Xil_In32(ADC_DDR_BASEADDR+36); 
    
  gpio_set_value(GPIO_ENABLE_PIN, 1); 
  udelay(10); 
    
  adc_capture(10, ADC_DDR_BASEADDR); 
  Xil_DCacheInvalidateRange(ADC_DDR_BASEADDR,10); 
  data[pulse_count+PULSE_NUMBER][freq_count] = Xil_In32(ADC_DDR_BASEADDR+36); 

    
  gpio_set_value(GPIO_ENABLE_PIN, 0); 
  udelay(10); 
  } 
 } 
 printf("End\n"); 
 
 // This loop sends the data through UART to MATLAB for processing/plotting 
 for(pulse_count= 0; pulse_count< 2*PULSE_NUMBER; pulse_count++) 
 { 
 for (freq_count= 0; freq_count< FREQ_NUMBER*SAMPLE_NUMBER; freq_count++) 
  { 
   printf("%4x\n", data[pulse_count][freq_count]); 
  } 
 } 
 
 mdelay(40000); 
 return 0; 

} 
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Appendix 1.B: MATLAB Script to Read and Parse Data from SDR: 
 

clc; 
close all; 
clearvars; 
 

% Need to change this according to what the computer identifies the port as 
s = serial ('COM9'); 

  

s.BaudRate = 115200; 
fopen(s); 
init = fscanf(s) 
data = zeros(0,1); 

  
init_done = fscanf(s) 

  
pulse_num = str2double(fscanf(s)); % Get pulse number from No-OS 
freq_num = str2double(fscanf(s)); % Get frequency number from No-OS 
sample = str2double(fscanf(s)); % Get sample number from No-OS 

  
N = 2*pulse_num*freq_num*sample; %Total number of samples 

  
start_sweep = fscanf(s) % Sweep starts 
tic 
end_sweep = fscanf(s) % Sweep ends 
Time = toc; % For calculating total sweep time 

  
% Read data through serial port 
for i = 1:N 
    temp = fscanf(s, '%x\n');   
    data = [data;temp]; 
end 

  
fclose(s); 
delete(s); 

  
%% Separating 32 bit numbers consisting of the I & Q samples (16 bit each) 

MASK = hex2dec('ffff') 

  
datai = zeros(N,1);  
dataq = zeros(N,1); % Q samples 16 MSB 
for i = 1:length(data) 
    datai(i) = uint16(bitand(MASK, data(i,1))); % I samples: 16 LSB 
    if datai(i) > 32768 
        datai(i) = datai(i) - 65536; % signed-unsigned conversion 
    end 

    % Q samples: 16 MSB 
    dataq(i) = uint16(bitand(MASK, bitsrl(uint32(data(i,1)),16)));   
    if dataq(i) > 32768 
        dataq(i) = dataq(i) - 65536; % signed-unsigned conversion 
    end 
end 
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%% Data Saving, Calibrating and Plotting 

  
data = dataq+1i*datai; 
figure(1);plot(abs(data(1:end))) 

  
% Saving data by frame 
data_c = reshape(data, [freq_num*sample, 2*pulse_num]); 
data_q = reshape(dataq, [freq_num*sample, 2*pulse_num]); 
data_i = reshape(datai, [freq_num*sample, 2*pulse_num]); 

  
data_avg = data_c; 

  
figure;mesh(abs(data_avg)); 

  
data_cal = data_avg(:,1:pulse_num); % Calibration Data 
data_meas = data_avg(:,pulse_num+1:2*pulse_num); % Actual Measurement Data 
 

% Compensating for phase incoherence  
post_cal = data_meas .*exp(-1j*angle(data_cal));  

  
hrrp_post_cal = ifftshift(ifft(post_cal,64,1),1); 

  
post_cal_nodc = post_cal - repmat(mean(post_cal),size(post_cal,1),1); 
hrrp_post_cal_nodc = ifftshift(ifft(post_cal_nodc,64,1),1); 

  
figure 
mesh(abs(hrrp_post_cal)) 
title(' Postcal w/ DC HRRP') 

  
figure 
mesh(abs(hrrp_post_cal_nodc)) 
title(' Postcal wo/DC HRRP') 
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