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ABSTRACT

Radar is a powerful tool for detecting and tracking airborne targets such 
as aircraft and missiles by day and night. Nowadays, it is seen as a genuine 
solution to the problem of target recognition. Recent events showed that 
cooperative means of identification such as the IFF transponders carried by 
most aircraft are not entirely reliable and can be switched off by terrorists. 
For this reason, it is important that target identification be obtained through 
measurements and reconnaissance based on non-cooperative techniques.

In practice, recognition is achieved by comparing the electromagnetic sig­
nature of a target to a set of others previously collected and stored in a 
library. Such signatures generally represent the targets reflectivity as a 
function of space. A common representation is known as one-dimensional 
high-resolution range-profile (HRRP) and can be described as the projection 
of the reflectivity along the direction of propagation of the wave. When the 
measured signature matches a template, the target is identified. The main 
drawback of this technique is that signatures greatly vary with aspect-angle 
so that measurements must be made for many angles and in three dimen­
sions. This implies a potentially large cost as large datasets must be created, 
stored and processed. Besides, any modification of the target structure may 
yield incorrect classification results.

Instead, other processing techniques exist that rely on recent mathemat­
ical algorithms. These techniques can be used to extract target features 
directly from the radar data. Because of the direct relation with target 
geometry, these feature-based methods seem to be suitable candidates for 
reducing the need of large databases. However, their performances and their 
domains of validity are not known. This is especially true when it comes 
to real targets for at least three reasons. First, the performance of the 
methods varies with the signal-to-noise ratio. Second, man-made targets 
are often more complex than just a set of independent theoretical point-like 
scatterers. Third, these targets are made up of a large number of scattering 
elements so that mathematical assumptions are not met. In conclusion, the 
physical correctness of the computational models are questionable.
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This thesis investigates the processing techniques that can be used for 
non-cooperative target recognition. It demonstrates that the scattering- 
ccntre extraction is not suitable for the model-based approach. In contrast, 
it shows that the technique can be used with the feature-based approach. 
In particular, it investigates the recognition when achieved directly in the 
z-domain and proposes a novel algorithm that exploits the information al­
ready in the database for identifying the signal features that corresponds to 
physical scatterers on the target. Experiments involving real targets show 
that the technique can enhance the classification performance and therefore 
could be used for non-cooperative target recognition.
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K Number of clusters employed for MAUCAZ
L Hankel matrix width
M Model order
M Number of poles selected in the test pattern
M' Number of poles selected in the template pattern
M(n) Model
n Frequency index
h Surface vector
N Number of samples
N' Number of samples after model prediction
X arr Number of arrangements of pole-cluster
P1*comb Number of combinations of pole-cluster
P Pole
P Number of point-scatterers
P Number of poles per pattern for MAUCAZ
V Power spectrum
I'm Range of the scatterer relative to Rq (m )
R Range of the target (m)
Ro Starting range of the imaged window (m)
Rm Cross-correlation function
Rss Autocorrelation matrix of the signal
Runambiguous Length of the unambiguous range window (m)
Run Autocorrelation matrix of the noise
Rxx Autocorrelation matrix of the corrupted signal
S Deterministic signal
&b Baseband signal
s Fourier transform of s
t Time (s)
tm Propagation time associated with the 171th scatterer(s)
T Signal duration (s)
T Translation operator
u Noise
u Column of the left singular matrix
U Left singular matrix
V Column of the right singular matrix

Speed of the m th scatterer (m.s-1 )
V Right singular matrix
Wm Output of the mixer
Wr Received waveform
m Transmitted waveform
X Received signal
X Unit vector
X Space vector
X Ouput vector of the autoregressive process
y Unit vector
-> Pole



Chapter 1

INTRODUCTION

1.1 B ack grou n d

1.1.1 Foreword

Throughout this Chapter, the reader will be progressively introduced to 
a scientific problem that continues to animate a large part of the radar 
community, that is the capability to remotely determine the physical prop­
erties of a system, such as an aircraft, and classify it as such. Starting with 
the basic principle used by radar sensors for detecting targets, the chap­
ter progresses towards the more complex use of radar systems for achieving 
target-rccognition. Based on early and more recent research, this chapter 
introduces the problem of interest and the subject of this thesis.

1.1.2 Radar for rem ote sensing

To start with, let us consider that a system is defined by a set of unique 
elements that can be observed, described, classified, distinguished and ulti­
mately identified through their properties. Applied Physics is regarded as 
a branch of the Sciences that attempts to estimate these properties with 
the highest accuracy permitted by the instrumentation. The properties of 
a system are estimated through physical quantities that can be described 
in various dimensions, usually the four-dimensional space-time first postu­
lated by the Lithuanian mathematician Hermann Minkowski. Engineers are 
very familiar with physical quantities such as temperature, pressure, volume 
aud. in the case of radar engineers, with reflectivity. When their values are 
not known a priori, they are determined by measurements using sensors. 
The association of accurate estimates and a good knowledge of the physical 
laws that describe the relations between physical variables is essential to 
accurately estimate the system properties.

18
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The inverse problem is a classic subject in topics involving objects that sire 
located at great distance from the observer. For these situations where an 
observer cannot directly get the information about a designated object, re­
mote sensors can be used, for example, to measure the radiation emitted by 
the object. Different sensors apply to different types of radiation. Such sys­
tems can be found in an increasing number of modem applications including 
aircraft-tracking for air traffic control, speed estimation for law enforcement, 
cloud and rain density imaging for atmospheric physics, ice-interferometry 
for environmental studies, plankton density imaging for geo-resources man­
agement and ground mapping for military intelligence and many others. It 
is worth noticing that all these applications can be treated with instruments 
measuring the energy of the electromagnetic field in the microwave band 
although it is not a wholly complete analysis by measurement.

Since the French scientist Pierre David successfully detected an aircraft 
in 1934, all sorts of radar systems have demonstrated their suitability for 
both military and civil needs. They are relatively non-invasive sensors that 
can operate remotely with any weather in night and day conditions and over 
wide regions. These characteristics make radar a high-performance sensor 
for detecting and locating long-range passive targets even through clouds 
and rain. Modern coherent radars offer the ability to partially shape the 
transmitted electromagnetic field in space, time, frequency and polarisation. 
By enlarging the information content of the measurement, this capability is 
used to estimate the solution of the inverse problem. Here it is the charac­
terisation of the target reflectivity in space. One hundred years of evolution 
of techniques and technology have enabled finer and more accurate estima­
tion but, interestingly, the resulting solution still remains expressed as an 
image of the surface reflectivity in several dimensions.

1.1.3 Early radars

In 1865, the Scottish physicist James Maxwell developed the theory of 
Electromagnetism. Twenty-four years later, the German Heinrich Hertz 
demonstrated experimentally that electrically conducting surfaces reflect 
electromagnetic waves. These were fundamental milestones for the inven­
tion of radar. However, the history of RAdio Detecting And Ranging 
(RADAR) [48] began really in 1900 when the Serbian-American engineer 
Nikola Tesla mentioned the possibility of employing radio-waves for mea­
suring the movement of distant objects. In 1904, another German named 
Christian Hiilsmeyer transformed these words into a transmitter-receiver 
system for remotely detecting ships. He named it a “telemobiloscope”. The 
patent for this anti-collision device credits Hiilsmeyer as the inventor of 
radar. Although demonstrations were made publicly, the military potential 
of this device was not realised until the First World War. At that time,
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a third German named Richard Scherl proposed to build a system based 
on electromagnetic waves to detect enemy targets in darkness. Until then, 
the techniques for detecting aircraft included visual sighting and a binau­
ral sensitive sound locator initially used by the French and known as the 
“Claude Orthophone”. Later improvements enabled this passive acoustic 
aircraft-detector to have an accuracy of two degrees in azimuth. These were 
rudimentary techniques with a poor maximum range of detection.

During and after the First World War, an increasing interest was shown for 
detection systems in the USA. Dr Albert Hoyt Taylor and his assistant Leo 
Clifford Young discovered during VHF propagation experiments that radio 
beams could be used for the radio detection of enemy vessels passing between 
two destroyers. In Germany, Hans Dominik followed Scherl’s recommenda­
tions and started experiments in 1916 with a 10 cm wavelength apparatus 
that he built at Siemens and Halske. Despite slow progress and poor interest, 
radar systems were not only left to the imagination of science-fiction authors 
like Hugo Gernsback [15]. The strategic importance of airplanes in the First 
World War rapidly convinced many nations to investigate new technologies 
for aircraft detection. The principal systems that were not acoustic-based 
relied on the detection of electromagnetic waves of either infra-red radiation 
generated by the aircraft engine or radio-waves generated by the ignition 
system. Radar research was also subsequently allocated large budgets for 
this purpose in the 1930s. Innovations followed and the summer of 1934 saw 
the first successful tests happening in France in July and Russia in August. 
Success in Germany, Great Britain, USA, Japan, the Netherlands, Italy and 
Hungary followed quickly after. By the beginning of the Second World War, 
radar systems were manufactured by many nations.

From a military perspective one considers that the earlier the detection of 
the enemy, the greater the advantage. For this reason, radars were soon as­
sociated with aviation. During the war, most radars were designed to detect 
and track aircraft. For this task, a radar must have short-wavelength and 
high-power. However, meeting both requirements was a real technological 
challenge. The vacuum-tube technology used in the early radars could not 
transmit the power needed in the micro-wave band. Many nations worked on 
different alternatives to the existing system. Various versions of the cavity 
magnetron had been developed but history mainly remembers the designs 
of the British pair Randall and Boot who made possible the construction 
of the cavity-magnetron which, in April 1940, could generate a peak-power 
value of 500W. This device, which was inspired by the work of Prof Albert 
Hull, is not an amplifier but a high-power valve oscillator itself. It was a 
decisive step for producing focused beams and enabling tracking of targets 
at long range.
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For many applications including air traffic control, the radar performance 
is partly associated with the maximum range at which a target can be de­
tected. The maximum range is limited by several factors including the power 
transmitted and the losses due to radar equipment, target’s reflectivity and 
medium of propagation. Based on the simple expression of the radar range 
equation, research teams concentrated their effort on the design of a device 
which can transmit high-power micro-waves. Winning this technological 
challenge has been essential to the development of modern radars. The 
successful design of the magnetron enabled long range detection but the dis­
crimination of targets that were closely spaced remained a major problem. 
Similarly, fine description of the target was not made possible by these early 
systems.

1.1.4 Radar resolution

A problem quickly faced by radar-engineers was spatial resolution of tar­
gets. Radar spatial-resolution is often described as the minimum separation 
between two objects that can be discriminated. Established by the En­
glish physicist John Strutt, third Baron Rayleigh, in the 19^ century, the 
Rayleigh Criterion specifies this distance so that the intersection of the re­
turns from two identical point-scatterers is 9 dB  below their maximum value. 
High-resolution radar systems have thus the ability to distinguish between 
closely spaced targets. Such resolution enables detailed information to be ex­
ploited for many applications including target imaging and non-cooperative 
target recognition (NCTR). However, it is important to understand that in 
order to achieve what radar operators call “target resolution”, one needs 
to achieve the resolution of peaks of the probability density function of the 
reflectivity expressed in a given space. Distinguishing between these very 
close definitions may require extremely high resolution. For the latter, the 
resolution can vary rapidly with the space chosen to image the reflectivity. 
For high-resolution imaging, these differences cannot be neglected.

s

Figure 1.1: Pulse reflected by two point-scatterers located at different dis­
tances to the radar

The separation of targets illuminated by a radar depends upon the ability 
to isolate their returns. Figure 1.1 represents the radar returns of two closely
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spaced targets. Due to the two-way propagation of the transmitted field, the 
separation between the returns corresponds to twice the separation between 
the targets. Figure 1.2 represents the pulses received by the radar when the 
separation between targets is as described by the Rayleigh criterion.

tuue

Figure 1.2: Rayleigh criterion: limit of resolution for two point-scatterers

High-resolution radar systems conventionally transmit electromagnetic 
waves characterised by small duration and small beam-width. Small beamwidth 
creates high azimuth-resolution but requires high frequencies and large aper­
tures. However, when the targets are aligned with the radar, they lie within 
the same beam. In this case, the return must be isolated in time. The 
transmission of short-pulses allows target separation through separation of 
the returns. Basically, a target illuminated by a radar pulse typically pro­
duces an echo. For two targets aligned with the radar, the two returns may 
overlap if the distance between them is not large enough with respect to 
the transmitted pulse-width. For this reason, the first solution to improve 
the range resolution had been to transmit pulses with small time extent, 
equivalently large bandwidth. Equation 1.1 describes the relation between 
bandwidth (B) and nominal range-resolution Ar for a simple pulse.

A r = ^  (1.1)

where c is the speed of fight in the medium of propagation.

At this stage, it is important to understand how high-resolution can en­
hance the performance of a radar. For this, let us consider the main appli­
cations of interest: detection, characterisation and classification of targets.

• Detection of targets in a given spatial region is achieved by observ­
ing a variation of reflectivity through time as it traduces the target 
entering into the region. Independent targets that are closely spaced 
may appear like a single one if the resolution is not good enough. For 
instance, a Doppler radar with virtually no range resolution would not 
be able to distinguish between two targets aligned with the radar and
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flying at the same speed. This example shows that decisions based on 
low-resolution images may have disastrous consequences e.g. in the 
case of air traffic control or military radars. Improving the resolution 
enables the peaks of reflectivity to be narrowed down to a time-width 
which potentially yields detection of individual targets. Resolving tar­
gets in space does not necessarily require expressing the reflectivity in 
space though.

•  Characterization of a scene in space is in general achieved by imaging 
the probability density function of the material reflectivity in space. 
High-resolution representations of the target reflectivity in space can 
enable differentiation of contributing scatterers to be made on a sub­
target scale by revealing fine details on its surface, similar to an pho­
tograph, i.e. the target is resolved into multiple scatterers. For most 
applications of interest here, this representation is expected to pro­
vide enough information and in a form that is easily exploitable by 
humans. However, imaging accurately the reflectivity in the spatial 
domain implies using a correct time-to-space imaging operator, which 
may be very difficult to implement in practice. For instance, com­
plex scattering effects similar to optical effects may cause ambiguous 
functions to be incorrectly projected from time to an TV-dimensional 
space. The result is an unfocussed image of the target reflectivity and 
presence of artefacts. In practice, a radar-image is the representation 
of the probability function of the reflectivity of a target projected on a 
space that is directly characterised by the scattering model used. The 
accuracy of the imaging technique in space is thus directly limited by 
the ability to solve the inverse problem itself. This makes imaging 
techniques very difficult to improve in practice.

• Classification can be seen as the division of measurements into sub­
sets. The criteria leading to groups of targets sharing structural fea­
tures are used to infer structural features of unknown targets from 
their signatures. For instance, one-dimensional representations of the 
target reflectivity, known as high-resolution range-profiles can be used 
to classify targets. Signatures exhibiting similar range-extents could 
be generated by targets showing similar length. In a similar way the 
distribution of the energy on range profiles traduces the spatial distri­
bution of the reflectivity. This fact is also exploited to classify targets. 
However, in both cases the classification is obviously highly depen­
dent upon the target aspect-angle. Depending on the class size, an 
unknown target would be characterised with greater or lesser preci­
sion. The assignation of a signature to a class that has one element 
only is called recognition. Although classification is not directly used 
to locate targets, the two problems are closely connected. Considering



Introduction 24

that the reflectivity density function can be accurately extracted in 
any space, high-resolution can create the level of information needed 
to improve classification. Classification techniques could thus exploit 
discriminatory information to achieve target recognition. On the other 
hand, highly-detailed signatures exhibiting artefacts could yield mis- 
recognition.

Figure 1.3: M47 tanks - comparison of radar images for 1 m, 1 f t ,  4 inch 
resolutions, from Sandia National Laboratories [1].

Fig 1.3 presents images of the same scene for different resolutions1. Tanks 
can be recognised on the 4-inch resolution image (right) mainly because the 
gun-barrcls pointing sideways can be distinguished. This illustrates the idea 
that recognition has reliance on resolution.

1.1.5 H igh  ran g e  re so lu tio n  ra d a r

Since the early radars, high range-resolution has been synonymous with 
large bandwidth. The problem has been mainly tackled by creating hard­
ware and waveforms that enable transmission and reception of such sig­
nals. The spark transmitter, an oscillatory circuit connected to a resistance 
(i.e. spark-gap) is probably the first element that enabled ultra-wide band 
(UWB) communication. Such devices have been realised by Sir John Flem­
ming at University College London for Guglielmo Marconi at the begin­
ning of the twentieth century. Abandoned by the radio-community because 
of the broad-band interferences that were generated during the discharge, 
UWB technology was reconsidered in the 1960s when Ross [43] successfully 
attempted to characterise linear time-invariant systems by their impulse- 
rcsponses.

Directly benefiting from the development of UWB technology, radar range- 
resolution improved significantly making possible the separation of target- 
components in the 1970s. For radar systems, the idea of transmitting very

1 Resolution are for original pictures prior to downsampling for www viewing



Introduction 25

large bandwidths for achieving high range-resolution is attractive. However, 
the implementation of such systems was not straightforward. Initially, sim­
ple pulses of small duration were used to achieve the desired bandwidth. 
However, the short pulse duration directly affected the signal-to-noise ratio. 
Later pulse-compression was invented. This method creates a signal with 
high bandwidth by modulating a pulse. Large bandwidths are achieved 
with relatively long pulses in this case. Other waveforms known as step- 
frequency waveforms can be used. They consist in artificially synthesising a 
bandwidth by coherently processing narrow-band pulses whose central fre­
quency is linearly shifted. Coherent radars are now widely used. These 
radar systems exploit the phase and amplitude of the received and trans­
mitted signals. Their comparison reveals information related to a target’s 
reflectivity including strength and distance to the radar.

Enlarging the bandwidth enables the signal to support more informa­
tion. In order to extract this information, several techniques can be used. 
They depend upon the transmitted waveform and include the Inverse Fourier 
Transform, cross-correlation, and some rather complicated techniques which 
rely on a priori knowledge. Basically, these techniques assume that the 
wavc-path is direct. They consider thus that the time between the transmis­
sion and the reception of echoes is directly proportional to the radar-target 
distance. Through comparison of the phases, the received signal provides 
useful information that can be used for estimating the range to the target. 
These techniques are presented in more detail in Chapter 2.

High-resolution techniques in general are employed to produce images of 
the scene reflectivity. For this, the measured signal is often decomposed 
using a basis of elementary signals that are directly related to variables of 
time and indirectly to variables of space. For instance, range-imaging is a 
description of the target reflectivity using functions that can be described 
as a function of time-delay or equivalently range. The well known Fourier 
Transform relies on a series of complex exponentials to decompose the signal 
into an orthogonal basis of elementary signals where each Fourier value 
relates to the reflectivity of the target at a given range-cell in space. The 
image obtained provides a visual estimation of the power attributed to each 
elementary signal. Although the Fourier Transform is a robust method, it 
suffers from poor resolution due to the limited extent of the bandwidth and 
to high side-lobes masking returns from other targets.

As seen in figure 1.3, radar images may enable visual recognition to be 
done similarly to optical images. They show the reflectivity of the target 
surface in one or more dimensions. In order to express this image in space, 
it is assumed that the target is composed of independent point-scatterers. It
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follows that images can only be the spatial representations of the reflectivity 
of targets composed by non-interacting scatterers whose impulse responses 
are described by the point-scatterer model. For most targets this assump­
tion is obviously incorrect, and therefore high-resolution images should be 
regarded as approximations modified by artefacts.

1.1.6 Current issues

There are several issues that must be addressed in order to achieve high- 
resolution images. Large bandwidths and small beamwidths are basic re­
quirements but the overall performance depends also upon the processing 
techniques. The principal limitations are due to both technical and theoreti­
cal reasons. First the wide-band radar signals are threatened by interferences 
from an increasing number of communication devices and by new regulations 
regarding the allocation of the electromagnetic spectrum. Second, the level 
of resolution obtained now makes images very sensitive to incorrect assump­
tions or approximations. The conventional theory was suitable for the early 
radars; now it causes obvious artefacts on images. Amongst these approx­
imations lies the foundation of most modern radar processing techniques: 
the point-scatterer model, which is described in the following chapter.

The increasing presence of communication devices in the bands where 
radars operate is a major source of electromagnetic interferences. Since the 
1990s, wireless technology such as cellular telephony, messaging and wireless 
local area networks invaded people’s lives. It is not rare to see individuals 
with virtually no technical knowledge using terms such as GPS, GSM, 3G, 
Wi-Fi and Bluetooth. Most of the recent communication technologies spread 
low power signals thinly over a wide range of frequencies. They are said to be 
“ultra-wide band”. However, it is only recently that a unique and definitive 
definition for these words have been given. The FCC and the International 
Telecommunication Union - Radiocommunication Sector and the Federal 
Communication Commission agree define the UWB in terms of transmission 
from an antenna for which the emitted signal bandwidth exceeds the lesser 
of 500 MHz or 20% of the centre frequency. In the band 3.1 — 10.6 GHz,  
high range-resolution radars can interfere with such digital communication 
systems. Similarly, radars can suffer from other UWB devices including 
other radars operating on adjacent bands.

In order to allow co-existence of the existing users and to accommodate 
new ones, the philosophy adopted worldwide calls for an optimisation of the 
allocation scheme. The reallocation of the spectrum occurs at the time of 
progressive liberalisation of the spectrum, making the reallocation of new 
customers a political priority driven by strong economic interests. For this 
reason, the modification is expected to affect the electromagnetic spectrum
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currently allocated to remote sensing devices. It is therefore necessary to 
create processing techniques that are both efficient and flexible in terms of 
bandwidth requirements. In 2004, the British regulator Ofcom released a 
report concerning the “study of techniques for improving radar spectrum 
utilisation” [3]. The report recommends that three technologies, rapidly 
tunable filters, ultra-narrow band radar and waveform design, have the po­
tential to reduce the current occupied band. The following can be found in 
the conclusion: “ultra narrow band solution has the greatest potential to 
improve spectrum utilisation in the long term. However, it is an immature 
technology therefore further investigation is recommended to help under­
stand the advantages and constraints of this solution”. In this context, this 
thesis presents a study of techniques for achieving high-resolution images 
and high-performance classification from narrow-band waveforms.

Bandwidths have reached an ultra-wide scale and their extension is no 
longer an option. In addition, the crowded electromagnetic spectrum calls 
for a reduction of the current bandwidth used. Nevertheless, increasing the 
bandwidth extent is not the only option for improving the range-resolution. 
Processing techniques have to be taken into account too. High-resolution 
images show that the approximations used to retrieve the information have 
become the main source of limitation of resolution. Images suffer from de- 
focussing, shadowing and artefact problems. The techniques used to correct 
these problems have shown some encouraging results for simple targets but 
remain inadequate for dealing with complex man-made targets.

Methods for improving the effective resolution have been through tackling 
the problem in various ways including compensation of noise, clutter or mo­
tion. They utilise assumptions that are not entirely realistic though. First, 
most arc based on the assumption that the wave-path between a scatterer 
and the radar antenna is direct. This does not suit the targets characterised 
by various interacting scatterers creating multi-path or shadowing. Second, 
these techniques are based on the impulse-response of point scatterers. Vari­
ability related to radiation pattern, interaction between scatterers and com­
plex scattering mechanism makes them extremely sensitive to aspect-angle. 
Multi-path, surface-waves and resonances can not be neglected without sig­
nificantly affecting the quality of high-resolution images. Third, the use 
of ultra-wide band brings the idea that close scatterers could be resolved. 
When applying this to a continuous structure such as an aircraft, the defini­
tion of the scatterers is somehow left to engineers. It appears that improving 
the resolution would imply searching for scatterers with impulse-responses 
defined a priori. Clearly this may not always be the case.
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Methods based on a priori knowledge of the scattering filter impulse- 
rcsponse produces interesting results but they remain theoretical achieve­
ments since this function is in general unknown. Testing all possible values 
should not be considered as a practical option. One could consider utilising 
a set of tuned filters, each corresponding to the generic impulse response 
of a given type of scatterer (e.g. cone, plate, trihedral, etc). As the set 
of basic geometry is finite, so is the set of generic impulse-responses. The 
matched-filters could be regarded as a tuned version of generic matched- 
filters associated with generic geometries. The resolution would depend on 
the ability to estimate an accurate set of generic matched-filters and to in­
dividually tune each of them. Any information improving the models would 
certainly improve the resolution. In practice, the correct set of filters would 
certainly be an association of filters associated with sub-targets themselves, 
compounds of sub-targets and probably correcting terms. However, the non- 
orthogonality of the individual filters makes the problem relatively complex.

In summary, the background of this study starts with a simple fact: the 
need for high-quality images and useful information has increased the re­
quirements imposed on current radar systems and processing techniques. 
The traditional bandwidth enlargement is no longer the favoured option for 
enhancing range-resolution. First, increasing the bandwidth reveals the er­
ror of approximations through image-artefacts. Such images are difficult to 
compensate and the overall information may not be exploitable. Second, 
methods that can create such enhanced information must be designed to 
suit tomorrow's spectrum allocation scheme, that is, by using smaller band­
widths. It is not surprising that achieving high-resolution images under such 
conditions continues to drive a large part of research in radar. Based on the 
latest research publications, it appears that resolution enhancement should 
be attacked through creating processing techniques rather than transmitting 
larger bandwidths. Methods have been proposed for processing radar sig­
nals by Gabriel [14], Cuomo et al. [12], Moore et al. [32] and by Suwa et al. 
[47]. This document contributes to this research stream by offering a crit­
ical analysis of the modelling techniques designed to resolve closely-spaced 
components of man-made targets from narrow-band radar signals.
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1.2 T h e s is

1.2.1 Problem  addressed

Aircraft flying above a certain altitude are required to be equipped with 
an electronic transponder whose mission is to report altitude and to provide 
its identity to civilian or military air traffic control. This system, initially 
called Identification Friend or Foe (IFF) is known also now as Secondary 
Surveillance Radar (SSR). It is a key element to determine the intent of an 
aircraft. Although such cooperative systems provide accurate information, 
one should not rely exclusively on them as serious problems may arise when 
they are switched off or malfunction. Non-operating IFF systems have been 
the source of several mistakes during the last decades. For example, a British 
aircraft was shot down by a US PAC- 2  Patriot Missile in Iraq in 2003. The 
investigation report concluded that the fighter was mistaken for an enemy 
aircraft after a failure of the IFF systems. Similar events have highlighted 
the not'd for alternatives to cooperative systems of identification.

In many nations, budgets for research on non-cooperative target recogni­
tion have subsequently risen and scientists have now been looking at this 
problem from different angles. Radar appears as a unique sensor that could 
provide valuable information for achieving automatic target recognition in 
any conditions. The direction taken globally is focussed on using power­
ful processing tools for identifying aircraft based on some kind of a priori 
knowledge. Radar measurements can provide an image of the reflectivity 
of a target. Because such signatures depend upon the target structure, an 
unknown target can be identified by comparing its signature with templates 
previously generated and stored in a database. Behind the expression “non- 
cooperative target recognition” is the idea that targets that are non actively 
participating could be identified. This implies that both the techniques for 
producing the signature and the classification techniques must be able to 
perform in spite of these constraints.

Recognition implies that some information be extracted from measure­
ments and compared with other sources of information. In practice, a radar 
would measure the electromagnetic signature of an unknown aircraft and 
compare it with templates in library. Amongst the techniques used for clas­
sification of air-targets are Jet-Engine Modulation (JEM), one-dimensional 
range profile. Synthetic Aperture Radar (SAR) images and Inverse Synthetic 
Aperture Radar (ISAR) images, and tomographic images.

• Jet Engine Modulation exploits the temporal variation of the radiation 
coming from the rotating parts of a target. They can be propellers, 
helicopter blades or compressor blades located inside a jet-engine. The
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technique is now mature but the performance does depend upon the 
target orientation. For a jet-aircraft, the technique relies on the fact 
that the inside structures of the engines are visible. Depending on the 
aircraft trajectory, this may not be true. Moreover, it can be difficult 
to classify aircraft whose rotors have different frequencies of rotation.

•  One dimensional range profiles are often described as the projection of 
the target reflectivity on the line of sight. They can be obtained with 
a single high-resolution radar and they only require limited time on 
target. These images are thus very easy to generate but the projection 
of the scatterers' reflectivity on a single axis inevitably yields no cross- 
range resolution. As a general rule, the amount of information that 
can be exploited increases with the dimensions of the images. One- 
dimensional range profiles may not provide enough information for 
discriminating between targets that have very similar reflectivity in 
range unless the resolution is high.

•  Inverse Synthetic Aperture Radar images are two-dimensional images 
of the target reflectivity. The techniques used exploit the Doppler 
effect associated with the target rotation to distribute the energy in 
the cross-range direction. Despite removing some ambiguities, these 
techniques are not ideal for NCTR. First they require a long time on 
target. Second they can only perform with rotating targets so that a 
typical enemy target flying towards the radar cannot be imaged in two 
dimensions. Third, imaging requires various pre-processing including 
motion-compensation. Because the accuracy of the results depends 
upon the assumptions related to the target-motion and interdepen­
dencies which exist between scatterers, the quality of the images is 
variable. For all these reasons, analysing ISAR images is not trivial 
and their exploitation for NCTR may not be straightforward.

• Tomographic images such as those used for medical imaging are two- 
dimensional images reconstructed from successive projections of one­
dimensional range profiles measured for various aspect-angles. These 
images have the potential for NCTR but they can be very difficult to 
create since the position of the centre of rotation must be estimated. 
Similar to a magnetic-resonance-imaging scanner, a radar network can 
be used to illuminate non-rotating targets but a multi-static system is 
demanding in terms of implementation.

The type of signature to be exploited is important for NCTR. Its choice 
should be driven by the amount of information that can be exploited as 
well as operational constraints. The one-dimensional radar image known as 
range-profile appears as a very promising support of information. It fits the
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idea of fully non-cooperative systems as it can be obtained without signif­
icant constraints on the target motion. In addition, its small size makes it 
a cost-efficient solution in terms of processing and storage. It is important 
for achieving accurate classification that the support of information be sim­
ple to avoid large computation times. Because a range profile is obtained 
from very little processing, it is also less sensitive to incorrect assumptions 
and approximations than a multi-dimensional image. The main drawback is 
tlic relatively small information content that could be directly exploited for 
NCTR. By comparison, it provides less information than a two-dimensional 
image of similar resolution.

In order to increase the amount of discriminating information provided 
by range profiles, it is proposed to enhance the range-resolution, in other 
words to improve the ability of the radar to distinguish between scatterers 
that are distributed in the direction of propagation. The enhanced level of 
description could enable accurate recognition to be achieved by separating 
scatterers. When it comes to distinguishing between the elements of an 
aircraft, a sub-meter resolution is needed which requires transmission of 
wide-hand signals. For instance, resolving scatterers that are separated by 
20 cm in range would require a bandwidth on the order of 1 GHz.

Technology and waveforms have been continuously enhanced and res­
olution subsequently progressed according to the relation between band­
width and range-resolution. However, improving the range-resolution is not
straightforward anymore:

• The increasing presence of wireless communication devices in the bands 
where radars operate is a growing threat on wide-band radar signals. 
Interferences from others devices and new regulations are likely to re­
duce the effective bandwidth that can be used for radar imaging. It is 
therefore important that new imaging techniques fit within the scheme 
of spectrum allocation. That could imply using bandwidths that are 
not contiguous in time or frequency.

• For low-resolution and high-frequency waveforms, the impulse-response 
of the scatterers are approximated by a point-like function. This ap­
proximation is not suitable when the size of the components or their 
inter-spacing distances are on the order of the wavelength or the resolu­
tion cell. Increasing the bandwidth and conserving the same scattering 
model of point-scatterers for scatterers with different characteristics is 
obviously another major source of limitation. The radar theory based 
on point-like impulse responses may not be the most appropriate one 
for dealing with such scatterers.
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Signal and image processing have been receiving extensive attention from 
researchers in astronomy, geophysics, medical imaging and military applica­
tions. The introduction of a priori information in the processing techniques 
enabled the resolution to be improved beyond the Rayleigh limit. Such 
techniques includes Prony, Multiple Signal Classification (MUSIC), root- 
MUSIC, Matrix Pencil, Esprit. A description of these methods would not 
be very appropriate here but it is worth saying that several decades of re­
search in these fields has yielded a large body of literature which can be 
effectively exploited for improving the spatial resolution of range profiles.

There exists an important issue that arises from the enhancement of the 
range-resolution. Because the improved signature provides a finer descrip­
tion. it also becomes more sensitive to target motion and aspect-angle. 
When the target is translating, migration of scatterers in range must be 
taken into account. Similarly, the angle at which the target is seen by the 
radar is a great source of variability. A target rotation of one degree gen­
erally yields a very different signature. For this reason, creating translation 
and rotation invariant techniques are essential. To do so, one must take into 
account that measuring, storing and comparing signatures has a cost. For 
operational purposes, it is important that the size of the database gathering 
the signatures remains small. It follows that a recognition technique based 
on the signatures from perspectives covering 360 degrees at very close an­
gular intervals is not an attractive solution. In contrast it is desired that 
only a few templates could enable target recognition from all aspect-angles. 
Ultimately, it must be considered that range profiles may not be available 
for building a library. For instance, signatures of enemy-aircraft or aircraft 
that have payload attached to the external structure are often unavailable. 
In this case, it is desired to rely on the backscattering from the parts of the 
aircraft that are consistent in time.

In order to reduce the cost inherent in the variability of the signature, 
engineers have been looking at techniques exploiting features rather than 
comparing the signatures directly. In the last few years, research on NCTR 
has explored various solutions. They achieve size-reduction by using discrete 
scattering-models, signature prediction by using electromagnetic prediction 
codes [16] and 3D-reconstructions of the positions of the principal scatter­
ers by tracking their position over a given period [31]. A common idea 
characterises these techniques: the use of a priori knowledge enables se­
lected information to be used by cost-efficient classification techniques for 
accurately achieving target recognition but the technique would need to be 
studied further before conclusions could be really drawn.
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Hcncc, the general problem posed can be summarised as follow. Is it pos­
sible to create a technique that relies on radar range-profiles with improved 
resolution to achieve accurate target-recognition with limited bandwidth? 
If the answer is positive, such a system could then constitute an alternative 
to current IFF systems that are subject to malfunctions, interference and 
hijacking. In order to fit regulations and operational constraints, it must 
meet the following requirements:

• dedicated to aircraft-recognition

• fully based on non-cooperative methods

• low-sensitivity to aspect-angle

• accurate discrimination between similar targets

• no reliance on wide-band signals

• low cost

• first step towards recognition based on schematics

The direction taken in this work is motivated by the idea that enhanced 
resolution yields improved information that can be exploited for radar imag­
ing and non-cooperative target recognition. However achieving high range- 
resolution without using wide-band signals is not straightforward. In order 
to compensate for the reduction of the support of information, the approach 
chosen introduces a priori knowledge in the form of a scattering model. It 
is assumed that a generic model describing the principal scattering mech­
anisms happening on an aircraft could approximate the backscattered sig­
nal. Based on this, the problem consists of extracting the model-parameters 
from measured narrow-band waveforms. For this, one needs processing tech­
niques that can employ measurements that may not be contiguous in time, 
frequency or space. This approach which does not require transmission of 
wide bandwidths is supported by the 2004-report of Ofcom related to band­
width optimisation: “radars using ultra-narrow band waveforms would have 
a great potential for reducing spectrum utilisation in the long term”.

In 1997, an article entitled “ultra-wide-band coherent processing of sparse 
subbands” [12] was published in the Lincoln Laboratory Journal, MIT. The 
authors give a detailed description of a technique that is used to interpolate 
radar signals that are sparsely distributed in frequency. Using simulated 
and real targets, the authors show that it is possible to predict the spec­
trum of the radar signal for one sub-band, by using the information con­
tained in another one. This enables them to artificially build a continuous 
wide-bandwidth that can be used to enhance the range-profiles and resolve
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more scatterers than with traditional techniques. The article concludes by 
listing elements that would require further investigation in order to deter­
mine the limits of the method. On the basis of the results presented, this 
technique would be suitable for building the high-resolution range profiles 
needed for achieving non-cooperative target recognition. However, there are 
many issues that need to be assessed before drawing any conclusion.

The idea of high resolution achieved with narrow-band signals is somehow 
opposite to signal theory. Here the usual rule is modified by the introduction 
of a priori information. The potential of such a method in terms of appli­
cations as well as the unconventional nature of the principle used should 
have triggered similar research from other scientists throughout the world. 
Despite presenting the algorithm in detail and showing very promising re­
sults, this article has actually inspired very few publications. It appears 
that the authors themselves did not publish any additional results and sev­
eral attempts to obtain more information from the Lincoln Laboratory have 
been unsuccessful. The excellent results presented in the article invite the 
following question: how well can the information carried by a simple scat­
tering model replace those contained in a signal over several GigaHertz of 
bandwidth?

1.2.2 Approach

The approach chosen for investigating the potential of the scattering 
model for building high-resolution range-profiles from narrow-band signals 
that could be used for non-cooperative target recognition is directly inspired 
by the article mentioned above. The processing technique is implemented 
and tested by comparing the results obtained with simulated signals similar 
to that used in the article. As the results are similarly good, the processing 
technique is then applied to a signal backscatterered by a real and more 
complex target. The dataset supplied by an independent source (Dr Vic­
tor Chen - Naval Research Laboratory - USA) allows us to demonstrate 
the potential of this algorithm for radar imaging a real Boeing-727 aircraft. 
The model obtained is accurate accross the modelling band but attempts to 
predict the radar signal across a missing band fail. This suggests that the 
estimated model is not a physically accurate representation of the scatter­
ing mechanisms that characterise this aircraft in the missing band. More 
generally, because of the assumed continuity of the scattering process in fre­
quency, this result constitutes a basis for challenging the capability of the 
algorithm to perform with complex targets.

In order to identify the source of this error and to determine its cause, 
joint analysis on simple targets are carried out with both simulated and real 
signals. To reduce the complexity of analysing results obtained with signals
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from moving complex targets in open space, new experiments are performed 
in a highly controlled environment. For such analysis, one considers the 
factors related to the target, the signal transmitted and the method. They 
are in high number in the case of a complex moving target. By using sim­
ple targets, the number of varying parameters is reduced to those needed 
for the sake of the analysis. This approach enables the conclusion to be 
drawn regardless of the quality of motion-compensation, presence of clutter, 
interfering sources or other sources of corruption of the signals.

First, a sensitivity analysis is conducted and the model parameter for 
which the extrapolation is most sensitive is identified. Second, a series of 
tests enable the factor causing incorrect estimation of the model-parameters 
to be determined. It is shown that the deficiency of the model imposed by 
the complexity of the target and the relatively poor quality of the received 
signal is responsible for incorrect modelling that makes the prediction of the 
spectrum highly inaccurate. This forms the hypothesis explaining the poor 
results obtained with the Boeing 727. Once the analysis is completed and the 
thesis supported by the various experimental results, the case of the Boeing 
727 initially studied is reviewed to verify the validity of the thesis. The 
study is then completed by comparing classification results obtained with 
signals from real scaled aircraft and their extrapolated versions. Finally, a 
new classification technique is proposed. It is designed to be less sensitive to 
the parameters that sure considered to be the cause of modelling error. For 
this reason, the classification results can be used to some extent to judge 
the relevance of the thesis.

1.2.3 Outline

In Chapter 2, the basic theory behind high-resolution radar imaging of 
airborne targets is presented. Starting with the principle of electromag­
netism the chapter moves quickly to the principle of radar ranging and to 
ISAR imaging. The importance of bandwidth is highlighted throughout 
using examples involving different high-resolution waveforms.

In Chapter 3, the technique that is proposed in the article entitled “ultra- 
wide-band coherent processing of sparse subbands” and published in the 
Lincohi Laboratory Journal, is described in detail. The different stages of 
the techniques are described and explained using references to other articles. 
The capability of the technique for enhancing range resolution of simple 
targets that is presented in the article is illustrated with simulated signals.

In Chapter 4, the modelling technique is studied extensively using real 
and simulated signals. The sensitivity of the model to its own parameters is 
assessed in depth. Once the most sensitive parameters Eire identified, the risk
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associated with each stage of the technique is analysed and potential causes 
of error identified. The study concludes by showing why the estimated model 
may not always be a physically accurate representation of the scattering 
mechanisms that characterise an aircraft. The assertion is supported by 
experiments using data from simulated scatterers, sphere on turntable and 
flying aircraft.

In Chapter 5, the proposed use of the model-parameter estimates to create 
a novel feature-based classification technique circumvents the conclusion of 
the fourth chapter. The alternative proposed with a different technique of 
classification, MAUCAZ, is designed to enable target classification based on 
the physically accurate elements of the model. Under certain conditions, 
the tests carried out with scaled aircraft show unrivalled performance.

In the last part of this thesis, the results obtained are summarised and a 
conclusion on the capability of the processing technique studied is drawn. 
Issues such are bandwidth extrapolation and target classification are espe­
cially considered. Finally, a series of future work are suggested. They are 
seen at this stage as the natural continuation of this work.

1.2.4 Publications and communications

Demonstrating that bandwidth extrapolation is limited by the poor accu­
racy of the scattering-centre model, and detecting the sources of error have 
required the investigation of the scattering-centre extraction technique. A 
number of results that are not directly related to the conclusion of this the­
sis have also been presented during various occasions at Rome Labs (USA), 
Naval Research Labs (USA), SELEX-Rome (Italy), BAE-Systems (UK), 
QinctiQ (UK) and ENSIETA (France).

The following publications have already resulted from this work:

[1 ] H. Borrion, H. Griffiths, and C. Baber, Sparse sub-band processing for 
ultra high resolution, Naval Research Labs, Washington, 2004 (unrefeered 
conference paper)

[2 ] H. Borrion, P. Tait, D. Money, C. Baker and H. Griffiths, Scattering 
centres extraction by sparse subband processing, Second Annual Tri-Service 
Waveform Diversity Workshop, Rome, NY, 2004 (unrefeered conference pa­
per)

[3] H. Borrion, H. Griffiths, P. Tait, D. Money and C. Baker, Scattering 
centre extraction for extended targets, Radar 2005, IEEE Int. Conf., Wash­
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ington, 2005, DOI: 10.1109/RADAR.2005.1435.814

[4] H. Borrion, H. Griffiths, P. Tait, D. Money and C. Baker, One­
dimensional model-based approach for ISAR imaging, Geoscience and Re­
mote Sensing Symposium 2005, IGARSS-2005 Proc., IEEE Int. Conf., 
Seoul, 2005, DOI: 10.1109/IGARSS.20051526170

[5] H. Borrion, H. Griffiths, P. Tait, D. Money and C. Baker, One- 
dimensional model-based approach for ISAR imaging (2), Geoscience and 
Remote Sensing Symposium 2006, IGARSS-2006 Proc., IEEE Int. Conf.,
Denver, 2006,

In addition, a number of publications are currently being written by the 
candidate.



Chapter 2

HIGH RESOLUTION 
RADAR

2.1 In tro d u c tio n

This chapter introduces the theory behind radar imaging of airborne tar­
gets. Starting with the basic principles of electromagnetics, the first section 
then presents elementary techniques that extract the target reflectivity from 
the signal at the receiver. They involve the Fourier-transform and matched- 
filtering of high-resolution waveforms. Most problems are addressed in the 
timc-domain at this stage of the processing. This chapter then presents 
the various assumptions that relate the target or scatterer location and the 
propagation-time in order to introduce the spatial domains: range and cross- 
range. The second section is concerned with high-resolution waveforms. 
Because they convey the information about the target, waveforms have a 
great importance and, of course, high range-resolution techniques rely on 
wide-band waveforms. The latter include short pulses, compressed pulses 
and synthetic bandwidth. The last part of this chapter uses turntable mea­
surements as an example for approaching radar imaging in one and two di­
mensions. The techniques reviewed to achieve high-resolution radar-images 
include high-resolution range-profiles and inverse synthetic-aperture-radar 
imaging. This chapter concludes by examining the main sources of limita­
tions found in the radar images.

38
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2 .2  R ad ar p r in c ip le

2.2.1 Introduction

Radar generates electromagnetic waves that propagate in the air. When 
the transmitted wave encounters a target, it interacts with it by inducing 
currents on the surface and creating a scattered field. The quantity of energy 
at the receiver depends upon many target features including reflectivity and
range to the target.

A branch of radar research attempts to estimate the reflectivity of the 
illuminated scene from the received signal. Scientists focus on four areas: 
transmission, interaction, reception and finally information retrieval through 
work on waveform-design and inversion techniques. Based on the constraints 
imposed by the physical mechanisms, the research described in this thesis 
contributes to the information retrieval through enhancement of the pro­
cessing techniques.

If the physics of scattering is considered then the description of reflectivity 
in time can be obtained from the temporal variation of the received signal. 
Advanced radar provides high performance which allows engineers to work 
with phase as well as amplitude. This technology associated with advanced 
processing techniques enables accurate description of the target reflectivity 
in time.

By obtaining accurate relations between time of propagation and spatial 
location of the scatterers, it is possible to image the reflectivity from time 
to space. Correct estimates of the location and strength of the scatterers 
can thus be obtained by applying inversion techniques to a set of radar 
measurements. These are a valuable source of information for applications 
such as target recognition.

This section presents an overview of the basic radar principles and the 
techniques used to extract the reflectivity as a function of space. It starts 
with the radar-cross-section and moves on to processing techniques for build­
ing images of the reflectivity in the time domain or in the frequency domain.
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2.2.2 Radar cross section  

In tro d u ctio n

In general, the received signal is considered as originating from the re­
flection of the transmitted signal from scatterers located along the line of 
sight. Although convenient, reflection is a simplistic way for characterising 
the interactions between waves and targets. In fact, an object present in an 
incident electromagnetic field anisotropically disperses some of the energy 
in all directions. This dispersal, called scattering, can be the result of very 
complex mechanisms. In their work, engineers use the radar-cross-section 
(RCS) to quantify the spatial distribution of the target reflectivity.

D efinition

Skolnik [46] defines the radar-cross-section, a, as a quantitative measure 
of the ratio of power in the signal scattered in the direction of the receiver 
to the power density of the radar wave incident upon the target.

equivalent isotropic reradiated powera ~ --------- .—— -----------------   .---------  (2 .1 )
mcident power density

In other words, the RCS of an object can be defined as an equivalent area 
intercepting that amount of power which, when scattered isotropically, pro­
duces at the radar receiver a power density which is equal to that scattered 
by the real object. This is given by

where

<j  =  47t lim
R—too

• Ei is the magnitude of the electric field component of mcident electro­
magnetic (EM) field, (V.m~l )

• Es is the magnitude of the electric field component of scattered EM 
field as measured by hypothetical observer,

• R  is the distance from target to observer (m).

As the name suggests, the RCS has dimensions of area: metre-squared. In 
general, it is given in decibels relative to one square metre (dBsm ) because 
it may vary over rather wide limits. The RCS in m2 can be converted into 
dBsm  by the following equation.

cr(dBsm) = 10.logio((r/lm2) (2.3)
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Far field

Knott et al. provide a basic far-field criterion [23]. For a target of principal 
dimension Dt , the range to the radar R  must satisfy

n 2
R  > 2 - £  (2.4)A

For instance, a Boeing-727 of principal dimension Dt  =  50 m  and located 
at 50 km  requires a wavelength greater than 10 cm for the scattered wave 
to satisfy the Far-field criterion.

Some values for RCS

The following table provides typical values of RCS at X-band for the 
frontal sector of different types of target. [52]

T ype RCS in  m 2 R CS in dBsm
Large commercial airplane 1 0 0 2 0

Large fighter 5 7
Small fighter 2.5 4
Man 1 0

F-117 fighter 0.03 -15
Small bird 0 . 0 1 - 2 0

V ariability

In [23], Shaeffer describes the normalised radar-cross-section to be a func­
tion of both the obstruction (i.e. target) and the incident wave. For sim­
plicity, we do not include polarimetry in this analysis. In this case and for 
monostatic radar, the parameters can be reduced to

• position of radar relative to the target

• target geometry and material composition

• frequency ( /)  or wavelength (A)

It is important to distinguish between the parameters that concern the 
target and those that depend upon the radar only and therefore may be con­
trolled. For example, the target geometry cannot be changed; furthermore 
it is an unknown parameter in the high-resolution problem. In contrast, the 
frequency of the incident wave can generally be controlled.
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D irectiv ity

When considering radar problems, one must take into account that both 
the energy of transmission by the radar and the energy scattered by the 
target generally have an unequal distribution in space. Angular directivity 
is provided in the form of a beam generated by the radar antenna. The larger 
the antenna, the greater the directivity. The angle between half-power points 
of the resulting beam is given by

A0h = 2JTa
where A is the wavelength and Da is the main dimension of the antenna 

[52],

For a narrow beam, the illuminated scene depends upon the pointing 
direction of the radar (the bore-sight). In order to scan a large volume of 
space with narrow beam the initial solution was to rotate the radar antenna. 
Now a phase-array antenna can steer the beam via electronic control of the 
phase relationship between the transmit and receive elements comprising an 
array.

2.2.3 Scene reflectivity in tim e 

Signal rep resen ta tio n

The signal represented by a radar waveform can be written in mathemat­
ical terms as

w(t) = a{t).cos{<l>{t) +  uJo-t) (2 .6 )

where a(t) is the envelope, <f>(t) is the phase modulation and u>o is the 
carrier-frequency [46].

When the envelope and phase modulation functions are varying slowly 
compared to the carrier signal, the Fourier transform presents frequency 
components concentrated around the carrier frequency. The narrow-band 
approximation of the emitted signal is an important aspect as the energy 
is then located within a small region of the spectrum. Because radars are 
band-limited, so are the received signals. For this reason, radar signals are 
often written as a complex-valued waveform called the quadrature model:

s(t) =

where 4>(£) =  <f>{t) +  u>Q.t is the instantaneous frequency.

(2.7)
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Let us consider an electromagnetic wave satisfying the one-dimensional 
wave equation and propagating along the axis y. The waveform can be 
formulated by

, «(y/c — t) for the transmitted wave
W |  s(y/c + t) for the reflected wave

where c is the speed of propagation in the medium.

The expression for the signal at the receiver, wr, as a function of the 
transmitted signal, wt, given by equation 2.9, is a fundamental aspect of the 
direct problem in radar.

wr(t) =  s(t) <g> wt{t) (2.9)

where s(t) is the impulse response of the reflectivity filter corresponding to 
the illuminated scene and <8 > is the convolution operator. The problem is 
that of extracting (;(t).

P o in t-sca tte re r m odel

At this stage, it is convenient to introduce a scattering model that can 
be used to derive the impulse response of the filter that is associated with 
the scattering scene. A simple way to describe the physical interactions 
between a wave and the target is through the so-called point-scatterer model. 
Let us assume that the target is composed of M  non-interacting point-like 
spheres in free space. The transmitted wave creates a current on the target 
which generates an electromagnetic field similar to the emitted one. For 
a coefficient of reflectivity Am and a time of propagation tm, the received 
waveform for the m th scatterer in a non-dispersive medium, is given by

Wr(t) — A m.Wt(t tjn) (2.10)

Figure 2.1 illustrates the concept of a point-scatterer for direct path 
propagation. Here dm = c.tm/2  is the one-way distance between the radar 
and the m th scatterer.

fi =  '2d\fc

<► *
t2 = 2d2/c

Figure 2.1: Concept of the point-scatterer model
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According to this model, a signal at the receiver would be the sum of 
scaled and time-delayed replicas of the emitted waveform; each return being 
attributed to one scattering element called point-scatterer. This model is the 
foundation for most high-resolution imaging methods. Assuming that there 
is no interaction between the M  point-scatterers that compose an hypothet­
ical target, the reflectivity function of the target in the one-dimensional time 
domain is of the form of 2 . 1 1

M
?(t) =  £  A m.5(t -  tm) A n  e R (2.11)

TO= 1
where 5(t) is the Dirac function.

In practice this model is very simple because it does not take into account 
the multipath or secondary waves that are induced by currents travelling on
the structures.

System  characterisa tion

A very common equation in the time-domain can be derived from 2.9 and 
2 . 11 .

M
Wr (t) = Wt(t)  (g> -  tm) Am e $ l  (2.12)

m= 1
where the variables are defined in the previous section.

To characterise such a system, one can use the response to an impulsive 
excitation in the time-domain or alternatively the response to continuously 
swept frequency in the frequency domain.

• Time-domain
A matched filter is used to maximise the signal-to-noise ratio at the 
receiver while preserving all the information of the signal. The instan­
taneous frequencies are calculated by the time-derivative of phase as 
a function of time.

Let us consider the cross-correlation between the return w r (t)  and 
a test signal wtest(t) given as C hi 2.13.

c (t) = w r ( t ) 0  Wtestit) = f  W r i t f . w l x t i t  ~ r)dr  (2.13)
J9t

where •* denotes the complex conjugate. The signal returned from a 
fixed point-target is given by the correlation of the transmitted signal
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with the reflectivity function described in 2 .1 1 . Its expression is given
by

M
wr =  ^ Am.wt (t — tm) (2.14)

m =l

For independent point-targets in Gaussian noise, the optimal re­
ceiver is the correlator that performs time-correlation over a period of 
observation T  between the received signal and the transmitted signal. 
The output of the matched filter is expressed as

M
C Am I wt{T).w}{t - t m -  r ) d r  (2.15)

m = l JT

In this case, the cross-correlation is optimal for Wtest =  wr and t =  tm. 
Eq. 2.15 is known as the one-dimensional radar mapping equation.

• Frequency domain
The relation between the time-domain and the frequency-domain is a 
fundamental element of modern imaging techniques. Scattering mod­
els show that it is generally easier to treat the inverse problem in the 
frequency-domain but radar images require the scattering functions to 
be given in the time (range) domain. This is generally achieved by 
Fourier transforming the baseband-signal. The Fourier-transform and 
the inverse Fourier-transform are defined by equations 2.16 and 2.17.

S(u) = -F{s}(u>) =  f  s{ t') .e -^d t*  (2.16)
m

s(t) =  F ~ l {S} (t) =  ~  /  S(w'().e- " 'W  (2.17)
27T J$t

The above equations ensure that the information related to the spatial 
location of the target can be retrieved to some extent whether the 
reflectivity function is described in the time domain or in the frequency 
domain.

When applying the Discrete Fourier Transform to a vector, it is common to 
add a sequence of zeros at the ends of this vector before it is transformed. By 
introducing more points into the vector this operation, called zero-padding, 
does not improve the resolution but makes the spectrum smoother and sub­
sequently more suitable to its interpretation by humans.
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The output of the Fourier Transform and Matched Filter are not the same. 
Nevertheless, the first moment of the Fourier frequency is equal to the first 
moment of the instananeous frequency. In fact, when a(t) is varying slowly, 
the second moments are also the same [29]. Both the impulse response and 
the transfer-function provide a good representation of the scene reflectivity 
that can be used for imaging or classifying targets.

Figure 2.2 illustrates the principle of radar imaging based on the transfer- 
function. The spectrum of the received waveform, Wr, can be seen as re­
sulting from the modification of the spectrum of the transmitted waveform, 
Wf by the filter associated with the target and its environment. The filter 
with the correct transfer-function, H ( f ), enables the target reflectivity to 
be imaged as a function of time or space.

Wt (f)

H (f)

Figure 2.2: Principle of radar imaging

R esolu tion

The description of the reflectivity function in time enables discrimination 
of returns having different times of propagation. However, the time-domain 
response of short pulses is only an approximation of the so-called impulse- 
rcsponse of the illuminated scene. In practice, it relies upon the waveform 
transmitted. The shorter the pulse, the better the resolution. The duality 
between time and frequency means that the resolution is therefore affected 
by the signal bandwidth in the same way. In 2.16, Fourier components 
are defined over an infinite integration. Because the domain on which the 
reflectivity is measured is limited, the determination of the spectral contents 
by discrete Fourier Transform is only an estimate with limited resolution.

The criterion chosen by Lord Rayleigh to define the limit of resolution of a 
diffraction-limited optical instrument is also applicable to radar. Initially, it 
is “the condition that arises when the centre of one diffraction pattern is su­
perimposed with the first minimum of another diffraction pattern produced
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by a point source equally bright as the first.” For a radar, it is defined as the 
distance between two point-scatterers so that the intersection of the returns 
is 9 dB  below their maximum value. This case implies that the output of 
the matched filter is characterised by a trough greater them 3 dB.

One can address this in terms of actual radar resolution. For a simple 
pulse, the temporal resolution is directly derived from the duration of the 
pulse as defined by the time-width at 3 dB  below the peak. In order to 
derive the spatial resolution from this, one needs to introduce the relation 
between time-of-propagation and target distance. This introduces the prob­
lem studied in the next section.

2.2.4 Scene reflectivity in space 

In tro d u c tio n

The description of the target reflectivity as a function of time provides 
useful information that can be used to retrieve the distance of propagation 
associated with each scatterer. From this expression, it is also possible to 
retrieve the location of the scatterers by making some assumption about the 
target structure, the target-motion and the scattering mechanisms involved.

R ange

The previous section presented two techniques for obtaining the represen­
tation of the reflectivity as a function of time. They are Fourier-transformed 
and matched-filtered. The image obtained can be transposed onto the range 
domain using 2.18.

where is the propagation time (s) and r* is the one-way propagation 
distance (m) associated with the m th scatterer. In one dimension, the result­
ing image is known as a High-Resolution Range-Profile (HRRP) or simply 
a range-profile. It can be seen as a projection of the reflectivity onto the 
direction of propagation.

The echoes from two scatterers that are distant in range are said to be 
resolved when they produce two distinct returns in time. This implies that 
short-duration pulses enable resolution of closely spaced targets. As the 
equivalent of the pulse duration in the frequency domain is the signal band­
width, methods applying the Fourier Transform of a band-limited signal 
have limited resolution.
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As discussed earlier, it is common to define the resolution by the peak 
width of a single point echo measured at 3 dB  below its maximum value. 
The nominal range resolution A r is given for two point-targets by

A r = ±  {2. 19)

where B  is the bandwidth (Hz).

Wehner defines the range resolution of a radar in terms of its “ability to 
resolve point targets that are separated in range to the radar” [52]. The 
nominal range resolution is the minimum distance between two resolvable 
targets travelling at the same speed and giving the same reflectivity ampli­
tude.

Large bandwidth can be exploited for surveillance to detect targets that 
arc closely spaced. Several waveforms can be used to achieve the desired 
bandwidth:

• continuous pulse of small time-duration

• continuous long modulated waveform

• continuous synthetic bandwidth

• sampled synthetic bandwidth

Such waveforms can provide enough resolution to distinguish between 
scatterers that are separated in range by only few centimetres. However, 
when the target is moving, the translation of the scatterer introduces a 
frequency component known as Doppler-frequency. The following section 
shows how the variation of range can affect the accuracy of the range profile 
or alternatively how it be used to estimate the target speed.

D oppler

The system described by radar is limited to the scene illuminated by the 
properties of the transmitted wave, the pattern of radiation and the time- 
gatc of the receiver. For air-targets, the scene is generally not stationary 
in time. For instance, the reflectivity of a scene containing a flying air­
craft changes with time since the position of the aircraft varies continuously. 
These variations appear through the rate of change of relative phase as a 
function of time. The faster the aircraft, the greater the variation in time. 
This effect, known as Doppler effect, is exploited by a class of radars to 
retrieve the components of the target-speed along the line of sight of the 
radar.
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Let a target be flying towards a stationary radar at speed vm. According 
to the point-scatterer model, a series of N  narrow-band pulses transmitted 
at time t t — 0 separated by pulse-repetition-interval, Tj, produces a series 
of N echoes. The nth pulse arrives at the radar receiver at time tr given by 
equation 2 .2 0 .

tr = (n -  1).T/ +  2.dm/c n =  1,2, • • • ,iV. (2.20)

For a target travelling at constant speed, the distance of the radar to the 
scattcrer dm decreases linearly with time following the relation 2 . 2 1

dm{t) = dm( 0) +  vm.t (2 .21)

where dm(t) is the distance between the radar and the scatterer at time 
t. According to the point-scatterer model, the phase-shift measured between 
the n th pulse and the nth echo is given by

=  -  y  (<M0) +  Vm-Ti) (2.22)

The time derivative of the phase is given by

g  =  =  2«.fD (2.23)

where fp  is the Doppler frequency given by relation 2.24

/ o « = - y  (2.24)

If the relative phase-shift A0 measured for two targets is the same, it 
means that either the targets are travelling at same speed toward the radar 
or that the targets are travelling at speeds that induce identical relative 
sliifts; hi other words A 0 i and A 0 2  are such that A0 2  — A0i =  2n.k where
k  is positive or negative integer. A pulse repetition interval P R I  =  7 / yields
a corresponding ambiguous Doppler speed called the blind speed given by 
relation 2.25

vm =  * =  ±1 ,±2 ,--- (2.25)

The Doppler effect is exploited by radar to measure car speed by trans­
mitting narrow-band pulses on highways for instance. However, these radar 
systems are unable to resolve scatterers whose contribution produce identi­
cal relative phase-shifts. Radar that can estimate both range and Doppler 
information can be used to build two-dimensional images. For exploiting 
the variations of reflectivity in time, it is important to distinguish the con­
tributions that are due to the target-motion and the contributions that are 
due to other scatterers located further away in range.
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C ross-range

High range-resolution radars could not resolve point-like targets that are 
located on a radius centred on the radar location because they would all 
create identical phase-shifts. In this case, a smaller beamwidth is needed to 
resolve them in the cross-range dimension. When this is not possible, one can 
exploit the Doppler effect associated with rotating scatterers to infer their 
position in cross-range. This section proposes one method for estimating the 
position of a scatterer in cross-range by measuring the Doppler frequency 
associated with this scatterer when the target is moving with respect to the 
radar.

The illumination of the targets varies according to the spatial pattern of 
radiation of the antenna. Accurate estimation of target positions requires 
scatterers to be discriminated in cross-range using narrow beams. This 
condition enables high cross-range resolution to be achieved according to 
2 .26 .

where A is the wavelength (m) and SO is the aperture (rad).

We can estimate the positions of scatterers for which the returns would 
generate identical phase-shifts at the radar antenna. For non-interacting 
isotropic point-scatterers, these positions define portions of concentric spher­
ical surfaces. Let us generalise this idea by considering that any set of mea­
surements is characterised by an iso-Doppler domain which defines a domain 
of ambiguity in space. This ambiguity domain can be reduced by adding 
measurements characterised by different dom ains of ambiguity. This can be 
done by varying the spatial domain of the measurements.

In order to remove the ambiguity in the cross-range direction, the mea­
surements exploit the diversity of paths coming from a same scatterers by 
either acting directly on the spatial properties of the antenna or relying on 
the target motion, e.g.

• antenna of large time-extent (large aperture)

• non-linear small aperture

• synthetic aperture (SAR)

• sampled aperture (array, network)

• inverse synthetic aperture (ISAR)

• inverse sampled aperture
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Depending on the method chosen, various processing techniques can be 
used to retrieve the information in two-dimensions. In this chapter we 
present some results using inverse synthetic-aperture but firstly we intro­
duce the various types of high range resolution waveforms.
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2 .3  H ig h  ra n g e-reso lu tio n  w aveform s

2.3.1 Introduction

This section introduces three different types of waveforms including a 
simple pulse of short duration, modulated pulse and synthetic waveform.

2.3.2 Sim ple pulse

For target detection, radar systems rely on a spatial description of the 
reflectivity. HRR radar systems transmit waveforms whose spatial support 
is smaller than the target. The pulse excites the target’s sub-elements which 
re-radiate some of the energy back to the receiver. Non-interacting point- 
targets produce a signal composed of pulses shifted in time. Under certain 
conditions, the range of each scatterer can be deduced from the delay of the 
echoes.

The bandwidth of simple pulses can be approximated by

B  = -  (2.27)r
where r  is the pulse-width (s) given at about 3 dB below the maximum as 
represented in figure 2.3.

timeT

Figure 2.3: Simple pulse

The corresponding nominal resolution is given by

A r = y  (2.28)

In order to achieve high range-resolution, simple pulse systems require 
short signals. However, because the duration of the pulse is related to the 
energy transmitted, a reduction of the pulse’s duration must be compensated 
by an increase of the power, otherwise the signal-to-noise ratio drops. In 
conclusion, a simple pulse suffers from high power requirements or limited 
detection. Ultimately it is limited by practical considerations such as voltage 
breakdown in the high power circuitry.
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2.3.3 Pulse compressed waveform

Pulse compressed waveforms overcome the problem that characterises sim­
ple short-pulses. This class of waveforms is now extensively used and pro­
vides high-resolution without the constraints applied to the signal-to-noise 
ratio. The principle consists of modulating the pulse in such way that the 
frequency of the pulse increases with its duration. The linear frequency 
modulation (LFM) also known as chirp is certainly the most widely used. 
Here the instantaneous frequency of the waveform varies linearly with time. 
The signal of duration T  can be written as the product of the baseband 
signal and the modulation signal in 2.29.

wt(t) = a(t).ei2nfct.eiirryt* (2.29)

where a(t) = rect(Jp) and 7  is the chirp rate (H z.s  1). An example is 
shown in figure 2.4.

0.8
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Figure 2.4: Chirp signal in the time domain - wt(t)

From 2.12, the received signal, wr, is given in 2.30 by the convolution of 
the scene reflectivity function <;(t) and the transmitted pulse.

wr(t) = q(t) <g> wt(t) =  [  q ( t -  T)wt(T).d,T (2.30)
Jit

The return from a point target located at range dm = c.tm/2  is given by

wr{t) = Am.wt(t tm) = Am.a(t -  (2.31)
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By mixing the complex conjugate of this received signal with the phase 
of the transmitted chirp signal, we obtain the general expression in 2.32

u;m =  tu;.e((2,r/' t+’r1‘2) (2.32)

For the compressed waveform, the signal at the output of the mixer is 
given by

wm{t) = Am.a*(t tm)ei( * 'fc*rn-'n $ n) j* n t™t (2.33)

The frequency components of 2.33 contain the information about the dis­
tance tm. The discrete Fourier spectrum of the compressed signal shows the 
distribution of energy at different frequencies which span the reflectivity at
different ranges:

M
W ( u )  =  Y .

m— 1

where the point spread function in the frequency domain is

psf(cj) = f{a * ( t)}  (2.35)

The maximum absolute value of the function tells us the best estimate of 
the range to the point scatterer in Gaussian noise. For example, a target at 
range rrn will appear at the frequency / m =  2 rm/c

Here the function a(t) is a rectangular function in the time domain. There­
fore the point spread function is a sine function. This means that the range 
profile of point-targets is given by the convolution of sine functions with 
delta function. For two closely spaced targets, the resolution is limited by 
the width of the sine function. In terms of 3 dB-width, the nominal range 
resolution is given by

A r =  (2.36)
2 7  T v '

where B ef j  =  7 .T is the effective bandwidth (Hz).

The sine function is also characterised by secondary lobes at 13 dB below 
the principal one. Weighting may be used to prevent peaks from weak tar­
gets being overlaid by the secondary lobes from a stronger target. However, 
weighting affects the resolution.
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2.3.4 Synthetic waveform  

In troduction

This principle relies on the duality between time-domain and frequency- 
domain. It is possible to create a wide spectrum with limited constraints 
applied on the hardware by assembling segments in the frequency domain. 
For instance, step-frequency radars transmit waveforms where the carrier- 
frequency is increased by discrete steps from pulse to pulse. When the 
segments are overlapping, filters can be used to flatten the spectrum [53], 
[21]. In contrast, when segments are not contiguous, range-ambiguities arise 
that vary with the sampling-rate. Figure 2.5 represents a stepped frequency 
waveform:

pulse

f7 fN-1

Figure 2.5: Stepped frequency transmitted waveform

P rincip le

Stepped-frequency radar achieves waveforms with large effective band­
width by emitting successive relatively narrow-band pulses whose carrier- 
frequency is sequentially increased. The transmitted waveform is typically a 
monochromatic signal whose duration corresponds roughly to the inverse of 
the desired instantaneous bandwidth. It follows that this technique enables 
wide effective bandwidth to be synthesized without direct reliance on the 
implied necessary analogue to digital (A/D) sampling-rate.

The concept of synthetic range profile generation can be summarised as 
follows [52]:

1. Transmit a series of N  pulses whose central frequency is swept from 
pulse to pulse by a constant bandwidth A/  called the frequency step

2 . Set a range delayed sampling gate to collect I and Q samples of target 
baseband echo responses for each transmitted pulse (matched filter)

3. Store the quadrature components of each of the N  echo signals. The 
complete set describes the frequency signature of the target’s reflec­
tivity
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4. Compute the inverse discrete Fourier Transform of the resulting set of 
N  samples to obtain the N  components in the time domain.

T heory

Let a sequence of N narrowband waveforms emitted with linearly increas­
ing frequency f n given by

U  =  fo +  n .A f, n = 0,1, • • •, N  -  1 (2.37)

where A f  is the frequency-step and n the index related to the frequency
fn-

The signal transmitted at the frequency f n is modelled by

®t(«) =  S6(t).ei-2,'</ °+nA/)t (2.38)

where Sb{t) is the baseband signal.

The received signal is given by the convolution of the scene reflectivity 
function <:(£) and the transmitted pulse.

wr(t) = q(t) <g> wt(t) = f  <;(t- T)wt{r).dT (2.39)
JT

For example, the signal received from a point-target with reflectivity
<;m(n, t ) at range r m is

Writ) = Tm(ra, t).sb(t -  (2.40)

Coherent demodulation is applied to the received signal yielding the out­
put signal, wc, in 2.41.

wc{t) = wr(t).e~t2*fnt (2-41)

Combining 2.40 and 2.41 yields the expression of the baseband signal 
reflected by a point scatterer:

wc(t) = fm(n, t).sb(t -  (2.42)

where Cm(n, t) is the complex reflectivity of the point-target at range rm 

Cm(n, t) = cm(n, t).e~x2*foim (2.43)
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After matched-filtering, the signal is given by:

IVr
r  N ~ l

=  /  *)*&(* ~ nA* ~ tm)*e t2irnAf tm 
j T r  n = 0

/C-l
. £  «J(t -  fcAT7 -  At).ei 2*kAfAtdt (2.44)

fc=0

For a stationary target, the amplitude normalised with respect to the 
transmitted power is

|wm(At)| =$n(n).|ci(A t)|.|p 2 (AT)| (2.45)

where c\ Ls the frequency-domain sampling filter

c, (At) =  ~ At)) ( 2  46)
ll  '  sin (irA f(tm -  A t)) 1 '

and C2 is the pulse matched filter

C2 (AT) =  j  sb(t -  tm)sl(t -  A T)dt (2.47)

The filters c\ and C2  are now examined separately.

1. The frequency-domain sampling filter: c\{At)
The response of the pulse-matched receiver is multiplied by a function 
ci in the form of sin(N  x) /  sin(x) as a result of discrete sampling.
The width at 3 dB  below the maximum is similar to those of the sine
function. The width is inversely proportional to the number of samples 
and to the frequency step.

T3dB = JTKf ( 2 ' 4 8 )

The function is also characterised by its repetition in the time do­
main. It repeats itself with a period Tmox given by
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Tmax is also the maximum delay between two returns in the synthe­
sized timc-domain response. This is related to the Nyquist sampling 
criterion for unambiguous reconstruction. The interval between sam­
ples in the frequency domain (or frequency step) must be smaller than 
the minimum bandwidth of the signal. In this case, the minimum 
bandwidth is given by the inverse of Tmax in 2.49. It corresponds to 
an unambiguous range given by

c
Runam biguous =  ^  (2.50)

The range ambiguity due to discrete frequency sampling can be 
explained by observing the phases of the returns from two point- 
scatterers located at different ranges d\ and efo- There is ambiguity in 
2.42 if both phases are identical, that is

<h ~ <l>i = 27t.A/(£2 — t\) oc 27r (2.51)

or identically if the distance between scatterers is an integer value of 
half step-wavelength AA is given by

< h -d 1 = K . ^  (2.52)

The maximum delay between the two returns is associated with the 
unambiguous range according to 2.53:

T m a x  ~

As an example, we have considered the frequency-domain sampling 
filter ci for a waveform composed of N  = 20 pulses separated by A/  =  
1.5 M H z.  Figure 1 represents one period whose total extent is 1 / A /  =
0.67 fis. The corresponding unambiguous range is Runambiguous = 
100 m. The 3 dB-width (r  =  33 ns) implies the range resolution of 
the 30 M iiz-bandwidth synthetic waveform is Ar =  c /(2r)  = 5  to.

2 Runambigxums /n  r q \

C
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Figure 2.6: Width of the function sin(Nx)  /  sin(x)

2. Pulse-matched filter: C2 (AT)

The pulse-matched filter, C2 , is given by

c2 (AT) =  J  sb(t -  to).s*b(t -  AT)dt (2.54)

The imaged area is given by the extent of the matched-filter’s impulse- 
response. Ideally the unambiguous range should be larger than the im­
aged window. This condition ensures that the spectrum of the matched 
filter does not overlap on other sin(jVx)/sin(:r) patterns. This prevents 
an extended target from wrapping on itself (i.e. aliasing). Practically, 
the condition 2.55 is given in terms of 3 dB  width.

R im aged  — Runambiguous (2.55)

In practice, it is usual to set the frequency step equal to the narrow 
bandwidth, that is:

A /  =  A B  (2.56)

The individual pulses of bandwidth AB  must be sampled in the 
time-domain according to the sampling theorem for two channels:

1_
K b

^ (2-57)
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The energy reflected from the imaged scene is distributed in time. 
For one target, the energy is present across the pulse duration r . For a 
given sampling interval rs, the target is present on M  range bins with 
different powers. The value of M  can be calculated with 2.58.

M  =  t / ts (2.58)

To solve this ambiguity, the Discrete Fourier transform of M  pulses 
at different frequencies must be performed. The condition for col­
lecting at least one sample is given by the sampling theorem in the 
timc-domain.

The simplest case is composed by N  narrow-band monochromatic 
pulses separated by a pulse repetition interval (PRI) of T  seconds. 
Each pulse of duration r  and frequency /„  can be written as 2.59:

wt(t) = rect(-— -^ -) .ex2icfnt (2.59)

According to 2.54, the pulse-matched filter is a triangular function 
spanning twice the pulse duration. The 3 dB  width measures half the
length of the basis of the triangle. Therefore the imaged area is given
directly by the pulse duration:

B im aged = (2.60)

From this follows the sampling rate conditions for avoiding aliasing

1 ^  1T 7  ( 2 -6 1 )2A B  ~ A f

It is convenient to chose a sampling time ts equal to the PRI. The 
return from a stationary point-target can be written as follows:

*(t) =  £  i-rectf  " At-  to— ^ ) .  (2.62)
n=0 T

e i.2irfn(t—n A t —to) e - i .2 im A /t o  e ~i2irf0to
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The frequency step is often half of the bandwidth. However there is 
a special case known as synthetic waveform where they are equal. In 
this case, the total bandwidth is given by

B  = N .A  f  (2.63)

The corresponding nominal resolution is given by

A r = — -—
2 N A f

The signal received from P  scattering centres can be written as a 
series of exponentials

p
s(n) = ^ 2  n = 1 • • • N  (2.65)

p = i

pp{n): complex amplitude coefficient 
rp: one-way distance (m)

The inverse discrete Fourier transform of the measurement sequence 
is computed. The value at range bin m is given by

(2.64)

S(m) = £  s(n).e‘2' ^  = Pp(n)-e-i2’(^ A/+^ n (2.66)
n=0 p=ln=0

For a single target (P = l)  with no frequency dependence, the abso­
lute value can be approximated by

sinfay) 
sin(iry/N)

(2.67)

with y = m — where B  = n .A f
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When using one sample per frequency, one needs to make sure that 
this sample contains the information from all scatterers. If the pulse 
is too short then sparse scatterers may generate distinct returns. In 
this case, information is lost. The extreme situation arises when the 
beginning of the return from the last scatterer occurs at the same time 
(U) as the end of the return from the first scatterer (t/). Therefore for 
a pulse of duration r ,  we need to have

t f  — ti < r  (2 .6 8 )

It follows that

( 2 ' 6 9 )

Using the ratio between the unambiguous range and the range imaged, 
k, we have the relation in 2.70:

k .A f  > AB  (2.70)

This defines the boundaries of the frequency step expressed in 2.71:

i .A /  < AB <  2A/  (2.71)
fZ

where

> 1 (2.72)

For example, if the imaged window is half the unambiguous range then 
one must chose the step frequency such that it satisfies the relation in 
2.72

^ j - < A B <  2 A/  (2.73)

The basic principle of waveform designing have been introduced in this
section. The following section presents some techniques commonly used to
extract the information from the received waveform in order to create a 
radar image.

^    Hunambiguous

R im aged
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2 .4  R ad ar im ag in g

2.4.1 Introduction

For imaging, it has been shown that range and cross-range resolutions have 
reliance upon the bandwidth and the aperture, respectively. By moving the 
radar or the target, it is possible to artificially synthesize an aperture. Mea­
surements repeated during the formation of this aperture can be exploited for 
estimating the location of the scatterers in the cross-range direction. Tech­
niques that exploit the variation of aspect-angle include Synthetic-Aperture- 
Radar (SAR), Inverse Synthetic-Aperture-Radar (ISAR), spot SAR and to­
mography. They create two-dimensional images whose quality relies upon 
the relative radar-to-target motion. Measurements obtained for various 
aspect-angles can be used to build a database of one-dimensional range- 
profiles as a function of aspect-angle. The variation of aspect-angle increases 
the amount of information via improvement in cross-range resolution. Based 
on the theory presented earlier, this part of the chapter approaches imaging 
techniques using turntable measurements and is therefore based upon the 
principles of ISAR.

2.4.2 M easurements 

Princip le

Imaging techniques process radar signals measured or simulated over a 
range of frequencies and aspect-angles. The system used here is known as 
a turntable. It consists of a rotating plaform on which a target is placed. 
The rotation allows illumination of the target from various aspect-angles. 
For a given angular position of the turntable, transmission of a wide-band 
waveform enables determination of a detailed range profile. As stated ear­
lier, fine signatures can only characterise targets for the perspective taken 
by the radar during the measurement. By repeating the measurements 
for various aspect-angles, one can collect series of bursts at the receiver. 
This dataset constitutes a large support of information with two degrees 
of freedom, bandwidth and aspect-angle. It can then be exploited in vari­
ous ways. This section successively presents techniques for building one or 
two-dimensional images including high-resolution range profiles and Inverse 
Synthetic Aperture Radar (ISAR) images.

G eom etry

Let a general coordinate system be defined by an orthonormal basis of 
three unit-vectors {x, y, z}. The turntable is centered on O^-R^O, 0) and 
rotates according to the rotation vector u) = (0,0,u>). It has its own coor­
dinate system {£*, if, z'} with its origin at the centre of rotation O'. At a
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given time the rotation angle can be defined by d(t) = u.t if the rotation is 
continuous or by 8 {n) = AO.n if the rotation is performed by discrete steps 
AO.

4
t  •  l ad s '1o

Figure 2.7: Geometry of a turntable from side

Let us formalise the definition of the distance for the two-dimensional case. 
For a target composed of M  scatterers, the position of the mth scatterer can 
be expressed in the general system by OPm =  xm.x +  ym.y or alternatively 
in the turntable system by the vector O P = x,rn.xt +  y^-y'. In the latter 
system, the position of the scatterer can also be expressed using polar coor­
dinates osx'm — pm.cos(0m) and y'm = pm.sin(0m) so that the distance of the 
scatterer to the centre of rotation is given by pm =  x,rn.cos(6m)+y!m.sin(dm).

When the target rotates, the position of the scatterers varies in range. Ac­
cording to 2.24, the radial components of the vector position shift generates 
an instantaneous Doppler frequency shift, / d(£).

fo (t)  = (2.74)

where ||i/|| is the radial velocity of a scatterer defined by its component 
& due to translation and it component u1' — Q x r due to rotation. For 
turntable measurements, the Doppler-frequency can be directly related to 
the scatterer-location in cross-range:

f D = (2.75)

where u;e/ /  is the magnitude of the effective rotation vector that is perpen­
dicular to the fine of sight and rc is the cross-range displacement.

Facilities

The set of turntable-measurements utilised in this thesis have been carried 
out on two different experimental systems by engineers from ENSIETA and 
CSIR. Located within an an echoic-chamber, the indoor-facility of ENSIETA
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in Brest (France) enables radar measurement of small targets. For exper­
iments on larger targets such as full-scale aircraft, measurements from the 
outdoor-facility at the Airforce Base Waterkloof in Pretoria (South-Africa) 
have been used.

• Specifications of the experimental system of ENSIETA

— the radar antenna is located at 2  m  in elevation
— the centre of rotation of the turntable is located at 1.82 m  in 

elevation and at 5.25m from the antenna.
— the grazing angle is smaller than 6g — 1 .6 °
— the radar system is based on a vector network-analyser
— a dataset consists of 201 bursts from aspect-angle 9 — —5° to 95°
— a burst consists of 128 IQ samples at frequency /„  =  11.95 GHz 

to 18 GHz

Figure 2.8: Experimental system at ENSIETA

• Specifications of the experimental system of CSIR

— the centre of rotation of the turntable is located at about 25 m  
from the antenna.

— A dataset consists of bursts from aspect-angle 6 — —30° to 30°
— A burst consists of IQ samples from frequency /„  =  0.3 GHz to 

18 GHz
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Figure 2.9: Experimental system at CSIR

2.4.3 R a d a r  im aging  techn iques 

In troduction

Here, we are interested in showing a review of techniques for imaging tar­
gets. They include high-resolution range profiles, Radon images and ISAR 
images. The dataset employed has been obtained by turntable-measurement 
at ENSIETA. The target is composed of three spheres made of steel with 
a diameter of 50 mm. The scatterers are separated by 21.5 cm from each 
other.

H igh-resolution range-profiles

As shown earlier, High-Resolution Range-Profiles (HRRP) can be seen as 
the projection of the target reflectivity on the line of sight. They can be 
computed by Fourier-transforming a set of complex-valued radar samples 
obtained from one perspective.

In this example, measurements have been made for a target composed of 
three metal-spheres for an angular position of the turntable 6 =  50°. The 
image 2 . 1 0  represents the normalised power-spectra of the received signal for 
two different bandwidths: B l r  = 3.175 GHz (top) and B r r  = 6.35 GHz 
(bottom) starting at 11.95 GHz. Zero-padding has been applied to the data. 
The a:-axis represents the range in metres.

On top, the 47mm-resolution image shows only two peaks. In order to 
distinguish the third peak, one has to increase the bandwidth. At the bot­
tom, the 24mm-resolution image obtained with twice the bandwidth allows
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Figure 2.10: HRRP of three metal-spheres - Ar =  47 mm (top) and Ar =  
24 m m  (bottom), 9 =  50° for B  =  6.35 GHz  (top) and B  =  11.95 GHz
(bottom)

resolution of the third scatterer. The range resolution required to distin­
guish the scatterers on a range profile depends upon their position in range. 
Positions vary with aspect-angle as can be seen on figure 2.11.

The rotation of the turntable allows measurements to be made for vari­
ous aspect-angles. A two-dimensional dataset can be formed by collecting 
measurements at regular angles. Applying the method presented in the pre­
vious page, an image can be computed by Fourier transforming an array of 
complex-valued radar samples.

The example shown in figure 2.11 has been created by concatenating 201 
range-profiles corresponding to aspect-angles 9 — —5° to 95°. Each range 
profile has been obtained with the largest bandwidth (6.35 GHz). It there­
fore has a range-resolution A r =  24 mm. The x-axis represents the angle 
while the y-axis represents the range. Bright pixels correspond to large 
values of the power-spectrum.
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Angle

Figure 2.11: HRRP vs angle of three spheres: maximum range on y-axis 
L = 3.024 m ; range resolution Ar =  24 mm, maximum angle on x-axis
9 =  -5°, -4.5°, . . . , 9 5 °

The range of the scatterers is defined by cos-type functions with respect 
to aspect-angle. Depending on the aspect-angle, distinguishing the scatter­
ers may require extremely high range-resolution. Hence the motivation for 
improving the cross-range resolution.

Inverse syn thetic-apertu re-radar

Inverse Synthetic-Aperture-Radar (ISAR) is a processing technique that 
images the reflectivity in two-dimensions: range and cross-range. Whereas 
the range to a scatterer is estimated by computing range-profiles, the cross- 
range is determined from the estimation of the Doppler frequency caused by 
rotation of the turntable in the example used here.

Let us assume a rotating target illuminated by a stepped-frequency radar. 
Stepped-frequency radar achieves waveforms with large effective bandwidth 
by emitting successive narrow-band pulses whose the carrier-frequency is 
sequentially increased. The transmitted waveform is typically a monochro­
matic signal whose duration corresponds roughly to the inverse of the desired 
narrow-bandwidth.
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The concept of synthetic range profile generation [1 ] is summarised here 
and the technique used for computing ISAR images is represented below.

1 . Transmit a series of N  pulses in which the frequency is swept from 
pulse to pulse by a constant bandwidth, A /, called the frequency step

2. Set a range-delayed sampling gate to collect I and Q samples of the 
target baseband echo response for each transmitted pulse (matched 
filter)

3. Store the quadrature components of each of the N  echo signals. The 
complete set describes the frequency signature of the target’s reflec­
tivity

4. Rotate the target by a small angular step AO

5. Repeat the above stages M  times to synthesize both the bandwidth 
and the aperture.

6 . Compute the inverse Discrete Fourier Transform (D F T -1) of the set 
of N  complex frequency samples to obtain the N  complex components 
in the time domain per row.

7. Compute the Discrete Fourier Transform {DFT) of the resulting set 
of M  complex time samples to obtain the M  complex components in 
the Doppler domain per column.
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Figure 2.12: Principle of ISAR imaging
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The I and Q samples collected during the measurements are organised in 
a two-dimensionnal array where each row corresponds to a different aspect- 
angle and each column to a different frequency. The first stage computes the 
Fourier transform of the row to create the M  range-profiles. Each column 
is thus a time-history for one range-cell. Assuming the scatterers remains 
in the same range-cell, the second stage computes the Doppler content by 
Fourier processing the column. Images are then obtained by computing the 
power for each pixel. Although zero-padding does not improve the resolu­
tion, it can be used to interpolate images for enhancing the smoothness of 
the image.

In this example, an ISAR image is computed with radar data from the 
same set of complex-valued radar-measurements. The full 6.35 GHz band­
width provides a range-resolution Ar = 24 mm. In order to obtain a 
cross-range resolution Arc =  24 mm, the aperture synthesized covers 24.5° 
from aspect-angles —5° to 19.5°. The dimension of the imaged area are 
3.024 m x 1.185 m. The resulting ISAR image is reproduced in figure 2.13

Figure 2.13: ISAR image of three metal-spheres: L x W  = 3.024 m x 1.185 m,
A r  =  A rc =  24 mm

ISAR imaging enables target characterisation to be made based on tech­
niques that are close to human visual interpretation. However, accurate 
imaging requires motion compensation. This stage may be relatively easy 
to do for turntable measurement where the rotation vector is known. How­
ever, real targets may have a more chaotic motion including both rotation 
and translation.
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2.4.4 Radar imaging lim itations 

In tro d u c tio n

Radar imaging is achieved using techniques whose theory has been built 
with the assumptions of ideal targets and ideal radars. In the real-world, 
several factors may affect the quality of the images obtained. They can be re­
lated to the measurements, to non-ideal targets or the motion-compensation. 
Here we are interested in the limitations that may affect radar images .

Physical sca tte rers

Since the measurements are illuminating targets under different angles, 
the imaging methods must take into account the reflectivity as a function 
of angle. Individual scatterers may have a very complex structure and be 
characterised by impulse-responses that may greatly vary with aspect-angle. 
Non point-like targets are likely to vary from sphere-like targets. The effect 
of an irregular surface on the resolution is not considered.

To find an ‘“equivalent” in frequency to the problem posed by complex 
surfaces, we need to imagine an articulated target composed of scatterers 
which independently move during the variation of signal phase, that is during 
the transmission of a pulse. The further the surface is from a sphere, the 
more chaotic and fast would be the motion.

The problem of moving-target compensation has been studied and is usu­
ally simplified to the case of rigid targets moving slowly and smoothly along 
a trajectory that can be estimated by taking into account the aerodynamic 
property of the existing target and a third-order polynomial model esti­
mated directly by measurements from tracking radars. The performance of 
the compensation is limited by the ability to estimate target trajectory and 
by the ability to mathematically compensate for the effect of moving targets. 
This enables a focused image to be created in spite of the additional motion.

In the case of irregular surfaces, the direct estimation of the irregularity 
would be impossible by radar measurements. The more irregular the surface 
the more blurred the images. The surface irregularity can thus be considered 
as a limiting factor for the resolution of closely spaced scatterers in both 
range and cross-range. Resolving closely spaced targets that have irregular 
shapes could be more difficult in practice such as resolving micro-Doppler 
variation. For this reason it is important to use o priori information where 
possible. This is the idea behind matched-illumination.
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C lu tte r

The signal at the receiver is created by direct echoes from the target but 
there is also a contribution from potentially large numbers of strong scat- 
tercrs that are illuminated directly or indirectly by the radar. The discrim­
ination between targets echoes and the other echoes is a difficult problem. 
However, it is a necessary one for constructing an accurate model.

2.4.5 Conclusion

In this chapter, we have shown that the target reflectivity function is 
estimated by comparing the returned radar signal with the transmitted one. 
When a coherent radar is used, precise information can be extracted as a 
function of phase. This information is then processed to obtain an image as a 
function of either the time of propagation and eventually Doppler frequency. 
Adding various assumptions about the scene reflectivity and variability in 
time, it is then possible to image the reflectivity as a function of space.

The signal bandwidth, the aperture and the validity of the assumptions 
made arc key parameters to the image resolution, that is, the minimum 
distance between two point-scatterers that can be distinguished. Complex 
scattering mechanisms, amd the presence of noise and clutter may affect the 
resolution. In the following, we are interested in a model-based technique 
that is used to enhance the resolution by extrapolating the bandwidth.

As the method relies on various assumptions, it is expected that the ac­
curacy of the result varies with the target and its environment. The study 
presented in this thesis concerns the limitations of this technique when used 
to model extended man-made targets such as aircraft. Chapter 3 presents 
the theory behind the model and the technique. Chapter 4 is interested in 
its limitations, especially those arising from the inability of the technique to 
capture the information required for bandwidth extrapolation.



Chapter 3

S C ATTERIN G-CENTRE 
MODEL ESTIMATION 
TECHNIQUES

3 .1  In tro d u c tio n

In this chapter we introduce the construction of scattering models based 
on their relationship with radar measurements. This is motivated by the 
fact that an accurate model describing the scattering mechanisms induced 
by a target constitutes a valuable source of information for radar imaging 
and non-cooperative target recognition. In addition, a model to interpolate 
the radar signal measured in discontinuous parts of the spectrum is also 
an attractive idea. Firstly, it would enable conventional techniques to pro­
cess these signals with greater accuracy. Secondly, the capability to exploit 
sub-bands that are sparsely spaced makes radars more suitable for operat­
ing in environments where the large continuous bandwidths conventionally 
used for achieving high-resolution cannot be transmitted. Finally, this same 
capability can be used for extrapolating the bandwidth and enhancing the 
resolution. In our case, the model chosen has a physically intuitive structure 
directly inspired by the idea that only a few scatterers are responsible for 
most of the back-scattered signal. Whereas the complex-valued spectrum of 
the radar signal can be difficult to interpret, the model presents the infor­
mation in a very meaningful way. The scattering-centre model describes a 
radar signal as a sum of elementary signals whose parameters depend upon 
the position, the geometry and the strength of the scatterers.

73
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The estimation of the model requires extraction of precise and accurate in­
formation about the target. Conventionally, the Fourier-transform is used by 
spectral-estimation methods to provide a spatial representation of the target 
reflectivity function. However, the time (or range) resolution is limited by 
the recorded signal. By operating on a windowed spectrum, the results im­
ply that the transfer-function outside the window is null. For most physical 
system, this assumption is incorrect. Therefore, the one-dimensional picture 
obtained by computing the Discrete Fourier-Transform only represents an 
estimate of the power spectral density (PSD). For stepped-frequency radar, 
the domain of integration corresponds to the bandwidth spanned by the re­
turns measured at different frequencies; the larger the bandwidth, the better 
the range resolution.

In order to overcome the resolution limit imposed by the bandwidth, mod­
ern techniques, known as super-resolution algorithms, relying on o priori 
that knowledge can be employed. Many of them were developed during the 
last few decades. The principal algorithms include the covariance(or Prony) 
method, the Maximum Entropy (or Burg) method, CLEAN1, Matrix Pencil, 
ESPRIT2, Multiple Signal Classication (MUSIC) and root-MUSIC. They 
tire often less robust but more efficient than the conventional Fourier-based 
techniques. Whereas their performances are comparable for large sets of 
data, they present different statistical behaviours for smaller ones.

In this chapter, we concentrate on the construction of a scattering model 
from a radar-signal using super-resolution techniques that do not require 
estimation of an autocorrelation matrix. This choice is driven by the fact 
that the computation of this matrix is expensive and that the accuracy of the 
result has reliance upon the number of samples available. In addition, there 
exists more than one method by which this matrix can be estimated. In order 
to avoid this, the linear prediction techniques chosen here operate directly on 
the observation matrix. They include the Matrix Pencil and a modified root- 
MUSIC algorithm. Both are known to perform relatively well. The method 
presented in this chapter comes from the article initially published in the 
Lincoln Laboratory Journal in 1997 [12]. The model estimate achieves high- 
resolution imaging by accurate bandwidth extrapolation. It is the technique 
on which is built much of the analysis that follows in subsequent chapters.

This chapter is organised into three sections. First, it reviews the equa­
tions which lead to the creation of scattering models. Second, it presents the

1 CLEAN reduces sidelobes induced artefacts by iterative estimation and suppression 
of the contribution of the strongest scattering centres to the signal, revealing the weakest
ones.

2ESPRIT estimates the parameters of the scattering-centre model by manipulating the 
data array in such way that they become the solutions of two coupled eigenvalue problems.
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technique used for modelling the data using a simulated signal. It provides 
an insight into the five stages dedicated to the estimation of the model- 
parametcr values. Third, it demonstrates the technique’s capability using a 
real signal backscattered from the metal spheres presented in Chapter 2.

3 .2  S ca tter in g

3.2.1 Introduction

In this section, we are interested in the interactions between wave and target. 
Starting with the general equation of scattering for the electromagnetic field, 
we present sophisticated forms of scattering models [6 ] that are derived from 
the theory of physical optics, geometrical optics and diffraction. In order to 
estimate the position of the scatterers from a set of radar data, the scattering 
model chosen must be suitable for being used by rather simple mathematical 
techniques. For this reason, we extend the approximation to the so-called 
scattcring-centre model or Prony model whose simplest version is known as 
the point-scatterer model.

3.2.2 Scattering models 

G eneral equations

The scattering models are formed from the Helmholtz equation in 3.1.

V 2H(x) +  k 2 { 1 +  s(x))H(x) = 0 (3.1)

where s is the reflectivity function with support D  and x  is a space vector.

The field H  can be written as the sum of an incident field and a scattered 
field H  = Hinc +  Hscatt. The solution to the direct problem is given by 3.2.

H sciM ( x ) = k? [  Gk{x, /)c (£ ') ( f f inc(i f )  + Hscatt(x'))dx' (3.2) 
Jv

where 3?) is the free-space Green’s function for the Helmholtz equa­
tion.

The scattered field at one part of the body depends upon the field scat­
tered by neighbouring parts. An incident wave Hinc illuminating an ele­
mentary surface dD  will generate currents J(x ,t)  which are functions of 
space and time. These currents can propagate outside dD. Inversely, the 
energy scattered from dD  is not restricted only to the energy incident upon 
this surface. Introducing the boundary conditions of a smooth-surface for
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a perfect conductor into the Maxwell equations yields the equation for the 
scattered field, 3.4.

J (x , t ) =  f i x  (Hinc^X, t) +  Hscattfait)) (3*3)
1 r<>= 2  fix  Hinc{x, f) +  fi x — /  £{ *') x f.dS' (3.4)

27T JdV

where is the principal value of the integral and , t') is defined by
£{ jF} (f ',i/) =  (r - 2  + (rc)~1d /d t ')J (x \t ')  with r =  \x-a?\. The complexity 
of this expression can be reduced further by considering the weak scatterer 
assumption. It yields the physical optics model.

T a rg e t

R a d a r

Figure 3.1: Propagation of currents on the illuminated target

Physical optics

When the indirect contributions to the current are weak, the support of 
integration is limited to dD  and am approximate for J  is given by Jpo in 3.5

J(x, t ) »  Jpo{x, t) = 2 h x  Hinc(x, t) (3.5)

Equation 3.6 represents the physical optics field obtained by integrating 
over the illuminated surface dD.

Hpo(S, t) = 7 -  f£{JvoW, 0  X ' (3.6)
47T JdV

For an incident plane wave the physical optics far field approximation is 
given by 3.7. Figure 3.2 illustrates the idea of weak interaction between 
neighbouring surfaces.

= f  (3.7)
2 7 t|.R | JR.h< 0
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incident
field

Figure 3.2: Physical optics

The latter can be simplified further under high-frequency conditions. It 
is then called geometrical optics.

G eom etrical optics

When dD is smooth and k is large the integral can be evaluated by con­
sidering only the specular points on dD.

Physically, 3.9 contains the idea that the signal backscattered can be ap­
proximated by a limited number of elementary signals associated with strong
scatterers.

G eom etrical theo ry  of diffraction

In 1953, Keller introduced the geometrical optics theory of diffraction as 
an extension to geometrical optics to include edge and vertex diffracted rays. 
He then developed his theory for the field of rays diffracted from a perfectly 
conducting wedge. The method is known as the Geometrical Theory of 
Diffraction (GTD). It predicts that at high frequency, the incident field 
appears to originate from a discrete set of independent scattering-centres 
and follows a {jk)n frequency dependence where a  depends upon the target 
geometry. For an incident field that is an infinite plane wave, the model for 
the geometrical theory of diffraction is given by 3.10 [36]

Hgo{x,t; k) = -  lim H ^ x ^ k )
k large

(3.8)

+ O(k0) (3.9)

(3.10)

where
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• A m is the complex amplitude associated with the reflectivity of the 
m th scattering-centre,

• /  frequency,

• f c reference frequency,

• rm relative location of the m th scattering-centre,

• a m frequency dependence parameter of the m th scattering-centre.

For simple targets, the frequency dependence of canonical scattering ge­
ometries is given by the following table [37].

Surface type Exam ple a
Corner reflector 
Singly curved
Doubly curved, straight edge
Curved edge
Vertex

Dihedral, plate 
Cylinder 
Spheroid 
Circular disk 
Cone tip

1

1 / 2

0

- 1 / 2

- 1

The parameter a  introduces the frequency dependence of the scatterers. 
There exists an approach, called the Simple Geometry Model approach, 
which exploits the parameter a  for target classification. The technique con­
siders that a complex target can be described as a structure of elements 
whose geometry can be used as a source of discriminating information.

P rony  m odel

The Prony model is close to the GTD-based model in the sense that both 
assume contributions from independent scatterers with frequency depen­
dence. The only difference is that Prony assumes an exponential frequency 
dependence while the GTD-based model assumes a power dependence [37].

For a discrete representation with frequency index n such that

fn = fo +  n .A f,  n = 0 • • • N  -  1 (3.11)

the Prony model is given by 3.12

M
(3.12)

m =l
M

m =l
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where: Am is a complex-valued amplitude associated with the m th scatterer, 
p m is a pole whose angle is associated with the relative range rm, and kn =
27T f n /c .

3.2.3 Conclusion

This section has shown that the scattering equations can be reduced to 
simpler forms depending on the level of approximation and the assumptions 
made. Although the general equations enable a very accurate prediction of 
the signal scattered by a given target, they are far too complicated to be used 
in the inverse problem. Instead, simple models that can be mathematically 
estimated from the signal at the receiver are preferred, but it is important 
when drawing any conclusion that their limitations are recognised.

For high-frequency waveforms, the currents induced on the surface of the 
target are assumed to be limited in space. Based on this assumption, the­
ories can be used to decrease the complexity of the scattering equations. 
Adding the assumption of direct-path returns from strong backscatterers, 
the approximations lead to simple models that can be handled by various 
mathematical techniques created for model-estimation.

Amongst the various models presented here, the radar processing tech­
niques found in the literature mostly employ Prony and GTD-based mod­
els. For scattering-centres with no frequency-dependent amplitude terms, 
both models are identical. This special case is known as the point-scatterer 
model. For more complex scattering behaviours, Prony-based algorithms 
are computationally less expensive than those which are GTD-based. In the 
following sections, we present a method for extracting the scattering-centres 
of the Prony model from a limited set of complex-valued narrow-band radar 
signals in the frequency domain.
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3 .3  C lassic  lin ear tech n iq u e

3.3.1 Introduction

In this section, we introduce the basics of model-construction techniques 
using Prony’s method. The initial algorithm created in the 18th century, 
by the French mathematician Baron Gaspard Clair Frangois Marie Riche de 
Prony, uses a linear sum of complex exponentials to represent signals that 
are uniformly sampled. The results can then be used to predict the signal 
by interpolation or extrapolation of the model. In radar, it can therefore 
be employed for estimating the parameters of the model defined by 3.12 
from the signal at the receiver. This initial version has been revisited and 
improved recently in order to reduce the noise susceptibility.

3.3.2 Principle

In communication problems, the signal is in general assumed to be com­
posed of two parts: the signal and the noise. In radar a similar approach is 
taken where it is assumed that the received waveform, x, is composed of a 
deterministic signal, s, corrupted by additivewhite Gaussian noise, u.

x(n) =  s(n) -1- u(n) (3.13)

Let us consider a complex-valued radar signal, x (n), measured for N con­
tiguous frequencies, /„, as given by 3.11. Based on 3.13, the approach to 
the optimisation problem is to determine a model, s(n), that minimises the 
Euclidian distance between the signal and the model, or equivalently the 
expression, e(n), in 3.14 across the whole bandwidth.

e =  H  M n ) -  s (n )l2 (3-14)
n=0

where | • | represents the 2 -norm.

3.3.3 Additive w hite Gaussian noise

The broad-band noise, u(n), is described by its statistical properties:

S{u(n)u*(n -  m)} =  |  ™ ”  jj (3.15)

where £(•) is the expectation operator, •* is the complex conjugate and <j„ 
is the variance. The signal-to-noise ratio is defined by 3.16

( Power (s) \
P ^ W dB (3.16)
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3.3.4 High-frequency approxim ation

In the high-frequency region where most radar systems operate, it is often 
assumed that man-made targets can be accurately represented by a set of 
isolated scattering points. These scatterers generally correspond to discon­
tinuities on the target. Due to structural similarities, scattering points on 
similar aircraft are principally located in the same areas. They principally 
include radomes, leading edges of wings and engine ducts. In addition to 
these general sources of scattering, there exist discontinuities which are more 
specific to individual aircraft such as cracks on the structures.

Let a target be composed of P  scattering-centres. Providing there are no 
strong interactions between the scattering-centres, the signal, s(n), could be 
approximated by a sum of P  complex exponentionals.

p
*(n) =  £ a p . j £  (3.17)

P= 1

where the complex coefficient. Op, and the pole, zp = pp.et <Pp, are associated 
with the reflectivity and the location of the pth scattering-centre, respec­
tively. Let us assume that amongst the P  scattering-centres, M  are much 
stronger than the others. In this case, the signal can be approximated with 
the contributions of M  scatterers. It follows

M  P

s(n) = £<*.■£ + £  P > M  (3-18)
p=  1 p = M + 1

s(n) = si(n) +  S2 (n) «  si(n) V(Af,n)/Power(s i) »  Powerfa)

Figure 3.3 illustrates the concept of scattering-centres for an aircraft. Strong 
scatterers on the target are projected onto the direction of propagation of 
the beam, x.

~ £ \ ®  * X m

Figure 3.3: Concept of scattering-centres in one-dimensional imaging on the 
fighter-aircraft Rafale - courtesy SIRPA AIR [2 ]
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3.3 .5  T h e  a u to re g re ss iv e  m o d e l

Many representations of the data-process have been proposed. In radar, 
the most widely applied class of finite parametric models is the autoregres­
sive (AR) process.

Let us consider the radar return in 3.13. The autoregressive model de­
scribes a signal generated by a system excited by white noise. The data at 
the output x(n) are assumed to be related to the past output data and to 
the input data u(n). The AR process is represented by equation 3.19.

Q
x(n) — ^ 2  cq.x(n — q) = u(n) (3.19)

9=1

in which Q is the model-order and Cq axe the autoregressive coefficients [2 2 ].

The corresponding rational transfer-function given by 3.20

H(z) =  ^ ---------  (3.20)
A(z)

where the Q roots of A(z)  are the poles of the system. For this reason 
the model is also called the all-pole model.

3 .3 .6  T h e  le a s t-sq u a re s  P ro n y  m o d e l

The Least-Squares Prony is a classic polynomial technique for determining 
the parameter of a linear combination of exponential functions. Tufts et al. 
[24] describe the generalised Prony algorithm as follows:

1 . Using the method of Least-Squares, minimise the approximation error 

c =  5Z \x (n) ~ J 2 dq-x (n -Q )\2 (3.21)
n = Q + 1 9 = 1

by the best choice of coefficients c(q) where ? denotes the estimated 
value here.

The necessary condition for the minimum of e is given by the or­
thogonality principle:

N - 1

E
n=Q +l

x(n) — ^ 2  Cq-x(n ~ q)
9=1

x*(n — m) — 0 fo r  m  = 0 • • • L — 1

(3.22)
In theory, the orthogonality principle requires an infinite length of 
stationary process data.
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2 . For Q = P, the autoregressive coefficients in 3.19 are unique. If there 
is no measurement noise, then the poles of 7t correspond to the poles 
of a Prony model representing P  scatterers. Consequently after the 
Q coefficients CqS are determined, the roots of the forward prediction 
error (PEF) polynomial, A(z), are found by 3.23:

a w = 1 - tv'z~x =n t1 _ v_i) (3-23)
p = i  p = i

The accuracy of the Zp value can be improved by using a PEF with an 
order Q > P. In this case, there are extra noise-subspace roots of the 
PEF polynomial. The P true roots must be extracted from the Q — P  
extraneous noise roots.

3. Having determined the pole estimates of the signal roots Zp for p = 
1 ■ - • P, the amplitude terms can be estimated by solving a linear least- 
squares problem:

P
e(n) =  x(n) -  ^  d(p).zn(p) (3.24)

p = i

In principle, one only needs P  equations to compute dp. However, 
because the P  autoregressive coefficients are determined by the least- 
squares approach, the method suffers from hypersensitivity resulting 
in the modelling of the noise components.

The estimated autoregressive coefficients dq in 3.20 can be utilised 
to predict the estimate sample x(n) of x(n) by the following relation
with the model-order Q equal to the number of scatterers P.

x(n) = T,®=1cq.x(n -  Q + q) (3.25)



Scattering Centre Model Estimation Technique 84

3 .4  S ca tter in g -cen tre  e x tr a c tio n

3.4.1 Introduction

In 1795, Prony developed a polynomial-based prediction method for mod­
elling a sum of complex exponential signals [13]. The introduction of Least- 
Squares methods in the 1970’s enables accurate pole extraction to be achieved 
more efficiently. However, these algorithms are also extremely sensitive to 
the noise. In 1978, Kung introduced a state-space method for harmonic- 
retricval directly from the data [25]. The eigenvectors of the autocorrelation 
matrix arc obtained by singular-value-decomposition (SVD) rather than by 
computing the autocorrelation matrix itself. Four years later, Tufts and Ku- 
marcsan developed the principle for estimating the parameters of exponen­
tially damped sinusoids [49]. This eigenvector method (or principal eigen­
value method) reduces the effect of noise by only using the set of eigenvectors 
that constitute a basis for the signal subspace. For low signal-to-noise ratios, 
these methods are known to perform better than any other method based on 
Lcast-Squarcs approach. In 1987, a new version of the Prony method was 
proposed by Rahman and Yu, Total Least-Squares (TLS-Prony) [39]. An 
alternative to these polynomial methods commenced with the creation of 
more recent techniques such as ESPRIT [34] and Matrix Pencil [17]. Based 
on the Gcneralised-Eigenvalue approach, they also achieve accurate linear 
prediction for low signal-to-noise ratio conditions.

In this section, we are interested in a linear prediction technique that relies 
on the construction of a scattering model defined as a finite sum of com­
plex exponentials, known as cisoids. The technique is employed to demon­
strate that a scattering model can improve radar range-resolution. Firstly, 
the signal backscattered from three simulated spheres is modeled by three 
point-scatterers. Secondly, the model is determined by a linear-prediction 
technique, which consists of five processing stages:

1 . model-order estimation

2 . pole determination

3. pole selection

4. amplitude coefficient estimation

5. parameter adjustment

The model is then extrapolated across a large bandwidth. Whereas the 
initial signal can only generate two peaks on the range-profile, the extrapo­
lated model enables the third to be resolved. Several algorithms can be used 
for computing each stage. This section offers an insight into some of them.
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3.4.2 Radar signal

In this section, we illustrate the theory by using a radar signal backscat- 
tcred by a simulated target consisting of three identical spheres located at 
range Rq -f from the radar where Ro corresponds to the start of the imag­
ing window and r* is the range of the k th scatterer relatively to R q . The 
deterministic signal is simulated by the Prony model in 3.27.

J L *  » 2 * . / n .2 ( K o + T - fc) » 4 * . / o . ( f l o + r fc) < 4 i r . ( A / . n ) . ( a o + r fc)

s(n) =  c =  2 ^ e  «= .e c (3.26)
k= 1 k=1

i 4 - K . f o . R o  »4ir./0 . r fc i4 i r .( f lo + r fc) .A / .n

= e <= • e c -e c
k= 1

(3.27)

Replacing Ro = 5.25 m, r\ = 10 cm, r% =  13.5 cm, r% = —0.10 cm and 
/„  =  11.65 +  0.05.n (GHz) into 3.27 follows 3.28

s(n)=  ( —0.9945 — i.0.1045).e 
( 0.0941-H.0.9956).e 
( 0.9945 -  *.0.1045).e

—t.l.3614.n +
—».1.2881.n

—t.l.7802n
+

(3.28)

The simulated signal is corrupted by Additive White Gaussian Noise ; the 
signal-to-noise ratio is defined by 3.29

S N R  = 10 .log(y ^ n a l U  _  ^  ^  
\  Power(Noise) ) (3.29)

Figure 3.4 shows the simulated real-valued radar samples, ar/(n), from the 
I-channel.
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Figure 3.4: I-channel - sub-band 1 (solid-fine) - subband 2 (dashed-line) -
S N R  = 30 dB
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The first 64 samples (solid line) of the sub-band [11.65 G H z —14.85 GHz] 
are used to build the model. The 64 samples (dotted fine) of the sub-band 
[14.85 G H z  — 18 GHz] are only presented for information.

Figure 3.5 shows the range-profile obtained by taking the IFFT of the 
first 64 complex samples (top) and by taking all 128 samples (bottom).
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Figure 3.5: HRRP - range window R  = 3 m  - B  = 3.2 GH z  (top) and 
B  = 6.4 GH z  (bottom) - S N R  = 30 dB

The three scatterers are not resolved on the range-profile obtained with
3.2 G H 2 -bandwidth, [11.65 G H z  — 14.85 GHz]. This is due to the fact that 
the scatterers at relative range r\  = 10 cm and r 2 =  13.5 cm are separated by 
less than the nominal resolution, Ar =  4.7 cm. In contrast, the range-profile 
obtained with the signal simulated across the band [11.65 GHz  — 18 GHz] 
would enable resolution of all the scatterers. In this case, the corresponding 
nominal-resolution, A r' =  2.3 cm, is smaller than the distance of separation 
between the scatterers.

3.4.3 O bservation m atrix

Here, we present a technique that can resolve the three scattererers by only 
using the first 64 samples of the 128 available. Rather than computing the 
autocorrelation-matrix, the method relies on the mathematical properties of
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the Hankcl matrix. Given the values of x(n) for N  frequencies, such matrix 
is obtained by implementing the autoregressive model in 3.19 for N  — L 
equations.

X  = H.C  (3.30)

The observation matrix H  formed by N  complex-valued samples arranged 
in a quasi-symmetrical manner has constant skew diagonals; the parameter 
L determines the dimensions of the space. This rectangular matrix is called 
the forward-prediction matrix because it contains samples that are used for 
estimating the future terms of the AR process.

( x(L) ^
x(L  + 1 )

V )

z(0 )

x(l)

x(l)
x{2)

x(L  — 1) ^

^ x (N  -  L) x (N  -  1) /  \  ci /

(  cL \  
cl- i

(3.31)

Size of the observation window

The size of the matrix is conditioned by the dimension of the observation 
window, L. Lang and McClellan [26] and Hua and Sarkar [17] recommend 
that for a fixed number of data, N, the number of coefficients chosen be 
N/3 < L < N/2  for best estimation. In this example, L = 22.

Sparse sub-bands

When the radar-samples are collected from several sub-bands, the au­
thors of [12] recommend building the Hankel matrix H  from the individual 
observation matrices Hi formed using the radar samples in each sub-band. 
For example, the observation matrix obtained using two different sub-bands 
would be built from the matrices Hi and H2 as follows:

' - (5)
Singular-value decomposition

The matrix H can be decomposed into the product of three matrices by 
singular-value-decomposition (SVD).

H  = U X .V H (3.32)

where *H denotes the Hermitian transpose. The unitary matrices U and V  
have orthogonal columns. E is a diagonal matrix containing the L  singular 
values, <7 j, sorted in decreasing order.
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E =

(  (J0 

0

V o

0

<*1

0

0 \  

0
ol-  1 J

(3.33)

where the singular values Oi are the square-roots of the estimated correlation 
matrix H H h or H h H.

The SVD generates two families of dual eigenvectors u and v from the 
following coupled equations:

H H h M = Xu 
H h H.v = Xv

(3.34)

Asymptotically, the columns of the square matrices U and V  are the 
eigenvectors of H H h and H h H, respectively. The left and right singular 
matrices U and V  can be written as a set of columns U{ and uj, respectively

U = {u o ,u i , . . . ,u L- i }  (3.35)
V =  { ifo ,vi , . . . ,0L-i}

3.4.4 Rank deficiency

Considering a corrupted signal x(n) composed of the sum of P  complex
sinusoids in complex white noise, the autocorrelation matrix RxX is the sum
of the signal autocorrelation matrix R as and the noise autocorrelation matrix 
Ruu — g\ I  where I  is the identity matrix.

P - i

Rxx = 5 ^  +  o^I  (3.36)
t = 0

where e, =  [1 exp(j<pi) . . .  exp(j(pi(P — 1))]T

The estimated autocorrelation matrix 5.6 can be decomposed into

p - 1 L - 1

Rxx = ^ 2  (A* +  +  J 2  (vlfoVi1 (3.37)
t= 0  i= P

where i'i are the eigenvectors and A* are the eigen-values of the estimated 
signal autocorrelation matrix Rxx- The matrix Rss is not full rank since its 
dimensions are generally greater than the rank P. Nevertheless, in practice 
matrix RxX is full rank due to the presence of noise.
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3.4.5 Subspace decom position

Let us assume that the values of L  and N  — L  are both much greater than 
the number of scattering-centres P. The Hankel matrix H  comprises two 
orthogonal subspaces because it is realised from the complex-valued radar 
samples containing the uncorrelated P(< L) signals and white noise. This 
is illustrated by figure 3.6 .

Figure 3.6: Concept of orthogonal sub-spaces

Using time-series theory, subspace-decomposition may be employed as a 
way to separate the signal from the noise. Assuming there is no noise, the 
expression of x(n) is reduced to s(n) in 3.13. Although this case is purely 
theoretical, it helps understanding the principle of subspace-decomposition. 
The rank of the Hankel Matrix H  is P  and therefore E contains P  non-null 
singular values. The L x L matrix E can then be written as follows:

E=( o o) (3'38>
where Es is a diagonal matrix containing the P  singular-values associated 

with the components of the signal in 3.39.

{ 0 0  < <7i < • ■ • < (Jp-i} (3.39)

The singular-values correspond to the variance of the eigenvectors. For 
high S N R , it follows that the weakest L — P  singular-values are directly
related to the smallest eigen-values and to the power of the noise in 3.13.

\  = of = (N — V)o\, i = P  . . . L  (3.40)

The matrix E can be written as follows:

S = ( S0 E „ )  <3'41>

where En is a diagonal matrix containing the L —P  singular values associated 
with the noise, in 3.42.

{<7P < oP+i < < oL- 1 } (3.42)
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In a similar way, the basis of the eigenvectors that constitute the columns of 
U and V  can be split into two parts. The sets of columns (or eigenvectors) 
defined by Vs and Vn would span the signal-subspace and noise-subspace, 
respectively. The expression for U and V  are given by 3.43.

U = {Us,Un} = { ( u o , . . . , w p - i ) , ( « p , . . . , W L - i ) }  (3.43)
V  =  {Vs,Vn} = { ( v o , . . . , V p - i ) , ( v p , . . . , V L - l ) }

3.4.6 M odel-order selection  

In tro d u ctio n

The model-order is the number of terms in the model used by linear- 
prcdiction methods. Here, the model-order of the autoregressive process 
corresponds to the number of scattering-centres, P , that contribute to the 
signal. Estimating the model-order is needed for building the model. Even if 
the number of targets is known, the model-order has to be estimated because 
the enhanced resolution may increase the number of scattering-centres that 
may become relevant.

Singular-values

It is possible to estimate the model-order by exploiting the multiplicity 
of the eigen-values in 3.40 that are related to the noise. Here, the eigen­
values are estimated by singular-value-decomposition (SVD) of the matrix 
H, as defined in 3.32. Because the singular-values are directly related to 
the eigen-values, the L — P  smallest singular-values, 3.42, should have small 
and almost identical values related to the power of the noise.

50

40

5 30

20 -

20

Figure 3.7: Model-order estimation - P  =  3, N  = 64, L =  22, S N R  = 30 dB
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Figure 3.7 represents the singular-values extracted from the first 64 
complex-valued radar-signals in 3.4. For L  =  22, the nineteen weakest 
singular-values, directly related to the power of the noise, can be easily iden­
tified. For S N R  =  30 dB, the transition between groups of singular-values 
suggests that the model-order is P  = 3.

M odel-fitting theo ry

Another approach for estimating the model-order uses the general model- 
fitting theory. For modelling a signal, a measure of accuracy can be obtained 
by computing the distance between the signal, r(n), and the model, s(n) 
using the mean-square error. In this case, the greater the model-order, the 
smaller the error. This can be explained by the fact that models with high 
orders are modelling not only the signals but the noise as well. In order to 
determine the model-order needed to model the deterministic component, 
s(n), it is possible to refer to information theory.

Wax and Kailhath adapted two criteria, Akaike Information Criterion 
(AIC) [50] and Minimum Description Length (MDL) [42]:

• Akaike Information Criterion
i

A{ k ) A , c  =  —2-to( ? ' ^ . r  , ) + 2 k - ( 2 L  ~  *) (3.44)
T - k  2 - » t = f c + l

• Minimum Description Length
i

M k ) u D L  =  ~ l n (  ) +  5-*.(2L  -  k ) . l n ( N )  (3.45)
L - k  ^ i = k + l  Z

where N  is the number of samples in the observation-matrix, L is the width 
of the observation matrix, A, are the smallest eigen-values.

The model-order estimate, P, is the value of k that minimises the expres­
sion A. Figure 3.8 illustrates the principle used to estimate the model-order 
using the same parameters as those used to generate figure 3.7. Here the 
minimum value of A is obtained for k = 3. The model-order is then esti­
mated at P  = 3.
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Figure 3.8: Concept of model-order estimation based on information theory
- P  = 3

3.4.7 P o le  d e te rm in a tio n

So far, it has been assumed that the signal associated with the kth scattering- 
centre can be defined by the kth component of the Prony model given in 3.46:

Sfc(n) =  afe.p£ (3.46)

The complete construction of the model requires determination of the 
value of the amplitude coefficients a* and those of the poles Pk for every 
scattering-centre. These terms form the so-called feature vectors of the 
targets and can be used for NCTR as will be shown in Chapter 5.

Here, we examine two linear-prediction methods based on the super- 
resolution algorithms root-MUSIC and Matrix-Pencil. The first one is based 
on a polynomial approach. It exploits the structure of the autoregressive 
equation to determine the poles. The algorithm used is a modified version 
of the original root-MUSIC. It was used by Cuomo et ol. in [12]. The second 
method is called the Matrix Pencil (MP) [17]. This more recent method is 
also known as “generalised pencil of functions” (GPOF) due to the fact that 
it determines the poles by solving a generalised eigen-value problem.
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MUSIC

The Multiple Signal Classification (MUSIC) algorithm [45] initialy con­
ceived for angular spectrum estimation, can also be used here for locating 
the poles in the z-plane. This principle was developed by Schmidt in 1997 
and by Bienvenu ealier the same year [5]. The eigenvectors u or v form a 
basis for the signal and for the noise. The orthogonality of the eigenvec­
tors is exploited for separating the signed subspace defined by the principal 
components from the the noise subspace. The MUSIC spectral estimator is 
written as 3.47 [22]

T1 M U SIC =  i'J^TT'.o (3-47)
52i=P+1 le*H

where vt are the eigenvectors of the estimate correlation matrix Rss- The 
denominator may be expressed as

V m u s t c  1 =  ^ 2  V iV ? e
i= P + l

(3.48)

Eq 3.48 can be seen as the projection of the vectors e — [1 z - l K—L+ll
onto the noise subspace, as defined by the basis of eigen-vectors v*. Theo­
retically, when (f — <pi, so that e =  e*, the denominator is null. For vectors 
that arc perpendicular to the noise, V m u s i c  —► oo

The standard MUSIC algorithm provides a spectral estimate whose peaks 
are associated with the pole estimates. Figure 3.9 represents the pseudospec­
trum obtained by applying the MUSIC algorithm to the signal.
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Figure 3.9: MUSIC pseudospectrum - P  =  3

The presence of three peaks shows the resolution enhancement obtained 
using the MUSIC algorithm. The range of the three scatterers can again 
be determined by the position of the peaks. A closely related version of 
MUSIC, known as root-MUSIC, can estimate these parameters directly.
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M odified root-M U SIC

The root-MUSIC algorithm, consists of determining the poles by rooting 
a polynomial. In the modified Fast-root-MUSIC proposed by Ren [40], the
estimation of the poles starts by computing the projection matrix onto the
noise subspace, A, as follows.

A = V„.V" (3.49)

and constructing the polynomials A(z)  given in 3.50:

L
A{z) = ^ 2  OiZ1-1 (3.50)

z=l

where a* denotes the elements of the first row of A

The roots of A{z) correspond to the pole estimates. However, due to 
the size of the observation window, the number of roots, L, is generally 
greater than the model-order P. We assume the model-order smaller than 
the number of poles so that true roots must be selected.

Figure 3.10 represents the poles of H  determined by the modified root- 
MUSIC algorithm for N  =  64 and L  =  22. The twenty-one poles Zk are 
evcntly spread along the unit-circle and the three poles representing the 
model he clearly on the unit-circle.

Real Part

Figure 3.10: Z-plane - poles obtained with the modified root-MUSIC algo­
rithm - N  =  64, P = 3, L = 22, S N R  = 30 dB
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M atrix  pencil

This section concerns an alternative technique known as the Matrix-Pencil 
[17]. Unlike linear-prediction methods based on polynomial rooting, the Ma­
trix Pencil method solves a generalised eigen-value problem. The techniques 
can also exploit subspace-decomposition and the rank-deficiency of Hankel 
matrices. The following presents the principle of SVD Matrix-Pencil for the 
extraction of cisoids [18] [44].

The matrix pencil is a linear combination of two matrices, Hi — Z.H2 
where H\ and H2 are formed from the prediction matrix H  presented in 
3.31.

H, =

*(0)
x(l)

x(l)

x(2)

H2 =

 ̂ x(R  — 1 )

 ̂ x (l) x(2) 

x(2) x(3)

^ x(R) . . .

. ..  x(L  — 2) ^

x (N  — 2) j 

x(L  — 1) ^

x (N  — 1) ;

(3.51)

(3.52)

where L is the pencil parameter that determines the dimensions of the space.

The matrices can be decomposed as follows:

Hi = Z 1.B.Z2 

H2 = Z 1.B.Z0.Z2

where

and

=

Z2 =

1
zi

N - L - l
\  Z1 

(  1 Zi

\  1 ZM

1
Z2

V-L-l
2̂

_L—1

ZM

1
ZM

VN - L - 1 
ZM

Z0 = diag[zi,z2,...,ZM] 
B  = diag[bi, 6 2 , . . . ,  6 m]

where diag{*\ denotes a M  x M  diagonal matrix.

(3.53)
(3.54)

(3.55)

(3.56)

(3.57)
(3.58)
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The matrix pencil can then be written

H2 -  z.Hx =  ZiBiZo -  zI)Z2 (3.59)

where I  is the M  x M  identity matrix.

Each observation matrix can be decomposed into a signal matrix, S, and 
a perturbation matrix, E. The pencil of the matrix can be decomposed as 
a sum of signal and noise matrices, S  and E, respectively. It follows that a 
new expression of the pencil of matrix is given in 3.61.

H x - z H 2 = (S1 + E 1) - z { S 2 + E2) (3.60)
=  (Si -  zS2) +  (£ i -  zE2) (3.61)

In 3.61, Si and S2 have the same column space and the same row space. 
One can demonstrate that the rank of the matrix pencil will be M, provided 
that M  < L < N  — M. However, if {z =  z+\ i =  1 , . . . ,  M}, the ith row of 
(Zq -  z l)  is zero, and the rank of this matrix is M  — 1. In other words, the
noiseless pencil S\ — z.S2 decreases its rank by one if and only if z  is one of
the generalised eigen-values (GE) of H\ — z.H2.

Hence, we know the poles are the generalised eigen-values of the matrix 
pair [H\ ; H2\. However, the direct computation of the GE is not stable 
because Si and S2 are not full rank. It is common to replace the matrices 
H  by their truncated SVD’s. The truncated versions are denoted by H it  
and H2t  and i—► denotes the rank-P SVD truncation.

Hl i ► H1T = UiE1V1H (3.62)
H2 ^  Hzr = U2E2V2H (3.63)

where U\, £ i and Vi only contain the P  principal elements.

Replacing the truncated matrix into the matrix pencil yields

H \ t  ~ z.Hzr = U g U & V fV z  -  zE2 (3.64)

The poles can be estimated by computing the eigen-values of 3.64 or 
equivalently the eigen-values of 3.65.

E j 1U i'U 1E 1V1NV2 = {H.pr H1T}-1[H^THrr} (3.65)

Figure 3.11 represents the poles of H  determined by the Matrix Pencil.
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Figure 3.11: Z-plane - poles obtained with the Matrix Pencil algorithm - 
N  = 64, P  = 3, L = 22, S N R  =  30 dB

3.4 .8  P o le  se lec tio n

Regardless of the method chosen, the set of poles computed always com­
prise poles that are not associated with any physical scattering centres. 
It is thus essential that only “true poles” be selected and inserted in the 
model. For this, we consider that the frequency dependence of the signal- 
components associated with the scattering-centres is small whereas the con­
tribution of spurious poles is very widely distributed in range. This is the 
basis for pole selection. The spatial distribution of the scattering-centre is 
related to the magnitude pk of the pole estimated for that centre. If Pk is 
too far from the unit-circle then its contribution to the frequency model is 
greatly different at frequency fo and at frequency /;v-i. So, the true poles 
are the P  poles whose modulus is close to one, that is those lying on the 
unit-circle.

For an unknown number of scattering-centres, Carriere and Moses suggest 
a criterion for discarding spurious poles [10]:

^  < |pW| <  100 (3.66)

Expressions 3.67 and 3.68 are numerical examples of boundaries for 64 
and 128 samples.

0.93 < \p\ < 1.07, N  = 64 (3.67)
0.96 < \p\ < 1.03 N  =  128 (3.68)

Figure 3.12 shows the poles selected using the above criterion.
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Figure 3.12: Z-plane - poles selection - root-MUSIC (left) and Matrix-pencil 
(right) - AT =  64, P  = 3, L = 22, S N R  = 30 dB

3.4.9 A m plitude-coeffic ien t e s tim a tio n  

Linear least-squares fitting

Once the ’’true” poles are accurately determined, the coefficients can be 
estimated by fitting the model to the radar signal, x(n). The P  unknowns 
in the system can be calculated by a least-squares fit. This method consists 
of estimating the coefficients a,k that minimise the expression C in 3.69.

c = £
<n>

P - 1

x (n) -  ak Pn 
k=0

(3.69)

The minimised cost-function is directly related to the model error in 3.14. 
The linear least-squares approach requires a system of P  equations to de­
termine the P  coefficients. The estimates can be used to reconstruct the 
model, or as an initial set of values for parameter adjustment.

3.4.10 P a ra m e te r-e s tim a te  ad ju s tm e n t 

N on-linear least-squares fitting

In our case, we make use of N  samples with supposedly N  > P. This is 
an overdetermined system of equations. This is why the matrix is not full 
rank. However, the linear model is only an approximation of the real phys­
ical system which, in practice, includes noise and non-linear effects. Both 
the pole estimates and the amplitude estimates can be adjuted by a non­
linear least-squares fitting such as the Newton or the Levenberg-Marquardt 
algorithms.
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3.4.11 M odel reconstruction

The scattering-centre model can be built using the estimated values P, a* 
and pk into 3.17. Figure 3.13 represents the principle of signal modelling.

«<n) _________ _
n(freq.)

S cattering  C entre Extraction

*(n) ________ _
“ n (freq.)

Figure 3.13: Concept of signal reconstruction using a scattering model

The model estimate, in 3.70, is determined using the modified root- 
MUSIC algorithm with linear least-squares fitting.

si(n) = (—1.0809 — 0.17994i).(0.9993.e_iL365)n +  (3.70)
(0.1819 +  1.04i). (0.9977.e_ i l ‘29026 )n +
(0.96555 -  0.10906.*). (1.0003.e- *1,77991 )n 

A comparison with 3.28 shows that the estimation is very accurate.

3.4.12 M odel accuracy

The following expressions can be used to estimate the model accuracy:
• comparison with the corrupted signal using the mean-square error :

<n>

or the signal-to-residue ratio in dB

x{ri) — s{n) (3.71)

C2 =  1 0 iogio„  (3.72)E<„> |x(n)-8(n)P
comparison with the noise-free signal the mean-square error :

2

1 <n>

or the signal-to-residue ratio in dB

s(n) — s(n) (3.73)

^ ,n,__ E<n>\s{n)\2
C4 10i°9l#E < „> |S( n ) - i ( n )P  (3-74)

The cost-functions C3 and C4 require knowledge of the uncorrupted signal 
s(n). For this reason, they are suitable for simulation only.
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3.4.13 B an d w id th  p red ic tio n  

B andw idth extrapolation

Assuming the estimated model is accurate for the band of measurement, 
Cuomo et dl. propose to use the latter for predicting the signal outside 
the band. Figure 3.14 shows that by artificially extending the frequency 
band, a model-based technique may enable high-resolution range-profiles to 
be created without effectively transmitting the implied bandwidth.

S c a tte r in g  C e n tre  E x trac tion

I
| IWWF’IW ; 1 |

* n(freq.)

Figure 3.14: Concept of bandwidth-extrapolation using a scattering model

Figure 3.15 represents an overlay of the simulated signal, s(n) (solid 
fine), in 3.70 and the model, s\ (dashed line), obtained with linear least- 
squares. Built from 64 samples, the model matches the signal of the sub­
band of measurement, [11.65 GHz — 14.85 GHz]. Moreover, it matches 
relatively well the 128 samples of the signal outside the band of measurement 
[14.85 GHz -  18 GHz].

2 0  4 0  6 0  8 0  1 0 0  1 2 0
frequency index

Figure 3.15: I-channel: s(n) (solid line) and s(n) (dashed line) with N  =  64, 
N' =  128, SN R  = 30 dB
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The range-profiles of s(n) and s\(n) in figure 3.16 show that accurate 
model-based extrapolation can be used for enhancing the resolution.
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Figure 3.16: HRRP: s(n) (solid fine) and s(n) (dashed line) with N  = 64,
N ' = 128

The scattcring-centre extraction technique has been applied to a radar- 
signal backscattered from a target simulated with three point-scatterers. 
Figure 3.17 shows the model-accuracy (C2 ) in 3.72 versus the signal-to-noise 
ratio. Each plot is the mean-value of fifty tests.
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Figure 3.17: Model accuracy versus SNR with N  =  64, N' = 128

It shows that although the performance does not depend closely on the 
signal-to-noise ratio for S N R  > 10dB, there is a clear threshold at this 
value suggesting that the technique cannot accurately extract the scattering- 
centres below this limit. In terms of algorithm, non-linear (solid line) and 
linear (dashed line) least-squares generate a similar model-error.
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B andw idth interpolation

If the signal is defined across two different sub-bands, it is useful to build 
a model from the sub-bands. This situation may arise when the signal is 
measured by two coherent radars or when the central bandwidth is corrupted 
by strong interferences. Assuming the estimated model is accurate on the 
band of measurement, Cuomo et al. also propose to use the the latter 
for interpolating the signal between sub-bands. Figure 3.18 shows that by 
artificaily extending the frequency band, a model-based technique again 
enables high-resolution range-profiles to be obtained.

s(n)

S c a tte rin g  C e n tre  E xtraction

V
Figure 3.18: Concept of bandwidth-interpolation using a scattering model

Figure 3.19 represents an overlay of the simulated signal, s(n) (solid line), 
and the model, si (dashed line), obtained with linear least-squares. The 
model matches the signal in the sub-band of measurement, [11.65 GHz — 
13.25 GHz] and [14.85 GHz — 16.45 GHz]. Moreover it again matches 
relatively well the signal outside the band of measurement [13.25 GHz — 
14.85 GHz] and [16.45 GHz -  18 GHz].

^  -1
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Figure 3.19: I-channel: s(n) (solid fine) and s(n) (dashed line) - N  = 32 x 32 
- N' = 128 - SN R  -  30 dB
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The range-profiles of s(n) and si(n) in figure 3.20 show that accurate 
model-based extrapolation can be used for enhancing the resolution.
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Figure 3.20: HRRP: s(n) (solid fine) and S(n) (dashed line) - N  = 32 x 32
- N' = 128

The modelling technique has been applied to a radar-signal backscattered 
from a target simulated with three point-scatterers. Figure 3.21 shows the 
modcl-accuracy (C2 ) in 3.72 as a function of the signal-to-noise ratio.
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Figure 3.21: Model accuracy versus SNR - N  = [32; 32] — N 1 = 128

Each plot is the mean-value of 50 tests. It shows that although the 
performance does not depend highly upon the SNR for S N R  > 10 dB, 
there is a clear threshold suggesting that the technique cannot accurately 
extract the scattering-centres below this limit. NLLS (solid line) seems to 
perform better than LLS (dashed line). However, the fact that C2 is greater 
than the noise suggests that the technique models the noise as well. Their 
performances converge for S N R  = 10 dB. Compared with the model built 
from 64 contiguous samples, the technique relying on NLLS performs better, 
whereas the technique relying on LLS performs worse.
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3.5 E xam ple

3.5.1 P rin c ip le

In this section, the technique is applied to real measurements to demon­
strate that a scattering model can improve the resolution. The experimental 
conditions are in many ways similar to those presented in the previous sec­
tion. Firstly, the signal back-scattered by three metal-spheres is modeled by 
three point-scatterers. Secondly, the model estimated is extrapolated across 
a large bandwidth. The results show that whereas the initial signal can only 
generate two peaks on the range-profile, the third peak can be revealed by 
extrapolating the model.

3.5.2 R a d a r  signal

The radar signal is extracted from the experimental dataset obtained 
from ENSIETA, presented in Chapter 2 and used again in Chapter 4. It 
has been measured using the three spheres on a turntable at aspect-angle 
0 =  44.5°. Due to the experimental conditions, the SNR is assumed to 
be relatively high. However, the following chapter provides an estimation, 
S N R  = 10.5 dB.

j
Figure 3.22 shows the real-valued radar samples simulated on the I-channel. 

The first 64 samples on the sub-band 1 [11.65 GHz — 14.85 GHz] axe 
used to build the model. The following 64 samples, on the sub-band 2 
[14.85 GHz  — 18 GHz], are only presented for information.
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Figure 3.22: I-channel - sub-band 1 (solid-line), subband 2 (dashed-line),
S N R  =  30 dB
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Range profile

Figure 3.23 shows the range-profiles obtained by taking the IFFT of the 
first 64 samples (solid line) and 128 samples (dashed line). The range- 
profile obtained with 3.2 GHz does not enable the complete resolution of the 
scatterers. This is due to the fact that two of the scatterers are very closely 
spaced. In other words, the nominal resolution A r =  4.7 cm is greater that 
is the distance of separation. In contrast, the range-profile obtained with 
the signal across the band [11.65 GHz — 18 GHz] enables resolution of the 
three scatterers. Here, the nominal-resolution, Ar' =  2.3 cm, corresponding 
to 6.4 GHz is smaller than the distance of separation between the scatterers.
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Figure 3.23: HRRP - range window R = 58.6 cm, N  =  64 (top), N  =  128 
(bottom), S N R  = 30 dB

3.5.3 M odel e s tim a tio n  

P rinc ip le

The 64 radar samples in the band [11.65 GHz — 14.85 GHz] are used 
to estimate the Prony model. The model is then exploited across the band 
[11.65 G H z—18 GHz]. The following presents the construction of the model 
and the range-profiles enhanced by bandwidth extrapolation.

M atrix  fo rm ation  

The samples are arranged in a Hankel matrix, H, according to 3.75.

(  z(0) x (l)  . . .  x(21)  ̂

x (l)  x{2 ) :H =

^*(42) . . . x{63)

(3.75)

where the width of the prediction-window is L = 22.
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M odel-order estim ation

The modcl-order estimate is based on the number of strong singular values 
of H. Although the weakest singular values are not identical, the similarity 
between these singular-values, as shown in figure 3.24, suggests a correct 
model-order estimation: P  = 3.
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Figure 3.24: Model-order estimate P = 3, L = 22, S N R  = 30 dB

M odel param eter determ ination

Figure 3.25 shows the poles obtained by root-MUSIC algorithm. Amongst 
them, the three poles corresponding to the three scatterers are selected be­
cause they are the closest to the unit-circle.
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Figure 3.25: Z-plane - poles selection - real data N  = 64, S N R  = 30 dB
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M odel extrapolation

Figure 3.26 represents an overlay of the radar signal and the model M\ ob­
tained with linear least-squares. The model (dashed line) generated from the 
first 64 samples (solid line) matches the signal in the sub-band of measure­
ment, [11.65 GHz —14.85 GHz], but also in the band [14.85 GHz—18 GHz].
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Figure 3.26: I-channel: simulated data vs. model - N  = 64, N' = 128,
S N R  = 30 dB

i

Figure 3.27 represents two range-profiles are obtained with the measured 
signal composed of 128 samples and the model computed with 64 samples 
and extrapolated to 128 samples.
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Figure 3.27: HRRP - range window R  =  58.6 cm - real data N  =  128 
(solid line) vs. model N  = 64 extrapolated to N  = 128 (dashed fine), 
S N R  = 30 dB

On both range-profiles, the three peaks corresponding to the three scat­
terers are present. Comparison with the true measured data reveals that 
their positions are very accurate. In this case, the technique allows the res­



Scattering Centre Model Estimation Technique 108

olution of the three scatterers with only 3.2 GHz  bandwidth, that is half of 
the bandwidth needed to produce the range-profile using traditional method.

3.5.4 Conclusion

In this section, we introduced a model-based technique for reconstruct­
ing, interpolating and extrapolating the complex-valued radar spectrum. 
The model is obtained in five stages: (1) model-order estimation, (2) poles 
determination, (3) poles selection, (4) amplitude coefficients estimation and 
(5) model parameter adjustment. The technique presented extracts the so- 
called scattering-centres parameters, model-order (P), amplitude (a*) and 
poles (zk) using a modified root-Music or Matrix Pencil algorithms, and 
linear or non-linear least-squares fitting.

Experiments have been carried out with both simulated and measured 
radar-signals. The scattering models estimated by the technique can ac­
curately represent the 64 samples that were used for their estimation, no 
matter whether the samples are contiguous or not. The error, as defined by 
the expressions Ci - 3.71 to 3.74 - is relatively small for S N R  > 10 dB. In 
this region, the models are also able to predict the radar samples outside 
the band of measurements. This can be used for bandwidth interpolation 
or extrapolation.

Interpolation and extrapolation require prediction of the radar signal out­
side the band of measurements. By first computing a model, the technique 
enables a signal to be synthesized across a single wide bandwidth. This 
section has confirmed that the technique proposed in this chapter has the 
capability to achieve bandwidth interpolation and bandwidth extrapolation. 
Such technique can be used to produce improved range-profiles or ISAR im­
ages with both improved range and Doppler resolution [7]. However, the 
bandwidth extraplation technique is limited by the model accuracy. The 
next chapter investigates this issue for more complex representation from 
which real-world applicability can be assessed.



Chapter 4

MODELLING MAN-MADE 
TARGETS FOR 
BAND-EXTRAPOLATION  
TECHNIQUES

4.1  In tro d u c tio n

4.1.1 Foreword

In the previous chapter a technique was introduced for estimating the 
ultra-wideband radar signature of a target without transmitting the total 
bandwidth required. The technique consists of fitting an all-pole model to a 
set of radar measurements from the in-phase (I) and quadrature (Q) chan­
nels. Once the expression is determined by combined use of super-resolution 
and least-squares fitting algorithms, a new dataset of samples is calculated 
for the same frequencies. The model accuracy is then estimated by comput­
ing the quadratic error or alternatively the signal-to-residue ratio. For small 
errors, it is proposed that the model also be used to predict the samples 
outside the band of measurement. This extrapolation of the bandwidth en­
ables conventional imaging-techniques such as those based on the Discrete 
Fourier Transform to draw range-profiles with enhanced resolution.

There exists a large body of literature on super-resolution algorithms. In 
general this is treated as a problem of harmonic retrieval from time-series 
whose temporal extent does not enable close frequencies to be resolved by 
application of the Discrete Fourier Transform. Some very encouraging re­
sults have been shown by introducing super-resolution algorithms to solve 
practical problems encountered in radar imaging and detection. Typically, 
ideal point-scatterers that are located within the same Fourier range-bin

109
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axe resolved using super-resolution algorithms such as Matrix Pencil, MU­
SIC, root-MUSIC, or ESPRIT. However, transposing these techniques to 
real-world applications poses an important set of questions regarding the 
method’s capability, many of which are addressed in this chapter.

4.1.2 L im its o f th e  m odelling  tech n iq u e

In troduction

The modelling technique introduced earlier has limits which are high­
lighted in this section. As an example, it is applied here to a radar sig­
nal backscattered by a real flying Boeing-727 aircraft. First, the estimated 
model is compared with the signal across the measurement-band. It is then 
extrapolated and compared with the signal across a larger band. By em­
ploying a complex and extended target such as a Boeing 727, the experiment 
unveils some aspects of the modelling process which do not necessarily ap­
pear when applied to simple targets. In particular, it challenges the relation 
between the mathematical accuracy as defined by distance between the sig­
nal and the model, and the physical accuracy which refers to capability to 
characterise the scattering properties of the target. This is not a trivial 
question as scattering processes such as creeping waves, edge diffraction and 
possibly non-linear behaviours are not necessarily captured in our mathe­
matical model.

R adar signal

The dataset used has been provided by Dr Victor Chen from the US Naval 
Research Laboratory. ’’The Stepped Frequency Radar operates at 9 GHz 
and has a bandwidth of 150 MHz. For each pulse, 128 complex-valued 
range-samples were saved. The file contains 128 successive pulses. Motion 
compensation and range processing have been applied to the data. A radar 
image can be reconstructed by taking 1-D FFT of 128 pulses for each range 
sample.” [11]

Figure 4.2 shows the ISAR image obtained by taking the FFT of a 128 x 
128 complex-valued matrix with zero-padding with 210 indices.

Figure 4.1: Boeing B-727
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Figure 4.2: B-727: ISAR image

M odel estim ation

The 128 complex-valued samples forming the 49th pulse are extracted from 
the data and used as a test-signal. The in-phase values are represented in 
blue in figure 4.3. The modelling technique is directly applied to the test- 
signal. The matrix width, L, is set L — 43 which follows the recommendation 
in 3.66. As the various techniques presented did not agree on the model- 
order estimate, an arbitrary value has been chosen: M  = 16. The range- 
profiles obtained by direct reconstruction of the model generated from 128 
samples and without parameter adjustment are represented in figure 4.3. 
The signal-to-residue ratio across the 128 samples is S R R  = 2.55 dB.
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Figure 4.3: I-channel: measured data vs. model - N  = 128

A new model is then determined from 75% of the signal only. The model- 
order and the ratio L / N  are conserved so that M  = 16 and L = 32 in this 
case. This 96 sample-model is then used to form a total band of 128 samples. 
Figure 4.4 represents the 96-sample signal provided (blue), the 32-sample 
missing signal (green) and the model (red). The signal-to-residue ratio is 
now S R R  =  1.95 dB  across the first 96 samples and S R R  = —4.15 dB 
across the whole band, that is about 6.6 dB  lower than the model obtained
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using the whole band.
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Figure 4.4: I-channel: measured data vs. model - N  = 96

The same operation is then carried out on 75% of the signal but the 
96 samples arc distributed across two bands of 48 samples this time. The 
indices of the bands are n\ =  [0 ... 47] and 712 =  [80... 127]. The indices 
of the missing band are [48... 79]. The parameters are set to M = 16 and 
L = 17 to take into account the size of the sub-bands. The estimated model 
is then used to form a total band of 128 samples. Figure 4.5 represents 
the initial signal distributed over two 48-sample band (blue), the 32-sample 
missing signal (green) and the model (red). The signal-to-residue ratio is 
SR R  =  1.08 dB only across the modelling band and SRR = 0.62 dB across 
the total band. The three results are discussed in the following section.
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Figure 4.5: I-channel: measured data vs. model - N  = 2 x 48

Discussion

These experiments show that using the same model-order, M  =  16, the 
model estimate seems to vary with of the number of samples of the signal 
but also with their distribution. Here the model determined enables re­
construction of the signal over the modelling band with a relatively good
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accuracy, especially when the signal is defined over a single band. However, 
the above example shows that when this model is used to estimate the signal 
over an unknown band, the result is not accurate. This is clearly visible in 
this example. The following shows that this observation is not a special case 
due to the choice of the parameter value but a general fact.

Figure 4.6 represents the signal-to-residue ratio as a function of the model- 
order between M  =  3 and M  = 30 for the three models computed using 
linear least-squares fitting technique. The first model (blue) is the direct 
reconstruction of the 128 sample-signal, the second one (green) is the recon­
struction using 96 samples of the model determined from 96 samples and 
the third one (red) is the model determined from 96 samples of the data and 
extrapolated to 128 samples. The figure shows that when the models are 
used to predict the data across the missing band, the accuracy strongly de­
creases. This experiment also suggests that the larger the model-order, the 
more accurate the reconstructed model and paradoxically the less accurate 
the extrapolated model.
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Figure 4.6: signal-to-residue ratio as a function of the model-order

The results of this experiment imply that the modelling technique may 
not always perform well with complex and extended targets. More specifi­
cally, it reveals that the model determined from a real radar-signal scattered 
by a real moving man-made target such as an aircraft may not suitable for 
extrapolation and should thus not be considered as accurate in the physical 
sense.

4.1.3 Problem  statem ent

Both the use of a model to reproduce the radar data and the determi­
nation of the model parameters are subject to a rather strict theoretical 
framework. The model is justified by the fact that it can approximate the 
scattering mechanisms that are dominant for conditions that are suppos­
edly the experimental ones. In order to rely on the estimated model, it is
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essential that the validity of these assumptions be demonstrated and that 
the error arising from various approximations be bounded. These precau­
tions can be neglected when experiments are carried out in the very ideal 
conditions which serve to mathematically approximate the radar problem. 
Nevertheless, this should not be the case when the experiments involve real 
radar signals or more specifically targets that cannot be described by a set 
of theoretical point-scatterers.

For most applications, the validity of the physical assumptions that are 
used to justify the chosen model is still to be demonstrated. The first one 
is the approximation of a signal as a sum of complex exponentials where 
each cisoid corresponds to the contribution of an independent and strongly 
reflecting point-scatterer. Another assumption concerns the description of 
the scattering model by linear regression. Considering that multi-bounce 
and surfacc-waves are not expressed by the model, it appears that along 
with modelling real radar-signals comes a large set of questions regarding 
both the accuracy and the physical meaning of the scattering model and on 
which depends the prediction of samples and subsequently the capability of 
the technique to achieve bandwidth extrapolation.

Assuming the generic form of the scattering model provides an accurate 
description of a scattering process, the model accuracy remains limited by 
the ability to correctly retrieve the parameters of a sufficient number of 
scattcring-centres from the received signal. The model obtained is obviously 
highly dependent upon the amount of information contained in the dataset 
processed, the amount of information that can be extracted from this dataset 
and the technique employed. There exist a large number of factors that 
can be directly responsible for inaccurate models. They are related to the 
continuity of the band, the number of samples, the model-order, the number 
of strong scatterers, the conformity of the scattering-centres to the point- 
scatterer model, the method-parameters and the extrapolation-ratio. In 
addition, the corruption of the signal by sources other than the target can 
also affect the accuracy of the model and hence also makes the modelling 
process less robust.

4.1.4 Outline

Based upon this example, the rest of this chapter attempts to provide a 
stronger foundation for challenging the accuracy of the modelling technique, 
the accuracy of the model itself and the legitimacy of the model residual error 
to be used as an indicator of the model capability to achieve bandwidth 
extrapolation. The relatively broad analysis of the modelling method could 
be used as a guideline for setting-up the, system parameters and interpreting 
the results.
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This chapter starts with an introductory example that has, for the first 
time, highlighted some of the issues associated with the scattering-centre 
model. In the second section, the model is studied individually. The sensi­
tivity of the model to its parameters is investigated and the greatest source 
of error is unveiled. This source appears to be the over-estimation of the 
pole-magnitude. The third section concentrates on the modelling technique 
and shows that over-estimation of the pole-magnitude occurs under certain 
conditions. It also shows that amongst all the possible causes of limitation, 
the factors which lead to the creation of a deficient model would increase 
t he probability of seeing an over-estimation of the pole-magnitude.
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4 .2  M o d e l

4.2.1 In tro d u c t io n

The accuracy of the modelling stage naturally has some limits for which 
causes and consequences need to be clearly identified. The analysis of the 
model is performed in three steps. First, the next section reviews the re­
lations between the model-parameters and the physical properties of the 
scattering mechanisms. It contains a qualitative analysis of the contri­
bution of each parameter to the model followed by a sensitivity analysis. 
Based on simple examples, the second section uses the quadratic-error to 
provide a quantitative study of the model sensitivity. Finally, the limits of 
the latter expression as a measure of model-accuracy and its implication for 
bandwidth-extrapolation are discussed.

4 .2 .2  M o d e l-p a ra m e te rs

The so-called scattering-centre model used to reconstruct the radar signal 
can be described as a weighted sum of M  complex exponentials known as 
eisoids. For each elementary signal, the modelling technique determines 
three parameters: pole-magnitude (p), pole-angle (</>), and amplitude (a).

• the model-order, M, determines the number of components in the sig­
nal. It is loosely related to the number of scattering-centres needed 
to describe the target. Although it may be possible to associate 
scattering-centres with individual scattering elements, linking the math­
ematical expression to the physical interpretation is not straightfor­
ward. For example, multipath and surface waves are often responsible 
for scattering that are not taken into account by the model employed.

• the amplitude-coefficient, a*, contributes to the relative power and 
relative signal-to-noise ratio associated with a given scattering-centre. 
Physically, this parameter is related to the scatterers’ RCS. Exponen­
tials weighted by large amplitude coefficients are responsible for strong 
singular-values in the SVD decomposition of the observation matrix 
and for high peaks in the range-profile. This phenomenon is exploited 
for estimating the model-order.

• the pole-magnitude, pk, is the parameter used to take into account 
the frequency dependence of the RCS. Physically, this parameter is 
related to the geometry of the scatterer as indicated in table 1. For 
pole-magnitudes greater than one, the relative power increases with 
the frequency whereas this is the opposite for values smaller than one. 
On the range-profile, the peak-amplitude increases rapidly with the 
pole-magnitude. Finally, the pole-magnitude has a unique effect on 
the peak-width in such a way that values other than one introduce a
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spread of the energy in range, the minimum peak width being obtained
for pk = 1.

• the pole-angle, </>*,, determines the frequency of the signal. Models 
composed of ideal point-scatterers are periodic by definition. Those 
composed of a limited number are characterised by a short period, 
which can be observed if the bandwidth is large enough. Physically, 
this parameter is related to the time-delay induced by the distance 
from radar to scatterer. For this reason, the determination of a scat­
terers ’ location is either treated by spectral analysis or, in the case of 
point-scatterers, as the problem of harmonic retrieval. The complete 
angular-domain [0 — 2x] is defined by the unambiguous range window 
Ru = c /(2A f).  For extended targets, a phenomenon of aliasing can 
be observed if the absolute pole-angle is greater than 2ir.

4.2.3 M odel susceptibility  

In troduction

For convenience the assumption is often made that man-made targets are 
typically characterised by a limited number of strong scatterers that are 
responsible for most of the returned signal. Accurate modelling of their 
individual contributions could in some cases enable the reconstruction and 
prediction of the signal across a large bandwidth. However, the accuracy of 
the results depends upon the sensitivity of the model and upon the accuracy 
of the modelling technique employed.

In this example, equation 4.1 is used to generate the reference signal, s(n). 
Perturbations which, in practice, represent the error of estimation are then 
individually applied to each parameter. Both the reference-signal and the 
corrupted signal which is referred to as the model are plotted on the same 
graph.

_• 2wl0.5Ar _ .-2irl5.5Ar_ . . . .
s(n) = e*— H— n +  e*— « n (4.1)

where ^  ^  and the total number of samples N  =  128.

Equation 4.1 predicts the return from two ideal scatterers such as points. 
This can be inferred from the magnitude of the poles, Pk = 1. The range 
of the scatterers can be obtained from the pole-angles and for a 128 sample 
signal the difference A<j>k =  (27t(.(5Ar ) /R  implies that the scatterers are
separated by exactly five resolution-cells in range. Finally, the amplitude
coefficients a/- — 1 express the fact that the receiver sees the same amount 
of energy from each scatterer.
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A m plitude

Figure 4.7 represents the initial signal (solid line) and the model (dashed 
line) obtained for the estimated values 0,2 =  1 and either di =  0 . 8  (top) 
or di =  1 . 2  (bottom). This corresponds to variations of the amplitude- 
coefficient, di, by —20% and +20%, respectively. The variation of the 
amplitude coefficient seems to have limited effect on the signal as its gen­
eral form is maintained. Nonetheless, large positive perturbations introduce 
greater sidelobes in the range-profile which may make the detection of weak 
scatterers difficult.
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Figure 4.7: I-channel: variation of amplitude coefficient by -20% (top) and 
+ 0 .2 0 % (bottom)

Pole angle

Next we consider sensitivity to changes in the pole angles. Figure 4.8 
represents the initial signal (solid fine) and the model (dashed fine) obtained 
for the estimated values 0 2  =  0.5 rad and either 0i =  0.5031 rad (top) or 
0 1  =  0.5277 rad (bottom), which corresponds to variations of the pole-angle, 
0 2 , by —25% and +25% of the nominal-angular resolution, respectively.

The variation of the phase-angle modifies the pattern of constructive and 
destructive interferences. On the figure, the difference between the signal

Model

Signal
Model
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Figure 4.8: I-channel: variation of pole angle by —0.25A<£ (top) and 
+O.25A0 (bottom)

and the model is more obvious at high frequency. This is due to the differ­
ence of periodicity between the two patterns. This can explain the decreasing 
performance of a model when it is used for extrapolating over a large band­
width. Similarly, perturbing the pole-angle of a large number of scatterers 
causes variations which may be significant, even at low frequency.

Thus it is seen that the perturbation of a pole-angle has obvious effects 
that can be observed in the time-domain. In a one-dimensional range-profile, 
the range of the peak corresponding to the perturbed pole would be shifted 
in range, proportional to the angular variation. Therefore a variation com­
mon to all pole-angles would introduce a range offset whereas individual 
variations would cause different shifts of the peaks in range. The second 
type of perturbation would cause greater errors to most classification tech­
niques. In this way, the limitations of the modelling approach are becoming 
apparent.

Pole m agnitude

Finally we examine effects of changes in the pole magnitudes. Figure 4.9 
represents the initial signal (solid line) and the model (dashed line) obtained
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for the estimated values fc = 1 and either p\ =  0.95 (top) or p\ = 1.05 
(bottom), which corresponds to variations of the pole-magnitude by —5% 
and +5% of the unit radius, respectively.
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Figure 4.9: I-channel: variation of pole magnitude by —0.05 (top) and +0.05
(bottom)

The model is clearly more sensitive to positive variations of the pole- 
magnitude than to negative ones. Considering that the signal results from 
an autoregressive process, this result is predicted by the linear theory which 
requires as a condition of stability that no pole of the transfer function be 
located outside the unit-circle. In both cases, the variation is greater at high 
frequency due to the fact that the contribution of the pole-magnitude to the 
model is in the form pn, where n is the frequency index.

4.2.4 M odel A ccuracy

This section presents the variation of the signal in 4.1 as a function of 
the perturbations of the model-parameters. It is quantified by means of the 
model quadratic-error in 4.2 where Mn and sn corresponds to the estimated 
model and the signal in 4.1, respectively.

N - 1
e =  £  \M - s„|2

n=0
(4.2)
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A m plitude

Figure 4.10 represents the model-error as a function of the variation of the 
amplitude coefficient. Aa/t =  a*—a*. The extent of the variation corresponds 
to ±100% of the initial value, a* =  1. This implies that the sensitivity to 
errors is relatively small.

Figure

Beyond this limit, the model-error is greater than eo =  256 which would 
be the error introduced by a null model. The concavity of the surface sug­
gests that optimisation techniques would converge to the correct values.

Pole angle

Figure 4.11 represents the model-error, e, as a function of the variation of 
pole-angle, A(j>k = <j>k -  (j>k.

4.10: Model-error, e, as a function of Aa*

Figure 4.11: Model-error, e, as a function of A0*.
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The extent of the variation corresponds to four times the nominal reso­
lution that is ±3% of the unambiguous extent. The shape of the function 
suggests that optimisation techniques may not converge to the expected 
value but to a local minimum instead. This highlights the importance of 
the accuracy of the estimator and requires careful implementation.

Pole m agnitude

Figure 4.12 represents the model-error as a function of the variation of 
the pole-magnitude, Apk — Pk ~ Pk- The extent of the variation corresponds 
to ± 1 % of the initial value, p = 1. The error reaches 6.106 for = +5%.

®200

Figure 4.12: Model-error, e, as a function of Apk

The graph confirms that positive variations of the pole-angle have greater 
effects on the model error than negative ones. In order to quantify this
behaviour, one can derive the expression of the difference between a sig­
nal and a model at frequency index n. For this, let us consider that the 
pole-magnitude is the only modified parameter, and that the variations of 
magnitude are identical for both poles so that pi = fa = P- In this case, the 
expression can be written as 4.3.

-  S„l =  \pn -l|.|e*‘̂ in + ei<hn\ (4.3)

Since the second term is bounded by the values 0 and 2, the quadratic error 
can be approximated by the contribution of the first term only. Depending 
on the sign of the variation, the model-error follows 4.4 or 4.5.

Isn -  sn |2 «  7 i,n.p2n , \p\ > 1 (4.4)
«  72,n-(l -  2pn) , \p\ < 1 (4.5)

where 7 1  >n and 7 2 ,n are independent of pk-
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This expression confirms that the error increases with both the number 
of samples and the distance of the pole to the unit-circle. Moreover, it 
confirms the model instability caused by poles located outside the unit-circle. 
For model-estimation, this implies that the model is especially sensitive 
to positive variation and that errors would be emphasized by bandwidth 
extrapolation.

4.2.5 K ey points

The scattering-centre model used to reproduce the radar signal can be 
described by M  sets of three parameters a*, <j>k, and pk, where M  is the 
model-order and the elements of each set are the amplitude-coefficient, the 
pole-angle and the pole-magnitude, respectively.

In the simple example based on two point-scatterers, the above analysis 
has shown the effects of the perturbation of the parameters on the form of 
the model. Several points can be highlighted from the above analysis.

1. The sensitivity of the model varies with each of the parameters. The 
sensitivity to the pole-magnitude may be very significant as this pa­
rameter determines the stability of the process. In the example, a 5% 
increase of the pole-magnitude causes a large error, e =  6.106, whereas 
the latter is bounded by 2.103 for a perturbation of the pole-angle.

2. The fact that the contribution of the pole-parameter to the signal 
is frequency-dependent makes its sensitivity a serious issue for band­
width extrapolation techniques. In practice, errors due to the pole- 
magnitude increase with the extrapolated bandwidth in a power-of-n 
relation, where n is the frequency index.

3. The shape of the model-error for a variation of the pole-angle suggests 
that optimisation techniques may not converge to the desired value due 
to the presence of several local minima. This highlights the importance 
of the initial pole-angle estimate.

4. The level of sensitivity of the model suggests that model-based clas­
sification will be similarly sensitive to each parameter. Considering 
the sensitivity to the pole-magnitude and the amount of information 
contained in this parameter with respect to those contained in the sig­
nature, it seems preferable to employ a technique less sensitive to this 
parameter.
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4 .3  M o d e llin g  tech n iq u e

4.3.1 Introduction

The previous section shows that the accuracy of the model depends upon 
the modelling technique as the model-error varies with the error on each 
of the parameter estimates. In the technique proposed, five consecutive 
stages are used to estimate these parameters. They include model-order 
estimation, pole-estimation, pole-selection, amplitude-coefficient estimation 
and parameter adjustment. Because of the sequential form of the process, 
each stage has reliance upon the previous so that the final accuracy of the 
model has reliance on the accuracy of each stage.

The accuracy of each stage varies with the target, the transmitted sig­
nal, the statistical properties of the noise, and with elements not included 
in the model that may contribute to the dataset such as other scattering 
phenomenon, clutter, interference and multipath. Ideal conditions are ex­
pected to be met when the signal is produced by a few point-like scatterers 
with high signal-to-noise ratio and no other contributions. Away from these 
conditions, the accuracy of the model is expected to decrease but little in­
formation is known about that.

Depending on the experimental conditions, various perturbations may 
affect the input dataset, which subsequently could lead to errors in the 
parameter-estimates. Considering the sensitivity of the scattering-centre 
model highlighted in the previous section, even small errors may be sufficient 
to alter significantly the representation of the model. This problem which 
would be emphasized by bandwidth extrapolation may then have negative 
impacts on model-based techniques used for applications including imaging, 
classification and recognition.

This section studies the modelling process with the aim of identifying the 
mechanisms that are responsible for large errors. It relies on the expression 
of the model accuracy given by the signal-to-residue ratio. A sensitivity anal­
ysis is carried out with respect to the signal-to-noise ratio, the model-order, 
the matrix dimension, the number of samples and the signal bandwidth. 
Both the simulated and measured signals are used for this study.

The parameters are set as follow: model-order, M  =  3, and observation- 
matrix width, L — N/3. The pole-estimation is carried out using the modi­
fied version of the root-MUSIC algorithm presented in Chapter 3. The poles 
selected are the M  poles that are those closest to the unit-circle. The am­
plitude coefficients are estimated by solving a linear least-squares equation. 
Finally, the parameters may be adjusted by non-linear least-squares fitting.
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4.3 .2  S ig n a l-to -n o ise  ra t io  

In tro d u c tio n

This section investigates the effects of the noise on the model. The met­
ric used is the signal-to-residue ratio and the analysis contains a detailed 
assessment of the expression used as an indicator of the model accuracy. 
The conclusions serve as a basis for interpretation of the results obtained 
with the modelling technique. By comparing the results from simulated and 
measured signals, the experiment supports the principle of the technique 
reviewed but with limited extent. It also challenges the legitimacy of the 
signal-to-rcsidue ratio. In addition, a simple technique for estimating the 
signal-to-noise ratio of a measured radar signal is proposed in this section.

The signal-to-residue ratio can be written as the ratio of the power of the 
reference-signal to the power of the residue as in 4.6.

y * N - l  | ~ |2
S R R  = - f °  -  -  ,0- (4.6)

£ n = 0  ~ # » l

where y is the reference version of the signal, preferably the closest form to 
the deterministic component in the least-squares sense, M  is the model, and 
•n indicates the sample index.

Sim ulated signal

When the received signal, yn, is simulated, the noise-free version of the 
signal, s, can be employed as a reference. In this case, 4.6 can be written as 
4.7

En=0 1̂™ +  — snl
where the residue is defined by en =  M„ — s„ with s the model component 
associated with the deterministic part of the signal.

Assuming the deterministic part of the signal is accurately modelled, that 
is sn =  sn over n = [0 ,1 ,..., N  — 1], 4.7 can be simplified to 4.8

Since the residue, e, is expected to decrease when the S N R  increases, 
the S R R  is expected to increase with the S N R  in this equation. In order 
to characterise this variation, the model-error is computed for the simulated 
signal in 3.22 for various levels of noise, u. This signal simulates the return 
from three point-scatterers such as the measured signal used in the following 
section.



Modelling Man-Made Targets for Band-Extrapolation Techniques 126

Figure 4.13 represents the S R R  as defined in 4.7 for various S N R  values 
between —20 dB  and 40 dB. Each marker represents the mean-value of the 
S R R  computed for 25 tests. The dots represent the maximum and minimum 
S R R  values obtained.
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Figure 4.13: Variation of the signal-to-residue ratio as a function of the
signal-tonoise ratio

Figure 4.13 confirms that the S R R  increases with the SN R .  The small 
difference between the mean and the extreme values of SR R  on figure 4.13 
suggests that the variance is relatively small. It can be inferred from the 
same figure that the power of the residue is 10 dB  greater than the power 
of the noise added, that is S R R  «  S N R  +  10 dB. It may thus be possible 
to approximate the residue as a fraction of the noise, u. This is formalised 
in 4.9.

<  |e „ |2 > «  i f .  <  M 2 >  (4 .9 )

By substituting 4.9 into 4.8

E £ o K l2 
* E £ o K P

S R R  «  =  ' N  (4 1 °)

where K  «  0.1 based in figure 4.13. This expression estimated from exper­
imental conditions is adapted in the following section to the more realistic 
case where measured signals are chosen as reference-signals.

M easured signal

When the dataset modelled is a measured signal, the deterministic com­
ponent, sn, is generally unknown. The latter cannot be used as a reference- 
signal, yn, for computing the S R R  in 4.6. For this reason, a sensitivity anal­
ysis is carried out with a signal initially corrupted with noise. The S N R  
value that is reported on the following figures only refers to the noise added 
during the study and not to the noise initially present. This is essential for
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understanding what is actually determined when the SR R  is computed with
a measured signal.

In the following, a noisy measured signal, sn + rfn, is used as a reference- 
signal. This signal is then corrupted by additional noise, tin, so that the 
signal modelled is sn + rjn + Un- Combined study of the analytical expres­
sion of the S R R  computed using a noisy reference-signal and the results of 
this experiment enables a better understanding of the results obtained with 
measured signals.

When the signal modelled is initially corrupted by noisy components, 7?n, 
the signal-to-residue ratio is then given by

En=o K  +  Tjnf 
Y ,n - 0  l* n  + en - S n -  77„ |2

S R R  =  t -     (4.11)

The signal-to-noise ratio of the reference signal, S N R q, is given for un =
0  bv

E S  k 12

Assuming the deterministic part of the signal is accurately modelled, 
that is sn =  s„, 4.11 can be simplified as 4.13

SNRo = a f f i r t ;  (4.12)

E ^U 1K  +  >hP
En=o* l^n “  Vn\

S R R  =  " " 1 °  (4.13)

Based on 4.9, it can be assumed that the residual varies in proportion 
with the total noise. In this case, the denominator can be approximated by 
a simpler expression. Depending on the power of the added noise relative 
to the power of the initial noise, the asymptotic form of the S R R  can be 
approximated by 4.14 and 4.15.

WV-1 |«5 „ |2
SR R  = w l, ,  „  a S N R o  , S N R » SNRo, (4.14)

E„=o M 2
E ^ i/lO n  +  'fel2 S N R / K  , S N R ^ S N R o ,  (4.15)

E i to 1 M 2

where the value of K  «  0.1 has been estimated in the previous example.

The sensitivity analysis is now carried out on a measured signal corrupted 
by an initial noise, 77. The signal employed is extracted from the dataset 
used to create figure 2.10. Figure 4.14 represents the S R R  as defined in 4.6 
for ijn = Vn- The blue fines refer to the, measured signal. The S N R  refers to 
the noise, un, that is added afterwards and does not include the unknown
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initial noise, r/„. This is meant to match to the experimental conditions. 
The figure confirms the presence of the two behaviours described in 4.14 
and 4.15 .

In order to simulate the measured signal, the simulated clean signal in 3.22 
has been corrupted by an additive white Gaussian noise, fj. The power of the 
noise present in the measured signal being unknown, it has been estimated 
in the following way. First it is assumed from 4.14 that when modelling a 
noisy series of complex exponentials, the signal-to-residue ratio of the model 
is equal to the signal-to-noise ratio, that is S R R  = S N R q . Based on this and 
the figure 4.14, the initial S N R  is estimated to be S N R q  «  S R R  ~ 10.5 dB.

Once the simulated noisy signal is created with S N R q = 10.5 dB , a 
sensitivity analysis is carried out on the noisy simulated signal by adding 
more noise un and computing the models. The models of the simulated 
signals are then estimated and S R R  computed for 24 values of un such that 
the SNR defined in 4.12 is between —20 dB  and 40 dB. The results are 
represented by the red fine on the same figure, 4.14. Each marker represents 
the mcan-value of 25 tests.
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Figure 4.14: Variation of the signal-to-residue ratio as a function of the 
signal-to-noise ratio for both measured signal and simulated signal where 
SNRq = 10.5 dB

Figure 4.14 confirms the form the S R R  as predicted by the analysis. 
Although the value of AT is not as high as expected, the S R R  for small 
SNR seems to follow the pseudo-linear relation seen using noise-free signals 
for low SNR, and a plateau at S R R  ~  S N R q for larger SNR. Considering 
that the model obtained with the simulated signal represents accurately the 
three simulated scatterers, the similarity between the S R R  computed with 
the measured and with the simulated signals supports the accuracy of the 
scattering-centre model.
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For a small amount of added noise, Un, the total SNR is thresholded at 
S N R o  «  10.5 d B  because of the initial component, rjn. Interpretation of 
the results in this region requires consideration that, for S N R  S N R o  
the Monte-Carlo analysis has no real effect on the results since the main 
component of the total noise is constant from test to test. Nevertheless, the 
results can be considered as representative because the variance is relatively 
small for high SNR.

The similarity between the results obtained with both measured (blue) 
and simulated (red) signals supports the above analysis of the S R R .  How­
ever the ability of the technique to accurately model the deterministic com­
ponent of the signal, fj =  77, remains an assumption.

We now examine two parameter-estimates, pole-magnitude and pole-angle 
as a function of the added noise. The first part shows that the number of 
poles selected that obey the magnitude-one criterion varies with the noise. 
The second part of the analysis shows that the accuracy of the pole-angle es­
timates also decreases with the noise. By comparing these observations with 
the variation of the S R R ,  some concerns can be raised about the reliance 
that can be given to the S R R  as an indicator of model accuracy.

Figure 4.15 represents the proportion of selected poles whose magnitude 
falls between ±2% of the unit-radius, that is between pm*n =  0.977 and 
Pmox — 1.023. This rate, which is refered as the reliability index, remains 
constant at 100% for S N R  > —5 d B  and drops down to 94.5% for S N R  =  

-20 dB.  Although this figure remains high, the susceptibility of the model 
to pole-magnitude implies that models may be deeply affected by the noise.
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Figure 4.15: Proportion of the poles selected satisfying the magnitude-one 
criterion as a function of the SNR

Figure 4.16 represents the angles of the three poles selected for various 
SNR values. The figure shows that, for large SNR, the angles estimated are
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very close to their expected values. However, it reveals that the number 
of spurious poles selected increases when the SNR decreases. As a matter 
of fact, the poles selected for S N R  = —15 dB  can all be considered as 
spurious poles. This suggests that, for small SNR, the technique may model 
components that are not those of the deterministic signal but probably those 
of the noise.
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Figure 4.16: Pole-angle as a function of the SNR

Both experiments show that the noise can significantly affect the esti­
mation of the model-parameters. The magnitude and the angle of the poles 
selected vary from their expected values tosuch an extent that, for low SNR, 
a large number of poles selected may actually be spurious poles. Nonethe­
less, it seems from figure 4.14 that the presence of spurious poles does not 
affect severely the S R R .

In order to determine the effects of the spurious poles on the model error, 
the S R R  has been computed for three values of the model-order. Figure 
4.17 represents the S R R  as a function of the SNR for M  = 1, M  = 2 and 
M  = 3. It shows that the signal-to-residue ratio depends highly upon the 
model-order.

• For high SNR, typically S N R  >  —4.6 dB, the residue is larger when 
the model-order is underestimated as the value of the denominator, 
< |sn — sn| >, in 4.7, increases when the number of components used 
to model the deterministic component of the signal decreases.

• For low SNR, typically S N R  <  —9.5 dB, the residue is smaller when 
the model-order is under-estimated. This is due to the fact that the 
smaller the model-order, the smaller the number of spurious poles.

• For SNR between —9.5 dB  and —4.6 dB, the smaller error is logically 
obtained with the intermediate model-order.
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Figure 4.17: Variation of the S R R  for three model-order estimates

When the noise-power increases, the number of components of the noise- 
free signal that are correctly estimated decreases. It follows that if the 
model-order is kept at its ideal value, M  = 3, an increasing number of the 
poles selected may actually be spurious ones. In the case of an extended 
target such as a Boeing 727 which has tens or hundreds of scatterers and 
would logically require a very high model-order, a very large number of 
spurious poles is expected if the SNR is not large enough.

Taking this into account, these experiments reveal some of the problems 
found in using the S R R  as an indicator of model-accuracy. First, for low 
SNR the maximum S R R  is obtained with M  — 1 component. This clearly 
indicates that one should not rely on the maximum value of the S R R  for 
estimating the physical model-order. Second, although the value of K  seems 
to vary as a function of the model order, it does not seem straightforward 
to detect any subspace swaps based on the SRR.

Sum m ary

In this section, models have been estimated from simulated and measured 
radar signals artificially corrupted by different levels of additive white Gaus­
sian noise. The accuracy of the models has been investigated by computing 
the signal-to-residue ratio which is based on the distance between the model 
and a chosen reference signal. For simulated signals, it is possible to com­
pute the residue from the noise-free version of the radar signal. However, 
in practice, the measured signal is always corrupted by some noise and the 
S R R  is generally computed using a noisy signal as reference, y = s + rj.

When the S R R  is described as a function of the SNR computed using the 
power of the additional noise, un, one can expect:

• a pseudo linear relation between S R R  and S N R , for S N R  -c S N R q
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• a lO.logio(K) dB difference between SRR  and S N R , for SN R  <C
S N R o

• a variation of K  with the model order

• a bounding limit, S R R  «  S N R q, for S N R  »  SNRo-

The value of K  varies with the model-order estimate and depends upon 
the ability to accurately model the ’’most representative” part of the reference- 
signal rather than the deterministic part of it. As is shown in the follow­
ing section, this poses a serious problem as model parameter adjustment is 
achieved by minimizing the SRR.

More critically, this section unveils a serious issue by showing that it is 
difficult to detect when a model is generated with wrong model-parameter 
values. It also shows that, for low S N R , the SRR  may not be a very good 
indicator of physical accuracy.

4.3.3 M odel-order

The previous section showed that the model-order is a critical parameter 
for the modelling process. In order to complete this analysis, the following 
example uses the same measured signal to show the variation of the signal- 
to-residue ratio as a function of the model-order estimate.

Figure 4.18 represents the signal-to-residue ratios obtained for various 
model-order estimates between M  = 1 and M  — 40. Each value is the 
mcan-value of the SRR obtained for 25 tests using the same signal. The 
blue solid line and red dashed one represent the results obtained with the 
measured signal and the simulated signal, respectively.
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Figure 4.18: Variation of the SR R  as a function of the model-order
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Based on the number of physical scatterers, the expected model-order is 
M  =  3. Under this assumption, the figure shows that under-estimating the 
model-order causes large model-error. This was expected as each scatterer 
contributes about one third of the signal power in this case. However, it 
also shows that over-estimating the order does not result in any significant 
increase of the residue. In contrary, the SRR seems to increase with the 
model-order. This result, which was already found with the Boeing 727 
in figure 4.6, suggests that, for M  > 3, the extra-poles are modelling the 
noise initially contained in the sequence modelled. If the signal is strongly 
corrupted by the noise, the SRR would be relatively high although the model 
is highly incorrect. This clearly shows that the SRR can only be used as 
an indicator of accuracy if the noise contained in the reference signal is 
low. Moreover, it shows that the model-order may be estimated throughout 
the transition of signal-to-residue ratio but certainly not from its maximum 
value.

4.3.4 M atrix proportion

The data set is organised into a quasi-symmetrical matrix whose dimen­
sions constitute one of the degrees of freedom of the technique. This section 
is interested in the effect of the matrix proportion on the residue.

The matrix width, L, which is the size of the observation-window de­
fines the number of terms that form the auto-regressive equation in 3.19 or 
equivalently the length of the sequence needed to characterise the physical 
mechanism observed. The value L  — 1 defines the maximum number of poles 
that can be estimated from the matrix. It is thus required that the value of 
L be large enough to retrieve all the scattering-centres.

The matrix length, N  — L + 1, corresponds to the number of observation- 
windows used to estimate the poles. The longer the matrix, the greater the 
statistical accuracy of the estimation.

As a result of the roles of both rows and columns in the processing tech­
nique, it is expected that model accuracy increases with the matrix dimen­
sion, that is with the number of samples. However, for a fixed dataset, 
width and length are linked in such way that the value of one has reliance 
on the other. The choice for L  arises from a trade-off between the number 
of components in the model and the number of observation segments.

Figure 4.19 represents the signal-to-residue ratio as a function of the pa­
rameter L  expressed here as a proportion of the total number of samples, 
N  =  128. The blue solid fine and red dashed one represent the results ob­
tained with the measured signal and with the simulated signal respectively.
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Figure 4.19: Variation of the S R R  as a function of the matrix width

The figure shows that the model accuracy depends upon the value of 
L.  For L  between 20% and 90% of N ,  the model accuracy is relatively 
constant. Beyond those limits, the model accuracy drops significantly for 
both the simulated and measured signals as expected. The recommendation 
in [26] is supported as the maximum S R R  is obtained for L  between N / 4  
and N/2  with a maximum at about L  =  N / 3.

4.3.5 N u m b er o f sam p les 

In troduction

The dataset employed is a complex-valued signal composed of N  samples 
where each sample, s n , is the base-band response corresponding to frequency 
fn = fo + n . A f .  Due to the nature of the technique employed, the accu­
racy of the model is expected to increase with the amount of information 
processed, that is with the dimension of the dataset. However, it is not pos­
sible to increase the number of samples while keeping both the bandwidth 
and the frequency-step constant as B  =  N . A f .  For this reason, the rela­
tion between the number of samples and the model accuracy is investigated 
in two steps. First, the number of samples is increased while maintaining 
the frequency-step constant. Second, it is increased while maintaining the 
bandwidth constant.

Variation of th e  frequency-step

In the first experiment, the variation of N  is achieved by varying A f  while 
keeping the B  constant. Four test signals are constructed by sampling the 
same signal composed of 128 samples at different rates. The resulting four 
signals are composed of N  =  16, 32, 64 and 128 samples. For each signal, 
the model is computed using a matrix-width, L, set to N / 3.
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Figure 4.20 represents the S R R  for each signal as a function of the SNR. 
The S R R  of each signal follows the general form presented in 4.14 regardless 
of the number of samples. Furthermore, the S R R  increases as the number 
of samples and the unambiguous window length jointly increase.
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Figure 4.20: Variation of the S R R  as a function of the frequency-step

Variation of the  bandw id th

In the second experiment, the variation of N  is achieved by varying B  
while keeping A f  constant. Four test-signals axe constructed by selecting 
the first N  =  16, 32, 64 and 128 samples of the reference-signal as above. 
For each signal, the model is computed using a matrix-width, L, set to N / 3. 
Figure 4.21 represents the S R R  for each signal as a function of the SNR.
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Figure 4.21: Variation of the S R R  as a function of the bandwidth
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As the results obtained for large SNR are not statistically representative 
it is prcfercd to attach more importance to the value obtained for low SNR. 
Here again, the S R R  increases as the number of samples and the band­
width jointly increase. The particular effect of increasing the bandwidth in 
comparison to increasing the frequency-step is discussed below.

Sub-band P rocessing

As the number of samples clearly appears to affect the accuracy of the 
model, it is expected that, for the same total number of samples, modelling 
a single band yields a more accurate model than modelling several sub­
bands. Moreover, by splitting the signal into several sub-bands, the reduced 
number of samples per sub-band may not allow L  to be set sufficiently high 
to retrieve all the scattering-centres.

As an example, the S R R  computed across 96 samples is S R R  =  13.9 dB 
for a model determined using 96 consecutive samples but only S R R  =  3.1 dB 
for a model computed from two sub-bands of 48 samples separated by 32 
samples. It is therefore recommended to model a signal defined on a single 
sub-band in this case. However, processing several sub-bands may yield a 
more accurate model if bandwidth prediction has to be achieved. In that 
case the accuracy will obviously depend upon the size of the missing band.

Discussion

All the experiments presented in this section show that the S R R  increases 
with the number of samples, N  and more specifically with the number of 
samples per sub-band. This result was expected as a coherent process is 
employed. A large number of samples may thus appear to be a solution for 
enhancing the model accuracy. However it may also present some serious 
drawbacks.

• First, collecting a large number of frequency-samples may require a 
long time of illumination if a step-frequency radar is to be used. When 
the target is in motion, this implies a large variation of aspect-angle 
and therefore a signal backscattered by an inconsistent target.

• Second, organising a large number of samples into the Hankel matrix 
may be an issue. On one hand, it is recommended that the matrix 
width, L, be no less than one fourth or one third of the number of 
samples. On the other hand, it is also recommended that it be small 
enough to limit the computational load of the system and to avoid the 
problems associated with rejecting the L —l — M  spurious roots. For 
this reason, depending on the model-order expected, a large number
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of samples may not always be an optimal option with the current 
technique.

• Third, increasing the number of samples may not be desirable as 
it affects either the frequency-step or the bandwidth. When this is 
achieved by reducing the frequency-step size, a large number of sam­
ples may require such a narrow step-frequency that the target size 
represents a much smaller ratio of the unambiguous range window. 
That implies that the fluctuations of phase in the system are rela­
tively greater. Alternatively when the frequency-step is kept constant, 
increasing the number of samples may require a very large bandwidth. 
This may not be possible due to hardware limitations, regulations or 
interference from neighbouring sources. Considering that it is pos­
sible to transmit such a wide bandwidth, the scattering mechanisms 
occuring at the lowest frequency may be different from those occuring 
at the highest frequency. This problem, encountered with ultra-wide 
band radar, is likely to characterise targets whose structural compo­
nents are very different in size and shape. It does also imply that ap­
proximations made to enable the modelling of non-linear mechanisms 
would appear more obviously over a wide bandwidth. In addition, the 
higli-resolution signal may reveal such a large number of small scatter- 
ers that the model may not include the desired ones due to limitation 
of the model-order by the noise for example.

In spite of its many advantages, processing a large number of samples 
may not always be practical or desirable. The next section shows that if 
the number of samples is so small that the bandwidth does not enable the 
scatterers to be resolved, the performance may still be greatly affected.

4.3.6 Spatial d istribution  

In troduction

Conventionnally, the bandwidth determines the minimal separation be­
tween scatterers that allows their resolution in range. Super-resolution tech­
niques can be used to increase the resolution but ultimately the results are 
limited by the initial bandwidth. The latter is therefore a key factor of the 
model accuracy. For this reason, a special interest is put into the study of 
the effects of the bandwidth on the modelling process.

It has been said that varying the bandwidth can be achieved in several 
ways. One method consists of varying the number of samples, N,  but the 
subsequent modification of the number of Fourier-cells per unambiguous 
range-window, Ru = c /(2A /), affects the SNR at the output due to the 
coherent nature of the technique. A second method consists of varying the
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frequency-step, A /, while conserving the same number of samples. This 
conserves the ratio between the nominal resolution and the unambiguous 
range window but modifies the ratio between the target size and the un­
ambiguous range window. For the sake of this study, the approach taken 
in this section consists of downscaling the distance between scatterers. By 
acting directly on the target, this method keeps the number of Fourier-cells 
per unambiguous range-window and the ratio A f /R u  constant.

Variation of the scatterers’ distribution

The turntable on which the three spheres lay, is rotated by steps of 0.5°. 
For each position, N narrow band pulses are used to form one range-profile. 
The rotation modifies the position of the scatterers and subsequently the 
distribution of the scatterers in range. After a total rotation of 100°, the 
dataset obtained contains 201 measurement for which the three scatterers 
have different spatial distributions between each other.

The modelling technique is then applied to these 201 snapshots with L 
set to N/3. The resulting models are then compared with their respec­
tive rcference-signals. Figure 4.22 represents the SR R  for each position of 
the turntable, and is computed with the models obtained by linear least- 
squares (top) and by non-linear least-squares fitting (bottom) using the 
Gauss-Newton algorithm.
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Figure 4.22: Variation of the model-error as a function of the position of the 
turntable using LLS fit (top) and NLLS fit (bottom)

The figure shows that the model accuracy as defined by the S R R  is 
relatively constant over the 100° rotation of the turntable. On average, the 
S R R  of the models obtained by linear least-squares (top) is about 8.5 dB and
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the adjustment by non-linear least-squares enables a gain of about 1.5 dB. 
Locally, the S R R  values drop down by 5 dB  in four regions corresponding 
to positions centred on aspect-angles <j> = —2°, 8°, 53° and 63°.

A comparison with the actual position of the turntable shows that the 
angular regions of poor model-accuracy are those for which the separation 
between two balls in range is relatively small but not zero. This can be more 
easily observed in figure 4.23 which shows the pole-angle of the three selected 
poles for each position of the turntable. The same displaying method is 
employed ; the poles adjusted by non-linear least-squares fitting using the 
Gauss-Newton algorithm are represented at the bottom.

Figure 4.23 suggests that when two spheres are closely spaced in range, one 
pole-cstimate is generally a spurious one. For 0 = 60°, one pole is associated 
with the scatterer whose range has the smallest variation, another pole is 
associated with the two scatterers at similar range, and the third pole is 
obviously a spurious one.
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Figure 4.23: Variation of the pole-angle estimates as a function of the 
turntable using LLS fit (top) and NLLS fit (bottom)

Figure 4.24 represents the amplitude-coefficients determined by linear 
least-squares (top) and non-linear least-squares fitting (bottom). It shows 
that some coefficients are subject to rapid variations which may be due to 
the compensation for the errors on the pole estimate or for multipath effects 
created by the interactions between scatterers.
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Figure 4.24: Variation of the amplitude-coefficient estimates as a function 
of the scatterers distribution in range using LLS fit (top) and NLLS fit
(bottom)

The effect of a limited bandwidth on the S R R  can be explained as follow. 
When the two scatterers have very similar ranges, the approximation of the 
return using one single pole with a greater amplitude-coefficient is relatively 
accurate. This explains why the model error is relatively small for aspect- 
anglcs 3° and 58° which are approximately the aspect-angles that correspond 
to positions where two scatterers have similar range. However, the model- 
crror rapidly increases with the distance between the poles. This explains 
why the error is much larger for aspect-angles around —2°, 8°, 53° and 63°. 
For the other positions, the distance between scatterers is relatively large 
with regards to the nominal resolution to enable full resolution. In this 
case, the three scatterers are accurately represented by three poles and the 
modcl-crror is relatively small.
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4 .4  L im ita tio n  o f  th e  tech n iq u e

4.4.1 Introduction

In this section, the results from 4.3 are extended and generalised. First, 
the model accuracy as defined by the signal-to-residue ratio is investigated. 
It is shown that the results obtained by using this expression must be con­
sidered carefully. Second, the case of a deficient model is considered and it 
is demonstrated that the approximation of several scatterers by a single one 
could be the principal cause of modelling error.

The analysis provides valuable insight into the method performance. Those 
results are seen as key because they begin to explain the limitation of the 
technique not only for the case of the Boeing 727 presented at the begin­
ning of this chapter but also for the more general case of man-made targets 
composed of a large number of strong scatterers or composed of complex 
scatterers. It is also extremely relevant as it applies to many areas of radar 
including imaging, classification and bandwidth extrapolation. It finally 
opens the way to the classification method called MAUCAZ that is intro­
duced in Chapter 5.

4.4.2 Indicator o f accuracy

First let us recall that we have shown that the signal-to-residue ratio, 
as defined by 4.6, cannot be considered as a robust indicator of physical 
accuracy. This is supported by two points encountered in the study:

• The S R R  generally increases with the model-order estimates because 
of modelling of the noise contained in the noisy reference-signal by 
the extra poles. For this reason, the model-order cannot be routinely 
estimated from the maximum SR R  value.

• For low SNR, the most accurate model is found when the model is 
under-estimated. This is due to the fact that the model contains fewer 
poles representing the noisy components of the corrupted signal. For 
medium SNR the most accurate model is obtained with the interme­
diate model-order, and so on. Here again, the number of scatterers 
cannot be estimated from the maximum S R R  value.

Both points show that the most accurate parameter-estimates cannot al­
ways be determined by minimising the residue. In addition, they show that 
the use of the S R R  for measuring the model accuracy may not provide 
results on which one can rely to decide whether a model can be extrapo­
lated. It follows that models that seem mathematically accurate may not 
be physically accurate and therefore may not be suitable for extrapolation.
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The main problem comes from the fact that the accuracy can only be 
evaluated if the reference-signal is close to the deterministic form of the 
signal backscattered by the target and if it exhibits large enough content of 
information to remove any ambiguity. One could consider that the accuracy 
of the assessment is limited by the accuracy of the scattering-centre model 
that could be extracted from the reference-signal.

To illustrate this fact one can consider two range-profiles of two differ­
ent targets; the first one composed of two close scatterers, the second one 
composed of one scatterer only. At poor resolution, the range-profiles may 
appear to be similar. However, for greater bandwidth the profiles would ap­
peal’ to be very different if the scatterers are resolved. It follows that using 
a low-resolution signal as a reference would not enable a good assessment of 
the accuracy.

In general, the signal that should be used as a reference is not available 
and the signal that is used instead is a noisy signal from which can only 
be extracted the same amount of information as the signal modelled. In 
practice it may often be the same. This limitation is common to most 
fitting problems.

In order to obtain a fair estimation of the model accuracy, one would need 
to compare the model with the reference-signal over a number of samples 
that is larger than the number of samples which was used for modelling the
signal for example.

One obvious solution consists of comparing the extrapolated model with 
a version of the signal defined across a wider band. In practice, the determi­
nation of the model would not make use of all the information collected and 
such a method could be described as a destructive one. Although this would 
not be an issue for simple targets because the amount of information needed 
is relatively small, it would be a serious drawback in the case of extended 
targets with low signal-to-noise ratio as it has been seen that the greater the 
number of samples, the greater the accuracy.

Another solution may be to use a reference signal with high signal-to- 
noise ratio. For targets that are well known and can be experimentally tested 
before the measurement, it may be possible to determine the reference-signal 
independently of the measurement either by simulation or measurement. 
However, the variation between the reference target and the illuminated 
target would be an issue. If the difference is too large, this method would 
not allow' any actual improvements.
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4.4.3 Deficient m odel 

Background

Inspired by the previous experiment, this section considers the case of a 
signal that is approximated by a deficient model. This situation typically 
arises because of a wide range of reasons including:

• limited SNR when the model represents the components of the noise 
rather than the components of the signal,

• limited bandwidth when the model approximates several scatterers by 
a single one due to lack of resolution,

• incorrect estimation of the model-order when the technique used to 
estimate the model-order is inaccurate,

• limited number of samples when the maximum model-order allowed 
by the matrix width is not large enough,

• sources of interference when the presence of interference may prevent 
the technique extracting some of the scattering-centres, and

• complex scattering mechanisms when a large number of scattering- 
centres are employed to describe the complex contributions of a single 
scatterer.

Pole estimation and fitting technique

It is relatively well known that the performance of super-resolution al­
gorithms is limited by the bandwidth. Even with such algorithms, two 
scatterers closely spaced in range may not be resolved if the bandwidth is 
not large enough. In this case, limited bandwidth may result in the selection 
of two poles for which the first is an approximation of the two true poles 
and the second is therefore the next pole whose magnitude is the closest to 
one, that is a spurious pole.

When the noise-power is small, the determination of the amplitude co­
efficients by fitting techniques ensures that the effect of the spurious poles 
can be neglected. Nevertheless, this may not be the case when the noise- 
powrer is high. Moreover, the effect of a deficient model on the model-error 
may be significant if the scatterers are not close enough to be accurately 
approximated by one unique pole.
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The following experiment shows that linear and non-linear least-squares 
fits may cause very different model-errors for the very reason that when two 
scatterers are not closely spaced enough to be properly approximated by 
one single scatterer, the pole-estimate depends upon the fitting technique
employed.

For this, we consider figure 4.25 which represents the real range-profile 
(solid fine) and the model-based range-profile (dashed line) for the signal 
obtained at aspect-angle 0 =  45° of the turntable. Here, the model-order is 
set to M  = 1 instead of M  = 3. The models are obtained directly by linear 
least-squares fitting in the first case (top) and after adjustment by non­
linear least-squares fitting using the Gauss-Newton algorithm in the second 
one (bottom).
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Figure 4.25: Influence of the parameter-adjustment stage on the range- 
profile of a deficient model

Several observations can be made on this experiment:

• the pole estimated directly by the root-MUSIC algorithm could be 
described as an approximation of the two closely spaced scatterers. 
The pole-angle can be approximated by the mean-value of their angles.

• the model undergoes significant changes when the parameters are ad­
justed by the non-linear least-squares fitting technique. The pole can­
not be seen as an approximation of two closely spaced poles but as a 
very accurate reproduction of one of the scatterers instead. It appears 
from figure 4.22 that the accurate estimation of a single scatterer gen­
erates a smaller model-error than the approximation of two scatterers.

When one pole is used to model two closely spaced scatterers, the pole 
estimate computed with the linear least-squares fitting technique has a rela­
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tively large magnitude. The effect on the range-profile is a wider peak which 
overlaps with the two true peaks obtained from the signal. This is a key 
clement in the understanding of the problem of stability.

In order to verify that this case is representative of the general phe­
nomenon, a similar experiment has been performed with two simulated 
point-scatterers. The signal used is computed using expression 4.16.

s(n) = 1 +  ei2ĵ rLn (4.16)

where m — 0...12 and the total number of samples N  =  128.

While the first scatterer is maintained at a given position, the second 
one is moved to 13 different positions linearly shifted from 0 to 3 Fourier- 
cells. This range-interval corresponds to a difference in pole-angle of 0 to 
0.147 rad. For each position of the scatterers, 50 simulations have been 
carried out with different noise components. The results displayed in figures 
4.26 and 4.27 represent the mean-value of the variable studied for three 
different signal-to-noise ratios: S N R  =  10 dB (solid line), 15 dB (dashed 
line) and 20 dB (dotted line).

Figure 4.26 represents the average spread in angle between the pole esti­
mate and the closest of the two simulated poles. The results show that the 
angle of the pole estimated by non-linear least-squares fitting technique is 
closer to that of a true pole. For example, for SN R  = 20 dB, the spread is 
less than 0.017 rad in the case of LLS whereas it reaches 0.046 rad in the 
case of the NLLS.
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Figure 4.26: Influence of the separation between scatterers on the estimation 
of the pole-angle in the case of a deficient model



Modelling Man-Made Targets for Band-Extrapolation Techniques 146

When linear least-squaxes is used, the spread is about half the value of the 
separation between simulated poles. That supports the idea that the peak 
is located half-way between the two true peaks. This is only true for a small 
separation, typically when the poles are separated by less than two Fourier- 
cells. Beyond this value, the poles are resolved and the peak associated with 
the pole-estimate becomes closer to one of the true poles. For a separation 
equal to three Fourier-cells, the pole-angle estimates obtained using linear 
and non-linear least-squares fitting are relatively similar and very close to 
one of the correct values.

The same analysis has been carried out on the pole magnitude parameter. 
Figure 4.26 represents the values of pole-magnitude obtained as a function 
of the separation between the scatterers.
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Figure 4.27: Influence of the separation between scatterers on the estimation 
of the pole-magnitude in the case of a deficient model

These results show that when the non-linear least-squares fitting tech­
nique is used, the pole-magnitude is relatively close to one. As a matter of 
fact, it is bounded by 0.9743 and 1.0052 in this case. When linear least- 
squares is employed, it reaches 1.0925. Although the pole magnitude is very 
close to one when the separation represents two Fourier-cells, the greatest 
error is found when the separation is just less than three Fourier-cells. Such 
a large pole-magnitude provides to the estimated peak of the range profile 
the necessary width to overlap the two true peaks.

Lim itation

To sumarise the above, model-parameter estimates vary depending on 
whether they are obtained directly or after adjustment using non-linear 
least-squares fitting. It was shown that the model may be highly inaccurate
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when two scatterers are closely spaced. Both figures 4.26 and 4.27 confirm 
that the difference of behaviour seen in figure 4.25 is statistically consistent.

For LLS, the difference between the pole-angle estimates is small when 
the separation between the two scatterers is either very small or very large, 
typically greater than two Fourier-cells. Similarly, the pole magnitude esti­
mate is found to be greater than one when the separation between the two 
scatterers is between two and three Fourier-cells.

For NLLS, the solution can be considered as physically more accurate in 
the sense that the results model one of the scatterers relatively accurately. 
The pole-magnitude is relatively close to one in this case. However, the 
experience shows that this is not a general rule as non-linear least-squares 
fitting may degrade the values of the parameter-estimates for modelling 
components of the noise.

To simplify, one may consider in this example that the direct estimation of 
the scattering-centres is approximate and that the adjustment by non-linear 
least-squares fitting may conduct to a more accurate but obviously deficient 
representation of the signal.

Influence of the fitting technique on the stability of deficient model

It has been demonstrated in this chapter that the source of the greatest 
model-error is an over-estimation of the pole-magnitude. In this section, it 
was shown that this particular problem occurs when models approximate 
two closely spaced scatterers with a single scattering-centre. Although this 
point is not stressed in the literature, it is perceived here as a critical one, 
especially because this problem potentially concerns all complex man-made 
targets.

For accurate bandwidth extrapolation, the accuracy, the completeness 
and the stability of the model are necessary conditions. However, there are 
various factors which may lead to situations where the model cannot be 
accurately extrapolated. First, whereas a given model may be considered 
as accurate because it closely matches the signal, it may not be stable due 
to proximity of two scatterers. Second, one should also consider that a 
model whose order is sufficiently large may approximate not only the target 
but also the noise or interference that is contained in the reference-signal. 
Third, the scattering-centre model is only an approximation of scattering 
mechanisms that are probably far more complicated. Because of this, the 
determination of the model-parameters by optimising a corrupted fitting- 
problem cannot ensure that the solution enables an accurate extrapolation 
of the model across a wider bandwidth.
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Exam ple

To complete this analysis, the initial example using a signal backscat- 
tercred by a Boeing 727 and presented at the beginning of this chapter is 
revisited. The signal-to-residue ratio has been computed for various models 
as a function of the model-order between M  = 1 and M  =  23.

Figure 4.28 presents the results by three pairs of lines. Each couple rep­
resents the S R R  obtained with two models; one determined using linear 
least-squares (solid line), the second by non-linear least-squares (dashed 
line) fitting techniques. The first pair of models are determined by direct 
reconstruction of the 128 sample-signal. The second pair of models are de­
termined by interpolating the model obtained from the first and the last 48 
samples of the signal. The third pair of models are generated by extrapolat­
ing the model determined from the first 96 samples of the signal. For each 
pair of models, the S R R  is finally computed across 128 consecutive samples.
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Figure 4.28: SRR as a function of the model-order for direct reconstruction 
(N  = N ' — 128 samples), interpolation (N  = 2 x 48 to N ' = 128 samples) 
and extrapolation (N  — 96 to N ' — 128 samples)

As shown in this chapter, the S R R  globally increases with the model-order 
and that there is no sharp transition and therefore no element that can be 
used to estimate the model-order. The figure shows that maximum accuracy 
is obtained by reconstructing the model using NLLS. The reconstruction by 
LLS and the interpolation using NLLS are almost as accurate. This may be 
due to the fact that the missing band only represents 25% of the total band. 
The extrapolated models are both poorly accurate as the S R R  is typically 
below 0 dB.
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The thesis presented in this chapter suggests that the principal source of 
error comes from the model instability which is linked to the pole-magnitude. 
In order to illustrate our analysis, the model computed from the first 96 
samples for M  = 16 has been taken as an example. Figure 4.29 represents 
the selected poles computed by applying the modelling technique to this 
signal.
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Figure 4.29: Range-profile extrapolation - selected poles - N  =  96 samples

On the figure, the sixteen roots selected appear to follow the thesis for­
mulated in this chapter. Most of the poles selected have a magnitude greater 
than one. The pair of them that sire circled in the figure have very high mag­
nitude, which causes the instability of the model.

Figure 4.30 represents the range-profile of the high-resolution signal and 
the extrapolated model directly obtained by LLS fit. Following the zero- 
padding operation, the poles circled are associated with peaks at range-index 
67 and 1006 on the figure.
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Figure 4.30: Range-profile extrapolation - N  = 96 to N ' = 128 samples
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The figure confirms that the approximation of several components closely 
spaced in range by one single pole leads to unstable model that cannot be 
used to extrapolate the signal. . It is not clear whether this is due to the 
closeness of several scatterers in range, to the complexity of the scatterers or 
to the noise but the following clearly shows that it is related to the deficiency 
of the model.
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4 .5  C o n clu sio n

4.5.1 Summary

In this chapter, it was shown that the modelling technique does not always 
perform with great accuracy. Using a signal backscattered by a Boeing 727 
as an example, it was shown that when extrapolating the model considered 
as very accurate, the predicted samples are far from matching the signal. 
This example is used as the basis for challenging the idea that the modelling 
technique can be applied to all kinds of man-made targets.

For supporting this position, the model and the modelling technique have 
been studied extensively. Both simulated and measured signals have been 
employed in order to determine the sensitivity to their parameters and the 
limit of utilisation. The parameters investigated include the signal-to-noise 
ratio, the estimated model-order, the dimension of the matrix, the number 
of samples, the frequency-step, the bandwidth and the separation between 
scatterers in range.

Both theoretical and empirical analysis agree with the results found in 
the literature including the importance of a large signal-to-noise ratio and 
the recommended value for the matrix width. They have also contributed 
to understanding the effect of each parameter in the determination of the 
model parameters. Moreover, it was also shown that the extrapolation is 
very sensitive to the pole magnitude and that this parameter is estimated 
with varying accuracy depending on factors such as the target complexity 
with respect to the signal.

When dealing with extended and complex targets like aircraft, it is very 
likely that ideal conditions are not met. Therefore, it is important to con­
sider the estimation of deficient models as it seems to be one of the principal 
sources of large error. The results of this section can be used as a guideline 
for applications where man-made targets are illuminated. However, amongst 
all them, the results that are most important to the scope of this thesis are 
summarised in the following.

4.5.2 Key results 

Model accuracy

It has been shown that a model considered as mathematically accurate 
may be physically inaccurate. Measuring the accuracy of a model is only 
relevant when the reference model is close to the deterministic form of the 
signal and when the amount of information that can be extracted from the 
reference-signal is sufficient. In practice, the reference-signal may often be
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the signal modelled, that is a narrow-band signal backscattered by a moving 
target in motion with risk of interference and low signal-to noise ratio. In 
this ease, the signal-to-residue ratio cannot be considered as a good indicator 
of model accuracy simply because the reference-signal is of poor quality.

Furthermore, it has been demonstrated that assessing the model accuracy 
is a complicated task that cannot be based on the value of the residue only. 
The accuracy has to be assessed with respect to the application of interest. 
In practice, the decomposition of the signal into a sum of elementary signals 
is used for data compression but also for data extrapolation, target imag­
ing and target classification. For data-compression, one may consider that 
the performance can be assessed through the ability to generate a model 
in which samples are as close as possible to the signal samples. It is also 
reasonable to assume that, for other applications, the performance depends 
upon the ability to decompose a signal into a sum of physically accurate ele­
ments, that is scattering-centres whose parameters are close to the expected 
parameters. In this case, optimising the distance between the model and 
signal is not a primary goal but only a chosen way for both estimating the 
model parameters and assessing the accuracy of the resulting model. For 
this reason, it is generally not suitable to rely on the signal-to-residue ratio 
for estimating whether a model is accurate and can be extrapolated. More­
over, when this is possible, it would be perhaps more suitable to evaluate 
the accuracy of the model throughout the distance between the parameter- 
cstimates and their expected values. This is the approach chosen for the 
classification technique presented in the next chapter.

Limitations of the technique

Following the results of the experiments described in this chapter, the 
technique appears to be limited by several factors including the number of 
samples, the bandwidth, the interference, the matrix dimensions, the com­
plexity and motion of the target and also by other factors such as noise and 
interference. A thorough study of the model itself and of the modelling tech­
nique have enabled the identification of what is seen here as the principal 
cause of error. When a single scatterer is used to model two scattering- 
centres, the solution obtained by the modified root-MUSIC algorithm and 
linear least-squares fitting is a pole which can be described as a approxima­
tion of both poles. On the range-profile, the estimated pole appears as a 
peak located between the two expected peaks and it is much wider than the 
peaks, which creates a partial overlapping.

The analysis of the model itself in the first part of this chapter shows that 
the solution obtained with a deficient model would be responsible for very 
large errors. First, the pole-angle estimate is actually far from both poles
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and, as a matter of fact, we know that the pole-angle affects the results 
of the extrapolation. Second, and more critically, the large peak which 
is characteristic of a deficient model is mathematically caused by a pole- 
magnitude greater than the magnitude of both poles, and typically greater 
than one. This shows that, for an extended target with a large number of 
scatterers or with a low signal-to-noise ratio, the pole-magnitude estimates is 
likely to be incorrectly estimated. More critically, it has also been stressed 
that, for values greater than one, the larger the magnitude, the greater 
the instability of the model. This particular problem could be one of the 
principal causes of the error when modelling and extrapolating the signal 
backscattered by a Boeing 727 and more generally by real extended targets 
such as aircraft in non-ideal conditions.

It has been shown that the determination of the model may be improved 
by using a non-linear least-squares fitting technique. In this case, the pole 
estimate would be very close to one of the two poles. This result is a par­
tial but physically accurate representation of the initial signal. Because 
the model is computed by non-linear least-squares, the adjustment of the 
parameters may often lead to a very erroneous solution. This varies upon 
the initial estimation by linear least-squares. The main drawback is that 
this technique can only represent some of the scatterers. When the missing 
scatterers encompass a large part of the signal, the extrapolation of such 
deficient model is obviously inaccurate.

The results from this study show that the current technique may be able 
to model the signals scatterered by an extended target with good accuracy, 
providing the model-order, the signal-to-noise ratio, the bandwidth and the 
number of samples, are large enough. However, it is expected that for most 
real extended or complex targets, the diversity of the scattering mechanisms 
that are responsible for the received signal cannot be extracted due to the 
poor quality of the received signal. When the signal is modelled, a large 
model-order allows the signal to be accurately reproduced. This is a simple 
mathematical relation. However, the model is not sophisticated and not 
accurate enough to be extrapolated correctly. This poses serious threats on 
the capability to enhance the bandwidth as it has been shown that extrap­
olation is very sensitive to pole magnitude which is the model-parameter 
approximated and often incorrectly estimated. Based on this analysis, it is 
proposed to rely on the information that can be correctly estimated or the 
information that does not need to be correctly estimated to enhance the 
performance of applications such as target classification.



Chapter 5

TARGET 
CLASSIFICATION

5.1 In tro d u c tio n

This chapter is concerned with radar non-cooperative target recognition 
and target classification. The ability of a radar to perform these tasks is an 
important requirement for traffic management and security purposes. They 
axe typically achieved by means of a classifier whose role is to associate an 
unknown target with some others based on similarities in their electromag­
netic signatures. The principle of target recognition relies on the fact that 
the deterministic parts of two radar-signals are similar when the conditions 
of measurements and the targets are similar. When designing a classifier, 
it is expected that these conditions and the targets themselves may not be 
exactly identical. For this reason, it is generally required that the classifier 
relies on information that makes it more sensitive to the variations of target 
structure than to other factors such as small variations of aspect-angle.

Amongst all types of signatures that can be employed for target classifica­
tion, one-dimensional range profiles have been extensively used during the 
last decades [19], [30], [33], [55], [56]. Compared to more sophisticated types 
of signatures, they can be seen as a low-cost solution mainly due to the fact 
that a range-profile can be obtained with a single radar. They are also rel­
atively immune to motion-induced errors due to the limited time on target. 
This makes it an attractive solution for non-cooperative target recognition. 
In general, the signal at the receiver is pre-processed so that the comparison 
is performed on a reduced dataset or features of spectra. Thus, the task 
necessarilly involves the creation of feature-vectors that contain a limited 
number of attributes derived from the data. The vectors capture the infor­
mation that enables target differentiation. It follows that their number is a 
trade-off between the dimension and the amount of information that unam­

154
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biguously describes the target. Thus, ideally, the features are composed by 
independent discriminating attributes, which ensure no redundancy.

Once the feature-vectors are formed, they are compared and arranged into 
classes. The feature-vectors that belong to one class are all different from 
each other but relatively similar compared to those of other classes. In that 
sense, classification can be seen as the separation of data based on bound­
aries defined in the so-called training stage. Common examples of classifiers 
include correlation-filters, K-nearest-neighbours and neural networks. These 
techniques have been the subject of extensive studies and continue to at­
tract the interest of many scientists in various areas. For target recognition, 
the main challenge consists of designing a classifier that performs a high 
enough rate of correct recognition at low-cost and with an acceptable rnis- 
classifieation rate. More generally, the cost may be thought of being caused 
by the parameters of the illumination (e.g. waveform type, aspect-angle), 
the capability to remove the undesired contributions (e.g. target motion, 
noise, clutter), the processing time or the creation of a library of templates.

This chapter introduces the use of the scattering-centre model’s parame­
ters for target classification. First, basic classification theory is presented. 
The conventional technique based on correlation of range-profiles is illus­
trated with an example involving real radar-signals measured on scale-model 
aircraft. Second, the radar signals are replaced by their corresponding 
scattering-centre models. Classification results show that the performance 
is equivalent, which confirms the capability of a scattering-centre model to 
reproduce the discriminating attributes of a range-profile. In order to en­
hance the recognition of similar-looking targets, a third experiment involv­
ing bandwidth extrapolation is carried out but the performance obtained is 
poor. These results defend the hypothesis which states that the estimated 
scattering-centre models are generally deficient, often physically incorrect 
and therefore cannot be sufficiently accurately extrapolated [8] [9]. As an 
alternative to the existing techniques, a novel type of classifier has been 
designed based on the results of investigations presented in the previous 
chapter.

The eventual technique for target recognition proposed in this chapter re­
lies on a novel feature-based classifier which operates directly in the z-plane. 
Instead of comparing the signals directly, this technique processes the infor­
mation related to the poles of the scattering-centre model. This information 
is extracted from a complex-valued radar signal and used to form feature- 
vectors that are stored in a library. A similar operation is performed on 
the test-signal. The classifier attributes a class to the target by comparing 
these feature-vectors. Similar techniques have been presented by Xun in
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1997 [54] and by Hussain in 2001 in [20]. In the first case, the M  strongest 
scatterers were used while all the poles were used in the second one. The 
originality of the algorithm presented here lies in the fact that the poles 
compared are those that maximise the likelihood function. It is a matching 
algorithm using a clustering approach in the z-plane (MAUCAZ). After ap­
plying the different classifiers to the same radar data, the results reveal that 
MAUCAZ has a good overall performance and, more importantly, performs 
better than traditional correlation-based techniques for a sufficiently high 
signal-to-noise ratio.
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5.2  P r in c ip le  o f  c la ssifica tio n

5.2.1 Basics

Classification is a typical processing stage for non-cooperative target recog­
nition. It consists of dividing data into categories or classes. For recognition, 
classifiers operate on back-scatterered signals which vary with the type of 
target illuminated and the aspect-angle of the target during the measure­
ment. A classifier is trained with radar signals that can be labelled using 
these parameters. In practice, a classifier attributes a class to signals which 
share common properties. In radar, the reflectivity functions retrieved from 
the backscattered signals are commonly used to classify the targets. The 
methods used are said to achieve a supervised classification because they 
rely on pre-defined categories. They are employed in many applications in­
cluding non-cooperative aircraft recognition since they allow classification 
of targets to be carried out remotely.

A complete recognition system generally consists of four stages: data ac­
quisition, pre-processing, feature-extraction and classification. This frame­
work is represented by figure 5.1.

Library

RADAR Pre- Feature
System

— »
Processing

— »
Extractor

------o Classifier

Figure 5.1: Principle of target classification

The acquisition of data is carried out by a radar-system measuring the 
signal returned by an airborne target. The signal collected at the receiver 
contains the information related to the target but also related to additional 
elements such as clutter and noise. A pre-processing stage, dedicated to 
preparation of the data for feature-extraction, can thus be employed to elim­
inate some of these undesired contributions. The signal supposedly cleaned 
from external contributions is then formatted to correspond to the standard 
required for feature-extraction. The latter stage consists of selecting the 
data that are appropriate for classification. A feature-vector can be formed 
by observable attributes, such as peak-amplitude, peak-width or distance 
between peaks. Feature-vectors can also be formed using the envelope of a 
range-profile. In this case, one refers to a model-based classifier. Finally, the 
classifier itself is designed using training sets of exemplar signals. For air­
craft recognition, it is common to build a library of measured range-profiles. 
Recent works concern the design of a classifier using aircraft range-profiles 
simulated by electromagnetic prediction-codes [16] [55], We now consider 
these aspects of classification in more detail.
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5.2.2 Correlation filter

Correlation filters have been widely used for comparing aircraft signatures 
[19],[27], [28]. Essentially, the cross-correlation of two radar signals is used 
to quantify the degree of similarity between the reflectivity functions of two 
targets; the maximum value, one, being obtained for two identical range- 
profiles.

Let us consider a sampled signal, s(n), composed by a complex-valued
radar-signal defined for N  values of the frequency-index, n. The range-
profile. S. defined for R  values of the range-index, r, is obtained by com­
puting the DFT of s and squaring the magnitude of the result.

The value of the discrete cross-correlation between the real-valued vectors 
S  and Y  corresponding to the range-profiles of s and y is given by Ro in 5.1.

iJo =  | .S * r = X ; S ( r ) .y ( r )  (5.1)
r=0

Due to the properties of the inner product, any variation of the condi­
tions of measurement may affect the performance of the classifier. This is 
especially true when the target motion causes range-cell migration (RCM).

5.2.3 Target rotation

Let us consider an aircraft placed on a turntable facing a monostatic1 
radar. A rotation of the turntable by the angle AO causes a rotation of 
the target and simultaneously a variation of range of the scatterers. Two 
scatterers falling within the same range-bin could move in opposite direction 
when the table rotates. Beyond a given angle, these scatterers would mi­
grate to different neighbouring range-bins. This effect is known as rotational 
range-cell migration (RRCM) [30]. The condition on AO to avoid RRCM is 
given by 5.2.

A# < ~  (5.2)

where A r  is the range resolution and D  is the target dimension in m.

Let us consider a radar with a nominal range-resolution, A r = 2 m. 
The maximum rotation corresponding to a Rafale aircraft, whose length is 
D = 15.3 m, is given by AOmox — 0.13 rad. In this case, the classification 
would typically require templates measured for aspect-angles separated by 
no more than 5°. Considering the symmetrical structure of the target, 36 
signatures would be required to achieve recognition of targets on a turntable.

1 radar where the receiver at the same location as the transmitter
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Tlie conditions on A0  have been experimentally examined by illuminating 
a model of a Rafale aircraft at scale 1:48 with a 3.2 GHz waveform at 
ENSIETA [38]. A library of range-profiles, Yi, was formed with high-SNR 
measurements obtained at different aspect-angles, A test-profile, £ 9 7 1  

obtained by adding noise to the template obtained for #971 = 5° is compared 
with the templates in library.

Figure 5.2 represents the correlogram, that is the set of coefficients of 
cross-correlation between this profile and the template range-profiles ob­
tained at aspect-angles 095O =  -5° and 0 n 4O = 95°. It shows that the 
maximum correlation is obtained with the template corresponding to the 
test-signal as expected. It also shows that the results of the cross-correlation 
obtained with measurements carried out at similar aspect-angles axe close to 
one. The template-profiles present a high correlation with the test-profiles 
for indices between 955 and 975, that is for an angular interval, Ad = 5° in 
fine with expectation.

' 960 980 1000 1020 1040 1060 1080 1100 1120 1140
aspect-angle index

Figure 5.2: Correlogram - template profile #971 =  5°, test-profiles #950  =  —5° 
to 0 n 4o = 95°, A0 =  5° - scale-model Rafale

Although the variability of range-profiles with aspect-angle could be used 
for classification, it is seen as a drawback due to the cost of collecting and 
processing such a large library. This characteristic may be taken into account 
by introducing the index m  for differentiating the range-profiles obtained 
at different aspect-angles. The modified expression of the cross-correlation 
function is given in 5.3.

0.6

0.55

0.5

r = 0
(5.3)
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5.2.4 Target translation

Target classification is often achieved by comparing the reflectivity of dif­
ferent sections of the targets of interest. However, these signatures seen as 
the projections of the target reflectivity functions along the fine of sight, are 
sensitive to target translation. High-resolution range-profiles, which pro­
vides a high level of detail, especially suffer from the so-called translational 
range-cell migration (TRCM). The latter occurs when the translation of a 
scatterer results in a shift of its reflectivity function in range by more than 
the nominal range-resolution.

The effect of TRCM is illustrated by the following example which in­
volves a single corner-reflector illuminated by a 1 Gf/z-waveform at the 
experimental facility STATIC (CSIR) described in Chapter 2. Figure 5.3 
represents five range-profiles obtained by Fourier transforming the complex­
valued radar data measured for five different locations of the target: 1 m, 
2 m , 3 m , 4 m  and 5 m  from a reference range. It shows that the translation 
of the target in range yields the translation of target signature in range.

1 ---------------- 1-----------------1-----------------1---------------- 1---------------- 1---------------- r

Figure 5.3: Range-profiles of a corner-reflector located at various ranges - 
the range-windows represented (27 m  to 34 m) are aligned



Z-plmie Classification 161

Regarding classification, this example shows that different signatures of 
the same target may not be aligned despite being generated from mutually- 
cohcrent measurements. This occurs when the target-range changes between 
measurements. It obviously makes pointless the direct comparison of mea­
surements of moving targets such as aircraft. In addition, a similar effect 
to TRCM affects range-profiles obtained with radar that are not mutually 
coherent. This happens when the reference-phase varies from one measure­
ment to another.

Several methods exist for minimizing the effect of TRCM on the classifi­
cation [30], [55].

• Relative alignment: it is common to achieve alignment by translating 
successive profiles with respect to the previous one. This technique, 
known as relative alignment, is efficient but has a severe drawback. 
If one profile is misaligned, the error propagates through the chain of 
profiles.

• Absolute-alignment: one technique consists of using absolute criteria 
such as the entropy of an energy vector computed by using translated 
versions of the range-profiles.

• Translation invariant features: this technique consists of selecting fea­
tures which are not dependent upon the translation. However finding 
translation-invariant features which allow high performance is a diffi­
cult problem.

• Translation invariant classification: In [16], the author suggests using 
the Sliding Euclidian Distance (SED) for finding the distance between 
profiles after alignment. This metric is defined by 5.4 as the minimum 
Euclidian distance between two profiles S  and Ym, over all possible 
cyclic translations:

SED (S, Ym) = |T«(S) -  Ym|2 (5.4)

for q = 0 , . . . ,  Q — 1 and where Q is the total number of range bins 
in each profile. The operator T q(m) shifts its argument vector by q 
elements cyclically to the left. The maximum correlation is obtained 
for q* as given by 5.5.

q* = argmin{SED{q)) (5.5)
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5 .3  C o rre la tio n -b a sed  c lassifica tion

5.3.1 Signal-based approach

This section presents a basic translation-invariant classification technique 
for achieving alignment and comparison of range profiles using a correlation 
filter. The system diagram is represented in figure 5.4.

Unknown target: Templates in library:
s(n) yTl«(n)

S(r)

Translation

Range-Profile
Determination

Range-Profile
Determination

Correlation
Filter

{T,m}* = argmax [C(S(r), YT,m(r-<|*.AR))]

Figure 5.4: Structure of a correlation-based classifier using I/Q  radar signals

The first stages compute the range-profiles, S  and lr,m> of the test- 
signals s and the templates yr,m- For each template, the subscript designates 
the target index and the aspect-angle index, respectively. The translation 
of the profiles is achieved by the operator T q{*) which sequentially shifts 
the templates in the range. Then the computation of the circular cross­
correlation function, R(q), in 5.6, is achieved for each template.

Rmiq) = S *  T q(YT,m) (7 =  0 , 1 , . . . Q - 1  (5.6)

For a given profile, the maximum value of Q is bounded by the periodicity 
of R(q) imposed by the periodicity of the operator that is needed to simulate 
phase wrapping. Alignment is achieved for the index q* corresponding to 
the peak of R{q). The peak-values, C(T,m), obtained for various types of 
aircraft and various aspect-angles are then reported in an array. Once the 
profiles are aligned, classification is achieved by identifying the index of the 
template corresponding to the maximum value of C(T,m).
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5.3.2 M odel-based approach

In this section, the radar signals, s and y, are replaced by their models, 
s and y, in order to benefit from noise removal and resolution enhancement 
allowed by the super-resolution methods. First, the scattering-centre pa­
rameters of the signal in the library, yr,m> are computed using the same 
parameters L and P  for both. The corresponding models are reconstructed 
using the technique presented in the previous chapters. Here the bandwidth 
can be artificially enlarged by increasing the number of frequency indices 
used. Then the same process is applied to the measured signal. Finally, the 
profiles are aligned and compared by cross-correlation.

Figure 5.5 represents the system diagram of the model-based classification 
technique. It also relies on cross-correlation of test- profiles and template- 
profiles but uses high-resolution range profiles obtained by determining the
scattering-centre models.

Unknown target: Templates in library:
s(n) 7Wn>

L , P

s(n)

S(r>

Range-Proffle
Determination

Scattering Model 
Determination

Range-Prof lie 
Determination

{Tan}* = argmax: fC(S(r), Yij«(r-q*AR))]

Figure 5.5: Structure of a classifier using scattering-centre models.

Depending on the accuracy of the model, the extrapolation of the original 
radar signals, s and yr,m, is expected to create improved information that 
results in classification performance enhancement.
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5.3.3 E xam ple  

Principle

In this example, a virtually noise-free profile has been cross-correlated 
with 1337 test-profiles obtained by illuminating seven targets under various 
aspect-angles. The indices are as follow: (1-191) correspond to target Ti, 
(192-382) correspond to target T2 , and so on. For each target, the indices 
are sorted by increasing aspect-angles where 0 is increased from —5° to 95°.

The tcst-measurements are deliberately corrupted by an AWGN with 
SN R  = 20 d B .  The template-profile chosen is again that of a scale-model 
Rafale aircraft (T6 ) at an aspect-angle 0 =  5° The most similar conditions 
are those of measurements 970 and 972 obtained with the same target and 
at aspect-angles $ 9 7 0  =  4.5° and #972  =  5.5°, respectively.

The template profile has been compared with the 1337 test-profiles. The 
following figures present the coefficients of correlation obtained using the 
two techniques presented earlier. The x-axis corresponds to the index of 
the test-profiles. The conditions of this experiment are fully detailed in the
classification experiment.

Results

• Regular correlation

Figure 5.6 shows the coefficients of correlation between the various profiles 
mentioned above. The results are discussed below.

1

0,5 200 400 600 800 1000 1200
te m p la te  index

Figure 5.6: Correlogram - signal-based approach, S N R  = 20 d B
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• Model-based correlation

Figure 5.7 represents the same graph but using the model-based ap­
proach described by the diagram 5.5. The complex-valued signals are re­
placed by their corresponding scattering-centre models constructed using 
the root-MUSIC algorithm and Linear Least Squares fitting. The parame­
ters are N  — 64 samples, matrix width L =  23, and model-order P =  6. It 
is assumed that the information contained in 6 poles is sufficient to discrim­
inate between targets.

200 400 600 800 1000 1200
template index

Figure 5.7: Correlogram - model-based approach, SN R  =  20 dB 

Discussion

For both methods, the highest correlation is obtained for measurements 
of target (T6) at neighbouring aspect-angles. As a matter of fact, the two 
graphs, 5.6 and 5.7, are very similar in shape. In that sense, the model-based 
classifier may not perform differently than signal-based ones. Nevertheless, 
considering that this technique performs similarly with a scattering-centre 
model of order 6 only, using a model is clearly an interesting choice for ap­
plications where a limited dataset is required. However, the technique does 
not fully exploit data reduction since signal reconstruction is still needed be­
fore classification. It is believed that a technique that could achieve similar 
performance directly from the scattering-centre parameters would be more 
valuable in terms of applications. In addition, the sensitivity of the model to 
errors on its parameters leads us to exploring a feature-based classification 
technique where the features axe determined in the z-plane.
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5 .4  Z -d om ain  c la ssifica tion

5.4.1 Introduction

In this section, the principal results established previously are exploited 
for designing a feature-based classifier that uses the parameters of the scattering- 
centre model. The principal motivation for adopting a feature-based ap­
proach comes from the fact that model-based classifiers generally operate 
on large datasets which are not intuitively meaningful. On the contrary, ex­
ploiting features that are visibly related to the target structure makes easier 
the development of algorithms from visual observations and opens the way 
for target-classification from schematics. Besides, model-based classifiers 
are often hypersensitive, so that, for instance, speckle fluctuations caused 
by variations of aspect-angles of the order of one degree may be responsible 
for poor performance.

It is expected that a classifier relying on the model-parameters would be 
less sensitive to these variations. However, taking all the estimated parame­
ters into account may not lead to a robust solution in the light of the results 
presented earlier. Depending on the accuracy of the model-estimates em­
ployed, it is expected that classification performance will vary considerably. 
The technique proposed here is motivated by three points. First, a more 
robust classifier could be created by giving a smaller importance to the con­
tribution of the most sensitive model-parameters. Second, it is expected 
that using reduced but more accurate data provides enough information to 
achieve better classification. Third, the fact that the set of potential targets 
is limited intuitively calls for the introduction of a priori information in the 
modelling process.

Classification techniques rely on the idea that different measurements 
share common features if the subjects of measurements are similar. For 
radar-signals, such similarities exist when targets and aspect-angles are sim­
ilar. As a matter of fact, they are actually exploited by correlation based- 
techniques. In this section, another type of technique is chosen. It consists 
of extracting from the signal the features that reveal the similarities between 
the targets compared. In particular, it is proposed to rely on information 
presented in the scattering-centre model. Mathematically, the scattering- 
centre model is a decomposition of the signal at the receiver into a sum of 
complex exponentials. Physically, it derives from the high-frequency approx­
imation which stipulates that the radar signal back-scatterered by a target 
can be approximated as a coherent sum of scaled and delayed versions of 
the transmitted signal. The fact that complex exponentials can be related 
to an individual scatterer is exploited for classification purposes.
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Earlier in this thesis, it was shown that the modelling techniques depend 
upon parameters related to the radar, number of samples and bandwidth, to 
the target structure, mainly the number, the distribution, and the physical 
properties of the scatterers, and to external factors such as the noise. This 
dependence has reliance on the modelling performance which can be affected 
by the differences that exist between the theoretical problem and the actual 
one. In the first case, the signal is composed by the coherent sum of ele­
mentary signals from a limited number of non-interacting point-scatterers 
in additive white Gaussian noise. In the second case, the signal may be gen­
erated by interacting scatterers exhibiting complex scattering mechanisms, 
multipath-phenomenon and possible clutter.

The poor capability of the technique to accurately extrapolate the radar 
signal which has been observed with complex targets is apparently due to 
errors that propagate through the different stages of the modelling process. 
In the end, the estimated model typically suffers from significant errors that 
are accentuated by the ill-posed nature of the least-squares fitting stage. 
For this reason, it is preferred not to rely on the fitting technique for air­
craft classification. That implies discarding the amplitude-coefficients as a 
source of information. This decision has a direct consequence on the design 
of a classifier since it also implies that the feature-vectors must contain a 
sufficient amount of information needed for the classification.

The classification technique introduced in this chapter is based on the 
idea that the poles of the model parameters are less sensitive to noise and 
small variation of aspect-angles than the reconstructed model. It reveals 
that radar-measurements involving similar targets and similar perspectives 
should present similarities that can be observed in the pattern of poles ex­
pressed in the z-plane. As this is a key requirement for classification, it is 
believed that a signal could be classified by comparing its pattern of poles 
with other pole template-patterns in library. Physically each measurement 
is classified based on the probability that the target shares a common ar­
rangement of scatterers in range with other targets in library.

This section presents the principle of classification of targets based on the 
pattern of poles. It refers to the conventional stages including pre-processing, 
feature-selection, and classification. Several issues that are specific to this 
comparative approach are addressed in this chapter. They include the way 
to measure the similarity between patterns of poles, the features to use for 
the comparison, the differentiation between true poles and extraneous poles, 
whether the latter are due to the noise, to the technique, or even to extra- 
scatterers on the target. Finally, the problem of alignment, which is common 
to most classifiers is taken into account.
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5.4.2 Principle

In order to present the principle of this classifier, let us start by consider­
ing two true poles, Zk and z'm on the test-pattern and the template-pattern, 
respectively. Assuming that the patterns are aligned, the pole-angles corre­
spond to the same absolute time-delay. One can thus estimate that these 
poles are associated with two scatterers that induce the same time-delay if 
the interpolc-distance, d(zk',z'm) is null.

By extension, if two patterns of K  true poles can be perfectly overlaid, one 
may consider that K  scatterers of the test target induce the same time-delays 
as K  scatterers of the template target. Classification consists of associating 
the measurements that reveal at least K  scatterers which induce the same 
time-delays. Statistically, the probability that two patterns of K  true poles 
be perfectly overlaid in a representative library decreases when K  increases. 
By setting a value of K  large enough, it is possible to create some classes 
of tcmplate-mcasurements populated by a single element only. Recognition 
could thus be achieved by applying such a classifier to the test-pattern with 
the correct value for K.

Considering that the poles chosen are directly related to the location of 
the scatterers, one can consider that the classification technique proposed 
is strongly based on the spatial arrangement of the scatterers on the target. 
In other words, the technique relies on the assumption that similar arrange­
ments of the scatterers on the targets yield similar arrangements of the true 
poles in the z-plane. For two successive measurements of the same target, 
it is expected that some elements of the pole patterns coincide. However, 
perfect superposition of the scatterers is not likely to occur in practice:

• the values of the estimated poles, Zf- and 2?m, vary from their expected 
values because of the noise. For additive white Gaussian noise, the 
probability that two given poles have the same expected value, <Zk>  
= < z'm >, increases with the proximity of the poles.

• the variation of the scene between the two compared measurements 
can cause two poles associated with the same physical scatterer have 
slightly different expected values as, for instance, the template-target 
used to build the class is not exactly identical to the test-target.

• small variations of aspect-angle may be responsible for speckle fluctu­
ations which have direct effects on the pole estimation.
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• large variations of aspect-angle may change the radar-cross-section of 
the target. Depending on the target, it may affect the position and 
even the presence of a pole. This phenomenon is emphasized with 
scatterers that have complex geometries and that are not independent.

• limited bandwidth and limited number of samples cause inter-dependence 
between poles. As a result, presence of clutter, for instance, may cause 
small variations on the other pole-estimates.

• incorrect calibration of the initial phase creates a constant shift be­
tween the pole-angle estimates and their expected values. For the 
test-pattern and the template-pattern, the shifts can be different.

This list reveals that the design of the “optimal classifier” from statistical 
information may require knowledge of a high number of parameters related 
to the target structure and motion as well as external factors such as sta­
tistical properties of the noise. Instead, it is preferred to draw the lines of 
a relatively simple prototype classifier, whose design could be empirically 
improved.

The technique proposed for classifying targets is a matching algorithm 
using a clustering approach in the z-plane (MAUCAZ). Signals are classified 
by comparing their patterns of poles with templates in a library. A lim­
ited number of clusters are formed by associating two poles, one from the 
test-pattern and the other from the template-pattern, supposedly related to 
the same physical scatterer on the target. The similarities between two pat­
terns are quantified by means of a mathematical expression that increases 
with the distance between corresponding poles. This method enables the 
classifier to take into account the variations of the poles mentioned above. 
This cost-function is calculated for each pattern in the library, that is, for 
measurements involving various types of aircraft and various aspect-angles. 
Assuming that the minimal distance corresponds to the maximum similarly, 
it is expected that the best match corresponds to the minimum value of the 
cost function.
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5.4.3 Pre-processing  

Introduction

Z-plane classification is achieved by comparing radar-signals based on fea­
tures that are visible in the pattern of poles in the z-plane; the latter being 
related to the scattering function. In the pre-processing stage, data are pre­
pared for feature-selection. Figure 5.8 represents the system diagram leading 
to the determination and selection of the poles using both the test-signal and 
the templates in library.

Unknown target: Templates in library:
s(n) yTlB(n)

L, P

(P’i>

Pole
Determination

Pole
Determination

Pole
Pre-selection

{zt} cz {pi} {z'k} c  {p'i}

Figure 5.8: MAUCAZ system diagram - pre-processing stage

Pole determ ination

The first stage consists of computing the patterns of poles, {p] and {p'}, 
for the test-signals and for the signals in library, respectively. This can be 
done by using super-resolution techniques such as root-MUSIC or Matrix 
Pencil algorithms. This operation requires the setting of the size of the 
observation-window, L, and the model-order, P. Information on this subject 
can be found in Chapter 3.

The number of poles computed, L — 1, is directly related to the size of the 
observation-matrix. One generally considers that the poles determined by 
these methods can be divided into ’’true poles” related to physical scatterers, 
and “extraneous poles” created by the mathematical technique employed 
and considered as artefacts.
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Pole pre-selection

Although the whole pattern of poles represents a source of information, it 
is chosen to focus on the poles that correspond to physical scatterers. The 
first reason comes from the fact that these poles contain the information 
that can be directly related to the target property. The second reason is 
that they vary with the technique employed. The third reason is that they 
are smaller in number, which can be an issue for real-time processing. It is 
believed that by taking enough poles into account, their values can provide 
sufficient information to distinguish between the limited number of potential 
targets. The principal task of feature selection is to identify the poles that 
are relevant for classification. It consists of separating the elements, called 
true poles, which are related to physical scatterers, from the other elements 
considered as artefacts.

For a target composed by P  scatterers, removing the extraneous poles 
is conventionally achieved by keeping the P  poles that are the closest to 
the unit-circle. In this case, all the filtered patterns would have the same 
number of poles. However, it has been shown in the previous chapter that 
true poles tend to move outwards for low SNR so that some extraneous poles 
may appear as better candidates for pole selection.

Instead of using a single criterion based on the pole magnitude, it is 
suggested that the selection be made using a priori information. At this 
stage, the poles are only pre-filtered using the criterion proposed by Carriere 
and Moses and reported in 3.66. This operation is achieved by keeping all the 
poles whose magnitude lies within fixed boundaries, pmin and Pmax defined 
in 5.7.

P m in  ^  \Pl\ ^  Pm ax  ( 5 * 7 )

One approach for fixing the boundaries consists of using the indicative 
values suggested by in 3.66. It is also desired that the number of poles 
remaining, M , be greater than the number of poles considered for classifi­
cation, K . Another approach consists of setting the limits, pmin and Pmax, 
so that no filtered pattern contains less than M  poles. The value of AT is 
discussed later in this chapter.

These boundaries define a selective filter whose transfer function can be 
represented as a ring in the z-plane. Figure 5.9 shows the principle of pole 
pre-selection. The figure on the left-hand side represents the L -  1 poles in 
the z-plane. The poles selected by the filter belong to the area represented 
in blue. The figure on the right-hand, side represents the resulting pattern 
of poles as it appears in the feature-selection stage.
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Rmin Rmax

Figure 5.9: Concept of pole pre-selection

5.4.4 F e a tu re  e x tra c tio n  

Pole Sim ilarity

Let us designate by the term cluster, an association of two poles, Zk = 
pk-el9k from the test-pattern and z'm =  from a template-pattern.
The proposed classifier relies on the assumption that true poles and scat- 
tcrers are related in such a way that the closer the poles, the greater the 
probability that they are associated with two scatterers inducing the same 
time-delay, or for the simplest case, with scatterers at the same range.

For simplicity, let us address the case of poles lying on the unit-circle 
first. The problem is thus limited to one dimension, only. For two aligned 
patterns, the probability, p(0), that two poles are related to scatterers at the 
same range is an even function of the difference between angles, 0  = d'm — 9k- 
It has a maximum for © = 0, a minimum for © = ±7r, and, for a given value 
of ©. it increases with the variance of the noise. Therefore when samples 
arc added, the signal-to-noise ratio increases and the variance of the poles 
estimates decreases. It results that for a given value of ©, the probability, 
p(©), increases with the nominal range-resolution.

Let us now introduce a second dimension by considering the pole magni­
tude. Let us recall that the latter is related to the spatial distribution of the 
scattcrer, that is to the spread of energy in range, which depends upon the 
geometry of the scatterers. It can be assumed that the probability, p(Ap), 
that two poles are related to scatterers with geometries leading to similar 
damping factors is an even function of the difference between their magni­
tudes, Ap =  p'm -  pk with a maximum for Ap = 0. Therefore, providing this 
parameter is accurately estimated, it could be used for classification. How­
ever, it is now known that the pole magnitude can vary in large proportion 
when the signal-to-noise decreases. As a matter of fact, the variation can be
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so significant, that, in some cases, true poles may be mistaken with extrane­
ous poles. For this reason, it is, in general, difficult to interpret physically 
the differences of magnitudes between scatterers.

The probability, p{Ap, ©), that a cluster be formed by two poles, Zk and 
z'm, that are associated with scatterers at the same range and same geom­
etry is relatively difficult to estimate. As often the case in classification, it 
is common to rely on a function which constitutes a good approximation of 
p(Ap, 0 ). Here, it can be expected that the unknown probability function, 
p(Ap , 0 ) . depends upon the difference between their angles and their magni­
tudes, 0  and A p. Assuming the variation of pole-angle and the variation of 
magnitude are independent, p{Ap, 0 )  can therefore be modelled by a func­
tion of Ap and © describing a three-dimensional surface with a maximum 
value and an axial symmetry at (0,0).

As an example, an elliptical Gaussian function has been used to represent
p{Ap, 0 )  in 5.10.

Figure 5.10: Bi-variate Gaussian function used for p(Ap, 0 )

Assuming the probability function has an axial symmetry, one can trans­
form the two-dimensional probability function, p(Ap, 0 ), into a function 
of one variable, d. In other words, the function computed is defined as a 
function of d, which has, on the one hand, a common value for the locus 
of equi-probable poles and, on the other hand, different value for the loci 
of points having different probabilities. Due to the properties of the prob­
ability function, the transformed function is a monotonic function. For an 
elliptical Gaussian function, this function is a Gaussian and the variable is 
directly obtained from the equation of the ellipse. It is given in 5.8
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• Elliptic distance:

de i z k5 z 'm) =  \ j  (« -a p)  +  ( e )  (5*8)

Figure 5.11 represents the values of d as a function of Zk =  Xk +  i-Vk for 
z'm  = 1 and a — 1. For each point of the Argand diagram, the colour of the 
pixel indicates the distance between the corresponding pole, Zk, and the pole 
z'm =  1. Considering that p (k ,m ) decreases with d, figures 5.11 shows that 
there is a small probability that two poles located in two different half-planes 
can be associated with two scatterers at the same range. For reducing the 
computation time, the number of clusters to consider can be reduced by half 
at least.

Figure 5.11: Distance: de(z, 1) as a function of z in the z-plane

The term ’’distance” often refers to a different expression. Expressions 
5.9 and 5.10 are proposed as an alternative to the distance in 5.8.

• Euclidian distance:

dE(Zk‘,z'm) = yjpl +Prn~ 2Pkp,mCOsG

• Z-plane distance:

dz{zk'i zm) —
1 sinh(2u)

2 K 2 Uk

(5.9)

(5.10)

where Uk =  asinh(K.pk), u'm =  asinh(K.p 'm) and K  = Q/Ap.
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Figure 5.12 is a representation similar to 5.11 using the expression of the 
distance in the Euclidian plane, d#, in 5.9 (left) and the expression of the 
distance in the z-plane plane, dz, as proposed in 5.10 (right).

Figure 5.12: Distances: ( 1 e { z , 1) (left) and dz(z, 1) (right) as a function of z 
in the z-plane

The comparison of the figures 5.11 and 5.12 shows that the expressions 
of the distance in 5.8, 5.9 and 5.10 are locally equivalent.

P a tte rn  Similarity

The previous section addresses the problem of estimating the probability, 
p(Ap, 0), that one cluster be formed by two poles, Zk and z'm, that are asso­
ciated with scatterers at the same range and having similar geometry-based 
scattering behaviours. In order to quantify the similarity between patterns, 
it is proposed to consider this probability in the case of several clusters. In 
the following, it is considered that a given set of K  clusters has been formed 
using the poles from the test-pattern and from the template-pattern. Be­
cause poles and scatterers are associated in a one-to-one relationship (bijec- 
tion), the same pole cannot be used in two different clusters.

The function chosen to quantify the similarities between a test-pattern and 
a template-pattern arises from considering the case of two measurements 
carried out on the same target and at similar aspect-angles. Assuming 
that the K  clusters of true poles corresponding to scatterers with similar 
properties could be identified, several observations can be made:

• The probability, p(K), that K  poles of the test-pattern and K  poles 
of the template-pattern forming K  clusters, describe the same K  scat­
terers depends upon the probability, p(k,m), that the poles of each 
cluster are related to scatterers with similar properties. The proba­
bility, p(K), is thus a function of the K  inter-pole distances, d, as
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represented in 5.11

p(K )= p(d .udi , . . . , d K) (5.11)

where dk, is the inter-pole distance of the kth cluster.

• The probability function is not sensitive to the permutation of the 
clusters.

• When the scatterers of both targets have an identical arrangement, it 
is expected that there exists a position of alignment for which the pat­
terns of true poles could be perfectly overlaid. Hence, the probability 
function, p (K ), is a maximum when the probability, p(Ap, ©), of K  
clusters are all maximal {i.e. when the distances are minimal).

Due to the assumed symmetries and monotonic form of the probabil­
ity function, it is expected that the latter can be described using a single 
variable, Z>, in such way that the probability function increases when D 
decreases. For pattern recognition, it is common to use such variables as a 
measure of the dissimilarity between groups of numerical variables.

Various expressions can be used to evaluate the degree of similarity be­
tween two sets of K  poles [51]. They include 5.12, 5.13 and 5.14.

• City-block distance
p

* »  = 5 > l  (5-12)
i = l

• Euclidian distance:
/  p  \  1/2 

< t e « = ( X X )  (5.X3)

• Chebyshev distance:
dch = maa;(|di|) (5.14)

where di is the inter-pole distance corresponding to a cluster Cj.

City-block and Euclidian distances are also known as the Minkowski dis­
tances of the first and second order, respectively. City-block distance is
directly related to the mean value, so that it is a linear expression of the
inter-pole distances. In the contrary, the Euclidian distance, whose con­
tours of equal value define hypersheres, gives greater emphasis to larger 
values of the inter-pole distances. Chebyshev distance is entirely defined by 
the largest value of the inter-pole distances. This expression does not enable 
differentiation of sets that have the same maximum value. However, it can 
be used as an approximation for decreasing the processing time.
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5.4.5 M AUCAZ  

P rincip le

The classifier is based on the principle that two targets sharing similar 
arrangements of scatterers also share similar arrangements of the poles in 
the z-plane. Classification can thus be described as gathering the template- 
patterns whose K  poles have a high probability, P(K)  »  Pk , to correspond 
to K  scatterers related to K  poles of the test-pattern. Identification is 
achieved when a class is populated by one template only.

It appears that the arrangement of poles into clusters is an important 
aspect of the classification. However, for a given template, there is a priori 
no robust rule stating what are the couples of poles that should be combined 
to form clusters.

Assuming that there exists in the library a measurement carried out on 
the same type of target and at similar aspect-angle as the test-measurement, 
it is expected that most true poles of the test-pattern coincide with the 
true poles of the template-pattern since they are associated with the same 
scatterers. The problem of recognition consists of finding, in each pattern, 
the arrangement of K  pairs of poles that “match” each other.

The first stage consists of computing the inter-pole distance for all possible 
clusters, Ck,m, whose poles, and z'm, are obtained from the test-pattern 
and from the template-pattern, respectively. Figure 5.13 represents the array 
containing the interpole distance, D(k, m ), obtained using one of the expres­
sions proposed. Each row corresponds to a pole, z^, in the test-pattern and 
each column to a pole, z ^ ,  in a template-pattern

{*} K )

________ i ______________________i-------
Distance

Intra-cluster

D(k^n) s  (IfZi  ̂ j Z m )

Figure 5.13: MAUCAZ: computation of the inter-pole distances
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The second stage involves comparing the levels of similarity between the 
test-pattern and the templates patterns in library. The ’best-matching pat­
tern’ is not found by computing the probability itself but using the expres­
sions of the distance between patterns proposed. The minimum distance 
is expected to occur when the selected clusters are formed by poles that 
correspond to the same scatterer as it is the most likely solution.

Since the corresponding poles cannot be easily identified, it is proposed 
to consider all the possible combinations of poles that can be used to create 
K  clusters. For each, it is proposed to find the arrangement of K  clusters 
that has the highest probability that the K  clusters be formed by poles 
associated with scatterers at the same range and with geometries leading to 
the same energy spread in the range.

Cluster Selection

For two patterns of M  and M ' poles, the total number of different clusters 
is M .M '. For two patterns of M  true poles, the number of possible unsorted 
arrangements of M  clusters is Ml but more likely, the number of arrange­
ments that make physical sense is smaller. For example, it can decrease
if:

1. the patterns contain spurious poles that were not rejected by the filter

2. the patterns contain true poles that do not appear on both due to 
small variations of the conditions of measurements

The total number of possible unsorted combinations of K  clusters is given 
by NcombiK) in 5.15

1 AflM'i
" « * < * >  =  W .( M - K )KM '- K y .  (5-15)

where (K  < M ) and (K  < M ').

For reducing the computation time, a number of combinations can be 
discarded based on the fact that some combinations of poles and some com­
binations of clusters are not likely to correspond to physical situations. For 
instance, poles that are located in different half-planes are not likely to cor­
respond to the same scatterer. Mathematically, this can be regarded as the 
rejection of the clusters which by themselves would increase the distance 
between patterns beyond any typically acceptable limits. Similarly, since 
the target is assumed to be rigid, poles ordered by increasing angles are not 
likely to correspond to poles that are not.
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Figure 5.14 illustrates the clustering approach using a combination of 
three; pairs of poles obtained for M  = 5 and M' = 6. The poles are rep­
resented by different markers: (x) for the test-pattern and (+) for the 
template-pattern. This combination of three dipoles is only 1 out of the 
1200 that the 30 possible clusters authorize.

C t
c2
C3

= 3, M  = 5 and M ' = 6

N um ber of clusters

The number of clusters to take into account is an important issue. The 
minimum value of K  should allow classification whereas the maximum value 
should be such that the selected clusters include no more poles than the 
true poles associated to the scatterers that appear on both patterns. For 
real systems, the optimum value may be driven by issues related to the 
computing-time required for the analysis.

In order to reduce the computation time, it is possible to decrease the 
number of combinations of clusters studied by decreasing K. However, de­
creasing K  yields an augmentation of the population of the classes. In other 
words, target recognition requires K  to be set at a high enough value in 
order to obtain a class populated by a single element.

Considering the case of scatterers occupying the spatial extent correspond­
ing to a range bin, the total number, Narr{K ), of different unsorted spatial 
arrangements of K  scatterers in N  range bins is given by 5.16.

=  M (516)

The best matching pattern is found by computing the distance between 
patterns for a potentially large number of arrangements indeed. It is sug­
gested that several values of K  should be tested and compared in order to 
achieve recognition.

Figure 5.14: Concept of pole clustering for K
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P attern  alignm ent

The problem of translational range-cell migration (TRCM) that charac­
terises range-profiles exists in the z-plane too. Whereas translation of the 
target in range appears as a translation of the envelope of the range-profile, 
it is manifested by a rotation of the poles in the z-plane. In order to achieve 
the alignment of the test-pattern with the template-pattern, it is proposed, 
for each template, to find the value, q*, that creates the highest similarity 
between the test-pattern and the pattern obtained by rotating the template- 
pattern by the angle q*.A9, where A9 is a small angular-step.

Basically, the modification involves repeating the clustering process after 
each rotation. Here the rotations are successively achieved by iteration of the 
index q. Each value of q corresponds to a new array containing the distance, 
Dq(k,m), between poles and z!m after a rotation of the template-pattern 
by q.A9.

{Zk} {*'ki

Pattern
Rotation

Distance
Intra-duster q=O...2*/A0

I P 7 iff

Figure 5.15: System diagram - alignment 1/2

For each array containing the inter-pole distances, Dq(k, m), one com­
putes a single value C a lign m en t, which is a measure of the similarity between 
the test-pattern and the template-pattern after rotation by the angle q.A9.

The values of CaiignmentiQ) depend upon the number of clusters, K , that 
are taken into account. This is due to the fact that the distance between 
subsets of {z } and {z'} varies with the dimensions of the subsets. At this 
stage, the choice of K  remains an issue. For this reason, it is suggested to 
compute the values CaiignmentiQ) for various values of K. Because the cost- 
function depends upon the number of patterns and the number of clusters
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taken into account, the number of arrays to conserve is equal to the product 
of the number templates by the number of values that K  can take.

Alignment of the closest template-pattern is achieved by rotating the 
template-patterns by the value q*.A0 where q* is the value that minimises 
the cost-function, CaiignmentiQ■, K ). Once the value q* is estimated, one can 
discard all the array of distances, dq(k,m ), but those corresponding to the 
rotation-index q*. Fine alignment requires small rotation-steps, A 8 , which 
increases the maximum value of q needed.

flXq)}

,
Min: Distance
max between patterns

Ncfautef nun Ncto*ef max
q > 2*/A«

C au0UMBt(q.NchBtcr) • ̂ (D q,Ncl«rtw)

Pattern
Alignment

Q *(N chB ter) - • r p i u n  ( C d l p B n M ^ c l n l e r ) )

{*' *} nc.«,w={z’} . e-1
Figure 5.16: System diagram - alignment 2/2

The cost-function gives a physically meaningful result if each cluster 
selected is formed by a pair of true poles that can be associated with the 
same scatterer. However, true poles can be divided into three categories:

1. true poles that exist in the template-pattern only,

2. true poles that exist in the test-pattern only, and

3. true poles that exist in both the template-pattern and the test-pattern.

Unfortunately, the poles of the third category are unknown and so is 
the number of clusters that must be considered for alignment, K. For this 
reason, setting a value to K  remains an issue, which is investigated in the 
following example.
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5.4.6 Exam ple 

Principle

A measurement of the scale-model Rafale aircraft (T6) at aspect-angle 
6 = 45° is compared with the measurements of the same target for aspect- 
angles 6 — —5°, 4 .5 ° ,..., 95°. The test-measurements represented by index 
1 to 201 are corrupted by an AWGN with S N R  =  30 dB. The comparison is 
achieved using the distance between patterns obtained with the MAUCAZ 
algorithm whose the system diagram is represented in figure 5.17
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Figure 5.17: System diagram - alignment

In this example, the function chosen for the inter-pole distance is the Eu­
clidian distance, dE■ The function chosen to compute the distance between 
patterns is the City-Block distance, dcB, with K  =  4. The parameters used 
to compute the patterns are M  =  6, P  = 5, L  =  23.
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Distogram

The first example illustrates the variations of the distance when the aspect- 
angle varies. By analogy with a correlogram, let us call the graph represent­
ing the distance between patterns, a distogram. Figure 5.18 represents the 
distogram of a template-pattern and 201 test-patterns aligned by MAUCAZ. 
The x-axis corresponds to the index of the test-profiles. The y-axis repre­
sents the distance between the test-patterns and a given template-pattern. 
As small values are synonymous to high similarity, the y-axis is limited to
0.1 for convenience of the display. The maximum similarities are found for 
pattern-index 101 and 116, which correspond to aspect-angles 45.5° and 53°.
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Figure 5.18: Distogram - S N R  =  30 dB, index 100 (Rafale aircraft - 45°) -
x-axis: Tq x (—5 ° , . . . ,  95°)

The second example illustrates the variations of the distance when both 
the aspect-angle and the target vary. Here, seven targets are involved, yield­
ing 1407 measurements. Figure 5.19 represents the distogram where the in­
dex (1-201) corresponds to target T\ at aspect-angles 0 =  —5°, 4 .5 ° ,..., 95°, 
(202-402) correspond to target T2 at the same aspect-angle, and so on. Many 
patterns of targets Tq and T7 are similar to the pattern used (1106).
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Figure 5.19: Distogram - S N R  = 30 dB , index 1106 (Rafale aircraft - 45°) 
-x-axis: ( T i , . . . ,T 7) x ( - 5 ° , . . . ,  95°)
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Two-dimensional distogram

For training a classifier with a given dataset, it can be useful to com­
pute the distances between the measurements and their noisy versions. The 
results can be stored in a square matrix that can be displayed as a two- 
dimensional image where each fine represents a distogram as mentioned
above.

This example uses the set of 201 measurements obtained by illuminat­
ing the scale-model Rafale aircraft under 201 different aspect-angles 9 =
-5°, 4 .5°,..., 95°.

Figure 5.20 represents the two-dimensional distogram of these 201 mea­
surements. Both axes represent the index of the measurements by increasing 
aspect-angles bounded by 9\ =  —5° and # 201 =  95° • Each pixel spans the 
distance between a template-pattern and a test-pattern that can be identi­
fied by the pixel coordinates, in x  and y axis, respectively. A scale of colours 
is used to represent the value of the distance for each pixel. Dark colours 
are used for indicating small distances.
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Figure 5.20: Cost matrix for P  = 4, SN R  = 30 dB

On this image, the dark pixels of the diagonal show that patterns obtained 
from the radar measurements and from their noisy-versions are relatively 
similar. The small width of the dark diagonal is cause by the high variability 
with aspect-angle. Ideally the diagonal should be large in order to limit 
the volume of the library, and the dark pixels should be limited to the 
measurements of a single target, in order to avoid incorrect classification.
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The following illustrates the effect of increasing the value of K  on the 
distogram. For this experiment, the set of seven targets mentioned ear Her 
and described in figure 5.24 is used to create a 1407x1407 distogram.

Figure 5.21 represents the distograms for K =2.
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Figure 5.21: Distogram - K  = 2, S N R  = 30 dB
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Figure 5.22 represents the distograms for K  =  3.
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Figure 5.22: Distogram - K  =  3, S N R  = 30 dB
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Figure 5.23 represents the distograms for K  = 4.

186

1.5

Figure 5.23: Distogram - K  =  4, S N R  =  30 dB

Although the 2D-distograms are averaged because of the resolution, the 
principal features can be observed in these figures. For K  =  2, the dark 
diagonal cannot be obviously noticed as there exist many combinations of 
clusters that can generate an arrangement of two poles that is similar to 
those in the test-patterns. As the number of satisfying combinations de­
creases with the number of poles taken into account, the distance between 
patterns greatly increases with K . This basic principle described by equation 
5.16 explains why the two-dimensional distogram becomes brighter when K  
increases. As the distance between a given pattern and itself remains null, 
or at least relatively small, the diagonal becomes increasingly visible. For 
K  — 4, this effect is emphasized and the dark diagonal appears clearly. The 
dark square in the area bounded by indices 400 and 900 implies that the 
distance between the pole-patterns of these mesurements are similar. In 
other words, the information extracted from targets T3 (F-14 scale-model 
aircraft), T4 (F-16 scale-model aircraft) and T5 (Mirage 2000 scale-model 
aircraft) are similar.

73
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5.5 Classification performance

5.5.1 E x p e r im e n t 

P rincip le

The classification framework chosen consists of finding a library template 
whose profile has maximum similarity with an unknown test-profile. The 
dataset used for the experiment is composed by 1407 measurements collected 
at the anechoic chamber of ENSIETA.

• the set of targets, represented in figure 5.24 is composed by seven 1:48 
scale-model aircraft that are coated with a conductive paint. They 
include 7\ (DC3), T2 (F-117), T3 (F-14), T4 (F-16), T5 (Mirage 2000),
Tq (Rafale), and TV (Tornado).

• the 201 aspect-angles available are 0  € {—5°, —4.5°,..., 95°}; the posi­
tion 0 =  0° corresponding to the aircraft nose facing the radar antenna.

Radar measurements are obtained by illuminating the targets with a
3.2 GHz stepped-ffequency waveform formed by 64 ultra-narrow band pulses 
whose carrier-frequency is successively shifted by 50 M H z  steps. The po­
larisation is HH. The 1407 measurements have been ordered by increasing 
target-index and by increasing aspect-angle, the first 201 measurements cor­
responding to target T\

Ten measurements per target have been extracted from the dataset at 
regular aspect-angles, 6 l ,  given by 5.17

0L = {-5°, 5°, 15°, 25°, 35°, 45°, 55°, 65°, 75°, 85°, 95°} (5.17)

The resulting set of 70 measurements serves as a library for the classi­
fication. The remaining 1337 measurements are used as test-measurements 
after a White Gaussian noise had been added. For statistical analysis, each 
of the 1337 test-profiles is individually cross-correlated with the 70 template- 
profiles.

For each test-profile, the class attributed is the class C G { C ti ,C t2, • • •, CW} 
of the target corresponding to the template-profile that has the maximum 
correlation with the test-profile.

The classification is said to be forced. When the estimated class is the class 
of the target, the recognition is correct, otherwise it is not. By repeating 
the classification for all the 1337 test-targets, it is possible to assess the 
performance of the classifier by computing the rate of correct classification.
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P red iction

Classification and recognition are almost achieved continuously by most 
of us. For instance, reading this sentence would not be possible without this 
ability as it involves the recognition of the letters and words that compose it. 
Similarly, a simple look at the picture 5.24 may be sufficient to many pilots 
to recognize the targets below. For individuals less familiar with aeronautics, 
this may not be the case. Nevertheless, little a priori knowledge is needed 
to state that all these targets are aircraft and that Ti, T2 and T3 have a 
unique shape, whereas the targets T4 to T7 may have more common features 
since they are all jet-fighters with similar designs. For this reason, the rate 
of correct classification is expected to be higher for targets T\ (DC-3), T2 

(F-117) and T3 (F-14) than for the other targets.

T5 Mirage 2000 T6 Rafale

T7 Tornado

Figure 5.24: Scale-model targets used for classification
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5.5.2 Perform ance

Classification techniques

In this section, the same set of radar data is applied to four different 
classification techniques in order to compare their performance. The tech­
niques tested include correlation of regular range-profiles, correlation of 
range-profiles obtained from scattering-centre models, correlation of range- 
profiles obtained from extrapolated scattering-centre models, and the pro­
posed matching algorithm using clustering approach in the z-plane (MAU­
CAZ).

Regular correlation

Several experiments have been conducted for various levels of added noise: 
S N R  = [10 d B , 15 d B , 20 d B , 25 dB]. The results are represented in figure
5.25.
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Figure 5.25: Classification performance - regular approach

The results here show that the correlation-based technique is relatively 
insensitive to the added noise. This may suggest that the initial SNR is 
actually smaller than lOdB, in which case the small amount of noise added 
for the experiment would not significantly change the overall SNR. The 
performance are bounded between 38% and 70%. A closer look shows that 
T2 and T3 have a high rate of correct classification compared to targets such 
as T4 to T7 . This has been predicted from the visual observation of the target 
geometries. T\ constitutes an exception since better results were expected 
as the Douglas DC3 is a propeller-driven transport-aircraft that has a very 
different shape than the other targets in the set.
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M odel-based correlation

The same experiment is conducted using the model-based approach de­
scribed in 5.4. The scattering-centre models are extracted by using the 
following parameters: L =  21, N  = 128, P  =  6. Figure 5.26 represents the 
rate of correct classification obtained with range-profiles computed from the 
scattering-centre models obtained by Linear Least-Squares fit (left) and after 
ajdustment by Non-Linear Least-Squares fit (right) using the Gauss-Newton 
algorithm.
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Figure 5.26: Classification performance - model-based approach (N = 64)

Globally the results are not highly sensitive to the noise, although for 
some targets, the rate of correct classification increases in rather large pro­
portion with the signal-to-noise ratio.

The results obtained using the model ajusted by non-linear least-squares 
fitting are relatively better than those obtained directly using linear least- 
squares fitting. The performances are bounded within 25% to 70% in the 
first case, and within 35% to 70% in the second one. These figures are 
similar to those obtained with the direct signal, which shows the capability 
of the method to accurately reconstruct a signal.

For both techniques, the performance obtained with the various targets 
roughly follow the same order and are similar to the order obtained by using 
the direct signal. By decreasing performance, the targets can be sorted as 
follow: T2 (F-117), T3 (F-14), T7 (Tornado), T6 (Rafale), T4 (F-16), T1
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(DC3) and T5 (Mirage 2000). For non-linear least-squares fit, the perfor­
mance associated with the DC3 are the lowest, which is unexpected.

E x trapo la ted  m odel-based correlation

According to classification theory, using a higher number of discriminat­
ing attributes should enhance the performance obtained with similar-looking 
targets. For radar measurements, a common solution consists of improv­
ing the range resolution by transmitting a larger bandwidth. Here, target 
classification is carried out using range-profiles enhanced by bandwidth ex­
trapolation. For this, the high-resolution range profiles are computed using 
the models estimated in the previous page. The results can be seen as an 
indicator of model accuracy.

The same experiment is conducted using the model-based approach de­
scribed in 5.4 but here the scattering-centre models obtained previously are 
extrapolated from N  = 64 samples to N ' = 128 samples. The results ob­
tained with twice the transmitted bandwidth are represented in a similar 
manner in figure 5.27.
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Figure 5/27: Classification performance - extrapolated model-based ap­
proach (N  — 128)

The results obtained with linear and non-linear least-squares fits are 
both bounded within 5% to 40%. These figures, 30 points lower than any 
of those obtained with other correlation-based techniques, seem to confirm 
the incapability of the model to be accurately extrapolated.



Z-plane Classification 192

M atching algorithm  using clustering approach in the  z-plane

The classification is now performed using the MAUCAZ algorithm. Here, 
the poles have been computed using the same parameters as in the previous 
section, N  = 64, L = 23 and P  = 6. The pre-processing stage selects the 
P  = 5 poles that are the closest to the unit-circle. The number of clusters 
used for computing the distance is K  = 4. The performance of the classifier 
can be summarised by figure 5.28.
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Figure 5.28: Classification performance - MAUCAZ

The performances obtained with the MAUCAZ-based technique vary 
with the signal-to-noise ratio. The variation of performance with the SNR 
can be estimated as +2 points/dB. Based on this, the graph can be divided 
into two regions depending on the level of added noise. In the region de­
fined by SNR greater than 15 dB, the MAUCAZ classifier start performing 
better than the others techniques compared. This remains true even if the 
correlation involves test-measurements with no added noise.

The performances associated with each target have the following order: 
T2 (F-117), T1 (DC3), T3 (F-14), followed by T4 (F-16), T6 (Rafale), T5 
(Mirage 2000), and T7 (Tornado). These two groups of targets are in perfect 
agreement with the order intuitively expected based on visual observations 
of the target geometry, which supports the idea that classification can be 
performed based on the location of the physical scattering-centres.

The classification has been carried out for various levels of added noise in 
order to estimate the susceptibility of the classifier. For SN R  = 30 dB , the 
rate of correct-classification associated with the F-117 reaches 90%.

DC 3 
F-117 
F-14 
F-16
Mirage 2000
Rafale
Tornado
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In order to trace the sources of classification error, confusion matrices may 
be used. The following tables are the confusion matrices computed for three 
levels of noise. Each row corresponds to the real class, whereas each column 
corresponds to the estimated class.

• S N R  = 10 dB K  = 4

Class Cti Ct i Ct3 CT 4 Ct5 C t6 Ct7
7i 38 8 3 5 8 20 14
t 2 5 57 4 10 12 6 3
t 3 3 10 40 16 15 8 4
t 4 7 6 7 32 19 15 10
t 5 7 6 8 15 24 23 14
t 6 11 7 1 6 11 36 25
t 7 10 4 7 5 12 33 25

S N R  = 20 dB K  = 4

Class Cti C t2 Ctz Cta Q r 5 C t6 Ct7
Ti 68 8 4 3 1 6 6
t 2 2 78 1 10 3 1 1
t 3 2 6 63 16 7 2 1
t 4 2 3 15 54 14 5 2
t 5 10 7 13 12 45 7 3
n 6 2 5 10 13 46 16
t 7 5 5 3 3 7 34 40

S N R  = 30 dB K  = 4

Class Cti C t2 Ct3 C r 4 Ct5 Ct 6 C t7
T\ 71 14 4 3 2 2 3
t 2 2 90 2 3 1 0 0
t 3 2 5 69 16 5 0 0
t 4 0 7 18 58 10 4 0
n 1 6 11 14 59 4 2
t 6 3 5 2 6 13 43 25
t 7 3 9 5 5 7 23 44

5.5.3 Discussion
The results show that whereas the performance of the correlation-based 

classification technique obtained using the signals reconstructed with low- 
ordcr models is similar to that obtained using the raw signals, the perfor-
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mancc obtained using the extrapolated models are much lower. It is espe­
cially poor for models whose parameters are adjusted by non-linear least- 
squares fitting.

By using the model parameters directly expressed in the z-plane, the 
classifier MAUCAZ is less sensitive to errors on the parameter-estimates 
than correlation-based techniques. This can be explained by the fact that 
the errors on the pole magnitude have a small influence on the function 
chosen to measure the distance between patterns. This may also be due 
to the reduction of the speckle effect. The sensitivity to the noise that 
is observed in figure 5.28 suggests that the model parameter-estimates are 
however sensitive to the noise.

Considering the apparent sensitivity of the MAUCAZ algorithm to the 
noise, the small variation of the performance of the correlation-based classi­
fication technique with increasing noise is relatively surprising. One reason 
for this may be that the initial SNR of the measured-signal used as a tem­
plate, is actually relatively low (i.e. SNRo < 15 dB). Let us remember 
that although unknown, the signal-to-noise ratio for the three metal spheres 
was estimated to be S N R  «  10.5 dB in Chapter 4. In that case, the noise 
added to the test-signals would not have much effect on their total SNR.

The initial presence of strong noise may explain the robustness of the 
classification technique to the added noise. However, it would then be ex­
pected that the results obtained using MAUCAZ be relatively constant too. 
Instead, the MAUCAZ technique appears to be strongly sensitive to the 
noise. This may be explained by the fact that some of the clusters that 
were used for the classification are actually formed by poles that are differ­
ent from those chosen for building the model. Additional experiments are 
needed to fully understand the nature of this problem.
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5 .6  C o n clu s io n

In this section, four techniques for classification have been presented and 
compared using radar signals scattered by seven scale-model aircraft on a 
turntable. The techniques include correlation of direct signals, correlation 
of low-order models, correlation of the extrapolated low-order models, and 
the novel feature-based method called MAUCAZ.

The performance obtained with the model and the raw data are similar. 
This implies that the model can be a mathematically close representation of 
the modelled signal which contains the information used in the correlation- 
based classification. This subsequently confirms that the scattering-centre 
model can be efficiently used for data-compression. Nevertheless, the extrap­
olated models do not appear to be suitable representations that exhibit the 
information needed for correlation-based classification. This also confirms 
that the model is often not a complete and physically accurate representa­
tion of the target.

In comparison, the novel classification technique which is proposed here 
can perform better than the others providing the SNR is sufficiently high (i.e. 
15 dB  or higher). The classification performance shows that the technique 
makes better use of the information captured in the scattering model at a 
cost of relatively large computation. However, the computation time can be 
greatly reduced using parallel processing techniques and smart algorithms.

The fact that the classification technique relies on the cumulative prob­
ability that couples of poles, one in the test-patterns and another in the 
template-pattern, correspond to the same physical scatterers, opens the door 
to classification of targets that have a varying configuration. If the target 
is not perfectly rigid, the position of the poles may be affected. Moreover, 
if peripheral components such as missiles are added to the main body, they 
would modify the pattern of poles too. They may be strong scatterers which 
would generate new poles, hide other scatterers which would remove poles 
or modify the pattern of interaction between scatterers which would modify 
the pattern of poles and subsequently confuse the classifier.

It would be useful to examine the variation of the pattern of poles of an 
aircraft with varying configuration in order to identify the core-poles that 
axe associated with physical scatterers on the stationary structure and the 
additional poles that are associated with scattering elements whose presence 
or position may vary on the target. It may also be useful to study the effect 
of rotation and translation of a real target on the composition of the clusters.



Chapter 6

CONCLUSION

6.1  K ey  p o in t

In this thesis, the principle of bandwidth extrapolation for radar signals 
has been revisited and the technique proposed by Cuomo et al. investigated 
for the case of man-made targets. A strong motivation behind this work 
comes from the growing need for high-resolution images requiring wideband 
waveforms and the increasing use of the electromagnetic spectrum by the 
communication industry. The conclusion of this thesis is that the estimation 
of the model which relies on bandwidth extrapolation may not be sufficiently 
accurate to allow accurate signal prediction in all circumstances. The prin­
cipal causes of error are the following:

1. the limited segment of a corrupted signal generally available does not 
allow reconstruction of the accurate information to form the complex 
model describing the scattering mechanims of the target alone, and

2. the scattering centre model is not sophisticated enough to describe the 
rather complicated scattering mechanisms that characterise man-made 
targets such as aircraft.

Whereas the second hypothesis has been recently investigated by Ri- 
haczek [41] and Guerci [35], no real investigation has been carried out to 
support the first one. In that context, this thesis contributes improving the 
state of the art of processing techniques for high range-resolution radar.

196
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6 .2  S u m m ary

This work started by reproducing an experiment found in the article writ­
ten by Cuomo et al. [12] in which the authors propose to use a model 
computed using model-order estimators, super-resolution and least-squares 
model-fitting algorithms for predicting the radar signal outside the modelling 
band and subsequently improving the image resolution. The technique used 
to model the radar signal has been implemented and tested using simu­
lated and real scatterers. Relying on the quadratic-error as an indicator 
of accuracy, the experiments reveal that although the determination of the 
model-order and the selection of the true poles remain an issue, the signal- 
to-residue ratio of the reconstructed signal is relatively good and improves 
with the model-order. This supports the suitability of the technique for data 
compression.

In detail, the experiment shows that although the Matrix-Pencil algorithm 
may present better results with very simple point-scatterers, the modified 
root-MUSIC algorithm [4] seems to be a more robust algorithm. This shows 
the limitation of the technique when employed for modelling complex tar­
gets. The comparison of the least-squares techniques reveals that the non­
linear least-squares algorithm (Gauss-Newton) very often provides the model 
with smallest SRR and that, when it does not, the model is so obviously 
incorrect that it is not difficult to notice the error. This is not always the 
case for the linear least-squares technique as wrong models may be difficult 
to spot.

By using data supplied by an independent source (Dr Victor Chen - Naval 
Research Laboratory - USA), the potential of this algorithm for radar imag­
ing is demonstrated further. However, attempts to predict the radar signal 
for a real Boeing 727 failed. Based on the theoretical framework proposed 
in Chapter 3, it is proposed as an explanation that the estimated model is 
not a physically accurate representation of the scattering mechanisms that 
characterise this aircraft. This result constitutes a basis for challenging the 
capability of the algorithm to perform with complex targets such as aircraft. 
Additional reasons making the algorithm unsuitable to bandwidth extrapo­
lation are then identified through a sensitivity analysis of the technique.

Firstly, this work has clearly revealed that errors may not be detected by 
using the quadratic-error. The latter does not appear to be a valid indicator 
of model accuracy. Secondly, such type of errors may typically happen when 
the model-order is wrongly estimated, when the target exhibits scattering 
behaviours that are more complex than a set of independent spheres, or 
when the bandwidth or the signal-to-noise ratio is so low that the model
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parameters cannot be accurately estimated. In these cases, the contribution 
of the target to the signal cannot be properly captured in the model.

The examination of this hypothesis is then investigated using simulated 
mid real measurements. In order to limit the field of this work to the sole task 
of verifying that the deficiency of the model imposed by the relative poor 
quality of the received signal may be responsible for incorrect modelling, 
the technique is tested using a target composed of three spheres in the 
anechoic chamber of ENSIETA. These highly controlled conditions ensure 
that poor results would not be due to target complexity, target motion, or 
clutter. The results proved that, even when using such simple targets, the 
extrapolation technique is limited by the initial resolution, which is therefore 
highly dependent upon the spatial distribution of the scatterers, the noise 
and the bandwidth.

Both simulated and real measurements show that when it is not possible 
to retrieve the model-parameters from the signal, the technique generates 
an approximated model whose accuracy cannot be determined from the 
quadratic error. Due to the method itself, we know that the value of the 
parameter-estimates is driven by the minimisation of the quadratic-error 
across the sole modelling band. Because this does not necessarily yield 
models that are accurate on other parts of the spectrum, the capability 
to accurately extrapolate or interpolate a model across a wide bandwidth 
cannot be pre-determined based on the quadratic-error computed across the 
modelling band.

Considering the sensitivity of the model to errors on the pole-magnitude, 
the forward extrapolation in the frequency domain of a poorly accurate 
model, is characterised by large amplitude excursions. Alternatively the 
interpolation of the model can be seen as a safer option as this instability is 
prevented by the fact that the signal is also fitted in the sub-band at high 
frequencies. However, this does not provide a more accurate model. On 
the contrary, the separation of a large band into two sub-bands of half-the- 
bandwidth each reduces by half the maximum model-order allowed.

A different attempt to show that the extrapolation of the model does not 
necessarily provide improved information that could enhance non-cooperative 
target classification techniques has been performed by comparing the clas­
sification results obtained for various signals including raw signals, models 
and extrapolated models using real turntable-measurements of seven scale- 
model aircraft in the same anechoic chamber. First, the results have shown 
that raw data and models provide similar results, which again supports the 
suitability of the technique for data compression. Second, the classification
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results obtained with the extrapolated model are very poor, especially those 
computed using non-linear least-squares. This confirms that the model es­
timated is often deficient or badly estimated and cannot be always used for 
radar applications such as imaging or classification.

In order to enhance the high-resolution range-profile based classification 
technique, a novel method has been proposed. It is based on limited but 
reliable information that can be extracted from the signal, and does not 
suffer from the hyper-sentitivity to the pole-magnitude. To meet such re­
quirements, a feature-based approach has been chosen and the parameter- 
cstimates that may be incorrectly estimated to compensate for incorrect es­
timation of others have been discarded. The resulting method achieve target 
classification based on the information contained in the pole-estimates only. 
Similarly, to avoid the risk of incorrect pole-selection, the technique is not 
based 011 criteria such as closeness to the unit circle. Instead, pole-selection 
is performed based on a priori information using the likelihood that a set of 
poles from the test pattern describes the same physical features as another 
one in a pattern in the library.

The technique created is called a Matching Algorithm Using Clustering 
Approach in the Z-plane (MAUCAZ). The results obtained using this tech­
nique arc very promising, especially for high signal-to-noise ratio, typically 
greater than 25 dB. It is shown that the representation in the z-plane pro­
vides various advantages and that the comparison of the signatures is less 
sensitive to variation, for example, of aspect-angle. It is currently being 
investigated for SONAR applications.
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6 .3  F u tu re  w ork

This thesis like most research works has probably opened more questions 
than it has solved. For the continuation of this work, three principal direc­
tions can be pursued. The first one concerns the modelling technique and 
the understanding of its limits, the second one concerns the development of 
a more complex model, and the third one concerns the potential use of the 
MAUCAZ algorithm for target classification.

The modelling technique has proved to be a relatively good extractor of 
features. This thesis has demonstrated that the limited segment of cor­
rupted signal generally available may not allow reconstruction of the com­
plete information needed to form an accurate model describing the scattering 
mechanims of the target. It would be useful to investigate further the limits 
of the technique in order to determine whether it is possible to improve the 
extraction of a greater number of features.

As important as the above would be the migration from the scattering- 
centrc model towards a more sophisticated model. A model that could 
capture the complex scattering mechanisms characterising man-made tar­
gets such as aircrafts would certainly contribute to enhance classification 
performance. In that aim, it would be appropriate to test the algorithm 
using simple-geometry objects such as cylinders, plates and trihedrals and 
to observe how the interactions between them may affect the current model.

Finally, the proposed MAUCAZ algorithm could be developed further and 
employed with burried targets. Because of the relatively simple geometry 
of land-mines, it may be possible to detect the principal scattering-centres 
and distinguish them from large stones. Assuming that the separation of 
the clutter from the actual target is possible, the joint use of the Scattering- 
centrc extraction algorithm and the MAUCAZ algorithm would probably 
provide excellents results.
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