7 research outputs found

    АдаптивноС Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Ρ€Π΅ΠΉΡ„Π° Π±Π°Π·ΠΎΠ²ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ нСстационарных ΠΈ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… сигналов Π½Π° основС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° эмпиричСского разлоТСния

    Get PDF
    Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассматриваСтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ примСнСния эмпиричСской ΠΌΠΎΠ΄ΠΎΠ²ΠΎΠΉ Π΄Π΅ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ (Empirical Mode Decomposition, EMD) для устранСния Π΄Ρ€Π΅ΠΉΡ„Π° Π±Π°Π·ΠΎΠ²ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ биомСдицинских сигналов – измСряСмых Π² ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ΅ сигналов Π²Π½ΡƒΡ‚Ρ€ΠΈΡ‡Π΅Ρ€Π΅ΠΏΠ½ΠΎΠ³ΠΎ давлСния (Π’Π§Π”) ΠΈ элСктрокардиограммы (Π­ΠšΠ“). Для устранСния нСстационарной ΠΏΠΎΠΌΠ΅Ρ…ΠΈ ΠΈΠ· нСстационарных ΠΈ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… сигналов ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎΠ΅ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π° основС Π³Ρ€Π°Π΄ΠΈΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ LMS-Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π£ΠΈΠ΄Ρ€ΠΎΡƒ-Π₯ΠΎΡ„Ρ„Π° (Widrow-Hoff), Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ нСизвСст- Π½Ρ‹ΠΉ ΠΎΠΏΠΎΡ€Π½Ρ‹ΠΉ сигнал (Π²Ρ…ΠΎΠ΄ Π² Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½Ρ‹ΠΉ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€) прСдлагаСтся Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΠΌΠΎΠ΄ΠΎΠ²Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ (IMF) эмпиричСского разлоТСния исслСдуСмого сигнала. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠ°Ρ схСма Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ²Π°Π½ΠΈΡ, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π΄Π²ΡƒΡ…ΡˆΠ°Π³ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‰Π΅ срСднСй Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ, Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠΌ Π½ΠΈΠΆΠ½ΠΈΡ… частот Π½ΡƒΠ»Π΅Π²ΠΎΠΉ Ρ„Π°Π·Ρ‹ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка ΠΈ ΠΌΠ΅Π΄ΠΈΠ°Π½Π½Ρ‹ΠΌ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠΌ, ΠΏΠΎΠΊΠ°Π·Π°Π»Π° эффСктивноС ΡƒΠ΄Π°Π»Π΅Π½ΠΈΠ΅ Π΄Ρ€Π΅ΠΉΡ„Π° Π±Π°Π·ΠΎΠ²Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ Π’Π§Π” ΠΈ Π­ΠšΠ“ сигналов Π±Π΅Π· искаТСния ΠΈΡ… Ρ„ΠΎΡ€ΠΌΡ‹ Π»ΠΈΠ½ΠΈΠΉ.Π£ статті Ρ€ΠΎΠ·Π³Π»ΡΠ΄Π°Ρ”Ρ‚ΡŒΡΡ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ застосування Π΅ΠΌΠΏΡ–Ρ€ΠΈΡ‡Π½ΠΎΡ— ΠΌΠΎΠ΄ΠΎΠ²ΠΎΡ— Π΄Π΅ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†Ρ–Ρ— (Empirical Mode Decomposition, EMD) для усунСння Π΄Ρ€Π΅ΠΉΡ„Ρƒ Π±Π°Π·ΠΎΠ²ΠΎΡ— Π»Ρ–Π½Ρ–Ρ— Π½Π° ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Ρ– Π±Ρ–ΠΎΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΈΡ… сигналів – Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½ΠΈΡ… Ρƒ ΠΊΠ»Ρ–Π½Ρ–Ρ†Ρ– сигналів Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½ΡŒΠΎΡ‡Π΅Ρ€Π΅ΠΏΠ½ΠΎΠ³ΠΎ тиску (Π’Π§Π’) Ρ– Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΊΠ°Ρ€Π΄Ρ–ΠΎΠ³Ρ€Π°ΠΌΠΈ (Π•ΠšΠ“). Для усунСння нСстаціонарної Π·Π°Π²Π°Π΄ΠΈ Π· нСстаціонарних Ρ– Π½Π΅Π»Ρ–Π½Ρ–ΠΉΠ½ΠΈΡ… сигналів Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡ”Ρ‚ΡŒΡΡ Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½Π΅ Ρ„Ρ–Π»ΡŒΡ‚Ρ€ΡƒΠ²Π°Π½Π½Ρ Π½Π° основі Π³Ρ€Π°Π΄Ρ–Ρ”Π½Ρ‚Π½ΠΎΠ³ΠΎ LMS-Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ Π£Ρ—Π΄Ρ€ΠΎΡƒ-Π₯ΠΎΡ„Ρ„Π° (Widrow-Hoff), Ρƒ якому Π½Π΅Π²Ρ–Π΄ΠΎΠΌΠΈΠΉ ΠΎΠΏΠΎΡ€Π½ΠΈΠΉ сигнал (Π²Ρ…Ρ–Π΄ Π² Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΈΠΉ Ρ„Ρ–Π»ΡŒΡ‚Ρ€) ΠΏΡ€ΠΎΠΏΠΎΠ½ΡƒΡ”Ρ‚ΡŒΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ²Π°Ρ‚ΠΈ Π·Π° допомогою Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½Ρ–Ρ… ΠΌΠΎΠ΄ΠΎΠ²ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΉ (IMF) Π΅ΠΌΠΏΡ–Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ розкладання дослідТуваного сигналу. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Π° схСма Ρ„Ρ–Π»ΡŒΡ‚Ρ€ΡƒΠ²Π°Π½Π½Ρ, Ρƒ порівнянні Π· ΡˆΠΈΡ€ΠΎΠΊΠΎ використовуваними ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π΄Π²ΠΎΠΊΡ€ΠΎΠΊΠΎΠ²ΠΎΡ— ΠΊΠΎΠ²Π·Π½Π΅ ΡΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΡ— Ρ„Ρ–Π»ΡŒΡ‚Ρ€Π°Ρ†Ρ–Ρ—, Ρ„Ρ–Π»ΡŒΡ‚Ρ€ΠΎΠΌ Π½ΠΈΠΆΠ½Ρ–Ρ… частот Π½ΡƒΠ»ΡŒΠΎΠ²ΠΎΡ— Ρ„Π°Π·ΠΈ ΠΏΠ΅Ρ€ΡˆΠΎΠ³ΠΎ порядку Ρ– ΠΌΠ΅Π΄Ρ–Π°Π½Π½ΠΈΠΌ Ρ„Ρ–Π»ΡŒΡ‚Ρ€ΠΎΠΌ, ΠΏΠΎΠΊΠ°Π·Π°Π»Π° Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Π΅ усунСння Π΄Ρ€Π΅ΠΉΡ„Ρƒ Π±Π°Π·ΠΎΠ²ΠΈΡ… Π»Ρ–Π½Ρ–ΠΉ Π’Π§Π’ Ρ– Π•ΠšΠ“ сигналів Π±Π΅Π· спотворСння Ρ—Ρ… Ρ„ΠΎΡ€ΠΌΠΈ Π»Ρ–Π½Ρ–ΠΉ.The goal of that work is check of the effectiveness of the presented EMD-method and the Widrow-Hoff gradient LMS-method for the baseline wander removal at ICP and electrocardiogram (ECG) signals, and comparison of the suggested method with statistically direct algorithms. The removal of such interference is a very important step in the preprocessing stage of essential medical signals for getting desired signal for clinical diagnoses. At this article a new method signal filtering was presented, in which the reconstruction of the reference signal is conditioned by lower frequency IMFs. This method does not use any preprocessing and post processing, and does not require prior estimates. The proposed filtering scheme, as compared to the widely used of a two-stage moving-average filter, lowpass-IIR and median filters, showed the effective baseline wander removal of ICP and EKG of signals without distortion of their waveform signals

    Localization of Active Brain Sources From EEG Signals Using Empirical Mode Decomposition: A Comparative Study

    Get PDF
    The localization of active brain sources from Electroencephalogram (EEG) is a useful method in clinical applications, such as the study of localized epilepsy, evoked-related-potentials, and attention deficit/hyperactivity disorder. The distributed-source model is a common method to estimate neural activity in the brain. The location and amplitude of each active source are estimated by solving the inverse problem by regularization or using Bayesian methods with spatio-temporal constraints. Frequency and spatio-temporal constraints improve the quality of the reconstructed neural activity. However, separation into frequency bands is beneficial when the relevant information is in specific sub-bands. We improved frequency-band identification and preserved good temporal resolution using EEG pre-processing techniques with good frequency band separation and temporal resolution properties. The identified frequency bands were included as constraints in the solution of the inverse problem by decomposing the EEG signals into frequency bands through various methods that offer good frequency and temporal resolution, such as empirical mode decomposition (EMD) and wavelet transform (WT). We present a comparative analysis of the accuracy of brain-source reconstruction using these techniques. The accuracy of the spatial reconstruction was assessed using the Wasserstein metric for real and simulated signals. We approached the mode-mixing problem, inherent to EMD, by exploring three variants of EMD: masking EMD, Ensemble-EMD (EEMD), and multivariate EMD (MEMD). The results of the spatio-temporal brain source reconstruction using these techniques show that masking EMD and MEMD can largely mitigate the mode-mixing problem and achieve a good spatio-temporal reconstruction of the active sources. Masking EMD and EEMD achieved better reconstruction than standard EMD, Multiple Sparse Priors, or wavelet packet decomposition when EMD was used as a pre-processing tool for the spatial reconstruction (averaged over time) of the brain sources. The spatial resolution obtained using all three EMD variants was substantially better than the use of EMD alone, as the mode-mixing problem was mitigated, particularly with masking EMD and EEMD. These findings encourage further exploration into the use of EMD-based pre-processing, the mode-mixing problem, and its impact on the accuracy of brain source activity reconstruction

    Statistical Properties and Applications of Empirical Mode Decomposition

    Get PDF
    Signal analysis is key to extracting information buried in noise. The decomposition of signal is a data analysis tool for determining the underlying physical components of a processed data set. However, conventional signal decomposition approaches such as wavelet analysis, Wagner-Ville, and various short-time Fourier spectrograms are inadequate to process real world signals. Moreover, most of the given techniques require \emph{a prior} knowledge of the processed signal, to select the proper decomposition basis, which makes them improper for a wide range of practical applications. Empirical Mode Decomposition (EMD) is a non-parametric and adaptive basis driver that is capable of breaking-down non-linear, non-stationary signals into an intrinsic and finite components called Intrinsic Mode Functions (IMF). In addition, EMD approximates a dyadic filter that isolates high frequency components, e.g. noise, in higher index IMFs. Despite of being widely used in different applications, EMD is an ad hoc solution. The adaptive performance of EMD comes at the expense of formulating a theoretical base. Therefore, numerical analysis is usually adopted in literature to interpret the behavior. This dissertation involves investigating statistical properties of EMD and utilizing the outcome to enhance the performance of signal de-noising and spectrum sensing systems. The novel contributions can be broadly summarized in three categories: a statistical analysis of the probability distributions of the IMFs and a suggestion of Generalized Gaussian distribution (GGD) as a best fit distribution; a de-noising scheme based on a null-hypothesis of IMFs utilizing the unique filter behavior of EMD; and a novel noise estimation approach that is used to shift semi-blind spectrum sensing techniques into fully-blind ones based on the first IMF. These contributions are justified statistically and analytically and include comparison with other state of art techniques

    Noise-assisted data processing with empirical mode decomposition in biomedical signals

    No full text

    ΠœΠ΅Ρ‚ΠΎΠ΄Π΅ Π·Π° ΠΎΡ†Π΅Π½Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Π΅ активности Π³Π»Π°Ρ‚ΠΊΠΈΡ… ΠΌΠΈΡˆΠΈΡ›Π°

    Get PDF
    Recording of the smooth stomach muscles' electrical activity can be performed by means of Electrogastrography (EGG), a non-invasive technique for acquisition that can provide valuable information regarding the functionality of the gut. While this method had been introduced for over nine decades, it still did not reach its full potential. The main reason for this is the lack of standardization that subsequently led to the limited reproducibility and comparability between different investigations. Additionally, variability between many proposed recording approaches could make EGG unappealing for broader application. The aim was to provide an evaluation of a simplified recording protocol that could be obtained by using only one bipolar channel for a relatively short duration (20 minutes) in a static environment with limited subject movements. Insights into the most suitable surface electrode placement for EGG recording was also presented. Subsequently, different processing methods, including Fractional Order Calculus and Video-based approach for the cancelation of motion artifacts – one of the main pitfalls in the EGG technique, was examined. For EGG, it is common to apply long-term protocols in a static environment. Our second goal was to introduce and investigate the opposite approach – short-term recording in a dynamic environment. Research in the field of EGG-based assessment of gut activity in relation to motion sickness symptoms induced by Virtual Reality and Driving Simulation was performed. Furthermore, three novel features for the description of EGG signal (Root Mean Square, Median Frequency, and Crest Factor) were proposed and its applicability for the assessment of gastric response during virtual and simulated experiences was evaluated. In conclusion, in a static environment, the EGG protocol can be simplified, and its duration can be reduced. In contrast, in a dynamic environment, it is possible to acquire a reliable EGG signal with appropriate recommendations stated in this Doctoral dissertation. With the application of novel processing techniques and features, EGG could be a useful tool for the assessment of cybersickness and simulator sickness.БнимањС Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Π΅ активности Π³Π»Π°Ρ‚ΠΊΠΈΡ… ΠΌΠΈΡˆΠΈΡ›Π° ΠΆΠ΅Π»ΡƒΡ†Π° ΠΌΠΎΠΆΠ΅ сС Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Ρ‚ΠΈ ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠΌ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ³Π°ΡΡ‚Ρ€ΠΎΠ³Ρ€Π°Ρ„ΠΈΡ˜Π΅ (Π•Π“Π“), Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ која ΠΏΡ€ΡƒΠΆΠ° Π·Π½Π°Ρ‡Π°Ρ˜Π½Π΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ˜Π΅ Π²Π΅Π·Π°Π½Π΅ Π·Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡΠ°ΡšΠ΅ ΠΎΡ€Π³Π°Π½Π° Π·Π° Π²Π°Ρ€Π΅ΡšΠ΅. Упркост Ρ‡ΠΈΡšΠ΅Π½ΠΈΡ†ΠΈ Π΄Π° јС ΠΎΡ‚ΠΊΡ€ΠΈΠ²Π΅Π½Π° ΠΏΡ€Π΅ вишС ΠΎΠ΄ Π΄Π΅Π²Π΅Ρ‚ Π΄Π΅Ρ†Π΅Π½ΠΈΡ˜Π°, ΠΎΠ²Π° Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ° још ΡƒΠ²Π΅ΠΊ нијС остварила свој ΠΏΡƒΠ½ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π». Основни Ρ€Π°Π·Π»ΠΎΠ³ Π·Π° Ρ‚ΠΎ јС нСдостатак ΡΡ‚Π°Π½Π΄Π°Ρ€Π΄ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ који условљава ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅ΡšΠ° Ρƒ смислу поновљивости ΠΈ упорСдивости ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ°. Π”ΠΎΠ΄Π°Ρ‚Π½ΠΎ, Π²Π°Ρ€ΠΈΡ˜Π°Π±ΠΈΠ»Π½ΠΎΡΡ‚ која јС присутна Ρƒ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΠΏΡ€Π΅ΠΏΠΎΡ€ΡƒΡ‡Π΅Π½ΠΈΡ… поступака снимања, ΠΌΠΎΠΆΠ΅ ΡΠΌΠ°ΡšΠΈΡ‚ΠΈ интСрСс Π·Π° ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Ρƒ Π•Π“Π“-Π° ΠΊΠΎΠ΄ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ опсСга ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½ΠΈΡ… корисника. Наш Ρ†ΠΈΡ™ јС Π±ΠΈΠΎ Π΄Π° ΠΏΡ€ΡƒΠΆΠΈΠΌΠΎ Π΅Π²Π°Π»ΡƒΠ°Ρ†ΠΈΡ˜Ρƒ ΠΏΠΎΡ˜Π΅Π΄Π½ΠΎΡΡ‚Π°Π²Ρ™Π΅Π½Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ ΠΌΠ΅Ρ€Π΅ΡšΠ° Ρ‚Ρ˜. ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° који ΡƒΠΊΡ™ΡƒΡ‡ΡƒΡ˜Π΅ само јСдан ΠΊΠ°Π½Π°Π» Ρ‚ΠΎΠΊΠΎΠΌ Ρ€Π΅Π»Π°Ρ‚ΠΈΠ²Π½ΠΎ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ³ врСмСнског ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° (20 ΠΌΠΈΠ½ΡƒΡ‚Π°) Ρƒ статичким условима са ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΌ ΠΊΡ€Π΅Ρ‚Π°ΡšΠ΅ΠΌ ΡΡƒΠ±Ρ˜Π΅ΠΊΡ‚Π° Ρ‚Ρ˜. Ρƒ ΠΌΠΈΡ€ΠΎΠ²Π°ΡšΡƒ. Π’Π°ΠΊΠΎΡ’Π΅, ΠΏΡ€ΠΈΠΊΠ°Π·Π°Π»ΠΈ смо нашС ставовС Ρƒ Π²Π΅Π·ΠΈ Π½Π°Ρ˜ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½ΠΈΡ˜Π΅ ΠΏΠΎΠ·ΠΈΡ†ΠΈΡ˜Π΅ ΠΏΠΎΠ²Ρ€ΡˆΠΈΠ½ΡΠΊΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π° Π·Π° Π•Π“Π“ снимањС. ΠŸΡ€Π΅Π·Π΅Π½Ρ‚ΠΎΠ²Π°Π»ΠΈ смо ΠΈ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π΅ ΠΈΡΠΏΠΈΡ‚ΠΈΠ²Π°ΡšΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, Π½Π° Π±Π°Π·ΠΈ ΠΎΠ±Ρ€Π°Π΄Π΅ Π²ΠΈΠ΄Π΅ΠΎ снимка ΠΊΠ°ΠΎ ΠΈ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½ΠΎΠ³ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½ΠΎΠ³ Ρ€Π°Ρ‡ΡƒΠ½Π°, Π·Π° ΠΎΡ‚ΠΊΠ»Π°ΡšΠ°ΡšΠ΅ Π°Ρ€Ρ‚Π΅Ρ„Π°ΠΊΠ°Ρ‚Π° ΠΏΠΎΠΌΠ΅Ρ€Π°Ρ˜Π° – јСдног ΠΎΠ΄ Π½Π°Ρ˜Π²Π΅Ρ›ΠΈΡ… ΠΈΠ·Π°Π·ΠΎΠ²Π° са којима јС суочСна Π•Π“Π“ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°. Π—Π° Π•Π“Π“ јС ΡƒΠΎΠ±ΠΈΡ‡Π°Ρ˜Π΅Π½ΠΎ Π΄Π° сС користС Π΄ΡƒΠ³ΠΎΡ‚Ρ€Π°Ρ˜Π½ΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»ΠΈ Ρƒ статичким условима. Наш Π΄Ρ€ΡƒΠ³ΠΈ Ρ†ΠΈΡ™ Π±ΠΈΠΎ јС Π΄Π° прСдставимо ΠΈ ΠΎΡ†Π΅Π½ΠΈΠΌΠΎ употрСбљивост супротног приступа – ΠΊΡ€Π°Ρ‚ΠΊΠΎΡ‚Ρ€Π°Ρ˜Π½ΠΈΡ… снимања Ρƒ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈΠΌ условима. Π Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π»ΠΈ смо ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ΅ Π½Π° ΠΏΠΎΡ™Ρƒ ΠΎΡ†Π΅Π½Π΅ активности ΠΆΠ΅Π»ΡƒΡ†Π° Ρ‚ΠΎΠΊΠΎΠΌ појавС симптома ΠΌΡƒΡ‡Π½ΠΈΠ½Π΅ ΠΈΠ·Π°Π·Π²Π°Π½Π΅ Π²ΠΈΡ€Ρ‚ΡƒΠ΅Π»Π½ΠΎΠΌ Ρ€Π΅Π°Π»Π½ΠΎΡˆΡ›Ρƒ ΠΈ ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜ΠΎΠΌ воТњС. Π—Π° ΠΏΠΎΡ‚Ρ€Π΅Π±Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ Π·Π° ΠΎΡ†Π΅Π½Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Π΅ активности ΠΆΠ΅Π»ΡƒΡ†Π°, ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ»ΠΈ смо Ρ‚Ρ€ΠΈ Π½ΠΎΠ²Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π·Π° ΠΊΠ²Π°Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Ρƒ Π•Π“Π“ сигнала (Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρƒ врСдност Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Π΅, ΠΌΠ΅Π΄ΠΈΡ˜Π°Π½Ρƒ ΠΈ крСст Ρ„Π°ΠΊΡ‚ΠΎΡ€) ΠΈ ΠΈΠ·Π²Ρ€ΡˆΠΈΠ»ΠΈ ΠΏΡ€ΠΎΡ†Π΅Π½Ρƒ ΡšΠΈΡ…ΠΎΠ²Π΅ прикладности Π·Π° ΠΎΡ†Π΅Π½Ρƒ гастроинтСстиналног Ρ‚Ρ€Π°ΠΊΡ‚Π° Ρ‚ΠΎΠΊΠΎΠΌ ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ° Π²ΠΈΡ€Ρ‚ΡƒΠ΅Π»Π½Π΅ рСалности ΠΈ симулатора воТњС. Π—Π°ΠΊΡ™ΡƒΡ‡Π°ΠΊ јС Π΄Π° Π•Π“Π“ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ» Ρƒ статичким условима ΠΌΠΎΠΆΠ΅ Π±ΠΈΡ‚ΠΈ ΡƒΠΏΡ€ΠΎΡˆΡ›Π΅Π½ ΠΈ њСгово Ρ‚Ρ€Π°Ρ˜Π°ΡšΠ΅ ΠΌΠΎΠΆΠ΅ Π±ΠΈΡ‚ΠΈ Ρ€Π΅Π΄ΡƒΠΊΠΎΠ²Π°Π½ΠΎ, Π΄ΠΎΠΊ јС Ρƒ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈΠΌ условима ΠΌΠΎΠ³ΡƒΡ›Π΅ снимити ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›ΠΈ Π•Π“Π“ сигнал, Π°Π»ΠΈ ΡƒΠ· ΠΏΡ€Π°Ρ›Π΅ΡšΠ΅ ΠΏΡ€Π΅ΠΏΠΎΡ€ΡƒΠΊΠ° Π½Π°Π²Π΅Π΄Π΅Π½ΠΈΡ… Ρƒ овој Ρ‚Π΅Π·ΠΈ. Π£ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠΌ Π½ΠΎΠ²ΠΈΡ… Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ° Π·Π° ΠΏΡ€ΠΎΡ†Π΅ΡΠΈΡ€Π°ΡšΠ΅ сигнала ΠΈ ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½ ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π°, Π•Π“Π“ ΠΌΠΎΠΆΠ΅ Π±ΠΈΡ‚ΠΈ корисна Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ° Π·Π° ΠΎΡ†Π΅Π½Ρƒ ΠΌΡƒΡ‡Π½ΠΈΠ½Π΅ ΠΈΠ·Π°Π·Π²Π°Π½Π΅ ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ΠΌ симулатора ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π° Π²ΠΈΡ€Ρ‚ΡƒΠ΅Π»Π½Π΅ рСалност
    corecore