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ABSTRACT

Statistical Properties and Applications of Empirical Mode Decomposition

by

Mahdi H. Al-Badrawi

University of New Hampshire, September, 2017

Signal analysis is key to extracting information buried in noise. The decomposition of signal

is a data analysis tool for determining the underlying physical components of a processed

data set. However, conventional signal decomposition approaches such as wavelet analysis,

Wagner-Ville, and various short-time Fourier spectrograms are inadequate to process real

world signals. Moreover, most of the given techniques require a prior knowledge of the pro-

cessed signal, to select the proper decomposition basis, which makes them improper for a wide

range of practical applications. Empirical Mode Decomposition (EMD) is a non-parametric

and adaptive basis driver that is capable of breaking-down non-linear, non-stationary signals

into an intrinsic and finite components called Intrinsic Mode Functions (IMF). In addition,

EMD approximates a dyadic filter that isolates high frequency components, e.g. noise, in

higher index IMFs. Despite of being widely used in different applications, EMD is an ad

hoc solution. The adaptive performance of EMD comes at the expense of formulating a

theoretical base. Therefore, numerical analysis is usually adopted in literature to interpret

the behavior.

This dissertation involves investigating statistical properties of EMD and utilizing the

xiv



outcome to enhance the performance of signal de-noising and spectrum sensing systems.

The novel contributions can be broadly summarized in three categories: a statistical anal-

ysis of the probability distributions of the IMFs and a suggestion of Generalized Gaussian

distribution (GGD) as a best fit distribution; a de-noising scheme based on a null-hypothesis

of IMFs utilizing the unique filter behavior of EMD; and a novel noise estimation approach

that is used to shift semi-blind spectrum sensing techniques into fully-blind ones based on

the first IMF. These contributions are justified statistically and analytically and include

comparison with other state of art techniques.
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CHAPTER 1

Introduction

1.1 Motivation

A signal is the result of a sensor measurement or readings and it consists of useful infor-

mation embedded in some level of noise. Signal examples include but are not limited to

biomedical, electrical faults, health monitoring, Global Positioning System (GPS), seismic,

climate, wireless communication, and mechanical vibrations. The signal received from the

aforementioned examples is the link to understand the underlying features of a given process,

in which signal analysis is the interpretation key of that link. On the other hand, the use

of a proper signal analysis technique will result in a significant support in making a valid

decision such as estimation, detection, and recognition [3]. Further, signal interpretation is

necessary whether the particular measurement carry useful information or just a noise. For

example, analyzing a wireless signal at a certain frequency band can help greatly to decide

if that band is carrying any information or not and that is the basic concept of spectrum

sensing techniques.

Practically, signals are multi-component, non-linear and non-stationary in nature, there-

fore, decomposition process is the way to extract its physical meaningful components. In that

sense, separating, or decomposing, such multicomponent to their basic scales is rather essen-

tial to reveal the underlying physical characteristics of these measurements. Conventional

decomposition techniques such as wavelet analysis, Wagner-Ville, and various short-time

Fourier spectrograms are incapable of processing such signals efficiently. In addition, con-

ventional techniques can either work effectively for non-linear signals or for non-stationary
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signals, but none are able to accommodate for both [4]. The robustness of a decomposition

method can be examined by its ability to:

• effectively decompose non-linear and non-stationary signals.

• adaptively derive the decomposition basis out of the signal itself.

• extrat the signal features in the presence of noise.

• represent the signal frequencies locally, i.e. at their time of occurence.

Generally, Fourier Spectral analysis is the most widely used approach in data interpre-

tation due to its simplicity in both theory and applicability. Nevertheless, the performance

of Fourier analysis approaches is captivated by several limitations such as linearity and sta-

tionarity of the processed data. Moreover, and in terms of signal representation, Fourier

approaches, such as Short-Time Fourier Transform STFT, (an extension of the basic Fourier

transform with short time sliding window), lack the adaptive behavior as it is based on a

priori basis and suffer from energy leakage. The Wigner-Ville function is another example

of Fourier analysis in which the window is shifted copy of the processed signal itself. Be-

cause this method (Wigner-Ville) is derived from Fourier analysis, thus it suffers from all

constraints that Fourier analysis exhibit [5].

On the other hand, wavelet approaches represent an advanced version of Fourier Spectral

methods with a predefined window in which each window (wavelet function) can be adjusted

for a specific application. Although wavelets have been proved with mathematical rigor, ver-

satile for different applications, and have the ability to analyze non-stationary signal, wavelet

methods are non-adaptive in which the decomposition basis are selected a priori. Empiri-

cal Orthogonal Function (EOF) is an example of a posteriori basis decomposition example

where the basis are derived from the data [6]. In this method, the basis are obtained by

calculating the eigenvectors from the covariance matrix of the processed data. Despite of the

orthogonality of EOF basis, its output modes do not guarantee a meaningful representation

of the data in which even random processes might reveal falsely a physical pattern [7].
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Thus, in order to alleviate the drawbacks of the aforementioned decomposition methods,

the Empirical Mode Decomposition (EMD), which is the key component of Hilbert-Huang

Transform (HHT), is adopted in this work [8]. EMD is an adaptive data driven tool with

basis that are defined a posteriori and a capability to analyze non-linear and non-stationary

signals effectively. Beside its ability to extract signal features, EMD has the advantage of

decomposing signals locally and that is becomes significant when the signal varies with time.

The adaptive behavior of EMD comes at the expense of formulating a mathematical frame,

therefore this approach is empirical.

Fig. 1.1 illustrates a comparative diagram of different data analysis methods with respect

to their adaptivity, robustness and complexity. The term, adaptivity, refers to ability of a

method to derive its basis from the processed signal itself and not a priori. On the other hand,

the term, robustness, refers to the ability of a method to extract signal features regardless of

the non-linearity and non-stationarity of the processed signal. Further, the term, complexity,

refers to the arithmetic operations of an algorithm to process N samples. From Fig. 1.1, the

complexity level for Fourier transform [9], and Wavelet transform [10] are shown to be less

than the EOF [11] and EMD [12] and close to Wigner-ville distribution [13].

1.1.1 Significance of EMD Statistical Properties

In recent years, EMD gained a lot of attention and has been applied in different areas

because of the unique properties and the superior performance. Despite its use, successfully,

in various applications, EMD still lacks a theoretical basis and is defined as an algorithm

with no analytical interpretation [14]. Therefore, it is essential to understand its statistical

properties and analyze its behavior to be utilized in real world applications.

Applying EMD algorithm on a time-series signal will result in a complete and finite set

of components called Intrinsic Mode Functions (IMFs). The statistical characteristics of

these IMFs are studied in literature and it has been conducted to have a significant influence

on the way EMD is applied for various applications [3]. One of the important aspects of

3



Figure 1.1: A comparative diagram to classify different data analysis methods based on their
adaptivity, robustness and complexity level.

understanding the behavior of EMD process led to conclude that the EMD resembles a dyadic

filter (similar to wavelet) in which IMFs play the role of overlapping bandpass filters [15].

Thereafter, the filter bank properties make it more obvious that the findings of other filter

bank techniques can be applied in EMD effectively. On the other hand, the investigation

of the probability distribution functions of the IMFs supports such filtering features and

provides insight to develop more advanced adaptive filtering methods [16].

1.1.2 Significance of Signal De-noising

The aim of de-noising is to recover useful information buried in noisy measurement pro-

cesses while retain its features unaltered. However, noise is an inevitable part of any real

collected data and might vary from highly correlated to uncorrelated with the corrupted

signal. Different filters have been proposed such as linear filters and transform-based meth-

ods. However, these techniques are vulnerable to signal changing characteristics and/or prior

filter parameter assumptions [16].
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Filtering through EMD comes quite natural, in which the relevant modes corresponding

to the signal components (almost noise free) are separated during the sifting operation.

However, selecting the relevant IMFs is a critical process especially in the presence of high

noise power. Unfortunately, analytical expressions of the signal IMFs are not available.

Thus, most of the important results on the EMD are all based on the empirically determined

findings from numerical experiments.

1.1.3 Significance of Signal Detection

Signal detection is the process of deciding whether a certain measure (either in time or

frequency domain) is occupied with information or if it comprises noise only. Cognitive

radio is one of the most contemporary approaches that is relied on the concept of detection

theory. Cognitive radio enables the use of radio spectrum that is underutilized due to the

fix allocation of frequency bands. In the physical layer of cognitive radio, spectrum sensing

plays a key role in detecting the holes (vacant channels) for a given band. Further, energy

detection (ED) is used widely for spectrum sensing purposes due to its non-coherent nature

and low computational complexity [17].

More recently, Empirical Mode Decomposition (EMD) has been proposed as a detection

method for wireless applications. EMD works adaptively and blindly to decompose time-

series signals into a set of modes (IMFs) that can be utilized for detection purposes. Similar

to ED, EMD behaves non coherently towards the received signals in which it requires no

prior information about the signal characteristics.

1.1.4 Significance of Noise Power Estimation

In practical scenarios, signals are corrupted with noise unavoidably. Further, the noise

power characteristics is unknown at the receiver and range from very mild (high SNR)

to very severe (low SNR). If the noise power is incorrectly assumed, the spectrum energy

detector for example, may result in a significant degradation in performance and might yield
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in false decisions. Therefore, noise power estimation is required to mitigate the impact of

the presumptions and its consequences.

Empirical Mode Decomposition algorithm can be used for noise power estimation because

it has a unique ability to process noise. In wireless communications, an accurate estimation

of the noise power could enhance the quality of the communication link by tuning of the

transmitter and receiver parameters. Further, the knowledge of the estimated noise power

can be used to calculate the SNR which is an indication of the communication channel

reliability.

1.2 Dissertation Contributions

In this work, the aim is to investigate the EMD sifting process and represent the IMF’s

probability distribution functions in more general representation in which the existing fitting

distributions are seen as special cases. The understanding of IMF probability distributions

is used for de-noising purposes in which an adaptive filter based on EMD characteristics is

designed. In addition, the first IMF statistical features is utilized to propose a blind noise

estimation approach that can be applied to shift semi-blind spectrum sensing methods to

fully-blind ones. In this sense, the contributions of our research can be outlined as follows:

1. Modeling the Intrinsic Mode Functions of input signal distributions using Generalized

Gaussian distribution (GGD) and validate that model via null hypothesis test [18].

2. Investigating of the IMFs statistical properties when random variables of different

distributions are decomposed by EMD. The outcome of this investigation led to an

important result that for an unknown distributed signal, the generated IMFs will be a

set of GGD modes and residual.

3. Proposing a novel scheme for signal de-noising based on the null hypothesis of the

Generalized Gaussian distribution of Intrinsic Mode Functions [18]. This includes an
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evaluation of IMF models including the well-known Gaussian, Laplacian and the GGD

in different scenarios and compare these models from different perspectives.

4. Proposing a multi-channel detection methods based on the behavior of Intrinsic Mode

Function energies in frequency domain [1, 2]. Further, analyzing the properties of the

first Intrinsic Mode Function and use its unique features for signal detection [19,20].

5. Proposed a novel approach for noise estimation using the characteristics of the first

Intrinsic Mode Function and apply that approach to enhance the performance of noise-

dependent spectrum sensing techniques such as energy detectors [21].

1.3 Dissertation Layout

This dissertation is outlined as follows:

• Chapter 2 addresses the theoretical background of the Empirical Mode Decomposition

algorithm associated with sifting process parameters. Further, examples on the ability

of EMD to sift different scales out of the composite signal is presented. On the other

hand, a literature review of the EMD statistical properties is outlined followed by

review of signal de-noising and spectrum sensing methods.

• Chapter 3 includes a statistical analysis of the Intrinsic Mode Functions and an in-

vestigation of its probability distribution functions. From the statistical findings, a

de-noising scheme based on the null hypothesis of IMFs is proposed and examined in

different scenarios for various types of signals.

• Chapter 4 covers the use of EMD properties in filtering to propose an adaptive spectrum

sensing technique. The proposed technique is blind in which it does not required a

predefined parameters or a knowledge of the received signal characteristics such as the

noise variance. The performance of the proposed technique is evaluated under low

signal to noise ratio regimes and different sampling rates.
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• Chapter 5 includes a novel noise power estimation method based on the scaling of

the first IMF and use that knowledge of the noise power to shift the semi-blind spec-

trum sensing techniques to blind ones. The proposed method is explained analytically

and demonstrated to exhibit good performance in contrast to the other noise power

estimation techniques.

• Chapter 6 covers the conclusion remarks of this dissertation including the findings and

their importance in addition to the future work.
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CHAPTER 2

Background

In this chapter, the pertinent background to the performed and the proposed contributions

are presented. The theoretical definition of the Empirical Mode Decomposition algorithm

and its sifting process is addressed with illustration examples. A literature review of all

recent and relevant findings in the EMD domain and it applications in both de-noising and

detection is outlined.

2.1 Empirical Mode Decomposition: Theoretical Background

2.1.1 EMD Algorithm

Empirical Mode Decomposition is an adaptive approach that is used to analyze non-linear

and non-stationary signals. This technique decomposes time-series signals, through the

sifting process, into a complete and finite set of amplitude and frequency modulation (AM-

FM) oscillatory components called Intrinsic Mode Functions (IMFs). Sifting process is the

key concept of the EMD in which the iteration will continue over the processed signal until

a stoppage criteria is satisfied. However, the number of iterations over each sifted IMF is a

function of the signal length and its smoothness. The IMF must satisfy the following two

conditions: (1) the number of extrema and the number of zero-crossings must be either equal

or differ at most by one for the entire data set. (2) The mean value of the envelope defined

by the local maxima and by the local minima is zero, at any point.

If y(n) was the processed signal, where n is the sample index, thus the EMD algorithm

procedure can be summarized as follows:
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1. Initialize the input r(n) as y(n) (the residue signal).

2. Identify extrema points of r(n): maxima and minima.

3. Interpolate maxima and minima points to form the upper and lower envelopes emax(n)

and emin(n) respectively.

4. Evaluate the mean: m(n) = (emin(n) + emax(n))/2.

5. Extract the detailed signal: h(n) = r(n)−m(n).

6. If h(n) does not satisfy the stoppage criteria, then the process is repeated and h(n) is

the input to step (2).

7. If h(n) satisfies the stoppage criteria, then h(n) is the jth IMF. The residue is y(n) =

r(n) − IMFj(n). If the number of zero crossings of the residue <2, then break the

process and keep the last collected signal as a trend. Otherwise, back to step (1) with

the residue as the input.

The original input signal can be reconstructed as the sum of the IMFs and the trend such

that:

ŷ(n) = T (n) +
M∑
i=1

IMFi(n) (2.1)

where, ŷ(n) is the reconstructed signal, T (n) is the trend of y(n) (or residual) and M is the

number of sifted IMFs.

2.1.2 Sifting process parameters

EMD is an algorithmic-based technique that does not hold a rigor mathematical definition.

However, the sifting process represents a unique and powerful phase of EMD that compen-

sated the lacking of theoretical framework.

In the sifting process, two parameters are mainly investigated in the literature and they

are given as follows:
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Stoppage criteria

The stoppage criteria is suggested to halt the sifting process at a point that ensure a com-

pleteness of the physical meaning for the extracted IMF. In that sense, several stoppage

criteria have been proposed [8, 22,23].

In [8], Cauchy convergence test, which is defined as a normalized squared difference (SD)

between two successive sifting operations, is used such that:

SDk =

∑N
n=0 |hk−1(n)− hk(n)|2∑N

n=0 h
2
k−1

(2.2)

where hk is the kth extracted signal through the sifting, and k is the iteration number. If

SDk is smaller than the predetermined value (0.2 ∼ 0.3), the sifting process will be stopped.

In [22], Huang et al. suggested another stoppage criteria called S-number. S-number

is a pre-selected parameter that is is used to stop the sifting process whenever the number

of zero-crossings and extrema stay same or almost differ by one after S-consecutive times.

Generally, S-Number selection is ad-hoc, however, Huang et al. established an empirical

guide, and he found that for optimal sifting, the range of S-number should be set between 4

and 8.

In [23], the authors proposed two thresholds (θ1 and θ2) approach that endeavor to retain

locally large deviations and globally small mean oscillations of the extracted IMF. For that

purpose, the authors introduced two terms namely: mode amplitude a(n), and evaluation

function η(n), such that:

a(n) =
emax(n)− emin(n)

2

η(n) = |m(n)

a(n)
|

Herein, the sifting process will iterate until the following condition is satisfied:
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η(n)<θ1 : (1− ϑ) of total IMF duration

η(n)<θ2 : ϑ of total IMF duration

where the authors set ϑ ≈ 0.05, θ1 ≈ 0.05 and θ2 ≈ 10θ1 as a default values.

Interpolation approaches

In EMD domain, the interpolation is the process of connecting the identified extrema (max-

ima/minima) to form the upper and lower envelopes respectively. To this end, different

interpolation approaches have been proposed aiming for more efficient decomposition pro-

cess. In [8], Huang et al. suggested the use of cubic spline interpolation to fit all maxima

(resp. minima) data points. However, Huang et al. conducted that higher order splines

required extra computational time and more parameters have to be determined and that is

discrediting the adaptivity of the approach. In [24], the authors proposed the rational splines

that include the cubic spline as a special case, however, this method is performing better if

only the pole parameter that controls the tautness of the spline, is tuned carefully. In [25],

raised cosine interpolation is proposed to provide more efficient implementation as the pro-

posed approach is based on fast Fourier transform. However, this method of interpolation is

dependent on the roll-off factor and the sampling period which in turns is signal-dependent

leading to not a fully adaptive EMD approach.

2.1.3 Examples on EMD sifting and IMFs extraction

To further illustrate the mechanism of sifting process that led to extract IMFs, the following

two examples are presented:

Example 2.1.1. In the first example, the EMD algorithm is applied on a multicomponent

signal that consist of two tones of equal amplitudes, A, and zero phase shifts in which the

frequency of the first tone (f1) is double of that in the second tone (f2) such that:
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Figure 2.1: The first iteration of sifting process after applying EMD algorithm on s(n)

s(n) = s1(n) + s2(n)

where s1(n) and s2(n) are defined as follows:

s1(n) = A sin(2πf1t) (2.3)

s2(n) = A sin(2πf2t)

The sifting process starts by identifying the local maxima and the local minima of s(n),

then a cubic spline interpolation (3rd order) is applied to connect these extrema (maxi-

ma/minima) to form the upper and lower envelopes respectively. Subsequently, the mean,

m(n), of the upper and lower envelopes are calculated and subtracted from s(n) to obtain

the residue in which the residue is tested for stoppage criteria condition to decide whether

it is IMF or not. Fig. 2.1 illustrates the sifting process after applying EMD on s(n).

Example 2.1.2. In the second example, the signal s(n), defined in Example (2.1.1), is

contaminated with a white Gaussian noise (wGn) as follows:
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Figure 2.2: The upper figure shows the first sifted IMF (IMF1) in contrast to the tone s1(n)
and the lower figure shows the second IMF (IMF2) in contrast to the tone s2(n)

y(n) = s(n) + w(n)

where y(n) is the noisy version of s(n) and w(n) is independent and identically distributed

(i.i.d.) white noise with zero-mean and variance σ2
w i.e. w(n) = N (0, σ2

w).

Similar to Example (2.1.1), the EMD algorithm is applied on y(n) and the sifting process

is shown in Fig. 2.3. From that figure, it is obvious that IMF1 carries the highest frequency

of the processed signal which is in this case the white Gaussian noise, w(n). Similarly, IMF2

and IMF3 sift the residual of the highest frequency components (mostly noise). However,

it is noticeable that IMF4 and IMF5 sifted the frequency of s1(n) and s2(n) reflecting the

behavior of dyadic filter. Herein, it becomes clear that EMD works as a natural and adaptive

signal separation technique with an advantage of extracting the signal features in noisy

environments.

Another illustration is given in Fig. 2.4 in which the Power Spectral Density (PSD)
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Figure 2.3: The first 6 IMFs and the corresponding s1(n) and s2(n) tones

of the processed signal, y(n), and the corresponding IMFs (IMF4 and IMF5) are presented

in frequency domain. From that figure, under sufficient sampling rate (>Nyquist rate),

the EMD decomposed the processed signal from highest to lowest frequency resembling the

behavior filter bank.

2.1.4 Sampling Rate Effect on EMD Performance

Originally, Empirical Mode Decomposition was designed to process continuous signals and

hence any discontinuity can be misinterpreted as a signal component, thus oversampling is

required for practical applications [3]. In [26], experiments have been performed to establish

an EMD sampling limit. It was conducted that when the frequency of the processed signal

approaches the sampling frequency, the EMD performance will degrade due to low amplitude

resolution. However, it was found that a sampling frequency needs to be 5 times the Nyquist

rate (2 × fmax, where fmax is the highest frequency in the processed signal) in order to sift

all possible features of the processed signal.
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Figure 2.4: The Power Spectral Density of y(n) and the corresponding IMFs

In [27], the authors studied the influence of the sampling on the EMD performance

and illustrated possible sampling rate requirements. Moreover, the authors stated that the

oversampling requirement is independent from the Nyquist criterion and is more related

to reducing discontinuities in the signal. If the input to the EMD process is sampled at

the Nyquist rate and an extremum (maximum/minimum pair) is lost during the sampling

process thus, a local oscillation for the EMD process will not be determined in the sifting

process. In [28], the proper sampling bound is selected based on a derived distribution model

of white Gaussian noise whereas the deviation from this model indicates that the sampling

rate is not sufficient enough to extract the information of the processed signal. In [29], the

authors used a sampling rate of 50 times faster the Nyquist rate to fulfill the oversampling

condition of EMD process.

2.1.5 EMD Applications

Despite of its empirical bases, EMD has gained a significant importance due to its robustness

and superiority over other analogues. EMD has been applied into different data analysis fields

of research, some of these fields are summarized as follows:
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• Biomedical measurements: include features extractions [30,31], de-noising [16,18],

and seizure detection [32]

• Wireless communications: include radar systems [33, 34], satellite faults diagnosis

[35], overlay communications [36,37], and spectrum sensing in cognitive radio networks

[1, 2, 21, 38]

• Faults analysis: include Power quality assessment [39], Damage detection [40, 41],

and Structural health monitoring [42]

• Speech processing: include speech noise suppression [43], speech recognition [44],

and speech watermarking [45]

• Image processing: include image analysis [46], image watermarking [47], and image

compression [48]

2.2 Literature Review

In this section, a review of the recent works that are related to our contributions and the pro-

posed research is presented. This section is categorized in three different; however, coherent;

areas begin with a review of the statistical analysis of the IMF properties. The de-noising

problem is reviewed and the focus will be mainly on the EMD-based techniques in addition to

other recent researches. In the detection category, the cognitive radio field with its key part,

spectrum sensing, will be reviewed by addressing the most important related techniques.

2.2.1 Empirical Mode Decomposition: Statistical Properties Review

The EMD output mode, IMFs, and the decomposition sifting process have been investi-

gated and analyzed statistically to understand its associated properties and underlying fea-

tures [15, 49, 50]. Wu and Huang studied the statistical characteristics of IMFs of white

Gaussian noise (wGn) and they concluded that the IMFs will approximately follow a Gaus-

sian distribution [49]. Flandrin et al. analyzed fractional Gaussian noise (fGn) and came to
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a similar conclusion [15]. The phrase ‘approximately Gaussian distributed’ is used by both

research groups loosely and has no strict mathematical meaning.

In addition to the aforementioned attempts to determine the statistical characteristics

of IMFs, G. Schlotthauer et al. investigated the effect of the number of samples and the

number of sifting iterations on the properties of the IMFs [50]. The later research group

remarked that the probability density functions, pdf , of the IMFs are strongly dependent

on the data length and on the maximum allowed number of iterations. However, unlike the

findings in [15,49], they observed (after applying two normality test methods) that many of

the collected IMFs can have a Laplacian or a multi-modal rather than a Gaussian distribution

except for few cases. Tseng and Lee proposed a two step entropic method to study IMF’s

properties by using a Bayesian interpretation of the resulting probabilities [28]. The two

step entropic method involves in its first step clustering the resulted IMFs into two groups

in which the first group contains the first set of IMFs, and the second group consists of the

rest. The second step includes calculating the relative entropy between the input signal and

each cluster in which minimum relative entropy indicates the presence of information.

2.2.2 Signal De-noising Review

Signal de-noising is a widely used term in signal processing which refers to removing the

noise corruption to measurements such as biomedical, seismic, faults, and speech signals

to name some. In this review, the focus will be on EMD-based de-noising techniques and

some of the peer techniques from different approaches. Donoho et al. proposed a method,

based on wavelet filtering, to de-noise signals by applying a soft thresholding approach on

the obtained empirical wavelet coefficients and then invert the filter coefficients to recover

the smoothed signal [10]. Sameni et al. suggested the use of non-linear Bayesian filter

framework to process a single channel electrocardiogram using a modified non-linear dynamic

model [51]. The modified model is utilized in several filters includes Extended Kalman Filter,

and Unscented Kalman Filter with a use of automatic parameter selection method for better
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model adaptation.

The advantage of understanding the statistical properties of IMFs is that signals can be

de-noised more effectively, in which the relevant modes corresponding to the signal com-

ponents (almost noise free) are separated during the sifting operation. However, selecting

the relevant IMFs is a critical process especially in the presence of high noise power. Flan-

drin et al. suggested the use of first Intrinsic Mode Function to set a noise-only model in

order to use it as a threshold to decide whether the processed signal is carrying informa-

tion or not [52]. In [53], the discrimination between different modes is approached using

a correlation based threshold. In [54], the energy between two consecutive reconstructions

of the signal is measured and the IMF index is identified when the first significant energy

change occurs. The statistical characteristic of IMFs for noise is used to calculate energy

spread as a function of various percentiles; filtering is then achieved by reconstructing the

IMF energies out of the spreading bounds [55]. In [56], the Hurst exponent is adopted to

select the IMFs that contribute to the signal more than noise, and partial reconstruction

is used to produce an enhanced speech version. In [57], EMD is exploited in cooperation

with HOS for speech-stream detection in low SNR region. The statistical similarity distance

between the probability distribution of IMFs is used to decide which IMFs should be used

for reconstruction to reduce noise [16].

2.2.3 Signal Detection: Spectrum Sensing Review

There is a great demand for bandwidth in wireless communications due to the dramatic shift

in data usage from voice only to multimedia applications. Cognitive radio systems (CR) were

proposed as a solution to satisfy that demand by making under utilized spectrum available.

Spectrum sensing is the key part of CR as these systems must adapt to use different spectrum

and bandwidths based on a primary user’s channel usage. The efficacy of these systems relies

on the ability to detect and monitor the primary users signal to avoid interference [58].

Generally, the performance of the sensing techniques is evaluated using two statistical
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measurements namely, the probability of detection (Pd) and the probability of false alarm

(Pfa). In definition, Pd is the probability to decide the presence of signal when it is truly

exist, and can be written as follows:

Pd = Prob(H1|H1) (2.4)

On the other hand, Pfa is the probability to decide incorrectly the presence of signal

when it is indeed absent, and can be formulated as follows:

Pfa = Prob(H1|H0) (2.5)

Moreover, Receiver Operating Characteristic (ROC) curves is used to provide a compre-

hensive performance measure by providing a link between different Pd and Pfa values at

certain Signal-to-Noise Ratio (SNR).

CR consists of a broad range of spectrum sensing techniques, each of which have advan-

tages and disadvantages. These techniques range from low to high computation complexity

and have varying levels of ability to determine the presence of signals in noise. An ideal

spectrum sensing technique would sense any class of signals quickly, require no a priori

information and operate at low SNR walls [17].

Energy detectors (ED) are the most popular among all spectrum sensing techniques due

to its low computational complexity; in which, the energy metric of the received signal

is compared to a predefined threshold to decide the occupancy of a given channel [59].

However, lacking of the accurate estimation of the noise variance may result in increased

missed detection and false alarms On the other hand, noise uncertainty is additional factor

that affects the efficiency of energy detectors in which noise starts to fluctuate during the

sensing duration.

In [60], an adaptive multi-band energy detector accompanied with the nonparametric

Kolmogorov-Smirnov (K-S) test are proposed through an iterative exploration process that

reduces the number of nominee channels. Zeng and Liang proposed a spectrum sensing
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methods based on the sample covariance matrix of the received signal [61]. The eigenvalues

of the sample covariance matrix is calculated and thresholds are derived for the probability

of detection and the probability of false alarm. An example of the eigenvalue-based detector

is called Maximum-Minimum Eigenvalue detector (MME) which is independent of the noise

power of the received signal and perform well in low SNR regimes. Further, another example

of eigenvalue-based detectors is called Maximum-Eigenvalue Detector (MED) in which is

dependent on the noise power and still performs well under low SNR scenarios [62].

In terms of spectrum sensing, EMD was used as a component of detection methods and

wireless applications [63]. Roy and Doherty used EMD, in general, to enhance the detection

of weak signals in the presence of noise [64]. This technique is dependent on a characteristic of

EMD that would require calculations that may not make it practical for real-time sensing. In

an effort to detect signals under noise uncertainty, Bektas et al. proposed a spectrum sensing

algorithm based on relative entropy [38]. However, this method also requires a large number

of calculations to determine the classifier to separate a signal from noise. Gunturkun et al.

used the Bivariate Empirical Mode Decomposition (BEMD) to facilitate radar scene analysis

for cognitive radar [33]. The proposed method takes advantage of the distinct response of

intrinsic mode functions energies to the fractional Gaussian character of coherent sea clutter

returns. That response is used then to set a null hypothesis that distinguish the presence or

the absence of the target under test. The use EMD in wireless communication is limited to

the baseband signals due to the high complexity (large number of samples) that arise with

the application of bandpass or wideband signals.

2.2.4 Noise Power Estimation Review

Noise power estimation is widely used in speech, image, and wireless communications [65–

67]. The estimation can be performed either in time or frequency domain based on the

associated application. In this review, we’ll focus on the noise power estimation in wireless

communications and more specifically the applications to spectrum sensing in cognitive radio
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networks.

In spectrum sensing, the noise power of the received signal is the key part to calculate

the threshold that is used to make the detection decision. The importance of the noise

power estimation becomes more obvious with the techniques such as energy detectors that

are widely used in spectrum sensing due to its simplicity and efficacy. Techniques such

as energy detectors and maximum eigenvalue detectors are considered to be semi-blind in

which they require the knowledge of the noise power to calculate the detection threshold.

However, the knowledge of the noise power is not available in practical situations and hence

assuming the noise power might deteriorate the detection rate significantly [17]. Further,

the noise in wireless communications is not stationary and might change over time due to

the non-stationarity of channel characteristics [68]. Therefore, accurate noise power estima-

tion can shift semi-blind techniques to blind region and to use their detection capabilities

more efficiently.

The estimation of the noise power in spectrum sensing has been studied in several

works [69–71]. In [69], multiple signal classification algorithm is used to separate the signal

and noise subspaces. In [70], the noise power is estimated by sacrificing sub-bands of the

channel to be used only for the purpose of noise estimation. In [71], minimum descriptive

length is used to separate the noise eigenvalues of the covariance matrix to be used in the

noise power estimation. Further, the effect of the noise power estimation on the energy

detectors performance is analyzed and investigate the conditions for SNR wall, which is

the highest detection rate that can be achieved regardless of the length of the observation

interval [72].
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CHAPTER 3

Intrinsic Mode Functions: Statistical Analysis and Applications

Empirical Mode Decomposition is a non-linear, local and fully data-driven algorithm that

breaks signals into a set of modes called Intrinsic Mode Functions (IMF). Yet, there is no

mathematical basis for EMD and thus an interpretation of the statistical characteristics is

required to understand the non-linear nature of the algorithm. Analytically, EMD acts as

a dyadic filter in which the highest oscillations embedded in the signal, typically noise, are

sifted in the first IMFs. This filtering property becomes certainly advantageous by knowing

that EMD is non-parametric and derive its filtering basis from the signal itself (signal de-

pendent). In this chapter1, an analytic analysis of the EMD-sifting process is presented and

a probability distribution function is suggested as a best fit model for IMFs. The statisti-

cal properties of the IMFs are traced analytically based on the EMD process of a range of

random variables with different probability distributions. The statistical properties of IMFs

are used to develop two applications; de-noising scheme and SNR estimation based on null-

hypothesis test of IMFs probability distribution. In both applications, partial reconstruction

is applied after identifying the reference IMF which carries more information than noise. To

demonstrate the validity of the proposed methods, a comparison is made with other compa-

rable approaches in addition to previously proposed EMD-based de-noising technique.The

results showed that the proposed method offers a larger gain in both the de-noising and SNR

estimation methods specifically at low signal to noise ratio scenarios.

1Part of contents of this chapter is published in IEEE Signal Processing Letters [18].
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3.1 Introduction

Data analysis is an essential part of any sensing or measurement process to extract in-

formation buried in noise from the measured values. Conventional data analysis methods

are typically limited by their statistical stationary assumptions made in advance about the

processed signals. Methods such as the wavelet analysis, Wagner-Ville, and the various

short-time Fourier spectrograms all share this disadvantage which limits the full potential

for signal analysis [4].

Most of the aforementioned techniques require a priori knowledge of the processed signal

or part of its statistical properties to be applied properly for a wide range of applications.

Empirical Mode Decomposition (EMD) was proposed to alleviate the conventional techniques

drawbacks. EMD is an adaptive non-parametric signal-oriented algorithm that decomposes

time-series signal into a set of AM-FM modes called Intrinsic Mode Functions (IMF). These

IMFs are by definition zero-mean oscillations and produced by an iterative operation called

the sifting process. The key feature of IMFs is that they are derived from the signal itself and

are not predefined like the basis functions for wavelet or Fourier transformations. Since the

IMFs carry the physical features of the processed signal, understanding the statistical prop-

erties of these modes is essential to establish an analytical interpretation of their relationship

to the signal.

The probability distribution of IMFs yielded after processing a white Gaussian noise,

wGn, are investigated in [49]. The authors concluded that the IMFs will approximately

follow a Gaussian distribution. Similarly, the probability distribution of IMFs of processing

a fractional Gaussian noise, fGn, is studied in [15] in which the authors came with a same

conclusion. The phrase “approximately Gaussian distributed” is used by both research

groups loosely and has no strict mathematical meaning.

In addition to the aforementioned attempts to determine the statistical characteristics of

IMFs, G. Schlotthauer et al. investigated the effect of the number of samples and the number
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of sifting iterations on the properties of the IMFs [50]. The later research group remarked that

the distribution of the IMFs are strongly dependent on the data length and on the maximum

allowed number of iterations. However, unlike the findings in [15, 49], they observed (after

applying two normality test methods) that many of the collected IMFs can have a Laplacian

distribution or a multi-modal distribution rather than a Gaussian distribution except for

few cases. These previous investigations were also restricted to Gaussian distributed signals

and little attention was given to signals with different distributions. In [18], the authors

proposed that the generalized Gaussian distribution (GGD) would represents a better fit of

IMFs probability distribution than the suggestions in [15,49].

The advantage of understanding the statistical properties of IMFs is that signals features

can be extracted, de-noised, more effectively [16, 18, 55, 56]. In [18], the null hypothesis

of the GGD for each IMF is utilized to discard the modes which follow GGD and use

the other modes to reconstruct the de-noised signal. The statistical similarity distance

between the probability distributions of IMFs is used to decide which IMFs should be used

for reconstruction to reduce noise [16]. The statistical characteristic of IMFs of noise is

used to calculate energy spread as a function of various percentiles; de-noising is achieved

by reconstructing the IMF energies out of the spreading bounds [55]. In [56], the Hurst

exponent is adopted to select the IMFs that contribute to the signal more than noise, and

use the reconstruction to produced an enhance speech version.

The purpose of this chapter is to provide a new statistical understanding of the sifting

process which is the key operation of generating the IMFs. The contributions of this chapter

include: a) a study of the statistical properties of the IMFs generated by EMD-processed ran-

dom variables of different signal distributions, b) tracing the statistical analysis of the IMFs

to propose a better probability distribution, and c) two EMD-based applications schemes,

de-noising and SNR estimation, that leverage the statistical knowledge of the IMFs.
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3.2 Statistical Analysis of The IMFs

In this section, the behavior of EMD process for different distributions of random variables

inputs contaminated with/without white Gaussian noise (wGn) is studied. This analysis is

done by tracing the statistics of the IMFs, starting with IMF2 through the sifting process.

3.2.1 IMFs statistical properties for different random variable distributions

In previous work, it was concluded that the EMD of wGn will yield “approximately” Gaussian

distributed IMFs for the low IMF indices [49]. However, the probability distribution of IMFs

for non-Gaussian distributed input signals is still unclear. In order to fill this knowledge gap,

extensive simulations were performed to investigate the probability distributions of IMFs

resulting from signals with different random variable distributions. The simulation includes

signals distributed with excess Kurtosis ranging from 3 to −1.2, which covers the following

distributions; Laplacian, hyperbolic secant, logistic, Gaussian, raised cosine, Wigner, and

uniform [73]. The chosen distributions2 also have a variety of different statistical properties.

EMD is applied on each of the random variables, a set of IMFs is generated, and the

distribution of each IMF is analyzed3. Figure 3.1 illustrates an example of a particular IMF

distribution (IMF3) of different signal distributions. From this figure, IMF3 can be seen

to follow an “approximately Gaussian distribution” with zero-mean and different standard

deviations. Similar conclusion can be drawn when the same random variables are contami-

nated with wGn4 as it is shown in Fig. 3.2. At this point, the results do not contradict the

previously reported findings. This result motivates an investigation to determine if there is

a distribution that fits better than “approximate Gaussian.”

Additionally, the variance of the produced IMFs, for different signal distributions with-

2This analysis was also done for different asymmetric and non-bell shape distributions including expo-
nential, Gamma, Beta, log-normal, and Arcsine. Similar observations to the chosen distributions have been
conducted.

3In this section, different random variable distributions are generated each of length of 5000 samples. The
results are the average of 100 runs based on Monte-Carlo simulations.

4As real world measurements are vulnerable to noise corruption, and because the wGn is the most common
used model, we suggested to study the effect of adding wGn to signal distributions.

26



x
-1.5 -1 -0.5 0 0.5 1 1.5

p
df
(x
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 Normal

Uniform

Laplace

Logistic

Wigner

Hyperbolic secant

Raised cosine

Figure 3.1: The distributions of IMF3 different random variable distributions.
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Figure 3.2: The distributions of IMF3 different random variable distributions corrupted with
wGn.

out wGn, is investigated and shown in Fig. 3.3. From that figure, it is shown that the

variances decrease as the IMF indices increases because the iterative process (sifting) lowers

the standard deviation of the distribution of an IMF during each iteration. Another way to

understand that is the sifting process shifts the IMF distributions from platykurtic to lep-
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Figure 3.3: The IMF variances of different random variable distributions.

tokurtic densities and that affects the tail weight of each IMF distribution recursively which

results in smaller standard deviations (variances). On the other hand, Fig. 3.4 shows the

effect of corrupting the signal distributions, presented in Fig. 3.3, on the variance behavior.

From that figure, it is clear that the variance values are increased in contrast to the previous

figure and that is due to the contributions of the wGn variance.

Further, the excess kurtosis of the produced IMFs is evaluated for different signal dis-

tributions with and without wGn as shown in Fig. 3.5. Specifically for low IMF indices,

the excess kurtosis is about zero which indicates that the produced IMFs follow roughly a

Gaussian distribution regardless the input signals distributions. It is worthy to mention that

the excess kurtosis of IMF1 for all distributions is negative (close to -1) and that is because

the first mode is bi-modal which is known to have negative excess kurtosis [74].

Based on the aforementioned results of IMFs statistical properties, it can concluded that,

for different input distributions, whether contaminated or not with wGn, the resulting IMF

probability distributions will follow approximately Gaussian distribution.

On the other hand, by using excess kurtosis as a rough measure for tail weight, it is clear

that the IMFs excess kurtosis demonstrates tails that can be heavier or lighter than Gaussian

for different distributions [75]. Therefore, one can conclude that under varying conditions
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Figure 3.4: The IMF variances of different random variable distributions of corrupted with
wGn.

the IMFs will follow a Gaussian or other distributions. Previous work concluded that some

conditions lead to Gaussian distributed IMFs and in some cases Laplacian, which is partly

true. However, there is still a knowledge gap as to what the distribution of the IMFs is for

all cases. Thus, in order to verify the probability distribution of these IMFs, an analysis is

presented, followed by a detailed methodology to support the proposed claim.

3.2.2 IMFs probability distribution statistical analysis

In this section, the IMFs probability distribution is derived based on the analysis of the

EMD sifting process. More specifically, the distribution of the envelope mean and the resid-

ual signal are traced statistically. Then, an IMF candidate distribution is determined from

the EMD process of the envelope mean and the residual signal. Further, a statistical dis-

tance measurement is used to verify the candidate probability distribution has a better fit

than previously assumed distributions. Finally, a null-hypothesis test is used to justify the

suggested fitting distribution.
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Figure 3.5: The excess kurtosis of IMFs for different random variable distributions with
and without corruption of wGn. The grey solid lines and the black solid lines, along with
their error bars, are the result of signal distributions without and with wGn respectively.
The dashed lines represents the excess kurtosis boundaries (-1.2 and 3) of the uniform and
Laplace distributions respectively.

For our analysis, we assume that the input, z(n) is a Gaussian random variable with

zero-mean and unity variance. The EMD algorithm is applied to z(n) and set of IMFs

is generated, IMFj. The focus of the analysis is on the second IMF as the first IMF is

deduced to follow bi-modal distribution [52]. The first iteration of the second IMF starts by

subtracting the envelope mean mi(n) from ri(n) to yield hi(n) which is the ith sifted signal

of IMF2(n). Here, mi(n) is the mean of the upper and lower envelopes of the residual signal

ri(n) which is resulting from subtracting the IMF1(n) from the input signal, z(n).

To understand how the EMD process affects the distribution of the IMFs, we consider

the distribution of the residual signal ri(n) and mean of the envelopes mi(n) with a quantile

plot to assess their deviations from the theoretical normal distribution quantile. Figure 3.6

shows that the tail of the envelope mean becomes heavier (grey circles) with reference to the

standard normal distribution (solid black). This is due to the sifting process changing the
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Figure 3.6: The QQ plot of the envelope mean and residual signal for three sifting iterations
of IMF2.

data density from platykurtic to leptokurtic. On the other hand, the residual signal exhibits

tail that resembles the Gaussian distribution. Therefore, the distribution of mi(n) and ri(n)

follow student − t and Gaussian distribution respectively; this conclusion is supported by

the best fit probability distribution simulation5. For simplicity, we’ll denote mi(n), ri(n),

and hi(n) by mi, ri, and hi respectively.

From Sec. 2.1.1, the detailed signal, hi, is the convolution of ri and mi in frequency-

domain. However, being derived from the same random variable z(n), there is a possibility

that mi and ri are statistically dependent. For dependent random variables, a copula joint

distribution is used to depict the dependency between two random variables [78]. The next

step is to understand the degree of dependency in order to find the distribution of the

candidate IMF. The candidate IMF, hi, is given in terms of the joint probability distribution

5Different well-known distributions are utilized to best fit the data, mi(n) and ri(n). Bayesian information
criterion (BIC) and Akaike information criterion (AIC) are used to decide the fitting parameters that can
model the underlying data. The distribution that results in smallest the BIC or AIC is assumed the best
fitting distribution [76,77].
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fmi,ri by

fhi(hi) =

∫ ∞
−∞

fmi,ri(mi, hi +mi)dmi (3.1)

Clearly if mi and ri are independent then fmi,ri(mi, ri) = fmi(mi)fri(ri) and (3.1) becomes

a convolution integral.

If mi and ri are assumed to be dependent variables, thus the multivariate cumulative

distribution function F (mi, ri) = C
(
Fmi(mi), Fri(ri)

)
, where C is the copula, Fmi(mi) and

Fri(ri) are the cumulative marginal distributions of mi and ri respectively. In this respect,

two statistical nonparametric measures of dependence; Kendall’s tau (τ) and Spearman’s

rho (ρ) are defined such that τ(mi, ri) = 4E[C(U, V )]− 1 and ρ(mi, ri) = 12E[C(U, V )]− 3,

where U ,V∼ Uniform(0,1), U = F (mi) and V = G(ri), F and G are the marginal distri-

butions of mi and di respectively [79]. In this work, the ratio, denoted by ξ, of ρ(mi, ri)

to τ(mi, ri) is used as an indicator to show the degree of dependency of the joint distri-

bution between mi and ri. In [80], it was conducted that the ratio ξ approaches 3/2, for

infinite number of samples, as the joint distribution approaches that of two independent

random variables.

In Fig. 3.7, an analysis of the ratio ξ for different signal6 distributions of IMF2(n) is illus-

trated. From this figure, the value of ξ is approaching 3/2 over all iterations. Therefore, the

dependency can be assumed weak and approaching independence for which the convolution

integral is a good approximation for hi [80].

Given that mi and ri can be assumed to be independent and they are convoluted, then

the IMF candidate distribution can be traced statistically. Nason et al. derived a general

closed-form expression for the convolution of student − t and a Gaussian distribution [81],

6Random variables of different distributions with 5000 samples each are averaged from 1000 trails using
Monte-Carlo simulations.
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Figure 3.7: The ratio ξ for different signal distributions between the envelope mean and
residual signal for 10 sifting iterations of IMF2.

which is given as follows:

ψ(x) =
b

π
exp(a/2)

[{
(1− a)cos(µa+

pb

2
sin(µa)

}
IC1(p, d)

+

{
((1− a)sin(µa)− pb

b
cos(µa)

}
IS1(p, d) + be−d

2

/2

] (3.2)

where a = σ−2, b =
√

2/σ, d = a/b, p = µb,

IC1(p, d) =

∫ ∞
d

cos(px)e−x
2

dx =

√
π

2
e−p

2/4[1−Re {erf(c)− erf(c− d)}],

and

IS1(p, d) =

∫ ∞
d

sin(px)e−x
2

dx =

√
π

2
e−p

2/4Im {erf(c− d)} ,

where c = ip/2, i =
√
−1, Re and Im extract the real and imaginary parts, erf(.) is the

error function.

However, Nason et al. did not specify the resulting distribution of his derived closed-

form expression. A simple method is to determine a best fit Gaussian distribution to the
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closed-form expression given in [81]. The probability distribution function of a Gaussian

distribution is given as follows,

g(x) =
1√
2πσ

e−(x−µ)
2/2σ2

(3.3)

where µ and σ are the mean and the standard deviation respectively [82].

Intuitively, replacing the shape parameter of the Gaussian distribution (κ = 2) by a

variable creates a statistical family called Generalized Gaussian Distribution (GGD) [82].

This family includes the Laplacian and Gaussian distributions, κ =1 and 2 respectively, as

a special cases. The probability distribution function of a symmetric GGD is,

f(x) =
κ

2ρΓ(1/κ)
e−(|x−µ|/ρ)

κ

(3.4)

where κ is a parameter that controls the distribution tail, ρ is defined as
√

Γ( 1
κ
)/Γ( 3

κ
)σ,

and Γ(.) is gamma function. Further, the GGD is suggested to model non-Gaussian pro-

cesses, where the tail weights could be heavier or lighter than Gaussian based on the shaped

parameter [83].

In order to show that GGD is a better fitting distribution than Gaussian with respect

to the closed-form (3.2) solution, the Hausdorff distance measure is calculated for the two

distributions. The Hausdorff distance measure is calculated by,

HD(A,B) = max
(
D(A,B),D(B,A)

)
(3.5)

where D(A,B) = max
a∈A

min
b∈B
||a − b|| and D(B,A) = max

b∈B
min
a∈A
||b − a|| [84]. To calculate

Hausdorff distance for this comparison, the distribution of closed-form expression (3.2) and

GGD (3.4) will be substituted into equation (3.5) instead of A and B respectively, as follows:

HD
(
ψ(x), f(x)

)
= max

(
D
(
ψ(x), f(x)

)
,D
(
f(x), ψ(x)

))
(3.6)

The two distributions are compared and the κ of GGD was varied between 1.4 and 2
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Figure 3.8: Hausdorff distance measure of the GGD for values of κ with respect to the
closed-form expression

to determine whether there is a distribution that reveals better fitting to the closed-form

expression (3.2) than the Gaussian. From Fig. 3.8, it is clear that at (κ = 1.64), the shortest

distance or the highest similarity of GGD with respect to closed-form expression is obtained.

Further, it is obvious that the κ values in the region under the “Gaussianity threshold”

represent the closed-form expression better than the best fit Gaussian model.

The generalization of GGD includes platykurtic densities that span from the normal

density (κ = 2) to the uniform density (κ = ∞) and a leptokurtic densities that span from

the Laplace (κ = 1) to the normal density (κ = 2) [83]. Thus, the GGD successfully explains

the previous findings [15, 49, 50], where Laplace and Gaussian distributions are just special

cases in GGD family.

3.2.3 The null hypothesis test of GGD

The analytical analysis in Sec. 3.2.2, suggests that the EMD-processing of Gaussian dis-

tributed random variable leads to a GGD. Therefore, to verify the validity of the suggested
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distribution (GGD), a null hypothesis test is evaluated for random variables with different

distributions including the Gaussian distribution. In [18], a null hypothesis test of GGD is

suggested and will be revisited in this work with more details.

In order to apply a GGD null hypothesis test, the given distribution must be trans-

formed first to Gaussian. In this respect, there are different normality tests in which the

Shapiro-Wilk parametric hypothesis test of composite normality is used widely [85]. The

Shapiro-Wilk test and the Shapiro-Francia test reveal better performance for a platykurtic

and leptokurtic samples respectively [85,86]. Therefore, an initial kurtosis check on the sam-

ples set is performed before deciding the method used to determine its Gaussianity. Both

tests return a single value (H) where the value of zero indicates that the hypothesis is not

rejected within the predefined confidence interval (α), and the value of one represents that

the hypothesis is rejected. This is the formal definition of the null hypothesis of composite

normality and is the best reasonable assumption regarding the population distribution of a

random sample.

To apply the null hypothesis of GGD, the given random variable is transformed to the

cumulative distribution function (cdf) of the GGD. If the data samples indeed follow a GGD

then, this will convert the distribution of the random variable to become uniform. The cdf

for the GGD defined in (3.4) is given by,

F (x) =
1

2
+ sgn(x− µ)

γ̂[1/κ, ( |x−µ|
ρ

)κ]

2Γ(1/κ)
(3.7)

where γ̂ denotes the lower incomplete gamma function [87], ρ =
√

Γ( 1
κ
)/Γ( 3

κ
)σ and σ is

the standard deviation of the distribution [88]. We will restrict7 our search for GGD of κ

between 1 and 3, since the initial analysis indicated that the distribution of all IMFs for any

random signal will change from a Laplace distribution κ = 1 in the extreme case to a more

round top distribution. The complete procedure to test if any random variable follows GGD

7Practical experimentations showed that if x follows a GGD with κ more than 3, then another distribution,
like the “Beta” or “generalized Gamma” distribution would be a better fit. This is why we chose to test
GGD for κ limit not exceeding 3 specifically.
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is given as:

1. Assign the given random variable to x.

2. Find F (x) of the GGD from (3.7), with a predefined κ (start from κ = 1).

3. Convert x to a uniform distribution by applying the transformation y = F (x). Now if

x follows GGD with the predefined κ then y will be uniformly distributed between 0

and 1.

4. Convert y to a Gaussian distribution by applying the transformation z = erf−1(2y−1)

where erf and erf−1 is the error function and the inverse error function respectively;

if y is uniformly distributed between 0 and 1 then, z will follow Gaussian distribution.

5. Check the kurtosis of the obtained distribution to determine whether the Shapiro-Wilk

or the Shapiro-Francia null hypothesis test should be used.

6. Evaluate the null hypothesis of Gaussian distribution, z, and test the normality of z. If

z is normally distributed then y is uniformly distributed between 0 and 1. Therefore,

x follows GGD with the given κ. Otherwise, increment the value of κ by dκ = 0.01

and as long as κ is less than 3 go to step (3)

7. If the steps above failed to reject the hypothesis of x following GGD then, we need to

check the confidence level of this conclusion8.

Table-3.1 illustrates the null hypothesis test for different random variable distributions

with 5000 samples. In that table, H = 0 indicates that the corresponding IMFs follow GGD.

On the other hand, H = 1 (excluding IMF1) indicates that the corresponding IMFs do not

follow GGD (or we failed to show the IMF does follow a GGD). The corresponding κ values

8The confidence level of α in the original null hypothesis test would mean that the hypothesis of y not
being uniformly distributed failed with a confidence level of 0.5erf(α). Further, this would mean that, the
hypothesis that x did not follow GGD failed with a confidence level of k[Γ−1

inc(0.5erf(α))]1/κ where Γ−1
inc is

the inverse incomplete Gamma function and k =
√

Γ( 1
κ )/Γ( 3

κ ).
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Table 3.1: Null hypothesis (H) and shape parameter (κ) of different random variable distri-
butions.

pdf
IMF index

1 2 3 4 5 6 7 8 9 10

H κ H κ H κ H κ H κ H κ H κ H κ H κ H κ

Normal 1 3 0 2 0 2 0 1 0 1.17 0 1.7 0 1 0 1.29 0 2.6 1 3
Uniform 1 3 0 2 0 2 0 2 0 1 0 1.06 0 1 0 1.26 1 3 0 1.24
Laplace 1 3 0 1.01 0 1 0 1 0 1.04 0 1 0 1.3 1 3 0 1.21 1 3
Logistic 1 3 0 2 0 2 0 2 0 1 0 1.13 0 1.58 0 1.12 0 1.22 0 1
Wigner 1 3 0 1.08 0 1.14 0 1 0 1.1 0 1.01 0 1.07 0 2.62 1 3 1 3

Hyperbolic secant 1 3 0 1 0 1.02 0 2 0 2 0 1.27 0 1 0 1.06 0 1.23 1 3
Raised Cosine 1 3 0 1 0 2 0 1.17 0 1.01 0 1.07 0 1 0 1.55 0 1.14 1 3

give an evidence that GGD distribution could fit the resulting IMFs other than the Gaussian

or Laplacian distributions.

3.3 EMD-H de-noising

The null hypothesis (H) test in Sec. 3.2.3 is utilized to propose a de-noising method (EMD-

H) [18]. Assuming an EMD was applied to a signal with noise and a set of IMFs have been

generated, a GGD null hypothesis (H) test of GGD is evaluated for each IMF. The IMFs

that carry mainly noise will follow a GGD rather than a Gaussian distribution. A deviation

from GGD distribution would indicate the presence of a signal as it signifies a change in

statistical characteristics.

The GGD null hypothesis value (H) is used to select the IMF reference, IMFR, in which

at this IMF the information components will dominate the noise components. The change

of H value from 0 to 1 (excluding IMF1) is an indication of the reference IMF and is also the

start point for the partial reconstruction. The proposed EMD-H de-noising method can be

summarized as follows:

1. Apply the EMD algorithm on a given signal contaminated with noise to produce a set

of IMFs.

2. Apply the GGD null hypothesis (H) for each IMF (excluding IMF1).
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3. Select the IMF index that corresponds to (H = 1) and consider that IMF as a reference,

IMFR.

4. Apply the partial reconstruction as follows:

y(n) = T (n) +
M∑
i=R

IMFi(n) (3.8)

where y(n) is the reconstructed signal and R is the index of the reference IMF

3.4 Simulations and Results

In this section, three distribution models are compared with their corresponding null hypoth-

esis test on a synthetic ECG signal to show the validity of our proposed model (GGD) in

light of different amounts and kinds of noise. In order to understand the impact of sampling

rate, we compare the SNR after de-noising for different values of input SNR and sampling

rate. Finally, we compare the EMD-H de-noising technique with other techniques on three

different types of signals. The sampling rate used in this section is 8Nq and Monte Carlo

simulations are carried out for all obtained results by averaging 1000 runs.

First, the effects, of varying the sampling rate, Nq, and SNR levels, on the quality of the

received signal (in terms of SNRo) is illustrated in Fig. 3.9. From this figure, it is clear that

the SNRo is enhanced by increasing the sampling rate and increasing the input SNR levels.

This follows the EMD characteristic stated in Sec. 2.1.4, where oversampling is required to

capture all signal features.

The next result is an analysis of EMD-H using GGD as the proposed distribution model

compared to the null hypothesis tests using the Gaussian [15] and Laplacian [50] distribu-

tions. The simulations were performed on an ECG contaminated with noise for various

input SNRs. Unlike white noise, the spectral density of real noise is not flat and the samples

are correlated. Therefore, we also include colored noise in our comparison to highlight the

performance under more realistic conditions [51] in which positively correlated colored noise
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Figure 3.9: The effect of sampling rate and SNR variation of GGD model for an ECG signal.

is generated based on the work in [89]. The output SNR or SNR after de-noising, SNRo,

and Mean Square Error, MSE, are used for the performance evaluation as these metrics

demonstrate the relevant improvement in SNR and difference from the original signal.

The results of this analysis are shown in Table-3.2. It is clear that GGD performs better

than Gaussian and Laplacian specifically at low SNR values (< 4 dB) both in terms of MSE

and SNRo. However, at high SNR levels (> 4 dB), the Gaussian model starts to show

slightly better results as the presumably noise-dominated IMFs will carry more signal power

causing the GGD hypothesis to be rejected. Hence, the Gaussian model will slightly fit

better than GGD as it will require less transformations with a slightly broader confidence

interval. In comparison, the performance of the Laplacian distribution fit shows a much

weaker performance.

For further validation, an ECG signal contaminated with wGn is used to compare the

EMD-H with two conventional de-noising techniques; wavelet de-noising and Savitzky-Golay

(SG) filtering. To emphasize the adaptive behavior of EMD, default settings9 have been

9A Daubechies mother wavelet of order 8 is used for the Wavelet de-noising approach, the decomposition
level is set to 5, and the soft thresholding is adopted. Also, a 3rd order filter and frame size equal to 41 is
used for the SG filtering approach.
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Table 3.2: A comparison of the SNR after de-nosing and MSE for three distribution models
in a null hypothesis test for white and color noise over various SNR input values before
de-noising, denoted by SNRi.

Dist.
model

SNRi

(dB)
Colored White SNRi

(dB)
Colored White

SNR0 MSE SNR0 MSE SNR0 MSE SNR0 MSE

Laplacian −12 2.66 1.51 5.26 0.60 −6 6.27 0.386 10.17 0.15
Gaussian 6.12 0.505 16.09 0.044 10.98 0.129 21.45 0.0127
GGD 8.62 0.29 17.11 0.032 12.55 0.084 22.15 0.0095

Laplacian 0 11.48 0.096 15.70 0.038 4 15.26 0.038 19.55 0.015
Gaussian 16.44 0.032 26.44 0.0034 19.87 0.014 29.74 0.0016
GGD 17.25 0.026 26.5 0.0033 20.28 0.013 29.37 0.0018

Laplacian 8 19.22 0.015 23.49 0.0062
Gaussian 23.57 0.006 32.92 0.0008
GGD 23.54 0.0072 32.54 0.001
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Figure 3.10: Illustrates the performance of EMD-H method in contrast with other conven-
tional de-noising techniques

used for the conventional approaches. From Fig.3.10, it is clear that the EMD-H de-noising

method performs better than the other techniques for SNR < 4 dB. At high SNRs, > 4 dB,

the wavelet de-noising method starts slightly to overcome the EMD-H as the wavelet starts

to capture the signal structure more accurately.

Finally, a comprehensive test is conducted on an ECG signal and the Blocks and Doppler
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Figure 3.11: SNR comparison between EMD-H and other EMD-based de-noising methods
for various signals with 8Nq sampling rate

signals [90], which are all contaminated by colored noise. The proposed method, EMD-H, is

compared to other EMD-based de-noising techniques such as Conventional EMD (CEMD)

and EMD-based Hausdorff distance (HD) [16,52]. The results in Figure 3.11 show that EMD-

H outperforms all of the other methods. At -10 dB, EMD-H has a gain of 1.5, 2.5, and 5 dB

for the Doppler, Blocks, and ECG signals over the best EMD-based peer. EMD-H has better

de-noising performance compared to the other techniques due to the proper selection of the

reference IMF, IMFR. The performance of CEMD is limited because the selection of IMFR

is based on a hard threshold set by the energy of IMF1, which in turn is only dominated by

noise under strict sampling rate and SNR conditions [52]. EMD-H also performs better than

HD because the latter method is highly sensitive to temporal changes in the noise, which

leads to the wrong estimation of IMFR [16]. Generally, EMD-based de-noising techniques

are sensitive to signal types as seen with the worse de-noising performance of the high-pass

Doppler signal. The high frequency content is sifted by EMD into the first modes, which are

discarded as noise-only modes.
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3.5 Conclusion

In this chapter, the statistical analysis of the Intrinsic Mode Functions (IMFs) and its appli-

cation to de-noising and SNR estimation are evaluated. The first contribution is the study

of the IMFs statistical properties when random variables of different signal distributions are

decomposed by EMD. Further, it is shown that the distribution shape for all IMFs (except

IMF1 which is likely to be bi-modal) is Gaussian-like. At this point, there was no guarantee

that these distributions were Gaussian or have any other distribution related to the noise

or signal distribution. The second contribution is a statistical analysis to prove whether

these IMFs are Gaussian distributed or not. The analysis of the IMFs probabilities, through

extensive experiments, led to infer that the resulted IMFs of Gaussian distributed random

variable follow Generalized Gaussian Distribution functions. Based on that finding, it ap-

pears that the claims in [15, 49, 50] were only partially true, whereas the GGD includes the

Gaussian, Laplacian distributions as a special cases. The proposal that the IMF distribution

follows the GGD method was successfully validated with a null-hypothesis test.

The EMD-H method is relying on the partial reconstruction of the relevant IMFs to gener-

ate a noise-free version from the noisy processed signal. In the de-noising scheme, a synthetic

and real signal are used in which both signals are assessed with quality measure metrics. The

proposed de-noising method requires no predefined parameters and makes no assumptions of

the signal type. The proposed de-noising scheme was compared to conventional techniques:

wavelet de-noising, non-linear Savitzky-Golay filtering, and other EMD-based de-noising

techniques and demonstrated good ability for noise removal.
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CHAPTER 4

EMD-Based Energy Detector for Spectrum Sensing in Cognitive Radio

Sec. 2.1.5 lists different applications for EMD. In this chapter1, we apply EMD to spectrum

sensing in cognitive radio. The filtering characteristics of Empirical Mode Decomposition

(EMD) are used to create a blind and adaptive energy detector for single or multi-channel

spectrum sensing. Due to EMD filtering behavior, the first IMF (IMF1) is mostly contam-

inated by noise from the received noisy signal. The proposed approach takes advantage of

Cell Averaging Constant False Alarm Rate (CA -CFAR) as an optimal detector to enhance

the probability of detection. Alternative to conventional CA-CFAR (which requires at least

one nearby vacant channel for good noise estimation), the first IMF will be used as a training

function for noise estimation purposes. Based on the IMF1 characteristics in frequency do-

main, the noise floor of the received signal is estimated and a threshold is derived for a given

false alarm rate. Simulations show the supremacy of the proposed detector in comparison

with other conventional detectors.

4.1 Introduction

Cognitive radio (CR) systems are proposed to cope with bandwidth deficiency by making

underutilized spectrum available. Spectrum sensing is the key part of CR as these systems

must adapt to use different spectrum windows and bandwidths based on a primary user’s

(PU) channel usage. The efficacy of these systems relies on the ability to detect and monitor

the primary users signal to avoid interference [58,91].

1The contents of this chapter is published in IEEE International Conference on Computing, Networking
and Communications [20].
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There is a broad range of spectrum sensing techniques each with it’s own advantages

and disadvantages. These techniques range from low to high computational complexity and

have varying levels of ability to determine the presence of signals embedded in noise. Energy

detectors (ED) are the most popular among all spectrum sensing techniques due to low

computational complexity; in which, the energy metric of the received signal is compared to

a predefined threshold to decide the occupancy of a given channel [17]. However, lacking an

accurate estimation of the noise power may result in increased missed detection and false

alarm rates. Furthermore, since ED threshold is a function of noise power, it is influenced by

the temporal changes (uncertainty) in noise profile that is a result of both wireless channel

and receiver characteristics such as thermal noise [92].

Different approaches are proposed to alleviate the threshold sensitivity towards inaccurate

noise power estimation [60, 93, 94]. In [93], noise power estimation is achieved by using

an auxiliary radiometer that operates over an adjacent spectral region in parallel with a

radiometer detecting a signal. In [94], signal classification is performed by utilizing spectral

techniques to separate the noise samples and detect outliers for a given false alarm rate.

Moreover, forward method via Cell Averaging Constant False Alarm Rate (CA-CFAR) is

utilized to detect and locate the outliers. In [60], an adaptive multi-band energy detector

accompanied with the nonparametric Kolmogorov-Smirnov (K-S) test are proposed through

an iterative exploration process that reduces the number of nominee channels.

More recently, Empirical Mode Decomposition (EMD) is used as a component of detection

methods for spectrum sensing and wireless applications [63]. Gunturkun et al. used the

Bivariate Empirical Mode Decomposition (BEMD) to facilitate radar scene analysis for radar

detection [33]. The proposed method takes advantage of the distinct response of intrinsic

mode functions energy to the fractional Gaussian character of coherent sea clutter returns.

Roy and Doherty used EMD, in the general sense, to enhance the detection of weak signals

in the presence of noise [64].

In an effort to detect non-stationary and non-linear signals, Bektas et al. proposed a
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spectrum sensing algorithm using relative entropy [38]. However, this method also requires

a large number of calculations to determine a classifier to separate the signal from noise.

In [1], a non-parametric threshold is derived from the power spectral density of Intrinsic

Mode Functions (IMF), the EMD output, for multi-channel detection. In [2], the noise is

estimated and two thresholds are calculated by applying CFAR method on a set of IMFs

in the frequency domain. All these techniques depend on EMD’s unique characteristics for

noise estimation. However, in most cases they require a lot of calculations deeming them

impractical for real-time sensing.

In this chapter, the first Intrinsic Mode Function (IMF1) is used to estimate the noise

floor power of the received signal for a given false alarm rate inspired by the CA-CFAR

approach. The proposed method takes its robustness from the nature of EMD as a fully

data-driven tool with no predefined parameters. In the proposed technique, a received single

or multi-channel band is compared to double thresholds derived from IMF1 for a given false

alarm probability.

4.2 EMD-based detector model

The philosophy of spectrum sensing for CR is to determine if a certain channel is occupied

or not. The detection problem can be converted (as shown below) into a binary hypothesis

test where, H0 and H1 represent the absence and presence of the PU respectively.

y(n) =


w(n) : H0

s(n) + w(n) : H1

where n = 1 . . . N and N is the total number of samples, and y(n), s(n), and w(n) are

the received signal at cognitive radio (CR) user, transmitted signal from PU, and addi-

tive white Gaussian noise respectively. However, w(n) is independent and identically dis-

tributed white Gaussian noise which is modeled by a zero-mean process with variance σ2
w

i.e. w(n) = N (0, σ2
w), s(n) is the transmission from a PU or another CR user and assumed
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to be independent from w(n).

In this chapter, the EMD processor is required to sift only the first IMF, denoted by

c1(n), out of the received signal y(n). An estimate of the power spectral density (PSD) of

IMF1 is obtained using the Welch spectrum estimator. The Welch estimation is performed

by dividing the data samples N into K segments, where each segment is windowed before

calculating the periodogram. Thus, the Welch PSD estimator will be the result of averaging

all windowed periodograms, and the averaging will yield lower variance of estimated PSD [95].

The PSD estimation of IMF1 is written as:

C1(f) =
1

K

K∑
k=1

φk(f) (4.1)

where k = 1 . . . K, φk is the windowed periodogram and is defined as:

φk(f) =
1

LJ

∣∣∣∣∣
L∑
n=1

v(n)c1k(n)e−j2πfn

∣∣∣∣∣
2

(4.2)

where L is the number of samples of the kth segment, v(n) is the window function (Hamming),

and J is the power of the temporal window v(n) and can be calculated as J = 1
L

∑L
n=1 |v(n)|2.

Similarly, the PSD estimation of the received signal r(n) (an energy metric to make the

final detection decision) can be given as follows:

Sr(f) =
1

K

K∑
k=1

φ̂k(f) (4.3)

where φ̂k(f) = 1
LP

∣∣∣∑L
n=1 v(n)rk(n)e−j2πfn

∣∣∣2 is the windowed periodogram of the kth segment

for the received signal r(n) and similarly P is the power of the temporal window v(n).

4.3 IMF1 Probability distribution analysis and Proposed approach

In this section, the distribution of IMF1 is investigated for both time and frequency do-

mains. In addition, the proposed method is presented and a threshold is derived for a given

probability of false alarm.
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4.3.1 IMF1 Probability Distribution Analysis

The first Intrinsic Mode Function (IMF1) of EMD algorithm, exhibits special statistical

characteristics over other IMFs. Due to the nature of EMD sifting process, IMF1 contains

the finest scale and is defined as a high-band highpass filter [15]. Furthermore, and under

a sampling rate bigger than Nyquist, IMF1 will be mostly dominated by noise [52], [14].

The probability distribution of IMF1 for Gaussian processes is a mix of two distributions

which give a single bi-modal distribution [96]. The justification of the bi-modality for such

a distribution relies in the large discrepancy values (in case of noisy or noise only signals)

yielded by the maxima and minima envelopes [97].

In order to use IMF1 in the spectrum detection model, its statistical properties must be

investigated. For a white Gaussian noise (wGn) signal, the distribution of upper and lower

envelopes produced by IMF1 are denoted by pu(x) and pl(x) respectively. However, since

the wGn is an uncorrelated and independent random process, pu(x) and pl(x) are assumed

to be random, independent from each other, with each one following a different distribution.

It must be noted that samples of the upper or the lower envelopes are not mixed or added

as each sample of IMF1 belongs either to an upper or to a lower envelope. Thus, IMF1 can

be thought of as the addition of two mutually exclusive random variables. The resultant of

these two distributions will be a mixture distribution such that [98]:

pmix(x) =
max

(
pu(x), pl(x)

)
A

(4.4)

where pu(x) =
[
1
2

+
(
1
2
− erf(x)

)]2
γ(x), pl(x) =

[
1
2
−
(
1
2
− erf(x)

)]2
γ(x), γ(x) = 1√

2π
e−

x2

2 ,

erf(x) is the error function, and A is the total area under the entire curve.

The mixture distribution pmix(x) has two different modes and weights. Fig. 4.1 shows

the distribution of both upper and lower envelopes of IMF1 for processed wGn signal. In the

frequency domain, the Fourier transform coefficients of IMF1 can be considered independent

and follow a scaled Gaussian distribution for both upper and lower envelopes denoted by

Pu(x) and Pl(x).
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Figure 4.1: The probability distribution of both upper and lower envelops of IMF1 for a
processed wGn signal

For a unimodal Gaussian distribution variable, each periodogram bin follows an expo-

nential distribution [99]. Therefore, the periodogram bin distributions for both Pu(x) and

Pl(x) will follow exponential distributions and since they are mutually exclusive, the same

applies to IMF1. Fig. 4.2 illustrates that the distribution of IMF1 periodograms for a wGn

signal (with 95% confidence interval) follows an exponential distribution. The square-law

output of the IMF1 periodogram follows an exponential distribution and can be modeled as

follows [100]:

f(x) =
1

2α̂
e−x/2α̂ (4.5)

where α̂ is the scale parameter that measures the variation of the data.

4.3.2 The Proposed Approach

When the noise power is not known a priori, the averaging technique CA-CFAR is used

to estimate the noise power of the received signal by assuming some portions (cells) of the

spectrum (called “training cells”) to be dominated by noise only in which these training cells
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Figure 4.2: The exponential distribution of each periodogram for IMF1 with 95% confidence
interval

surround the cell under test [101]. In this chapter, the first IMF is assumed to be dominated

by noise which can thus serve here as a “training cell”. It has been shown previously [52]

that such an assumption can almost always be made valid by proper oversampling. However,

α in Eq. (4.5) can be replaced by σ2
W1 to yield:

g(x) =
1

2σ2
W1

e−x/2σ
2
W1 (4.6)

where σ2
W1 is the expectation of C1(f), such that:

σ2
W1 = E{C1(f)} (4.7)

Here, the quantity (2σ2
W1) represents the noise floor of the received signal in the frequency

domain and is used as a lower threshold (denoted by λL) such that:

λL = 2σ2
W1 (4.8)

However, the proposed detector threshold can be derived based on (4.6) for a given
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probability of false alarm as follows:

Pfa =

∫ ∞
λU

g(x) dx = e−λU/2σ
2
W1 (4.9)

From (4.9), the proposed detector threshold λ, will be:

λU = − ln(Pfa)× 2σ2
W1 (4.10)

The derived threshold in (4.10) can be seen as a scaled version of the noise floor (2σ2
W1).

IMF1 is the only IMF needed to estimate the noise floor of the received signal and hence

determine the optimal detector threshold. Although the threshold in (4.10) seems to be a

function of noise power σ2
W1, the later in this case is estimated from IMF1 which is assumed

to contain noise-only samples. The detection methodology is shown in Fig. 4.3 and can be

summarized as follows:

1. Decompose the received signal r(n) to obtain IMF1 which is denoted by c1(n).

2. Transform c1(n) to the frequency domain then calculate its PSD denoted by C1(f)

using (4.1).

3. Determine the noise floor (2σ2
W1) and denote it by λL as a lower threshold, and similarly

λU in (4.9) as the upper threshold, where both thresholds λL & λU are used for detection

and localization.

4. Apply both thresholds on the PSD of the received signal given in (4.3) for both coarse

and fine detection.

5. In the coarse detection, each consecutive group of samples that exceeds λL is defined

as a ith nominated channel and denoted by Xi.

6. In the fine detection, if any sample or set of samples of the ith nominated channel Xi

exceeds λU , then it is decided that the channel is occupied.
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Figure 4.3: The schematic diagram of the proposed method

4.4 Simulation and results

In this section, the proposed IMF1-based detector is evaluated using a synthetic baseband

oversampled OFDM modulated time-domain signal with an observation period (T ). In the

analysis, Monte-Carlo simulations were carried out, where each result is the average of 2000

runs.

4.4.1 The Evaluation of the Proposed Detector Performance

To evaluate the performance of the proposed sensing technique, two statistical measurements

are used namely, the probability of detection (Pd) and the probability of false alarm (Pfa) over

different SNR values and sampling sizes. In Fig. 4.4, the receiver operating characteristic

(ROC) is performed to examine the proposed detector efficacy for a single channel of 200

KHz bandwidth. From Fig. 4.4, it is shown that the proposed detector starts to reveal a

good detection rate when the SNR ≥ −10 dB with a sample size of 5000. The behavior of

the proposed detector is further assessed through ROC curves by varying the sample size for

SNR = −12 dB as it is illustrated in Fig. 4.5. It is noticeable that increasing the sample size

(>5000) will enhance the detection rate and that is justified by knowing that more features

can be extracted by increasing the sample size or oversampling the received signal.

In Fig. 4.6, multi-channel detection is performed where three out of sixteen channels are
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Figure 4.4: ROC of the proposed approach for different SNR values and N = 5000

P
fa

10
-2

10
-1

10
0

P
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N= 2000

N= 4000

N= 6000

N= 8000

Figure 4.5: ROC of the proposed approach for different sample sizes and SNR = −12 dB

set to be randomly occupied with each channel of 200 KHz bandwidth. In this case, the

probability of detection (PD) is referred to how many correct channels are detected along

with their correct locations. As it is expected, increasing the false alarm rate (from 0.001 to

0.1) will result in higher probability of detection with the increase of the sample size to 24000

samples accordingly as the number of channels (and hence overall bandwidth) is increased.
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Figure 4.6: A multi-channel detection rate for different false alarm probabilities

Finally, the proposed method (for a single channel) is compared to other known techniques

such as the Energy detector model (ED) [102], and Maximum Eigenvalue Detector (MED)

[62]. In this comparison, the probability of detection is evaluated with Pfa = 0.1 and

N = 5000. The proposed method is adaptive in terms of setting the detection threshold,

unlike the ED and MED which are sensitive to noise uncertainty [103]. In Fig. 4.7, the

comparison between the aforementioned techniques shows that ED and MED outperform

the proposed method when the noise power is known a priori. However, in the presence

of noise uncertainty, their performance deteriorates significantly. However, under a noise

uncertainty of 2 dB, the proposed method exhibits a better performance than both MED-2

(with a smoothing factor = 8) and the ED-2.

4.4.2 The Evaluation of the Proposed Detector Computational Complexity

EMD suffers from a relatively high computational complexity due to its iterative nature (sift-

ing process) which turns to become more significant with large number of processed samples.

Conventional EMD approach uses cubic spline interpolation (to connect the maxima/min-

ima points) which is known to be a relatively slow computational tool because it works by
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Figure 4.7: A comparison of the proposed method to the ED and MED under noise uncer-
tainty effect with N = 5000

solving linear systems. In this section, the computational complexity (time-based) of the

proposed approach is discussed and a comparison is made with other EMD-based techniques

given in [1, 2, 64].

Wang et al showed that the complexity of EMD process is equivalent to Fourier transform

but scaled by a factor due to its iterative behavior [12]. For the case where all IMFs are

required to be used for detection decision, the computational complexity denoted by CAll,

can be given as follows:

CAll = S×O(N logN) (4.11)

where N is the number of samples, and S is the sifting multiplier and depends mainly on

the processed data length and its smoothness (corresponding to extrema density).

On the other hand, the proposed method needs only to extract IMF1 for noise power

calculations. The computational complexity of IMF1 sifting process will be denoted by

55



Sample size (N)

2000 4000 6000 8000 10000 12000 14000 16000

(1
−

δ
)%

0

20

40

60

80

100

Figure 4.8: The enhancement percentage of using IMF1 over the use of all IMFs in terms of
EMD processing computational complexity

CFirst, and is given as follows:

CFirst = Ŝ×O(N logN) (4.12)

where Ŝ is the sifting multiplier of IMF1, and Ŝ < S.

In order to evaluate the computational complexity enhancement of using IMF1 over the

use of all IMFs, an indicator, namely, δ is defined as follows:

δ =
CFirst

CAll
=

Ŝ

S
(4.13)

where (1− δ)% is the enhancement percentage (time saving) of using the proposed method

over the methods in [1, 2, 64]. Fig. 4.8 illustrates the computational gain, where an average

of 75% can be obtained through the use of the proposed method.

In Fig. 4.9, the processing time2 (to make a detection decision) for the proposed method,

ED, MED, and the methods in [1, 2] are compared. From Fig. 4.9, it is obvious that ED

outperforms all other techniques in which ED known to be as a fast detector. However,

MED exhibits better sensing time than the proposed method and that performance might

deteriorate as the smoothing factor increased (smoothing factor in this figure was 8). Despite

of ED and MED superiority, the proposed method can be used in sensing as it requires less

2The simulations are carried out using Matlab R2015a installed on a computer with the following specifi-
cations: Operating system: Windows Server 2008 R2 standard, Processor: Intel(R) Core(TM) i7-3770 CPU
@ 3.40GHz, RAM: 32.0 GB, System type: 64-bit
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Figure 4.9: Complexity comparison of the proposed method versus ED, MED and conven-
tional EMD-spectrum sensing techniques given in [1, 2]

than 6 sec to perform the detection process for N = 128000 and that’s within the specs of

FCC [104].

4.5 Conclusion

In this paper, an IMF1-based double threshold detector is proposed for single or multi-channel

detection in CR networks. The proposed method is adaptive, requires no prior information

about the received signal or its noise power and is robust to noise uncertainty. The proposed

method, inherits the advantage of CA-CFAR techniques to maintain a constant probability

of false alarm while using the first IMF to estimate the noise floor adaptively. Due to the

use of one IMF in setting the threshold, the proposed technique is much faster than other

conventional EMD-based techniques. The method is evaluated in terms of probability of

detection and false alarm rates over different SNR and sampling size values to demonstrate

its performance. The results show an enhancement in the probability of detection over other

techniques such as ED and MED in the presence of noise uncertainty.
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CHAPTER 5

Intrinsic Mode Function-based Noise Power Estimation

In this chapter1, an algorithm is proposed to blindly estimate the noise power embedded in

a received signal and use the knowledge of the noise power to upgrade semi-blind spectrum

sensors to blind sensors. The proposed noise estimator is based on a relationship between

the noise power of a received signal and the power of the first mode of the Empirical Mode

Decomposition algorithm. Simulations and results demonstrate an enhancement to the de-

tectors performance in contrast with their conventional semi-blind versions.

5.1 Intrinsic Mode Functions Statistical Analysis

The first Contribution will be an expansion for the EMD statistical investigations presented

in Sec. 3.2.2 and Sec. 4.3. Our investigation will be steered to a thorough analytical study

of the Intrinsic Mode Function probability distribution and provide a statistical proof of

the best fitting distribution model. On the other hand, the first Intrinsic Mode Function

properties is further evaluated by examining the relationship between its probability second

moment and a Gaussian random process.

5.2 Introduction

Spectrum sensing is a key part of cognitive radio (CR) functionality in which the secondary

users (SU) detect spectrum owned by a licensed or primary user (PU) [17]. Different spec-

trum sensing methods have different levels of “blindness”. The term “blindness” refers to the

1This work is accepted for publication in IEEE Signal Processing Letters 2017 [105] and some results are
published in [21]
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ability of the spectrum sensor to work without a priori knowledge of PU channel statistics,

such as noise power [106]. There is a wide range techniques for non-blind (Waveform), semi-

blind (Energy Detector) and fully-blind spectrum (Maximum-Minimum Eigenvalue) sensing

[61].

Typically, the noise power of the received signal is used to calculate the detection thresh-

old, which is in turn utilized to decide the occupancy status of the channel under test.

Practically, the knowledge of noise power is not available unless sacrificing part of the spec-

trum for measuring the noise; noise estimation is a substantial step to shift the semi-blind

spectrum sensing methods to the blind region. However, an inaccurate estimation of the

noise power may result in an increase in the miss-detection and false alarm rates [107].

Noise uncertainty is an additional factor that affects the efficiency of semi-blind detectors in

which noise starts to fluctuate during the sensing duration [103].

Several approaches are proposed to estimate the noise power of the received signal and

hence improve the detector performance [70, 108–110]. In [108], the noise level of the re-

ceiver, including noise sources from radio circuitry, is calibrated prior the detection process.

However, the noise variance is assumed to be precisely known to the receiver therefore, this

approach is not practical and needs the incorporation of noise uncertainty. In [70, 109], it

was assumed that some sub-bands are vacant and hence these sub-bands are used as noise

references in which unnecessary sacrificing of the spectrum must be adopted. In [110], for-

ward consecutive mean excision (FCME) and forward cell averaging (CA) methods are used

to estimate the level of the noise for a certain false alarm rate however, this approach is

sensitive to the designed level of false alarm rate. In [71], the eigenvalue groups of the

sample covariance matrix are split using minimum descriptive length (MDL); a goodness of

fit for probability distribution of the noise eigenvalues is used to estimate the noise power.

This approach requires high number of samples and depends on ad hoc parameters such as

smoothing factor and bandwidth ratio and hence its implementing is practically challenging.

In addition to the aforementioned approaches, Wavelet de-noising can be exploited to esti-
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mate the noise power by subtracting the de-noised version from the received noisy signal [10].

However, this method, although shows good noise estimation, suffers from the non-adaptivity

in terms of selecting wavelet basis, decomposition level, and number of coefficients [111].

This chapter presents the analytical justification of an Empirical Mode Decomposition-

based algorithm that was previously proposed for noise power estimation [21]. The proposed

noise estimator is non-parametric and adaptive to the signal in which no predefined pa-

rameters or knowledge about the received signal is required. This work includes a detailed

performance analysis in comparison to other comparable methods.

5.3 System Model

Similar to the system model introduced in 4.2, we assume a received signal, y(n), carries ei-

ther Gaussian noise only, w(n), or PU/SU signal components, s(n), contaminated additively

with, w(n). Subsequently, a binary hypothesis test can be formulated as follows:

y(n) =


w(n) : H0

s(n) + w(n) : H1

(5.1)

where H0 represents the absence, or the failure to prove the presence of PU/SU and H1

represents the indication of PU/SU presence. It is assumed that r(n) is an over-sampled

signal representing a snapshot of the channel with a duration T representing the sensing

cycle and samples n = 1 . . . N , where N is the total number of samples. w(n) is modeled as

independent and identically distributed additive white Gaussian noise with zero-mean and

variance σ2
w i.e. w(n) ∼ N (0, σ2

w) and assumed to be independent from s(n).

From frequency-domain perspective, EMD acts like a dyadic filter bank, where the sub-

sequent IMFs (except for the first IMF) behave like overlapping bandpass filters [15]. The

core part of the sifting process relies on interpolating the extrema (maxima/minima) points.

Therefore, oversampling is required to extract all the local oscillations through the sifting

procedure [27].
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In this chapter, the first IMF, IMF1, is used for noise estimation. This IMF exhibits

distinct statistical characteristics and was previously exploited for different applications [14,

112,113]. The EMD sifting process captures the highest frequencies in IMF1 [15]. However,

for noisy signals, IMF1 might include low-band frequencies (possibly PU/SU signals) when

the sampling rate is not sufficient and/or the noise power is too low.

The probability distribution of IMF1 for an input Gaussian processes is a mix of two

normal distributions represented by the Gaussian mixture (bi-modal) distribution [96]. The

justification of the bi-modality in such a distribution lies in the large discrepancy of values

(in case of noisy or noise only signals) yielded by the maxima and minima envelops [97]. The

first IMF, denoted by c1(n), follows a bi-modal distribution [114]:

f
(
c1(n)

)
=

ε√
2πσ2

u

e
− (c1(n)−µu)

2

2σ2u +
1− ε√

2πσ2
l

e
− (c1(n)−µl)

2

2σ2
l (5.2)

where µu, σu, µl, σl are the mean and the standard deviation for upper and lower mode

distributions respectively, and ε ∈ [0, 1] represents the mode distribution weight.

5.4 Proposed Noise Estimation Method for Semi-blind Spectrum sensors

According to Sec. 5.3, IMFs can be interpreted as a dyadic filter bank that resembles the

behavior of wavelets. However, unlike the filtering properties of wavelets, the EMD non-linear

decomposition process introduces different cutoff frequencies [98]. Figure 5.1 empirically

illustrates the normalized frequency response for the power spectral density (PSD) of c1(n)

of a noise only input signal w(n) for 5000 averaged trials. This figure shows the adaptive

high-pass filtering characteristic of IMF1 and how the sampling rate impacts the cutoff

frequency. The first IMF, under sufficient sampling rates, is dominated by noise and thus

can be exploited to estimate the noise power of a received signal [52]. Next, we propose a

method to determine the total noise power from these observations.

An empirical ratio of the first IMF power to the total noise power of the received signal
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denoted by β is:

β =
σ̂2
c1

σ2
w

(5.3)

where σ̂2
c1

is the estimated variance of c1(n) (see Appendix 5.A). Further, an analytical

explanation of the proposed noise estimation ratio is described in the Appendix 5.B.

The ratio, β, plays the role of a scaling factor that can be used to estimate σ2
w. Figure 5.2

shows a comparison of β2, dashed line, to the best fit linear regression model, solid line,

when r(n) = w(n). It was found that β can be approximated by a simple function of the

sample size, N , of the received signal [21]:

β(N) = S log2(N) + β(1) (5.4)

where β(1) is the y-intercept of the best fit linear model using polynomial least-squares and

S is the linear fit slope. From Fig. 5.2, the sample size, N , is represented logarithmically

in order to linearize the trend of β. These β values maintain a linear trend over different

sample size values and validate the model in (5.4). According to (5.4), and for a sample size

N , the estimated noise power, σ̂2
w, of the received signal r(n) can be given as:

σ̂2
w =

σ̂2
c1

β(N)
(5.5)

In this chapter, the noise power estimation in (5.5) is used to upgrade two semi-blind

methods, energy detector (ED) [103] and the maximum eigenvalue detector (MED) [62],

into blind ones. The noise power of these semi-blind methods is replaced by the proposed

estimated noise power, σ̂2
w.

2In Monte-Carlo simulation, a Gaussian random process of each sample size, N , is generated for 5000
trials. The estimated noise power, σ̂2

c1 , is obtained for each trial and the β value of each sample size is the
result of averaging of all trials.
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5.5 Simulation and Results

We assume a scenario of one PU/SU node with an additive white Gaussian noise (AWGN)

channel and a single channel spectrum scanner with a band pass filter (BPF). An OFDM-

modulated communication signal is synthesized with a known noise power. The results are

carried out through a Monte-Carlo simulation by averaging 2000 runs.
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First, we show the boundaries of the proposed noise estimation method under different

values of Signal-to-Noise Ratio (SNR) and sampling rates, Nyquist rate Nq. In Fig. 5.3, a

received Gaussian noise-only signal (dotted gray line) is used as a reference to compare it

with the scenario of a noisy signal. It is obvious that, for low sampling rate, β, from (5.4),

will perform well only at low SNR values (<−8 dB) as the noise will dominate the signal

resembling the case of noise-only scenario. However, for high sampling rate (≥ 8Nq), β will

behave in a very similar way to the noise-only case. The deviation of β at low sampling rate

and high SNR values occurs because IMF1 sifts part of the signal in addition to the noise

and increases the corresponding variance. Therefore, to ensure the proper functionality of

the proposed β model at wide range of SNR values, oversampling is required.

The proposed noise estimation model (5.4) is further evaluated using a percentage error

metric in which the true noise, σ2
w, of the received signal is used as a reference. Table 5.1

shows a comparison between the proposed β model and two other transform-based estimation

techniques; Forward consecutive mean excision (FCME)3 and Wavelet4 noise estimation

3While the FCME algorithm is in the frequency-domain, we transform the noise samples to the time-
domain for comparison [94].

4In this chapter, a Symlets mother-wavelet of order 16, 7th decomposition level, heuristic variant hard
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Table 5.1: Percentage error for transform-based noise estimation methods with 2000 samples,
or 8Nq, and different SNR values

Estimation
method

SNR (dB)

-30 -20 -10 0 10

Estimation error (%)

Wavelet 1.49 0.90 6.53 18.4 21.81

Forward 1.00 1.10 9.86 11.78 13.61

β 2.75 2.85 2.83 2.84 9.65

methods. Table 5.1 shows that at low SNR values (<−10 dB) both the FCME and wavelet

methods performed slightly better than the proposed method. However, both methods

exhibit a rapid degradation in the noise estimation performance as the SNR increases (≥

−10 dB) and that is expected due to the domination of the signal features over the noise

in which these techniques fail to differentiate the signal from the noise. In comparison, β

method has steady performance over all SNR values except at SNR ≥ 10 dB where IMF1

starts to sift signal components in addition to the noise. The degradation of the proposed

model can be mitigated by increasing the sampling rate, which guarantees that IMF1 will

be dominated by noise samples only.

In Fig. 5.4, the probability of detection, Pd, is used as a metric to evaluate the performance

of ED modified with our proposed β technique in contrast to FCME, Wavelet, and ED with

the known or true noise5 with probability of false alarm, Pfa at 0.1 and SNR = −12 dB.

From this figure, the β method performs nearly as good as the true noise especially at low

number of samples.

The Receiver Operating Characteristic (ROC) is used as a performance metric for both

ED and MED using different noise estimation methods in which 2000 samples represent a

sensing cycle of 625 µs at 8Nq; the SNRs in Figs. 5.5 and 5.6 were chosen to best reflect the

performance of each method. In Fig. 5.5, the performance of the β modified ED technique

threshold and first level coefficients threshold rescaling is utilized to estimate the noise power [10].
5The true noise is the variance of the noise, w(n) from (5.1).
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is illustrated, at SNR of −10 dB, for different transform-based noise estimation methods

as well as the model-based method given in [71] with smoothing factor of 50. Figure 5.6

illustrates the performance of the β modified MED technique at SNR of −14 dB for the

same noise estimation methods. For comparison, a fully-blind spectrum sensing technique,

Maximum-Minimum Eigenvalue (MME), computed with 6000 samples is added to Fig. 5.6.

From Figs. 5.5 and 5.6, it is demonstrated that the proposed β noise technique outper-

forms other estimators in addition to the MME technique which requires a much higher

sampling rate. The β method performs close to true noise for the assigned SNR value and

number of samples. In addition, the degradation of other method’s performance is due to

the estimation error as SNR values increase. While Wavelet and FCME show slightly better

noise estimation error (Table 5.1) compared with the β method, that does not mean they can

be used for very low SNR detection. The reason is that for the number of samples used in

this work each detector will have an SNR wall that can not be exceeded even if the number

of samples is increased infinitely [103].

Finally, the performance of the proposed noise estimation method is compared to the

noise estimation given in [115] using ED. Figure 5.7 illustrates the detection probability of

the ED methods using the DVB-T model parameters with Pfa = 0.01 [115]. In addition, the

noise uncertainty (1 dB) is presented to reveal the effect of noise fluctuation on the detector

performance. The ED with the true noise exhibits the best performance in contrast to the

worst performance of 1-dB noise uncertainty. Our proposed noise estimation method shows

a slightly better performance compared to the method in [115]. Unlike the noise power

estimation in [115], which is specifically designed for DVB-T signals, the proposed method

can work for a wider range of modulation schemes.

5.6 Conclusion

In this chapter, a signal driven noise power estimation method is proposed and used to make

two conventional semi-blind detectors blind. The proposed algorithm takes the advantage
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Figure 5.5: ROC curves of ED

of an observed unique ratio, β, between the IMF1 power and the total noise power in the

received signal. The performance of the proposed method is further tested through upgraded

detectors and the results are compared to other estimation schemes. The proposed noise

estimation method outperforms other schemes at low SNR.
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Appendix

5.A

The first IMF, c1(n), can be modeled as a bi-modal zero-mean normal process with a variance

of σ2
c1

i.e. c1(n) ∼ N (0, σ2
c1

). The variance of each mode distribution in (5.2) is estimated

using maximum-likelihood parameter estimation via Expectation Maximization (EM) algo-

rithm [116]. The estimated overall variance of IMF1, denoted by σ̂2
c1

, can be given as [117].

σ̂2
c1

= εσ̂2
u + (1− ε)σ̂2

l + ε(1− ε)(µ̂u − µ̂l)2 (5.6)

where σ̂2
u, σ̂

2
l , µ̂u and µ̂l are the estimated variances and means of the upper and lower mode

distributions. The bi-modality of c1(n) can be attributed to the inherent switching between

two mutually exclusive Gaussian processes of different means. For simplification, the mode

distribution weight ε is assumed to be 0.5 and that assumption is rationalized by the fact

that maxima and minima of the upper and lower envelopes are almost equally likely and

symmetrically distributed around the zero overall mean of the signal.

5.B

Analytically, the scaling factor β can be expressed as the ratio of integrating the PSD of IMF1

and the received signal, r(n) = w(n), in terms of extrema (maxima/minima) distribution.

The extrema are equally spaced with the maxima being located at integer time instants and

the minima at half the distance between a pair of consecutive maxima. For the case of cubic

69



spline interpolation, the frequency response of the unit spaced knots I(ν) is given as [118]:

I(ν) =

(
sinπν

πν

)4
3

2 + cos 2πν
(5.7)

The PSD of the first IMF, Sc1(ν), is given by:

Sc1(ν) = |(1− I(3ν))|2 Sw(ν) (0 ≤ ν < 1/2) (5.8)

where Sw(ν) is the PSD of the received signal w(n). Thus, the corresponding ratio β̂ is given

by:

β̂ =

∫ 1/2

0
Sc1(ν)dν∫ 1/2

0
Sw(ν)dν

(5.9)

The scaling factor, β̂, as given in (5.9) is the result of the first iteration (through the

sifting process) to obtain IMF1. The β̂ in (5.9) is not as generic as the one given in (5.4)

however, it is presented here to provide further validating evidence for the proposed noise

estimator.
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CHAPTER 6

Conclusion Remarks

6.1 Conclusion

Empirical Mode Decomposition is an adaptive, signal-dependent algorithm that shown to

be promising in different area of research due to its superiority against the most widely used

signal analysis method. The lacking of a mathematical bases encourage the researchers to

understand its underlying behavior and leverage that into important application problems.

Despite its iterative nature, which leads to computational complexity, EMD is still one of the

most widely used in signal decomposition relying on the robustness provided by the adaptive

and blind sifting process.

In this dissertation, the statistical properties of the Empirical Mode Decomposition

(EMD) algorithm is investigated and analyzed to have better understanding of the empirical

structure of the algorithm. The understanding of EMD behavior, under different scenarios,

is useful to leverage its capabilities into practical applications. These application ranging

from signal de-noising in time-domain to spectrum sensing development and not ending at

noise power estimation. The success of EMD lies in the domination over the other well-

known conventional signal analysis techniques such as Fourier and Wavelet tools although

its lacking for a rigorous mathematical framework.

In Chapter 1, we summarized the motivation behind using the EMD and briefly explained

the importance of understanding its statistical features. Further, the significance of the

proposed de-noising and detection problems is emphasized and concluding the chapter by

outlining the contributions of the dissertation.
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Chapter 2 introduced the background of the EMD algorithm with an explanation of the

sifting process which is illustrated using two examples. Because EMD is iterative process,

different stoppage criteria from literature is summarized in addition to the interpolation

methods that is used to connect the extrema points during the sifting. As EMD designed

analyzed continuous signal, the effect of sampling rate on the algorithm performance is

presented. The chapter is ended by a summary of EMD applications in order to underline

and justify the selection of this algorithm over other widely used ones to be the main topic

of this dissertation.

The first novel work is covered in Chapter 3, in which a generalized fitting distribution

is proposed to model the IMFs. Chapter 3 starts by investigating the effect of changing the

signal distribution with respect to IMF distributions where two statistical measures, variance

and excess kurtosis, are used to understand that effect. Further, these signal distributions are

corrupted by white Gaussian noise to study the influence of this inevitable component (i.e.

noise). The conclusion of the aforementioned experiments was that, for the distributions we

examined, the the first set of IMFs will follow a distribution rather than the Gaussian which

is well-known in literature. The next was to trace the statistical distributions of the sifting

process, particularly IMF2(n), in order to suggest a better fitting distribution. The mean of

envelopes, mi and the residue, ri, signals are chosen to be under statistical consideration as

these two signals are the main components during the iterative sifting process. The tracing of

mi and ri distributions show that they can be modeled by generalized Gaussian distribution,

GGD, and that model is verified through a null hypothesis test. The use of different signal

distribution with and without wGn corruption lead to a conclusion that the GGD-based IMFs

can be used effectively to separate the noise from useful signal components or simply called

de-noising. The proposed novel de-noising scheme is working by partially reconstructed the

IMFs that are not following GGD and discard the others. The proposed scheme is evaluated

under different scenarios and noise models to validate its efficacy. The simulation and results

show that the proposed de-noising scheme outperforms other de-noising techniques under low
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SNR regimes.

In chapter 4, we presented the second application of EMD for signal detection in cogni-

tive radio networks. In that chapter, the first IMF is utilized to propose a spectrum sensing

method that can make a decision of channel vacancy without a predefined parameters or

knowledge of the received signal noise characteristics. Further, it is robust for noise un-

certainty which is a crucial factor in signal detection due to the temporal fluctuation of

noise power. The proposed method involves the advantage of cell-averaging constant false

alarm rate, CA-CFAR, techniques to maintain a constant probability of false alarm. The

CA-CFAR requires a vacant channels (noise-only) to estimate the noise floor therefore we

suggested to use the first IMF to estimate the noise floor adaptively. Due to the use of one

IMF in setting the threshold, the proposed technique is much faster than other conventional

EMD-based techniques. The method is evaluated in terms of probability of detection and

false alarm rates over different SNR and sampling size values to demonstrate its performance.

The results show an enhancement in the probability of detection over other techniques such

as energy detectors, ED, and maximum eigenvalue detectors, MED, in the presence of 2 dB

of noise uncertainty.

Chapter 5 presents our original work for the noise power estimation based on the noise

power of the first Intrinsic Mode Function, IMF1(n). The filtering characteristics of EMD

encouraged the authors to investigate the ratio of the IMF1(n) to the total noise power in the

received noisy signal. The purpose was to shift the most widely used energy detector from

semi-blind to blind region where the conventional ED require the knowledge of the received

signal noise power. The ratio of the two noise powers, denoted by β, is modeled in terms

of number of samples and the validity boundaries are evaluated numerically. The power

(variance) of the first IMF is estimated based on its probability distribution. Further, an

analytical explanation of the proposed ratio is provided. The simulation and results reveal

an enhancement in the detectors performance in contrast with other peer noise estimation

methods.
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6.2 Limitations

The capabilities of EMD come on the expense of deriving a mathematical model. Although

the empirical nature of EMD keeps the doors open for further research, the lacking for a

strict mathematical frame can be considered as the main limitation. We summarized our

observations for the EMD limitations as follows:

1. The computational complexity: the main complexity contribution comes from the

iterative use of spline interpolation during the sifting process. The complexity level

increase with the increase of the number of samples of the processed signal.

(a) As the EMD is designed to process continuous signals, the conventional version

of EMD requires high sampling rate to capture all features of the underlying

components. Therefore, the level of complexity will be significant to extract

all IMFs.

(b) The required high sampling rate might limit the ability of EMD to process wide-

band frequency signals signals and therefore the conventional EMD is impractical

to use.

2. The ability of EMD to derive its decomposition bases adaptively (signal-dependent),

leads to variant cut-off frequencies and that make the frequencies separation more com-

plicated.

6.3 Future Work

For the future work, the developed EMD-based techniques in this dissertation can be fur-

ther improved and new applications can be involved. more specifically, an optimization of

the shape parameter, κ, search during the GGD null hypothesis test can be investigated.

In addition, the related de-noising technique can be even more enhanced by replacing the

hard thresholding by soft thresholding in which each relevant IMF can be filtered for better

74



de-noising. On the other hand, the EMD algorithm can be further developed to be able to

process signals in bandpass region rather than the baseband for spectrum sensing purposes.

That can be achieved by using different sifting methods and/or replace the spline interpola-

tion with less complex method to reduce the latency of EMD to process large data samples

and retain the adaptive behavior in same time. Finally, the EMD-based noise estimation

can be evaluated to include signals under different channels other than the AWGN.

At the end, we want to emphasize that, being empirical, our investigation and contri-

butions to EMD opens further doors to study more aspects of this interesting field. Our

motivation is reinforced by the success of the algorithm in real-world applications and its

simple structure compared to other complex, though famous, techniques.
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