79,606 research outputs found

    Reheating in the Presence of Inhomogeneous Noise

    Get PDF
    Explosive particle production due to parametric resonance is a crucial feature of reheating in an inflationary cosmology. Coherent oscillations of the inflaton field lead to a periodically varying mass in the evolution equation of matter and gravitational fluctuations and often induce a parametric resonance instability. In a previous paper (hep-ph/9709273) it was shown that homogeneous (i.e. space independent) noise leads to an increase of the generalized Floquet exponent for all modes, at least if the noise is temporally uncorrelated. Here we extend the results to the physically more realistic case of spatially inhomogeneous noise. We demonstrate - modulo some mathematical fine points which are addressed in a companion paper - that the Floquet exponent is a non- decreasing function of the amplitude of the noise. We provide numerical evidence for an even stronger statement, namely that in the presence of inhomogeneous noise, the Floquet exponent of each mode is larger than the maximal Floquet exponent of the system in the absence of noise.Comment: 21 pages, 4 figure

    Multi-valued, singular stochastic evolution inclusions

    Full text link
    We provide an abstract variational existence and uniqueness result for multi-valued, monotone, non-coercive stochastic evolution inclusions in Hilbert spaces with general additive and Wiener multiplicative noise. As examples we discuss certain singular diffusion equations such as the stochastic 1-Laplacian evolution (total variation flow) in all space dimensions and the stochastic singular fast diffusion equation. In case of additive Wiener noise we prove the existence of a unique weak-* mean ergodic invariant measure.Comment: 39 pages, in press: J. Math. Pures Appl. (2013

    ATLBS: the Australia Telescope Low-brightness Survey

    Get PDF
    We present a radio survey carried out with the Australia Telescope Compact Array. A motivation for the survey was to make a complete inventory of the diffuse emission components as a step towards a study of the cosmic evolution in radio source structure and the contribution from radio-mode feedback on galaxy evolution. The Australia Telescope low-brightness survey (ATLBS) at 1388 MHz covers 8.42 sq deg of the sky in an observing mode designed to yield images with exceptional surface brightness sensitivity and low confusion. The ATLBS radio images, made with 0.08 mJy/beam rms noise and 50" beam, detect a total of 1094 sources with peak flux exceeding 0.4 mJy/beam. The ATLBS source counts were corrected for blending, noise bias, resolution, and primary beam attenuation; the normalized differential source counts are consistent with no upturn down to 0.6 mJy. The percentage integrated polarization Pi_0 was computed after corrections for the polarization bias in integrated polarized intensity; Pi_0 shows an increasing trend with decreasing flux density. Simultaneous visibility measurements made with longer baselines yielded images, with 5" beam, of compact components in sources detected in the survey. The observations provide a measurement of the complexity and diffuse emission associated with mJy and sub-mJy radio sources. 10% of the ATLBS sources have more than half of their flux density in extended emission and the fractional flux in diffuse components does not appear to vary with flux density, although the percentage of sources that have complex structure increases with flux density. The observations are consistent with a transition in the nature of extended radio sources from FR-II radio source morphology, which dominates the mJy population, to FR-I structure at sub-mJy flux density. (Abridged)Comment: 18 pages, 8 figues, 6 tables, accepted for publication in MNRA

    Analytical results for a Fokker-Planck equation in the small noise limit

    Full text link
    We present analytical results for the lowest cumulants of a stochastic process described by a Fokker-Planck equation with nonlinear drift. We show that, in the limit of small fluctuations, the mean, the variance and the covariance of the process can be expressed in compact form with the help of the Lambert W function. As an application, we discuss the interplay of noise and nonlinearity far from equilibrium.Comment: 5 pages, 4 figure

    The Emergence of Gravitational Wave Science: 100 Years of Development of Mathematical Theory, Detectors, Numerical Algorithms, and Data Analysis Tools

    Get PDF
    On September 14, 2015, the newly upgraded Laser Interferometer Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave (GW) signal, emitted a billion light-years away by a coalescing binary of two stellar-mass black holes. The detection was announced in February 2016, in time for the hundredth anniversary of Einstein's prediction of GWs within the theory of general relativity (GR). The signal represents the first direct detection of GWs, the first observation of a black-hole binary, and the first test of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of its first observing run, LIGO observed two more signals from black-hole binaries, one moderately loud, another at the boundary of statistical significance. The detections mark the end of a decades-long quest, and the beginning of GW astronomy: finally, we are able to probe the unseen, electromagnetically dark Universe by listening to it. In this article, we present a short historical overview of GW science: this young discipline combines GR, arguably the crowning achievement of classical physics, with record-setting, ultra-low-noise laser interferometry, and with some of the most powerful developments in the theory of differential geometry, partial differential equations, high-performance computation, numerical analysis, signal processing, statistical inference, and data science. Our emphasis is on the synergy between these disciplines, and how mathematics, broadly understood, has historically played, and continues to play, a crucial role in the development of GW science. We focus on black holes, which are very pure mathematical solutions of Einstein's gravitational-field equations that are nevertheless realized in Nature, and that provided the first observed signals.Comment: 41 pages, 5 figures. To appear in Bulletin of the American Mathematical Societ

    Detecting compact galactic binaries using a hybrid swarm-based algorithm

    Full text link
    Compact binaries in our galaxy are expected to be one of the main sources of gravitational waves for the future eLISA mission. During the mission lifetime, many thousands of galactic binaries should be individually resolved. However, the identification of the sources, and the extraction of the signal parameters in a noisy environment are real challenges for data analysis. So far, stochastic searches have proven to be the most successful for this problem. In this work we present the first application of a swarm-based algorithm combining Particle Swarm Optimization and Differential Evolution. These algorithms have been shown to converge faster to global solutions on complicated likelihood surfaces than other stochastic methods. We first demonstrate the effectiveness of the algorithm for the case of a single binary in a 1 mHz search bandwidth. This interesting problem gave the algorithm plenty of opportunity to fail, as it can be easier to find a strong noise peak rather than the signal itself. After a successful detection of a fictitious low-frequency source, as well as the verification binary RXJ0806.3+1527, we then applied the algorithm to the detection of multiple binaries, over different search bandwidths, in the cases of low and mild source confusion. In all cases, we show that we can successfully identify the sources, and recover the true parameters within a 99\% credible interval.Comment: 19 pages, 5 figure
    corecore